WO2014115560A1 - カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法 - Google Patents

カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法 Download PDF

Info

Publication number
WO2014115560A1
WO2014115560A1 PCT/JP2014/000366 JP2014000366W WO2014115560A1 WO 2014115560 A1 WO2014115560 A1 WO 2014115560A1 JP 2014000366 W JP2014000366 W JP 2014000366W WO 2014115560 A1 WO2014115560 A1 WO 2014115560A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
carbon nanotube
cellulose
less
mmol
Prior art date
Application number
PCT/JP2014/000366
Other languages
English (en)
French (fr)
Inventor
曽根 篤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US14/762,350 priority Critical patent/US20150368108A1/en
Priority to KR1020157020085A priority patent/KR20150110549A/ko
Priority to EP14743277.7A priority patent/EP2949624A4/en
Priority to JP2014558508A priority patent/JPWO2014115560A1/ja
Priority to CN201480005842.4A priority patent/CN104936895A/zh
Publication of WO2014115560A1 publication Critical patent/WO2014115560A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a carbon nanotube dispersion excellent in dispersibility and a method for producing the same, and a carbon nanotube composition and a method for producing the same.
  • CNT carbon nanotubes
  • a dispersant water-soluble saccharides having a short molecular chain such as carboxymethylcellulose and sucrose (Patent Document 1) and anionic surfactants such as sodium dodecyl sulfate (Patent Document 2) are used as CNT dispersants.
  • cellulose fibers obtained from plants and waste materials, which are biomass materials, and having a diameter of nanometer order (hereinafter sometimes referred to as “CNF”) are used as fibrous reinforcing materials. It has been studied to use it as an additive (Patent Documents 3 and 4).
  • JP 2008-230935 A International Publication No. 2005/082775 JP 2008-208231 A JP 2011-202010 A
  • An object of the present invention is to provide a carbon nanotube dispersion liquid that suppresses aggregation of carbon nanotubes and exhibits high dispersion stability, a method for producing the same, a carbon nanotube composition, and a method for producing the same.
  • a carbon nanotube dispersion containing carbon nanotubes, cellulose nanofibers, and a dispersion medium, and a method for producing the same, a carbon nanotube composition, and a method for producing the same are provided.
  • the cellulose nanofiber is a fine cellulose fiber having a maximum fiber diameter of 1000 nm or less and a number average fiber diameter of 2 nm or more and 150 nm or less, and the fine cellulose fiber is a part of a hydroxyl group. Is preferably substituted with at least one functional group selected from the group consisting of a carboxyl group and an aldehyde group, and has a cellulose I-type crystal structure.
  • the fine cellulose fibers preferably have a total amount of the carboxyl groups and aldehyde groups of 0.1 mmol / g or more and 2.2 mmol / g or less with respect to the mass of the fine cellulose fibers.
  • the fine cellulose fiber has a maximum fiber diameter of 500 nm or less and a number average fiber diameter of 2 nm or more and 100 nm or less.
  • the fine cellulose fiber has a maximum fiber diameter of 30 nm or less and a number average fiber diameter of 2 nm or more and 10 nm or less.
  • the amount of the carboxyl group is preferably 0.1 mmol / g or more and 2.2 mmol / g or less with respect to the mass of the fine cellulose fiber.
  • the carbon nanotubes preferably have a BET specific surface area of 600 m 2 / g or more.
  • the average diameter (Av) and the diameter distribution (3 ⁇ ) of the carbon nanotube satisfy a relational expression: 0.60> 3 ⁇ / Av> 0.20.
  • a method for producing a carbon nanotube dispersion liquid which comprises a step of dispersing carbon nanotubes and cellulose nanofibers in a dispersion medium by a dispersion treatment capable of obtaining a cavitation effect.
  • the dispersion treatment for obtaining the cavitation effect is at least one dispersion selected from the group consisting of dispersion treatment using ultrasonic waves, dispersion treatment using a jet mill, and dispersion treatment using high shear stirring. A treatment is preferred.
  • the present invention also provides a carbon nanotube composition obtained by blending a polymer with the carbon nanotube dispersion.
  • a method for producing a carbon nanotube composition comprising a mixing step of mixing a carbon nanotube dispersion obtained by the production method and a polymer latex.
  • the method for producing the carbon nanotube composition further includes a solidification step of precipitating a solid in the mixture obtained in the mixing step.
  • the carbon nanotube dispersion of the present invention contains carbon nanotubes, cellulose nanofibers, and a dispersion medium.
  • CNT Carbon nanotube
  • CNTs satisfying the relational expression: 0.60> 3 ⁇ / Av> 0.20 in terms of average diameter (Av) and diameter distribution (3 ⁇ ) are dispersed in a dispersion medium due to the influence of van der Waals force.
  • a conventional dispersant such as sodium dodecyl diphenyl oxide disulfonate
  • high dispersion stability can be obtained even with a small amount.
  • Particularly preferred CNTs in the carbon nanotube dispersion of the present invention are those in which the average diameter (Av) and the diameter distribution (3 ⁇ ) satisfy the relational expression: 0.60> 3 ⁇ / Av> 0.20.
  • the average diameter (Av) and the diameter distribution (3 ⁇ ) here are the average value and the standard deviation ( ⁇ ) when measuring the diameter (outer diameter) of 100 CNTs randomly selected with a transmission electron microscope, respectively. Multiplied by 3.
  • the standard deviation in this specification is a sample standard deviation.
  • the ratio of the diameter distribution to the average diameter (3 ⁇ / Av) is more preferably 0.60> 3 ⁇ / Av> 0.25, and 0.60> 3 ⁇ / Av> 0.50. Is more preferable.
  • the CNT diameter distribution means that the larger this value, the wider.
  • the diameter distribution is preferably a normal distribution.
  • the value of the diameter distribution can be increased by combining a plurality of types of CNTs obtained by different manufacturing methods, it is difficult to obtain a normal distribution in that case. That is, in the present invention, it is preferable to use a single CNT or a combination of a single CNT and another CNT in an amount that does not affect the diameter distribution.
  • SGCNT is a CNT having a peak of Radial Breathing Mode (RBM) in Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-layer CNTs of three or more layers.
  • RBM Radial Breathing Mode
  • particularly preferred CNTs in the present invention have a BET specific surface area of 600 m 2 / g or more. Specifically, if the CNTs are mainly unopened, it is 600 m 2 / g or more, and if the CNTs are mainly opened, it is 1300 m 2 / g or more. It is preferable because of its excellent effect. In addition, as an upper limit of a BET specific surface area, it is about 2500 m ⁇ 2 > / g normally.
  • the CNT may have a functional group such as a carboxyl group introduced on the surface.
  • the functional group can be introduced by a known oxidation treatment method using hydrogen peroxide, nitric acid or the like. According to the CNT in which a functional group such as a carboxyl group is introduced on the surface, the dispersibility is improved, and the amount of CNF added and / or the dispersion time can be reduced.
  • the CNT may be a single layer or a multilayer, but from the viewpoint of improving the conductivity of the rubber composition produced using the CNT, it is a single layer to a five-layer one. Are preferred, and those with a single layer are more preferred.
  • CNF Cellulose nanofiber
  • the CNF used in the carbon nanotube dispersion of the present invention is a fine cellulose fiber obtained by defibrating natural cellulose derived from plants to nanometer size (for example, JP-A No. JP 2005-270891 A, JP 2008-150719 A, JP 2010-104768 A, etc.).
  • CNF is usually insoluble in water because of its long molecular chain and high crystallinity in bundles of several tens.
  • CNF functions as a CNT dispersant for the dispersion medium.
  • CNF “insoluble” in water means that insoluble content is 99.5% by mass or more when 0.5 g of CNF is dissolved in 100 g of water at 25 ° C.
  • the CNF used in the carbon nanotube dispersion of the present invention preferably has an aspect ratio of 10 or more and 1000 or less. Furthermore, the CNF used in the carbon nanotube dispersion of the present invention usually has a maximum fiber diameter of 1000 nm or less and a number average fiber diameter of 2 nm to 150 nm, preferably a maximum fiber diameter of 500 nm or less and a number average fiber diameter. Is a fine cellulose fiber having a maximum fiber diameter of 30 nm or less and a number average fiber diameter of 2 nm or more and 10 nm or less.
  • the “maximum fiber diameter” in the present specification refers to the maximum diameter of fiber diameters measured according to the following method for a plurality of existing fibers.
  • the maximum fiber diameter and the number average fiber diameter are analyzed as follows.
  • An aqueous dispersion of fine cellulose fibers having a solid content of 0.05% by mass or more and 0.1% by mass or less is prepared, and the dispersion is cast on a carbon film-coated grid that has been subjected to a hydrophilic treatment for TEM observation. Make a sample and observe.
  • a sample and observation conditions are set such that 20 or more fibers intersect the axis.
  • two random axes are drawn vertically and horizontally per image, and the fiber diameter of the fiber intersecting with the axis is visually read.
  • the maximum fiber diameter and the number average fiber diameter are calculated from the fiber diameter data thus obtained.
  • the maximum fiber diameter of CNF is larger than 1000 nm and the number average fiber diameter is larger than 150 nm, the dispersibility of CNT, the transparency of the coating film obtained using the carbon nanotube dispersion of the present invention, Since the barrier property is lowered, it is not preferable.
  • CNFs are commercially available, for example, as Selish (registered trademark) manufactured by Daicel Finechem, Binfis (registered trademark) manufactured by Sugino Machine.
  • the CNF used in the present invention is not particularly limited, but is excellent in the dispersibility of CNTs. Therefore, for example, the TEMPO oxidation described in JP-A-2008-001728, which is incorporated herein by reference.
  • CNF having an arbitrary substituent obtained by performing the defibrating step in the presence of an oxidation catalyst, such as cellulose nanofiber, is preferred.
  • CNF having such a substituent can be obtained as a dispersion, for example, by subjecting natural cellulose to an oxidation step, a purification step, and a dispersion step described in detail below. Such a dispersion may be used after drying.
  • natural cellulose means purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels. More specifically, softwood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as straw pulp and bagasse pulp, BC, cellulose isolated from sea squirt, and seaweed
  • the cellulose can be exemplified, but is not limited thereto.
  • Natural cellulose is preferably subjected to a treatment for increasing the surface area such as beating, whereby the reaction efficiency can be increased and the productivity can be increased.
  • the dispersion medium of natural cellulose in the reaction is water, and the concentration of natural cellulose in the reaction aqueous solution is arbitrary as long as the reagent can sufficiently diffuse, but usually about 5% with respect to the weight of the reaction aqueous solution. It is as follows.
  • N-oxyl compounds that can be used as an oxidation catalyst for cellulose have been reported (I. Shibata in “Cellulose” Vol. 10, 2003, pages 335 to 341, incorporated herein by reference.
  • A. Isogai see article entitled “Catalyzed Oxidation of Cellulose with TEMPO Derivatives: HPSEC and NMR Analysis of Oxidation Products”), in particular TEMPO, 4-acetamido-TEMPO, 4-carboxy-TEMPO, and 4- Phosphonooxy-TEMPO is preferable in terms of the reaction rate at room temperature in water.
  • a catalytic amount is sufficient for the addition of these N-oxyl compounds, preferably 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.
  • TEMPO is an abbreviation for 2,2,6,6-tetramethylpiperidine-1-oxyl.
  • hypohalous acid or a salt thereof hypohalous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, and the like
  • Hypohalites such as sodium hypochlorite and sodium hypobromite.
  • sodium hypochlorite it is preferable in terms of the reaction rate to advance the reaction in the presence of an alkali metal bromide such as sodium bromide.
  • the addition amount of the alkali metal bromide is about 1 to 40 times mol, preferably about 10 to 20 times mol for the N-oxyl compound.
  • the pH of the aqueous reaction solution is preferably maintained in the range of about 8-11.
  • the temperature of the aqueous solution is arbitrary at about 4 to 40 degrees, but the reaction can be performed at room temperature, and the temperature is not particularly required to be controlled.
  • the amount of carboxyl groups necessary for obtaining fine cellulose fibers to be preferably used in the carbon nanotube dispersion of the present invention varies depending on the natural cellulose species, and the larger the amount of carboxyl groups, the larger the maximum fiber diameter and number after the refinement treatment. The average fiber diameter becomes smaller. Therefore, it is preferable to obtain the target amount of carboxyl groups by controlling the degree of oxidation by the addition amount of the co-oxidant and the reaction time and optimizing the oxidation conditions according to the natural cellulose species.
  • the amount of the co-oxidant added is preferably selected in the range of about 0.5 mmol to 15 mmol with respect to 1 g of natural cellulose, and the reaction is completed within about 5 minutes to 120 minutes and at most 240 minutes.
  • the aqueous dispersion of the reactant fibers thus obtained is in the range of about 10% by mass to 50% by mass as the solid content (cellulose) concentration in the squeezed state.
  • the solid content concentration is higher than 50% by mass, it is not preferable because extremely high energy is required for the dispersion.
  • reaction fiber (water dispersion) impregnated with water obtained in the above-described purification step is dispersed in a solvent and subjected to a dispersion treatment, thereby providing a dispersion of CNF used in the present invention.
  • the solvent as the dispersion medium is usually preferably water, but in addition to water, alcohols that are soluble in water depending on the purpose (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl) Cellosolve, ethyl cellosolve, ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone), N, N-dimethylformamide, N, N-dimethylacetamide Dimethyl sulfoxide or the like may be used.
  • alcohols that are soluble in water depending on the purpose methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl
  • Cellosolve ethyl cellosolve
  • the dispersion when diluting and dispersing the dispersion of the above-described reactant fibers with a solvent, the dispersion is gradually added by adding a solvent little by little. You may be able to get Due to operational problems, the dispersion conditions may be selected so that the state after the dispersion step is a viscous dispersion or gel.
  • the disperser used in the dispersion step is not particularly limited, and various known dispersers can be used.
  • homomixer high pressure homogenizer, ultra high pressure homogenizer, ultrasonic dispersion treatment, beater, disc type refiner, conical type refiner, double disc type refiner, bead mill, jet mill, ultra high pressure ceramic balls or raw materials
  • a wet atomizer such as Starburst manufactured by Sugino Machine Co., Ltd.
  • a more powerful and defeating device such as a grinder. This is because the cellulose fiber in the state of the reactant fiber can be downsized efficiently and highly.
  • the fine cellulose fiber dispersion thus obtained can be used in the carbon nanotube dispersion of the present invention.
  • the drying step for example, when the solvent of the fine cellulose fiber dispersion obtained in the above dispersion step is water, a freeze-drying method, the solvent of the fine cellulose fiber dispersion is a mixed solution of water and an organic solvent. In this case, drying with a drum dryer or, in some cases, spray drying with a spray dryer can be preferably used.
  • water-soluble polymers polyethylene oxide, polyvinyl alcohol, polyacrylamide, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, starch, natural gums, etc.
  • saccharides as binders in the fine cellulose fiber dispersion described above
  • a general-purpose drying method such as a drum dryer or a spray dryer can be used. Fine cellulose fibers that can be dispersed as nanofibers in the solvent can be obtained again.
  • the amount of the binder added to the fine cellulose fiber dispersion is desirably in the range of 10% by mass to 80% by mass with respect to the reactant fiber.
  • Cellulose fibers formed by agglomeration of fine cellulose fibers in the drying step are mixed again into a solvent (water, an organic solvent or a mixed solution thereof), and an appropriate dispersion force (for example, various dispersions usable in the above-described dispersion step).
  • the dispersion of fine cellulose fibers can be made by adding dispersion using a machine.
  • CNF suitably used for the carbon nanotube dispersion liquid of the present invention is preferably oxidized by substituting some of the hydroxyl groups of cellulose with carboxyl groups or aldehyde groups, and has a cellulose I-type crystal structure.
  • CNF is a fiber obtained by subjecting a naturally-derived cellulose solid raw material having a type I crystal structure to surface oxidation and refinement. That is, in the process of biosynthesis of natural cellulose, nanofibers called microfibrils are first formed almost without exception, and it is used in principle to build a higher-order solid structure by bunching them. In order to weaken the hydrogen bond between the surfaces, which is the driving force of strong cohesive force between microfibrils, a part thereof is oxidized and converted into an aldehyde group or a carboxyl group.
  • CNF has the I-type crystal structure
  • the introduction of an aldehyde group or a carboxyl group into the cellulose of CNF indicates that the absorption due to the carbonyl group (around 1608 cm ⁇ 1 , in the total reflection infrared spectroscopic spectrum (ATR) in the sample from which moisture has been completely removed, Specifically, it can be confirmed by the presence of 1550 cm ⁇ 1 to 1800 cm ⁇ 1 ).
  • absorption exists at 1730 cm ⁇ 1 in the above measurement.
  • the CNF suitably used for the carbon nanotube dispersion of the present invention can be stably present as a finer fiber diameter when the total amount of carboxyl groups and aldehyde groups present in the cellulose fiber is larger for the reasons described above.
  • the dispersibility of CNTs can be further improved.
  • CNF preferably has a total of carboxyl groups and aldehyde groups of 0.1 mmol / g or more and 2.2 mmol / g or less with respect to the mass of the cellulose fiber.
  • the carboxyl group and aldehyde present in the fine cellulose fiber of the present invention is 0.2 mmol / g or more and 2.2 mmol / g or less, preferably 0.5 mmol / g or more and 2.2 mmol / g or less, more preferably 0.8 mmol / g or more with respect to the mass of the cellulose fiber.
  • it is 2.2 mmol / g or less, the stability as a nanofiber is excellent.
  • the total When the amount is 0.1 mmol / g or more and 0.8 mmol / g or less, preferably 0.2 mmol / g or more and 0.8 mmol / g or less, the stability as a nanofiber is excellent.
  • the difference in physical properties for example, the dispersion stabilizing effect in the dispersion
  • the fibers Since they may form a bundle to increase the fiber diameter, it is not preferable.
  • the amount of carboxyl groups is preferably 0.1 mmol / g or more and 2.2 mmol / g or less with respect to the mass of the cellulose fiber. More specifically, for example, in the case of wood pulp or cotton pulp (in the case of cellulose fibers having a number average fiber diameter of less than 10 nm), the amount of carboxyl groups present in the fine cellulose fibers of the present invention is based on the mass of the cellulose fibers.
  • the amount of carboxyl groups is 0.1 mmol / When it is g or more and 0.8 mmol / g or less, preferably 0.2 mmol / g or more and 0.8 mmol / g or less, the stability as a nanofiber is excellent.
  • the amount (mmol / g) of aldehyde groups and carboxyl groups of cellulose relative to the mass of cellulose fibers is evaluated by the following method. 60 ml of a 0.5 to 1% by weight slurry was prepared from a cellulose sample that had been precisely weighed in dry weight, adjusted to a pH of about 2.5 with a 0.1 M aqueous hydrochloric acid solution, and then a 0.05 M aqueous sodium hydroxide solution was added dropwise. To measure the electrical conductivity. The measurement is continued until the pH is about 11. The amount of functional group 1 is determined from the amount of sodium hydroxide aqueous solution dripped (V) consumed in the neutralization step of the weak acid whose electrical conductivity changes slowly, using the following equation.
  • the functional group amount 1 indicates the amount of carboxyl groups.
  • Functional group amount 1 (mmol / g) V (ml) ⁇ 0.05 / mass of cellulose (g)
  • the cellulose sample is oxidized for another 48 hours at room temperature in a 2% aqueous sodium chlorite solution adjusted to pH 4-5 with acetic acid, and the functional group amount 2 is measured again by the above method.
  • CNF satisfying the above conditions is excellent in miscibility with other materials and exhibits not only a very high dispersion stability effect in hydrophilic media such as water, but also, for example, it can be dispersed in water or a hydrophilic organic solvent. High thixotropy is exhibited, and depending on the conditions, it becomes a gel, so it is also effective as a gelling agent. Furthermore, the CNF can improve the dispersibility of CNTs by adding a small amount. The CNF can disperse CNTs in a short time.
  • the dispersion in water or a hydrophilic organic solvent is transparent. It may become.
  • the CNF is formed into a material having high strength, excellent heat resistance, and extremely low thermal expansion by forming a film by a papermaking method or a casting method.
  • the fine cellulose fiber dispersion of the present invention used as a stock solution for film formation is transparent, the resulting film is also transparent. The film functions effectively as a coating layer for the purpose of imparting hydrophilicity.
  • the CNF when the CNF is compounded with another material such as a resin material, it is excellent in dispersibility in the other material, so that a composite having excellent transparency can be provided in a suitable case.
  • the CNF also functions as a reinforcing filler.
  • the fibers form a high network in the composite, the CNF exhibits significantly higher strength than the resin used alone. A significant decrease in the coefficient of thermal expansion can also be induced.
  • a remarkable reinforcing effect is obtained by forming a network by combining CNT and CNF.
  • CNF does not need to be positively removed after conjugation because there is no possibility of causing bleed-out unlike a low molecular weight dispersant generally used.
  • the CNF also has the amphiphilic properties of cellulose, it functions as, for example, an emulsifier or a dispersion stabilizer.
  • the presence of a carboxyl group in the fiber increases the absolute value of the surface potential, so the isoelectric point (the concentration at which aggregation begins to occur when the ion concentration increases) is expected to shift to the lower pH side. .
  • the carboxyl group forms a counter ion with the metal ion, it is also effective as a metal ion scavenger or the like.
  • the compounding quantity of CNF is 0.1 times or more and 30 times or less normally with respect to the mass of CNT, Preferably they are 0.5 times or more and 25 times or less, More preferably, they are 1 time or more and 10 times or less. From the viewpoint of dispersion stability, when the blending amount of CNF exceeds 30 times, the dispersibility of CNF is lowered, and the density of CNT is lowered, so that the performance of CNT cannot be sufficiently obtained. On the other hand, if the blending amount of CNF is less than 0.1 times, the dispersibility of CNTs is insufficient.
  • concentration of CNT in a dispersion liquid is 0.001 mass% or more and 10 mass% or less, and it is preferable that the density
  • the dispersion medium used for the carbon nanotube dispersion liquid of the present invention can be arbitrarily selected according to the use, but since the effect of CNF is advantageously obtained, alcohols such as methanol and ethanol; ketones such as acetone and methyl ethyl ketone
  • the solvent is a polar solvent such as water; water is particularly preferable.
  • Additives include antioxidants, heat stabilizers, light stabilizers, UV absorbers, pigments, colorants, foaming agents, surfactants, antistatic agents, flame retardants, lubricants, softeners, tackifiers, plasticizers Agents, release agents, deodorants, fragrances and the like.
  • the dispersion of the present invention can be applied to a substrate such as a film and dried to form a film. Alternatively, the solvent can be directly removed from the dispersion or poured into a poor solvent to precipitate a solid content.
  • the carbon nanotube / cellulose fiber composite material can also be obtained by filtration and drying.
  • Method for producing carbon nanotube dispersion There is no particular limitation on the method for producing the carbon nanotube dispersion, and CNT and CNF may be added to the dispersion medium and dispersed according to a conventional method. There is no particular limitation on the order in which CNT and CNF are added to the dispersion medium, either of which may be added first or simultaneously. In addition, since CNF gelatinizes and becomes difficult to disperse when the pH is 2 or less, it is preferable to maintain the pH at more than 2 during the production of the dispersion.
  • Examples of the dispersion treatment include a method of directly stirring the dispersion using a stirrer, a dispersion method capable of obtaining a cavitation effect, and a dispersion method capable of obtaining this crushing effect.
  • the "dispersion method that can obtain a cavitation effect” is a dispersion using a shock wave generated when a high-energy energy is applied to a liquid and a pressure difference is generated in the liquid and a vacuum bubble generated in the liquid is ruptured. Is the method.
  • the dispersion method it is possible to disperse in the dispersion medium without impairing the properties of the CNT.
  • dispersion treatment capable of obtaining the cavitation effect examples include dispersion treatment using ultrasonic waves, dispersion treatment using a jet mill, and dispersion treatment using high shear stirring. More specifically, Starburst (registered trademark) manufactured by Sugino Machine Co., Ltd. can be used in the dispersion process that provides a cavitation effect. Only one method may be employed for the distributed processing, or a plurality of distributed processing methods may be combined.
  • the apparatus used for the dispersion treatment of the carbon nanotube dispersion may be a conventionally known apparatus.
  • the “dispersion method with which a crushing effect can be obtained” means that the aggregate of CNTs in the coarse dispersion is obtained by applying shear force to the coarse dispersion obtained by adding CNT and CNF to the dispersion medium.
  • the CNTs are uniformly dispersed in the dispersion liquid by applying back pressure to the dispersion liquid and cooling the dispersion liquid as desired, while suppressing the occurrence of cavitation.
  • the back pressure applied to the dispersion may be reduced to atmospheric pressure at a stretch, but it is preferable to reduce the pressure in multiple stages.
  • a dispersion system having a disperser having the following structure may be used.
  • the disperser has a disperser orifice having an inner diameter d1, a dispersion space having an inner diameter d2, and a terminal portion having an inner diameter d3 from the inflow side to the outflow side of the coarse dispersion liquid (where d2>d3> d1)).
  • an inflowing high-pressure (usually 10 to 400 MPa, preferably 50 to 250 MPa) coarse dispersion passes through the disperser orifice, thereby reducing the pressure and increasing the flow rate of the fluid. And flows into the dispersion space. Thereafter, the high-velocity coarse dispersion liquid flowing into the dispersion space flows at high speed in the dispersion space and receives a shearing force at that time. As a result, the flow rate of the coarse dispersion decreases, and the CNTs in the coarse dispersion are well dispersed. Then, a fluid having a pressure (back pressure) lower than the pressure of the inflowing coarse dispersion liquid flows out from the terminal portion as the dispersion liquid.
  • a pressure back pressure
  • the back pressure of the dispersion can be applied by applying a load to the flow of the dispersion.
  • a multistage step-down device described later can be provided on the downstream side of the disperser to provide a desired dispersion. Back pressure can be applied. By reducing the back pressure of the dispersion in multiple stages with this multistage pressure reducer, it is possible to suppress the generation of bubbles in the dispersion when the dispersion is finally released to atmospheric pressure.
  • the disperser may include a heat exchanger for cooling the dispersion and a coolant supply mechanism. This is because the generation of bubbles in the dispersion can be further suppressed by cooling the dispersion that has been heated to a high temperature by the shearing force applied by the distributor. In addition, it can suppress that a bubble generate
  • Carbon nanotube composition A polymer of a polymerizable monomer (sometimes simply referred to as “polymer”) may be blended in the dispersion liquid of the present invention obtained as described above according to the purpose to obtain a carbon nanotube composition. .
  • Polymer of polymerizable monomer There is no particular limitation on the polymer mixed with the dispersion liquid of the present invention, and it is appropriately selected from various polymer materials such as elastomers and resins that are desired to obtain the reinforcing effect by CNT and CNF and the conductivity imparting effect by CNT. Can be selected and adopted.
  • the polymer of the polymerizable monomer include water-soluble polymers such as polyethylene glycol and polyvinyl alcohol; natural rubber and various synthetic rubber elastomers; and resins (synthetic polymers).
  • the blending ratio of the polymer can be arbitrarily set according to the purpose, but since high conductivity is obtained by the synergistic effect of CNT and CNF, when the composite is used as a conductive material, On the other hand, the amount of CNT can be suppressed to a relatively small amount.
  • the reason why high conductivity is obtained by the synergistic effect of CNT and CNF is as follows. First, since the commonly used dispersant deteriorates the conductivity of CNT, the conductivity of the resulting polymer material tends to decrease as the blending amount increases. Thus, by producing a polymer material by blending CNF capable of improving the dispersibility of CNTs by adding a small amount, the conductivity of CNTs in the obtained polymer material can be kept high.
  • the polymer is preferably mixed with the carbon nanotube dispersion according to the present invention as a dispersion (latex) in which a polymer material (polymer) is dispersed in a solvent.
  • a dispersion in which a polymer material (polymer) is dispersed in a solvent.
  • a latex used in the carbon nanotube composition of the present invention a latex of a resin and an elastomer that are polymer materials can be suitably used.
  • resins examples include styrene resins, acrylic resins, methacrylic resins, organic acid vinyl ester resins, vinyl ether resins, halogen-containing resins, olefin resins, alicyclic olefin resins, polycarbonate resins, polyester resins, Polyamide resins, thermoplastic polyurethane resins, polysulfone resins (eg, polyethersulfone, polysulfone, etc.), polyphenylene ether resins (eg, polymers of 2,6-xylenol), cellulose derivatives (eg, cellulose esters, Cellulose carbamates, cellulose ethers, etc.), silicone resins (eg, polydimethylsiloxane, polymethylphenylsiloxane, etc.).
  • styrene resins acrylic resins, methacrylic resins, organic acid vinyl ester resins, vinyl ether resins, halogen-containing resins, olefin resins,
  • Examples of the alicyclic olefin-based resin include cyclic olefin random copolymers described in JP-A No. 05-310845 and US Pat. No. 5,179,171, JP-A No. 05-97978, and US Pat. No. 5,202,388.
  • Examples thereof include hydrogenated polymers described in the publication, thermoplastic dicyclopentadiene ring-opening polymers described in JP-A No. 11-124429 (EP 1026189), and hydrogenated products thereof. All of these documents are incorporated herein by reference.
  • acrylonitrile-butadiene rubber NBR
  • acrylonitrile-isoprene rubber acrylonitrile-butadiene-isoprene rubber
  • styrene-butadiene rubber SBR
  • butadiene rubber BR
  • isoprene rubber IR
  • natural rubber NR
  • EPDM Ethylene-propylene-diene rubber
  • IIR butyl rubber
  • rubbers having unsaturated double bonds such as partially hydrogenated products of these elastomers.
  • the partially hydrogenated product include hydrogenated NBR and hydrogenated SBR. These rubbers can be used alone or in combination of two or more.
  • a resin and elastomer solution dissolved in an organic solvent is emulsified in water in the presence of a surfactant, and the organic solvent is removed if necessary.
  • a method of directly obtaining a latex by emulsion polymerization or suspension polymerization of the monomers constituting the resin and the elastomer is emulsified in water in the presence of a surfactant, and the organic solvent is removed if necessary.
  • solubility parameter is defined as the square root of the cohesive energy density and is a parameter proposed by Hildebrand and Scott based on a regular solution in which the entropy change due to mixing is almost zero and the enthalpy change occurs. Solubility parameters are exemplified in the “Polymer Handbook” (3rd edition).
  • organic solvent having a solubility parameter of 10 (cal / cm 3 ) 1/2 or less examples include aliphatic solvents such as butane, pentane, hexane, heptane, octane, cyclopentane, cyclohexane, decane, and dodecane; Aromatic solvents such as propylbenzene and benzonitrile; butyl chloride, amyl chloride, allyl chloride, chlorotoluene; halogen solvents such as acetone, methyl ethyl ketone, diethyl ketone, diisopropyl ketone, methyl isobutyl ketone, methyl hexyl ketone, diisobutyl Ketone solvents such as ketone, butyraldehyde, propyl acetate, butyl acetate, amyl acetate; ester solvents such as ethyl propionate,
  • the latex used in the production method according to the present invention is more preferably an elastomer dispersion, and more preferably a nitrile rubber which is an elastomer having a nitrile structure or an aromatic ring structure.
  • a nitrile rubber which is an elastomer having a nitrile structure or an aromatic ring structure.
  • the above-mentioned elastomers having a nitrile structure such as acrylonitrile-butadiene rubber (NBR), acrylonitrile-isoprene rubber, acrylonitrile-butadiene-isoprene rubber are structural units derived from ⁇ , ⁇ -unsaturated nitriles and structural units derived from conjugated dienes. Or a hydride thereof.
  • the content of the nitrile structure of the elastomer is preferably 20% by mass or more, more preferably 25% by mass or more and 55% by mass or less, further preferably 25% by mass or more and 50% by mass or less, from the viewpoint of the physical properties of the composition. is there.
  • the content of the nitrile structure is the mass ratio of the structural unit derived from ⁇ , ⁇ -unsaturated nitrile to the whole rubber, and the content is measured according to the mill oven method of JIS K 6364. Is the median of the values to be quantified by converting the binding amount from the acrylonitrile molecular weight.
  • Preferred examples of the ⁇ , ⁇ -unsaturated nitrile include acrylonitrile and methacrylonitrile.
  • Preferred examples of the conjugated diene include conjugated dienes having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, and 2,3-methylbutadiene.
  • a copolymer of ⁇ , ⁇ -unsaturated nitrile and conjugated diene can be obtained by emulsion polymerization using an emulsifier such as alkylbenzene sulfonate.
  • the elastomer having a nitrile structure may have a structural unit composed of a monomer copolymerizable with an ⁇ , ⁇ -unsaturated nitrile and a conjugated diene.
  • copolymerizable monomers examples include aromatic vinyls such as styrene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic acid and fumaric acid; ⁇ , ⁇ such as diethyl maleate, monomethyl fumarate, and dibutyl itaconate. -Unsaturated carboxylic acid ester; These components can be used alone or in combination of two or more.
  • the elastomer having an aromatic ring structure is a polymer having a structural unit derived from aromatic vinyl and a structural unit derived from conjugated diene or a hydride thereof, and the aromatic vinyl structural unit content is, for example, 60% by mass or less. From the viewpoint of the physical properties of the composition, it is preferably 50% by mass or less, 10% by mass or more, more preferably 40% by mass or less, and 15% by mass or more.
  • Aromatic vinyls include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5 -T-butyl-2-methylstyrene, N, N-dimethylaminomethylstyrene, N, N-diethylaminomethylstyrene, vinylnaphthalene and the like can be mentioned, and styrene is particularly preferable. These components can be used alone or in combination of two or more. Many elastomers having such a nitrile structure or aromatic ring structure are known as commercially available products, and they can be used.
  • Method for producing carbon nanotube composition In mixing the polymer with the carbon nanotube dispersion produced as described above, the type of the solvent can be appropriately set. Especially, it is preferable to mix the dispersion liquid (latex) dispersed in water with respect to the carbon nanotube dispersion liquid.
  • the amount of CNT used in the production method according to the present invention is, for example, 0.01 parts by weight or more and 10 parts by weight or less, preferably 0.1 parts by weight or more, 7 parts by weight with respect to 100 parts by weight of the polymer constituting the latex. It is not more than part by mass, more preferably not less than 0.25 part by mass and not more than 5 parts by mass.
  • the amount of CNT is 0.01 parts by mass or more, good conductivity can be secured, and when it is 10 parts by mass or less, the fluidity of the composition is improved and the moldability is improved.
  • the specific method for mixing the carbon nanotube dispersion and latex is not particularly limited, and a stirring method in which the carbon nanotube dispersion and latex are uniform may be used.
  • a stirring method in which the carbon nanotube dispersion and latex are uniform may be used.
  • the mixing step is preferably performed at a temperature of 15 ° C. or higher and 40 ° C. or lower because the dispersing function of the dispersant, particularly the surfactant, is more satisfactorily exhibited.
  • the specific method of the mixing step is not particularly limited as long as the carbon nanotube dispersion and the latex are mixed.
  • the carbon nanotube dispersion and latex may be put in one container and mixed by appropriately stirring.
  • a conventionally known stirrer such as a stirring blade, a magnetic stirrer, or a planetary mill may be used.
  • the stirring time is more preferably 10 minutes or longer and 24 hours or shorter.
  • the carbon nanotube dispersion liquid and latex As described above, by using the carbon nanotube dispersion liquid and latex, the carbon nanotube aggregates are reduced, and the resulting composition is excellent in electrical conductivity, has a high breaking stress when pulled, and is strong against breaking. There is an advantage.
  • the production method according to the present invention further includes a coagulation step for precipitating a solid in the mixture obtained in the mixing step.
  • the solid matter may be precipitated from the carbon nanotube dispersion liquid that has undergone the mixing step.
  • a precipitation method a latex precipitation method known to those skilled in the art can be employed. Examples thereof include a method of adding the mixture obtained in the mixing step to a water-soluble organic solvent, a method of adding an acid to the mixture, and a method of adding a salt to the mixture.
  • water-soluble organic solvent it is more preferable to select a solvent that does not dissolve the polymer in the latex.
  • organic solvent examples include methanol, ethanol, 2-propanol (also called isopropyl alcohol), ethylene glycol, and the like.
  • acid examples include known materials used for coagulation of general latex, such as acetic acid, formic acid, phosphoric acid, and hydrochloric acid.
  • salt examples include known materials used for precipitation of general latex, such as calcium chloride, sodium chloride, aluminum sulfate, and potassium chloride.
  • the method of adjusting the pH of the mixture obtained in the mixing step to pH 4 or more and pH 10 or less using acid and alkaline pH adjusters as appropriate, and adding the organic solvent recovers the composition with high efficiency. It is more preferable because it is possible.
  • the solidification step is more preferably performed at a temperature of 15 ° C. or higher and 40 ° C. or lower.
  • the production method according to the present invention may include a drying step of filtering and drying a solidified product obtained by precipitating a solid in the solidifying step.
  • the solidified product can be separated by a known method.
  • the drying step it can be used without particular limitation as long as the solidified product obtained by precipitating the solid in the coagulation step is dried, and known to those skilled in the art such as hot air drying, reduced pressure drying, etc. Polymer drying methods can be employed.
  • what is necessary is just to set suitably as conditions for drying based on the moisture content etc. according to the use of the composition obtained by drying.
  • ⁇ Volume conductivity> The volume conductivity of the rubber composition produced using the carbon nanotube dispersion liquid of the present invention was measured using a resistivity meter 1 (product name “Loresta (registered trademark) GPMCP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). -T610 ", probe ESP) or resistivity meter 2 (manufactured by Mitsubishi Chemical Analytech, product name” Hiresta (registered trademark) MCP-HT800 ", ring probe UR).
  • SGCNT-1 Carbon compound: ethylene; supply rate 50 sccm Atmosphere (gas): Helium, hydrogen mixed gas; supply rate 1000 sccm Pressure: 1 atmospheric pressure Steam added: 300 ppm Reaction temperature: 750 ° C Reaction time: 10 minutes Metal catalyst (abundance): Iron thin film; thickness 1 nm Substrate: silicon wafer
  • the obtained SGCNT-1 has a BET specific surface area of 1,050 m 2 / g and is radial in the low-frequency region of 100 to 300 cm -1 , which is characteristic of single-walled CNTs when measured with a Raman spectrophotometer. A breathing mode (RBM) spectrum was observed. Further, as a result of randomly measuring the diameter of 100 SGCNT-1 using a transmission electron microscope, the average diameter (Av) was 3.3 nm, the diameter distribution (3 ⁇ ) was 1.9, and (3 ⁇ / Av) was 0.58.
  • SGCNT-2 was obtained by the same method except that the thickness of the iron thin film layer of the metal catalyst of Production Example 1 was changed to 5 nm.
  • the obtained SGCNT-2 has a BET specific surface area of 620 m 2 / g and a spectrum of a radial breathing mode (RBM) in a low frequency region of 100 to 300 cm ⁇ 1 , which is characteristic of a single-walled CNT, when measured with a Raman spectrophotometer. Was observed.
  • RBM radial breathing mode
  • the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered five times to impregnate 25% by weight of water with a solid content of 25% by mass. Reactant fibers were obtained. Next, water was added to the reactant fiber to make a 2% by mass slurry, which was then treated with a rotary blade mixer for about 5 minutes. Since the viscosity of the slurry significantly increased with the treatment, water was gradually added and the dispersion treatment with the mixer was continued until the solid content concentration became 0.15% by mass.
  • the dispersion of fine cellulose fibers having a cellulose concentration of 0.15% by mass thus obtained was subjected to removal of suspended matter by centrifugation, and then the concentration was adjusted with water to give a cellulose concentration of 0.1% by mass.
  • a transparent and slightly viscous fine cellulose fiber dispersion S1 was obtained.
  • a wide-angle X-ray diffraction image of the transparent membranous cellulose obtained by drying the dispersion S1 shows that the dispersion S1 is composed of cellulose having a cellulose I-type crystal structure, and the ATR of the same membranous cellulose.
  • the spectrum pattern confirmed the presence of a carbonyl group.
  • Dispersion S1 has an extremely high viscosity even at 0.1% by mass, and when placed between orthogonal polarizing plates, birefringence can be confirmed even in a stationary state, and the fine fibers contained in the dispersion have high crystal orientation. In addition, the possibility of having an ordered structure partially self-organized in the dispersion was also suggested. Dispersion S1 is composed of fibrous cellulose from a TEM image of finely divided cellulose fibers of dispersion S1 cast on a carbon film-coated grid that has been hydrophilized and then negatively stained with 2% uranyl acetate. Was 10 nm and the number average fiber diameter was 6 nm.
  • the amount of aldehyde groups and the amount of carboxyl groups in the transparent film-like cellulose obtained by drying the dispersion S1 evaluated by the above-described method is 0.33 mmol / g with respect to the mass of the fine cellulose fiber, respectively. And 0.99 mmol / g.
  • the maximum fiber diameter is 1000 nm or less
  • the number average fiber diameter is 2 nm or more and 150 nm or less
  • a part of the hydroxyl group of the cellulose fiber is substituted with at least one functional group selected from the group consisting of a carboxyl group and an aldehyde group.
  • ⁇ Production Example 4 Synthesis of cellulose nanofiber dispersion H1> Dispersion (H1) in which water was added to sulfurous acid bleached softwood pulp (mainly composed of fibers having a fiber diameter of more than 1000 nm) used as a raw material in Production Example 3 and 0.1% by mass by mixer treatment equivalent to Dispersion S1 ) was prepared. Dispersion H1 of Production Example 4 containing cellulose fibers not subjected to an oxidation step did not suspend only by mechanical treatment, and sedimentation occurred.
  • Dispersions of fine cellulose fibers having a cellulose concentration of 0.1% by mass obtained in each of Production Examples 5, 6, and 7 are referred to as Dispersions S2, S3, and S4, respectively.
  • Dispersions S2 to S4 transparent film-like cellulose was obtained, and it was confirmed by the same method as in Production Example 3 that it had a cellulose I-type crystal structure and had a carbonyl group absorption band. It was.
  • the maximum fiber diameter and the number average fiber diameter of dispersions S2 to S4 evaluated by TEM observation in the same manner as in Production Example 3 were the maximum fiber diameter of 15 nm, the number average fiber diameter of 8 nm (S2), the maximum fiber diameter of 90 nm, The number average fiber diameter was 37 nm (S3), the maximum fiber diameter was 62 nm, and the number average fiber diameter was 22 nm (S4). Furthermore, the amounts of aldehyde groups and carboxyl groups in the transparent film-like cellulose obtained by drying each of dispersions S2 to S4 were 0.21 mmol / g and 0.67 mmol / g (S2), 0.
  • the dispersions S2 to S4 of fine cellulose fibers obtained by Production Examples 5 to 7 were 01 mmol / g and 0.50 mmol / g (S3), 0.03 mmol / g and 0.31 mmol / g (S4).
  • the maximum fiber diameter is 1000 nm or less and the number average fiber diameter is 2 nm or more and 150 nm or less, and a part of the hydroxyl group of the cellulose fiber is substituted with at least one functional group selected from the group consisting of a carboxyl group and an aldehyde group, In addition, it has a cellulose type I crystal structure, and the total amount of carboxyl groups and aldehyde groups is relative to the mass of the cellulose fiber. , It was confirmed to contain the fine cellulose fibers is less than 0.1 mmol / g or more 2.2 mmol / g.
  • ⁇ Production Example 8 Synthesis of cellulose nanofiber dispersion S5> After dispersing dry sulphite bleached softwood pulp equivalent to 2 g dry weight (mainly consisting of fibers with a fiber diameter greater than 1000 nm), 0.032 g TEMPO and 0.20 g sodium bromide in 200 ml water, A 13% by mass sodium hypochlorite aqueous solution was added with sodium hypochlorite so that the amount of sodium hypochlorite was 10 mmol with respect to 1 g of pulp to initiate the reaction. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10.5.
  • the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered five times to impregnate 25% by weight of water with a solid content of 25% by mass. Reactant fibers were obtained. Next, water was added to the reactant fiber to make a 2% by mass slurry, which was then treated with a rotary blade mixer for about 5 minutes. Since the viscosity of the slurry significantly increased with the treatment, water was gradually added and the dispersion treatment with the mixer was continued until the solid content concentration became 0.15% by mass.
  • the thus obtained dispersion of fine cellulose fibers having a cellulose concentration of 0.15% by mass was treated with ultrasonic waves for 2 minutes, and after removing suspended matters by centrifugation, the concentration of cellulose was adjusted by adjusting the concentration with water.
  • a 0.1% by mass transparent and slightly viscous fine cellulose fiber dispersion S5 was obtained.
  • a wide-angle X-ray diffraction image of the transparent membranous cellulose obtained by drying the dispersion S5 shows that the dispersion S5 is composed of cellulose having a cellulose I-type crystal structure, and the ATR of the same membranous cellulose.
  • the spectrum pattern confirmed the presence of a carbonyl group.
  • Dispersion S5 has an extremely high viscosity even at 0.1% by mass, and when placed between crossed polarizing plates, birefringence can be confirmed even in a stationary state, and the fine fibers contained in the dispersion have high crystal orientation. In addition, the possibility of having an ordered structure partially in the dispersion was also suggested. Dispersion S5 is composed of fibrous cellulose from a TEM image of the finely divided cellulose fibers of dispersion S5 cast on a hydrophilized carbon film-coated grid and then negatively stained with 2% uranyl acetate. Was 8 nm and the number average fiber diameter was 4 nm.
  • the amount of aldehyde groups and the amount of carboxyl groups in the transparent film-like cellulose obtained by drying the dispersion S5 evaluated by the method described above was 0.01 mmol / g with respect to the mass of the fine cellulose fibers. And 1.74 mmol / g.
  • the maximum fiber diameter is 1000 nm or less
  • the number average fiber diameter is 2 nm or more and 150 nm or less
  • a part of the hydroxyl group of the cellulose fiber is substituted with at least one functional group selected from the group consisting of a carboxyl group and an aldehyde group.
  • Example 1 0.008 g of SGCNT-1 obtained in Production Example 1 and 16 g of cellulose nanofiber dispersion S1 (cellulose nanofiber concentration 0.1% by mass) obtained in Production Example 3 were placed in a 30 mL vial, and tabletop ultrasound Dispersion treatment was carried out for 30 minutes using a product name “Bransonic (registered trademark)” manufactured by Nippon Emerson Co., Ltd. (hereinafter the same). The sediment was not observed visually, and could be uniformly dispersed. Thereafter, the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed.
  • a modified acrylonitrile-butadiene rubber (NBR) latex (manufactured by Zeon Corporation, product name “Nipol (registered trademark) LX550L”, solid content concentration: 45 mass%) is used as a matrix.
  • the solution was added dropwise while stirring with a stirrer to obtain a carbon nanotube-NBR mixed solution.
  • the obtained mixed solution was dropped into 36 g of a calcium chloride aqueous solution (concentration 35% by mass) stirred with a stir bar, and the resulting precipitate was filtered, washed well with distilled water, and dried overnight at 110 ° C. under vacuum. Thus, a rubber composition was obtained.
  • NBR modified acrylonitrile-butadiene rubber
  • the obtained rubber composition was vacuum-pressed at 160 ° C. to obtain a sheet having a thickness of 200 ⁇ m.
  • the electrical characteristics of the sheet were measured with a resistivity meter 1 (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name “Loresta (registered trademark) GPMCP-T610 type”, probe ESP; hereinafter the same).
  • the volume conductivity was 1.8 ⁇ 10 ⁇ 4 S / cm. The results are shown in Table 1.
  • Example 2 The same treatment as in Example 1 was conducted except that SGCNT-2 obtained in Production Example 2 was used instead of SGCNT-1. The sediment was not observed visually, and could be uniformly dispersed. Thereafter, the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed. When the volume conductivity of the obtained rubber composition sheet was measured in the same manner as in Example 1, it was 1.0 ⁇ 10 ⁇ 5 S / cm. The results are shown in Table 1.
  • Example 3 The same treatment as in Example 1 was conducted except that the dispersion S2 obtained in Production Example 5 was used instead of the dispersion S1. The sediment was not observed visually, and could be uniformly dispersed. Thereafter, the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed. When the volume conductivity of the obtained rubber composition sheet was measured in the same manner as in Example 1, it was 7.7 ⁇ 10 ⁇ 5 S / cm. The results are shown in Table 1.
  • Example 4 The same treatment as in Example 1 was conducted except that the dispersion S3 obtained in Production Example 6 was used instead of the dispersion S1. Although no sediment was observed visually, it could be dispersed uniformly, but fine particles could be confirmed in the dispersion. Thereafter, the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed. When the volume conductivity of the obtained rubber composition sheet was measured in the same manner as in Example 1, it was 5.5 ⁇ 10 ⁇ 5 S / cm. The results are shown in Table 1.
  • Example 5 The same treatment as in Example 1 was conducted except that the dispersion S4 obtained in Production Example 7 was used instead of the dispersion S1. Although no sediment was observed visually, it could be dispersed uniformly, but fine particles could be confirmed in the dispersion. Thereafter, the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed. When the volume conductivity of the obtained rubber composition sheet was measured in the same manner as in Example 1, it was 6.6 ⁇ 10 ⁇ 5 S / cm. The results are shown in Table 1.
  • Example 6 SGCNT-1 (0.15 g) obtained in Production Example 1 and cellulose nanofiber dispersion S1 (cellulose nanofiber concentration: 0.1 wt%) 300 g obtained in Production Example 3 were placed in a 500 mL vial, and tabletop ultrasonic cleaning was performed. Dispersion pretreatment was performed for 1 minute in a vessel. The dispersion was subjected to dispersion treatment using a jet mill (product name “NanoJetPulJN20”, manufactured by Joko Corporation) (unit 24, discharge speed 300000, treatment 5 times). The sediment was not observed visually, and could be uniformly dispersed.
  • a jet mill product name “NanoJetPulJN20”, manufactured by Joko Corporation
  • the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed.
  • the dispersion after storage for 5 days was stirred with 34 g of modified acrylonitrile butadiene rubber (NBR) latex (manufactured by Nippon Zeon Co., Ltd., product name “Nipol (registered trademark) LX550L”, solid content concentration: 45 mass%) with a stirrer.
  • NBR modified acrylonitrile butadiene rubber
  • the obtained mixture was dropped into 670 g of an aqueous calcium chloride solution (concentration 35% by mass) stirred with a stir bar, the resulting precipitate was filtered, washed well with distilled water, and dried overnight at 110 ° C. under vacuum. Thus, a rubber composition was obtained.
  • the obtained rubber composition was vacuum-pressed at 160 ° C. to obtain a sheet having a thickness of 200 ⁇ m. When the volume conductivity of the obtained sheet was measured in the same manner as in Example 1, it was 7.4 ⁇ 10 ⁇ 3 S / cm. The results are shown in Table 1.
  • acrylonitrile / butadiene / methyl acrylate 34: 65: 1 (mass ratio)
  • 0.5 g of a hydrogenation rate of 90% and a solid content concentration of 39.8% by mass were added dropwise to a stirring solution with a stir bar to obtain a carbon nanotube-nitrile rubber mixed solution.
  • the obtained mixed solution was dropped into 30 g of a calcium chloride aqueous solution (concentration 35% by mass) stirred with a stir bar, and the resulting precipitate was filtered, washed well with distilled water, and dried overnight at 110 ° C. under vacuum.
  • a rubber composition was obtained.
  • the obtained CNT / rubber composite was vacuum-pressed at 160 ° C. to obtain a sheet having a thickness of 200 ⁇ m.
  • the volume conductivity of the obtained sheet was measured in the same manner as in Example 1, it was 2.3 ⁇ 10 ⁇ 5 S / cm.
  • Table 1 The results are shown in Table 1.
  • MWCNT manufactured by Nanocyl, product name “NC7000”; BET specific surface area 290 m 2 / g
  • the electrical characteristics of the sheet were measured with a resistivity meter 2 (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name “HIRESTA (registered trademark) MCP-HT800 type”, ring probe UR; hereinafter the same).
  • the volume conductivity was 1.8 ⁇ 10 ⁇ 10 S / cm. The results are shown in Table 1.
  • Example 9 The treatment was performed in the same manner as in Example 1 except that HiPCO (manufactured by NanoIntegrity Inc., BET specific surface area 700 m 2 / g) was used instead of SGCNT-1. The sediment was not observed visually, and could be uniformly dispersed. Thereafter, the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed. The obtained rubber composition was vacuum-pressed at 160 ° C. to obtain a sheet having a thickness of 200 ⁇ m. When the volume conductivity of the obtained sheet was measured in the same manner as in Example 8, it was 2.6 ⁇ 10 ⁇ 8 S / cm. The results are shown in Table 1.
  • Example 10 The same treatment as in Example 1 was conducted except that the dispersion H1 obtained in Production Example 4 was used instead of the dispersion S1. Visually, no sediment was observed and the particles could be dispersed uniformly, but coarse particles could be confirmed in the dispersion. Thereafter, the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed. When the volume conductivity of the obtained sheet was measured in the same manner as in Example 8, it was 3.0 ⁇ 10 ⁇ 8 S / cm. The results are shown in Table 1.
  • Example 11 SGCNT-1 (0.008 g) obtained in Production Example 1 and cellulose nanofiber dispersion S5 (cellulose nanofiber concentration 0.1 mass%) 16 g obtained in Production Example 8 were placed in a 30 mL vial, and tabletop ultrasound was used. Dispersion treatment was carried out for 30 minutes using a product name “Bransonic (registered trademark)” manufactured by Nippon Emerson Co., Ltd. (hereinafter the same). The sediment was not observed visually, and could be uniformly dispersed. Thereafter, the dispersion was allowed to stand for 5 days at room temperature (23 ° C.), but no sediment was observed with the naked eye, and the dispersion was kept uniformly dispersed.
  • a modified acrylonitrile-butadiene rubber (NBR) latex (manufactured by Zeon Corporation, product name “Nipol (registered trademark) LX550L”, solid content concentration: 45 mass%) is used as a matrix.
  • the solution was added dropwise while stirring with a stirrer to obtain a carbon nanotube-NBR mixed solution.
  • the obtained mixed solution was dropped into 36 g of a calcium chloride aqueous solution (concentration 35% by mass) stirred with a stir bar, and the resulting precipitate was filtered, washed well with distilled water, and dried overnight at 110 ° C. under vacuum. Thus, a rubber composition was obtained.
  • NBR modified acrylonitrile-butadiene rubber
  • the obtained rubber composition was vacuum-pressed at 160 ° C. to obtain a sheet having a thickness of 200 ⁇ m.
  • the electrical characteristics of the sheet were measured with a resistivity meter 1 (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name “Loresta (registered trademark) GPMCP-T610 type”, probe ESP; hereinafter the same).
  • the volume conductivity was 8.8 ⁇ 10 ⁇ 3 S / cm. The results are shown in Table 1.
  • the dispersion after storage for 5 days was stirred with 1.8 g of modified acrylonitrile butadiene rubber (NBR) latex (manufactured by Nippon Zeon, product name “Nipol (registered trademark) LX550L”, solid content concentration 45 mass%).
  • NBR modified acrylonitrile butadiene rubber
  • agglomerated CNTs were deposited.
  • the mixed liquid in which precipitation was observed was dropped into 36 g of a calcium chloride aqueous solution (concentration: 35% by mass) stirred with a stirrer, and the resulting precipitate was filtered, washed well with distilled water, and 110 ° C. under vacuum overnight.
  • the rubber composition was obtained by drying.
  • the obtained rubber composition was vacuum-pressed at 160 ° C.

Abstract

 本発明は、カーボンナノチューブの凝集を抑え、高い分散安定性を示すカーボンナノチューブ分散液を提供することを目的とする。本発明に係るカーボンナノチューブ分散液は、カーボンナノチューブ、セルロースナノファイバー、及び分散媒からなる。

Description

カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法
 本発明は分散性に優れたカーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法に関するものである。
 従来から分散剤を用いて、分散安定性に優れたカーボンナノチューブ(以下、「CNT」と称することがある。)の分散液を得る方法が、多数検討されている。例えば、カルボキシメチルセルロースやショ糖などの分子鎖が短い水溶性糖類(特許文献1)やドデシル硫酸ナトリウムなどのアニオン性界面活性剤(特許文献2)が、CNTの分散剤に用いられている。
 また、近年、バイオマス材料である、植物や廃材などから得られるセルロース繊維であって、直径がナノメートルオーダーのセルロースナノファイバー(以下、「CNF」と称することがある。)を、繊維状強化材などの添加剤として用いることが検討されている(特許文献3、4)。
特開2008-230935号公報 国際公開第2005/082775号 特開2008-208231号公報 特開2011-202010号公報
 本発明は、カーボンナノチューブの凝集を抑え、高い分散安定性を示すカーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法を提供することを目的とする。
 本発明によれば、カーボンナノチューブ、セルロースナノファイバー、及び分散媒を含むカーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法が提供される。
 ここで、前記カーボンナノチューブ分散液は、前記セルロースナノファイバーが、最大繊維径が1000nm以下かつ数平均繊維径が2nm以上150nm以下の微細セルロース繊維であって、該微細セルロース繊維は、水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に置換されており、且つセルロースI型結晶構造を有することが好ましい。
 さらに、前記微細セルロース繊維が、前記カルボキシル基とアルデヒド基の量の総和が前記微細セルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下であることが好ましい。
 さらに、前記微細セルロース繊維が、最大繊維径が500nm以下かつ数平均繊維径が2nm以上100nm以下であることが好ましい。
 さらに、前記微細セルロース繊維が、最大繊維径が30nm以下かつ数平均繊維径が2nm以上10nm以下であることが好ましい。
 さらに、前記微細セルロース繊維が、前記カルボキシル基の量が前記微細セルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下であることが好ましい。
 さらに、前記カーボンナノチューブが、BET比表面積が600m2/g以上であることが好ましい。
 さらに、前記カーボンナノチューブが、平均直径(Av)と直径分布(3σ)とが関係式:0.60>3σ/Av>0.20を満たすことが好ましい。
 また、本発明によれば、カーボンナノチューブ及びセルロースナノファイバーを、キャビテーション効果が得られる分散処理によって分散媒に分散させる工程を含むカーボンナノチューブ分散液の製造方法が提供される。
 さらに、前記カーボンナノチューブ分散液の製造方法において、前記キャビテーション効果が得られる分散処理が、超音波による分散処理、ジェットミルによる分散処理及び高剪断撹拌による分散処理からなる群より選ばれる少なくとも一つの分散処理であることが好ましい。
 また、本発明によれば、当該カーボンナノチューブ分散液に重合体を配合してなるカーボンナノチューブ組成物が提供される。
 また、本発明によれば、前記製造方法によって得られるカーボンナノチューブ分散液と重合体のラテックスとを混合する混合工程を含む、カーボンナノチューブ組成物の製造方法が提供される。
 ここで、前記カーボンナノチューブ組成物の製造方法において、前記混合工程で得られた混合物中の固形物を沈殿させる凝固工程をさらに含むことが好ましい。
 以下、本発明を実施形態に基づいて具体的に説明する。なお、本発明は下記の実施形態に限定されるものではない。
 (カーボンナノチューブ分散液)
 本発明のカーボンナノチューブ分散液は、カーボンナノチューブ、セルロースナノファイバー、及び分散媒を含む。
 <カーボンナノチューブ(CNT)>
 本発明のカーボンナノチューブ分散液に用いるCNTは、公知の単層又は多層のCNTを用いることができる。本発明では、いずれのCNTもナノカーボン材料として使用可能である。
 なかでも、平均直径(Av)と直径分布(3σ)とが関係式:0.60>3σ/Av>0.20を満たすCNTは、そのファンデルワールス力の影響などにより、分散媒への分散安定性が得にくいものであるが、ドデシルジフェニルオキシドジスルホン酸ナトリウム等の従来の分散剤に代えて、CNFを分散剤として用いた場合、少ない量でも高い分散安定性が得られる。
 本発明のカーボンナノチューブ分散液において特に好ましいCNTは、平均直径(Av)と直径分布(3σ)とが関係式:0.60>3σ/Av>0.20を満たすものである。ここでいう平均直径(Av)、直径分布(3σ)は、それぞれ透過型電子顕微鏡で無作為に選択したCNT100本の直径(外径)を測定した際の平均値、並びに標準偏差(σ)に3を乗じたものである。なお、本明細書における標準偏差は、標本標準偏差である。
 平均直径(Av)と直径分布(3σ)とが関係式:0.60>3σ/Av>0.20を満たすCNTを用いることにより、CNTが少量であっても、優れた導電性を示す組成物を得ることができる。得られる組成物の特性の観点から、平均直径に対する直径分布の比(3σ/Av)は、0.60>3σ/Av>0.25がより好ましく、0.60>3σ/Av>0.50がさらに好ましい。
 CNTの直径分布は、この値が大きいほど広いことを意味する。本発明において直径分布は正規分布を取るものが好ましい。異なる製法で得られたCNTなどを複数種類組み合わせることでも直径分布の値を大きくすることはできるが、その場合正規分布を得ることは難しい。即ち、本発明においては、単独のCNT、或いは、単独のCNTに、その直径分布に影響しない量の他のCNTを配合したものを用いるのが好ましい。
 関係式:0.60>3σ/Av>0.20を満たすCNTであれば特に制限なく使用することができるが、参照することにより本明細書に取り込まれる日本国特許第4621896号公報、及び日本国特許第4811712号公報に記載されている、スーパーグロース法により得られるCNT(以下、「SGCNT」ということがある)が好ましい。SGCNTは、ラマン分光法においてRadial Breathing Mode(RBM)のピークを有するCNTである。なお、三層以上の多層のCNTのラマンスペクトルには、RBMが存在しない。
 また、本発明において特に好ましいCNTは、BET比表面積が600m2/g以上である。具体的には、CNTが主として未開口のものにあっては、600m2/g以上であり、CNTが主として開口したものにあっては、1300m2/g以上であることが組成物の改質効果に優れるため好ましい。なお、BET比表面積の上限としては、通常、2500m2/g程度である。
 また、CNTは、表面にカルボキシル基等の官能基が導入されたものであってもよい。官能基の導入は、過酸化水素や硝酸等を用いる公知の酸化処理法により行うことができる。表面にカルボキシル基等の官能基が導入されたCNTによれば、分散性が高まり、CNFの添加量及び/又は分散時間を低減することができる。
 更に、CNTは、単層のものであっても、多層のものであってもよいが、CNTを用いて製造したゴム組成物の導電性を向上させる観点からは、単層から5層のものが好ましく、単層のものがより好ましい。
 <セルロースナノファイバー(CNF)>
 本発明のカーボンナノチューブ分散液に用いるCNFは、植物などに由来する天然セルロースをナノメートルサイズまで解繊して得られる微細セルロース繊維である(例えば、参照することにより本明細書に取り込まれる特開2005-270891号公報、特開2008-150719号公報、特開2010-104768号公報など参照)。CNFは、カルボキシメチルセルロース類のような水溶性セルロースなどと異なり、分子鎖が長く、数十本の束となって結晶性が高いため、通常は水に不溶である。CNFは、分散媒に対するCNTの分散剤として機能する。なお、本明細書においてCNFが水に「不溶」とは、25℃でCNF0.5gを100gの水に溶解した際に、不溶分が99.5質量%以上であることをいう。
 本発明のカーボンナノチューブ分散液に使用されるCNFは、アスペクト比が10以上1000以下であることが好ましい。さらに、本発明のカーボンナノチューブ分散液に使用されるCNFは、通常、最大繊維径が1000nm以下かつ数平均繊維径が2nm以上150nm以下であり、好ましくは最大繊維径が500nm以下かつ数平均繊維径が2nm以上100nm以下、さらに好ましくは最大繊維径が30nm以下かつ数平均繊維径が2nm以上10nm以下の微細セルロース繊維である。なお、本明細書における「最大繊維径」とは、複数本存在する繊維について、下記の方法に従って測定した繊維径のうちの最大径を指す。
 ここで最大繊維径および数平均繊維径の解析は次のようにして行う。固形分率で0.05質量%以上0.1質量%以下の微細セルロース繊維の水分散体を調製し、該分散体を、親水化処理済みのカーボン膜被覆グリッド上にキャストしてTEM観察用試料とし、観察する。また、大きな繊維径の繊維を含む場合には、ガラス上へキャストした表面のSEM像を観察してもよい。構成する繊維の大きさに応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。この際に、得られた画像内に縦横任意の画像幅の軸を想定した場合に少なくとも各軸に対し、20本以上の繊維が軸と交差するような試料および観察条件(倍率等)とする。この条件を満足する観察画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交錯する繊維の繊維径を目視で読み取っていく。こうして最低3枚の重なっていない表面部分の画像を電子顕微鏡で撮影し、各々2つの軸に交錯する繊維の繊維径の値を読み取る(したがって、最低20本×2×3=120本の繊維径の情報が得られる)。こうして得られた繊維径のデータにより最大繊維径および数平均繊維径を算出する。
 本発明において、CNFの最大繊維径が1000nmより大きくかつ数平均繊維径が150nmより大きな場合には、CNTの分散能や、本発明のカーボンナノチューブ分散液を用いて得られる塗膜の透明性やバリア性が低下することになるため好ましくない。
 このようなCNFは、ダイセルファインケム社製のセリッシュ(登録商標)、スギノマシン社製ビンフィス(登録商標)などとして市販されている。本発明に用いるCNFとしては、特に限定されるものではないが、CNTの分散能に優れることから、例えば、参照することにより本明細書に取り込まれる特開2008-001728号公報に記載のTEMPO酸化セルロースナノファイバーなど、解繊工程を酸化触媒存在下で行うことなどにより得られた、任意の置換基を有するCNFが好ましい。かかる置換基を有するCNFは、例えば、天然セルロースに対して、以下に詳述する酸化工程、精製工程、及び分散工程を施すことにより、分散体として得られる。なお、かかる分散体は乾燥させて用いてもよい。
 [酸化工程]
 まず、酸化工程では、水中に天然セルロースを分散させた分散液を調製する。ここで、天然セルロースは、植物,動物,バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。より具体的には、針葉樹系パルプ、広葉樹系パルプ、コットンリンターやコットンリントのような綿系パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、BC、ホヤから単離されるセルロース、海草から単離されるセルロースなどを挙げることができるが、これに限定されるものではない。天然セルロースは好ましくは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができる。さらに、天然セルロースとして、単離、精製の後、ネバードライで保存していたものを使用するとミクロフィブリルの集束体が膨潤し易い状態であるため、やはり反応効率を高め、微細化処理後の数平均繊維径を小さくすることができ、好ましい。
 反応における天然セルロースの分散媒は水であり、反応水溶液中の天然セルロース濃度は、試薬の十分な拡散が可能な濃度であれば任意であるが、通常、反応水溶液の重量に対して約5%以下である。
 また、セルロースの酸化触媒として使用可能なN-オキシル化合物は数多く報告されている(参照することにより本明細書に取り込まれる「Cellulose」Vol.10、2003年、第335~341ページにおけるI. Shibata及びA. Isogaiによる「TEMPO誘導体を用いたセルロースの触媒酸化:酸化生成物のHPSEC及びNMR分析」と題する記事参照)が、特にTEMPO、4-アセトアミド-TEMPO、4-カルボキシ-TEMPO、及び4-フォスフォノオキシ-TEMPOは水中常温での反応速度において好ましい。これらN-オキシル化合物の添加は触媒量で十分であり、好ましくは0.1~4mmol/l、さらに好ましくは0.2~2mmol/lの範囲で反応水溶液に添加する。なお、TEMPOとは、2,2,6,6-テトラメチルピペリジン-1-オキシルの略称である。
 共酸化剤として、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、および過有機酸などが本発明において使用可能であるが、好ましくはアルカリ金属次亜ハロゲン酸塩、たとえば、次亜塩素酸ナトリウムや次亜臭素酸ナトリウムである。次亜塩素酸ナトリウムを使用する場合、臭化アルカリ金属、たとえば臭化ナトリウムの存在下で反応を進めることが反応速度において好ましい。この臭化アルカリ金属の添加量は、N-オキシル化合物に対して約1~40倍モル量、好ましくは約10~20倍モル量である。
 反応水溶液のpHは約8~11の範囲で維持されることが好ましい。水溶液の温度は約4~40度において任意であるが、反応は室温で行うことが可能であり、特に温度の制御は必要としない。
 本発明のカーボンナノチューブ分散液に好適に用いるための微細セルロース繊維を得るために必要なカルボキシル基量は天然セルロース種により異なり、カルボキシル基量が多いほど、微細化処理後の最大繊維径、及び数平均繊維径は小さくなる。従って、酸化の程度を共酸化剤の添加量と反応時間により制御し、天然セルロース種に応じた酸化条件を最適化することで、目的とするカルボキシル基量を得ることが好ましい。一般に共酸化剤の添加量は、天然セルロース1gに対して約0.5mmol以上15mmol以下の範囲で選択することが好ましく、反応は約5分以上120分以内、長くとも240分以内に完了する。
 [精製工程]
 精製工程では、未反応の次亜塩素酸や各種副生成物等の反応スラリー中に含まれる反応物繊維と水以外の化合物を系外へ除去するが、反応物繊維は通常、この段階ではナノファイバー単位までばらばらに分散しているわけではないため、通常の精製法、すなわち水洗とろ過を繰り返すことで高純度(99質量%以上)の反応物繊維と水の分散体とする。該精製工程における精製方法は遠心脱水を利用する方法(例えば、連続式デカンダー)のように、上述した目的を達成できる装置であればどんな装置を利用しても構わない。こうして得られる反応物繊維の水分散体は絞った状態で固形分(セルロース)濃度としておよそ10質量%以上50質量%以下の範囲にある。この後の工程で、ナノファイバーへ分散させることを考慮すると、50質量%よりも高い固形分濃度とすると、分散に極めて高いエネルギーが必要となることから好ましくない。
 [分散工程]
 さらに、上述した精製工程にて得られる水を含浸した反応物繊維(水分散体)を溶媒中に分散させ分散処理を施すことにより、本発明に用いられるCNFの分散体として提供することができる。
 ここで、分散媒としての溶媒は通常は水が好ましいが、水以外にも目的に応じて水に可溶するアルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブタノール、tert-ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)、エーテル類(エチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン)やN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキサイド等を使用してもよい。また、これらの混合物も好適に使用できる。さらに、上述した反応物繊維の分散体を溶媒によって希釈、分散する際には、少しずつ溶媒を加えて分散していく、段階的な分散を試みると効率的にナノファイバーレベルの繊維の分散体を得ることができることがある。操作上の問題から、分散工程後の状態は粘性のある分散液あるいはゲル状の状態となるように分散条件を選ぶとよい。
 分散工程で使用する分散機としては、特に限定されることなく、既知の様々な分散機を使用することができる。特に、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波分散処理、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、ビーズミル、ジェットミル、超高圧でセラミックボールまたは原料同士を衝突させ分散させる湿式微粒化装置(スギノマシン社製スターバースト等)およびグラインダーのようなより強力で叩解能力のある装置を使用することが好ましい。反応物繊維の状態のセルロース繊維を、効率的かつ高度にダウンサイジングすることができるからである。
 このようにして得られた微細セルロース繊維の分散体を、本発明のカーボンナノチューブ分散液に用いることができる。
 [乾燥工程]
 乾燥工程には、例えば、上述の分散工程で得られた微細セルロース繊維の分散体の溶媒が水である場合には凍結乾燥法、微細セルロース繊維の分散体の溶媒が水と有機溶媒の混合溶液である場合には、ドラムドライヤーによる乾燥や場合によってはスプレイドライヤーによる噴霧乾燥を好適に使用することができる。また、上述した微細セルロース繊維の分散体の中にバインダーとして水溶性高分子(ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリルアミド、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、デンプン、天然ガム類等)や糖類(グルコース、フルクトース、マンノース、ガラクトース、トレハロース等)のような極めて沸点が高くしかもセルロースに対して親和性を有する化合物を混入させておくことにより、ドラムドライヤーやスプレイドライヤーのような汎用の乾燥法でも再度溶媒中にナノファイバーとして分散できる微細セルロース繊維を得ることができる。この場合には、微細セルロース繊維の分散体中に添加するバインダーの量は、反応物繊維に対して10質量%以上80質量%以下の範囲にあることが望ましい。
 上記乾燥工程で微細セルロース繊維が凝集してなるセルロース繊維は再び、溶媒(水や有機溶媒あるいはその混合溶液)中へ混入し、適当な分散力(例えば、上述の分散工程で使用可能な各種分散機を用いた分散)を加えることにより微細セルロース繊維の分散体とすることができる。
 本発明のカーボンナノチューブ分散液に好適に使用されるCNFは、セルロースの水酸基の一部がカルボキシル基またはアルデヒド基に置換されることで酸化されており、且つセルロースI型結晶構造を有することが好ましい。これは、CNFが、I型結晶構造を有する天然由来のセルロース固体原料を表面酸化し微細化した繊維であることを意味する。すなわち、天然セルロースの生合成の過程においてはほぼ例外なくミクロフィブリルと呼ばれるナノファイバーがまず形成され、これらが多束化して高次な固体構造を構築していることを原理的に利用し、ここにおいてミクロフィブリル間の強い凝集力の原動となっている表面間の水素結合を弱めるために、その一部が酸化され、アルデヒド基やあるいはカルボキシル基に変換されているものである。
 ここで、CNFがI型結晶構造であることは、その広角X線回折像測定により得られる回折プロファイルにおいて、2θ=14~17°付近と2θ=22~23°付近の二つの位置に典型的なピークをもつことから同定することができる。さらに、CNFのセルロースにアルデヒド基あるいはカルボキシル基が導入されていることは、水分を完全に除去したサンプルにおいて全反射式赤外分光スペクトル(ATR)においてカルボニル基に起因する吸収(1608cm-1付近、具体的には、1550cm-1~1800cm-1)が存在することにより確認することができる。特に、酸型のカルボキシル基(COOH)の場合には、上記の測定において1730cm-1に吸収が存在する。
 本発明のカーボンナノチューブ分散液に好適に使用されるCNFは、上述した理由により、セルロース繊維に存在するカルボキシル基とアルデヒド基の量の総和が多いほうがより微小な繊維径として安定に存在し得る。微小な繊維径のセルロース繊維が分散液中で安定に存在することにより、CNTの分散性を一層向上させることができる。具体的には、CNFが、カルボキシル基とアルデヒド基の総和がセルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下であることが好ましい。より具体的には、たとえば、セルロース繊維として、木材パルプや綿パルプを使用する場合(数平均繊維径が10nm未満のセルロース繊維の場合)、本発明の微細なセルロース繊維に存在するカルボキシル基とアルデヒド基の量の総和がセルロース繊維の質量に対し、0.2mmol/g以上2.2mmol/g以下、好ましくは0.5mmol/g以上2.2mmol/g以下、さらに好ましくは0.8mmol/g以上2.2mmol/g以下であるとナノファイバーとしての安定性に優れる。また、BC(バクテリア・セルロース)やホヤからの抽出セルロースのような比較的ミクロフィブリルの数平均繊維径が太いセルロースの場合(数平均繊維径が10nm以上のセルロース繊維の場合)には、該総和量は0.1mmol/g以上0.8mmol/g以下、好ましくは0.2mmol/g以上0.8mmol/g以下であるとナノファイバーとしての安定性に優れる。該総和量が0.1mmol/gよりも小さい場合には、従来知られている微細化されたセルロース繊維との物性上の差異(例えば、分散体における分散安定化効果)が小さく、また、繊維同士が束を形成して、繊維径が大きくなる虞があるため、好ましくない。
 さらに、セルロース繊維にカルボキシル基が導入されることにより、セルロース繊維間に電気的な反発力が生まれ、ミクロフィブリルが凝集を維持せずにばらばらになろうとする傾向が増大するため、ナノファイバーとしての安定性はより増大する。具体的には、CNFが、カルボキシル基の量がセルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下であることが好ましい。さらに具体的には、たとえば木材パルプや綿パルプの場合(数平均繊維径が10nm未満のセルロース繊維の場合)、本発明の微細なセルロース繊維に存在するカルボキシル基の量がセルロース繊維の質量に対し、0.2mmol/g以上2.2mmol/g以下、好ましくは0.4mmol/g以上2.2mmol/g以下、さらに好ましくは0.6mmol/g以上2.2mmol/g以下であるとナノファイバーとしての安定性に極めて優れる。また、BCやホヤからの抽出セルロースのような比較的ミクロフィブリルの繊維径が太いセルロースの場合(数平均繊維径が10nm以上のセルロース繊維の場合)には、カルボキシル基の量は0.1mmol/g以上0.8mmol/g以下、好ましくは0.2mmol/g以上0.8mmol/g以下であるとナノファイバーとしての安定性に優れる。
 ここで、セルロース繊維の質量に対するセルロースのアルデヒド基およびカルボキシル基の量(mmol/g)は、以下の手法により評価する。乾燥重量を精秤したセルロース試料から0.5~1質量%スラリーを60ml調製し、0.1Mの塩酸水溶液によってpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液を滴下して電気伝導度測定を行う。測定はpHが約11になるまで続ける。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム水溶液滴下量(V)から、下式を用いて官能基量1を決定する。該官能基量1がカルボキシル基の量を示す。
 官能基量1(mmol/g)=V(ml)×0.05/セルロースの質量(g)
 次に、セルロース試料を、酢酸でpHを4~5に調製した2%亜塩素酸ナトリウム水溶液中でさらに48時間常温で酸化し、上記手法によって再び官能基量2を測定する。この酸化によって追加された官能基量(=官能基量2-官能基量1)を算出し、アルデヒド基量とする。
 以上の条件を満たすCNFは、他材料との混合性に優れ、水などの親水性媒体中で極めて高い分散安定効果を示すばかりでなく、例えば、水や親水性の有機溶媒中に分散させることにより高いチキソトロピー性を発現し、条件によってはゲル状となるため、ゲル化剤としても有効である。さらに、上記CNFは、少量の添加により、CNTの分散性を向上させることができる。また、上記CNFは、短時間でCNTを分散させることができる。
 また、CNFが例えば最大繊維径が30nm以下かつ数平均繊維径が3nm以上10nm以下のような極めて微小な繊維として提供される場合には、水や親水性の有機溶媒中への分散体は透明となる場合もある。また、上記CNFは、抄紙法やキャスト法により製膜することにより、高強度で耐熱性にも優れ、かつ極めて低い熱膨張性を有する材料となる。製膜の際の原液として使用する本発明の微細なセルロース繊維の分散体が透明である場合には、得られる膜も透明なものとなる。該膜は親水性付与を目的としたコーティング層としても有効に機能する。
 さらに、上記CNFを例えば樹脂材料などの他材料と複合化する際には、他材料中での分散性に優れるため、好適な場合には透明性に優れた複合体を提供することができる。該複合体においては、上記CNFは補強フィラーとしても機能し、複合体中で繊維が高度にネットワークを形成するような場合には、使用した樹脂単体に比べ、著しく高強度を示すようになると同時に著しい熱膨張率の低下を誘引することもできる。さらに、上記CNFとの併用により、CNTとCNFとが一緒になってネットワークを形成することによる顕著な補強効果が得られる。また、CNFは、一般的に使用される低分子量の分散剤のように、ブリードアウトを引き起こす虞がないので、複合化の後、積極的に除く必要が無い。この他にも上記CNFは、セルロースのもつ両親媒的性質も併せ持つため、例えば乳化剤や分散安定剤としても機能する。特に繊維中にカルボキシル基を有することで、表面電位の絶対値が大きくなるため、等電点(イオン濃度が増大した際に凝集が起こり始める濃度)が低pH側にシフトすることが期待される。これによって、より広範なイオン濃度条件で分散安定化効果が期待できる。さらに、カルボキシル基は金属イオンと対イオンを形成するため、金属イオンの捕集剤等としても有効である。
 CNFの配合量は、CNTの質量に対して、通常0.1倍以上30倍以下、好ましくは0.5倍以上25倍以下、より好ましくは1倍以上10倍以下である。分散安定性の観点からは、CNFの配合量が30倍を超えると、CNFの分散性が低下し、また、CNTの密度が低下してCNTの性能が十分に得られなくなる。逆にCNFの配合量が0.1倍未満であれば、CNTの分散性が不十分となる。
 なお、分散液中における、CNTの濃度は0.001質量%以上10質量%以下であることが好ましく、CNFの濃度は0.01質量%以上10質量%以下であることが好ましい。
 <分散媒>
 本発明のカーボンナノチューブ分散液に用いる分散媒は、用途に応じて任意に選択することができるが、CNFの効果を有利に得ることから、メタノール、エタノールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;水;などの極性溶媒であるのが好ましく、特に水が好ましい。
 <その他>
 本発明の分散液には、その使用目的に応じて各種添加剤を配合することができる。添加剤としては、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、発泡剤、界面活性剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料等を挙げることができる。
 本発明の分散液は、フィルム等の基材に塗布、乾燥して、成膜することができるほか、分散液から直接、溶媒を除去するか、貧溶媒に投入して、固形分を析出させ、ろ過、乾燥することで、カーボンナノチューブ/セルロースファイバー複合材料を得ることもできる。
 (カーボンナノチューブ分散液の製造方法)
 カーボンナノチューブ分散液の製造方法に、格別な制限はなく、分散媒にCNTとCNFとを添加し、常法に従って分散処理をすればよい。分散媒にCNTとCNFとを添加する順番に格別な制限はなく、いずれかを先に添加しても、同時に添加しても良い。なお、CNFはpHが2以下となるとゲル化し、分散しにくくなるため、分散液の製造に際して、pHは2超に維持することが好ましい。分散処理は、攪拌子を用いて分散液を直接攪拌する方法や、キャビテーション効果が得られる分散方法や、この解砕効果が得られる分散方法が挙げられる。「キャビテーション効果が得られる分散方法」とは、液体に高エネルギーを付与した際、液体中で圧力差が生じて該液体中に生じた真空の気泡が破裂することにより生じた衝撃波を利用した分散方法である。当該分散方法を用いることにより、CNTの特性を損なうことなく分散媒中に分散することが可能となる。キャビテーション効果が得られる分散処理の具体例としては、超音波による分散処理、ジェットミルによる分散処理、及び高剪断撹拌による分散処理が挙げられる。さらに具体的には、キャビテーション効果が得られる分散処理に際して、スギノマシン社製スターバースト(登録商標)を使用することができる。分散処理は、一つの方法のみを採用してもよいし、複数の分散処理方法を組み合わせてもよい。カーボンナノチューブ分散液の分散処理に用いる装置は、従来公知のものを使用すればよい。
 一方、「解砕効果が得られる分散方法」とは、分散媒にCNTとCNFとを添加して得られた粗分散液に対して、せん断力を与えて粗分散液中のCNTの凝集体を解砕・分散させ、さらに分散液に背圧を負荷し、また所望により、分散液を冷却することで、キャビテーションの発生を抑制しつつ、CNTを分散液中に均一に分散させる方法である。なお、分散液に背圧を負荷する場合、分散液に負荷した背圧は、大気圧まで一気に降圧させてもよいが、多段階で降圧することが好ましい。かかる分散方法により、CNTを分散媒中に均一に分散できることは勿論、上記したキャビテーション効果が得られる分散処理に比べ、気泡が消滅する際の衝撃波によるCNTの損傷を抑制することができるので、この点で一層有利である。
 ここに、粗分散液にせん断力を与えて粗分散液中のCNTをさらに分散させるには、例えば、以下のような構造となる分散器を有する分散システムを用いればよい。
 すなわち、分散器は、粗分散液の流入側から流出側に向かって、内径がd1の分散器オリフィスと、内径がd2の分散空間と、内径がd3の終端部と(但し、d2>d3>d1である。)、を順次備える。
 そして、この分散器では、流入する高圧(通常、10~400MPa、好ましくは50~250MPa)の粗分散液が、分散器オリフィスを通過することで、圧力の低下を伴いつつ、高流速の流体となって分散空間に流入する。その後、分散空間に流入した高流速の粗分散液は、分散空間内を高速で流動し、その際にせん断力を受ける。その結果、粗分散液の流速が低下すると共に、粗分散液中のCNTが良好に分散する。そして、終端部から、流入した粗分散液の圧力よりも低い圧力(背圧)の流体が、分散液として流出することになる。
 なお、分散液の背圧は、分散液の流れに負荷をかけることで負荷することができ、例えば、後述する多段降圧器を分散器の下流側に配設することにより、分散液に所望の背圧を負荷することができる。
 この多段降圧器により、分散液の背圧を多段階で降圧することで、最終的に分散液を大気圧に開放した際に、分散液中に気泡が発生するのを抑制できる。
 また、この分散器は、分散液を冷却するための熱交換器や冷却液供給機構を備えていてもよい。というのは、分散器でせん断力を与えられて高温になった分散液を冷却することにより、分散液中で気泡が発生するのをさらに抑制できるからである。
 なお、熱交換器等の配設に替えて、粗分散液を予め冷却しておくことでも、分散液中で気泡が発生することを抑制できる。
 上記したように、この解砕効果が得られる分散処理では、キャビテーションの発生を抑制できるので、時として懸念されるキャビテーションに起因したCNTの損傷、特に、気泡が消滅する際の衝撃波に起因したCNTの損傷を抑制することができる。加えて、CNTへの気泡の付着や、気泡の発生によるエネルギーロスを抑制して、比表面積が大きいCNTであっても、均一かつ効率的に分散させることができる。
 なお、CNTへの気泡の付着の抑制による分散性の向上効果は、比表面積が大きいCNT、特に、比表面積が600m2/g以上のCNTにおいて非常に大きい。CNTの比表面積が大きく、表面に気泡が付着し易いCNTであるほど、気泡が発生して付着した際に分散性が低下し易いからである。
 以上のような構成を有する分散システムとしては、例えば、製品名「BERYU SYSTEM PRO」(株式会社美粒製)などがあり、このような分散システムを用い、分散条件を適切に制御することで、分散処理を実施することができる。
 (カーボンナノチューブ組成物)
 上述のようにして得た本発明の分散液に、目的に応じて重合性単量体の重合体(単に「重合体」ということがある)を配合し、カーボンナノチューブ組成物を得ることができる。
 <重合性単量体の重合体>
 本発明の分散液と混合される重合体に格別な制限はなく、エラストマーや樹脂などの、CNT及びCNFによる補強効果と、CNTによる導電性付与効果とを得たい各種のポリマー材料の中から適宜選択して採用することができる。重合性単量体の重合体としては、ポリエチレングリコールやポリビニルアルコールなどの水溶性ポリマー;天然ゴムや各種合成ゴムエラストマー; 樹脂(合成ポリマー);などが挙げられる。
 重合体の配合割合は、目的に応じて任意に設定することができるが、CNTとCNFとの相乗効果で高い導電性が得られることから、複合体を導電性材料として用いる場合、重合体に対して、CNTの量は比較的少量に抑えることが可能である。ここで、CNTとCNFとの相乗効果で高い導電性が得られる理由は、以下の通りであると推察される。まず、一般的に使用される分散剤はCNTの導電性を劣化させるため、配合量が多くなる程得られるポリマー材料の導電性を低下させる傾向にある。そこで、少量の添加によりCNTの分散性を向上させることができるCNFを配合してポリマー材料を製造することで、得られるポリマー材料中におけるCNTの導電性を高く維持することができる。
 上記重合体は、高分子材料(重合体)を溶媒に分散させた分散液(ラテックス)として本発明によるカーボンナノチューブ分散液と混合することが好ましい。本発明のカーボンナノチューブ組成物に使用するラテックスとしては、高分子材料である樹脂及びエラストマーのラテックスを好適に用いることができる。
 樹脂としては、スチレン系樹脂、アクリル系樹脂、メタクリル系樹脂、有機酸ビニルエステル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、オレフィン系樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン樹脂、ポリスルホン系樹脂(例えば、ポリエーテルスルホン、ポリスルホンなど)、ポリフェニレンエーテル系樹脂(例えば、2,6-キシレノールの重合体など)、セルロース誘導体(例えば、セルロースエステル類、セルロースカーバメート類、セルロースエーテル類など)、シリコーン樹脂(例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサンなど)などが挙げられる。なお、脂環式オレフィン系樹脂としては、特開平05-310845号公報及び米国特許第5179171号公報に記載されている環状オレフィンランダム共重合体、特開平05-97978号公報及び米国特許第5202388号公報に記載されている水素添加重合体、特開平11-124429号公報(EP1026189号)に記載されている熱可塑性ジシクロペンタジエン系開環重合体及びその水素添加物等が挙げられる。これらの文献は、全て参照することにより本明細書に取り込まれる。
 また、エラストマーとしては、アクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-イソプレンゴム、アクリロニトリル-ブタジエン-イソプレンゴム、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、天然ゴム(NR)、エチレン-プロピレン-ジエンゴム(EPDM)、ブチルゴム(IIR)、及びこれらエラストマーの部分水素添加物などの不飽和二重結合を有するゴムを挙げることができる。部分水素添加物としては、例えば、水素化NBR、水素化SBRなどを挙げることができる。これらのゴムは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 本発明に係る製造方法に用いられるラテックスの作製方法としては、例えば、(1)有機溶媒に溶解した樹脂及びエラストマー溶液を、界面活性剤の存在下に水中で乳化し、必要により有機溶媒を除去してラテックスを得る方法、(2)樹脂及びエラストマーを構成する単量体を、乳化重合もしくは懸濁重合して、直接ラテックスを得る方法が挙げられる。
 前記(1)の方法でラテックスを得る場合には、溶解性パラメータが10(cal/cm31/2以下の有機溶媒に溶解可能な樹脂及びエラストマーを使用することが、組成物を高収率で得る上で好ましい。溶解性パラメータとは、凝集エネルギー密度の平方根と定義され、混合によるエントロピー変化がほとんどゼロで、エンタルピー変化が起こる正則な溶液をもとにHildebrandとScottにより提唱されたパラメータで、代表的な溶剤の溶解性パラメータは「ポリマーハンドブック」(第3版)に例示されている。
 溶解性パラメータが10(cal/cm31/2以下の有機溶媒としては、例えばブタン、ペンタン、ヘキサン、ヘプタン、オクタン、シクロペンタン、シクロヘキサン、デカン、ドデカン;等の脂肪族系溶媒、トルエン、プロピルベンゼン、ベンゾニトリル;等の芳香族系溶媒、ブチルクロライド、アミルクロライド、アリルクロライド、クロロトルエン;等のハロゲン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、メチルイソブチルケトン、メチルヘキシルケトン、ジイソブチルケトン、ブチルアルデヒド、プロピルアセテート、ブチルアセテート、アミルアセテート;等のケトン系溶媒、エチルプロピオネート、エチルイソブチレート、ブチルブチレート;等のエステル系溶媒、ジメチルエーテル、ジヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル;等のエーテル系溶媒等が挙げられる。
 本発明に係る製造方法に用いられるラテックスは、エラストマーの分散液であることがより好ましく、ニトリル構造又は芳香環構造を有するエラストマーであるニトリルゴムを用いることがさらに好ましい。ニトリル構造又は芳香環構造を有するエラストマーを用いると、得られる組成物の改質効果が高くなり、CNTの添加量が少なくても高い導電性を付与できる。
 上述したアクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-イソプレンゴム、アクリロニトリル-ブタジエン-イソプレンゴムなどのニトリル構造を有するエラストマーは、α,β-不飽和ニトリルに由来する構造単位と共役ジエンに由来する構造単位とを有するポリマー又はその水素化物である。エラストマーが有するニトリル構造の含量は、組成物の物性の観点から、20質量%以上が好ましく、より好ましくは25質量%以上、55質量%以下、さらに好ましくは25質量%以上、50質量%以下である。ここで、ニトリル構造の含量は、α,β-不飽和ニトリルに由来の構造単位の、ゴム全体に対する質量割合であり、当該含量の測定は、JIS K 6364のミルオーブン法に従い、発生した窒素量を測定してアクリロニトリル分子量からその結合量を換算し、定量される値の中央値である。
 α,β-不飽和ニトリルとしては、アクリロニトリル及びメタクリロニトリルなどが好適に挙げられる。共役ジエンとしては、1,3-ブタジエン、イソプレン、2,3-メチルブタジエンなどの炭素数4以上6以下の共役ジエンが好適に挙げられる。
 例えば、アルキルベンゼンスルホン酸塩等の乳化剤を用いた乳化重合によりα,β-不飽和ニトリルと共役ジエンとの共重合体を得ることができる。ニトリル構造を有するエラストマーは、α,β-不飽和ニトリル及び共役ジエンと共重合可能なモノマーからなる構造単位を有していてもよい。このような共重合可能なモノマーとしては、スチレン等の芳香族ビニル;マレイン酸、フマル酸等のα,β-不飽和カルボン酸;マレイン酸ジエチル、フマル酸モノメチル、イタコン酸ジブチル等のα,β-不飽和カルボン酸エステル;等が挙げられる。これらの成分は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 芳香環構造を有するエラストマーは、芳香族ビニルに由来する構造単位と共役ジエンに由来する構造単位とを有するポリマーまたはその水素化物であって、芳香族ビニル構造単位含量は、例えば、60質量%以下、5質量%以上であり、組成物の物性の観点から好ましくは50質量%以下、10質量%以上、より好ましくは40質量%以下、15質量%以上である。
 芳香族ビニルとしては、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、N,N-ジメチルアミノメチルスチレン、N,N-ジエチルアミノメチルスチレン、ビニルナフタレン等を挙げることができ、特にスチレンが好ましい。これらの成分は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 このようなニトリル構造または芳香環構造を有するエラストマーは、市販品として多数知られており、それらを用いることができる。
 (カーボンナノチューブ組成物の製造方法)
 上述のようにして製造したカーボンナノチューブ分散液に重合体を混合するに当たり、溶媒の種類は適宜設定することができる。中でも、カーボンナノチューブ分散液に対して水に分散させた分散液(ラテックス)を混合することが好ましい。
 本発明に係る製造方法において用いるCNTの量は、ラテックスを構成する重合体100重量部に対して、例えば、0.01質量部以上、10重量部以下、好ましくは0.1質量部以上、7質量部以下、より好ましくは0.25質量部以上、5質量部以下である。CNTの量が0.01質量部以上であることにより、良好な導電性を確保でき、10質量部以下であることにより、組成物の流動性が向上して、成形性が良好となる。
 カーボンナノチューブ分散液とラテックスとを混合するための具体的方法については特に制限がなく、カーボンナノチューブ分散液とラテックスとが均一になる撹拌方法を用いればよい。なお、カーボンナノチューブ分散液を製造するための分散工程を行なった後、カーボンナノチューブ組成物を製造するための混合工程を行なうまでの時間は48時間以下であることが、CNTの分散性が時間の経過に伴って悪化することを防ぐことができるため好ましい。さらに、混合工程は、15℃以上、40℃以下の温度で行なうことが、分散剤、特に界面活性剤による分散機能がより良好に発揮されるため好ましい。
 混合工程の具体的な方法としては、カーボンナノチューブ分散液とラテックスとが混合されればよく、特に制限されない。例えば、一つの容器にカーボンナノチューブ分散液及びラテックスを入れて、適宜攪拌するなどして混合すればよい。撹拌は撹拌羽、磁気撹拌装置、遊星ミルなど、従来公知の撹拌機を用いればよい。撹拌時間は10分以上、24時間以下がより好ましい。
 以上のように、カーボンナノチューブ分散液とラテックスとを用いることにより、カーボンナノチューブ凝集体が低減され、得られる組成物は、導電性に優れ、かつ引っ張られたときの破断応力が大きく、破断に強いという利点がある。
 [凝固工程]
 本発明に係る製造方法は、混合工程で得られた混合物中の固形物を沈殿させる凝固工程をさらに含むことがより好ましい。
 凝固工程では、混合工程を経たカーボンナノチューブ分散液から固形物を沈殿させればよい。沈殿させる方法としては、当業者にとって公知のラテックスの沈殿方法を採用し得る。例えば、混合工程で得られた混合物を水溶性の有機溶媒に加える方法、酸を混合物に加える方法、塩を混合物に加える方法が挙げられる。
 水溶性の有機溶媒としては、ラテックス中の重合体が溶解しない溶媒を選択することがより好ましい。このようは有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール(別名イソプロピルアルコール)、エチレングリコール等が挙げられる。酸としては、酢酸、蟻酸、リン酸、塩酸等、一般的なラテックスの凝固に用いられる公知の材料が挙げられる。塩としては、塩化カルシウム、塩化ナトリウム、硫酸アルミニウム、塩化カリウム等、一般的なラテックスの沈殿に用いられる公知の材料が挙げられる。
 これらの中でも、混合工程で得られた混合物を酸及びアルカリ性のpH調整剤を適宜使用してpH4以上、pH10以下の範囲に調整して、有機溶媒を加える方法が、組成物を高効率で回収できるためより好ましい。また、凝固工程は、15℃以上、40℃以下の温度で行なうことがより好ましい。
 〔乾燥工程〕
 本発明に係る製造方法は、凝固工程にて固形物を沈殿して得られた凝固物を濾別し、乾燥する乾燥工程を含んでもよい。凝固物の濾別は、公知の方法により行うことができる。
 乾燥工程では、凝固工程にて固形物を沈殿して得られた凝固物が乾燥する方法であれば特に制限なく使用することができ、例えば、温風乾燥、減圧乾燥等、当業者にとって公知のポリマーの乾燥方法を採用し得る。なお、乾燥の条件としては、乾燥して得られる組成物の用途に応じた含水率等に基づいて適宜設定すればよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、体積導電率およびカーボンナノチューブ分散液の分散性は、それぞれ以下の方法を使用して評価した。
 <体積導電率>
 本発明のカーボンナノチューブ分散液を用いて製造したゴム組成物の体積導電率は、厚み200μmのシートの電気特性を抵抗率計1(三菱化学アナリテック社製、製品名「ロレスタ(登録商標)GPMCP-T610型」、プローブESP)又は抵抗率計2(三菱化学アナリテック社製、製品名「ハイレスタ(登録商標)MCP-HT800型」、リングプローブUR)で測定することにより取得した。
 <カーボンナノチューブ分散液の分散性>
 分散処理して得られたカーボンナノチューブ分散液を目視し、沈降物の有無を確認した(確認1)。さらに、得られたカーボンナノチューブ分散液を、5日間、室温(23℃)で静置保管し、沈降物の有無を目視にて確認した(確認2)。分散性の評価基準は以下の通りとした。
 A:確認1及び確認2の双方にて、沈降物は認められず、均一に分散した状態を保持していた。
 B:確認1で細かい粒子(直径1μm以上300μm以下)が確認され、確認2でも沈降物が認められた。
 C:確認1で粗い粒子(直径300μm超)が確認され、確認2でも沈降物が認められた。
 D:確認1にて、目視において沈降物が見られ、均一に分散できなかった。また、確認2でも沈降物が認められた。
 <製造例1:CNTの合成>
 日本国特許公報「特許4,621,896号公報」に記載のスーパーグロース法を用いてCNT(以下、「SGCNT」と略記)を得た。
 具体的には次の条件において、SGCNT-1を成長させた。
 炭素化合物:エチレン;供給速度50sccm
 雰囲気(ガス):ヘリウム、水素混合ガス;供給速度1000sccm
 圧力:1大気圧
 水蒸気添加量:300ppm
 反応温度:750℃
 反応時間:10分
 金属触媒(存在量):鉄薄膜;厚さ1nm
 基材:シリコンウェハー
 得られたSGCNT-1は、BET比表面積1,050m2/g、ラマン分光光度計での測定において、単層CNTに特長的な100~300cm-1の低周波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。また、透過型電子顕微鏡を用い、無作為に100本のSGCNT-1の直径を測定した結果、平均直径(Av)が3.3nm、直径分布(3σ)が1.9、(3σ/Av)が0.58であった。
 <製造例2:CNTの合成>
 製造例1の金属触媒の鉄薄膜層の厚みを、5nmにした以外は同様の手法により、SGCNT-2を得た。得られたSGCNT-2は、BET比表面積620m2/g、ラマン分光光度計での測定において、単層CNTに特長的な100~300cm-1の低周波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。また、透過型電子顕微鏡を用い、無作為に100本のSGCNT-2の直径を測定した結果、平均直径(Av)が5.9nm、直径分布(3σ)が3.3、(3σ/Av)が0.56であった。
 <製造例3:セルロースナノファイバー分散体S1の合成>
 乾燥重量で2g相当分の未乾燥の亜硫酸漂白針葉樹パルプ(主に1000nmを超える繊維径の繊維から成る)、0.025gのTEMPOおよび0.25gの臭化ナトリウムを水150mlに分散させた後、13質量%次亜塩素酸ナトリウム水溶液を、1gのパルプに対して次亜塩素酸ナトリウムの量が2.5mmolとなるように次亜塩素酸ナトリウムを加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10.5に保った。pHに変化が見られなくなった時点で反応終了と見なし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分量25質量%の水を含浸させた反応物繊維を得た。
 次に、該反応物繊維に水を加え、2質量%スラリーとし、回転刃式ミキサーで約5分間の処理を行った。処理に伴って著しくスラリーの粘度が上昇したため、少しずつ水を加えていき固形分濃度が0.15質量%となるまでミキサーによる分散処理を続けた。こうして得られたセルロース濃度が0.15質量%の微細セルロース繊維の分散体に対して、遠心分離により浮遊物の除去を行った後、水による濃度調製を行ってセルロース濃度が0.1質量%の透明かつやや粘調な微細セルロース繊維の分散体S1を得た。分散体S1を乾燥させて得られた透明な膜状のセルロースの広角X線回折像から、分散体S1がセルロースI型結晶構造を有するセルロースから成ることが示され、また同じ膜状セルロースのATRスペクトルのパターンからカルボニル基の存在が確認された。
 分散体S1は0.1質量%でも粘度が極めて高く、直交偏光板の間に置くと、静止した状態でも複屈折が確認でき、分散液中に含まれる微細な繊維が高い結晶配向性を有しており、かつ分散液中で部分的に自己組織化した秩序構造を有している可能性も示唆された。分散体S1の微細セルロース繊維を親水化処理済みのカーボン膜被覆グリッド上にキャスト後、2%ウラニルアセテートでネガティブ染色したTEM像から分散体S1は繊維状のセルロースから構成されており、最大繊維径が10nmかつ数平均繊維径が6nmであることがわかった。
 また、上述した方法により評価した分散体S1を乾燥させて得られる透明膜状のセルロース中のアルデヒド基の量およびカルボキシル基の量は、微細セルロース繊維の質量に対して、それぞれ0.33mmol/gおよび0.99mmol/gであった。
 以上により、最大繊維径が1000nm以下かつ数平均繊維径が2nm以上150nm以下であって、セルロース繊維の水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に置換されており、且つセルロースI型結晶構造を有し、カルボキシル基とアルデヒド基の量の総和がセルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下である、微細セルロース繊維を含有している分散体S1を得た。
 <製造例4:セルロースナノファイバー分散体H1の合成>
 製造例3の原料として用いた亜硫酸漂白針葉樹パルプ(主に1000nmを超える繊維径の繊維から成る)に水を加え、分散体S1と同等のミキサー処理により0.1質量%とした分散体(H1)を調製した。酸化工程を経ていないセルロース繊維を含有する製造例4の分散体H1は、機械処理のみでは懸濁せず、沈降が起こった。
 <製造例5、6、7:セルロースナノファイバー分散体S2、S3、及びS4の合成>
 製造例3において、原料を、精製後未乾燥のコットンリント(製造例5)、精製後未乾燥の酢酸菌生産のバクテリア・セルロース(BC)(製造例6)、ホヤから単離した精製後未乾燥のセルロース(製造例7)とし、原料セルロースに対する次亜塩素酸ナトリウムの添加量を、製造例5では製造例3と同様の2.5mmol/g、製造例6および製造例7では共に1.8mmol/gとし、他の条件はすべて製造例3と同じとしていずれも0.1質量%の透明な微細セルロース繊維の分散体を得た。製造例5,6,7の各々において得られた0.1質量%のセルロース濃度の微細セルロース繊維の分散体を各々、分散体S2、S3、S4とする。
 分散体S2~S4のいずれからも乾燥により、透明な膜状のセルロースが得られ、セルロースI型結晶構造を有することとカルボニル基の吸収バンドを有することが製造例3と同様の手法により確認された。
 製造例3と同様にしてTEM観察により評価した、分散体S2~S4の最大繊維径および数平均繊維径は、それぞれ、最大繊維径15nm、数平均繊維径8nm(S2)、最大繊維径90nm、数平均繊維径37nm(S3)、最大繊維径62nm,数平均繊維径22nm(S4)であった。
 さらに分散体S2~S4の各々を乾燥させて得られる透明膜状のセルロース中のアルデヒド基の量およびカルボキシル基の量は、それぞれ0.21mmol/gおよび0.67mmol/g(S2)、0.01mmol/gおよび0.50mmol/g(S3)、0.03mmol/gおよび0.31mmol/g(S4)であり、製造例5~7により得られた微細セルロース繊維の分散体S2~S4は、最大繊維径が1000nm以下かつ数平均繊維径が2nm以上150nm以下であって、セルロース繊維の水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に置換されており、且つセルロースI型結晶構造を有し、カルボキシル基とアルデヒド基の量の総和がセルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下である微細セルロース繊維を含有していることが確認された。
 <製造例8:セルロースナノファイバー分散体S5の合成>
 乾燥重量で2g相当分の未乾燥の亜硫酸漂白針葉樹パルプ(主に1000nmを超える繊維径の繊維から成る)、0.032gのTEMPOおよび0.20gの臭化ナトリウムを水200mlに分散させた後、13質量%次亜塩素酸ナトリウム水溶液を、1gのパルプに対して次亜塩素酸ナトリウムの量が10mmolとなるように次亜塩素酸ナトリウムを加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10.5に保った。pHに変化が見られなくなった時点で反応終了と見なし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分量25質量%の水を含浸させた反応物繊維を得た。
 次に、該反応物繊維に水を加え、2質量%スラリーとし、回転刃式ミキサーで約5分間の処理を行った。処理に伴って著しくスラリーの粘度が上昇したため、少しずつ水を加えていき固形分濃度が0.15質量%となるまでミキサーによる分散処理を続けた。こうして得られたセルロース濃度が0.15質量%の微細セルロース繊維の分散体を超音波で2分間処理し、遠心分離により浮遊物の除去を行った後、水による濃度調製を行ってセルロース濃度が0.1質量%の透明かつやや粘調な微細セルロース繊維の分散体S5を得た。分散体S5を乾燥させて得られた透明な膜状のセルロースの広角X線回折像から、分散体S5がセルロースI型結晶構造を有するセルロースから成ることが示され、また同じ膜状セルロースのATRスペクトルのパターンからカルボニル基の存在が確認された。
 分散体S5は0.1質量%でも粘度が極めて高く、直交偏光板の間に置くと、静止した状態でも複屈折が確認でき、分散液中に含まれる微細な繊維が高い結晶配向性を有しており、かつ分散液中で部分的に秩序構造を有している可能性も示唆された。分散体S5の微細セルロース繊維を親水化処理済みのカーボン膜被覆グリッド上にキャスト後、2%ウラニルアセテートでネガティブ染色したTEM像から分散体S5は繊維状のセルロースから構成されており、最大繊維径が8nmかつ数平均繊維径が4nmであることがわかった。
 また、上述した方法により評価した分散体S5を乾燥させて得られる透明膜状のセルロース中のアルデヒド基の量およびカルボキシル基の量は、微細セルロース繊維の質量に対して、それぞれ0.01mmol/gおよび1.74mmol/gであった。
 以上により、最大繊維径が1000nm以下かつ数平均繊維径が2nm以上150nm以下であって、セルロース繊維の水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に置換されており、且つセルロースI型結晶構造を有し、カルボキシル基とアルデヒド基の量の総和がセルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下である、微細セルロース繊維を含有している分散体S5を得た。
 <実施例1>
 製造例1で得られたSGCNT-1 0.008g、製造例3で得られたセルロースナノファイバー分散体S1(セルロースナノファイバー濃度0.1質量%)16gを30mLバイアル瓶に入れ、卓上型超音波洗浄器製品名「ブランソニック(登録商標)」、日本エマソン社製;以下、同じ)で30分間分散処理をした。目視において沈降物は認められず、均一に分散できた。
 その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。この5日間保管後の分散液を、マトリックスとしての変性アクリロニトリル・ブタジエンゴム(NBR)ラテックス(日本ゼオン社製、製品名「Nipol(登録商標)LX550L」、固形分濃度45質量%)1.8gを撹拌子で撹拌した中に滴下して、カーボンナノチューブ-NBR混合液を得た。
 得られた混合液を撹拌子で撹拌した塩化カルシウム水溶液(濃度35質量%)36gに滴下し、得られた析出物をろ過して蒸留水でよく洗浄して110℃真空下で一晩乾燥してゴム組成物を得た。
 得られたゴム組成物を160℃で真空プレスして、厚み200μmのシートを得た。そのシートの電気特性を抵抗率計1(三菱化学アナリテック社製、製品名「ロレスタ(登録商標)GPMCP-T610型」、プローブESP;以下、同じ)で測定した。体積導電率は1.8×10-4S/cmであった。結果を表1に示す。
 <実施例2>
 SGCNT-1に代えて、製造例2で得られたSGCNT-2を使用した以外は、実施例1と同様に処理した。目視において沈降物は認められず、均一に分散できた。その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。
 得られたゴム組成物シートの体積導電率を実施例1と同様にして測定したところ、1.0×10-5S/cmであった。結果を表1に示す。
 <実施例3>
 分散体S1に代えて、製造例5で得られた分散体S2を使用した以外は、実施例1と同様に処理した。目視において沈降物は認められず、均一に分散できた。その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。
 得られたゴム組成物シートの体積導電率を実施例1と同様にして測定したところ、7.7×10-5S/cmであった。結果を表1に示す。
 <実施例4>
 分散体S1に代えて、製造例6で得られた分散体S3を使用した以外は、実施例1と同様に処理した。目視において沈降物は認められず、均一に分散できたが、分散液の中には細かい粒子が確認できた。その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。
 得られたゴム組成物シートの体積導電率を実施例1と同様にして測定したところ、5.5×10-5S/cmであった。結果を表1に示す。
 <実施例5>
 分散体S1に代えて、製造例7で得られた分散体S4を使用した以外は、実施例1と同様に処理した。目視において沈降物は認められず、均一に分散できたが、分散液の中には細かい粒子が確認できた。
 その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。
 得られたゴム組成物シートの体積導電率を実施例1と同様にして測定したところ、6.6×10-5S/cmであった。結果を表1に示す。
 <実施例6>
 製造例1で得られたSGCNT-1 0.15g、製造例3で得られたセルロースナノファイバー分散体S1(セルロースナノファイバー濃度0.1wt%)300gを500mLバイアル瓶に入れ、卓上型超音波洗浄器で1分間分散前処理をした。その分散液をジェットミル(製品名「NanoJetPulJN20」、常光社製)を用いて分散処理した(ユニット24、吐出速度300000、5回処理)。目視において沈降物は認められず、均一に分散できた。
 その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。この5日間保管後の分散液を変性アクリロニトリル・ブタジエンゴム(NBR)ラテックス(日本ゼオン社製、製品名「Nipol(登録商標)LX550L」、固形分濃度45質量%)34gを撹拌子で撹拌した中に滴下して、カーボンナノチューブ-NBR混合液を得た。
 得られた混合液を撹拌子で撹拌した塩化カルシウム水溶液(濃度35質量%)670gに滴下し、得られた析出物をろ過して蒸留水でよく洗浄して110℃真空下で一晩乾燥してゴム組成物を得た。
 得られたゴム組成物を160℃で真空プレスして、厚み200μmのシートを得た。得られたシートについて実施例1と同様にして体積導電率を測定したところ、7.4×10-3S/cmであった。結果を表1に示す。
 <実施例7>
 実施例1と同様に処理して得られたカーボンナノチューブ分散液の5日間保管後の分散液を水素添加アクリロニトリル・ブタジエン系ラテックス(アクリロニトリル/ブタジエン/メチルアクリレート=34:65:1(質量比)、水素添加率90%、固形分濃度39.8質量%)0.5gを撹拌子で撹拌した中に滴下して、カーボンナノチューブ-ニトリルゴム混合液を得た。
 得られた混合液を撹拌子で撹拌した塩化カルシウム水溶液(濃度35質量%)30gに滴下し、得られた析出物をろ過して蒸留水でよく洗浄して110℃真空下で一晩乾燥してゴム組成物を得た。
 得られたCNT/ゴム複合体を160℃で真空プレスして、厚み200μmのシートを得た。得られたシートについて実施例1と同様にして体積導電率を測定したところ、2.3×10-5S/cmであった。結果を表1に示す。
 <実施例8>
 SGCNT-1に代えて、多層CNT(MWCNT;Nanocyl社製、製品名「NC7000」;BET比表面積290m2/g)を使用した以外は、実施例1と同様に処理した。目視において沈降物は認められず、均一に分散できた。
 その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。
 得られたゴム組成物を160℃で真空プレスして、厚み200μmのシートを得た。そのシートの電気特性を抵抗率計2(三菱化学アナリテック社製、製品名「ハイレスタ(登録商標)MCP-HT800型」、リングプローブUR;以下、同じ)で測定した。体積導電率は1.8×10-10S/cmであった。結果を表1に示す。
 <実施例9>
 SGCNT-1に代えて、HiPCO(NanoIntegrisInc.社製、BET比表面積700m2/g)を使用した以外は、実施例1と同様に処理した。目視において沈降物は認められず、均一に分散できた。
 その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。
 得られたゴム組成物を160℃で真空プレスして、厚み200μmのシートを得た。得られたシートについて実施例8と同様にして体積導電率を測定したところ、2.6×10-8S/cmであった。結果を表1に示す。
 <実施例10>
 分散体S1に代えて、製造例4で得られた分散体H1を使用した以外は、実施例1と同様に処理した。目視において沈降物は認められず、均一に分散できたが、分散体の中には粗い粒子が確認できた。
 その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。
 得られたシートについて実施例8と同様にして体積導電率を測定したところ、3.0×10-8S/cmであった。結果を表1に示す。
 <実施例11>
 製造例1で得られたSGCNT-1 0.008g、製造例8で得られたセルロースナノファイバー分散体S5(セルロースナノファイバー濃度0.1質量%)16gを30mLバイアル瓶に入れ、卓上型超音波洗浄器製品名「ブランソニック(登録商標)」、日本エマソン社製;以下、同じ)で30分間分散処理をした。目視において沈降物は認められず、均一に分散できた。
 その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。この5日間保管後の分散液を、マトリックスとしての変性アクリロニトリル・ブタジエンゴム(NBR)ラテックス(日本ゼオン社製、製品名「Nipol(登録商標)LX550L」、固形分濃度45質量%)1.8gを撹拌子で撹拌した中に滴下して、カーボンナノチューブ-NBR混合液を得た。
 得られた混合液を撹拌子で撹拌した塩化カルシウム水溶液(濃度35質量%)36gに滴下し、得られた析出物をろ過して蒸留水でよく洗浄して110℃真空下で一晩乾燥してゴム組成物を得た。
 得られたゴム組成物を160℃で真空プレスして、厚み200μmのシートを得た。そのシートの電気特性を抵抗率計1(三菱化学アナリテック社製、製品名「ロレスタ(登録商標)GPMCP-T610型」、プローブESP;以下、同じ)で測定した。体積導電率は8.8×10-3S/cmであった。結果を表1に示す。
 <比較例1>
 製造例1で得られたSGCNT-1 0.008g、カルボキシメチルセルロース(ダイセルファインケム社製、製品名「CMCダイセル1130」)0.5質量%水溶液3.2g、蒸留水12.8gを30mLバイアル瓶に入れ、卓上型超音波洗浄器で30分間分散処理をした。目視において沈降物は認められず、均一に分散できた。
 その後、5日間、室温(23℃)でその分散液を静置保管したが、目視において沈降物は認められず、均一に分散した状態を保持していた。この5日間保管後の分散液を変性アクリロニトリル・ブタジエンゴム(NBR)ラテックス(日本ゼオン社製、製品名「Nipol(登録商標)LX550L」、固形分濃度45質量%)1.8gを撹拌子で撹拌した中に滴下したところ、凝集したCNTが析出した。
 析出の見られた混合液を撹拌子で撹拌した塩化カルシウム水溶液(濃度35質量%)36gに滴下し、得られた析出物をろ過して蒸留水でよく洗浄して110℃真空下で一晩乾燥してゴム組成物を得た。
 得られたゴム組成物を160℃で真空プレスして、厚み200μmのシートを得た。得られたシートについて実施例1と同様にして体積導電率を測定したところ、体積導電率は高いところで2.2×10-6S/cmで、値がまばらになった。抵抗率計1では測定できない箇所もあった。結果を表1に示す。
 <比較例2>
 製造例1で得られたSGCNT-1 0.008g、ドデシルジフェニルオキシドジスルホン酸ナトリウム30質量%水溶液(ダウケミカル社製、製品名「ダウファックス(登録商標)2A1」)0.133g、蒸留水15.867gを30mLバイアル瓶に入れ、卓上型超音波洗浄器で30分間分散処理をした。目視において沈降物が見られ、均一に分散できなかった。よって、ラテックスと混合してもCNTが均一に分散したゴム組成物を得ることができず、ゴム組成物のシートの体積導電率を測定することができなかった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 これらの結果から、カーボンナノチューブ分散液の製造にあたり、セルロースナノファイバーを用いることで、従来の分散材と同様に高い分散性を維持することができることがわかる。さらに、セルロースファイバーを用いることで、従来のカーボンナノチューブ分散液を用いて製造したカーボンナノチューブ組成物よりも、体積導電率が高いカーボンナノチューブ組成物が得られることがわかる。

Claims (13)

  1.  カーボンナノチューブ、セルロースナノファイバー、及び分散媒を含むカーボンナノチューブ分散液。
  2.  前記セルロースナノファイバーが、最大繊維径が1000nm以下かつ数平均繊維径が2nm以上150nm以下の微細セルロース繊維であって、
     該微細セルロース繊維は、水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に置換されており、且つセルロースI型結晶構造を有することを特徴とする、
    請求項1のカーボンナノチューブ分散液。
  3.  前記微細セルロース繊維が、前記カルボキシル基とアルデヒド基の量の総和が前記微細セルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下であることを特徴とする、
    請求項2に記載のカーボンナノチューブ分散液。
  4.  前記微細セルロース繊維が、最大繊維径が500nm以下かつ数平均繊維径が2nm以上100nm以下であることを特徴とする請求項2又は3に記載のカーボンナノチューブ分散液。
  5.  前記微細セルロース繊維が、最大繊維径が30nm以下かつ数平均繊維径が2nm以上10nm以下であることを特徴とする請求項4に記載のカーボンナノチューブ分散液。
  6.  前記微細セルロース繊維が、前記カルボキシル基の量が前記微細セルロース繊維の質量に対し、0.1mmol/g以上2.2mmol/g以下であることを特徴とする請求項2~5の何れか一項に記載のカーボンナノチューブ分散液。
  7.  前記カーボンナノチューブが、BET比表面積が600m2/g以上であることを特徴とする請求項1~6の何れか一項に記載のカーボンナノチューブ分散液。
  8.  前記カーボンナノチューブが、平均直径(Av)と直径分布(3σ)とが関係式:0.60>3σ/Av>0.20を満たすことを特徴とする請求項1~7の何れか一項に記載のカーボンナノチューブ分散液。
  9.  カーボンナノチューブ及びセルロースナノファイバーを、キャビテーション効果が得られる分散処理によって分散媒に分散させる工程を含む請求項1~8の何れか一項に記載のカーボンナノチューブ分散液の製造方法。
  10.  前記キャビテーション効果が得られる分散処理が、超音波による分散処理、ジェットミルによる分散処理及び高剪断撹拌による分散処理からなる群より選ばれる少なくとも一つの分散処理である、請求項9に記載のカーボンナノチューブ分散液の製造方法。
  11.  請求項1~8の何れか一項に記載のカーボンナノチューブ分散液に重合体を配合してなるカーボンナノチューブ組成物。
  12.  請求項9又は10に記載の製造方法によって得られるカーボンナノチューブ分散液と重合体のラテックスとを混合する混合工程を含む、請求項11に記載のカーボンナノチューブ組成物の製造方法。
  13.  前記混合工程で得られた混合物中の固形物を沈殿させる凝固工程をさらに含む、請求項12に記載のカーボンナノチューブ組成物の製造方法。
PCT/JP2014/000366 2013-01-24 2014-01-24 カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法 WO2014115560A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/762,350 US20150368108A1 (en) 2013-01-24 2014-01-24 Carbon nanotube dispersion liquid, method of manufacturing same, carbon nanotube composition, and method of manufacturing same
KR1020157020085A KR20150110549A (ko) 2013-01-24 2014-01-24 카본 나노튜브 분산액 및 그의 제조 방법, 및 카본 나노튜브 조성물 및 그의 제조 방법
EP14743277.7A EP2949624A4 (en) 2013-01-24 2014-01-24 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP2014558508A JPWO2014115560A1 (ja) 2013-01-24 2014-01-24 カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法
CN201480005842.4A CN104936895A (zh) 2013-01-24 2014-01-24 碳纳米管分散液及其制造方法、以及碳纳米管组合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-010843 2013-01-24
JP2013010843 2013-01-24

Publications (1)

Publication Number Publication Date
WO2014115560A1 true WO2014115560A1 (ja) 2014-07-31

Family

ID=51227352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000366 WO2014115560A1 (ja) 2013-01-24 2014-01-24 カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法

Country Status (6)

Country Link
US (1) US20150368108A1 (ja)
EP (1) EP2949624A4 (ja)
JP (1) JPWO2014115560A1 (ja)
KR (1) KR20150110549A (ja)
CN (1) CN104936895A (ja)
WO (1) WO2014115560A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182058A1 (ja) * 2014-05-30 2015-12-03 日本ゼオン株式会社 カーボンナノチューブ分散液の製造方法およびカーボンナノチューブ分散液、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体
WO2016039224A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子、熱電変換層、熱電変換層形成用組成物
WO2016039228A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子、熱電変換層、熱電変換層形成用組成物
WO2016039225A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子、n型熱電変換層、および、n型熱電変換層形成用組成物
KR20160037905A (ko) * 2013-07-31 2016-04-06 니폰 제온 가부시키가이샤 카본 나노튜브 분산액의 제조 방법, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 및 복합 재료 및 복합 재료 성형체
WO2016157834A1 (ja) * 2015-03-31 2016-10-06 日本ゼオン株式会社 炭素膜およびその製造方法
US20160340520A1 (en) * 2014-09-17 2016-11-24 National University Corporation Nagoya University Conducting composition and method for producing the same
WO2017061605A1 (ja) * 2015-10-07 2017-04-13 日本製紙株式会社 ゴム組成物の製造方法
WO2017104609A1 (ja) * 2015-12-16 2017-06-22 ナノサミット株式会社 新規なナノカーボン複合体
CN107074546A (zh) * 2014-11-14 2017-08-18 户田工业株式会社 碳纳米管及其制造方法、以及使用碳纳米管的锂离子二次电池
JP2017172677A (ja) * 2016-03-23 2017-09-28 日信工業株式会社 ピストンシール部材及び該ピストンシール部材を用いたディスクブレーキ
JP2017180793A (ja) * 2016-03-31 2017-10-05 日信工業株式会社 ブーツ部材及び該ブーツ部材を用いたピンスライド型車両用ディスクブレーキ
JP2018059013A (ja) * 2016-10-07 2018-04-12 株式会社大成化研 潤滑油
WO2018070387A1 (ja) * 2016-10-13 2018-04-19 日本製紙株式会社 ゴム組成物の製造方法
WO2018147342A1 (ja) * 2017-02-09 2018-08-16 日本製紙株式会社 ゴム組成物およびその製造方法
JP2019173021A (ja) * 2017-10-04 2019-10-10 国立研究開発法人産業技術総合研究所 カーボンナノチューブ複合膜
WO2020009185A1 (ja) * 2018-07-04 2020-01-09 日本ゼオン株式会社 エラストマー組成物の製造方法
WO2020195974A1 (ja) * 2019-03-22 2020-10-01 北越コーポレーション株式会社 ナノカーボン分散液及びその製造方法、ナノカーボン分散剤並びに電磁波遮蔽材
CN111945460A (zh) * 2020-07-31 2020-11-17 齐鲁工业大学 一种短切碳纤维分散的方法及应用
JP2021004367A (ja) * 2020-09-16 2021-01-14 ナノサミット株式会社 新規なナノカーボン複合体の製造方法
WO2021153590A1 (ja) * 2020-01-28 2021-08-05 王子ホールディングス株式会社 微細繊維状セルロース・ナノカーボン含有物の製造方法及び微細繊維状セルロース・ナノカーボン含有物
WO2021235501A1 (ja) * 2020-05-19 2021-11-25 王子ホールディングス株式会社 微細繊維状セルロース、分散液、シート、積層シート、積層体及び微細繊維状セルロースの製造方法
WO2021235502A1 (ja) * 2020-05-19 2021-11-25 王子ホールディングス株式会社 樹脂組成物、ゴム組成物、樹脂成形体及び樹脂組成物の製造方法
WO2022070904A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 二次電池用負極及び二次電池
US11839069B2 (en) 2018-09-28 2023-12-05 Zeon Corporation Electromagnetic wave absorbing sheet and method of manufacturing the same
JP7416180B1 (ja) 2022-11-24 2024-01-17 東洋インキScホールディングス株式会社 炭素材料、炭素材料分散組成物、合材スラリー、電極膜、二次電池、および車両

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052087A1 (ko) * 2015-09-25 2017-03-30 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법
US10090078B2 (en) 2015-10-07 2018-10-02 King Fahd University Of Petroleum And Minerals Nanocomposite films and methods of preparation thereof
CN107459687B (zh) * 2016-06-06 2020-04-14 中国石油化工股份有限公司 一种宽温域高阻尼纳米橡胶复合材料及其制备方法
CN105949536A (zh) * 2016-07-14 2016-09-21 南京林业大学 具有高强度天然橡胶/碳纳米管导电复合薄膜的制备方法
CN106750583B (zh) * 2016-09-18 2018-09-25 南京林业大学 一种nr-cnf-cnt导电纳米复合材料及其制备方法和应用
CN106676946A (zh) * 2017-01-09 2017-05-17 云南中烟工业有限责任公司 一种多功能碳纳米管复合包装纸
CN106977773B (zh) * 2017-04-21 2019-11-26 深圳先进技术研究院 一种氮化硼纳米管-纳米纤维素纤维复合材料及其制备方法
WO2019074072A1 (ja) 2017-10-13 2019-04-18 国立研究開発法人産業技術総合研究所 カーボンナノチューブから構成される繊維及びその製造方法
KR102377623B1 (ko) 2018-01-29 2022-03-24 주식회사 엘지화학 탄소나노튜브 분산액의 제조방법
KR102099675B1 (ko) 2018-04-30 2020-05-15 네이처코스텍 주식회사 변성 셀룰로오스와 그 제조방법
KR102093282B1 (ko) 2018-05-23 2020-03-25 네이처코스텍 주식회사 신규한 변성 셀룰로오스와 그 제조방법
KR20200000579A (ko) 2018-06-25 2020-01-03 네이처코스텍 주식회사 변성 셀룰로오스를 함유하는 피부미용 증진용 조성물
TW202024688A (zh) * 2018-11-12 2020-07-01 日商日東電工股份有限公司 影像顯示裝置
CN109867916B (zh) * 2019-02-18 2022-11-11 昆明理工大学 植物纤维增强树脂基复合材料及其制备方法
CN109796007B (zh) * 2019-02-19 2022-03-15 昆明理工大学 微纳尺寸生物质纤维和碳纳米管混合悬浮液的制备方法
KR102344588B1 (ko) 2019-06-25 2021-12-30 네이처코스텍 주식회사 변성 셀룰로오스를 포함하는 피부필러용 조성물
EP3991761A4 (en) 2019-06-26 2023-01-11 Nature Costech Co., Ltd. DERMAL FILLER COMPOSITION WITH MODIFIED CELLULOSE
JP6887067B1 (ja) * 2019-07-03 2021-06-16 日本製紙株式会社 混合液
JP7265028B2 (ja) * 2019-10-02 2023-04-25 北越コーポレーション株式会社 カーボンナノチューブ水分散液の製造方法
KR102391943B1 (ko) 2019-11-26 2022-04-29 네이처코스텍 주식회사 변성 셀룰로오스와 히알루론산 함유 피부필러용 조성물
CZ309291B6 (cs) 2021-01-12 2022-07-27 ART CARBON s.r.o. Způsob výroby adsorpčního/filtračního nanomateriálu pro velkoobjemové čištění tekutin a kompozitní adsorpční/filtrační nanomateriál
CN116790024B (zh) * 2023-06-15 2024-01-23 北京林业大学 纳米纤维素复合气凝胶及其制备方法和水伏发电器件

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202388A (en) 1990-11-30 1993-04-13 Japan Synthetic Rubber Co., Ltd. Process for producing hydrogenation product of ring-opening polymer
JPH0597978A (ja) 1991-10-09 1993-04-20 Japan Synthetic Rubber Co Ltd 水素添加重合体
JPH05310845A (ja) 1992-05-11 1993-11-22 Mitsui Petrochem Ind Ltd 環状オレフィン系ランダム多元共重合体およびその製造方法
JPH11124429A (ja) 1997-10-23 1999-05-11 Nippon Zeon Co Ltd 熱可塑性ジシクロペンタジエン系開環重合体、及びその製造方法
EP1026189A1 (en) 1997-10-23 2000-08-09 Nippon Zeon Co., Ltd. Thermoplastic dicyclopentadiene-base open-ring polymers, hydrogenated derivatives thereof, and processes for the preparation of both
WO2005082775A1 (ja) 2004-03-02 2005-09-09 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブ含有薄膜
JP2005270891A (ja) 2004-03-26 2005-10-06 Tetsuo Kondo 多糖類の湿式粉砕方法
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2008150719A (ja) 2006-12-14 2008-07-03 Forestry & Forest Products Research Institute セルロースナノファイバーとその製造方法
JP2008208231A (ja) 2007-02-27 2008-09-11 Konica Minolta Holdings Inc 光学フィルムの製造方法、光学フィルム、及びそれを用いた偏光板、液晶ディスプレイ
JP2008230935A (ja) 2007-03-23 2008-10-02 Chemicals Evaluation & Research Institute カーボンナノチューブの水分散方法
JP2010104768A (ja) 2008-10-02 2010-05-13 Kri Inc 多糖類ナノファイバーとその製造方法、多糖類ナノファイバー含むイオン液体溶液と複合材料
JP2010254546A (ja) * 2009-03-31 2010-11-11 Toray Ind Inc カーボンナノチューブ水性分散液、導電性複合体およびその製造方法
JP4621896B2 (ja) 2004-07-27 2011-01-26 独立行政法人産業技術総合研究所 単層カーボンナノチューブおよびその製造方法
JP2011202010A (ja) 2010-03-25 2011-10-13 Toppan Printing Co Ltd 膜形成用材料およびその製造方法ならびにシート
JP2011213500A (ja) * 2010-03-31 2011-10-27 Cci Corp カーボンナノチューブ分散液の製造方法
JP4811712B2 (ja) 2005-11-25 2011-11-09 独立行政法人産業技術総合研究所 カーボンナノチューブ・バルク構造体及びその製造方法
JP2011225820A (ja) * 2010-03-30 2011-11-10 Teijin Ltd ポリイミド溶液およびその製造方法
JP2012001626A (ja) * 2010-06-16 2012-01-05 Univ Of Tokyo 物理ゲルの製造方法および物理ゲル
JP2012164492A (ja) * 2011-02-04 2012-08-30 Tokyo Institute Of Technology 燃料電池用空気極触媒とその製造方法
JP2012236983A (ja) * 2011-04-28 2012-12-06 Nagoya Univ 導電性組成物
JP2012240875A (ja) * 2011-05-18 2012-12-10 Asahi Glass Co Ltd カーボンナノ材料分散液

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5420416B2 (ja) * 2007-10-23 2014-02-19 特種東海製紙株式会社 シート状物及びその製造方法
JPWO2009069641A1 (ja) * 2007-11-26 2011-04-14 国立大学法人 東京大学 セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液
KR20110137839A (ko) * 2007-11-30 2011-12-23 도레이 카부시키가이샤 카본 나노튜브 집합체 및 그의 제조 방법
CN102964635B (zh) * 2007-12-21 2015-08-19 三菱化学株式会社 纤维素纤维分散液、平面结构体、颗粒、复合体、开纤方法、分散液的制造方法
JP5660595B2 (ja) * 2008-02-11 2015-01-28 国立大学法人 東京大学 導電紙とその製造方法、導電性セルロース組成物とその製造方法、物品、電子デバイス
WO2010059027A2 (en) * 2008-11-18 2010-05-27 Universiti Sains Malaysia A PROCESS FOR PRODUCING CARBON NANOTUBES (CNTs)
JP5835210B2 (ja) * 2010-03-25 2015-12-24 凸版印刷株式会社 導電性フィルムおよびその製造方法
US20130004657A1 (en) * 2011-01-13 2013-01-03 CNano Technology Limited Enhanced Electrode Composition For Li ion Battery
EP2760070B1 (en) * 2011-09-20 2018-05-02 Nissan Chemical Industries, Ltd. Slurry composition for use in forming lithium-ion secondary battery electrode, containing cellulose fiber as binder, and lithium-ion secondary battery electrode
SE536780C2 (sv) * 2011-10-26 2014-08-05 Stora Enso Oyj Förfarande för framställning av en dispersion som innefattarnanopartiklar samt en dispersion framställd enligt förfarandet
CN102634870A (zh) * 2012-04-18 2012-08-15 江南大学 一种碳纳米管增强纤维素基纳米碳纤维及其制备方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202388A (en) 1990-11-30 1993-04-13 Japan Synthetic Rubber Co., Ltd. Process for producing hydrogenation product of ring-opening polymer
JPH0597978A (ja) 1991-10-09 1993-04-20 Japan Synthetic Rubber Co Ltd 水素添加重合体
JPH05310845A (ja) 1992-05-11 1993-11-22 Mitsui Petrochem Ind Ltd 環状オレフィン系ランダム多元共重合体およびその製造方法
JPH11124429A (ja) 1997-10-23 1999-05-11 Nippon Zeon Co Ltd 熱可塑性ジシクロペンタジエン系開環重合体、及びその製造方法
EP1026189A1 (en) 1997-10-23 2000-08-09 Nippon Zeon Co., Ltd. Thermoplastic dicyclopentadiene-base open-ring polymers, hydrogenated derivatives thereof, and processes for the preparation of both
WO2005082775A1 (ja) 2004-03-02 2005-09-09 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブ含有薄膜
JP2005270891A (ja) 2004-03-26 2005-10-06 Tetsuo Kondo 多糖類の湿式粉砕方法
JP4621896B2 (ja) 2004-07-27 2011-01-26 独立行政法人産業技術総合研究所 単層カーボンナノチューブおよびその製造方法
JP4811712B2 (ja) 2005-11-25 2011-11-09 独立行政法人産業技術総合研究所 カーボンナノチューブ・バルク構造体及びその製造方法
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2008150719A (ja) 2006-12-14 2008-07-03 Forestry & Forest Products Research Institute セルロースナノファイバーとその製造方法
JP2008208231A (ja) 2007-02-27 2008-09-11 Konica Minolta Holdings Inc 光学フィルムの製造方法、光学フィルム、及びそれを用いた偏光板、液晶ディスプレイ
JP2008230935A (ja) 2007-03-23 2008-10-02 Chemicals Evaluation & Research Institute カーボンナノチューブの水分散方法
JP2010104768A (ja) 2008-10-02 2010-05-13 Kri Inc 多糖類ナノファイバーとその製造方法、多糖類ナノファイバー含むイオン液体溶液と複合材料
JP2010254546A (ja) * 2009-03-31 2010-11-11 Toray Ind Inc カーボンナノチューブ水性分散液、導電性複合体およびその製造方法
JP2011202010A (ja) 2010-03-25 2011-10-13 Toppan Printing Co Ltd 膜形成用材料およびその製造方法ならびにシート
JP2011225820A (ja) * 2010-03-30 2011-11-10 Teijin Ltd ポリイミド溶液およびその製造方法
JP2011213500A (ja) * 2010-03-31 2011-10-27 Cci Corp カーボンナノチューブ分散液の製造方法
JP2012001626A (ja) * 2010-06-16 2012-01-05 Univ Of Tokyo 物理ゲルの製造方法および物理ゲル
JP2012164492A (ja) * 2011-02-04 2012-08-30 Tokyo Institute Of Technology 燃料電池用空気極触媒とその製造方法
JP2012236983A (ja) * 2011-04-28 2012-12-06 Nagoya Univ 導電性組成物
JP2012240875A (ja) * 2011-05-18 2012-12-10 Asahi Glass Co Ltd カーボンナノ材料分散液

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROTAKA KOGA ET AL.: "Carbon Nanotube/ Cellulose Nanofibril Hybrid no Chosei to Kino Kaihatsu", ABSTRACTS OF THE ANNUAL MEETING OF THE JAPAN WOOD RESEARCH SOCIETY, vol. 62, 2012, XP008179918 *
I. SHIBATA; A. ISOGAI: "Nitroxide-mediated oxidation of cellulose using TEMPO derivatives: HPSEC and NMR analyses of the oxidized products", CELLULOSE, vol. 10, 2003, pages 335 - 341, XP019234530, DOI: doi:10.1023/A:1027330409470
See also references of EP2949624A4

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160037905A (ko) * 2013-07-31 2016-04-06 니폰 제온 가부시키가이샤 카본 나노튜브 분산액의 제조 방법, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 및 복합 재료 및 복합 재료 성형체
KR102345024B1 (ko) 2013-07-31 2021-12-28 니폰 제온 가부시키가이샤 카본 나노튜브 분산액의 제조 방법, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 및 복합 재료 및 복합 재료 성형체
EP3028992A4 (en) * 2013-07-31 2017-05-24 Zeon Corporation Method for producing carbon nanotube dispersion, method for producing composite material composition, method for producing composite material, composite material, and composite-material molded product
US10189713B2 (en) 2013-07-31 2019-01-29 Zeon Corporation Method for producing carbon nanotube dispersion liquid, method for producing composite material composition, method for producing composite material, composite material, and composite-material shaped product
US10138347B2 (en) 2014-05-30 2018-11-27 Zeon Corporation Method for producing carbon nanotube dispersion liquid, carbon nanotube dispersion liquid, method for producing composite material composition, method for producing composite material, composite material, and composite material shaped product
KR20170013229A (ko) * 2014-05-30 2017-02-06 니폰 제온 가부시키가이샤 카본나노튜브 분산액의 제조 방법 및 카본나노튜브 분산액, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 그리고, 복합 재료 및 복합 재료 성형체
KR102396056B1 (ko) 2014-05-30 2022-05-09 니폰 제온 가부시키가이샤 카본나노튜브 분산액의 제조 방법 및 카본나노튜브 분산액, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 그리고, 복합 재료 및 복합 재료 성형체
WO2015182058A1 (ja) * 2014-05-30 2015-12-03 日本ゼオン株式会社 カーボンナノチューブ分散液の製造方法およびカーボンナノチューブ分散液、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体
EP3150550A4 (en) * 2014-05-30 2018-01-03 Zeon Corporation Method for producing carbon nanotube dispersion and carbon nanotube dispersion, method for producing composition for composite material and method for producing composite material, and composite material and composite material molded article
WO2016039225A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子、n型熱電変換層、および、n型熱電変換層形成用組成物
JPWO2016039225A1 (ja) * 2014-09-08 2017-08-10 富士フイルム株式会社 熱電変換素子、n型熱電変換層、および、n型熱電変換層形成用組成物
WO2016039228A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子、熱電変換層、熱電変換層形成用組成物
JPWO2016039228A1 (ja) * 2014-09-08 2017-06-15 富士フイルム株式会社 熱電変換素子、熱電変換層、熱電変換層形成用組成物
JPWO2016039224A1 (ja) * 2014-09-08 2017-06-22 富士フイルム株式会社 熱電変換素子、熱電変換層、熱電変換層形成用組成物
WO2016039224A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子、熱電変換層、熱電変換層形成用組成物
US9862840B2 (en) * 2014-09-17 2018-01-09 National University Corporation Nagoya University Conducting composition and method for producing the same
US20160340520A1 (en) * 2014-09-17 2016-11-24 National University Corporation Nagoya University Conducting composition and method for producing the same
CN107074546A (zh) * 2014-11-14 2017-08-18 户田工业株式会社 碳纳米管及其制造方法、以及使用碳纳米管的锂离子二次电池
CN107406256A (zh) * 2015-03-31 2017-11-28 日本瑞翁株式会社 碳膜及其制造方法
JPWO2016157834A1 (ja) * 2015-03-31 2018-01-25 日本ゼオン株式会社 炭素膜およびその製造方法
WO2016157834A1 (ja) * 2015-03-31 2016-10-06 日本ゼオン株式会社 炭素膜およびその製造方法
JP6153694B1 (ja) * 2015-10-07 2017-06-28 日本製紙株式会社 ゴム組成物の製造方法
WO2017061605A1 (ja) * 2015-10-07 2017-04-13 日本製紙株式会社 ゴム組成物の製造方法
JP2017110114A (ja) * 2015-12-16 2017-06-22 ナノサミット株式会社 新規なナノカーボン複合体
WO2017104609A1 (ja) * 2015-12-16 2017-06-22 ナノサミット株式会社 新規なナノカーボン複合体
JP2017172677A (ja) * 2016-03-23 2017-09-28 日信工業株式会社 ピストンシール部材及び該ピストンシール部材を用いたディスクブレーキ
JP2017180793A (ja) * 2016-03-31 2017-10-05 日信工業株式会社 ブーツ部材及び該ブーツ部材を用いたピンスライド型車両用ディスクブレーキ
JP2018059013A (ja) * 2016-10-07 2018-04-12 株式会社大成化研 潤滑油
WO2018070387A1 (ja) * 2016-10-13 2018-04-19 日本製紙株式会社 ゴム組成物の製造方法
JPWO2018070387A1 (ja) * 2016-10-13 2019-08-08 日本製紙株式会社 ゴム組成物の製造方法
JP6990190B2 (ja) 2016-10-13 2022-01-12 日本製紙株式会社 ゴム組成物の製造方法
JPWO2018147342A1 (ja) * 2017-02-09 2019-12-12 日本製紙株式会社 ゴム組成物およびその製造方法
JP7141950B2 (ja) 2017-02-09 2022-09-26 日本製紙株式会社 ゴム組成物およびその製造方法
US11352482B2 (en) 2017-02-09 2022-06-07 Nippon Paper Industries Co., Ltd. Rubber composition and method for producing same
WO2018147342A1 (ja) * 2017-02-09 2018-08-16 日本製紙株式会社 ゴム組成物およびその製造方法
JP2019173021A (ja) * 2017-10-04 2019-10-10 国立研究開発法人産業技術総合研究所 カーボンナノチューブ複合膜
WO2020009185A1 (ja) * 2018-07-04 2020-01-09 日本ゼオン株式会社 エラストマー組成物の製造方法
US11839069B2 (en) 2018-09-28 2023-12-05 Zeon Corporation Electromagnetic wave absorbing sheet and method of manufacturing the same
JPWO2020195974A1 (ja) * 2019-03-22 2020-10-01
WO2020194380A1 (ja) * 2019-03-22 2020-10-01 北越コーポレーション株式会社 ナノカーボン分散液及びその製造方法並びにナノカーボン分散剤
JP7177912B2 (ja) 2019-03-22 2022-11-24 北越コーポレーション株式会社 ナノカーボン分散液の製造方法、ナノカーボン分散剤及び電磁波遮蔽材
WO2020195974A1 (ja) * 2019-03-22 2020-10-01 北越コーポレーション株式会社 ナノカーボン分散液及びその製造方法、ナノカーボン分散剤並びに電磁波遮蔽材
WO2021153590A1 (ja) * 2020-01-28 2021-08-05 王子ホールディングス株式会社 微細繊維状セルロース・ナノカーボン含有物の製造方法及び微細繊維状セルロース・ナノカーボン含有物
WO2021235502A1 (ja) * 2020-05-19 2021-11-25 王子ホールディングス株式会社 樹脂組成物、ゴム組成物、樹脂成形体及び樹脂組成物の製造方法
WO2021235501A1 (ja) * 2020-05-19 2021-11-25 王子ホールディングス株式会社 微細繊維状セルロース、分散液、シート、積層シート、積層体及び微細繊維状セルロースの製造方法
CN111945460A (zh) * 2020-07-31 2020-11-17 齐鲁工业大学 一种短切碳纤维分散的方法及应用
JP2021004367A (ja) * 2020-09-16 2021-01-14 ナノサミット株式会社 新規なナノカーボン複合体の製造方法
WO2022070904A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 二次電池用負極及び二次電池
JP7416180B1 (ja) 2022-11-24 2024-01-17 東洋インキScホールディングス株式会社 炭素材料、炭素材料分散組成物、合材スラリー、電極膜、二次電池、および車両

Also Published As

Publication number Publication date
EP2949624A1 (en) 2015-12-02
CN104936895A (zh) 2015-09-23
JPWO2014115560A1 (ja) 2017-01-26
US20150368108A1 (en) 2015-12-24
KR20150110549A (ko) 2015-10-02
EP2949624A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2014115560A1 (ja) カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法
JP4998981B2 (ja) 微細セルロース繊維
Lee et al. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films
JP6453431B2 (ja) 微細セルロース繊維複合体、微細セルロース繊維分散液及び複合材料
EP2511346B1 (en) Composite material
JP6382793B2 (ja) ゴム組成物の製造方法
FI125941B (en) Method and apparatus for processing fibrillar cellulose and fibrillar cellulose product
JP6416749B2 (ja) ゴム組成物の製造方法、ゴム組成物、加硫ゴムおよびタイヤ
JP6245779B2 (ja) 誘導体化cnfの製造方法及び高分子化合物樹脂組成物の製造方法
JP5865063B2 (ja) ゴム組成物の製造方法
JP5589435B2 (ja) 複合体組成物および複合体
JP2012025949A (ja) 微細セルロース繊維分散液およびセルロース繊維複合体並びにその製造方法
JPWO2009069641A1 (ja) セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液
JP2013014741A (ja) 樹脂改質用添加剤及びその製造方法
JP2011140632A (ja) 複合材料
Fahma et al. PVA nanocomposites reinforced with cellulose nanofibers from oil palm empty fruit bunches (OPEFBs)
JP6873425B2 (ja) セルロースアセテート繊維、セルロースアセテート組成物、およびそれらの製造方法
Pech-Cohuo et al. Production and modification of cellulose nanocrystals from Agave tequilana weber waste and its effect on the melt rheology of PLA
Cheng et al. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films
Xu et al. Sustainable waterborne polyurethane ionomer reinforced poly (vinyl alcohol) composite films
Noguchi et al. Cellulose nanofiber-reinforced rubber composites prepared by TEMPO-functionalization and elastic kneading
WO2017155054A1 (ja) セルロースアセテート繊維、セルロースアセテート組成物、およびそれらの製造方法
Tan et al. Preparation and Characterization of corn husk nanocellulose coating on electrospun polyamide 6
JP5966859B2 (ja) 微細セルロース繊維分散液の製造方法
Kong et al. The preparation and characterization of polyurethane reinforced with a low fraction of cellulose nanocrystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558508

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14762350

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157020085

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014743277

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE