WO2015199219A1 - 熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス - Google Patents

熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス Download PDF

Info

Publication number
WO2015199219A1
WO2015199219A1 PCT/JP2015/068507 JP2015068507W WO2015199219A1 WO 2015199219 A1 WO2015199219 A1 WO 2015199219A1 JP 2015068507 W JP2015068507 W JP 2015068507W WO 2015199219 A1 WO2015199219 A1 WO 2015199219A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermosetting resin
ring
resin composition
general formula
Prior art date
Application number
PCT/JP2015/068507
Other languages
English (en)
French (fr)
Inventor
一郎 小山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP15812604.5A priority Critical patent/EP3162868B1/en
Priority to KR1020167036317A priority patent/KR101859954B1/ko
Priority to JP2016529675A priority patent/JP6255096B2/ja
Priority to CN201580034703.9A priority patent/CN106471089B/zh
Publication of WO2015199219A1 publication Critical patent/WO2015199219A1/ja
Priority to US15/389,729 priority patent/US20170101521A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C09D179/085Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Definitions

  • the present invention relates to a thermal base generator, a thermosetting resin composition, a cured film, a method for producing a cured film, and a semiconductor device. More specifically, the present invention relates to a thermal base generator capable of performing cyclization of a thermosetting resin at a low temperature. Moreover, it is related with the thermosetting resin composition containing a thermobase generator, the cured film using the thermosetting resin composition, the manufacturing method of a cured film, and a semiconductor device.
  • thermosetting resins that are cured by cyclization are excellent in heat resistance and insulation, and are therefore used in insulating layers of semiconductor devices.
  • the above thermosetting resin has low solubility in a solvent, it is used in the state of a precursor resin (polyimide precursor resin, polyamideimide precursor resin, polybenzoxazole precursor resin) before the cyclization reaction. And after applying to a board
  • Patent Document 1 discloses a photosensitive resin composition containing an N-aromatic glycine derivative and a polymer precursor.
  • an N-aromatic glycine derivative is used as a photobase generator.
  • Patent Document 2 discloses a polyimide precursor containing a polyimide precursor, a thermal base generator composed of a neutral compound that undergoes thermal decomposition by heating at a temperature of 200 ° C. or lower, and a secondary amine, and a solvent.
  • a body resin composition is disclosed.
  • Patent Document 3 discloses a lithographic printing plate precursor having an image forming layer containing an infrared absorber, a polymerization initiator, a polymerizable compound, a hydrophobic binder, and N-phenyliminodiacetic acid.
  • Patent Document 4 discloses a laser-decomposable resin composition containing N-phenyliminodiacetic acid and a binder polymer.
  • JP 2006-282880 A JP 2007-56196 A JP 2009-237175 A JP 2008-63553 A
  • Thermosetting resins that cyclize and cure with a base can form cured films with excellent heat resistance.
  • a heat treatment at a high temperature has been required for the cyclization reaction of the thermosetting resin.
  • thermosetting resin there is a possibility that electronic parts and the like may be thermally damaged by heating during the cyclization reaction of the thermosetting resin.
  • Patent Document 1 As described in paragraph 0014, a large solubility contrast can be obtained regardless of the type of polyimide precursor resin, and as a result, a pattern having a good shape can be obtained while maintaining a sufficient process margin.
  • the invention aims to provide a photosensitive resin composition that can be obtained.
  • an N-aromatic glycine derivative is used as a photobase generator. That is, in Patent Document 1, an exposed portion is cured by imidizing a polyimide precursor resin using an amine generated by irradiating light to an N-aromatic glycine derivative as a catalyst to cure an exposed portion and an unexposed portion. A difference in solubility is given between the two.
  • Patent Document 1 does not discuss the reduction of the cyclization temperature, and in the examples, imidization is performed by heating at 300 ° C. for 1 hour.
  • Patent Document 1 has neither a description nor a suggestion regarding a thermal base generator.
  • Patent Document 2 uses a thermal base generator composed of a neutral compound that undergoes thermal decomposition by heating at a temperature of 200 ° C. or lower to generate a secondary amine, but according to the study of the present inventors, This thermal base generator was found to be in a dissociated and non-dissociated equilibrium state in the composition. For this reason, it was found that the cyclization reaction of the polyimide precursor resin progresses during storage of the composition and gelation is likely to occur, and the stability is poor.
  • Patent Documents 3 and 4 disclose that a carboxylic acid compound such as N-phenyliminodiacetic acid is used for an image forming layer of a lithographic printing plate precursor or a laser-decomposable resin composition.
  • a carboxylic acid compound such as N-phenyliminodiacetic acid is used for an image forming layer of a lithographic printing plate precursor or a laser-decomposable resin composition.
  • thermal base generators there is no description or suggestion about using them as thermal base generators.
  • an object of the present invention is to provide a thermal base generator capable of preparing a thermosetting resin composition having excellent stability, which can cyclize a thermosetting resin at a low temperature. Moreover, the thermosetting resin composition containing a thermobase generator, the cured film using the thermosetting resin composition, the manufacturing method of a cured film, and a semiconductor device are provided.
  • thermosetting resin composition that can be performed at a low temperature and has excellent stability can be provided, and the present invention has been completed.
  • the present invention provides the following. ⁇ 1> A thermal base generator comprising at least one selected from an acidic compound that generates a base when heated to 40 ° C. or higher, and an ammonium salt having an anion having an anion of pKa1 of 0 to 4 and an ammonium cation.
  • a thermal base generator comprising an ammonium salt having an anion having an anion having a pKa1 of 0 to 4 and an ammonium cation (excluding an acidic compound that generates a base when heated to 120 to 200 ° C.).
  • ⁇ 5> The thermal base generator according to ⁇ 1> or ⁇ 1a>, wherein the ammonium salt having an anion and an ammonium cation having a pKa1 of 0 to 4 is an acidic compound.
  • ⁇ 6> The thermal base generator according to ⁇ 1>, ⁇ 1a>, ⁇ 5>, wherein the anion of the ammonium salt is a carboxylic acid anion.
  • ⁇ 7> The thermal base generator according to ⁇ 4> or ⁇ 6>, wherein the carboxylate anion is represented by the following formula (X1); In General Formula (X1), EWG represents an electron-withdrawing group.
  • EWG is selected from the groups represented by the following general formulas (EWG-1) to (EWG-6), The thermal base generator according to ⁇ 7>;
  • R x1 to R x3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group or a carboxyl group, and Ar represents an aromatic ring group.
  • L 10 represents a single bond or a divalent linking group selected from an alkylene group, an alkenylene group, an arylene group, —NR X —, and a combination thereof
  • R X represents a hydrogen atom, an alkyl group, an alkenyl group or an aryl group.
  • the carboxylate anion is one selected from a maleate anion, a phthalate anion, an N-phenyliminodiacetic acid anion, and an oxalate anion, and any one of ⁇ 4>, ⁇ 6> to ⁇ 12>
  • the thermal base generator as described.
  • R 101 represents an n-valent organic group
  • R 102 to R 111 each independently represents a hydrogen atom or a hydrocarbon group
  • R 150 and R 151 each independently represents a hydrocarbon group
  • R 104 and R 105 , R 104 and R 150 , R 107 and R 108 , and R 109 and R 110 may be bonded to each other to form a ring
  • Ar 101 and Ar 102 each independently represents an aryl group
  • n represents an integer of 1 or more
  • m represents an integer of 0 to 5.
  • a 1 is an aromatic ring group
  • R 1 is a group represented by the formula (A)
  • m, n, and p are 1, and described in ⁇ 20>
  • Thermal base generator ⁇ 22> The thermal base generator according to any one of ⁇ 17> to ⁇ 21>, wherein the acidic compound is N-aryliminodiacetic acid.
  • a thermosetting resin composition comprising a thermosetting resin.
  • thermosetting resin composition according to ⁇ 23> wherein the thermosetting resin is a thermosetting resin that is cured by cyclization with a base.
  • thermosetting resin composition according to ⁇ 23> or ⁇ 24> wherein the thermosetting resin is at least one selected from a polyimide precursor resin, a polyamideimide precursor resin, and a polybenzoxazole precursor resin. .
  • thermosetting resin composition according to any one of ⁇ 23> to ⁇ 26>, wherein the thermosetting resin contains a repeating unit represented by the following general formula (2) or general formula (3);
  • a 1 and A 2 each independently represent an oxygen atom or —NH—
  • R 111 represents a divalent organic group
  • R 112 represents a tetravalent organic group
  • R 113 and R 114 each independently represents a hydrogen atom or a monovalent organic group
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represents a hydrogen atom or a monovalent organic group. Represents.
  • thermosetting resin composition according to any one of ⁇ 23> to ⁇ 28>, further comprising a compound having an ethylenically unsaturated bond as the polymerizable compound.
  • thermosetting resin composition according to ⁇ 29>, wherein the polymerizable compound is a compound containing two or more ethylenically unsaturated bonds.
  • thermosetting resin composition according to ⁇ 29> or ⁇ 30> in which the polymerizable compound has a partial structure represented by the following formula;
  • ⁇ 32> The thermosetting resin composition according to any one of ⁇ 23> to ⁇ 31>, further containing a thermal polymerization initiator.
  • ⁇ 33> The thermosetting resin composition according to ⁇ 32>, wherein the thermal polymerization initiator is a peroxide.
  • ⁇ 34> The thermosetting resin composition according to any one of ⁇ 23> to ⁇ 33>, further containing a photopolymerization initiator.
  • ⁇ 35> A cured film obtained by curing the thermosetting resin composition according to any one of ⁇ 23> to ⁇ 34>.
  • ⁇ 36> The cured film according to ⁇ 35>, which is an interlayer insulating film for rewiring.
  • ⁇ 37> A cured film comprising a step of applying the thermosetting resin composition according to any one of ⁇ 23> to ⁇ 34> to a substrate, and a step of curing the thermosetting resin composition applied to the substrate. Manufacturing method.
  • ⁇ 38> A semiconductor device having the cured film according to ⁇ 35> or the cured film manufactured by the method according to ⁇ 37>.
  • thermosetting resin can be cyclized at a low temperature, and it is possible to provide a thermal base generator capable of preparing a thermosetting resin composition having excellent stability. Moreover, it became possible to provide a thermosetting resin composition containing a thermobase generator, a cured film using the thermosetting resin composition, a method for producing the cured film, and a semiconductor device.
  • the description of the components in the present invention described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the description which does not describe substitution and unsubstituted includes the thing which has a substituent with the thing which does not have a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • active light means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like.
  • light means actinic rays or radiation.
  • exposure in this specification is not only exposure with far-ultraviolet rays such as mercury lamps and excimer lasers, X-rays, EUV light, but also drawing with particle beams such as electron beams and ion beams. Are also included in the exposure.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate represents both and / or “acrylate” and “methacrylate”
  • (meth) allyl represents both “allyl” and “methacryl”
  • (Meth) acryl” represents either “acryl” and “methacryl” or any one
  • “(meth) acryloyl” represents both “acryloyl” and “methacryloyl”, or Represents either.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • solid content concentration is the mass percentage of the mass of the other component except a solvent with respect to the gross mass of a composition.
  • a weight average molecular weight is defined as a polystyrene conversion value by GPC measurement.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8220 (manufactured by Tosoh Corporation), and TSKgel Super AWM-H (manufactured by Tosoh Corporation, 6) as a column. 0.0 mm ID ⁇ 15.0 cm). Unless otherwise stated, the eluent was measured using a 10 mmol / L lithium bromide NMP (N-methylpyrrolidinone) solution.
  • the thermal base generator of the present invention is at least one selected from an acidic compound (A1) that generates a base when heated to 40 ° C. or higher, and an ammonium salt (A2) having an anion having a pKa1 of 0 to 4 and an ammonium cation. including. Since the acidic compound (A1) and the ammonium salt (A2) generate a base when heated, the base generated from these compounds can accelerate the cyclization reaction of the thermosetting resin, and the ring of the thermosetting resin can be accelerated. Can be carried out at low temperatures.
  • thermosetting resin that is cured by cyclization with a base
  • thermosetting resin having excellent stability.
  • a composition can be prepared.
  • the value of the solution measured at 20 ° C. using a pH meter is less than 7.
  • the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is preferably 40 ° C. or higher, more preferably 120 to 200 ° C.
  • the upper limit of the base generation temperature is preferably 190 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 165 ° C. or lower.
  • the lower limit of the base generation temperature is preferably 130 ° C or higher, and more preferably 135 ° C or higher. If the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is 120 ° C. or higher, a base is not easily generated during storage, and thus a thermosetting resin composition having excellent stability can be prepared. .
  • the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is 200 ° C. or lower, the cyclization temperature of the thermosetting resin can be reduced.
  • the base generation temperature is measured, for example, by using differential scanning calorimetry, heating the compound to 250 ° C. at 5 ° C./min in a pressure capsule, reading the peak temperature of the lowest exothermic peak, and measuring the peak temperature as the base generation temperature. can do.
  • the base generated by the thermal base generator is preferably a secondary amine or a tertiary amine, more preferably a tertiary amine. Since tertiary amine has high basicity, the cyclization temperature of a thermosetting resin can be lowered more.
  • the base generated by the thermal base generator preferably has a boiling point of 80 ° C. or higher, preferably 100 ° C. or higher, and most preferably 140 ° C. or higher.
  • the molecular weight of the generated base is preferably 80 to 2000.
  • the lower limit is more preferably 100 or more.
  • the upper limit is more preferably 500 or less.
  • the molecular weight value is a theoretical value obtained from the structural formula.
  • the acidic compound (A1) preferably contains one or more selected from an ammonium salt and a compound represented by the following general formula (1).
  • the ammonium salt (A2) is preferably an acidic compound.
  • the ammonium salt (A2) may be a compound containing an acidic compound that generates a base when heated to 40 ° C. or higher (preferably 120 to 200 ° C.), or 40 ° C. or higher (preferably 120 to 200 ° C.). ) May be a compound excluding an acidic compound that generates a base when heated.
  • the thermal base generator will be described in detail.
  • the ammonium salt means a salt of an ammonium cation represented by the following formula (1) or (2) and an anion.
  • the anion may be bonded to any part of the ammonium cation via a covalent bond, and may be outside the molecule of the ammonium cation, but may be outside the molecule of the ammonium cation. preferable.
  • numerator of an ammonium cation means the case where an ammonium cation and an anion are not couple
  • the anion outside the molecule of the cation moiety is also referred to as a counter anion.
  • R 1 to R 6 each independently represents a hydrogen atom or a hydrocarbon group
  • R 7 represents a hydrocarbon group.
  • R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , and R 5 and R 7 may be bonded to form a ring.
  • the ammonium salt preferably has an anion having an pKa1 of 0 to 4 and an ammonium cation.
  • the upper limit of the anion pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less.
  • the lower limit is preferably 0.5 or more, and more preferably 1.0 or more. If the pKa1 of the anion is in the above range, the thermosetting resin can be cyclized at a low temperature, and further, the stability of the thermosetting resin composition can be improved. If pKa1 is 4 or less, the stability of the thermal base generator is good, the generation of a base without heating can be suppressed, and the stability of the thermosetting resin composition is good.
  • the kind of anion is preferably one selected from a carboxylate anion, a phenol anion, a phosphate anion, and a sulfate anion, and a carboxylate anion is more preferable because both the stability of the salt and the thermal decomposability can be achieved. That is, the ammonium salt is more preferably a salt of an ammonium cation and a carboxylate anion.
  • the carboxylic acid anion is preferably a divalent or higher carboxylic acid anion having two or more carboxyl groups, and more preferably a divalent carboxylic acid anion.
  • thermosetting resin composition it is possible to provide a thermal base generator that can further improve the stability, curability and developability of the thermosetting resin composition.
  • the stability, curability and developability of the thermosetting resin composition can be further improved by using an anion of a divalent carboxylic acid.
  • the carboxylic acid anion is preferably a carboxylic acid anion having a pKa1 of 4 or less.
  • pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less.
  • the stability of the thermosetting resin composition can be further improved.
  • pKa1 represents the logarithm of the reciprocal of the first dissociation constant of the acid, and the determination of Organic Structures by Physical Methods (authors: Brown, HC, McDaniel, DH, Hafrigerch, O., Hafliger, O., Hafliger, O., Hafrigerch, O., Hafrigerch, O., Hafrigerch, O., Hafrigerch, O., Hafrigerch, O., Hafliger, O., Hafrigerch, O., Hafrigerch, O., Hafrigerch, O., Hafrigerch, O., Hafrigerch, O., Hafrigerch., Hafrigerch., Hafrigerch., Hafrigerch., Hafrigerch., Hafrigerch., Hafrigerch., Hafrigerch., Hafrigerch., Hafrigerch., Hafrigerch., Haf
  • the carboxylate anion is preferably represented by the following formula (X1).
  • EWG represents an electron-withdrawing group.
  • the electron-withdrawing group means a group having a positive Hammett's substituent constant ⁇ m.
  • ⁇ m is a review by Yugo Tono, Journal of Synthetic Organic Chemistry, Vol. 23, No. 8 (1965) P.I. 631-642.
  • the electron-withdrawing group of the present invention is not limited to the substituents described in the above documents.
  • Me represents a methyl group
  • Ac represents an acetyl group
  • Ph represents a phenyl group.
  • EWG preferably represents a group represented by the following general formulas (EWG-1) to (EWG-6).
  • R x1 to R x3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group or a carboxyl group, and Ar represents an aromatic ring group.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkyl group may have a substituent or may be unsubstituted.
  • substituents examples include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • a carboxyl group is preferable.
  • the alkenyl group has preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, still more preferably 2 to 10 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkenyl group may have a substituent or may be unsubstituted.
  • substituent examples include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • a carboxyl group is preferable.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the aryl group may have a substituent or may be unsubstituted. Examples of the substituent include those described for the organic group has optionally may substituent represented by A 1 to be described later. As the substituent, a carboxyl group is preferable.
  • aromatic ring group examples include a substituted or unsubstituted benzene ring, naphthalene ring, pentalene ring, indene ring, azulene ring, heptalene ring, indecene ring, perylene ring, pentacene ring, acetaphthalene ring, phenanthrene ring, Anthracene ring, naphthacene ring, chrysene ring, triphenylene ring, fluorene ring, biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine Ring, indole ring, benzofuran ring, benzothiophene ring, is
  • a benzene ring, a naphthalene ring, an anthracene ring, a phenothiazine ring, or a carbazole ring is preferable, and a benzene ring or a naphthalene ring is most preferable.
  • the aromatic ring group substituents which may have include those described in the organic group has optionally may substituent represented by A 1 to be described later.
  • a carboxyl group is preferable.
  • the carboxylate anion is preferably represented by the following general formula (X).
  • L 10 represents a single bond or a divalent linking group selected from an alkylene group, an alkenylene group, an arylene group, —NR X —, and a combination thereof, and R X represents a hydrogen atom.
  • R X represents a hydrogen atom.
  • the alkylene group represented by L 10 preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkylene group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkylene group may have a substituent or may be unsubstituted. Examples of the substituent include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • the number of carbon atoms of the alkenylene group represented by L 10 is preferably 2 to 30, more preferably 2 to 20, and still more preferably 2 to 10.
  • the alkenylene group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkenylene group may have a substituent or may be unsubstituted. Examples of the substituent include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • the number of carbon atoms of the arylene group represented by L 10 is preferably 6 to 30, more preferably 6 to 20, and still more preferably 6 to 12.
  • the arylene group may have a substituent or may be unsubstituted. Examples of the substituent include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • the number of carbon atoms of the alkyl group represented by R X is preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 10.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkyl group may have a substituent or may be unsubstituted. Examples of the substituent include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • the alkenyl group represented by R X preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and still more preferably 2 to 10 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkenyl group may have a substituent or may be unsubstituted. Examples of the substituent include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • the aryl group represented by R X preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the aryl group may have a substituent or may be unsubstituted. Examples of the substituent include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • carboxylate anion examples include a maleate anion, a phthalate anion, an N-phenyliminodiacetic acid anion, and an oxalate anion. These can be preferably used.
  • the ammonium cation is preferably represented by any one of the following formulas (Y1-1) to (Y1-6).
  • R 101 represents an n-valent organic group
  • R 102 to R 111 each independently represents a hydrogen atom or a hydrocarbon group
  • R 150 and R 151 each independently represents a hydrocarbon group
  • R 104 and R 105 , R 104 and R 150 , R 107 and R 108 , and R 109 and R 110 may be bonded to each other to form a ring
  • Ar 101 and Ar 102 each independently represents an aryl group
  • n represents an integer of 1 or more
  • m represents an integer of 0 to 5.
  • R 101 represents an n-valent organic group.
  • the monovalent organic group include an alkyl group, an alkylene group, and an aromatic ring group.
  • the divalent or higher valent organic group include those obtained by removing one or more hydrogen atoms from a monovalent organic group to form an n valent group.
  • R 101 is preferably an aromatic ring group. Specific examples of the aromatic ring group include those described for Ar 10 described later.
  • R 102 to R 111 each independently represents a hydrogen atom or a hydrocarbon group
  • R 150 and R 151 each independently represent a hydrocarbon group.
  • the hydrocarbon group represented by R 102 to R 111 , R 150 and R 151 is preferably an alkyl group, an alkenyl group or an aryl group.
  • the alkyl group, alkenyl group and aryl group may further have a substituent. Examples of the substituent include those described for the organic group has optionally may substituent represented by A 1 to be described later.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkyl group may have a substituent or may be unsubstituted.
  • the alkenyl group has preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, still more preferably 2 to 10 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the alkenyl group may have a substituent or may be unsubstituted.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the aryl group may have a substituent or
  • Ar 101 and Ar 102 each independently represents an aryl group.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the aryl group may have a substituent or may be unsubstituted.
  • R 104 and R 105 , R 104 and R 150 , R 107 and R 108 , and R 109 and R 110 may be bonded to each other to form a ring.
  • the ring include an alicyclic ring (non-aromatic hydrocarbon ring), an aromatic ring, and a heterocyclic ring.
  • the ring may be monocyclic or multicyclic.
  • the linking group is composed of —CO—, —O—, —NH—, a divalent aliphatic group, a divalent aromatic ring group, and combinations thereof. They can be linked by a divalent linking group selected from the group.
  • pyrrolidine ring pyrrole ring, piperidine ring, pyridine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, pyrazine ring, morpholine ring, thiazine ring, indole ring, isoindole ring, benzimidazole ring.
  • the ammonium cation is preferably a structure represented by the formula (Y1-1) or (Y1-2), represented by the formula (Y1-1) or (Y1-2), R 101 is an aromatic ring A structure that is a group is more preferable, and a structure represented by the formula (Y1-1) and in which R 101 is an aromatic ring group is particularly preferable. That is, in the present invention, the ammonium cation is more preferably represented by the following general formula (Y).
  • Ar 10 represents an aromatic ring group
  • R 11 to R 15 each independently represents a hydrogen atom or a hydrocarbon group
  • R 14 and R 15 are bonded to each other to form a ring. It may be formed and n represents an integer of 1 or more.
  • Ar 10 represents an aromatic ring group.
  • the aromatic ring group include a substituted or unsubstituted benzene ring, naphthalene ring, pentalene ring, indene ring, azulene ring, heptalene ring, indecene ring, perylene ring, pentacene ring, acetaphthalene ring, phenanthrene ring, Anthracene ring, naphthacene ring, chrysene ring, triphenylene ring, fluorene ring, biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine Ring, indole ring, benzofuran ring, be
  • a benzene ring, a naphthalene ring, an anthracene ring, a phenothiazine ring, or a carbazole ring is preferable, and a benzene ring or a naphthalene ring is most preferable.
  • the aromatic ring group substituents which may have include those described in the organic group has optionally may substituent represented by A 1 to be described later.
  • R 11 and R 12 each independently represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group is not particularly limited, but is preferably an alkyl group, an alkenyl group or an aryl group.
  • R 11 and R 12 are preferably a hydrogen atom.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkyl group may be linear, branched or cyclic. Examples of the linear or branched alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, and an octadecyl group.
  • the cyclic alkyl group may be a monocyclic cycloalkyl group or a polycyclic cycloalkyl group.
  • Examples of the monocyclic cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the polycyclic cycloalkyl group include an adamantyl group, a norbornyl group, a bornyl group, a camphenyl group, a decahydronaphthyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a camphoroyl group, a dicyclohexyl group, and a pinenyl group. Can be mentioned. Among these, a cyclohexyl group is most preferable from the viewpoint of achieving high sensitivity.
  • the alkenyl group has preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, still more preferably 2 to 10 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic, and is preferably linear or branched, more preferably linear.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • R 13 to R 15 each represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include the hydrocarbon groups described above for R 11 and R 12 .
  • R 13 to R 15 are particularly preferably alkyl groups, and preferred embodiments are also the same as those described for R 11 and R 12 .
  • R 14 and R 15 may be bonded to each other to form a ring.
  • the ring include an alicyclic ring (non-aromatic hydrocarbon ring), an aromatic ring, and a heterocyclic ring.
  • the ring may be monocyclic or multicyclic.
  • Examples of the linking group when R 4 and R 5 are bonded to form a ring include —CO—, —O—, —NH—, a divalent aliphatic group, a divalent aromatic ring group, and combinations thereof
  • R 13 to R 15 are each a group in which R 14 and R 15 are bonded to each other to form a ring, or R 13 is a linear alkyl group having 5 to 30 carbon atoms (more preferably 6 to 18 carbon atoms).
  • R 14 and R 15 are preferably each independently an alkyl group having 1 to 3 carbon atoms (more preferably 1 or 2 carbon atoms). According to this aspect, it is possible to easily generate amine species having a high boiling point.
  • R 13 to R 15 are preferably 7 to 30 in terms of the total number of carbon atoms of R 13 , R 14, and R 15 from the viewpoint of the basicity and boiling point of the generated amine species. It is more preferable.
  • the chemical formula amount of “—NR 13 R 14 R 15 ” in the general formula (Y) is preferably 80 to 2000, and more preferably 100 to 500, because an amine species having a high boiling point is likely to be generated.
  • n represents an integer of 1 or more, preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • n is 2 or more, the plurality of R 11 to R 15 may be the same or different.
  • R 13 and R 14 are a methyl group or an ethyl group, and R 15 is a straight chain having 5 or more carbon atoms
  • examples include a branched or cyclic alkyl group or an aromatic group.
  • R 13 and R 14 are methyl groups, and R 15 is a linear alkyl group having 5 to 20 carbon atoms, a branched alkyl group having 6 to 17 carbon atoms, or a cyclic alkyl group having 6 to 10 carbon atoms.
  • R 15 is a linear alkyl group having 5 to 10 carbon atoms, a branched alkyl group having 6 to 10 carbon atoms, or 6 to 8 carbon atoms. More preferably, it is a cyclic alkyl group or a phenyl group.
  • the acidic compound is also preferably a compound represented by the following general formula (1).
  • This compound is acidic at room temperature, but by heating, the carboxyl group is lost by decarboxylation or dehydration cyclization, and the amine site that has been neutralized and inactivated becomes active. It becomes sex.
  • the general formula (1) will be described.
  • a 1 represents a p-valent organic group
  • R 1 represents a monovalent organic group
  • L 1 represents an (m + 1) -valent organic group
  • m represents an integer of 1 or more
  • P represents an integer of 1 or more.
  • a 1 represents a p-valent organic group.
  • the organic group include an aliphatic group and an aromatic ring group, and an aromatic ring group is preferable.
  • a 1 an aromatic ring group
  • a base having a high boiling point can be easily generated at a lower temperature.
  • the monovalent aliphatic group include an alkyl group and an alkenyl group.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may have a substituent or may be unsubstituted. Specific examples of the alkyl group include a methyl group, an ethyl group, a tert-butyl group, a dodecyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and an adamantyl group.
  • the alkenyl group has preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, still more preferably 2 to 10 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic.
  • the alkenyl group may have a substituent or may be unsubstituted.
  • Examples of the alkenyl group include a vinyl group and a (meth) allyl group.
  • Examples of the divalent or higher aliphatic group include groups obtained by removing one or more hydrogen atoms from the above monovalent aliphatic group.
  • the aromatic ring group may be monocyclic or polycyclic.
  • the aromatic ring group may be a heteroaromatic ring group containing a hetero atom.
  • the aromatic ring group may have a substituent or may be unsubstituted. Unsubstituted is preferred.
  • aromatic ring group examples include benzene ring, naphthalene ring, pentalene ring, indene ring, azulene ring, heptalene ring, indecene ring, perylene ring, pentacene ring, acenaphthalene ring, phenanthrene ring, anthracene ring, naphthacene ring, Chrysene ring, triphenylene ring, fluorene ring, biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine ring, indole ring, benzofuran Ring, benzothiophene ring, isobenzofuran ring, quinolidine
  • a plurality of aromatic rings may be linked via a single bond or a linking group described later.
  • the linking group for example, an alkylene group is preferable.
  • the alkylene group is preferably linear or branched.
  • Specific examples of the aromatic ring group in which a plurality of aromatic rings are linked through a single bond or a linking group include biphenyl, diphenylmethane, diphenylpropane, diphenylisopropane, triphenylmethane, and tetraphenylmethane.
  • Examples of the substituent which the organic group represented by A 1 may have include, for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkoxy such as methoxy group, ethoxy group and tert-butoxy group An aryloxy group such as a phenoxy group and a p-tolyloxy group; an alkoxycarbonyl group such as a methoxycarbonyl group, a butoxycarbonyl group and a phenoxycarbonyl group; an acyloxy group such as an acetoxy group, a propionyloxy group and a benzoyloxy group; an acetyl group; Acyl groups such as benzoyl group, isobutyryl group, acryloyl group, methacryloyl group and methoxalyl group; alkylsulfanyl groups such as methylsulfanyl group and tert-butylsulfany
  • L 1 represents a (m + 1) -valent linking group.
  • the linking group is not particularly limited, and is —COO—, —OCO—, —CO—, —O—, —S—, —SO—, —SO 2 —, an alkylene group (preferably a straight chain having 1 to 10 carbon atoms).
  • a chain or a branched alkylene group), a cycloalkylene group (preferably a cycloalkylene group having 3 to 10 carbon atoms), an alkenylene group (preferably a straight chain or branched alkenylene group having 1 to 10 carbon atoms) or a combination of these linked Examples include groups.
  • the total carbon number of the linking group is preferably 3 or less.
  • the linking group is preferably an alkylene group, a cycloalkylene group, or an alkenylene group, more preferably a linear or branched alkylene group, still more preferably a linear alkylene group, particularly preferably an ethylene group or a methylene group, and most preferably a methylene group.
  • R 1 represents a monovalent organic group.
  • the monovalent organic group include an aliphatic group and an aromatic ring group. Examples of the aliphatic group and the aromatic ring group include those described above for A 1 .
  • the monovalent organic group represented by R 1 may have a substituent. Examples of the substituent include those described above.
  • R 1 is preferably a group having a carboxyl group. That is, R 1 is preferably a group represented by the following formula (A). -L 2- (COOH) n (A) In formula (A), L 2 represents an (n + 1) -valent linking group, and n represents an integer of 1 or more.
  • Examples of the linking group represented by L 2 include the groups described above for L 1 , and the preferred ranges are also the same, an ethylene group or a methylene group is particularly preferred, and a methylene group is most preferred.
  • n represents an integer of 1 or more, preferably 1 or 2, and more preferably 1.
  • the upper limit of n is the maximum number of substituents that the linking group represented by L 2 can take. If n is 1, a tertiary amine having a high boiling point is likely to be generated by heating at 200 ° C. or lower. Furthermore, the stability of the thermosetting resin composition can be improved.
  • m represents an integer of 1 or more, preferably 1 or 2, and more preferably 1.
  • the upper limit of m is the maximum number of substituents that can be taken by the linking group represented by L 1 .
  • m 1, a tertiary amine having a high boiling point is likely to be generated by heating at 200 ° C. or lower.
  • p represents an integer of 1 or more, preferably 1 or 2, and more preferably 1.
  • the upper limit of p is the maximum number of substituents that the organic group represented by A 1 can take. When p is 1, a tertiary amine having a high boiling point is likely to be generated by heating at 200 ° C. or lower.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (1a).
  • a 1 represents a p-valent organic group
  • L 1 represents an (m + 1) -valent linking group
  • L 2 represents an (n + 1) -valent linking group
  • m is an integer of 1 or more
  • N represents an integer of 1 or more
  • p represents an integer of 1 or more.
  • a 1 , L 1 , L 2 , m, n and p in the general formula (1a) have the same meanings as the range described in the general formula (1), and preferred ranges are also the same.
  • the compound represented by the general formula (1) is preferably N-aryliminodiacetic acid.
  • a 1 in the general formula (1) is an aromatic ring group
  • L 1 and L 2 are methylene groups
  • m is 1
  • n is 1
  • p is 1
  • N-aryliminodiacetic acid tends to generate a tertiary amine having a high boiling point at 120 to 200 ° C.
  • (A-1) to (A-11), (A-18), and (A-19) are compounds represented by the above formula (1).
  • (A-1) to (A-11), (A-18) to (A-26) are more preferred, and (A-1) to (A-9), (A-18) ) To (A-21), (A-23), and (A-24) are more preferable.
  • (A-18) to (A-26) and (A-38) to (A-42) are preferred, and (A-26) and (A-38) ) To (A-42) are more preferable.
  • thermosetting resin composition of the present invention contains the above-mentioned thermal base generator and a thermosetting resin.
  • the thermosetting resin is preferably a thermosetting resin that is cyclized by a base and is cured. With this thermosetting resin composition, a cyclization reaction of the thermosetting resin can be performed at a low temperature, and a thermosetting resin composition having excellent stability can be obtained.
  • the thermal base generator of the present invention does not generate a base unless it is heated, it can suppress cyclization of the thermosetting resin during storage even when coexisting with the thermosetting resin, and has excellent storage stability. ing.
  • the thermal base generator is preferably an acidic compound composed of the above-described ammonium salt.
  • the ammonium salt is preferably a salt of an ammonium cation and a carboxylate anion.
  • the content of the thermal base generator in the thermosetting resin composition is preferably 0.1 to 50% by mass with respect to the total solid content of the thermosetting resin composition.
  • the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • thermosetting resin 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass of the thermal base generator is contained with respect to 100 parts by mass of the thermosetting resin. If content of a thermal base generator is the said range, cyclization of a thermosetting resin can be performed at low temperature, and the cured film excellent in heat resistance can be formed by heat processing at low temperature. 1 type (s) or 2 or more types can be used for a thermal base generator. When using 2 or more types, it is preferable that a total amount is the said range.
  • thermosetting resin Any thermosetting resin can be used as long as it is cyclized by a base and curing is accelerated.
  • a heterocyclic-containing polymer precursor resin capable of forming a heterocyclic-containing polymer by causing a cyclization reaction by heating is preferable.
  • the heterocyclic-containing polymer precursor resin is preferably at least one selected from a polyimide precursor resin, a polyamideimide precursor resin, and a polybenzoxazole precursor resin, and is a polyimide precursor resin or a polybenzoxazole precursor.
  • a resin is more preferable, and a polyimide precursor resin is still more preferable. According to this aspect, it is easy to form a cured film having more excellent heat resistance.
  • thermosetting resins have a high cyclization temperature, and conventionally cyclization was performed by heating to 300 ° C. or higher.
  • thermosetting resins are 300
  • the cyclization reaction can be sufficiently advanced by heating at a temperature of not higher than ° C (preferably not higher than 200 ° C, more preferably not higher than 180 ° C).
  • the thermosetting resin preferably has an ethylenically unsaturated bond, and more preferably a polyimide precursor resin having an ethylenically unsaturated bond.
  • the thermosetting resin has an ethylenically unsaturated bond, it is easy to form a cured film having more excellent heat resistance.
  • the content of the thermosetting resin in the thermosetting resin composition is preferably 30 to 90% by mass with respect to the total solid content of the thermosetting resin composition.
  • the lower limit is more preferably 40% by mass or more, and further preferably 50% by mass or more.
  • the polyimide precursor resin is not particularly limited as long as it is a compound capable of being polyimidized, but is preferably a polyimide precursor resin having an ethylenically unsaturated bond.
  • the polyamideimide precursor resin is not particularly limited as long as it is a compound that can be polyamideimided, but is preferably a polyamideimide precursor resin having an ethylenically unsaturated bond.
  • the polyimide precursor resin and the polyamideimide precursor resin are most preferably a compound containing a repeating unit represented by the following general formula (2).
  • a 1 and A 2 each independently represent an oxygen atom or —NH—
  • R 111 represents a divalent organic group
  • R 112 represents a tetravalent organic group
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 each independently represents an oxygen atom or —NH—, preferably an oxygen atom.
  • R 111 represents a divalent organic group.
  • the divalent organic group include a diamine residue remaining after removal of the amino group of the diamine.
  • the diamine include aliphatic, cycloaliphatic or aromatic diamines. Specific examples include diamine residues remaining after removal of the amino groups of the following diamines.
  • 1,2-diaminoethane 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,2- or 1,3-diaminocyclopentane, 1, 2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4-aminocyclohexyl) methane, bis- (3 -Aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine; m- and p-phenylenediamine, diaminotoluene, 4,4'- and 3,3'-diaminobiphenyl, 4,4'- and 3,3'-diaminodiphenyl ether
  • R 112 represents a tetravalent organic group.
  • the tetravalent organic group include a tetracarboxylic acid residue remaining after removal of the anhydride group from tetracarboxylic dianhydride.
  • Specific examples include tetracarboxylic acid residues remaining after the removal of anhydride groups from the following tetracarboxylic dianhydrides.
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group.
  • a substituent that improves the solubility of the developer is preferably used.
  • R 113 and R 114 are preferably a hydrogen atom or a monovalent organic group.
  • the monovalent organic group include an aryl group and an aralkyl group having one, two, or three, preferably one acidic group bonded to an aryl carbon.
  • Specific examples include an aryl group having 6 to 20 carbon atoms having an acidic group and an aralkyl group having 7 to 25 carbon atoms having an acidic group. More specifically, a phenyl group having an acidic group and a benzyl group having an acidic group can be mentioned.
  • the acidic group is preferably a HO group.
  • R 113 and R 114 are a hydrogen atom, 2-hydroxybenzyl, 3-hydroxybenzyl and 4-hydroxybenzyl, the solubility in an aqueous developer is good, and it is particularly suitable as a negative thermosetting resin composition. Can be used.
  • R 113 and R 114 are preferably monovalent organic groups.
  • the monovalent organic group is particularly preferably an alkyl group, a cycloalkyl group, or an aromatic ring group.
  • the alkyl group preferably has 1 to 30 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • linear or branched alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, and an octadecyl group.
  • the cyclic alkyl group may be a monocyclic cycloalkyl group or a polycyclic cycloalkyl group.
  • Examples of the monocyclic cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the polycyclic cycloalkyl group include an adamantyl group, a norbornyl group, a bornyl group, a camphenyl group, a decahydronaphthyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a camphoroyl group, a dicyclohexyl group, and a pinenyl group. Can be mentioned. Among these, a cyclohexyl group is most preferable from the viewpoint of achieving high sensitivity.
  • aromatic ring group examples include a substituted or unsubstituted benzene ring, naphthalene ring, pentalene ring, indene ring, azulene ring, heptalene ring, indecene ring, perylene ring, pentacene ring, acetaphthalene ring, phenanthrene ring, Anthracene ring, naphthacene ring, chrysene ring, triphenylene ring, fluorene ring, biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine Ring, indole ring, benzofuran ring, benzothiophene ring, is
  • Examples of the polymerizable group that R 113 and R 114 have include an epoxy group, an oxetanyl group, a group having an ethylenically unsaturated bond, a blocked isocyanate group, an alkoxymethyl group, a methylol group, and an amino group. Of these, a group having an ethylenically unsaturated bond is preferred because of its good sensitivity. Examples of the group having an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, a group represented by the following formula (III), and the like.
  • R 200 represents hydrogen or methyl, and methyl is more preferable.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, —CH 2 CH (OH) CH 2 — or a polyoxyalkylene group having 4 to 30 carbon atoms.
  • suitable R 201 are ethylene, propylene, trimethylene, tetramethylene, 1,2-butanediyl, 1,3-butanediyl, pentamethylene, hexamethylene, octamethylene, dodecamethylene, —CH 2 CH (OH) CH 2 —, And ethylene, propylene, trimethylene, and —CH 2 CH (OH) CH 2 — are more preferable.
  • R 200 is methyl and R 201 is ethylene.
  • the ratio of R 113 and R 114 in the general formula (2) having a polymerizable group is, as a molar ratio, a polymerizable group: non-polymerizable group, preferably 100: 0 to 5:95, more preferably. Is from 100: 0 to 20:80, most preferably from 100: 0 to 50:50.
  • the weight average molecular weight (Mw) of the polyimide precursor resin and the polyamideimide precursor resin is preferably 1,000 to 100,000, more preferably 3,000 to 50,000, and most preferably 5,000. ⁇ 30,000.
  • the weight average molecular weight (Mw) of the polyimide precursor resin and the polyamideimide precursor resin can be measured by gel filtration chromatography calibrated with polystyrene, for example.
  • the polybenzoxazole precursor resin is not particularly limited as long as it is a compound that can be converted into polybenzoxazole, but is preferably a polybenzoxazole precursor resin having an ethylenically unsaturated bond.
  • the compound represented by the following general formula (3) is most preferable.
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represents a hydrogen atom or a monovalent organic group. Represents.
  • R 121 represents a divalent organic group.
  • an aromatic ring group is preferable. Examples of the aromatic ring group include the following.
  • A is a divalent group selected from the group consisting of —CH 2 —, —O—, —S—, —SO 2 —, —CO—, —NHCO—, —C (CF 3 ) 2 —. Represents.
  • R 122 represents a tetravalent organic group.
  • the tetravalent organic group is preferably a bisaminophenol residue represented by the following general formula (A).
  • Ar (NH 2 ) 2 (OH) 2 (A)
  • Ar is an aryl group.
  • Examples of the bisphenol represented by the general formula (A) include 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, and 4,4′-diamino-3,3′-dihydroxybiphenyl.
  • bisaminophenol having an aromatic ring group selected from the following is particularly preferable.
  • X 1 represents —O—, —S—, —C (CF 3 ) 2 —, —CH 2 —, —SO 2 —, —NHCO—.
  • —OH and —NH 2 contained in the structure of the general formula (A) are bonded to each other at the ortho position (adjacent position).
  • R 123 and R 124 each represent a hydrogen atom or a monovalent organic group, and at least one of R 123 and R 124 preferably represents a polymerizable group.
  • a polymeric group the aspect demonstrated by R113 and R114 of General formula (2) mentioned above is the same, and its preferable range is also the same.
  • the polybenzoxazole precursor resin may contain other types of repeating structural units in addition to the repeating unit of the general formula (3).
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor resin is preferably 1,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 5,000 to 30,000.
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor resin can be measured, for example, by gel filtration chromatography calibrated with polystyrene.
  • the thermosetting resin composition of the present invention may contain a polymerizable compound other than the thermobase generator and the thermosetting resin.
  • a polymerizable compound By containing a polymerizable compound, a cured film having more excellent heat resistance can be formed. Furthermore, pattern formation by photolithography can also be performed.
  • the polymerizable compound is a compound having a polymerizable group, and a known compound that can be polymerized by a radical can be used.
  • the polymerizable group is a group that can be polymerized by the action of actinic rays, radiation, or radicals, and examples thereof include a group having an ethylenically unsaturated bond.
  • the polymerizable compound used in the present invention is preferably a compound having an ethylenically unsaturated bond, more preferably a (meth) acrylate compound, and still more preferably an acrylate compound.
  • Polymerizable compounds are widely known in the industrial field, and these can be used without particular limitation in the present invention. These may be any of chemical forms such as monomers, prepolymers, oligomers or mixtures thereof and multimers thereof.
  • a monomer type polymerizable compound (hereinafter also referred to as a polymerizable monomer) is a compound different from a polymer compound.
  • the polymerizable monomer is typically a low molecular compound, preferably a low molecular compound having a molecular weight of 2000 or less, more preferably a low molecular compound having a molecular weight of 1500 or less, and a low molecular compound having a molecular weight of 900 or less. More preferably it is.
  • the molecular weight of the polymerizable monomer is usually 100 or more.
  • the oligomer type polymerizable compound (hereinafter also referred to as polymerizable oligomer) is typically a polymer having a relatively low molecular weight, and is a polymer in which 10 to 100 polymerizable monomers are bonded. Is preferred.
  • the polystyrene-reduced weight average molecular weight by gel permeation chromatography (GPC) method is preferably 2000 to 20000, more preferably 2000 to 15000, and most preferably 2000 to 10,000.
  • the number of functional groups of the polymerizable compound in the present invention means the number of polymerizable groups in one molecule.
  • the polymerizable compound preferably contains at least one bifunctional or higher functional polymerizable compound containing two or more polymerizable groups, and preferably contains at least one trifunctional or higher functional polymerizable compound. Is more preferable.
  • the polymeric compound in this invention contains at least 1 sort (s) of polymeric compounds more than trifunctional from the point that a three-dimensional crosslinked structure can be formed and heat resistance can be improved.
  • a mixture of a bifunctional or lower polymerizable compound and a trifunctional or higher functional polymerizable compound may be used.
  • the polymerizable compound examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters, amides, and multimers thereof.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters of unsaturated carboxylic acids and polyhydric alcohol compounds
  • amides of unsaturated carboxylic acids and polyvalent amine compounds and multimers thereof.
  • addition reaction products of monofunctional or polyfunctional isocyanates or epoxies with unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxyl group, amino group, mercapto group, monofunctional or polyfunctional.
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine, or thiol, and a halogen group A substitution reaction product of an unsaturated carboxylic acid ester or amide having a detachable substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable.
  • esters of polyhydric alcohol compounds and unsaturated carboxylic acids include acrylic acid esters such as ethylene glycol diacrylate, triethylene glycol diacrylate, 1,3-butanediol diacrylate, and tetramethylene glycol diacrylate.
  • Methacrylic acid esters include tetramethylene glycol dimethacrylate, triethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, ethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, Hexanediol dimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol dimethacrylate, dipentaerythritol hexamethacrylate, sorbitol trimethacrylate, sorbitol tetramethacrylate, bis [p- (3-methacryloxy- 2-hydroxyp Epoxy) phenyl] dimethyl methane, bis - [p- (me
  • Itaconic acid esters include ethylene glycol diitaconate, propylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4-butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate And sorbitol tetritaconate.
  • crotonic acid esters examples include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol tetradicrotonate.
  • isocrotonic acid esters examples include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, and sorbitol tetraisocrotonate.
  • maleic acid esters examples include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate, and sorbitol tetramaleate.
  • esters examples include aliphatic alcohol esters described in JP-B-46-27926, JP-B-51-47334, JP-A-57-196231, and JP-A-59-5240. Those having an aromatic skeleton described in JP-A-59-5241, JP-A-2-226149, and those containing an amino group described in JP-A-1-165613 are also preferably used.
  • amide monomers of polyvalent amine compounds and unsaturated carboxylic acids include methylene bis-acrylamide, methylene bis-methacrylamide, 1,6-hexamethylene bis-acrylamide, 1,6-hexamethylene bis-methacrylic.
  • examples include amide, diethylenetriamine trisacrylamide, xylylene bisacrylamide, and xylylene bismethacrylamide.
  • Examples of other preferable amide monomers include those having a cyclohexylene structure described in JP-B No. 54-21726.
  • urethane-based addition-polymerizable monomers produced using an addition reaction of isocyanate and hydroxyl group are also suitable. Specific examples thereof include, for example, one molecule described in JP-B-48-41708.
  • a vinylurethane compound containing two or more polymerizable vinyl groups in one molecule obtained by adding a vinyl monomer containing a hydroxyl group represented by the following general formula (A) to a polyisocyanate compound having two or more isocyanate groups Etc.
  • CH 2 C (R 4 ) COOCH 2 CH (R 5 ) OH (A) (However, R 4 and R 5 represent H or CH 3.
  • urethane acrylates as described in JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, JP-B-58-49860, JP-B-56- Urethane compounds having an ethylene oxide skeleton described in Japanese Patent No. 17654, Japanese Patent Publication No. 62-39417, and Japanese Patent Publication No. 62-39418 are also suitable.
  • the compounds described in paragraph No. 0095 to paragraph No. 0108 of JP-A-2009-288705 can also be suitably used in the present invention.
  • the compound which has a boiling point of 100 degreeC or more under a normal pressure is also preferable.
  • examples include monofunctional acrylates and methacrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and phenoxyethyl (meth) acrylate; polyethylene glycol di (meth) acrylate, trimethylolethanetri (Meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, hexanediol (Meth) acrylate, trimethylolpropane tri (acryloyloxypropyl) ether
  • the compounds described in JP-A-2008-292970, paragraph numbers 0254 to 0257 are also suitable.
  • the polyfunctional (meth) acrylate etc. which can be obtained by reacting a polyfunctional carboxylic acid with a compound having a cyclic ether group such as glycidyl (meth) acrylate and an ethylenically unsaturated bond can also be mentioned.
  • Other preferred polymerizable compounds include groups having a fluorene ring and an ethylenically unsaturated bond described in JP 2010-160418 A, JP 2010-129825 A, Japanese Patent No. 4364216, and the like. It is also possible to use a compound having two or more and a cardo resin.
  • polymerizable compound examples include specific unsaturated compounds described in JP-B-46-43946, JP-B-1-40337, JP-B-1-40336, and JP-A-2-25493.
  • examples thereof include vinylphosphonic acid compounds described in the publication.
  • a structure containing a perfluoroalkyl group described in JP-A-61-22048 is preferably used.
  • Journal of Japan Adhesion Association vol. 20, no. 7, pages 300 to 308 (1984), which are introduced as photocurable monomers and oligomers can also be used.
  • polymerizable compounds represented by the following general formulas (MO-1) to (MO-5) can also be suitably used.
  • T is an oxyalkylene group
  • the terminal on the carbon atom side is bonded to R.
  • n is an integer of 0 to 14, and m is an integer of 1 to 8.
  • a plurality of R and T present in one molecule may be the same or different.
  • the compounds described in paragraphs 0248 to 0251 of JP-A-2007-26979 are disclosed in the present invention. Can also be suitably used.
  • JP-A-10-62986 as general formulas (1) and (2) together with specific examples thereof, which are (meth) acrylated after adding ethylene oxide or propylene oxide to a polyfunctional alcohol, It can be used as a polymerizable compound.
  • dipentaerythritol triacrylate (as a commercially available product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.) )
  • Dipentaerythritol penta (meth) acrylate commercially available products are KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.
  • dipentaerythritol hexa (meth) acrylates (commercially available products are KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.)
  • a structure in which these (meth) acryloyl groups are interposed via ethylene glycol and propylene glycol residues.
  • the polymerizable compound may be a polyfunctional monomer having an acid group such as a carboxyl group, a sulfonic acid group, or a phosphoric acid group.
  • the polyfunctional monomer having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound. More preferred is a polyfunctional monomer having a carboxylic acid, and particularly preferred in this ester is that the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol.
  • Examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the polyfunctional monomer having an acid group one kind may be used alone, or two or more kinds may be mixed and used. Moreover, you may use together the polyfunctional monomer which does not have an acid group, and the polyfunctional monomer which has an acid group as needed.
  • a preferable acid value of the polyfunctional monomer having an acid group is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g. When the acid value of the polyfunctional monomer is in the above range, the production and handling properties are excellent, and further, the developability is excellent. Further, the curability is good.
  • a polymerizable compound having a caprolactone structure can also be used.
  • the polymerizable compound having a caprolactone structure is not particularly limited as long as it has a caprolactone structure in the molecule.
  • a polymerizable compound having a caprolactone structure represented by the following general formula (B) is preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents a number of 1 or 2
  • “*” represents a bond.
  • R 1 represents a hydrogen atom or a methyl group, and “*” represents a bond.
  • the polymeric compound which has a caprolactone structure can be used individually or in mixture of 2 or more types.
  • the polymerizable compound is also preferably at least one selected from the group of compounds represented by the following general formula (i) or (ii).
  • each E independently represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —
  • Each y independently represents an integer of 0 to 10
  • each X independently represents a (meth) acryloyl group, a hydrogen atom, or a carboxyl group.
  • the total number of (meth) acryloyl groups is 3 or 4
  • each m independently represents an integer of 0 to 10
  • the total of each m is an integer of 0 to 40.
  • any one of X is a carboxyl group.
  • the total number of (meth) acryloyl groups is 5 or 6, each n independently represents an integer of 0 to 10, and the total of each n is an integer of 0 to 60. However, when the total of each n is 0, any one of X is a carboxyl group.
  • m is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4.
  • the total of each m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and particularly preferably an integer of 4 to 8.
  • n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4.
  • the total of each n is preferably an integer of 3 to 60, more preferably an integer of 3 to 24, and particularly preferably an integer of 6 to 12.
  • bonds with is preferable.
  • a form in which all six Xs are acryloyl groups is preferable.
  • the compound represented by the general formula (i) or (ii) has a ring-opening skeleton by a ring-opening addition reaction of pentaerythritol or dipentaerythritol with ethylene oxide or propylene oxide, which is a conventionally known process. It can be synthesized from the step of bonding and the step of introducing a (meth) acryloyl group by reacting, for example, (meth) acryloyl chloride with the terminal hydroxyl group of the ring-opening skeleton. Each step is a well-known step, and a person skilled in the art can easily synthesize a compound represented by the general formula (i) or (ii).
  • pentaerythritol derivatives and / or dipentaerythritol derivatives are more preferable.
  • Specific examples include compounds represented by the following formulas (a) to (f) (hereinafter also referred to as “exemplary compounds (a) to (f)”).
  • exemplary compounds (a), (f) b), (e) and (f) are preferred.
  • Examples of commercially available polymerizable compounds represented by general formulas (i) and (ii) include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartomer, manufactured by Nippon Kayaku Co., Ltd. DPCA-60, which is a hexafunctional acrylate having six pentyleneoxy chains, and TPA-330, which is a trifunctional acrylate having three isobutyleneoxy chains.
  • Examples of the polymerizable compound include urethane acrylates described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, and the like. Urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable. Furthermore, addition polymerizable compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 are described as polymerizable compounds. Monomers can also be used.
  • polymerizable compounds include urethane oligomers UAS-10, UAB-140 (manufactured by Sanyo Kokusaku Pulp Co., Ltd.), NK ester M-40G, NK ester 4G, NK ester M-9300, NK ester A-9300, UA- 7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoei Co., Ltd.), Blemmer PME400 (Manufactured by NOF Corporation).
  • the polymerizable compound preferably has a partial structure represented by the following formula from the viewpoint of heat resistance.
  • polymerizable compound having the partial structure examples include, for example, trimethylolpropane tri (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, isocyanuric acid ethylene oxide modified tri (meth) acrylate, pentaerythritol tris.
  • the content of the polymerizable compound is preferably 1 to 50% by mass with respect to the total solid content of the thermosetting resin composition from the viewpoint of good curability and heat resistance.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 30% by mass or less.
  • the polymerizable compound one kind may be used alone, or two or more kinds may be mixed and used.
  • the mass ratio of the thermosetting resin to the polymerizable compound is preferably 98/2 to 10/90, more preferably 95/5 to 30/70, and 90/10. Most preferred is ⁇ 50 / 50. If the mass ratio of a thermosetting resin and a polymeric compound is the said range, the cured film excellent in sclerosis
  • the thermosetting resin composition of the present invention may contain a thermal polymerization initiator.
  • a known thermal polymerization initiator can be used as the thermal polymerization initiator.
  • the thermal polymerization initiator is a compound that generates radicals by heat energy and initiates or accelerates the polymerization reaction of the polymerizable compound.
  • the thermal polymerization initiator By adding the thermal polymerization initiator, the polymerization reaction of the polymerizable compound can be advanced when the cyclization reaction of the thermosetting resin is advanced.
  • the thermosetting resin contains an ethylenically unsaturated bond, since the polymerization reaction of the thermosetting resin can be allowed to proceed together with the cyclization of the thermosetting resin, higher heat resistance can be achieved. .
  • Thermal polymerization initiators include aromatic ketones, onium salt compounds, peroxides, thio compounds, hexaarylbiimidazole compounds, ketoxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, carbon halogen bonds And azo compounds.
  • a peroxide or an azo compound is more preferable, and a peroxide is particularly preferable.
  • compounds described in paragraphs 0074 to 0118 of JP-A-2008-63554 can be mentioned.
  • perbutyl Z made by NOF Corporation
  • the content of the thermopolymerization initiator is preferably 0.1 to 50% by mass with respect to the total solid content of the thermosetting resin composition, preferably 0.1 to 30% by mass is more preferable, and 0.1 to 20% by mass is particularly preferable.
  • the thermal polymerization initiator is preferably contained in an amount of 0.1 to 50 parts by weight, and more preferably 0.5 to 30 parts by weight with respect to 100 parts by weight of the polymerizable compound. According to this aspect, it is easy to form a cured film having more excellent heat resistance. Only one type of thermal polymerization initiator may be used, or two or more types may be used. When there are two or more thermal polymerization initiators, the total is preferably in the above range.
  • the thermosetting resin composition of the present invention may contain a sensitizing dye.
  • a sensitizing dye absorbs specific actinic radiation and enters an electronically excited state.
  • the sensitizing dye in an electronically excited state comes into contact with a thermal base generator, a thermal polymerization initiator, a photopolymerization initiator, and the like, and effects such as electron transfer, energy transfer, and heat generation occur.
  • a thermal base generator, a thermal polymerization initiator, and a photopolymerization initiator cause a chemical change and are decomposed to generate radicals, acids, or bases.
  • preferable sensitizing dyes include those belonging to the following compounds and having an absorption wavelength in the range of 300 nm to 450 nm.
  • polynuclear aromatics for example, phenanthrene, anthracene, pyrene, perylene, triphenylene, 9.10-dialkoxyanthracene
  • xanthenes for example, fluorescein, eosin, erythrosine, rhodamine B, rose bengal
  • thioxanthones Cyanines (eg thiacarbocyanine, oxacarbocyanine), merocyanines (eg merocyanine, carbomerocyanine), thiazines (eg thionine, methylene blue, toluidine blue), acridines (eg acridine orange, chloroflavin, acrylic) Flavins), anthraquinones (eg, anthraquinones), squarium
  • polynuclear aromatics for example, phenanthrene, anthracene, pyrene, perylene, triphenylene
  • thioxanthones for example, phenanthrene, anthracene, pyrene, perylene, triphenylene
  • distyrylbenzenes for example, thioxanthones
  • distyrylbenzenes for example, thioxanthones
  • distyrylbenzenes for example, phenanthrene, anthracene, pyrene, perylene, triphenylene
  • thioxanthones for example, phenanthrene, anthracene, pyrene, perylene, triphenylene
  • thioxanthones for example, thioxanthones
  • distyrylbenzenes for example, thioxanthones
  • distyrylbenzenes for example, thioxanthones
  • the content of the sensitizing dye is preferably 0.01 to 20% by mass, and preferably 0.1 to 20% by mass with respect to the total solid content of the thermosetting resin composition. 15% by mass is more preferable, and 0.5 to 10% by mass is even more preferable.
  • a sensitizing dye may be used individually by 1 type, and may use 2 or more types together.
  • thermosetting resin composition of the present invention may contain a photopolymerization initiator.
  • the thermosetting resin composition contains a photopolymerization initiator
  • the thermosetting resin composition is applied to a semiconductor wafer or the like to form a layered composition layer, and then irradiated with light to generate radicals or Curing by an acid occurs and the solubility in the light irradiation part can be reduced.
  • region from which solubility differs can be easily produced according to the pattern of an electrode by exposing the said composition layer through the photomask with the pattern which masked only the electrode part, for example.
  • the photopolymerization initiator is not particularly limited as long as it has the ability to initiate a polymerization reaction (crosslinking reaction) of the polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, those having photosensitivity to visible light from the ultraviolet region are preferable. Further, it may be an activator that generates some active radicals by generating some action with the photoexcited sensitizer.
  • the photopolymerization initiator preferably contains at least one compound having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (preferably 330 to 500 nm). For the molar extinction coefficient of the compound, a known method can be used. Specifically, for example, in an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian), an ethyl acetate solvent is used and 0.01 g It is preferable to measure at a concentration of / L.
  • halogenated hydrocarbon derivatives for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having a trihalomethyl group
  • Acylphosphine compounds such as acylphosphine oxide, oxime compounds such as hexaarylbiimidazole and oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, hydroxyacetophenones, azo series
  • examples thereof include compounds, azide compounds, metallocene compounds, organoboron compounds, iron arene complexes, and the like.
  • halogenated hydrocarbon compounds having a triazine skeleton examples include those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), a compound described in British Patent No. 1388492, a compound described in JP-A-53-133428, a compound described in German Patent No. 3337024, F.I. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964), compound described in JP-A-62-258241, compound described in JP-A-5-281728, compound described in JP-A-5-34920, US Pat. No. 4,221,976 And the compounds described in the book.
  • Examples of the compounds described in US Pat. No. 4,221,976 include compounds having an oxadiazole skeleton (for example, 2-trichloromethyl-5-phenyl-1,3,4-oxadiazole, 2-trichloro Methyl-5- (4-chlorophenyl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2-trichloromethyl-5 (2-naphthyl) -1,3,4-oxadiazole, 2-tribromomethyl-5-phenyl-1,3,4-oxadiazole, 2-tribromomethyl-5- (2-naphthyl)- 1,3,4-oxadiazole; 2-trichloromethyl-5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (4-chlorostyryl) 1,3,4-oxadiazole, 2-trichloromethyl-5-
  • photopolymerization initiators other than those mentioned above, polyhalogen compounds (for example, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.), N-phenylglycine, etc.
  • polyhalogen compounds for example, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.
  • N-phenylglycine etc.
  • acylphosphine oxides for example, bis (2,4 , 6-Trimethylbenzoyl) -phenylphos Zinc oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphenylphosphine oxide, Lucirin TPO, etc.
  • metallocenes for example, bis ( ⁇ 5-2,4-cyclopentadien-1-yl)- Bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, ⁇ 5-cyclopentadienyl- ⁇ 6-cumenyl-iron (1 +)-hexafluorophosphate (1-), etc.
  • Examples thereof include compounds described in JP-A-53-133428, JP-B-57-1819, JP-A-57-60
  • ketone compound examples include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2 -Ethoxycarbonylbenzophenone, benzophenone tetracarboxylic acid or its tetramethyl ester, 4,4'-bis (dialkylamino) benzophenones (eg, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bisdicyclohexylamino ) Benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dihydroxyethylamino) benzophenone, 4-methoxy-4′-dimethylaminobenzophenone 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzoph
  • hydroxyacetophenone compounds As the photopolymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898 can also be used.
  • hydroxyacetophenone-based initiator IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator compounds described in JP-A-2009-191179 whose absorption wavelength is matched with a long wave light source of 365 nm or 405 nm can also be used.
  • acylphosphine initiator commercially available products such as IRGACURE-819 and DAROCUR-TPO (trade names: both manufactured by BASF) can be used.
  • More preferred examples of the photopolymerization initiator include oxime compounds.
  • Specific examples of the oxime initiator include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
  • Preferred oxime compounds include, for example, 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxy And carbonyloxyimino-1-phenylpropan-1-one.
  • Examples of oxime compounds include J.M. C. S. Perkin II (1979) p. 1653-1660), J.M. C. S. Perkin II (1979) pp. 156-162, Journal of Photopolymer Science and Technology (1995), pp. 156-162. 202-232, compounds described in JP-A No. 2000-66385, compounds described in JP-A Nos. 2000-80068, JP-T 2004-534797, JP-A No. 2006-342166, and the like.
  • IRGACURE-OXE01 manufactured by BASF
  • IRGACURE-OXE02 manufactured by BASF
  • N-1919 manufactured by ADEKA
  • JP-A-2009-221114 having an absorption maximum at 405 nm and good sensitivity to a g-ray light source may be used.
  • the cyclic oxime compounds described in JP-A-2007-231000 and JP-A-2007-322744 can also be suitably used.
  • cyclic oxime compounds in particular, cyclic oxime compounds fused to carbazole dyes described in JP2010-32985A and JP2010-185072A have high light absorptivity and high sensitivity. preferable.
  • a compound described in JP-A-2009-242469 which is a compound having an unsaturated bond at a specific site of the oxime compound, can also be suitably used.
  • an oxime initiator having a fluorine atom examples include compounds described in JP 2010-262028 A, compounds 24, 36 to 40 described in paragraph 0345 of JP 2014-500852 A, and JP 2013. And the compound (C-3) described in paragraph 0101 of JP-A No. 164471. Specific examples include the following compounds.
  • the most preferred oxime compound includes an oxime compound having a specific substituent described in JP-A-2007-2699779, an oxime compound having a thioaryl group disclosed in JP-A-2009-191061, and the like.
  • Photopolymerization initiators are trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triallyls from the viewpoint of exposure sensitivity. Selected from the group consisting of imidazole dimers, onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds. Compounds are preferred.
  • trihalomethyltriazine compounds More preferred are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, oxime compounds, triarylimidazole dimers, onium compounds, benzophenone compounds, acetophenone compounds, trihalomethyltriazine compounds, ⁇ -aminoketones
  • Most preferred is at least one compound selected from the group consisting of compounds, oxime compounds, triarylimidazole dimers, and benzophenone compounds, and most preferred are oxime compounds.
  • a compound that generates an acid having a pKa of 4 or less can be preferably used, and a compound that generates an acid having a pKa of 3 or less is more preferable.
  • the acid-generating compound include trichloromethyl-s-triazines, sulfonium salts and iodonium salts, quaternary ammonium salts, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds. Among these, it is preferable to use an oxime sulfonate compound from the viewpoint of high sensitivity.
  • These acid generators can be used singly or in combination of two or more. Specific examples include acid generators described in paragraphs [0073] to [0095] of JP2012-8223A.
  • the content of the photopolymerization initiator is preferably 0.1 to 30% by mass, more preferably based on the total solid content of the thermosetting resin composition. It is 0.1 to 20% by mass, and more preferably 0.1 to 10% by mass.
  • the photopolymerization initiator is preferably contained in an amount of 1 to 20 parts by mass, more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound. Only one type of photopolymerization initiator may be used, or two or more types may be used. When there are two or more photopolymerization initiators, the total is preferably in the above range.
  • the thermosetting resin composition of the present invention may contain a chain transfer agent.
  • the chain transfer agent is defined, for example, in Polymer Dictionary 3rd Edition (edited by the Polymer Society, 2005) pages 683-684.
  • As the chain transfer agent for example, a compound group having SH, PH, SiH, GeH in the molecule is used. These can donate hydrogen to low-activity radical species to generate radicals, or can be oxidized and then deprotonated to generate radicals.
  • thiol compounds for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc.
  • 2-mercaptobenzimidazoles for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc.
  • the preferable content of the chain transfer agent is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the thermosetting resin composition,
  • the amount is preferably 1 to 10 parts by mass, particularly preferably 1 to 5 parts by mass. Only one type of chain transfer agent may be used, or two or more types may be used. When there are two or more chain transfer agents, the total is preferably within the above range.
  • the thermosetting resin composition of the present invention preferably contains a small amount of a polymerization inhibitor in order to prevent unnecessary thermal polymerization of the thermosetting resin and the polymerizable compound during production or storage.
  • a polymerization inhibitor examples include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4'-thiobis (3-methyl-6-tert-butylphenol ), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), and N-nitroso-N-phenylhydroxylamine aluminum salt.
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the thermosetting resin composition. Only one type of polymerization inhibitor may be used, or two or more types may be used. When there are two or more polymerization inhibitors, the total is preferably in the above range.
  • thermosetting resin composition of the present invention, and thermosetting in the drying process after coating. It may be unevenly distributed on the surface of the resin composition.
  • the content of the higher fatty acid derivative is preferably 0.1 to 10% by mass with respect to the total solid content of the thermosetting resin composition. Only one type of higher fatty acid derivative or the like may be used. When two or more types of higher fatty acid derivatives are used, the total is preferably within the above range.
  • thermosetting resin composition of the present invention is layered by coating, it is preferable to mix a solvent.
  • Any known solvent can be used without limitation as long as the thermosetting resin composition can be formed into a layer.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, ⁇ -caprolactone ⁇ -valerolactone, alkyl oxyacetate (eg, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxy
  • Ethyl (for example, methyl 2-methoxypropionate, Ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)), methyl 2-oxy-2-methylpropionate and 2-oxy-2-methylpropionic acid
  • Ethyl for example, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.
  • ethers such as diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, e
  • the solvent is preferably in the form of a mixture of two or more types from the viewpoint of improving the coated surface.
  • a mixed solution composed of two or more selected from dimethyl sulfoxide, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol methyl ether, and propylene glycol methyl ether acetate is preferable.
  • the combined use of dimethyl sulfoxide and ⁇ -butyrolactone is particularly preferred.
  • the content of the solvent is preferably such that the total solid content concentration of the thermosetting resin composition is 5 to 80% by mass from the viewpoint of applicability, It is more preferably 5 to 70% by mass, and particularly preferably 10 to 60% by mass.
  • One type of solvent may be sufficient and two or more types may be sufficient.
  • the total is preferably in the above range.
  • the contents of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide and N, N-dimethylformamide are based on the total mass of the composition from the viewpoint of film strength. It is preferably less than 5% by weight, more preferably less than 1% by weight, even more preferably less than 0.5% by weight, and particularly preferably less than 0.1% by weight.
  • Various surfactants may be added to the thermosetting resin composition of the present invention from the viewpoint of further improving coatability.
  • various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • a fluorosurfactant liquid properties (particularly fluidity) when prepared as a coating liquid are further improved, so that the uniformity of coating thickness and liquid-saving properties can be further improved. it can.
  • the wettability to the coated surface is improved by reducing the interfacial tension between the coated surface and the coating liquid, and the coated surface The applicability to is improved. For this reason, even when a thin film of about several ⁇ m is formed with a small amount of liquid, it is effective in that it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
  • the fluorine content of the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid-saving properties, and has good solubility.
  • fluorosurfactant examples include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780, F780, F781 (above DIC Corporation), Florard FC430, FC431, FC171 (above, Sumitomo 3M Limited), Surflon S-382, SC-101, Same SC-103, Same SC-104, Same SC-105, Same SC1068, Same SC-381, Same SC-383, Same S393, Same KH-40 (manufactured by Asahi Glass Co., Ltd.), PF636, PF656, PF6320 PF6520, PF7002 (manufactured by OMNOVA), and the like.
  • nonionic surfactant examples include glycerol, trimethylolpropane, trimethylolethane, and ethoxylates and propoxylates thereof (for example, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene Stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (Pluronic L10, L31, L61, L62, manufactured by BASF) 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, 150R1, Rusupasu 20000 (manufactured by Nippon Lubrizol Corporation), Olefin (manufactured by Nissin Chemical Industry Co., Ltd.), and the like.
  • cationic surfactant examples include phthalocyanine derivatives (trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.) and W001 (manufactured by Yusho Co., Ltd.).
  • phthalocyanine derivatives trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 manufactured by Kyoeisha Chemical Co., Ltd.
  • W001 manufactured by Yusho Co., Ltd.
  • anionic surfactants include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
  • silicone surfactant examples include “Toray Silicone DC3PA”, “Toray Silicone SH7PA”, “Toray Silicone DC11PA”, “Tore Silicone SH21PA”, “Tore Silicone SH28PA”, “Toray Silicone” manufactured by Toray Dow Corning Co., Ltd.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably based on the total solid content of the thermosetting resin composition. Is 0.005 to 1.0 mass%. Only one type of surfactant may be used, or two or more types may be used. When two or more surfactants are used, the total is preferably in the above range.
  • thermosetting resin composition of the present invention It is preferable to add a corrosion inhibitor to the thermosetting resin composition of the present invention.
  • the corrosion inhibitor is added for the purpose of preventing the outflow of ions from the metal wiring.
  • a corrosion inhibitor described in paragraph 0094 of JP2013-15701A can be used.
  • a compound having a tetrazole ring can be preferably used, and 1H-tetrazole and 5-methyl-1H-tetrazole are more preferable, and 1H-tetrazole is most preferable.
  • the content of the corrosion inhibitor is preferably 0.001 to 2.0 mass%, more preferably based on the total solid content of the thermosetting resin composition. Is 0.005 to 1.0 mass%.
  • the thermosetting resin composition of the present invention preferably contains a metal adhesion improver for improving adhesion to a metal material used for electrodes, wirings and the like.
  • metal adhesion improvers include sulfide compounds described in paragraphs 0046 to 0049 of JP2014-186186A and paragraphs 0032 to 0043 of JP2013-072935A.
  • the metal adhesion improver also include the following compounds.
  • the thermosetting resin composition has a metal adhesion improving agent
  • the content of the metal adhesion improving agent is 0.001 to 2.0% by mass with respect to the total solid content of the thermosetting resin composition. Preferably, it is 0.005 to 1.0% by mass. Only one type of metal adhesion improver may be used, or two or more types may be used. When two or more types of metal adhesion improvers are used, the total is preferably within the above range.
  • thermosetting resin composition of the present invention has various additives, for example, a curing agent, a curing catalyst, a silane coupling agent, a filler, an antioxidant, as necessary, as long as the effects of the present invention are not impaired.
  • An ultraviolet absorber, an aggregation inhibitor, etc. can be mix
  • the total compounding quantity shall be 3 mass% or less of solid content of a thermosetting resin composition.
  • the water content of the thermosetting resin composition of the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and particularly preferably less than 0.6% by mass from the viewpoint of the coated surface.
  • the metal content of the thermosetting resin composition of the present invention is preferably less than 5 ppm, more preferably less than 1 ppm, and particularly preferably less than 0.5 ppm from the viewpoint of insulation.
  • the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are included, the total of these metals is preferably in the above range.
  • the halogen atom content is preferably less than 500 ppm, preferably less than 300 ppm, and particularly preferably less than 200 ppm, from the viewpoint of wiring corrosion.
  • those present in the form of halogen ions are preferably less than 5 ppm, more preferably less than 1 ppm, and particularly preferably less than 0.5 ppm.
  • the halogen atom include a chlorine atom and a bromine atom. The total of chlorine atoms and bromine atoms, or chloride ions and bromide ions is preferably in the above range.
  • thermosetting resin composition of the present invention can be prepared by mixing the above components.
  • the mixing method is not particularly limited, and can be performed by a conventionally known method.
  • thermosetting resin composition of the present invention can form a cured film excellent in heat resistance and insulation, it can be preferably used for an insulating film of a semiconductor device, an interlayer insulating film for rewiring, and the like. In particular, it can be preferably used for an interlayer insulating film for rewiring in a three-dimensional mounting device. It can also be used as a photoresist for electronics (galvanic resist, galvanic resist, etching resist, solder top resist). Also. It can also be used for the production of printing plates such as offset printing plates or screen printing plates, for use in the etching of molded parts, for the production of protective lacquers and dielectric layers in electronics, in particular microelectronics.
  • the formation method of a cured film has the process of applying a thermosetting resin composition to a board
  • thermosetting resin composition to substrate
  • the method of applying the thermosetting resin composition to the substrate include spinning, dipping, doctor blade coating, suspended casting, coating, spraying, electrostatic spraying, reverse roll coating, and the like. And reverse roll coating is preferred because it can be applied uniformly on the substrate. It is also possible to introduce the photosensitive layer onto a temporary, flexible carrier and then apply the final substrate, for example a copper-clad printed circuit board by layer transfer by lamination.
  • Examples of the substrate include inorganic substrates, resins, and resin composite materials.
  • Examples of the inorganic substrate include a glass substrate, a quartz substrate, a silicon substrate, a silicon nitride substrate, and a composite substrate obtained by depositing molybdenum, titanium, aluminum, copper, or the like on such a substrate.
  • These substrates are rarely used in the above-described form, and usually a multilayer laminated structure such as a TFT element is formed depending on the form of
  • thermosetting resin composition The amount to which the thermosetting resin composition is applied (layer thickness) and the type of substrate (layer carrier) depend on the field of application desired. It is particularly advantageous that the thermosetting resin composition can be used in a widely variable layer thickness.
  • the range of the layer thickness is preferably 0.5 to 100 ⁇ m. It is preferable to dry after applying the thermosetting resin composition to the substrate. The drying is preferably performed at 60 to 150 ° C. for 10 seconds to 2 minutes, for example.
  • thermosetting resin composition By heating the thermosetting resin composition applied to the substrate, the cyclization reaction of the thermosetting resin proceeds and a cured film having excellent heat resistance can be formed.
  • the heating temperature is preferably 50 to 300 ° C, more preferably 100 to 200 ° C, and particularly preferably 100 to 180 ° C.
  • the base (amine species) generated from the thermobase generator acts as a catalyst for the cyclization reaction of the thermosetting resin and can accelerate the cyclization reaction of the thermosetting resin.
  • the cyclization reaction of can also be performed at a lower temperature. For this reason, a cured film having excellent heat resistance can be formed even at a low temperature treatment of 200 ° C. or lower.
  • the heating rate is preferably 3 to 5 ° C./min, with 20 to 150 ° C. being the heating start temperature.
  • the heating time is preferably 180 minutes or more.
  • the upper limit is preferably 240 minutes or less.
  • the heating time is preferably 90 minutes or more.
  • the upper limit is preferably 180 minutes or less.
  • the heating temperature is 300 to 380, the heating time is preferably 60 minutes or more.
  • the upper limit is preferably 120 minutes or less.
  • the cooling rate is preferably 1 to 5 ° C./min. Heating may be performed in stages. For example, the temperature is raised from 20 ° C. to 150 ° C. at 5 ° C./minute, placed at 150 ° C. for 30 minutes, heated from 150 ° C. to 230 ° C. at 5 ° C./minute, and placed at 230 ° C. for 180 minutes. A process is mentioned.
  • the heating step is preferably performed in a low oxygen concentration atmosphere by flowing an inert gas such as nitrogen, helium, or argon from the viewpoint of preventing the thermosetting resin such as polyimide from being decomposed.
  • the oxygen concentration is preferably 50 ppm or less, and preferably 20 ppm or less.
  • the pattern forming step can be performed by, for example, a photolithography method.
  • a photolithography method For example, the method of performing through the process of exposing and the process of developing is mentioned.
  • Pattern formation by the photolithography method can be performed using, for example, a thermosetting resin composition including the thermal base generator of the present invention, the above-described thermosetting resin, and a photopolymerization initiator. In this case, it is preferable to further contain a polymerizable compound.
  • the thermosetting resin preferably has an ethylenically unsaturated bond.
  • the thermosetting resin composition applied to the substrate is irradiated with a predetermined pattern of actinic rays or radiation.
  • the wavelength of the actinic ray or radiation varies depending on the composition of the thermosetting resin composition, but is preferably 200 to 600 nm, and more preferably 300 to 450 nm.
  • a light source a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a chemical lamp, an LED light source, an excimer laser generator, etc. can be used, and i-line (365 nm), h-line (405 nm), g-line (436 nm), etc.
  • Actinic rays having a wavelength of 300 nm to 450 nm can be preferably used. Moreover, irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed.
  • the exposure amount is preferably 1 to 500 mJ / cm 2 .
  • various types of exposure machines such as a mirror projection aligner, a stepper, a scanner, a proximity, a contact, a microlens array, a lens scanner, and a laser exposure can be used.
  • photopolymerization of (meth) acrylate and similar olefin unsaturated compounds is prevented by oxygen in the air, particularly in a thin layer. This effect can be mitigated by known conventional methods such as temporary introduction of a coating layer of polyvinyl alcohol, pre-exposure or pre-conditioning in an inert gas.
  • thermosetting resin composition is developed using a developer.
  • a developer an aqueous alkaline developer, an organic solvent, or the like can be used.
  • alkali compound used in the aqueous alkaline developer include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium silicate, potassium silicate, sodium metasilicate, and metasilicic acid. Examples include potassium, ammonia, and amine.
  • amines examples include ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, alkanolamine, dimethylethanolamine, triethanolamine, quaternary ammonium hydroxide, tetramethylammonium hydroxide. (TMAH) or tetraethylammonium hydroxide.
  • TMAH tetramethylammonium hydroxide
  • alkali compounds containing no metal are preferred.
  • Suitable aqueous alkaline developers are generally up to 0.5 N with respect to alkali, but may be diluted appropriately prior to use.
  • an aqueous alkaline developer having a concentration of about 0.15 to 0.4 N, preferably 0.20 to 0.35 N is also suitable. Only one type of alkali compound may be used, or two or more types may be used. When there are two or more types of alkali compounds, the total is preferably in the above range.
  • an organic solvent the thing similar to the solvent which can be used for the thermosetting resin composition mentioned above can be used. For example, preferred are n-butyl acetate, ⁇ -butyrolactone, cyclopentanone, and a mixture thereof.
  • the method for forming a cured film of the present invention can be preferably used for insulating films of semiconductor devices, interlayer insulating films for rewiring, and the like.
  • it can be preferably used for an interlayer insulating film for rewiring in a three-dimensional mounting device.
  • It can also be used as a photoresist for electronics (galvanic resist, galvanic resist, etching resist, solder top resist).
  • photoresist for electronics (galvanic resist, galvanic resist, etching resist, solder top resist).
  • printing plates such as offset printing plates or screen printing plates, for use in the etching of molded parts, for the production of protective lacquers and dielectric layers in electronics, in particular microelectronics.
  • a semiconductor device 100 shown in FIG. 1 is a so-called three-dimensional mounting device, and a stacked body 101 in which a plurality of semiconductor elements (semiconductor chips) 101 a to 101 d are stacked is arranged on a wiring board 120.
  • the case where the number of stacked semiconductor elements (semiconductor chips) is four will be mainly described.
  • the number of stacked semiconductor elements (semiconductor chips) is not particularly limited. It may be a layer, 8 layers, 16 layers, 32 layers, or the like. Moreover, one layer may be sufficient.
  • Each of the plurality of semiconductor elements 101a to 101d is made of a semiconductor wafer such as a silicon substrate.
  • the uppermost semiconductor element 101a does not have a through electrode, and an electrode pad (not shown) is formed on one surface thereof.
  • the semiconductor elements 101b to 101d have through electrodes 102b to 102d, and connection pads (not shown) provided integrally with the through electrodes are provided on both surfaces of each semiconductor element.
  • the stacked body 101 has a structure in which a semiconductor element 101a having no through electrode and semiconductor elements 101b to 101d having through electrodes 102b to 102d are flip-chip connected. That is, the electrode pad of the semiconductor element 101a having no through electrode and the connection pad on the semiconductor element 101a side of the semiconductor element 101b having the adjacent through electrode 102b are connected by the metal bump 103a such as a solder bump, The connection pad on the other side of the semiconductor element 101b having the electrode 102b is connected to the connection pad on the semiconductor element 101b side of the semiconductor element 101c having the penetrating electrode 102c adjacent thereto by a metal bump 103b such as a solder bump.
  • connection pad on the other side of the semiconductor element 101c having the through electrode 102c is connected to the connection pad on the semiconductor element 101c side of the semiconductor element 101d having the adjacent through electrode 102d by the metal bump 103c such as a solder bump. ing.
  • An underfill layer 110 is formed in the gaps between the semiconductor elements 101a to 101d, and the semiconductor elements 101a to 101d are stacked via the underfill layer 110.
  • the stacked body 101 is stacked on the wiring board 120.
  • the wiring substrate 120 for example, a multilayer wiring substrate using an insulating substrate such as a resin substrate, a ceramic substrate, or a glass substrate as a base material is used.
  • the wiring board 120 to which the resin board is applied include a multilayer copper-clad laminate (multilayer printed wiring board).
  • a surface electrode 120 a is provided on one surface of the wiring board 120.
  • An insulating layer 115 in which a rewiring layer 105 is formed is disposed between the wiring substrate 120 and the stacked body 101, and the wiring substrate 120 and the stacked body 101 are electrically connected via the rewiring layer 105. It is connected.
  • the insulating layer 115 is formed using the thermosetting resin composition of the present invention. That is, one end of the rewiring layer 105 is connected to an electrode pad formed on the surface of the semiconductor element 101d on the rewiring layer 105 side through a metal bump 103d such as a solder bump.
  • the other end of the rewiring layer 105 is connected to the surface electrode 120a of the wiring board via a metal bump 103e such as a solder bump.
  • An underfill layer 110 a is formed between the insulating layer 115 and the stacked body 101.
  • an underfill layer 110 b is formed between the insulating layer 115 and the wiring substrate 120.
  • reaction mixture was cooled to room temperature and 21.43 g (270.9 mmol) pyridine and 90 ml N-methylpyrrolidone were added.
  • the reaction mixture was then cooled to ⁇ 10 ° C. and 16.12 g (135.5 mmol) of SOCl 2 was added over 10 minutes while maintaining the temperature at ⁇ 10 ⁇ 4 ° C.
  • the viscosity increased during the addition of SOCl 2 .
  • the reaction mixture was stirred at room temperature for 2 hours.
  • reaction mixture was cooled to room temperature and 21.43 g (270.9 mmol) pyridine and 90 ml N-methylpyrrolidone were added.
  • the reaction mixture was then cooled to ⁇ 10 ° C. and 16.12 g (135.5 mmol) of SOCl 2 was added over 10 minutes while maintaining the temperature at ⁇ 10 ⁇ 4 ° C.
  • the viscosity increased during the addition of SOCl 2 .
  • the reaction mixture was stirred at room temperature for 2 hours.
  • the obtained diester is chlorinated with SOCl 2 , converted into a polyimide precursor resin with 4,4′-oxydianiline in the same manner as in Synthesis Example 1, and polyimide precursor in the same manner as in Synthesis Example 1.
  • a body resin was obtained.
  • thermosetting resin composition [Examples 1 to 48, Comparative Examples 1 to 5] The components described below were mixed to prepare a coating solution for the thermosetting resin composition.
  • Composition of thermosetting resin composition > (A) Thermal base generator:% by mass described in the table below (B) Polyimide precursor resin:% by mass described in the table below (C) Polymerizable compound:% by mass described in the following table (D) Thermal polymerization initiator:% by mass described in the following table (E) Photopolymerization initiator: mass% described in the following table (Other ingredients) Solvent: ⁇ -butyrolactone: 60% by mass
  • Example 49 A coating solution was prepared by adding 0.2% by mass of 1H-tetrazole to the thermosetting resin composition of Example 43 based on the solid content of the thermosetting resin composition.
  • Example 50 A coating solution was prepared by adding 0.2% by mass of 1H-tetrazole to the thermosetting resin composition of Example 43 based on the solid content of the thermosetting resin composition.
  • Example 51 Coating was performed in the same manner as in Example 49 except that in the thermosetting resin composition of Example 49, the solvent was changed from 60% by mass of ⁇ -butyrolactone to 48% by mass of ⁇ -butyrolactone and 12% by mass of dimethyl sulfoxide. A liquid was prepared.
  • Example 52 Coating was performed in the same manner as in Example 49 except that in the thermosetting resin composition of Example 50, the solvent was changed from 60% by mass of ⁇ -butyrolactone to 48% by mass of ⁇ -butyrolactone and 12% by mass of dimethyl sulfoxide. A liquid was prepared.
  • thermosetting resin composition was subjected to pressure filtration through a filter having a pore width of 0.8 ⁇ m and then applied to a silicon wafer by spinning (3500 rpm, 30 seconds).
  • the silicon wafer to which the thermosetting resin composition was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a uniform resin layer having a thickness of 10 ⁇ m on the silicon wafer.
  • thermosetting resin composition was subjected to pressure filtration through a filter having a pore width of 0.8 ⁇ m and then applied to a silicon wafer by spinning (1200 rpm, 30 seconds).
  • the silicon wafer to which the thermosetting resin composition was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a uniform film having a thickness of 10 ⁇ m on the silicon wafer.
  • the film was scraped from the silicon wafer and subjected to thermal mass spectrometry measurement in a state maintained at 200 ° C. in nitrogen to evaluate the cyclization time.
  • thermosetting resin composition was subjected to pressure filtration through a filter having a pore width of 0.8 ⁇ m and then applied to a silicon wafer by spinning (1200 rpm, 30 seconds).
  • the silicon wafer to which the thermosetting resin composition was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a uniform film having a thickness of 10 ⁇ m on the silicon wafer.
  • the film coated on the silicon wafer was exposed using an aligner (Karl-Suss MA150). Exposure was performed with a high-pressure mercury lamp, and irradiation was performed at 500 mJ / cm 2 in terms of exposure energy at a wavelength of 365 nm. After exposure, the image was developed with cyclopentanone for 75 seconds.
  • the line width that was able to have good edge sharpness was evaluated according to the following criteria. The smaller the line width, the greater the difference in solubility in the developer between the light-irradiated part and the light non-irradiated part, which is a preferable result.
  • thermosetting resin composition was pressure filtered through a filter having a pore width of 0.8 ⁇ m, and then applied by spinning (1200 rpm, 30 seconds) onto a silicon wafer having a 1 ⁇ m-thick copper deposition layer.
  • the wafer to which the thermosetting resin composition was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a uniform film having a thickness of 10 ⁇ m on the wafer.
  • the film applied on the wafer was exposed using a mask using an aligner (Karl-Suss MA150) so that the image area was a 100 ⁇ m ⁇ 100 ⁇ m square.
  • Exposure was performed with a high-pressure mercury lamp, and irradiation was performed at 500 mJ / cm 2 in terms of exposure energy at a wavelength of 365 nm. After exposure, the image was developed with cyclopentanone for 75 seconds.
  • thermosetting resin composition of an Example is excellent in sclerosis
  • the thermosetting resin composition of the comparative example was inferior to the thermosetting resin composition of the example in at least one of curability and stability. Comparative Examples 1 to 3 were inferior in resolution.
  • Thermal base generators / thermal base generators A-1 to A-11, A-17 to A-26, A-38 to A-42 The structure is shown in the specific examples of the thermal base generator described above. It is a structure and both are synthetic products.
  • X-1 to X-9 The following structures (wherein Me represents a methyl group).
  • E Photopolymerization initiator
  • E-1 IRGACURE OXE-01 (manufactured by BASF)
  • E-2 Compound 24 described in paragraph 0345 of JP-T-2014-500852
  • E-3 Compound 36 described in paragraph 0345 of JP-T-2014-500852
  • E-4 Compound 37 described in paragraph 0345 of JP-T-2014-500852
  • E-5 Compound 40 described in paragraph 0345 of JP-T-2014-500852
  • Compound C manufactured by Aldrich, 90316 Compound C used in Examples 53 to 56 is as follows.
  • thermosetting resin composition of Example 1 was subjected to pressure filtration through a filter having a pore width of 0.8 ⁇ m, and then applied to a resin substrate on which a copper thin layer was formed by spinning (3500 rpm, 30 seconds). .
  • the thermosetting resin composition applied to the resin substrate was dried at 100 ° C. for 5 minutes. Subsequently, it heated at 180 degreeC for 20 minutes. In this way, a rewiring interlayer insulating film was formed.
  • This interlayer insulating film for rewiring was excellent in insulation.
  • a semiconductor device was manufactured using this rewiring interlayer insulating film, it was confirmed that it operated without problems.
  • the same effect was acquired even if it changed the polyimide precursor resin into the polyamide-imide precursor resin and the polybenzoxazole precursor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 熱硬化性樹脂の環化を低温で行うことができ、安定性に優れた熱硬化性樹脂組成物を調製できる熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイスを提供する。 この熱塩基発生剤は、40℃以上に加熱すると塩基を発生する酸性化合物、および、pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩から選ばれる少なくとも一種を含む。酸性化合物は、アンモニウム塩および/または下記一般式(1)で表される化合物であることが好ましい。A1はp価の有機基を表し、R1は1価の有機基を表し、L1は(m+1)価の有機基を表し、mは1以上の整数を表し、pは1以上の整数を表す。

Description

熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
 本発明は、熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイスに関する。更に詳しくは、熱硬化性樹脂の環化を低温で行うことが可能な熱塩基発生剤に関する。また、熱塩基発生剤を含む熱硬化性樹脂組成物、熱硬化性樹脂組成物を用いた硬化膜、硬化膜の製造方法および半導体デバイスに関する。
 ポリイミド樹脂、ポリアミドイミド樹脂、ポリベンゾオキサゾール樹脂などの環化して硬化する熱硬化性樹脂は、耐熱性及び絶縁性に優れるため、半導体デバイスの絶縁層などに用いられている。
 また、上記の熱硬化性樹脂は、溶媒への溶解性が低いため、環化反応前の前駆体樹脂(ポリイミド前駆体樹脂、ポリアミドイミド前駆体樹脂、ポリベンゾオキサゾール前駆体樹脂)の状態で使用し、基板などに適用した後、加熱して熱硬化性樹脂を環化して硬化膜を形成している。
 例えば、特許文献1には、N-芳香族グリシン誘導体と、高分子前駆体とを含有する感光性樹脂組成物が開示されている。特許文献1では、N-芳香族グリシン誘導体を光塩基発生剤として用いている。
 特許文献2には、ポリイミド前駆体と、200℃以下の温度で加熱することにより熱分解を起こして2級アミンが発生する中性化合物からなる熱塩基発生剤と、溶媒とを含有するポリイミド前駆体樹脂組成物が開示されている。
 一方、特許文献3には、赤外線吸収剤、重合開始剤、重合性化合物、疎水性バインダーおよびN-フェニルイミノ二酢酸を含む画像形成層を有する平版印刷版原版が開示されている。
 また、特許文献4には、N-フェニルイミノ二酢酸とバインダーポリマーとを含むレーザー分解性樹脂組成物が開示されている。
特開2006-282880号公報 特開2007-56196号公報 特開2009-237175号公報 特開2008-63553号公報
 ポリイミド前駆体樹脂、ポリアミドイミド前駆体樹脂、ポリベンゾオキサゾール前駆体樹脂などの、塩基により環化して硬化する熱硬化性樹脂は、耐熱性に優れた硬化膜を形成することができるが、これらの熱硬化性樹脂の環化反応には、高温での熱処理が必要とされていた。このため、このような熱硬化性樹脂を用いて半導体デバイスの絶縁層などを形成する場合、熱硬化性樹脂の環化反応時の加熱により、電子部品などに熱的損傷などが生じる恐れがあり、環化温度のさらなる低減が求められている。
 特許文献1では、段落番号0014に記載されるように、ポリイミド前駆体樹脂の種類を問わず大きな溶解性コントラストを得られ、結果的に、十分なプロセスマージンを保ちつつ、形状が良好なパターンを得ることができる感光性樹脂組成物を提供することを目的とした発明で、かかる目的を達成するため、N-芳香族グリシン誘導体を光塩基発生剤として用いている。すなわち、特許文献1では、N-芳香族グリシン誘導体に光を照射して発生したアミンを触媒としてポリイミド前駆体樹脂のイミド化を行うことにより、露光部を硬化させて、露光部と未露光部の間に溶解性の差を付与している。
 しかしながら、特許文献1には、環化温度を低下させることについての検討はなされておらず、実施例では、300℃で1時間加熱してイミド化を行っている。
 また、特許文献1には、熱塩基発生剤に関する記載も示唆もない。
 特許文献2は、200℃以下の温度で加熱することにより熱分解を起こして2級アミンが発生する中性化合物からなる熱塩基発生剤を用いているが、本発明者の検討によれば、この熱塩基発生剤は、組成物中において、解離と非解離の平衡状態にあることが分かった。このため、組成物の保存中にポリイミド前駆体樹脂の環化反応が進行してゲル化などが生じやすく、安定性が悪いことが分かった。
 一方、特許文献3、4には、N-フェニルイミノ二酢酸などのカルボン酸化合物を、平版印刷版原版の画像形成層や、レーザー分解性樹脂組成物に用いることが開示されている。しかしながら、これらを熱塩基発生剤として用いることについての記載や示唆はない。
 よって、本発明の目的は、熱硬化性樹脂の環化を低温で行うことができ、安定性に優れた熱硬化性樹脂組成物を調製可能な熱塩基発生剤を提供することにある。また、熱塩基発生剤を含む熱硬化性樹脂組成物、熱硬化性樹脂組成物を用いた硬化膜、硬化膜の製造方法および半導体デバイスを提供する。
 本発明者は詳細に検討した結果、40℃以上に加熱すると塩基を発生する酸性化合物、および、pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩は、熱硬化性樹脂の環化を低温で行うことができ、安定性に優れた熱硬化性樹脂組成物を提供できることを見出し、本発明を完成するに至った。本発明は、以下を提供する。
<1> 40℃以上に加熱すると塩基を発生する酸性化合物、および、pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩から選ばれる少なくとも一種を含む熱塩基発生剤。
<1a> pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩(ただし、120~200℃に加熱すると塩基を発生する酸性化合物を除く)を含む熱塩基発生剤。
<2> 酸性化合物が、120~200℃に加熱すると塩基を発生する化合物である<1>に記載の熱塩基発生剤。
<3> 酸性化合物が、アンモニウム塩である<1>または<2>に記載の熱塩基発生剤。
<4> 酸性化合物が、アンモニウムカチオンとカルボン酸アニオンとの塩である、<1>~<3>のいずれかに記載の熱塩基発生剤。
<5> pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩が、酸性化合物である、<1>または<1a>に記載の熱塩基発生剤。
<6> アンモニウム塩が有するアニオンが、カルボン酸アニオンである、<1>、<1a>、<5>に記載の熱塩基発生剤。
<7> カルボン酸アニオンが、下式(X1)で表される、<4>または<6>に記載の熱塩基発生剤;
Figure JPOXMLDOC01-appb-C000008
 一般式(X1)において、EWGは、電子吸引性基を表す。
<8> 一般式(X1)において、EWGは、下記一般式(EWG-1)~(EWG-6)で表される基から選択される、<7>に記載の熱塩基発生剤;
Figure JPOXMLDOC01-appb-C000009
 式中、Rx1~Rx3は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基、ヒドロキシル基またはカルボキシル基を表し、Arは芳香族環基を表す。
<9> カルボン酸アニオンが、2個以上のカルボキシル基を持つ2価以上のカルボン酸のアニオンである、<4>、<6>~<8>のいずれかに記載の熱塩基発生剤。
<10> カルボン酸アニオンが、2価のカルボン酸のアニオンである、<4>、<6>~<9>のいずれかに記載の熱塩基発生剤。
<11> カルボン酸アニオンは、pKa1が4以下のカルボン酸のアニオンである、<4>、<6>~<10>のいずれかに記載の熱塩基発生剤。
<12> カルボン酸アニオンが、下記一般式(X)で表される、<4>、<6>~<11>のいずれかに記載の熱塩基発生剤;
Figure JPOXMLDOC01-appb-C000010
 一般式(X)において、L10は、単結合、または、アルキレン基、アルケニレン基、アリーレン基、-NRX-およびこれらの組み合わせから選ばれる2価の連結基を表し、
 RXは、水素原子、アルキル基、アルケニル基またはアリール基を表す。
<13> カルボン酸アニオンが、マレイン酸アニオン、フタル酸アニオン、N-フェニルイミノ二酢酸アニオンおよびシュウ酸アニオンから選ばれる1種である、<4>、<6>~<12>のいずれかに記載の熱塩基発生剤。
<14> アンモニウムカチオンが、下式(Y1-1)~(Y1-6)のいずれかで表される、<1>、<1a>、<4>~<13>のいずれかに記載の熱塩基発生剤;
Figure JPOXMLDOC01-appb-C000011
 上記一般式において、R101は、n価の有機基を表し、
 R102~R111は、それぞれ独立に水素原子、または、炭化水素基を表し、
 R150およびR151は、それぞれ独立に炭化水素基を表し、
 R104とR105、R104とR150、R107とR108、および、R109とR110は、互いに結合して環を形成していてもよく、
 Ar101およびAr102は、それぞれ独立に、アリール基を表し、
 nは、1以上の整数を表し、
 mは、0~5の整数を表す。
<15> アンモニウムカチオンが、式(Y1-1)または(Y1-2)で表される、<14>に記載の熱塩基発生剤。
<16> アンモニウムカチオンが、式(Y1-1)または(Y1-2)で表され、R101が芳香族環基である、<14>または<15>に記載の熱塩基発生剤。
<17> 酸性化合物が、下記一般式(1)で表される化合物である<1>または<2>に記載の熱塩基発生剤;
Figure JPOXMLDOC01-appb-C000012
 一般式(1)において、A1はp価の有機基を表し、R1は1価の有機基を表し、L1は(m+1)価の有機基を表し、mは1以上の整数を表し、pは1以上の整数を表す。
<18> 一般式(1)のA1は、芳香族環基である<17>に記載の熱塩基発生剤。
<19> 一般式(1)のA1は、ベンゼン環である<17>または<18>に記載の熱塩基発生剤。
<20> 一般式(1)のR1は、下式(A)で表される基である<17>~<19>のいずれかに記載の熱塩基発生剤;
 -L2-(COOH)n   ・・・(A)
 式(A)中、L2は(n+1)価の連結基を表し、nは1以上の整数を表す。
<21> 一般式(1)において、A1が芳香族環基であり、R1が式(A)で表される基であり、m、nおよびpが1であり、<20>に記載の熱塩基発生剤。
<22> 酸性化合物が、N-アリールイミノ二酢酸である<17>~<21>のいずれかに記載の熱塩基発生剤。
<23> pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩を含む熱塩基発生剤、または、<1a>、<3>~<16>のいずれかに記載の熱塩基発生剤と、熱硬化性樹脂とを含む熱硬化性樹脂組成物。
<24> 熱硬化性樹脂が、塩基によって環化して硬化する熱硬化性樹脂である<23>に記載の熱硬化性樹脂組成物。
<25> 熱硬化性樹脂が、ポリイミド前駆体樹脂、ポリアミドイミド前駆体樹脂およびポリベンゾオキサゾール前駆体樹脂から選ばれる少なくとも1種である<23>または<24>に記載の熱硬化性樹脂組成物。
<26> 熱硬化性樹脂が、エチレン性不飽和結合を有する<23>~<25>のいずれかに記載の熱硬化性樹脂組成物。
<27> 熱硬化性樹脂が、下記一般式(2)または一般式(3)で表される繰り返し単位を含有する<23>~<26>のいずれかに記載の熱硬化性樹脂組成物;
Figure JPOXMLDOC01-appb-C000013
 一般式(2)中、A1およびA2は、それぞれ独立に酸素原子または-NH-を表し、R111は、2価の有機基を表し、R112は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、
 一般式(3)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
<28> 一般式(2)におけるR113およびR114の少なくとも一方、または、一般式(3)におけるR123およびR124の少なくとも一方が、エチレン性不飽和結合を有する<27>に記載の熱硬化性樹脂組成物。
<29> さらに、重合性化合物として、エチレン性不飽和結合を有する化合物を含有する<23>~<28>のいずれかに記載の熱硬化性樹脂組成物。
<30> 重合性化合物が、エチレン性不飽和結合を2個以上含有する化合物である<29>に記載の熱硬化性樹脂組成物。
<31> 重合性化合物が、下記式で表される部分構造を有する<29>または<30>に記載の熱硬化性樹脂組成物;ただし、式中の*は連結手である。
Figure JPOXMLDOC01-appb-C000014
<32> さらに、熱重合開始剤を含有する<23>~<31>のいずれかに記載の熱硬化性樹脂組成物。
<33> 熱重合開始剤が、過酸化物である<32>に記載の熱硬化性樹脂組成物。
<34> さらに、光重合開始剤を含有する<23>~<33>のいずれかに記載の熱硬化性樹脂組成物。
<35> <23>~<34>のいずれかに記載の熱硬化性樹脂組成物を硬化してなる硬化膜。
<36> 再配線用層間絶縁膜である、<35>に記載の硬化膜。
<37> <23>~<34>のいずれかに記載の熱硬化性樹脂組成物を基板に適用する工程と、基板に適用された熱硬化性樹脂組成物を硬化する工程とを有する硬化膜の製造方法。
<38> <35>に記載の硬化膜、または、<37>に記載の方法で製造された硬化膜を有する半導体デバイス。
 本発明により、熱硬化性樹脂の環化を低温で行うことができ、安定性に優れた熱硬化性樹脂組成物を調製可能な熱塩基発生剤を提供可能となった。また、熱塩基発生剤を含む熱硬化性樹脂組成物、熱硬化性樹脂組成物を用いた硬化膜、硬化膜の製造方法および半導体デバイスを提供可能になった。
半導体デバイスの一実施形態の構成を示す概略図である。
 以下に記載する本発明における構成要素の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書における基(原子団)の表記に於いて、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において、「活性光線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。また、本発明において光とは、活性光線または放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の双方、または、いずれかを表し、「(メタ)アリル」は、「アリル」および「メタクリル」の双方、または、いずれかを表し、「(メタ)アクリル」は、「アクリル」および「メタクリル」の双方、または、いずれかを表し、「(メタ)アクリロイル」は、「アクリロイル」および「メタクリロイル」の双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量の質量百分率である。また、固形分濃度は、特に述べない限り25℃における濃度をいう。
 本明細書において、重量平均分子量は、GPC測定によるポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてTSKgel Super AWM―H(東ソー(株)製、6.0mmID×15.0cm)を用いることによって求めることができる。溶離液は特に述べない限り、10mmol/L リチウムブロミドNMP(N-メチルピロリジノン)溶液を用いて測定したものとする。
<熱塩基発生剤>
 本発明の熱塩基発生剤は、40℃以上に加熱すると塩基を発生する酸性化合物(A1)、および、pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩(A2)から選ばれる少なくとも一種を含む。
 上記酸性化合物(A1)および上記アンモニウム塩(A2)は、加熱すると塩基を発生するので、これらの化合物から発生した塩基により、熱硬化性樹脂の環化反応を促進でき、熱硬化性樹脂の環化を低温で行うことができる。また、これらの化合物は、塩基により環化して硬化する熱硬化性樹脂と共存させても、加熱しなければ熱硬化性樹脂の環化が殆ど進行しないので、安定性に優れた熱硬化性樹脂組成物を調製することができる。
 なお、本明細書において、酸性化合物とは、化合物を容器に1g採取し、イオン交換水とテトラヒドロフランとの混合液(質量比は水/テトラヒドロフラン=1/4)を50mL加えて、室温で1時間攪拌する。その溶液をpHメーターを用いて、20℃にて測定した値が7未満である化合物を意味する。
 本発明において、酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度は、40℃以上が好ましく、120~200℃がより好ましい。塩基発生温度の上限は、190℃以下が好ましく、180℃以下がより好ましく、165℃以下がさらに好ましい。塩基発生温度の下限は、130℃以上が好ましく、135℃以上がより好ましい。
 酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が120℃以上であれば、保存中に塩基が発生しにくいので、安定性に優れた熱硬化性樹脂組成物を調製することができる。酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が200℃以下であれば、熱硬化性樹脂の環化温度を低減できる。塩基発生温度は、例えば、示差走査熱量測定を用い、化合物を耐圧カプセル中5℃/分で250℃まで加熱し、最も温度が低い発熱ピークのピーク温度を読み取り、ピーク温度を塩基発生温度として測定することができる。
 本発明において、熱塩基発生剤により発生する塩基は、2級アミンまたは3級アミンが好ましく、3級アミンがより好ましい。3級アミンは、塩基性が高いので、熱硬化性樹脂の環化温度をより低下できる。また、熱塩基発生剤により発生する塩基の沸点は、80℃以上であることが好ましく、100℃以上であることが好ましく、140℃以上であることが最も好ましい。また、発生する塩基の分子量は、80~2000が好ましい。下限は100以上がより好ましい。上限は500以下がより好ましい。なお、分子量の値は、構造式から求めた理論値である。
 本発明において、上記酸性化合物(A1)は、アンモニウム塩および後述する一般式(1)で表される化合物から選ばれる1種以上を含むことが好ましい。
 本発明において、上記アンモニウム塩(A2)は、酸性化合物であることが好ましい。なお、上記アンモニウム塩(A2)は、40℃以上(好ましくは120~200℃)に加熱すると塩基を発生する酸性化合物を含む化合物であってもよいし、40℃以上(好ましくは120~200℃)に加熱すると塩基を発生する酸性化合物を除く化合物であってもよい。
 以下、熱塩基発生剤について詳細に説明する。
<<アンモニウム塩>>
 本発明において、アンモニウム塩とは、下式(1)、または(2)で表されるアンモニウムカチオンと、アニオンとの塩を意味する。アニオンは、アンモニウムカチオンのいずれかの一部と共有結合を介して結合していてもよく、アンモニウムカチオンの分子外に有していてもよいが、アンモニウムカチオンの分子外に有していることが好ましい。なお、アニオンが、アンモニウムカチオンの分子外に有するとは、アンモニウムカチオンとアニオンが共有結合を介して結合していない場合をいう。以下、カチオン部の分子外のアニオンを対アニオンともいう。
Figure JPOXMLDOC01-appb-C000015
 式中R1~R6は、それぞれ独立に、水素原子または炭化水素基を表し、式R7は炭化水素基を表す。R1とR2、R3とR4、R5とR6、R5とR7はそれぞれ結合して環を形成してもよい。
 本発明において、アンモニウム塩は、pKa1が0~4のアニオンとアンモニウムカチオンとを有することが好ましい。アニオンのpKa1の上限は、3.5以下がより好ましく、3.2以下が一層好ましい。下限は、0.5以上が好ましく、1.0以上がより好ましい。アニオンのpKa1が上記範囲であれば、熱硬化性樹脂を低温で環化でき、さらには、熱硬化性樹脂組成物の安定性を向上できる。pKa1が4以下であれば、熱塩基発生剤の安定性が良好で、加熱なしに塩基が発生することを抑制でき、熱硬化性樹脂組成物の安定性が良好である。pKa1が0以上であれば、発生した塩基が中和されにくく、熱硬化性樹脂の環化効率が良好である。
 アニオンの種類は、カルボン酸アニオン、フェノールアニオン、リン酸アニオンおよび硫酸アニオンから選ばれる1種が好ましく、塩の安定性と熱分解性を両立させられるという理由からカルボン酸アニオンがより好ましい。すなわち、アンモニウム塩は、アンモニウムカチオンとカルボン酸アニオンとの塩がより好ましい。
 カルボン酸アニオンは、2個以上のカルボキシル基を持つ2価以上のカルボン酸のアニオンが好ましく、2価のカルボン酸のアニオンがより好ましい。この態様によれば、熱硬化性樹脂組成物の安定性、硬化性および現像性をより向上できる熱塩基発生剤とすることができる。特に、2価のカルボン酸のアニオンを用いることで、熱硬化性樹脂組成物の安定性、硬化性および現像性をさらに向上できる。
 本発明において、カルボン酸アニオンは、pKa1が4以下のカルボン酸のアニオンであることが好ましい。pKa1は、3.5以下がより好ましく、3.2以下が一層好ましい。この態様によれば、熱硬化性樹脂組成物の安定性をより向上できる。
 ここでpKa1とは、酸の第一解離定数の逆数の対数を表し、Determination of Organic Structures by Physical Methods(著者:Brown, H. C., McDaniel, D. H., Hafliger, O., Nachod, F. C.; 編纂:Braude, E. A., Nachod, F. C.; Academic Press, New York, 1955)や、Data for Biochemical Research(著者:Dawson, R.M.C.et al; Oxford, Clarendon Press, 1959)に記載の値を参照することができる。これらの文献に記載の無い化合物については、ACD/pKa(ACD/Labs製)のソフトを用いて構造式より算出した値を用いることとする。
 本発明において、カルボン酸アニオンは、下式(X1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(X1)において、EWGは、電子吸引性基を表す。
 本発明において電子吸引性基とは、ハメットの置換基定数σmが正の値を示すものを意味する。ここでσmは、都野雄甫による総説、有機合成化学協会誌第23巻第8号(1965)P.631-642に詳しく説明されている。なお、本発明の電子吸引性基は、上記文献に記載された置換基に限定されるものではない。
 σmが正の値を示す置換基の例としては例えば、CF3基(σm=0.43)、CF3CO基(σm=0.63)、HC≡C基(σm=0.21)、CH2=CH基(σm=0.06)、Ac基(σm=0.38)、MeOCO基(σm=0.37)、MeCOCH=CH基(σm=0.21)、PhCO基(σm=0.34)、H2NCOCH2基(σm=0.06)などが挙げられる。なお、Meはメチル基を表し、Acはアセチル基を表し、Phはフェニル基を表す。
 本発明において、EWGは、下記一般式(EWG-1)~(EWG-6)で表される基を表すことが好ましい。
Figure JPOXMLDOC01-appb-C000017
 式中、Rx1~Rx3は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基、ヒドロキシル基またはカルボキシル基を表し、Arは芳香族環基を表す。
 アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルキル基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。置換基としては、カルボキシル基が好ましい。
 アルケニル基の炭素数は、2~30が好ましく、2~20がより好ましく、2~10が更に好ましい。アルケニル基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルケニル基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。置換基としては、カルボキシル基が好ましい。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。置換基としては、カルボキシル基が好ましい。
 芳香族環基としては、具体的には、置換または無置換のベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インデセン環、ペリレン環、ペンタセン環、アセタフタレン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、および、フェナジン環が挙げられる。中でも、保存安定性と高感度化の観点から、ベンゼン環、ナフタレン環、アントラセン環、フェノチアジン環、またはカルバゾール環が好ましく、ベンゼン環またはナフタレン環が最も好ましい。
 芳香族環基が有していてもよい置換基の例としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。置換基としては、カルボキシル基が好ましい。
 本発明において、カルボン酸アニオンは、下記一般式(X)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(X)において、L10は、単結合、または、アルキレン基、アルケニレン基、アリーレン基、-NRX-およびこれらの組み合わせから選ばれる2価の連結基を表し、RXは、水素原子、アルキル基、アルケニル基またはアリール基を表す。
 L10が表すアルキレン基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましい。アルキレン基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルキレン基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。
 L10が表すアルケニレン基の炭素数は、2~30が好ましく、2~20がより好ましく、2~10が更に好ましい。アルケニレン基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルケニレン基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。
 L10が表すアリーレン基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリーレン基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。
 RXが表すアルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルキル基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。
 RXが表すアルケニル基の炭素数は、2~30が好ましく、2~20がより好ましく、2~10が更に好ましい。アルケニル基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルケニル基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。
 RXが表すアリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。
 カルボン酸アニオンの具体例としては、マレイン酸アニオン、フタル酸アニオン、N-フェニルイミノ二酢酸アニオンおよびシュウ酸アニオンが挙げられる。これらを好ましく用いることができる。
 アンモニウムカチオンは、下式(Y1-1)~(Y1-6)のいずれかで表されることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記一般式において、R101は、n価の有機基を表し、
 R102~R111は、それぞれ独立に水素原子、または、炭化水素基を表し、
 R150およびR151は、それぞれ独立に炭化水素基を表し、
 R104とR105、R104とR150、R107とR108、および、R109とR110は、互いに結合して環を形成していてもよく、
 Ar101およびAr102は、それぞれ独立に、アリール基を表し、
 nは、1以上の整数を表し、
 mは、0~5の整数を表す。
 R101は、n価の有機基を表す。1価の有機基としては、アルキル基、アルキレン基、芳香族環基などが挙げられる。2価以上の有機基としては、1価の有機基から水素原子を1個以上除いてn価の基としたものが挙げられる。
 R101は、芳香族環基であることが好ましい。芳香族環基の具体例としては、後述するAr10で説明したものが挙げられる。
 R102~R111は、それぞれ独立に水素原子、または、炭化水素基を表し、R150およびR151は、それぞれ独立に炭化水素基を表す。
 R102~R111、R150およびR151が表す炭化水素基としては、アルキル基、アルケニル基またはアリール基が好ましい。アルキル基、アルケニル基およびアリール基はさらに置換基を有していてもよい。置換基としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。
 アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルキル基は、置換基を有していてもよく、無置換であってもよい。
 アルケニル基の炭素数は、2~30が好ましく、2~20がより好ましく、2~10が更に好ましい。アルケニル基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。アルケニル基は、置換基を有していてもよく、無置換であってもよい。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は、置換基を有していてもよく、無置換であってもよい。
 Ar101およびAr102は、それぞれ独立に、アリール基を表す。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。アリール基は、置換基を有していてもよく、無置換であってもよい。
 R104とR105、R104とR150、R107とR108、および、R109とR110は、互いに結合して環を形成していてもよい。環としては、脂環(非芳香性の炭化水素環)、芳香環、複素環などが挙げられる。環は単環であってもよく、複環であってもよい。上記の基が結合して環を形成する場合の連結基としては、-CO-、-O-、-NH-、2価の脂肪族基、2価の芳香族環基およびそれらの組み合わせからなる群より選ばれる2価の連結基で連結することができる。具体例としては、例えば、ピロリジン環、ピロール環、ピペリジン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ピラジン環、モルホリン環、チアジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、カルバゾール環、などが挙げられる。
 本発明において、アンモニウムカチオンは、式(Y1-1)または(Y1-2)で表される構造が好ましく、式(Y1-1)または(Y1-2)で表され、R101が芳香族環基である構造がより好ましく、式(Y1-1)で表され、R101が芳香族環基である構造が特に好ましい。すなわち、本発明において、アンモニウムカチオンは、下記一般式(Y)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000020
 一般式(Y)中、Ar10は、芳香族環基を表し、R11~R15は、それぞれ独立に、水素原子または炭化水素基を表し、R14とR15は互いに結合して環を形成していてもよく、nは、1以上の整数を表す。
 Ar10は芳香族環基を表す。芳香族環基としては、具体的には、置換または無置換のベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インデセン環、ペリレン環、ペンタセン環、アセタフタレン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、および、フェナジン環が挙げられる。中でも、保存安定性と高感度化の観点から、ベンゼン環、ナフタレン環、アントラセン環、フェノチアジン環、またはカルバゾール環が好ましく、ベンゼン環またはナフタレン環が最も好ましい。
 芳香族環基が有していてもよい置換基の例としては、後述するA1が表す有機基が有していてもよい置換基で説明したものが挙げられる。
 R11およびR12は、それぞれ独立に、水素原子または炭化水素基を表す。炭化水素基としては、特に限定はないが、アルキル基、アルケニル基またはアリール基が好ましい。
 R11およびR12は、水素原子が好ましい。
 アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよい。
 直鎖または分岐のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクダデシル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-エチルペンチル基、及び2-エチルヘキシル基が挙げられる。
 環状のアルキル基(シクロアルキル基)は、単環のシクロアルキル基であってもよく、多環のシクロアルキル基であってもよい。単環のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基が挙げられる。多環のシクロアルキル基としては、例えば、アダマンチル基、ノルボルニル基、ボルニル基、カンフェニル基、デカヒドロナフチル基、トリシクロデカニル基、テトラシクロデカニル基、カンホロイル基、ジシクロヘキシル基及びピネニル基が挙げられる。中でも、高感度化との両立の観点から、シクロヘキシル基が最も好ましい。
 アルケニル基の炭素数は、2~30が好ましく、2~20がより好ましく、2~10が更に好ましい。アルケニル基は直鎖、分岐、環状のいずれであってもよく、直鎖または分岐が好ましく、直鎖がより好ましい。
 アリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。
 R13~R15は、水素原子または炭化水素基を表す。
 炭化水素基としては、上述したR11、R12で説明した炭化水素基を挙げられる。R13~R15は、特にアルキル基が好ましく、好ましい態様もR11、R12で説明したものと同じである。
 R14とR15は、互いに結合して環を形成していてもよい。環としては、脂環(非芳香性の炭化水素環)、芳香環、複素環などが挙げられる。環は単環であってもよく、複環であってもよい。R4とR5が結合して環を形成する場合の連結基としては、-CO-、-O-、-NH-、2価の脂肪族基、2価の芳香族環基およびそれらの組み合わせからなる群より選ばれる2価の連結基で連結することができる。具体例としては、例えば、ピロリジン環、ピロール環、ピペリジン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ピラジン環、モルホリン環、チアジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、カルバゾール環、などが挙げられる。
 R13~R15は、R14とR15が互いに結合して環を形成しているか、あるいは、R13が、炭素数5~30(より好ましくは炭素数6~18)の直鎖アルキル基であり、R14およびR15が、それぞれ独立に炭素数1~3(より好ましくは炭素数1又は2)のアルキル基であることが好ましい。この態様によれば、沸点の高いアミン種を発生しやすくできる。
 また、R13~R15は、発生するアミン種の塩基性や沸点の観点から、R13とR14とR15の炭素原子の総数が7~30であることが好ましく、10~20であることがより好ましい。
 また、沸点の高いアミン種を発生しやすいという理由から、一般式(Y)における「-NR131415」の化学式量は、80~2000が好ましく、100~500がより好ましい。
 一般式(Y)において、nは、1以上の整数を表し、1~3が好ましく、1または2がより好まし、1が特に好ましい。なお、nが2以上の場合は、複数のR11~R15は、それぞれ同一であってもよく、異なっていてもよい。
 一方、銅配線との密着性をより向上させるための実施形態として、一般式(Y)において、R13およびR14がメチル基またはエチル基であり、R15が炭素数5以上の直鎖、分岐または環状のアルキル基であるか、芳香族基である形態が挙げられる。本実施形態においては、R13およびR14がメチル基であり、R15が炭素数5~20の直鎖アルキル基、炭素数6~17の分岐アルキル基、炭素数6~10の環状アルキル基またはフェニル基であることが好ましく、R13およびR14がメチル基であり、R15が炭素数5~10の直鎖アルキル基、炭素数6~10の分岐アルキル基、炭素数6~8の環状アルキル基またはフェニル基であることがさらに好ましい。このようにアミン種の疎水性を低くすることで、銅配線上にアミンが付着した場合にも、銅表面とポリイミドとの親和性が低下してしまうのをより効果的に抑止できる。本実施形態において、Ar10、R11、R12およびnの好ましい範囲は、上述と同様である。
<<一般式(1)で表される化合物>>
 本発明において、酸性化合物は、下記一般式(1)で表される化合物であることも好ましい。この化合物は、室温では酸性であるが、加熱により、カルボキシル基が脱炭酸または、脱水環化して失われることで、それまで中和され不活性化していたアミン部位が活性となることにより、塩基性となる。以下、一般式(1)について説明する。
Figure JPOXMLDOC01-appb-C000021
 一般式(1)において、A1はp価の有機基を表し、R1は1価の有機基を表し、L1は(m+1)価の有機基を表し、mは1以上の整数を表し、pは1以上の整数を表す。
 一般式(1)中、A1はp価の有機基を表す。有機基としては、脂肪族基、芳香族環基などが挙げられ、芳香族環基が好ましい。A1を芳香族環基とすることにより、より低温で、沸点の高い塩基を発生しやすくできる。発生する塩基の沸点を高くすることにより、熱硬化性樹脂の硬化時の加熱によって揮発または分解しにくくし、熱硬化性樹脂の環化をより効果的に進行させることができる。
 1価の脂肪族基としては、例えば、アルキル基、アルケニル基等が挙げられる。
 アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が更に好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよい。アルキル基は、置換基を有していてもよく、無置換であってもよい。アルキル基の具体例としては、メチル基、エチル基、tert-ブチル基、ドデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、アダマンチル基等が挙げられる。
 アルケニル基の炭素数は、2~30が好ましく、2~20がより好ましく、2~10が更に好ましい。アルケニル基は直鎖、分岐、環状のいずれであってもよい。アルケニル基は、置換基を有していてもよく、無置換であってもよい。アルケニル基としては、ビニル基、(メタ)アリル基等が挙げられる。
 2価以上の脂肪族基としては、上記の1価の脂肪族基から水素原子を1個以上除いた基が挙げられる。
 芳香族環基としては、単環であってもよく、多環であってもよい。芳香族環基は、ヘテロ原子を含むヘテロ芳香族環基であってもよい。芳香族環基は、置換基を有していてもよく、無置換であってもよい。無置換が好ましい。芳香族環基の具体例としては、ベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インデセン環、ペリレン環、ペンタセン環、アセナフタレン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、および、フェナジン環が挙げられ、ベンゼン環が最も好ましい。
 芳香族環基は、複数の芳香環が、単結合または後述する連結基を介して連結していてもよい。連結基としては、例えば、アルキレン基が好ましい。アルキレン基は、直鎖、分岐のいずれも好ましい。複数の芳香環が、単結合または連結基を介して連結した芳香族環基の具体例としては、ビフェニル、ジフェニルメタン、ジフェニルプロパン、ジフェニルイソプロパン、トリフェニルメタン、テトラフェニルメタンなどが挙げられる。
 A1が表す有機基が有していてもよい置換基の例としては、例えばフッ素原子、塩素原子、臭素原子及びヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基及びtert-ブトキシ基等のアルコキシ基;フェノキシ基及びp-トリルオキシ基等のアリールオキシ基;メトキシカルボニル基、ブトキシカルボニル基及びフェノキシカルボニル基等のアルコキシカルボニル基;アセトキシ基、プロピオニルオキシ基及びベンゾイルオキシ基等のアシルオキシ基;アセチル基、ベンゾイル基、イソブチリル基、アクリロイル基、メタクリロイル基及びメトキサリル基等のアシル基;メチルスルファニル基及びtert-ブチルスルファニル基等のアルキルスルファニル基;フェニルスルファニル基及びp-トリルスルファニル基等のアリールスルファニル基;メチル基、エチル基、tert-ブチル基及びドデシル基等のアルキル基;フッ化アルキル等のハロゲン化アルキル;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、アダマンチル基等のシクロアルキル基;フェニル基、p-トリル基、キシリル基、クメニル基、ナフチル基、アンスリル基及びフェナントリル基等のアリール基;ヒドロキシ基;カルボキシ基;ホルミル基;スルホ基;シアノ基;アルキルアミノカルボニル基;アリールアミノカルボニル基;スルホンアミド基;シリル基;アミノ基;モノアルキルアミノ基;ジアルキルアミノ基;アリールアミノ基;及びジアリールアミノ基;チオキシ基;又はこれらの組み合わせが挙げられる。
 L1は(m+1)価の連結基を表す。連結基としては特に限定されず、―COO-、-OCO-、-CO-、-O-、-S―、-SO―、―SO2-、アルキレン基(好ましくは炭素数1~10の直鎖または分岐アルキレン基)、シクロアルキレン基(好ましくは炭素数3~10のシクロアルキレン基)、アルケニレン基(好ましくは炭素数1~10の直鎖または分岐アルケニレン基)又はこれらの複数が連結した連結基などを挙げることができる。連結基の総炭素数は、3以下が好ましい。連結基は、アルキレン基、シクロアルキレン基、アルケニレン基が好ましく、直鎖または分岐アルキレン基がより好ましく、直鎖アルキレン基が更に好ましく、エチレン基またはメチレン基が特に好ましく、メチレン基が最も好ましい。
 R1は1価の有機基を表す。1価の有機基としては、脂肪族基、芳香族環基などが挙げられる。脂肪族基、芳香族環基については、上述したA1で説明したものが挙げられる。R1が表す1価の有機基は、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
 R1は、カルボキシル基を有する基であることが好ましい。すなわち、R1は、下式(A)で表される基が好ましい。
 -L2-(COOH)n   ・・・(A)
 式(A)中、L2は(n+1)価の連結基を表し、nは1以上の整数を表す。
 L2が表す連結基は、上述したL1で説明した基が挙げられ、好ましい範囲も同様であり、エチレン基またはメチレン基が特に好ましく、メチレン基が最も好ましい。
 nは1以上の整数を表し、1または2が好ましく、1がより好ましい。nの上限は、L2が表す連結基が取りえる置換基の最大数である。nが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。更には、熱硬化性樹脂組成物の安定性を向上できる。
 mは1以上の整数を表し、1または2が好ましく、1がより好ましい。mの上限は、L1が表す連結基が取りえる置換基の最大数である。mが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。更には、熱硬化性樹脂組成物の安定性を向上できる。
 pは、1以上の整数を表し、1または2が好ましく、1がより好ましい。pの上限は、A1が表す有機基が取りえる置換基の最大数である。pが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。
 本発明において、一般式(1)で表される化合物は、下記一般式(1a)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 一般式(1a)中、A1はp価の有機基を表し、L1は(m+1)価の連結基を表し、L2は(n+1)価の連結基を表し、mは1以上の整数を表し、nは1以上の整数を表し、pは1以上の整数を表す。
 一般式(1a)のA1、L1、L2、m、nおよびpは、一般式(1)で説明した範囲と同義であり、好ましい範囲も同様である。
 本発明において、一般式(1)で表される化合物は、N-アリールイミノ二酢酸であることが好ましい。N-アリールイミノ二酢酸は、一般式(1)におけるA1が芳香族環基であり、L1およびL2がメチレン基であり、mが1であり、nが1であり、pが1である化合物である。N-アリールイミノ二酢酸は、120~200℃にて、沸点の高い3級アミンを発生しやすい。
 以下に、本発明の熱塩基発生剤の具体例を記載するが、本発明はこれらに限定されるものではない。これらは、それぞれ単独でまたは2種以上を混合して用いることができる。以下の式中におけるMeは、メチル基を表す。以下に示す化合物のうち、(A-1)~(A-11)、(A-18)、(A-19)が、上記式(1)で表される化合物である。以下に示す化合物のうち、(A-1)~(A-11)、(A-18)~(A-26)がより好ましく、(A-1)~(A-9)、(A-18)~(A-21)、(A-23)、(A-24)がさらに好ましい。
 また、銅との密着性を向上させる観点からは、(A-18)~(A-26)、(A-38)~(A-42)が好ましく、(A-26)、(A-38)~(A-42)がより好ましい。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
<熱硬化性樹脂組成物>
 次に、本発明の熱硬化性樹脂組成物について説明する。
 本発明の熱硬化性樹脂組成物は、上述した熱塩基発生剤と、熱硬化性樹脂とを含有する。熱硬化性樹脂は、塩基によって環化して硬化が促進される熱硬化性樹脂が好ましい。
 この熱硬化性樹脂組成物により、熱硬化性樹脂の環化反応を低温で行うことができ、安定性に優れた熱硬化性樹脂組成物とすることができる。また、本発明の熱塩基発生剤は、加熱しなければ塩基を発生しないので、熱硬化性樹脂と共存させても、保存中における熱硬化性樹脂の環化を抑制でき、保存安定性に優れている。
 本発明の熱硬化性樹脂組成物において、熱塩基発生剤は、上述したアンモニウム塩からなる酸性化合物が好ましい。アンモニウム塩は、アンモニウムカチオンとカルボン酸アニオンとの塩が好ましい。アンモニウム塩の好ましい範囲については、熱塩基発生剤で説明した範囲と同義である。
 熱硬化性樹脂組成物における熱塩基発生剤の含有量は、熱硬化性樹脂組成物の全固形分に対し、0.1~50質量%が好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上が更に好ましい。上限は、30質量%以下がより好ましく、20質量%以下が更に好ましい。また、熱硬化性樹脂100質量部に対し、熱塩基発生剤を0.1~30質量部含有することが好ましく、1~20質量部含有することが好ましい。熱塩基発生剤の含有量が上記範囲であれば、熱硬化性樹脂の環化を低温で行うことができ、耐熱性に優れた硬化膜を低温での熱処理で形成することができる。
 熱塩基発生剤は、1種または2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
<<熱硬化性樹脂>>
 熱硬化性樹脂は、塩基によって環化して硬化が促進されるものであれば、何れも好ましく用いることができる。なかでも、加熱により環化反応が生じて複素環含有ポリマーを形成可能な複素環含有ポリマー前駆体樹脂が好ましい。複素環含有ポリマー前駆体樹脂としては、ポリイミド前駆体樹脂、ポリアミドイミド前駆体樹脂、及びポリベンゾオキサゾール前駆体樹脂から選ばれる1種以上であることが好ましく、ポリイミド前駆体樹脂またはポリベンゾオキサゾール前駆体樹脂であることがより好ましく、ポリイミド前駆体樹脂が更に好ましい。この態様によれば、より耐熱性に優れた硬化膜を形成しやすい。また、これらの熱硬化性樹脂は、環化温度が高く、従来は300℃以上に加熱して環化を行っていたが、本発明によれば、これらの熱硬化性樹脂であっても300℃以下(好ましくは200℃以下、更に好ましくは180℃以下)での加熱で環化反応を十分に進行させることができる。
 本発明において、熱硬化性樹脂は、エチレン性不飽和結合を有することが好ましく、エチレン性不飽和結合を有するポリイミド前駆体樹脂であることがより好ましい。熱硬化性樹脂がエチレン性不飽和結合を有することにより、より耐熱性に優れた硬化膜を形成しやすい。更には、フォトリソグラフィによるパターン形成を行う場合においては、感度を高めることができる。
 熱硬化性樹脂組成物における熱硬化性樹脂の含有量は、熱硬化性樹脂組成物の全固形分に対し30~90質量%が好ましい。下限は、40質量%以上がより好ましく、50質量%以上が更に好ましい。
<<<ポリイミド前駆体樹脂、ポリアミドイミド前駆体樹脂>>>
 ポリイミド前駆体樹脂としては、ポリイミド化可能な化合物であれば、特に限定はないが、エチレン性不飽和結合を有するポリイミド前駆体樹脂であることが好ましい。
 また、ポリアミドイミド前駆体樹脂は、ポリアミドイミド化可能な化合物であれば、特に限定はないが、エチレン性不飽和結合を有するポリアミドイミド前駆体樹脂であることが好ましい。
 ポリイミド前駆体樹脂およびポリアミドイミド前駆体樹脂は、下記一般式(2)で表される繰り返し単位を含む化合物であることが最も好ましい。
Figure JPOXMLDOC01-appb-C000028
一般式(2)中、A1およびA2は、それぞれ独立に酸素原子または-NH-を表し、R111は、2価の有機基を表し、R112は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す。
 A1およびA2は、それぞれ独立に酸素原子または-NH-を表し、酸素原子が好ましい。
 R111は、2価の有機基を表す。2価の有機基としては、ジアミンのアミノ基の除去後に残存するジアミン残基が挙げられる。ジアミンとしては、脂肪族、環式脂肪族または芳香族ジアミンなどが挙げられる。
 具体的には、以下のジアミンのアミノ基の除去後に残存するジアミン残基などが挙げられる。
 1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタンおよび1,6-ジアミノヘキサン;1,2-または1,3-ジアミノシクロペンタン、1,2-、1,3-または1,4-ジアミノシクロヘキサン、1,2-、1,3-または1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタンおよびイソホロンジアミン;m-およびp-フェニレンジアミン、ジアミノトルエン、4,4’-および3,3’-ジアミノビフェニル、4,4’-および3,3’-ジアミノジフェニルエーテル、4,4’-および3,3’-ジアミノジフェニルメタン、4,4’-および3,3’-ジアミノジフェニルスルホン、4,4’-および3,3’-ジアミノジフェニルスルフィド、4,4’-および3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニルエーテル、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,4-および2,5-ジアミノクメン、2,5-ジメチル-p-フェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、ジアミノアントラキノン、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、p-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリデンおよび4,4’’’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミンのアミノ基の除去後に残存するジアミン残基。
 R112は、4価の有機基を表す。4価の有機基としては、テトラカルボン酸二無水物から無水物基の除去後に残存するテトラカルボン酸残基などが挙げられる。
 具体的には、以下のテトラカルボン酸二無水物から無水物基の除去後に残存しているテトラカルボン酸残基などが挙げられる。
 ピロメリト酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、オキシ二フタル酸の二無水物、3,3’,4,4’-ジフェニルオキシドテトラカルボン酸二無水物、4,4’-オキシ二フタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、および、これらのC1-C6アルキルならびにC1-C6アルコキシ誘導体から選ばれる少なくとも1種のテトラカルボン酸二無水物から無水物基の除去後に残存しているテトラカルボン酸残基。
 R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す。
 R113およびR114が表す1価の有機基としては、現像液の溶解度を向上させる置換基が好ましく用いられる。
 水性現像液への溶解度の観点からは、R113およびR114は、水素原子または1価の有機基が好ましい。1価の有機基としては、アリール炭素に結合している1、2または3つの、好ましくは1つの酸性基を有する、アリール基およびアラルキル基などが挙げられる。具体的には、酸性基を有する炭素数6~20のアリール基、酸性基を有する炭素数7~25のアラルキル基が挙げられる。より具体的には、酸性基を有するフェニル基および酸性基を有するベンジル基が挙げられる。酸性基は、HO基が好ましい。
 R113、R114が、水素原子、2-ヒドロキシベンジル、3-ヒドロキシベンジルおよび4-ヒドロキシベンジルである場合、水性現像液に対する溶解性が良好で、ネガ型熱硬化性樹脂組成物として特に好適に用いることができる。
 有機溶剤への溶解度の観点からは、R113およびR114は、1価の有機基であることが好ましい。1価の有機基としては、アルキル基、シクロアルキル基、芳香族環基であることが特に好ましい。
 アルキル基の炭素数は1~30が好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよい。直鎖または分岐のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクダデシル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-エチルペンチル基、及び2-エチルヘキシル基が挙げられる。環状のアルキル基(シクロアルキル基)は、単環のシクロアルキル基であってもよく、多環のシクロアルキル基であってもよい。単環のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基が挙げられる。多環のシクロアルキル基としては、例えば、アダマンチル基、ノルボルニル基、ボルニル基、カンフェニル基、デカヒドロナフチル基、トリシクロデカニル基、テトラシクロデカニル基、カンホロイル基、ジシクロヘキシル基及びピネニル基が挙げられる。中でも、高感度化との両立の観点から、シクロヘキシル基が最も好ましい。
 芳香族環基としては、具体的には、置換または無置換のベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インデセン環、ペリレン環、ペンタセン環、アセタフタレン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環又はフェナジン環である。ベンゼン環が最も好ましい。
 一般式(2)において、R113およびR114の少なくとも一方は、重合性基を有することが好ましい。これによれば、感度および解像性をより良好にできる。
 R113およびR114が有する重合性基としては、エポキシ基、オキセタニル基、エチレン性不飽和結合を有する基、ブロックイソシアネート基、アルコキシメチル基、メチロール基、アミノ基などが挙げられる。なかでも、感度が良好であるという理由からエチレン性不飽和結合を有する基が好ましい。エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アリル基、下記式(III)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000029
 式(III)において、R200は、水素またはメチルを表し、メチルがより好ましい。
 式(III)において、R201は、炭素数2~12のアルキレン基、-CH2CH(OH)CH2-または炭素数4~30のポリオキシアルキレン基を表す。
 好適なR201の例は、エチレン、プロピレン、トリメチレン、テトラメチレン、1,2-ブタンジイル、1,3-ブタンジイル、ペンタメチレン、ヘキサメチレン、オクタメチレン、ドデカメチレン、-CH2CH(OH)CH2-が挙げられ、エチレン、プロピレン、トリメチレン、-CH2CH(OH)CH2-がより好ましい。
 特に好ましくは、R200がメチルで、R201がエチレンである。
 一般式(2)中のR113およびR114が、重合性基を有する割合は、モル比で、重合性基:非重合性基が、好ましくは100:0~5:95であり、より好ましくは100:0~20:80であり、最も好ましくは100:0~50:50である。
 ポリイミド前駆体樹脂およびポリアミドイミド前駆体樹脂は、すべてが1種のR111またはR112に基づく上記一般式(2)の繰り返し構造単位に加え、これらの基の2つ以上の異なる種類に基づく繰り返し単位を含んでもよい。また、ポリイミド前駆体樹脂およびポリアミドイミド前駆体樹脂は、互いに構造異性体となる繰り返し単位を含んでいてもよい。一般式(2)の単位の構造異性体対の現れ方としては、例えば、ピロメリト酸から誘導された、R112がピロメリト酸残基で表される式(2)の単位の例について以下に示す(A1およびA2=-O-)。
 また、ポリイミド前駆体樹脂およびポリアミドイミド前駆体樹脂は、上記の一般式(2)の繰り返し単位のほかに、他の種類の繰り返し構造単位も含んでよい。
Figure JPOXMLDOC01-appb-C000030
 ポリイミド前駆体樹脂およびポリアミドイミド前駆体樹脂の重量平均分子量(Mw)は、好ましくは1,000~100,000であり、より好ましくは3,000~50,000であり、最も好ましくは5,000~30,000である。ポリイミド前駆体樹脂およびポリアミドイミド前駆体樹脂の重量平均分子量(Mw)は、例えばポリスチレンで較正したゲル濾過クロマトグラフィーにより測定できる。
<<<ポリベンゾオキサゾール前駆体樹脂>>>
 ポリベンゾオキサゾール前駆体樹脂としては、ポリベンゾオキサゾール化可能な化合物であれば、特に限定はないが、エチレン性不飽和結合を有するポリベンゾオキサゾール前駆体樹脂であることが好ましい。特に、下記一般式(3)で表される化合物であることが最も好ましい。
Figure JPOXMLDOC01-appb-C000031
一般式(3)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
 R121は、2価の有機基を表す。2価の有機基としては、芳香族環基が好ましい。芳香族環基の例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 式中、Aは-CH2-、-O-、-S-、-SO2-、-CO-、-NHCO-、-C(CF32-からなる群から選択される2価の基を表す。
 R122は、4価の有機基を表す。4価の有機基としては、下記一般式(A)で表されるビスアミノフェノールの残基であることが好ましい。
Ar(NH22(OH)2   ・・・(A)
 式中、Arはアリール基である。
 上記一般式(A)のビスフェノールとしては、例えば、3,3’-ジヒドロキシベンジジン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルスルホン、ビス-(3-アミノ-4-ヒドロキシフェニル)メタン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス-(4-アミノ-3-ヒドロキシフェニル)メタン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)プロパン、4,4’-ジアミノ-3,3’-ジヒドロキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジヒドロキシベンゾフェノン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルエーテル、1,4-ジアミノ-2,5-ジヒドロキシベンゼン、1,3-ジアミノ-2,4-ジヒドロキシベンゼン、1,3-ジアミノ-4,6-ジヒドロキシベンゼンなどが挙げられる。これらのビスアミノフェノールは単独あるいは混合して使用してもよい。
 一般式(A)で表されるビスアミノフェノールのうち、下記から選ばれる芳香族環基を有するビスアミノフェノールが特に好ましい。
Figure JPOXMLDOC01-appb-C000033
 式中、X1は-O-、-S-、-C(CF32-、-CH2-、-SO2-、-NHCO-を表す。また、上記構造において、一般式(A)の構造中に含まれる-OHと-NH2とは互いにオルト位(隣接位)に結合する。
 R123およびR124は、水素原子または1価の有機基を表し、R123およびR124の少なくとも一方が、重合性基を表すことが好ましい。重合性基としては、上述した一般式(2)のR113およびR114で説明した態様は同一であり、好ましい範囲も同様である。
 ポリベンゾオキサゾール前駆体樹脂は上記の一般式(3)の繰り返し単位のほかに、他の種類の繰り返し構造単位も含んでよい。
 ポリベンゾオキサゾール前駆体樹脂の重量平均分子量(Mw)は、1,000~100,000が好ましく、3,000~50,000がより好ましく、5,000~30,000が特に好ましい。ポリベンゾオキサゾール前駆体樹脂の重量平均分子量(Mw)は、例えばポリスチレンで較正したゲル濾過クロマトグラフィーにより測定できる。
<<重合性化合物>>
 本発明の熱硬化性樹脂組成物は、熱塩基発生剤および熱硬化性樹脂以外の重合性化合物を含有しても良い。重合性化合物を含有させることにより、より耐熱性に優れた硬化膜を形成することができる。更には、フォトリソグラフィによるパターン形成を行うこともできる。
 重合性化合物は、重合性基を有する化合物であって、ラジカルにより重合可能な公知の化合物を用いることができる。重合性基とは、活性光線、放射線、または、ラジカルの作用により、重合することが可能な基であって、例えば、エチレン性不飽和結合を有する基などが挙げられる。エチレン性不飽和結合を有する基としては、スチリル基、ビニル基、(メタ)アクリロイル基および(メタ)アリル基が好ましく、(メタ)アクリロイル基がさらに好ましい。すなわち、本発明で用いる重合性化合物は、エチレン性不飽和結合を有する化合物が好ましく、(メタ)アクリレート化合物がより好ましく、アクリレート化合物が更に好ましい。
 重合性化合物は産業分野において広く知られているものであり、本発明においてはこれらを特に限定なく用いることができる。これらは、例えば、モノマー、プレポリマー、オリゴマー又はそれらの混合物並びにそれらの多量体などの化学的形態のいずれであってもよい。
 本発明において、モノマータイプの重合性化合物(以下、重合性モノマーともいう)は、高分子化合物とは異なる化合物である。重合性モノマーは、典型的には、低分子化合物であり、分子量2000以下の低分子化合物であることが好ましく、1500以下の低分子化合物であることがより好ましく、分子量900以下の低分子化合物であることがさらに好ましい。なお、重合性モノマーの分子量は、通常、100以上である。
 また、オリゴマータイプの重合性化合物(以下、重合性オリゴマーともいう)は、典型的には比較的低い分子量の重合体であり、10個から100個の重合性モノマーが結合した重合体であることが好ましい。分子量としては、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算の重量平均分子量が、2000~20000であることが好ましく、2000~15000がより好ましく、2000~10000であることが最も好ましい。
 本発明における重合性化合物の官能基数は、1分子中における重合性基の数を意味する。
 重合性化合物は、解像性の観点から、重合性基を2個以上含有する2官能以上の重合性化合物を少なくとも1種含むことが好ましく、3官能以上の重合性化合物を少なくとも1種含むことがより好ましい。
 また、本発明における重合性化合物は、三次元架橋構造を形成して耐熱性を向上できるという点から、3官能以上の重合性化合物を少なくとも1種含むことが好ましい。また、2官能以下の重合性化合物と3官能以上の重合性化合物との混合物であってもよい。
 重合性化合物の具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類、並びにこれらの多量体が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、および不飽和カルボン酸と多価アミン化合物とのアミド類、並びにこれらの多量体である。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、さらに、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。
 多価アルコール化合物と不飽和カルボン酸とのエステルのモノマーの具体例としては、アクリル酸エステルとして、エチレングリコールジアクリレート、トリエチレングリコールジアクリレート、1,3-ブタンジオールジアクリレート、テトラメチレングリコールジアクリレート、プロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリメチロールエタントリアクリレート、ヘキサンジオールジアクリレート、1,4-シクロヘキサンジオールジアクリレート、テトラエチレングリコールジアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールジアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ソルビトールトリアクリレート、ソルビトールテトラアクリレート、ソルビトールペンタアクリレート、ソルビトールヘキサアクリレート、トリ(アクリロイルオキシエチル)イソシアヌレート、イソシアヌル酸エチレンオキシド変性トリアクリレート、ポリエステルアクリレートオリゴマー等がある。
 メタクリル酸エステルとしては、テトラメチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、エチレングリコールジメタクリレート、1,3-ブタンジオールジメタクリレート、ヘキサンジオールジメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールジメタクリレート、ジペンタエリスリトールヘキサメタクリレート、ソルビトールトリメタクリレート、ソルビトールテトラメタクリレート、ビス〔p-(3-メタクリルオキシ-2-ヒドロキシプロポキシ)フェニル〕ジメチルメタン、ビス-〔p-(メタクリルオキシエトキシ)フェニル〕ジメチルメタン等がある。
 イタコン酸エステルとしては、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3-ブタンジオールジイタコネート、1,4-ブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリスリトールジイタコネート、ソルビトールテトライタコネート等がある。
 クロトン酸エステルとしては、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリスリトールジクロトネート、ソルビトールテトラジクロトネート等がある。
 イソクロトン酸エステルとしては、エチレングリコールジイソクロトネート、ペンタエリスリトールジイソクロトネート、ソルビトールテトライソクロトネート等がある。
 マレイン酸エステルとしては、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリスリトールジマレート、ソルビトールテトラマレート等がある。
 その他のエステルの例として、例えば、特公昭46-27926号公報、特公昭51-47334号公報、特開昭57-196231号公報記載の脂肪族アルコール系エステル類や、特開昭59-5240号公報、特開昭59-5241号公報、特開平2-226149号公報記載の芳香族系骨格を有するもの、特開平1-165613号公報記載のアミノ基を含有するもの等も好適に用いられる。
 また、多価アミン化合物と不飽和カルボン酸とのアミドのモノマーの具体例としては、メチレンビス-アクリルアミド、メチレンビス-メタクリルアミド、1,6-ヘキサメチレンビス-アクリルアミド、1,6-ヘキサメチレンビス-メタクリルアミド、ジエチレントリアミントリスアクリルアミド、キシリレンビスアクリルアミド、キシリレンビスメタクリルアミド等がある。
 その他の好ましいアミド系モノマーの例としては、特公昭54-21726号公報記載のシクロへキシレン構造を有するものを挙げることができる。
 また、イソシアネートと水酸基の付加反応を用いて製造されるウレタン系付加重合性モノマーも好適であり、そのような具体例としては、例えば、特公昭48-41708号公報に記載されている1分子に2個以上のイソシアネート基を有するポリイソシアネート化合物に、下記一般式(A)で示される水酸基を含有するビニルモノマーを付加させた1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物等が挙げられる。
 CH2=C(R4)COOCH2CH(R5)OH   ・・・(A)
(ただし、R4およびR5は、HまたはCH3を示す。)
 また、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。
 また、重合性化合物としては、特開2009-288705号公報の段落番号0095~段落番号0108に記載されている化合物を本発明においても好適に用いることができる。
 また、重合性化合物としては、常圧下で100℃以上の沸点を持つ化合物も好ましい。その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、等の単官能のアクリレートやメタアクリレート;ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイロキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後(メタ)アクリレート化したもの、特公昭48-41708号、特公昭50-6034号、特開昭51-37193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタアクリレートおよびこれらの混合物を挙げることができる。また、特開2008-292970号公報の段落番号0254~0257に記載の化合物も好適である。また、多官能カルボン酸にグリシジル(メタ)アクリレート等の環状エーテル基とエチレン性不飽和結合を有する化合物を反応させ得られる多官能(メタ)アクリレートなども挙げることができる。
 また、その他の好ましい重合性化合物として、特開2010-160418号公報、特開2010-129825号公報、特許第4364216号等に記載される、フルオレン環を有し、エチレン性不飽和結合を有する基を2個以上有する化合物、カルド樹脂も使用することが可能である。
 さらに、重合性化合物のその他の例としては、特公昭46-43946号公報、特公平1-40337号公報、特公平1-40336号公報記載の特定の不飽和化合物や、特開平2-25493号公報記載のビニルホスホン酸系化合物等もあげることができる。また、ある場合には、特開昭61-22048号公報記載のペルフルオロアルキル基を含有する構造が好適に使用される。さらに日本接着協会誌 vol.20、No.7、300~308ページ(1984年)に光硬化性モノマーおよびオリゴマーとして紹介されているものも使用することができる。
 上記のほか、下記一般式(MO-1)~(MO-5)で表される、重合性化合物も好適に用いることができる。なお、式中、Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 一般式において、nは0~14の整数であり、mは1~8の整数である。一分子内に複数存在するR、T、は、各々同一であっても、異なっていてもよい。
 上記一般式(MO-1)~(MO-5)で表される重合性化合物の各々において、複数のRの内の少なくとも1つは、-OC(=O)CH=CH2、または、-OC(=O)C(CH3)=CH2で表される基を表す。
 上記一般式(MO-1)~(MO-5)で表される、重合性化合物の具体例としては、特開2007-269779号公報の段落番号0248~0251に記載されている化合物を本発明においても好適に用いることができる。
 また、特開平10-62986号公報において一般式(1)および(2)としてその具体例と共に記載の、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、重合性化合物として用いることができる。
 重合性化合物としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬株式会社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造が好ましい。これらのオリゴマータイプも使用できる。
 重合性化合物は、カルボキシル基、スルホン酸基、リン酸基等の酸基を有する多官能モノマーであっても良い。酸基を有する多官能モノマーは、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせた多官能モノマーがより好ましく、特に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトール及び/又はジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、M-510、M-520などが挙げられる。
 酸基を有する多官能モノマーは、1種を単独で用いてもよいが、2種以上を混合して用いてもよい。また、必要に応じて酸基を有しない多官能モノマーと酸基を有する多官能モノマーを併用してもよい。
 酸基を有する多官能モノマーの好ましい酸価としては、0.1~40mgKOH/gであり、特に好ましくは5~30mgKOH/gである。多官能モノマーの酸価が上記範囲であれば、製造や取扱性に優れ、更には、現像性に優れる。また、硬化性が良好である。
 重合性化合物は、カプロラクトン構造を有する重合性化合物を用いることもできる。
 カプロラクトン構造を有する重合性化合物としては、分子内にカプロラクトン構造を有する限り特に限定されるものではないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸およびε-カプロラクトンをエステル化することにより得られる、ε-カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記一般式(B)で表されるカプロラクトン構造を有する重合性化合物が好ましい。
一般式(B)
Figure JPOXMLDOC01-appb-C000036
(式中、6個のRは全てが下記一般式(C)で表される基であるか、または6個のRのうち1~5個が下記一般式(C)で表される基であり、残余が下記一般式(D)で表される基である。)
一般式(C)
Figure JPOXMLDOC01-appb-C000037
(式中、R1は水素原子またはメチル基を示し、mは1または2の数を示し、「*」は結合手であることを示す。)
 一般式(D)
Figure JPOXMLDOC01-appb-C000038
(式中、R1は水素原子またはメチル基を示し、「*」は結合手であることを示す。)
 このようなカプロラクトン構造を有する重合性化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記一般式(B)~(D)においてm=1、一般式(C)で表される基の数=2、R1が全て水素原子である化合物)、DPCA-30(同式、m=1、一般式(C)で表される基の数=3、R1が全て水素原子である化合物)、DPCA-60(同式、m=1、一般式(C)で表される基の数=6、R1が全て水素原子である化合物)、DPCA-120(同式においてm=2、一般式(C)で表される基の数=6、R1が全て水素原子である化合物)等を挙げることができる。
 本発明において、カプロラクトン構造を有する重合性化合物は、単独でまたは2種以上を混合して使用することができる。
 重合性化合物は、下記一般式(i)または(ii)で表される化合物の群から選択される少なくとも1種であることも好ましい。
Figure JPOXMLDOC01-appb-C000039
 一般式(i)および(ii)中、Eは、各々独立に、-((CH2yCH2O)-、または-((CH2yCH(CH3)O)-を表し、yは、各々独立に0~10の整数を表し、Xは、各々独立に、(メタ)アクリロイル基、水素原子、またはカルボキシル基を表す。
 一般式(i)中、(メタ)アクリロイル基の合計は3個または4個であり、mは各々独立に0~10の整数を表し、各mの合計は0~40の整数である。但し、各mの合計が0の場合、Xのうちいずれか1つはカルボキシル基である。
 一般式(ii)中、(メタ)アクリロイル基の合計は5個または6個であり、nは各々独立に0~10の整数を表し、各nの合計は0~60の整数である。但し、各nの合計が0の場合、Xのうちいずれか1つはカルボキシル基である。
 一般式(i)中、mは、0~6の整数が好ましく、0~4の整数がより好ましい。
 また、各mの合計は、2~40の整数が好ましく、2~16の整数がより好ましく、4~8の整数が特に好ましい。
 一般式(ii)中、nは、0~6の整数が好ましく、0~4の整数がより好ましい。
また、各nの合計は、3~60の整数が好ましく、3~24の整数がより好ましく、6~12の整数が特に好ましい。
 一般式(i)または一般式(ii)中の-((CH2yCH2O)-または-((CH2yCH(CH3)O)-は、酸素原子側の末端がXに結合する形態が好ましい。特に、一般式(ii)において、6個のX全てがアクリロイル基である形態が好ましい。
 一般式(i)または(ii)で表される化合物は、従来公知の工程である、ペンタエリスリト-ルまたはジペンタエリスリト-ルにエチレンオキシドまたはプロピレンオキシドを開環付加反応により開環骨格を結合する工程と、開環骨格の末端水酸基に、例えば(メタ)アクリロイルクロライドを反応させて(メタ)アクリロイル基を導入する工程と、から合成することができる。各工程は良く知られた工程であり、当業者は容易に一般式(i)または(ii)で表される化合物を合成することができる。
 一般式(i)、(ii)で表される化合物の中でも、ペンタエリスリトール誘導体および/またはジペンタエリスリトール誘導体がより好ましい。
 具体的には、下記式(a)~(f)で表される化合物(以下、「例示化合物(a)~(f)」ともいう。)が挙げられ、中でも、例示化合物(a)、(b)、(e)、(f)が好ましい。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 一般式(i)、(ii)で表される重合性化合物の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、日本化薬株式会社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330などが挙げられる。
 重合性化合物としては、特公昭48-41708号、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。さらに、重合性化合物として、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性モノマー類を用いることもできる。
 重合性化合物の市販品としては、ウレタンオリゴマーUAS-10、UAB-140(山陽国策パルプ社製)、NKエステルM-40G、NKエステル4G、NKエステルM-9300、NKエステルA-9300、UA-7200(新中村化学社製)、DPHA-40H(日本化薬社製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社製)、ブレンマーPME400(日油(株)社製)などが挙げられる。
 重合性化合物は、耐熱性の観点から、下記式で表される部分構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000042
式中の*は連結手である。
 上記部分構造を有する重合性化合物の具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレートなどが挙げられ、本発明においてはこれらの重合性化合物を特に好ましく用いることができる。
 熱硬化性樹脂組成物において、重合性化合物の含有量は、良好な硬化性と耐熱性の観点から、熱硬化性樹脂組成物の全固形分に対して、1~50質量%が好ましい。下限は5質量%以上がより好ましい。上限は、30質量%以下がより好ましい。重合性化合物は1種を単独で用いてもよいが、2種以上を混合して用いてもよい。
 また、熱硬化性樹脂と重合性化合物との質量割合(熱硬化性樹脂/重合性化合物)は、98/2~10/90が好ましく、95/5~30/70がより好ましく、90/10~50/50が最も好ましい。熱硬化性樹脂と重合性化合物との質量割合は、上記範囲であれば、硬化性および耐熱性により優れた硬化膜を形成できる。
<<熱重合開始剤>>
 本発明の熱硬化性樹脂組成物は、熱重合開始剤を含んでいてもよい。熱重合開始剤としては、公知の熱重合開始剤を用いることができる。
 熱重合開始剤は、熱のエネルギーによってラジカルを発生し、重合性化合物の重合反応を開始又は促進させる化合物である。熱重合開始剤を添加することによって、熱硬化性樹脂の環化反応を進行させる際に、重合性化合物の重合反応を進行させることができる。また、熱硬化性樹脂がエチレン性不飽和結合を含む場合は、熱硬化性樹脂の環化と共に、熱硬化性樹脂の重合反応を進行させることもできるので、より高耐熱化が達成できることとなる。
 熱重合開始剤としては、芳香族ケトン類、オニウム塩化合物、過酸化物、チオ化合物、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、アゾ系化合物等が挙げられる。中でも、過酸化物又はアゾ系化合物がより好ましく、過酸化物が特に好ましい。
 具体的には、特開2008-63554号公報の段落0074~0118に記載されている化合物が挙げられる。
 市販品では、パーブチルZ(日油(株)製)を好適に用いることができる。
 熱硬化性樹脂組成物が熱重合開始剤を有する場合、熱重合開始剤の含有量は、熱硬化性樹脂組成物の全固形分に対し0.1~50質量%が好ましく、0.1~30質量%がより好ましく、0.1~20質量%が特に好ましい。また、重合性化合物100質量部に対し、熱重合開始剤を0.1~50質量部含有することが好ましく、0.5~30質量部含有することが好ましい。この態様によれば、より耐熱性に優れた硬化膜を形成しやすい。
 熱重合開始剤は1種類のみでもよいし、2種類以上であってもよい。熱重合開始剤が2種類以上の場合は、その合計が上記範囲であることが好ましい。
<<増感色素>>
 本発明の熱硬化性樹脂組成物は、増感色素を含んでも良い。増感色素は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感色素は、熱塩基発生剤、熱重合開始剤、光重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱塩基発生剤、熱重合開始剤、光重合開始剤は化学変化を起こして分解し、ラジカル、酸或いは塩基を生成する。
 好ましい増感色素の例としては、以下の化合物類に属しており、かつ300nmから450nm域に吸収波長を有するものを挙げることができる。例えば、多核芳香族類(例えば、フェナントレン、アントラセン、ピレン、ペリレン、トリフェニレン、9.10-ジアルコキシアントラセン)、キサンテン類(例えば、フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、チオキサントン類、シアニン類(例えばチアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、クマリン類(例えば、7-ジエチルアミノ-4-メチルクマリン)、フェノチアジン類、スチリルベンゼン類、ジスチリルベンゼン類、カルバゾール類等などが挙げられる。
 中でも本発明においては、多核芳香族類(例えば、フェナントレン、アントラセン、ピレン、ペリレン、トリフェニレン)、チオキサントン類、ジスチリルベンゼン類、スチリルベンゼン類と組み合わせるのが開始効率の観点で好ましく、アントラセン骨格を有する化合物を使用することがより好ましい。特に好ましい具体的な化合物としては9,10-ジエトキシアントラセン、9,10-ジブトキシアントラセンなどが挙げられる。
 熱硬化性樹脂組成物が増感色素を含有する場合、増感色素の含有量は、熱硬化性樹脂組成物の全固形分に対し、0.01~20質量%が好ましく、0.1~15質量%がより好ましく、0.5~10質量%が更に好ましい。増感色素は、一種単独で用いてもよいし、2種以上を併用してもよい。
<<光重合開始剤>>
 本発明の熱硬化性樹脂組成物は、光重合開始剤を含有しても良い。熱硬化性樹脂組成物が光重合開始剤を含有することにより、熱硬化性樹脂組成物を半導体ウエハなどに適用して層状の組成物層を形成した後、光を照射することで、ラジカルまたは酸による硬化が起こり、光照射部における溶解性を低下させることができる。このため、例えば、電極部のみをマスクしたパターンを持つフォトマスクを介して上記組成物層を露光することで、電極のパターンにしたがって、溶解性の異なる領域を簡便に作製できるという利点がある。
 光重合開始剤としては、重合性化合物の重合反応(架橋反応)を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよい。
 光重合開始剤は、約300~800nm(好ましくは330~500nm)の範囲内に少なくとも約50の分子吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いることができるが、具体的には、例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
 光重合開始剤としては、公知の化合物を制限なく使用できるが、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの、トリハロメチル基を有するものなど)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。
 トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53-133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.SchaeferなどによるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62-58241号公報記載の化合物、特開平5-281728号公報記載の化合物、特開平5-34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物、などが挙げられる。
 米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2-トリクロロメチル-5-フェニル-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(4-クロロフェニル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(1-ナフチル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(2-ナフチル)-1,3,4-オキサジアゾール、2-トリブロモメチル-5-フェニル-1,3,4-オキサジアゾール、2-トリブロモメチル-5-(2-ナフチル)-1,3,4-オキサジアゾール;2-トリクロロメチル-5-スチリル-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(4-クロルスチリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(4-メトキシスチリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(1-ナフチル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(4-n-ブトキシスチリル)-1,3,4-オキサジアゾール、2-トリプロモメチル-5-スチリル-1,3,4-オキサジアゾールなど)などが挙げられる。
 また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタンなど)、N-フェニルグリシンなど、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトンなど)、クマリン類(例えば、3-(2-ベンゾフラノイル)-7-ジエチルアミノクマリン、3-(2-ベンゾフロイル)-7-(1-ピロリジニル)クマリン、3-ベンゾイル-7-ジエチルアミノクマリン、3-(2-メトキシベンゾイル)-7-ジエチルアミノクマリン、3-(4-ジメチルアミノベンゾイル)-7-ジエチルアミノクマリン、3,3’-カルボニルビス(5,7-ジ-n-プロポキシクマリン)、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、3-ベンゾイル-7-メトキシクマリン、3-(2-フロイル)-7-ジエチルアミノクマリン、3-(4-ジエチルアミノシンナモイル)-7-ジエチルアミノクマリン、7-メトキシ-3-(3-ピリジルカルボニル)クマリン、3-ベンゾイル-5,7-ジプロポキシクマリン、7-ベンゾトリアゾール-2-イルクマリン、また、特開平5-19475号公報、特開平7-271028号公報、特開2002-363206号公報、特開2002-363207号公報、特開2002-363208号公報、特開2002-363209号公報などに記載のクマリン化合物など)、アシルホスフィンオキサイド類(例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフェニルホスフィンオキサイド、LucirinTPOなど)、メタロセン類(例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフロロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、η5-シクロペンタジエニル-η6-クメニル-アイアン(1+)-ヘキサフロロホスフェート(1-)など)、特開昭53-133428号公報、特公昭57-1819号公報、同57-6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。
 ケトン化合物としては、例えば、ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、4-メトキシベンゾフェノン、2-クロロベンゾフェノン、4-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン、2-エトキシカルボニルベンゾフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4-ジメチルアミノベンゾフェノン、4-ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2-t-ブチルアントラキノン、2-メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2-クロル-チオキサントン、2,4-ジエチルチオキサントン、フルオレノン、2-ベンジル-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノ-1-プロパノン、2-ヒドロキシ-2-メチル-〔4-(1-メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N-メチルアクリドン、N-ブチルアクリドン、N-ブチル-クロロアクリドンなどが挙げられる。
 市販品では、カヤキュアーDETX(日本化薬製)も好適に用いられる。
 光重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号公報に記載のアシルホスフィンオキシド系開始剤も用いることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、IRGACURE-127(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤としては、市販品であるIRGACURE-907、IRGACURE-369、及び、IRGACURE-379(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤として、365nmまたは405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤としては、市販品であるIRGACURE-819やDAROCUR-TPO(商品名:いずれもBASF社製)を用いることができる。
 光重合開始剤として、より好ましくはオキシム系化合物が挙げられる。オキシム系開始剤の具体例としては、特開2001-233842号記載の化合物、特開2000-80068号記載の化合物、特開2006-342166号記載の化合物を用いることができる。
 好ましいオキシム化合物としては、例えば、3-ベンゾイロキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイロキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。
 オキシム化合物としては、J.C.S.Perkin II(1979年)p p.1653-1660)、J.C.S.Perkin II(1979年)pp.156-162、Journal of Photopolymer Science and Technology(1995年)pp.202-232、特開2000-66385号公報記載の化合物、特開2000-80068号公報、特表2004-534797号公報、特開2006-342166号公報の各公報に記載の化合物等が挙げられる。
 市販品ではIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、N-1919(ADEKA社製)も好適に用いられる。
 また、カルバゾールN位にオキシムが連結した特表2009-519904号公報に記載の化合物、ベンゾフェノン部位にヘテロ置換基が導入された米国特許7626957号公報に記載の化合物、色素部位にニトロ基が導入された特開2010-15025号公報および米国特許公開2009-292039号記載の化合物、国際公開特許2009-131189号公報に記載のケトオキシム系化合物、トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物、405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009-221114号公報記載の化合物などを用いてもよい。
 また、特開2007-231000号公報、及び、特開2007-322744号公報に記載される環状オキシム化合物も好適に用いることができる。環状オキシム化合物の中でも、特に特開2010-32985号公報、特開2010-185072号公報に記載されるカルバゾール色素に縮環した環状オキシム化合物は、高い光吸収性を有し高感度化の観点から好ましい。
 また、オキシム化合物の特定部位に不飽和結合を有する化合物である、特開2009-242469号公報に記載の化合物も好適に使用することができる。
 さらに、また、フッ素原子を有するオキシム開始剤を用いることも可能である。そのような開始剤の具体例としては、特開2010-262028号公報に記載されている化合物、特表2014-500852号公報の0345段落に記載されている化合物24、36~40、特開2013-164471号公報の0101段落に記載されている化合物(C-3)などが挙げられる。具体例としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 最も好ましいオキシム化合物は、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられる。
 光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン-ベンゼン-鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。
 さらに好ましくは、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、オキシム化合物、トリアリールイミダゾールダイマー、ベンゾフェノン化合物からなる群より選ばれる少なくとも一種の化合物が最も好ましく、オキシム化合物を用いるのが最も好ましい。
 また、光重合開始剤は、pKaが4以下の酸を発生する化合物も好ましく用いることができ、pKaが3以下の酸を発生する化合物がより好ましい。
 酸を発生する化合物の例として、トリクロロメチル-s-トリアジン類、スルホニウム塩やヨードニウム塩、第四級アンモニウム塩類、ジアゾメタン化合物、イミドスルホネート化合物、及び、オキシムスルホネート化合物などを挙げることができる。これらの中でも、高感度である観点から、オキシムスルホネート化合物を用いることが好ましい。これら酸発生剤は、1種単独又は2種類以上を組み合わせて使用することができる。
 具体的には、特開2012-8223号公報の段落番号〔0073〕~〔0095〕記載の酸発生剤を挙げることができる。
 熱硬化性樹脂組成物が光重合開始剤を含有する場合、光重合開始剤の含有量は、熱硬化性樹脂組成物の全固形分に対し0.1~30質量%が好ましく、より好ましくは0.1~20質量%であり、更に好ましくは0.1~10質量%である。また、重合性化合物100質量部に対し、光重合開始剤を1~20質量部含有することが好ましく、3~10質量部含有することがより好ましい。
 光重合開始剤は1種類のみでもよいし、2種類以上であってもよい。光重合開始剤が2種類以上の場合は、その合計が上記範囲であることが好ましい。
<<連鎖移動剤>>
 本発明の熱硬化性樹脂組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内にSH、PH、SiH、GeHを有する化合物群が用いられる。これらは、低活性のラジカル種に水素供与して、ラジカルを生成するか、もしくは、酸化された後、脱プロトンすることによりラジカルを生成しうる。特に、チオール化合物(例えば、2-メルカプトベンズイミダゾール類、2-メルカプトベンズチアゾール類、2-メルカプトベンズオキサゾール類、3-メルカプトトリアゾール類、5-メルカプトテトラゾール類等)を好ましく用いることができる。
 熱硬化性樹脂組成物が連鎖移動剤を有する場合、連鎖移動剤の好ましい含有量は、熱硬化性樹脂組成物の全固形分100質量部に対し、好ましくは0.01~20質量部、さらに好ましくは1~10質量部、特に好ましくは1~5質量部である。
 連鎖移動剤は1種類のみでもよいし、2種類以上であってもよい。連鎖移動剤が2種類以上の場合は、その合計が上記範囲であることが好ましい。
<<重合禁止剤>>
 本発明の熱硬化性樹脂組成物は、製造中または保存中において熱硬化性樹脂および重合性化合物の不要な熱重合を防止するために、少量の重合禁止剤を含有することが好ましい。
 重合禁止剤としては、例えば、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4′-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2′-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩が好適に挙げられる。
 熱硬化性樹脂組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、熱硬化性樹脂組成物の全固形分に対して、0.01~5質量%が好ましい。
 重合禁止剤は1種類のみでもよいし、2種類以上であってもよい。重合禁止剤が2種類以上の場合は、その合計が上記範囲であることが好ましい。
<<高級脂肪酸誘導体等>>
 本発明の熱硬化性樹脂組成物には、酸素による重合阻害を防止するために、ベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体等を添加して、塗布後の乾燥の過程で熱硬化性樹脂組成物の表面に偏在させてもよい。
 熱硬化性樹脂組成物が高級脂肪酸誘導体を有する場合、高級脂肪酸誘導体の含有量は、熱硬化性樹脂組成物の全固形分に対して、0.1~10質量%が好ましい。
 高級脂肪酸誘導体等は1種類のみでもよいし、2種類以上であってもよい。高級脂肪酸誘導体等が2種類以上の場合は、その合計が上記範囲であることが好ましい。
<<溶剤>>
 本発明の熱硬化性樹脂組成物を塗布によって層状にする場合、溶剤を配合することが好ましい。溶剤は、熱硬化性樹脂組成物を層状に形成できれば、公知のものを制限なく使用できる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ―ブチロラクトン、ε-カプロラクトンδ-バレロラクトン、オキシ酢酸アルキル(例:オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-オキシプロピオン酸アルキルエステル類(例:3-オキシプロピオン酸メチル、3-オキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-オキシプロピオン酸アルキルエステル類(例:2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-オキシ-2-メチルプロピオン酸メチルおよび2-オキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等、並びに、エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等、並びに、ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、N-メチル-2-ピロリドン等、並びに、芳香族炭化水素類として、例えば、トルエン、キシレン、アニソール、リモネン等、スルホキシド類としてジメチルスルホキシドが好適に挙げられる。
 溶剤は、塗布面状の改良などの観点から、2種以上を混合する形態も好ましい。なかでも、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ―ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、およびプロピレングリコールメチルエーテルアセテートから選択される2種以上で構成される混合溶液が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用が特に好ましい。
 熱硬化性樹脂組成物が溶剤を有する場合、溶剤の含有量は、塗布性の観点から、熱硬化性樹脂組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~70質量%がさらに好ましく、10~60質量%が特に好ましい。
 溶剤は1種類のみでもよいし、2種類以上であってもよい。溶剤が2種類以上の場合は、その合計が上記範囲であることが好ましい。
 また、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミドおよびN,N-ジメチルホルムアミドの含有量は、膜強度の観点から、組成物の全質量に対して5質量%未満が好ましく、1質量%未満がさらに好ましく、0.5質量%未満が一層好ましく、0.1質量%未満が特に好ましい。
<<界面活性剤>>
 本発明の熱硬化性樹脂組成物には、塗布性をより向上させる観点から、各種の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。
 特に、フッ素系界面活性剤を含有することで、塗布液として調製したときの液特性(特に、流動性)がより向上することから、塗布厚の均一性や省液性をより改善することができる。
 フッ素系界面活性剤を含有する塗布液を用いて膜形成する場合においては、被塗布面と塗布液との界面張力を低下させることにより、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成をより好適に行える点で有効である。
 フッ素系界面活性剤のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、溶解性も良好である。
 フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、同F780、同F781(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、旭硝子(株)製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。
 ノニオン系界面活性剤として具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレートおよびプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製のプルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、901、904、150R1、ソルスパース20000(日本ルーブリゾール(株)製)、オルフィン(日信化学工業(株)製)等が挙げられる。
 カチオン系界面活性剤として具体的には、フタロシアニン誘導体(商品名:EFKA-745、森下産業(株)製)、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)社製)等が挙げられる。
 シリコーン系界面活性剤としては、例えば、東レ・ダウコーニング(株)製「トーレシリコーンDC3PA」、「トーレシリコーンSH7PA」、「トーレシリコーンDC11PA」,「トーレシリコーンSH21PA」,「トーレシリコーンSH28PA」、「トーレシリコーンSH29PA」、「トーレシリコーンSH30PA」、「トーレシリコーンSH8400」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF-4440」、「TSF-4300」、「TSF-4445」、「TSF-4460」、「TSF-4452」、信越シリコーン株式会社製「KP341」、「KF6001」、「KF6002」、ビックケミー社製「BYK307」、「BYK323」、「BYK330」等が挙げられる。
 熱硬化性樹脂組成物が界面活性剤を有する場合、界面活性剤の含有量は、熱硬化性樹脂組成物の全固形分に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。
 界面活性剤は1種類のみでもよいし、2種類以上であってもよい。界面活性剤が2種類以上の場合は、その合計が上記範囲であることが好ましい。
<腐食防止剤>
 本発明の熱硬化性樹脂組成物には、腐食防止剤を添加することが好ましい。腐食防止剤は、金属配線からのイオンの流出を防ぐ目的で添加し、化合物としては例えば特開2013-15701号公報の0094段落に記載の防錆剤などを使用することができる。中でも、テトラゾール環を有する化合物を好ましく使用することができ、1H-テトラゾール、5-メチル-1H-テトラゾールがより好ましく、1H-テトラゾールがもっとも好ましい。
 熱硬化性樹脂組成物が腐食防止剤を有する場合、腐食防止剤の含有量は、熱硬化性樹脂組成物の全固形分に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。
 腐食防止剤は1種類のみでもよいし、2種類以上であってもよい。腐食防止剤が2種類以上の場合は、その合計が上記範囲であることが好ましい。
<金属接着性改良剤>
 本発明の熱硬化性樹脂組成物は、電極や配線などに用いられる金属材料との接着性を向上させるための金属接着性改良剤を含んでいることが好ましい。金属接着性改良剤例としては、特開2014-186186号公報の段落0046~0049や、特開2013-072935号公報の段落0032~0043に記載のスルフィド系化合物が挙げられる。金属接着性改良剤としては、また、下記化合物も例示される。
Figure JPOXMLDOC01-appb-C000044
 熱硬化性樹脂組成物が金属接着性改良剤を有する場合、金属接着性改良剤の含有量は、熱硬化性樹脂組成物の全固形分に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。
 金属接着性改良剤は1種類のみでもよいし、2種類以上であってもよい。金属接着性改良剤が2種類以上の場合は、その合計が上記範囲であることが好ましい。
<<その他の添加剤>>
 本発明の熱硬化性樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、各種添加物、例えば、硬化剤、硬化触媒、シランカップリング剤、充填剤、酸化防止剤、紫外線吸収剤、凝集防止剤等を配合することができる。これらの添加剤を配合する場合、その合計配合量は熱硬化性樹脂組成物の固形分の3質量%以下とすることが好ましい。
 本発明の熱硬化性樹脂組成物の水分含有量は、塗布面状の観点から、5質量%未満が好ましく、1質量%未満がさらに好ましく、0.6質量%未満が特に好ましい。
 本発明の熱硬化性樹脂組成物の金属含有量は、絶縁性の観点から、5ppm未満が好ましく、1ppm未満がさらに好ましく、0.5ppm未満が特に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、クロム、ニッケルなどが挙げられる。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。
 本発明の熱硬化性樹脂組成物は、ハロゲン原子の含有量が、配線腐食性の観点から、500ppm未満が好ましく、300ppm未満が好ましく、200ppm未満が特に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5ppm未満が好ましく、1ppm未満がさらに好ましく、0.5ppm未満が特に好ましい。ハロゲン原子としては、塩素原子および臭素原子が挙げられる。塩素原子および臭素原子、あるいは塩化物イオンおよび臭化物イオンの合計がそれぞれ上記範囲であることが好ましい。
<熱硬化性樹脂組成物の調製>
 本発明の熱硬化性樹脂組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
<熱硬化性樹脂組成物の用途>
 本発明の熱硬化性樹脂組成物は、耐熱性及び絶縁性に優れる硬化膜を形成できるので、半導体デバイスの絶縁膜、再配線用層間絶縁膜などに好ましく用いることができる。特に、3次元実装デバイスにおける再配線用層間絶縁膜などに好ましく用いることができる。
 また、エレクトロニクス用のフォトレジスト(ガルバニック(電解)レジスト(galvanic resist)、エッチングレジスト、ソルダートップレジスト(solder top resist))などに用いることもできる。
 また。オフセット版面またはスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特にマイクロエレクトロニクスにおける保護ラッカーおよび誘電層の製造などに用いることもできる。
<硬化膜の形成方法>
 次に、本発明の硬化膜の形成方法について説明する。
 硬化膜の形成方法は、熱硬化性樹脂組成物を基板に適用する工程と、基板に適用された熱硬化性樹脂組成物を硬化する工程とを有する。
<<熱硬化性樹脂組成物を基板に適用する工程>>
 熱硬化性樹脂組成物の基板への適用方法としては、スピニング、浸漬、ドクターブレード塗布、懸濁キャスティング(suspended casting)、塗布、噴霧、静電噴霧、リバースロール塗布などが挙げられ、静電噴霧およびリバースロール塗布が基板上に均一に適用できるという理由から好ましい。例えば積層による層の移動による銅被膜プリント回路基板のように、感光性層を一時的な、柔軟性のある担体上に導入し、次いで最終的な基板を塗布することも可能である。
 基板としては、無機基板、樹脂、樹脂複合材料などが挙げられる。
 無機基板としては、例えばガラス基板、石英基板、シリコン基板、シリコンナイトライド基板、および、それらのような基板上にモリブデン、チタン、アルミニウム、銅などを蒸着した複合基板が挙げられる。
 樹脂基板としては、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミドーオレフィン、セルロース、エピスルフィド化合物等の合成樹脂からなる基板が挙げられる。これらの基板は、上記の形態のまま用いられる場合は少なく、通常、最終製品の形態によって、例えばTFT素子のような多層積層構造が形成されている。
 熱硬化性樹脂組成物を適用する量(層の厚さ)および基板の種類(層の担体)は、望まれる用途の分野に依存する。熱硬化性樹脂組成物が広範囲に変化可能な層の厚さで使用できることが特に有利である。層の厚さの範囲は、0.5~100μmが好ましい。
 熱硬化性樹脂組成物を基板へ適用した後、乾燥することが好ましい。乾燥は、例えば、60~150℃で、10秒~2分行うことが好ましい。
<<加熱する工程>>
 基板に適用した熱硬化性樹脂組成物を加熱することにより、熱硬化性樹脂の環化反応が進み、耐熱性に優れた硬化膜を形成できる。
 加熱温度は、50~300℃が好ましく、100~200℃がより好ましく、100~180℃が特に好ましい。
 本発明によれば、熱塩基発生剤から発生した塩基(アミン種)が、熱硬化性樹脂の環化反応の触媒として働き、熱硬化性樹脂の環化反応を促進できるため、熱硬化性樹脂の環化反応をより低温で行うこともできる。このため、200℃以下の低温処理でも、耐熱性に優れた硬化膜を形成することもできる。
 加熱速度、加熱時間、および冷却速度から選ばれる少なくとも1種を調整することが、硬化膜の内部応力低減や反り抑制の観点から好ましい。
 加熱速度としては、20~150℃を加熱開始温度として、3~5℃/分であることが好ましい。
 加熱温度が200~240℃である場合は、加熱時間は、180分以上が好ましい。上限は例えば、240分以下が好ましい。加熱温度が240~300℃である場合は、加熱時間は、90分以上が好ましい。上限は例えば、180分以下が好ましい。加熱温度が300~380である場合は、加熱時間は、60分以上が好ましい。上限は例えば、120分以下が好ましい。
 冷却速度は、1~5℃/分であることが好ましい。
 加熱は段階的に行ってもよい。例として、20℃から150℃まで5℃/分で昇温し、150℃にて30分置き、150℃から230℃まで5℃/分で昇温し、230℃にて180分置く、といった工程が挙げられる。
 加熱工程は、窒素、ヘリウム、アルゴンなどの不活性ガスを流す等により、低酸素濃度の雰囲気で行うことがポリイミドなどの熱硬化性樹脂の分解を防ぐ点で好ましい。酸素濃度は、50ppm以下が好ましく、20ppm以下が好ましい。
 本発明では、上記熱硬化性樹脂組成物を基板に適用する工程と、上記加熱する工程との間に、パターン形成工程を行ってもよい。パターン形成工程は、例えば、フォトリソグラフィ法により行うことができる。例えば、露光する工程と現像処理を行う工程を経て行う方法が挙げられる。
 フォトリソグラフィ法によるパターン形成は、例えば、本発明の熱塩基発生剤と、上述した熱硬化性樹脂と、光重合開始剤とを含む熱硬化性樹脂組成物を用いて行うことができる。この場合、重合性化合物をさらに含むことが好ましい。また、熱硬化性樹脂はエチレン性不飽和結合を有することが好ましい。
 以下、フォトリソグラフィ法によりパターン形成する場合について説明する。
<<露光する工程>>
 露光する工程では、基板に適用された熱硬化性樹脂組成物に対して、所定のパターンの活性光線または放射線を照射する。
 活性光線または放射線の波長は、熱硬化性樹脂組成物の組成により異なるが、200~600nmが好ましく、300~450nmがより好ましい。
 光源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、LED光源、エキシマレーザー発生装置などを用いることができ、i線(365nm)、h線(405nm)、g線(436nm)などの波長300nm以上450nm以下の波長を有する活性光線が好ましく使用できる。また、必要に応じて長波長カットフィルター、短波長カットフィルター、バンドパスフィルターのような分光フィルタを通して照射光を調整することもできる。露光量は好ましくは1~500mJ/cm2である。
 露光装置としては、ミラープロジェクションアライナー、ステッパー、スキャナー、プロキシミティ、コンタクト、マイクロレンズアレイ、レンズスキャナ、レーザー露光、など各種方式の露光機を用いることができる。
 なお、(メタ)アクリレートおよび類似のオレフィン不飽和化合物の光重合は、公知のとおり、特に薄層中では空気中の酸素により防止される。この効果は、例えばポリビニルアルコールの一時的な被膜層導入や、不活性ガス中での前露光または前調整などの公知の従来法により緩和できる。
<<現像処理を行う工程>>
 現像処理を行う工程では、熱硬化性樹脂組成物の未露光の部分を、現像液を用いて現像する。現像液としては、水性アルカリ性現像液、有機溶剤などを用いることができる。
 水性アルカリ性現像液に使用するアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、メタケイ酸カリウム、アンモニアまたはアミンなどが挙げられる。アミンとしては、例えば、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、アルカノールアミン、ジメチルエタノールアミン、トリエタノールアミン、四級アンモニウム水酸化物、水酸化テトラメチルアンモニウム(TMAH)または水酸化テトラエチルアンモニウムなどが挙げられる。なかでも金属を含まないアルカリ化合物が好ましい。好適な水性アルカリ性現像液は、一般的にアルカリに関して0.5規定までであるが、使用前に適当に希釈してもよい。例えば、約0.15~0.4規定、好ましくは0.20~0.35規定の水性アルカリ性現像液も適切である。アルカリ化合物は1種類のみでもよいし、2種類以上であってもよい。アルカリ化合物が2種類以上の場合は、その合計が上記範囲であることが好ましい。
 有機溶剤としては、上述した熱硬化性樹脂組成物に用いることができる溶剤と同様のものを用いることができる。例えば、酢酸-n-ブチル、γ-ブチロラクトン、シクロペンタノン、およびこれらの混合したものが好適に挙げられる。
 本発明の硬化膜の形成方法が適用可能な分野には、半導体デバイスの絶縁膜、再配線用層間絶縁膜などに好ましく用いることができる。特に、解像性が良好であるため、3次元実装デバイスにおける再配線用層間絶縁膜などに好ましく用いることができる。
 また、エレクトロニクス用のフォトレジスト(ガルバニック(電解)レジスト(galvanic resist)、エッチングレジスト、ソルダートップレジスト(solder top resist))などに用いることもできる。
 また。オフセット版面またはスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特にマイクロエレクトロニクスにおける保護ラッカーおよび誘電層の製造などに用いることもできる。
<半導体デバイス>
 次に、熱硬化性樹脂組成物を再配線用層間絶縁膜に用いた半導体デバイスの一実施形態について説明する。
 図1に示す半導体デバイス100は、いわゆる3次元実装デバイスであり、複数の半導体素子(半導体チップ)101a~101dが積層した積層体101が、配線基板120に配置されている。
 なお、この実施形態では、半導体素子(半導体チップ)の積層数が4層である場合を中心に説明するが、半導体素子(半導体チップ)の積層数は特に限定されるものではなく、例えば、2層、8層、16層、32層等であってもよい。また、1層であってもよい。
 複数の半導体素子101a~101dは、いずれもシリコン基板等の半導体ウエハからなる。
 最上段の半導体素子101aは、貫通電極を有さず、その一方の面に電極パッド(図示せず)が形成されている。
 半導体素子101b~101dは、貫通電極102b~102dを有し、各半導体素子の両面には、貫通電極に一体に設けられた接続パッド(図示せず)が設けられている。
 積層体101は、貫通電極を有さない半導体素子101aと、貫通電極102b~102dを有する半導体素子101b~101dとをフリップチップ接続した構造を有している。
 すなわち、貫通電極を有さない半導体素子101aの電極パッドと、これに隣接する貫通電極102bを有する半導体素子101bの半導体素子101a側の接続パッドが、半田バンプ等の金属バンプ103aで接続され、貫通電極102bを有する半導体素子101bの他側の接続パッドが、それに隣接する貫通電極102cを有する半導体素子101cの半導体素子101b側の接続パッドと、半田バンプ等の金属バンプ103bで接続されている。同様に、貫通電極102cを有する半導体素子101cの他側の接続パッドが、それに隣接する貫通電極102dを有する半導体素子101dの半導体素子101c側の接続パッドと、半田バンプ等の金属バンプ103cで接続されている。
 各半導体素子101a~101dの間隙には、アンダーフィル層110が形成されており、各半導体素子101a~101dは、アンダーフィル層110を介して積層している。
 積層体101は、配線基板120に積層されている。
 配線基板120としては、例えば樹脂基板、セラミックス基板、ガラス基板等の絶縁基板を基材として用いた多層配線基板が使用される。樹脂基板を適用した配線基板120としては、多層銅張積層板(多層プリント配線板)等が挙げられる。
 配線基板120の一方の面には、表面電極120aが設けられている。
 配線基板120と積層体101との間には、再配線層105が形成された絶縁層115が配置されており、配線基板120と積層体101とは、再配線層105を介して電気的に接続されている。絶縁層115は、本発明の熱硬化性樹脂組成物を用いて形成してなるものである。
 すなわち、再配線層105の一端は、半田バンプ等の金属バンプ103dを介して、半導体素子101dの再配線層105側の面に形成された電極パッドに接続されている。また、再配線層105の他端は、配線基板の表面電極120aと、半田バンプ等の金属バンプ103eを介して接続している。
 そして、絶縁層115と積層体101との間には、アンダーフィル層110aが形成されている。また、絶縁層115と配線基板120との間には、アンダーフィル層110bが形成されている。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。NMRは、核磁気共鳴の略称である。
(熱塩基発生剤A-1~A-9、A-17の合成)
 水5mlを50mlナスフラスコに入れ、5℃以下で5分攪拌した。水酸化ナトリウムを23ミリモル加え、クロロ酢酸23ミリモルを滴下した。対応するアリールアミン、またはアリルアミン10ミリモルを滴下し、4.6ミリモルのヨウ化カリウムを加えた。90℃に昇温し、5時間攪拌した。室温まで放冷した後、析出した固体をろ過した。得られた固体を水2ml中でリスラリーし、風乾して目的物を得た。
(熱塩基発生剤A-10、A-11の合成)
 水5mlとアニリン10ミリモルとグルタコン酸またはマレイン酸10ミリモルを50mlナスフラスコに入れ5分間攪拌した。水酸化ナトリウムを23ミリモル加え、100℃で24時間加熱し続けた。室温まで放冷した後、析出した固体をろ過した。得られた固体を水2ml中でリスラリーし、風乾して目的物を得た。
(熱塩基発生剤A-18の合成)
 ナスフラスコに、フェナシルブロマイド10gと、50mLのアセトニトリルを加えて溶解し、11gのジメチルドデシルアミンを滴下した。得られた白色沈殿を取り出し、メタノール10gに溶解させた。この溶液を10N水酸化カリウム水溶液100gに滴下し、フェナシルアンモニウムヒドロキシドの白色沈殿を得た。この沈殿をメタノールに溶解し、1当量のマレイン酸を加え、メタノールを留去することで、目的物を得た。
(熱塩基発生剤A-19~A-26の合成)
 フェナシルブロマイド、ジメチルドデシルアミン、マレイン酸を、それぞれ対応するブロマイド、アミン、カルボン酸に変更した以外はA-18と同様の処方にて合成した。
(熱塩基発生剤A-38~A-42の合成)
 フェナシルブロマイド、ジメチルドデシルアミン、マレイン酸を、それぞれ対応するブロマイド、アミン、カルボン酸に変更した以外はA-18と同様の処方にて合成した。
 以下に熱塩基発生剤A-1、3、4、11、17~24、A-38~41の同定データとしてプロトンNMR(400MHz、溶媒はDMSO-d6)のケミカルシフト値(単位はppm)を示す。
 A-1:4.4 (4H, s), 7.0-7.5(5H, m), 13 (2H, br)
 A-3:3.8 (3H, s), 4.3 (4H, s), 6.7(2H, d), 6.8(2H, d), 13 (2H, br)
 A-4:2.4(3H, s), 4.3 (4H, s), 7.0(2H, d), 7.8(2H, d), 13 (2H, br)
 A-11:2.6-2.9 (2H, m), 4.0 (1H, m), 5.0 (1H, br), 6.5-7.3 (5H, m)
 A-17:3.0 (2H, m), 3.5 (4H, m), 5.2 (1H, dd), 5.3 (1H, d), 5.7 (1H, m), 13 (2H, br)
 A-18:0.9 (3H, t), 1.1-1.4 (18H, m), 1.7 (2H, m), 3.2 (6H, s), 3.6 (2H, s), 5.2 (2H, s), 6.1 (2H, s), 7.6 (2H, m), 7.8 (1H, m), 8.0 (2H, m)
 A-19:0.9 (3H, t), 1.1-1.4 (18H, m), 1.7 (2H, m), 3.2 (6H, s), 3.6 (2H, s), 3.9 (4H, s), 5.2 (2H, s), 6.4 (2H, d), 6.6 (1H, dd), 7.1 (2H, dd), 7.6 (2H, m), 7.8 (1H, m), 8.0 (2H, m)
 A-20:0.9 (3H, t), 1.1-1.4 (18H, m), 1.7 (2H, m), 3.2 (6H, s), 3.6 (2H, s), 3.9 (4H, s), 5.2 (2H, s), 7.6 (2H, m), 7.8 (1H, m), 8.0 (2H, m)8.0 (2H, m), 8.1 (2H, m)
 A-21:0.9 (3H, t), 1.1-1.4 (18H, m), 1.7 (2H, m), 3.2 (6H, s), 3.6 (2H, s), 3.9 (4H, s), 5.2 (2H, s), 7.6 (2H, m), 7.8 (1H, m), 8.0 (2H, m)
 A-22:0.9 (3H, t), 1.1-1.4 (18H, m), 1.7 (2H, m), 2.3 (4H, s), 3.2 (6H, s), 3.6 (2H, s), 3.9 (4H, s), 5.2 (2H, s), 7.6 (2H, m), 7.8 (1H, m), 8.0 (2H, m)
 A-23:0.9 (3H, t), 1.1-1.4 (18H, m), 1.7 (2H, m), 3.2 (6H, s), 3.6 (2H, s), 5.2 (2H, s), 6.1 (2H, s), 7.7 (2H, m), 7.8-8.2 (4H, m), 8.7 (1H, s)
 A-24:0.9 (3H, t), 1.1-1.4 (18H, m), 1.7 (2H, m), 3.2 (6H, s), 3.6 (2H, s), 3.9 (4H, s), 5.2 (2H, s), 6.4 (2H, d), 6.6 (1H, dd), 7.1 (2H, dd), 7.7 (2H, m), 7.8-8.2 (4H, m), 8.7 (1H, s)
 A-38:0.9 (3H, t), 1.1-1.4 (8H, m), 1.7 (2H, m), 3.3 (6H, s), 3.6 (2H, s), 5.2 (2H, s), 6.1 (2H, s), 7.6 (2H, m), 7.8 (1H, m), 8.0 (2H, m)
 A-39:0.9 (3H, t), 1.1-1.4 (10H, m), 1.7 (2H, m), 3.3 (6H, s), 3.6 (2H, s), 5.2 (2H, s), 6.1 (2H, s), 7.6 (2H, m), 7.8 (1H, m), 8.0 (2H, m)
 A-40:0.9 (1H, m), 1.0 (2H, m), 1.3 (1H+2H, m), 1.6 (2H, m), 3.0 (6H, s), 3.6 (1H, m), 5.0 (2H, s), 5.8 (2H, s), 7.4 (2H, m), 7.5 (1H, m), 7.8 (2H, m)
 A-41:3.3 (6H, s), 4.8 (2H, s), 5.2 (2H, s), 6.1 (2H, s), 7.5 (5H, m), 7.56 (2H, m), 7.8 (1H, m), 8.0 (2H, m)
(合成例1)[ピロメリト酸二無水物、4,4’-オキシジアニリンおよび3-ヒドロキシベンジルアルコールからのポリイミド前駆体樹脂(B-1;エチレン性不飽和結合を有さないポリイミド前駆体樹脂)の合成]
 14.06g(64.5ミリモル)のピロメリト酸二無水物(140℃で12時間乾燥)と、16.33g(131.58ミリモル)の3-ヒドロキシベンジルアルコールとを、50mlのN-メチルピロリドンに懸濁させ、モレキュラーシーブで乾燥させた。懸濁液を100℃で3時間加熱した。加熱してから数分後に透明な溶液が得られた。反応混合物を室温に冷却し、21.43g(270.9ミリモル)のピリジンおよび90mlのN-メチルピロリドンを加えた。次いで、反応混合物を-10℃に冷却し、温度を-10±4℃に保ちながら16.12g(135.5ミリモル)のSOCl2を10分かけて加えた。SOCl2を加えている間、粘度が増加した。50mlのN-メチルピロリドンで希釈した後、反応混合物を室温で2時間撹拌した。次いで、100mlのN-メチルピロリドンに11.08g(58.7ミリモル)の4,4’-オキシジアニリンを溶解させた溶液を、20~23℃で20分かけて反応混合物に滴下した。次いで、反応混合物を室温で1晩撹拌した。次いで、5リットルの水の中でポリイミド前駆体樹脂を沈殿させ、水-ポリイミド前駆体樹脂混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体樹脂を濾過して除き、4リットルの水の中で再度30分間撹拌し再び濾過した。次いで、得られたポリイミド前駆体樹脂を減圧下で、45℃で3日間乾燥した。
(合成例2)[ピロメリト酸二無水物、4,4’-オキシジアニリンおよびベンジルアルコールからのポリイミド前駆体樹脂(B-2;エチレン性不飽和結合を有さないポリイミド前駆体樹脂)の合成]
 14.06g(64.5ミリモル)のピロメリト酸二無水物(140℃で12時間乾燥)と、14.22g(131.58ミリモル)のベンジルアルコールを、50mlのN-メチルピロリドンに懸濁させ、モレキュラーシーブで乾燥させた。懸濁液を100℃で3時間加熱した。加熱してから数分後に透明な溶液が得られた。反応混合物を室温に冷却し、21.43g(270.9ミリモル)のピリジンおよび90mlのN-メチルピロリドンを加えた。次いで、反応混合物を-10℃に冷却し、温度を-10±4℃に保ちながら16.12g(135.5ミリモル)のSOCl2を10分かけて加えた。SOCl2を加えている間、粘度が増加した。50mlのN-メチルピロリドンで希釈した後、反応混合物を室温で2時間撹拌した。次いで、100mlのN-メチルピロリドンに11.08g(58.7ミリモル)の4,4’-オキシジアニリンを溶解させた溶液を、20~23℃で20分かけて反応混合物に滴下した。次いで、反応混合物を室温で1晩撹拌した。次いで、5リットルの水の中でポリイミド前駆体樹脂を沈殿させ、水-ポリイミド前駆体樹脂混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体樹脂を濾過して除き、4リットルの水の中で再度30分間撹拌し再び濾過した。次いで、得られたポリイミド前駆体樹脂を減圧下で、45℃で3日間乾燥した。
(合成例3)[ピロメリト酸二無水物、4,4’-オキシジアニリンおよび2-ヒドロキシエチルメタクリレートとからのポリイミド前駆体樹脂(B-3;エチレン性不飽和結合を有するポリイミド前駆体樹脂)の合成]
 14.06g(64.5ミリモル)のピロメリト酸二無水物(140℃で12時間乾燥した)と、18.6g(129ミリモル)の2-ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライムと混合し、60℃の温度で18時間撹拌して、ピロメリト酸と2-ヒドロキシエチルメタクリレートのジエステルを製造した。次いで、得られたジエステルをSOCl2により塩素化した後、合成例1と同様の方法で4,4’-オキシジアニリンでポリイミド前駆体樹脂に変換し、合成例1と同様の方法でポリイミド前駆体樹脂を得た。
(合成例4)[ピロメリト酸二無水物、4,4’-オキシジアニリン、3-ヒドロキシベンジルアルコールおよび2-ヒドロキシエチルメタクリレートからのポリイミド前駆体樹脂(B-4;エチレン性不飽和結合を有するポリイミド前駆体樹脂)の合成]
 14.06g(64.5ミリモル)のピロメリト酸二無水物(140℃で12時間乾燥した)と、18.6g(129ミリモル)の2-ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライムとを混合し、60℃の温度で18時間撹拌してピロメリト酸と2-ヒドロキシエチルメタクリレートのジエステルを製造した。
 また、14.06g(64.5ミリモル)のピロメリト酸二無水物(140℃で12時間乾燥)と、16.33g(131.58ミリモル)の3-ヒドロキシベンジルアルコールとを、50mlのN-メチルピロリドンに懸濁させ、モレキュラーシーブで乾燥したのち、懸濁液を100℃で3時間加熱して、ピロメリト酸と3-ヒドロキシベンジルアルコールのジエステルを製造した。
 ピロメリト酸と2-ヒドロキシエチルメタクリレートのジエステルと、ピロメリト酸と3-ヒドロキシベンジルアルコールのジエステルとの等モル混合物をSOCl2により塩素化した後、合成例1と同様の方法で4,4’-オキシジアニリンでポリイミド前駆体樹脂に変換し、合成例1と同様の方法でポリイミド前駆体樹脂を得た。
(合成例5)[ピロメリト酸二無水物、4,4’-オキシジアニリン、ベンジルアルコールおよび2-ヒドロキシエチルメタクリレートからのポリイミド前駆体樹脂(B-5;エチレン性不飽和結合を有するポリイミド前駆体樹脂)の合成]
 14.06g(64.5ミリモル)のピロメリト酸二無水物(140℃で12時間乾燥した)と、18.6g(129ミリモル)の2-ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライムとを混合し、60℃の温度で18時間撹拌して、ピロメリト酸と2-ヒドロキシエチルメタクリレートのジエステルを製造した。
 また、14.06g(64.5ミリモル)のピロメリト酸二無水物(140℃で12時間乾燥)と、14.22g(131.58ミリモル)のベンジルアルコールを、50mlのN-メチルピロリドンに懸濁させ、モレキュラーシーブで乾燥した後、懸濁液を100℃で3時間加熱して、ピロメリト酸とベンジルアルコールのジエステルを製造した。
 ピロメリト酸と2-ヒドロキシエチルメタクリレートのジエステルと、ピロメリト酸とベンジルアルコールのジエステルとの等モル混合物をSOCl2により塩素化した後、合成例1と同様の方法で4,4’-オキシジアニリンでポリイミド前駆体樹脂に変換し、合成例1と同様の方法でポリイミド前駆体樹脂を得た。
(合成例6)[オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4’-ジアミノジフェニルエーテルからのポリイミド前駆体樹脂(B-6;エチレン性不飽和結合を有するポリイミド前駆体樹脂)の合成]
 攪拌機、コンデンサーおよび内部温度計を取りつけた平底ジョイントを備えた乾燥反応器中で水分を除去しながら、オキシジフタル酸二無水物20g(64.5ミリモル)をジグリム140ml中に懸濁させた。2-ヒドロキシエチルメタクリレート16.8g(129ミリモル)、ヒドロキノン0.05gおよびピリジン10.7g(135ミリモル)を続いて添加し、60℃の温度で18時間攪拌した。
 次いで、混合物を-20℃まで冷却した後、塩化チオニル16.1g(135.5ミリモル)を90分かけて滴下した。ピリジニウムヒドロクロリドの白色沈澱が得られた。
 次いで、混合物を室温まで温め、2時間攪拌した後、ピリジン9.7g(123ミリモル)およびN-メチルピロリドン(NMP)25mlを添加し、透明溶液を得た。
 次いで、得られた透明液体に、4,4’-ジアミノジフェニルエーテル11.8g(58.7ミリモル)をNMP100ml中に溶解させ、反応溶液に1時間かけて滴下により添加した。4,4’-ジアミノジフェニルエーテルを添加している間、粘度が増加した。
 次いで、混合物を2時間攪拌した。
 次いで、4リットルの水の中でポリイミド前駆体樹脂を沈殿させ、水-ポリイミド前駆体樹脂混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体樹脂を濾過して除き、4リットルの水の中で再度30分間撹拌し再び濾過した。次いで、得られたポリイミド前駆体樹脂を減圧下で、45℃で3日間乾燥した。
 このポリイミド前駆体樹脂は、重量平均分子量25500、数平均分子量3800であった。
<塩基発生温度>
 示差走査熱量測定(Q2000 TA社製)を用い(A)熱塩基発生剤を耐圧カプセル中5℃/分で250℃まで加熱し、最も温度が低い発熱ピークのピーク温度を読み取り、かかるピーク温度を塩基発生温度として測定した。
<試験例1>
[実施例1~48、比較例1~5]
 下記記載の成分を混合し、熱硬化性樹脂組成物の塗布液を調製した。
<熱硬化性樹脂組成物の組成>
(A)熱塩基発生剤:下記表に記載の質量%
(B)ポリイミド前駆体樹脂:下記表に記載の質量%
(C)重合性化合物:下記表に記載の質量%
(D)熱重合開始剤:下記表に記載の質量%
(E)光重合開始剤:下記表に記載の質量%
(その他の成分)
溶剤:γ-ブチロラクトン:60質量%
[実施例49]
 実施例43の熱硬化性樹脂組成物に、1H-テトラゾールを、熱硬化性樹脂組成物の固形分に対して0.2質量%添加して塗布液を調製した。
[実施例50]
 実施例43の熱硬化性樹脂組成物に、1H-テトラゾールを、熱硬化性樹脂組成物の固形分に対して0.2質量%添加して塗布液を調製した。
[実施例51]
 実施例49の熱硬化性樹脂組成物において、溶剤を、γ-ブチロラクトン60質量%から、γ-ブチロラクトン48質量%とジメチルスルホキシド12質量%とに変更した以外は、実施例49と同様にして塗布液を調製した。
[実施例52]
 実施例50の熱硬化性樹脂組成物において、溶剤を、γ-ブチロラクトン60質量%から、γ-ブチロラクトン48質量%とジメチルスルホキシド12質量%とに変更した以外は、実施例49と同様にして塗布液を調製した。
 各熱硬化性樹脂組成物を、細孔の幅が0.8μmのフィルタを通して加圧濾過した後、シリコンウエハ上にスピニング(3500rpm、30秒)して適用した。熱硬化性樹脂組成物を適用したシリコンウエハをホットプレート上で、100℃で5分間乾燥し、シリコンウエハ上に厚さ10μmの均一な樹脂層を形成した。
<評価>
[硬化性]
 熱硬化性樹脂組成物を、細孔の幅が0.8μmのフィルタを通して加圧濾過した後、シリコンウエハ上にスピニング(1200rpm、30秒)して適用した。熱硬化性樹脂組成物を適用したシリコンウエハをホットプレート上で、100℃で5分間乾燥し、シリコンウエハ上に厚さ10μmの均一な膜を形成した。
 シリコンウエハから上記膜を掻きとり、窒素中、200℃に維持した状態での熱質量分析測定を行い、環化時間を評価した。ポリイミド前駆体樹脂は環化反応の進行にともない、質量減少が起こるので、質量減少が発生しなくなるまでの時間を以下の基準で評価した。時間が短ければ短いほど環化速度が速くなっていることを表し、好ましい結果となる。
A:10分を超えて30分以下
B:30分を超えて60分以下
C:60分を超えて120分以下
D:120分を超えて200分以下。
E:200分を超えた。もしくは環化しなかった。
[安定性]
 熱硬化性樹脂組成物を調製した後、熱硬化性樹脂組成物が10g入った容器を密閉し、25℃、湿度65%の環境下に静置した。熱硬化性樹脂組成物の環化が進行し、固体が析出するまでの時間で安定性を評価した。時間が長ければ長いほど、組成物の安定性が高く、好ましい結果となる。固体の析出は、孔径0.8μmのメッシュで濾過し、メッシュ状の異物の有無を目視で観察した。
A:30日を超えても固体の析出が見られなかった
B:20日を超えて、30日以内に固体が析出した
C:10日を超えて、20日以内に固体が析出した
D:5日を超えて、10日以内に固体が析出した
E:5日以内に固体が析出した
[解像性]
 熱硬化性樹脂組成物を、細孔の幅が0.8μmのフィルタを通して加圧濾過した後、シリコンウエハ上にスピニング(1200rpm、30秒)して適用した。熱硬化性樹脂組成物を適用したシリコンウエハをホットプレート上で、100℃で5分間乾燥し、シリコンウエハ上に厚さ10μmの均一な膜を形成した。
 シリコンウエハ上に塗布された膜を、アライナー(Karl-Suss MA150)を用いて露光した。露光は高圧水銀ランプで行い、波長365nmでの露光エネルギー換算で500mJ/cm2照射した。
 露光の後、シクロペンタノンで75秒間画像を現像した。良好なエッジの鋭さを持つことができた線幅を以下の基準で評価した。線幅が小さければ小さいほど光照射部と光非照射部との現像液に対する溶解性の差が大きくなっていることを表し、好ましい結果となる。
A:5μmを超えて15μm以下
B:15μmを超えた、もしくは像が現れなかった
[密着性]
 熱硬化性樹脂組成物を、細孔の幅が0.8μmのフィルタを通して加圧濾過した後、厚さ1μmの銅蒸着層を有するシリコンウエハ上にスピニング(1200rpm、30秒)して適用した。熱硬化性樹脂組成物を適用したウエハをホットプレート上で、100℃で5分間乾燥し、ウエハ上に厚さ10μmの均一な膜を形成した。
 ウエハ上に塗布された膜を、アライナー(Karl-Suss MA150)を用いて画像部が100μm×100μmの正方形となるようにマスクを用いて露光した。露光は高圧水銀ランプで行い、波長365nmでの露光エネルギー換算で500mJ/cm2照射した。
 露光の後、シクロペンタノンで75秒間画像を現像した。得られたパターンのせん断接着力をシェアテスター(XYZTec製)により評価した。せん断接着力が大きいほど、ポリイミド硬化膜の銅表面への密着性が高いことを意味し、好ましい結果となる。1kgf=9.81Nである。
A:40gf以上
B:2gf以上40gf未満
C:2gf未満
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 上記結果より、実施例の熱硬化性樹脂組成物は、硬化性および安定性に優れていることがわかった。更には、解像性に優れていた。なお、光重合開始剤としてE-1をDAROCUR-1173或いはIRGACURE-907(いずれもBASF製)に代えても良好な結果を得た。
 これに対し、比較例の熱硬化性樹脂組成物は、硬化性および安定性の少なくとも一方が、実施例の熱硬化性樹脂組成物よりも劣るものであった。また、比較例1~3は、解像性に劣るものであった。
 表6、7に記載した略称は以下の通りである。
(A)熱塩基発生剤
・熱塩基発生剤A-1~A-11、A-17~A-26、A-38~A-42:構造は上述の熱塩基発生剤の具体例で示した構造であり、いずれも合成品である。
Figure JPOXMLDOC01-appb-T000047
・X-1~X-9:下記構造(式中Meはメチル基を表す)。
Figure JPOXMLDOC01-appb-T000048
(B)ポリイミド前駆体樹脂
 B-1~B-6:合成例1~5で合成したポリイミド前駆体樹脂B-1~B-6
(C)重合性化合物
 C-1:NKエステル M-40G (新中村化学工業(株)製 単官能メタクリレート 下記構造)
Figure JPOXMLDOC01-appb-C000049
 C-2:NKエステル 4G (新中村化学工業(株)製 2官能メタリレート 下記構造)
Figure JPOXMLDOC01-appb-C000050
(C-3) NKエステル A-9300 (新中村化学工業(株)製 3官能アクリレート 下記構造)
Figure JPOXMLDOC01-appb-C000051
(D)熱重合開始剤
D-1:パーブチルZ(日油(株)製、tert-ブチルパーオキシベンゾエート、分解温度(10時間半減期温度=104℃))
(E)光重合開始剤
E-1:IRGACURE OXE-01(BASF製)
Figure JPOXMLDOC01-appb-C000052
E-2:特表2014-500852号公報の0345段落に記載されている化合物24
E-3:特表2014-500852号公報の0345段落に記載されている化合物36
E-4:特表2014-500852号公報の0345段落に記載されている化合物37
E-5:特表2014-500852号公報の0345段落に記載されている化合物40
Figure JPOXMLDOC01-appb-C000053
化合物C: Aldrich製、90316
 実施例53~56で用いた化合物Cは以下の通りである。
Figure JPOXMLDOC01-appb-C000054
<実施例100>
 実施例1の熱硬化性樹脂組成物を、細孔の幅が0.8μmのフィルタを通して加圧濾過した後、銅薄層が形成された樹脂基板にスピニング(3500rpm、30秒)して適用した。樹脂基板に適用した熱硬化性樹脂組成物を、100℃で5分間乾燥した。
 次いで、180℃で20分加熱した。このようにして、再配線用層間絶縁膜を形成した。
 この再配線用層間絶縁膜は、絶縁性に優れていた。
 また、この再配線用層間絶縁膜を使用して半導体デバイスを製造したところ、問題なく動作することを確認した。
 なお、ポリイミド前駆体樹脂をポリアミドイミド前駆体樹脂、ポリベンゾオキサゾール前駆体に変更しても、同様の効果が得られた。
100:半導体デバイス
101a~101d:半導体素子
101:積層体
102b~10d:貫通電極
103a~103e:金属バンプ
105:再配線層
110、110a、110b:アンダーフィル層
115:絶縁層
120:配線基板
120a:表面電極

Claims (38)

  1.  40℃以上に加熱すると塩基を発生する酸性化合物、および、pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩から選ばれる少なくとも一種を含む熱塩基発生剤。
  2.  前記酸性化合物が、120~200℃に加熱すると塩基を発生する化合物である請求項1に記載の熱塩基発生剤。
  3.  前記酸性化合物が、アンモニウム塩である請求項1または2に記載の熱塩基発生剤。
  4.  前記酸性化合物が、アンモニウムカチオンとカルボン酸アニオンとの塩である、請求項1~3のいずれか1項に記載の熱塩基発生剤。
  5.  前記pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩が、酸性化合物である、請求項1に記載の熱塩基発生剤。
  6.  前記アンモニウム塩が有するアニオンが、カルボン酸アニオンである、請求項1または5に記載の熱塩基発生剤。
  7.  前記カルボン酸アニオンが、下式(X1)で表される、請求項4または6に記載の熱塩基発生剤;
    Figure JPOXMLDOC01-appb-C000001
     一般式(X1)において、EWGは、電子吸引性基を表す。
  8.  前記一般式(X1)において、EWGは、下記一般式(EWG-1)~(EWG-6)で表される基から選択される、請求項7に記載の熱塩基発生剤;
    Figure JPOXMLDOC01-appb-C000002
     式中、Rx1~Rx3は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基、ヒドロキシル基またはカルボキシル基を表し、Arは芳香族環基を表す。
  9.  前記カルボン酸アニオンが、2個以上のカルボキシル基を持つ2価以上のカルボン酸のアニオンである、請求項4、6~8のいずれか1項に記載の熱塩基発生剤。
  10.  前記カルボン酸アニオンが、2価のカルボン酸のアニオンである、請求項4、6~9のいずれか1項に記載の熱塩基発生剤。
  11.  前記カルボン酸アニオンは、pKa1が4以下のカルボン酸のアニオンである、請求項4、6~10のいずれか1項に記載の熱塩基発生剤。
  12.  前記カルボン酸アニオンが、下記一般式(X)で表される、請求項4、6~11のいずれか1項に記載の熱塩基発生剤;
    Figure JPOXMLDOC01-appb-C000003
     一般式(X)において、L10は、単結合、または、アルキレン基、アルケニレン基、アリーレン基、-NRX-およびこれらの組み合わせから選ばれる2価の連結基を表し、
     RXは、水素原子、アルキル基、アルケニル基またはアリール基を表す。
  13.  前記カルボン酸アニオンが、マレイン酸アニオン、フタル酸アニオン、N-フェニルイミノ二酢酸アニオンおよびシュウ酸アニオンから選ばれる1種である、請求項4、6~12のいずれか1項に記載の熱塩基発生剤。
  14.  前記アンモニウムカチオンが、下式(Y1-1)~(Y1-6)のいずれかで表される、請求項1、4~13のいずれか1項に記載の熱塩基発生剤;
    Figure JPOXMLDOC01-appb-C000004
     上記一般式において、R101は、n価の有機基を表し、
     R102~R111は、それぞれ独立に水素原子、または、炭化水素基を表し、
     R150およびR151は、それぞれ独立に炭化水素基を表し、
     R104とR105、R104とR150、R107とR108、および、R109とR110は、互いに結合して環を形成していてもよく、
     Ar101およびAr102は、それぞれ独立に、アリール基を表し、
     nは、1以上の整数を表し、
     mは、0~5の整数を表す。
  15.  前記アンモニウムカチオンが、前記式(Y1-1)または(Y1-2)で表される、請求項14に記載の熱塩基発生剤。
  16.  前記アンモニウムカチオンが、前記式(Y1-1)または(Y1-2)で表され、R101が芳香族環基である、請求項14または15に記載の熱塩基発生剤。
  17.  前記酸性化合物が、下記一般式(1)で表される化合物である請求項1または2に記載の熱塩基発生剤;
    Figure JPOXMLDOC01-appb-C000005
     一般式(1)において、A1はp価の有機基を表し、R1は1価の有機基を表し、L1は(m+1)価の有機基を表し、mは1以上の整数を表し、pは1以上の整数を表す。
  18.  一般式(1)のA1は、芳香族環基である請求項17に記載の熱塩基発生剤。
  19.  一般式(1)のA1は、ベンゼン環である請求項17または18に記載の熱塩基発生剤。
  20.  一般式(1)のR1は、下式(A)で表される基である請求項17~19のいずれか1項に記載の熱塩基発生剤;
     -L2-(COOH)n   ・・・(A)
     式(A)中、L2は(n+1)価の連結基を表し、nは1以上の整数を表す。
  21.  一般式(1)において、A1が芳香族環基であり、R1が式(A)で表される基であり、m、nおよびpが1である、請求項20に記載の熱塩基発生剤。
  22.  前記酸性化合物が、N-アリールイミノ二酢酸である請求項17~21のいずれか1項に記載の熱塩基発生剤。
  23.  請求項3~16のいずれか1項に記載の熱塩基発生剤と、熱硬化性樹脂とを含む熱硬化性樹脂組成物。
  24.  前記熱硬化性樹脂が、塩基によって環化して硬化する熱硬化性樹脂である請求項23に記載の熱硬化性樹脂組成物。
  25.  前記熱硬化性樹脂が、ポリイミド前駆体樹脂、ポリアミドイミド前駆体樹脂およびポリベンゾオキサゾール前駆体樹脂から選ばれる少なくとも1種である請求項23または24に記載の熱硬化性樹脂組成物。
  26.  前記熱硬化性樹脂が、エチレン性不飽和結合を有する請求項23~25のいずれか1項に記載の熱硬化性樹脂組成物。
  27.  前記熱硬化性樹脂が、下記一般式(2)または一般式(3)で表される繰り返し単位を含有する請求項23~26のいずれか1項に記載の熱硬化性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000006
     一般式(2)中、A1およびA2は、それぞれ独立に酸素原子または-NH-を表し、R111は、2価の有機基を表し、R112は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、
     一般式(3)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
  28.  一般式(2)におけるR113およびR114の少なくとも一方、または、一般式(3)におけるR123およびR124の少なくとも一方が、エチレン性不飽和結合を有する請求項27に記載の熱硬化性樹脂組成物。
  29.  さらに、重合性化合物として、エチレン性不飽和結合を有する化合物を含有する請求項23~28のいずれか1項に記載の熱硬化性樹脂組成物。
  30.  前記重合性化合物が、エチレン性不飽和結合を2個以上含有する化合物である請求項29に記載の熱硬化性樹脂組成物。
  31.  前記重合性化合物が、下記式で表される部分構造を有する請求項29または30に記載の熱硬化性樹脂組成物;ただし、式中の*は連結手である。
    Figure JPOXMLDOC01-appb-C000007
  32.  さらに、熱重合開始剤を含有する請求項23~31のいずれか1項に記載の熱硬化性樹脂組成物。
  33.  熱重合開始剤が、過酸化物である請求項32に記載の熱硬化性樹脂組成物。
  34.  さらに、光重合開始剤を含有する請求項23~33のいずれか1項に記載の熱硬化性樹脂組成物。
  35.  請求項23~34のいずれか1項に記載の熱硬化性樹脂組成物を硬化してなる硬化膜。
  36.  再配線用層間絶縁膜である、請求項35に記載の硬化膜。
  37.  請求項23~34のいずれか1項に記載の熱硬化性樹脂組成物を基板に適用する工程と、基板に適用された熱硬化性樹脂組成物を硬化する工程とを有する硬化膜の製造方法。
  38.  請求項35に記載の硬化膜、または、請求項37に記載の方法で製造された硬化膜を有する半導体デバイス。
PCT/JP2015/068507 2014-06-27 2015-06-26 熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス WO2015199219A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15812604.5A EP3162868B1 (en) 2014-06-27 2015-06-26 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device
KR1020167036317A KR101859954B1 (ko) 2014-06-27 2015-06-26 열염기 발생제, 열경화성 수지 조성물, 경화막, 경화막의 제조 방법 및 반도체 디바이스
JP2016529675A JP6255096B2 (ja) 2014-06-27 2015-06-26 熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
CN201580034703.9A CN106471089B (zh) 2014-06-27 2015-06-26 热碱产生剂、热硬化性树脂组合物及其用途
US15/389,729 US20170101521A1 (en) 2014-06-27 2016-12-23 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014132156 2014-06-27
JP2014-132156 2014-06-27
JP2014203868 2014-10-02
JP2014-203868 2014-10-02
JP2015034388 2015-02-24
JP2015-034388 2015-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/389,729 Continuation US20170101521A1 (en) 2014-06-27 2016-12-23 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2015199219A1 true WO2015199219A1 (ja) 2015-12-30

Family

ID=54938296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068507 WO2015199219A1 (ja) 2014-06-27 2015-06-26 熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス

Country Status (7)

Country Link
US (1) US20170101521A1 (ja)
EP (1) EP3162868B1 (ja)
JP (1) JP6255096B2 (ja)
KR (1) KR101859954B1 (ja)
CN (1) CN106471089B (ja)
TW (1) TWI671343B (ja)
WO (1) WO2015199219A1 (ja)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033833A1 (ja) * 2015-08-21 2017-03-02 旭化成株式会社 感光性樹脂組成物、ポリイミドの製造方法および半導体装置
WO2017038598A1 (ja) * 2015-08-28 2017-03-09 富士フイルム株式会社 硬化膜の製造方法、再配線層用層間絶縁膜の製造方法、および、半導体デバイスの製造方法
WO2017146152A1 (ja) * 2016-02-26 2017-08-31 富士フイルム株式会社 積層体、積層体の製造方法、半導体デバイス、および、半導体デバイスの製造方法
WO2018003726A1 (ja) * 2016-06-29 2018-01-04 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
WO2018003725A1 (ja) * 2016-06-29 2018-01-04 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
JP6271105B1 (ja) * 2016-03-31 2018-01-31 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
WO2018021262A1 (ja) * 2016-07-27 2018-02-01 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、その硬化物、層間絶縁膜、表面保護膜及び電子部品
WO2018025738A1 (ja) * 2016-08-01 2018-02-08 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
WO2018043250A1 (ja) * 2016-08-29 2018-03-08 東レ株式会社 感光性樹脂組成物、硬化膜、有機el表示装置、半導体電子部品、半導体装置
WO2018062408A1 (ja) 2016-09-30 2018-04-05 富士フイルム株式会社 積層体および半導体素子の製造方法
JP2018084626A (ja) * 2016-11-22 2018-05-31 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2018181893A1 (ja) * 2017-03-31 2018-10-04 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JPWO2017141723A1 (ja) * 2016-02-19 2018-11-22 富士フイルム株式会社 硬化性組成物、遮光膜、固体撮像装置、および、カラーフィルタ
JPWO2017203979A1 (ja) * 2016-05-27 2019-04-11 富士フイルム株式会社 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法
WO2019124477A1 (ja) * 2017-12-20 2019-06-27 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2019113582A (ja) * 2017-12-20 2019-07-11 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2019142786A1 (ja) * 2018-01-18 2019-07-25 旭化成株式会社 感光性樹脂積層体およびその製造方法
WO2019146778A1 (ja) * 2018-01-29 2019-08-01 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、半導体デバイス
WO2020054226A1 (ja) * 2018-09-10 2020-03-19 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2020065321A1 (en) 2018-09-28 2020-04-02 Datalase Ltd. Colour forming compositions
WO2020066416A1 (ja) 2018-09-28 2020-04-02 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP2020056957A (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2020116336A1 (ja) 2018-12-05 2020-06-11 富士フイルム株式会社 感光性樹脂組成物、パターン形成方法、硬化膜、積層体、及び、デバイス
WO2020189358A1 (ja) 2019-03-15 2020-09-24 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、ポリマー前駆体
KR20200124714A (ko) 2018-03-29 2020-11-03 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
WO2021002383A1 (ja) * 2019-07-01 2021-01-07 富士フイルム株式会社 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
KR20210049142A (ko) 2018-09-27 2021-05-04 후지필름 가부시키가이샤 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
WO2021100768A1 (ja) 2019-11-21 2021-05-27 富士フイルム株式会社 パターン形成方法、光硬化性樹脂組成物、積層体の製造方法、及び、電子デバイスの製造方法
JPWO2020066435A1 (ja) * 2018-09-28 2021-09-16 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、および熱塩基発生剤
KR20210116541A (ko) 2019-02-22 2021-09-27 후지필름 가부시키가이샤 경화성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 반도체 디바이스, 및 열염기 발생제
WO2022053890A1 (en) 2020-09-11 2022-03-17 3M Innovative Properties Company Investment casting compositions and methods
WO2022202647A1 (ja) 2021-03-22 2022-09-29 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2023032545A1 (ja) 2021-08-31 2023-03-09 富士フイルム株式会社 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液
US11848249B2 (en) 2019-09-26 2023-12-19 Fujifilm Corporation Manufacturing method for thermal conductive layer, manufacturing method for laminate, and manufacturing method for semiconductor device
JP7484527B2 (ja) 2020-07-22 2024-05-16 Hdマイクロシステムズ株式会社 感光性樹脂組成物、硬化物、パターン硬化物の製造方法、及び電子部品
JP7491116B2 (ja) 2020-07-22 2024-05-28 Hdマイクロシステムズ株式会社 感光性樹脂組成物、硬化物、パターン硬化物の製造方法、及び電子部品

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644979B (zh) * 2014-06-27 2018-12-21 日商富士軟片股份有限公司 熱硬化性樹脂組成物、硬化膜、硬化膜的製造方法及半導體元件
US10090194B2 (en) * 2016-03-18 2018-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
KR102373030B1 (ko) * 2016-03-28 2022-03-11 도레이 카부시키가이샤 감광성 수지 조성물
CN110692018B (zh) * 2017-05-31 2023-11-03 富士胶片株式会社 感光性树脂组合物、聚合物前体、固化膜、层叠体、固化膜的制造方法及半导体器件
TWI808143B (zh) * 2018-03-29 2023-07-11 日商富士軟片股份有限公司 感光性樹脂組成物、硬化膜、積層體及它們的製造方法、半導體器件及用於該等之熱鹼產生劑
CN112105672B (zh) * 2018-05-07 2023-04-14 学校法人东京理科大学 光反应性组合物、反应生成物及反应生成物的制造方法
KR20210048519A (ko) * 2018-09-27 2021-05-03 후지필름 가부시키가이샤 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
US11605538B2 (en) 2018-10-31 2023-03-14 Taiwan Semiconductor Manufacturing Co., Ltd. Protective composition and method of forming photoresist pattern
JP7329804B2 (ja) * 2019-04-24 2023-08-21 富士フイルム株式会社 組成物
TW202128841A (zh) * 2019-12-05 2021-08-01 日商富士軟片股份有限公司 硬化性樹脂組成物、硬化膜、積層體、硬化膜的製造方法、半導體器件及樹脂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189131A (en) * 1981-05-16 1982-11-20 Ricoh Co Ltd Heat developable type diazo copying material
JP2002265531A (ja) * 2001-03-13 2002-09-18 Kunihiro Ichimura 塩基増殖性不飽和化合物、塩基増殖性樹脂及び該樹脂を含む組成物
JP2007056196A (ja) * 2005-08-26 2007-03-08 Tokyo Institute Of Technology ポリイミド前駆体組成物、ポリイミド膜の製造方法及び半導体装置
WO2009136557A1 (ja) * 2008-05-09 2009-11-12 旭化成イーマテリアルズ株式会社 ポリイミド前駆体、感光性ポリイミド前駆体組成物、感光性ドライフィルム及びそれらを用いたフレキシブルプリント配線基板
JP2013139566A (ja) * 2011-12-29 2013-07-18 Eternal Chemical Co Ltd 塩基発生剤、塩基発生剤を含むポリイミド前駆体組成物、ならびにその製造方法およびその使用
JP2014001375A (ja) * 2012-05-25 2014-01-09 Sanyo Chem Ind Ltd 多糖類樹脂組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892944A (en) * 1987-05-13 1990-01-09 Mitsubishi Petrochemical Co., Ltd. Process for producing quaternary salts
JP3321548B2 (ja) * 1996-06-17 2002-09-03 株式会社日立製作所 感光性ポリイミド前駆体組成物、およびそれを用いたパターン形成方法
DE10237950A1 (de) * 2002-08-20 2004-03-11 Tesa Ag UV-initiiert thermisch vernetzte Acrylathaftklebemassen
DE10261805A1 (de) * 2002-12-19 2004-07-08 Ami Agrolinz Melamine International Gmbh Kunststoffdispersionen
JP4458778B2 (ja) * 2003-02-20 2010-04-28 富士フイルム株式会社 重合性組成物及びそれを用いた平版印刷版原版
JP5011649B2 (ja) 2005-03-31 2012-08-29 大日本印刷株式会社 感光性樹脂組成物及び物品
KR101012971B1 (ko) * 2005-10-03 2011-02-10 미쓰이 가가쿠 가부시키가이샤 플랫 패널 디스플레이용 실링재
JP5264082B2 (ja) 2006-08-11 2013-08-14 富士フイルム株式会社 レーザー彫刻用フレキソ印刷版原版
US20100216070A1 (en) * 2006-12-04 2010-08-26 Central Glass Co., Ltd. Photosensitive Polyimides and Methods of Making the Same
JP5066471B2 (ja) 2008-03-26 2012-11-07 富士フイルム株式会社 平版印刷版原版の製版方法
CN102245662B (zh) * 2008-12-12 2014-01-22 东亚合成株式会社 包含用马来酰亚胺基进行了表面修饰的无机氧化物微粒的固化型组合物
JP2011202139A (ja) * 2010-03-04 2011-10-13 Dainippon Printing Co Ltd 粘着剤組成物および粘着テープ
JP5912946B2 (ja) * 2012-01-11 2016-04-27 株式会社Adeka 感光性樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189131A (en) * 1981-05-16 1982-11-20 Ricoh Co Ltd Heat developable type diazo copying material
JP2002265531A (ja) * 2001-03-13 2002-09-18 Kunihiro Ichimura 塩基増殖性不飽和化合物、塩基増殖性樹脂及び該樹脂を含む組成物
JP2007056196A (ja) * 2005-08-26 2007-03-08 Tokyo Institute Of Technology ポリイミド前駆体組成物、ポリイミド膜の製造方法及び半導体装置
WO2009136557A1 (ja) * 2008-05-09 2009-11-12 旭化成イーマテリアルズ株式会社 ポリイミド前駆体、感光性ポリイミド前駆体組成物、感光性ドライフィルム及びそれらを用いたフレキシブルプリント配線基板
JP2013139566A (ja) * 2011-12-29 2013-07-18 Eternal Chemical Co Ltd 塩基発生剤、塩基発生剤を含むポリイミド前駆体組成物、ならびにその製造方法およびその使用
JP2014001375A (ja) * 2012-05-25 2014-01-09 Sanyo Chem Ind Ltd 多糖類樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3162868A4 *

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200010603A (ko) * 2015-08-21 2020-01-30 아사히 가세이 가부시키가이샤 감광성 수지 조성물, 폴리이미드의 제조 방법 및 반도체 장치
KR102229738B1 (ko) 2015-08-21 2021-03-18 아사히 가세이 가부시키가이샤 감광성 수지 조성물, 폴리이미드의 제조 방법 및 반도체 장치
JP2018082183A (ja) * 2015-08-21 2018-05-24 旭化成株式会社 感光性樹脂組成物、ポリイミドの製造方法および半導体装置
WO2017033833A1 (ja) * 2015-08-21 2017-03-02 旭化成株式会社 感光性樹脂組成物、ポリイミドの製造方法および半導体装置
JPWO2017033833A1 (ja) * 2015-08-21 2018-02-01 旭化成株式会社 感光性樹脂組成物、ポリイミドの製造方法および半導体装置
US10719016B2 (en) 2015-08-21 2020-07-21 Asahi Kasei Kabushiki Kaisha Photosensitive resin composition, polyimide production method, and semiconductor device
US11809079B2 (en) 2015-08-21 2023-11-07 Asahi Kasei Kabushiki Kaisha Photosensitive resin composition, polyimide production method, and semiconductor device
KR20180034523A (ko) * 2015-08-28 2018-04-04 후지필름 가부시키가이샤 경화막의 제조 방법, 재배선층용 층간 절연막의 제조 방법, 및 반도체 디바이스의 제조 방법
KR102028939B1 (ko) 2015-08-28 2019-10-07 후지필름 가부시키가이샤 경화막의 제조 방법, 재배선층용 층간 절연막의 제조 방법, 및 반도체 디바이스의 제조 방법
WO2017038598A1 (ja) * 2015-08-28 2017-03-09 富士フイルム株式会社 硬化膜の製造方法、再配線層用層間絶縁膜の製造方法、および、半導体デバイスの製造方法
JPWO2017038598A1 (ja) * 2015-08-28 2018-06-28 富士フイルム株式会社 硬化膜の製造方法、再配線層用層間絶縁膜の製造方法、および、半導体デバイスの製造方法
JPWO2017141723A1 (ja) * 2016-02-19 2018-11-22 富士フイルム株式会社 硬化性組成物、遮光膜、固体撮像装置、および、カラーフィルタ
WO2017146152A1 (ja) * 2016-02-26 2017-08-31 富士フイルム株式会社 積層体、積層体の製造方法、半導体デバイス、および、半導体デバイスの製造方法
US10780679B2 (en) 2016-02-26 2020-09-22 Fujifilm Corporation Laminate, method for manufacturing laminate, semiconductor device, and method for manufacturing the semiconductor device
KR20180030710A (ko) * 2016-02-26 2018-03-23 후지필름 가부시키가이샤 적층체, 적층체의 제조 방법, 반도체 디바이스, 및 반도체 디바이스의 제조 방법
JP6247432B1 (ja) * 2016-02-26 2017-12-13 富士フイルム株式会社 積層体、積層体の製造方法、半導体デバイス、および、半導体デバイスの製造方法
KR101966678B1 (ko) 2016-02-26 2019-04-09 후지필름 가부시키가이샤 적층체, 적층체의 제조 방법, 반도체 디바이스, 및 반도체 디바이스의 제조 방법
CN107850844B (zh) * 2016-03-31 2021-09-07 旭化成株式会社 感光性树脂组合物、固化浮雕图案的制造方法和半导体装置
US10831101B2 (en) 2016-03-31 2020-11-10 Asahi Kasei Kabushiki Kaisha Photosensitive resin composition, method for manufacturing cured relief pattern, and semiconductor apparatus
JP2018101138A (ja) * 2016-03-31 2018-06-28 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
CN107850844A (zh) * 2016-03-31 2018-03-27 旭化成株式会社 感光性树脂组合物、固化浮雕图案的制造方法和半导体装置
JP6271105B1 (ja) * 2016-03-31 2018-01-31 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JPWO2017203979A1 (ja) * 2016-05-27 2019-04-11 富士フイルム株式会社 硬化性組成物、硬化膜、カラーフィルタ、遮光膜、固体撮像素子、画像表示装置、及び硬化膜の製造方法
JPWO2018003726A1 (ja) * 2016-06-29 2019-04-04 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
KR102187513B1 (ko) * 2016-06-29 2020-12-07 후지필름 가부시키가이샤 네거티브형 감광성 수지 조성물, 경화막, 경화막의 제조 방법, 반도체 디바이스, 적층체의 제조 방법, 반도체 디바이스의 제조 방법 및 폴리이미드 전구체
JPWO2018003725A1 (ja) * 2016-06-29 2019-05-16 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
KR20190010614A (ko) * 2016-06-29 2019-01-30 후지필름 가부시키가이샤 네거티브형 감광성 수지 조성물, 경화막, 경화막의 제조 방법, 반도체 디바이스, 적층체의 제조 방법, 반도체 디바이스의 제조 방법 및 폴리이미드 전구체
WO2018003725A1 (ja) * 2016-06-29 2018-01-04 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
WO2018003726A1 (ja) * 2016-06-29 2018-01-04 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
WO2018021262A1 (ja) * 2016-07-27 2018-02-01 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、その硬化物、層間絶縁膜、表面保護膜及び電子部品
CN109478016A (zh) * 2016-07-27 2019-03-15 日立化成杜邦微系统股份有限公司 感光性树脂组合物、其固化物、层间绝缘膜、表面保护膜和电子部件
JPWO2018021262A1 (ja) * 2016-07-27 2019-06-13 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、その硬化物、層間絶縁膜、表面保護膜及び電子部品
US11021572B2 (en) 2016-07-27 2021-06-01 Hd Microsystems, Ltd. Photosensitive resin composition, cured product of same, interlayer insulating film, surface protective film and electronic component
JPWO2018025738A1 (ja) * 2016-08-01 2019-05-30 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
EP3492982A4 (en) * 2016-08-01 2019-08-14 FUJIFILM Corporation LIGHT-SENSITIVE RESIN COMPOSITION, CURED LAYER, LAMINATE, PROCESS FOR PREPARING A HARDENED LAYER, METHOD FOR PRODUCING A LAMINATE AND SEMICONDUCTOR COMPONENT
WO2018025738A1 (ja) * 2016-08-01 2018-02-08 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
JP2020101813A (ja) * 2016-08-01 2020-07-02 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
KR20190021423A (ko) * 2016-08-01 2019-03-05 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 적층체의 제조 방법 및 반도체 디바이스
KR102180287B1 (ko) * 2016-08-01 2020-11-19 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 적층체의 제조 방법 및 반도체 디바이스
WO2018043250A1 (ja) * 2016-08-29 2018-03-08 東レ株式会社 感光性樹脂組成物、硬化膜、有機el表示装置、半導体電子部品、半導体装置
WO2018062408A1 (ja) 2016-09-30 2018-04-05 富士フイルム株式会社 積層体および半導体素子の製造方法
JP2018084626A (ja) * 2016-11-22 2018-05-31 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7444215B2 (ja) 2017-03-31 2024-03-06 Hdマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
US11487201B2 (en) 2017-03-31 2022-11-01 Hd Microsystems, Ltd. Photosensitive resin composition, method of manufacturing pattern cured product, cured product, interlayer insulating film, cover-coat layer, surface protective film, and electronic component
JP7147749B2 (ja) 2017-03-31 2022-10-05 Hdマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JPWO2018181893A1 (ja) * 2017-03-31 2020-05-28 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2018181893A1 (ja) * 2017-03-31 2018-10-04 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2019124477A1 (ja) * 2017-12-20 2019-06-27 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2019113582A (ja) * 2017-12-20 2019-07-11 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7057794B2 (ja) 2018-01-18 2022-04-20 旭化成株式会社 感光性樹脂積層体およびその製造方法
JPWO2019142786A1 (ja) * 2018-01-18 2020-09-17 旭化成株式会社 感光性樹脂積層体およびその製造方法
KR20200086743A (ko) * 2018-01-18 2020-07-17 아사히 가세이 가부시키가이샤 감광성 수지 적층체 및 그 제조 방법
KR102505387B1 (ko) * 2018-01-18 2023-03-02 아사히 가세이 가부시키가이샤 감광성 수지 적층체 및 그 제조 방법
WO2019142786A1 (ja) * 2018-01-18 2019-07-25 旭化成株式会社 感光性樹脂積層体およびその製造方法
WO2019146778A1 (ja) * 2018-01-29 2019-08-01 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、半導体デバイス
JP7065120B2 (ja) 2018-01-29 2022-05-11 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、半導体デバイス
JPWO2019146778A1 (ja) * 2018-01-29 2021-03-18 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、半導体デバイス
KR20200124714A (ko) 2018-03-29 2020-11-03 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
KR102420765B1 (ko) 2018-09-10 2022-07-14 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
KR20210022654A (ko) 2018-09-10 2021-03-03 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
JPWO2020054226A1 (ja) * 2018-09-10 2021-09-16 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2020054226A1 (ja) * 2018-09-10 2020-03-19 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP7042353B2 (ja) 2018-09-10 2022-03-25 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
KR20210049142A (ko) 2018-09-27 2021-05-04 후지필름 가부시키가이샤 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
WO2020065317A1 (en) 2018-09-28 2020-04-02 Datalase Ltd. Colour forming compositions
WO2020065318A1 (en) 2018-09-28 2020-04-02 Datalase Ltd. Colour forming composition
WO2020065315A1 (en) 2018-09-28 2020-04-02 Datalase Ltd. Colour forming composition
WO2020066416A1 (ja) 2018-09-28 2020-04-02 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2020065320A1 (en) 2018-09-28 2020-04-02 Datalase Ltd. Colour forming components and compositions
JP7037664B2 (ja) 2018-09-28 2022-03-16 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、および熱塩基発生剤
JPWO2020066435A1 (ja) * 2018-09-28 2021-09-16 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、および熱塩基発生剤
WO2020065321A1 (en) 2018-09-28 2020-04-02 Datalase Ltd. Colour forming compositions
JP2020056957A (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7225652B2 (ja) 2018-10-03 2023-02-21 Hdマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2020116336A1 (ja) 2018-12-05 2020-06-11 富士フイルム株式会社 感光性樹脂組成物、パターン形成方法、硬化膜、積層体、及び、デバイス
KR20210116541A (ko) 2019-02-22 2021-09-27 후지필름 가부시키가이샤 경화성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 반도체 디바이스, 및 열염기 발생제
WO2020189358A1 (ja) 2019-03-15 2020-09-24 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、ポリマー前駆体
JPWO2021002383A1 (ja) * 2019-07-01 2021-01-07
WO2021002383A1 (ja) * 2019-07-01 2021-01-07 富士フイルム株式会社 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7422763B2 (ja) 2019-07-01 2024-01-26 富士フイルム株式会社 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
US11848249B2 (en) 2019-09-26 2023-12-19 Fujifilm Corporation Manufacturing method for thermal conductive layer, manufacturing method for laminate, and manufacturing method for semiconductor device
WO2021100768A1 (ja) 2019-11-21 2021-05-27 富士フイルム株式会社 パターン形成方法、光硬化性樹脂組成物、積層体の製造方法、及び、電子デバイスの製造方法
JP7491116B2 (ja) 2020-07-22 2024-05-28 Hdマイクロシステムズ株式会社 感光性樹脂組成物、硬化物、パターン硬化物の製造方法、及び電子部品
JP7484527B2 (ja) 2020-07-22 2024-05-16 Hdマイクロシステムズ株式会社 感光性樹脂組成物、硬化物、パターン硬化物の製造方法、及び電子部品
WO2022053890A1 (en) 2020-09-11 2022-03-17 3M Innovative Properties Company Investment casting compositions and methods
WO2022202647A1 (ja) 2021-03-22 2022-09-29 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2023032545A1 (ja) 2021-08-31 2023-03-09 富士フイルム株式会社 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液

Also Published As

Publication number Publication date
TW201602193A (zh) 2016-01-16
US20170101521A1 (en) 2017-04-13
KR101859954B1 (ko) 2018-05-21
EP3162868B1 (en) 2022-10-05
JPWO2015199219A1 (ja) 2017-06-01
JP6255096B2 (ja) 2017-12-27
EP3162868A4 (en) 2017-07-12
CN106471089A (zh) 2017-03-01
KR20170012416A (ko) 2017-02-02
TWI671343B (zh) 2019-09-11
CN106471089B (zh) 2018-10-19
EP3162868A1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
JP6255096B2 (ja) 熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
JP6167089B2 (ja) 感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
JP6681888B2 (ja) ポリイミド前駆体組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイスおよびポリイミド前駆体組成物の製造方法
JP6257870B2 (ja) 樹脂、組成物、硬化膜、硬化膜の製造方法および半導体デバイス
JP6606186B2 (ja) 組成物、硬化膜、硬化膜の製造方法、半導体デバイスの製造方法および半導体デバイス
JP6612343B2 (ja) 前駆体組成物、感光性樹脂組成物、前駆体組成物の製造方法、硬化膜、硬化膜の製造方法および半導体デバイス
JP6481032B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
JP6616844B2 (ja) 複素環含有ポリマー前駆体の製造方法、および複素環含有ポリマー前駆体、並びにその応用
JP6511146B2 (ja) 硬化膜の製造方法、再配線層用層間絶縁膜の製造方法、および、半導体デバイスの製造方法
WO2017146152A1 (ja) 積層体、積層体の製造方法、半導体デバイス、および、半導体デバイスの製造方法
WO2015199220A1 (ja) 熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
WO2017043474A1 (ja) 複素環含有ポリマー前駆体材料の製造方法、および、その応用
JP6901596B2 (ja) 積層体の製造方法および半導体デバイスの製造方法
JP6522756B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529675

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015812604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015812604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020167036317

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE