WO2019074072A1 - カーボンナノチューブから構成される繊維及びその製造方法 - Google Patents

カーボンナノチューブから構成される繊維及びその製造方法 Download PDF

Info

Publication number
WO2019074072A1
WO2019074072A1 PCT/JP2018/037978 JP2018037978W WO2019074072A1 WO 2019074072 A1 WO2019074072 A1 WO 2019074072A1 JP 2018037978 W JP2018037978 W JP 2018037978W WO 2019074072 A1 WO2019074072 A1 WO 2019074072A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
fiber
cnts
thickness
distribution rate
Prior art date
Application number
PCT/JP2018/037978
Other languages
English (en)
French (fr)
Inventor
健 向
周平 池永
欣志 安積
森田 徹
裕仁 本山
祐太 齊藤
Original Assignee
国立研究開発法人産業技術総合研究所
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 旭化成株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US16/644,656 priority Critical patent/US11686019B2/en
Priority to EP18865890.0A priority patent/EP3696303B1/en
Priority to CN201880066448.XA priority patent/CN111201343B/zh
Priority to ES18865890T priority patent/ES2910168T3/es
Priority to JP2019548242A priority patent/JP6933846B2/ja
Priority to KR1020207009506A priority patent/KR102320084B1/ko
Publication of WO2019074072A1 publication Critical patent/WO2019074072A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Definitions

  • the present invention is a CNT fiber composed of oriented carbon nanotubes (hereinafter, also referred to as CNT), which are thin, small in unevenness of thickness (unevenness), good in winding during processing, and excellent in conductivity, and the said The present invention relates to a method of producing CNT fibers.
  • CNT oriented carbon nanotubes
  • CNT is a single-layered or multi-layered coaxial tubular substance made of graphene sheets composed of carbon, and has ultra-fine diameter, light weight, high strength, high flexibility, high current density, high thermal conductivity, high electricity It is a material having conductivity (conductivity).
  • CNT has properties that make it a candidate for next-generation lightweight materials, has mechanical properties, electrical properties, and thermal properties that surpass steel, copper, and diamond, and many applications using CNT are envisioned.
  • there are many problems in processing CNT raw materials into devices and as a result, the characteristics of CNTs have not been fully utilized.
  • CNTs In order to take advantage of the properties of CNTs, it is possible to form a CNT structure in which CNTs are oriented in one direction, for example, in wire and coil (motor, inductor) applications, if CNTs having excellent properties can be formed into filaments. It can be used as an alternative material which is thinner than copper wire, high in strength and high in conductivity. Therefore, in order to provide a fibrous material having unprecedented properties composed of highly oriented CNTs, the following production methods have been proposed.
  • Non-Patent Document 1 a CNT dispersion is produced by injecting a CNT dispersion into an aggregation liquid containing polyvinyl alcohol, but there is a problem that the conductivity of the obtained CNT yarn is low.
  • Non-Patent Document 2 CNTs are drawn from CNT forests and conductive CNT yarns are produced while twisting, but in this method, single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) are produced. It is necessary to use multi-walled carbon nanotubes (MWCNTs) with low conductivity, and the conductivity is low. There are also limitations in producing long CNT fibers to use CNT forests.
  • Patent Document 1 discloses a method for producing high density CNT fibers in which CNTs are spun in a liquid crystal state in a superacid solvent such as chlorosulfonic acid.
  • a superacid solvent such as chlorosulfonic acid.
  • the hygroscopicity and reactivity of the super acid become a problem. That is, as described in the same paragraph [0040], when the extrusion is interrupted to suspend the CNT fiber in the cavity, water droplets condense on the surface of the fiber before the fiber is introduced into the coagulating liquid. As a result, the extrusion is caused to cause coagulation, and further elongation is suppressed, and therefore, the occurrence of fiber thickness spots can not be avoided due to aggregation spots and stretching spots.
  • Patent Document 1 does not describe at all the roundness of the obtained CNT fiber.
  • a surfactant such as sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, etc. is used to form a dispersion of CNT, which is then used as N, N-dimethoacetamide, N-methoacetamide, ethanol
  • a method of manufacturing a CNT aggregation preventing structure by injecting and dropping into an aggregation liquid such as (see FIG. 1 of the same document) is described, but this method is an aggregation liquid in which an organic solvent is filled in a Petri dish etc.
  • Patent Document 2 does not describe at all the roundness and thickness unevenness of the obtained CNT fiber.
  • Patent Document 3 discloses a drawn yarn composed of SWCNT having a draw ratio of 10 to 50%.
  • bile salts eg, sodium cholate, sodium deoxycholate etc.
  • SC sodium cholate
  • the conductivity of the CNT fiber obtained by injecting into the isopropanol coagulating solution from an injection nozzle with an inner diameter of 0.9 mm was 5707 to 7345 S / cm at a drawing ratio of 12 to 17%.
  • Patent Document 2 does not describe at all the roundness and thickness unevenness of the obtained CNT fiber.
  • the problems to be solved by the present invention are thin, small thickness unevenness, high roundness, good winding property (coiling property) at the time of coil processing, and conductivity It is an object of the present invention to provide a fiber composed of oriented CNTs excellent in properties and a method for producing the same.
  • the present invention is as follows. [1] Thickness is 0.01 ⁇ m to 3 mm, thickness unevenness is 0.2 or less in coefficient of variation, distribution rate a as roundness is 40% or more, and distribution rate b is 70 CNT fiber composed of carbon nanotubes (CNT) having a% or more. [2] The CNT fiber according to the above [1], wherein 50 or more CNTs having a diameter of 5 nm or less exist among arbitrary 100 CNTs when observed with a transmission electron microscope.
  • a wire comprising the CNT fiber according to any one of the above [1] to [5].
  • a coil comprising the CNT fiber according to any one of the above [1] to [5].
  • the following steps An aqueous dispersion containing carbon nanotubes (CNTs) and a surfactant is discharged into a coagulation bath containing an organic solvent to obtain a CNT aggregate structure in the form of a yarn; and the obtained CNT aggregate structure Continuously pulling up from the coagulation bath at a linear velocity equal to or greater than a discharge linear velocity; With a thickness of 0.01 ⁇ m to 3 mm, unevenness of thickness with a coefficient of variation of 0.2 or less, a distribution rate a as roundness of 40% or more, and a distribution rate b of 70% or more A method of producing a certain CNT fiber.
  • the fiber composed of the CNT according to the present invention (also referred to simply as CNT fiber in the present specification) has a thickness of 0.01 ⁇ m to 3 mm, a thickness unevenness of 0.2 or less in coefficient of variation, and a perfect circle
  • the distribution rate a as a degree is 40% or more
  • the distribution rate b is 70% or more, that is, it is thin, the thickness unevenness is small, the roundness is high, and the coilability during coil processing ( ⁇ Since it is a fiber composed of oriented CNTs, which is excellent in conductivity and excellent in conductivity, it is suitable for applications such as coils (motors, inductors) and electric wires.
  • the conductivity and the current density depend on the smallest cross-sectional area of one fiber, so the thickness unevenness is small, the roundness of the cross section is high, and if uniform, the conductivity of one fiber is relatively Get higher.
  • the winding property to the coil is good, and the coil can be wound densely, so that the conductive portion occupied in the coil relatively increases.
  • FIG. 7 is a high resolution transmission electron micrograph (320,000 ⁇ ) of the CNT fiber obtained in Example 3.
  • FIG. 1 is a high resolution transmission electron micrograph (320,000 ⁇ ) of the CNT fiber obtained in Example 3.
  • the CNT fiber of the present embodiment has a thickness of 0.01 ⁇ m to 3 mm, a thickness unevenness of 0.2 or less in coefficient of variation, a distribution rate a as roundness of 40% or more, and It is a fiber comprised from the carbon nanotube (CNT) which distribution rate b is 70% or more.
  • CNT carbon nanotube
  • CNT is a carbon-based material having a shape in which a graphene sheet is cylindrically wound.
  • Various types of CNTs are known, and for example, single wall carbon nanotubes (Single Wall Carbon Nanotube: SWCNT), double wall carbon nanotube (Double Wall Carbon Nanotube: DWCNT), three layers, etc., depending on the number of peripheral walls. These are roughly classified into the above multi-walled carbon nanotubes (Multi Wall Carbon Nanotube: MWCNT). In addition, it can be divided into chiral (helix) type, zigzag type, and armchair type from the difference in the structure of graphene sheets.
  • the thickness of the fibers composed of the CNTs of this embodiment is 0.01 ⁇ m to 3 mm, preferably 1 ⁇ m to 100 ⁇ m, and more preferably 10 ⁇ m to 50 ⁇ m. If the thickness is 0.01 ⁇ m or more and 3 mm or less, the yield of CNT fibers in the spinning process is improved. The thickness was determined by the average value described later. In the present specification, “to” means, for example, 0.01 ⁇ m or more and 3 mm or less.
  • the unevenness of thickness of the fiber composed of the CNT of the present embodiment has a coefficient of variation of 0.2 or less, preferably 0.15 or less, more preferably 0.07 or less. If the thickness unevenness is a coefficient of variation of 0.2 or less, the arrangement of CNTs in one CNT fiber is good, and the minimum cross-sectional area in one CNT fiber is relatively large, and the cross-sectional area The dependent conductivity is high.
  • the width in the X-axis and Y-axis directions is not in contact with two axes of the Y-axis cross-section perpendicular to the X-axis and the X-axis with respect to the cross-sectional direction of the CNT fiber. It can be measured with a high-precision size measuring device using a laser or a contact type device, and can be defined as the width. As another measurement method of width, it can also be calculated by image analysis software using image data obtained from an optical microscope or an electron microscope image, and calculated using a contact type device such as a macrometer or a caliper. You can also.
  • the number of measurements is measured in the range of 100 points or more in total, and the average value of the numerical values in the X-axis and Y-axis directions is taken as the thickness. Moreover, the average value was made into the average diameter of CNT fiber, and the cross-sectional area was calculated. Thickness spots measure the numerical value in the X-axis and Y-axis, the average value of the whole number, furthermore, after calculating the standard deviation, thickness spots are the value which divided the standard deviation of the thickness by the average value of the thickness Indexed with the coefficient of variation, which is the parameter of
  • the distribution rate a is 40% or more and the distribution rate b is 70% or more as the roundness of the fiber of the present embodiment, but preferably the distribution rate a50% or more and the distribution rate b 80% or more More preferably, the distribution rate a is 55% or more and the distribution rate b is 85% or more. More preferably, the distribution rate a is 60% or more and the distribution rate b is 90% or more. If the distribution rate a is 40% or more and the distribution rate b is 70% or more, the conductivity increases and the coiling property is good, and the coil can be densely wound, so the conductive portion occupied in the coil is It will increase relatively.
  • X / Y is obtained for the width in the X-axis direction and the Y-axis direction measured by the calculation of the thickness unevenness, and 0.9 ⁇ X / of all the measurement points.
  • the abundance ratio of Y ⁇ 1.1 is distribution rate a (%)
  • the abundance ratio of 0.8 ⁇ X / Y ⁇ 1.2 is distribution rate b (%)
  • the distribution rate a (%) and distribution ratio was evaluated by the value of b (%).
  • 0.5 m or more is preferable, as for the length of the fiber comprised from CNT of this embodiment, it is more preferable that it is 1 m or more, and it is more preferable that it is 5 m or more. If the length of the fiber is 0.5 m or more, the choice of the number of turns increases in applications such as coils. In addition, if the fiber comprised from CNT of this embodiment contains more than 50 mass% of CNTs, there is no problem in order to exhibit the substantial effect of this embodiment, but more than 80 mass% of CNTs It is preferred to include at least 90% by weight CNT, more preferably at least 95% by weight CNT, and most preferably at least 98% by weight CNT.
  • any type of CNT may be used as long as it is referred to as such a so-called CNT, but generally, single-walled carbon nanotubes (SWCNT) or two-layer having high conductivity are generally used. It is preferable to use carbon nanotubes (DWCNTs) as a raw material because CNTs with high conductivity can be obtained. Although multi-walled carbon nanotubes (MWCNT) having three or more layers may be contained, it is preferable that the ratio of SWCNT and / or DWCNT is high. Generally, the diameter of SWCNTs and DWCNTs is 5 nm or less, so as shown in FIG.
  • the diameter of one CNT can be measured by image analysis in a transmission electron microscope and observed at 20 to 1,000,000 magnifications Among them, select 100 locations where one CNT bundle is present, and evaluate the diameter from the image analysis software for 100 selected CNTs, and 50 CNTs with a diameter of 5 nm or less exist Are preferred. At this time, one CNT is counted as one if it can be seen in the field of view, and the two ends do not necessarily have to be seen. In addition, even if it exists in the state of two in the field of view, it may be connected outside the field of view to become one, but in that case, it is counted as two.
  • the number of CNTs having a diameter of 5 nm or less is more preferably 70 or more, still more preferably 90 or more, and most preferably 100.
  • G / D of the fiber comprised from CNT of this embodiment becomes like this.
  • it is 0.1 or more, More preferably, it is 1 or more, More preferably, it is 2 or more. That is, in the spectrum obtained by the resonance Raman scattering measurement, when the maximum peak intensity and D the maximum peak intensity in the range of 1550 ⁇ 1650 cm -1 in the range of G, 1300 ⁇ 1400cm -1, G / D
  • the ratio is preferably 0.1 or more.
  • the peak in the range of 1550 to 1650 cm -1 is called the G band and is the peak derived from the graphite structure of CNT, and the peak in the range of 1300 to 1400 cm -1 is called the D band, and amorphous carbon and carbon nanotubes Peak derived from lattice defects of The relative incidence of defect sites in CNTs can be quantified using the G / D ratio.
  • the fact that the G / D ratio is 1 or more means that it is composed of high quality carbon nanotubes with few lattice defects, and in particular, if it is 2 or more, further 20 or more, particularly 30 or more, higher quality CNTs And is excellent in thermal conductivity, electrical conductivity, and heat resistance.
  • the density of the fibers composed of the CNTs of the present embodiment is preferably 0.3 g / cm 3 or more, more preferably 0.5 g / cm 3 or more, and still more preferably 0.8 g / cm 3 or more.
  • the fiber density is 0.3 g / cm 3 or more, the voids in the CNT fiber decrease and the conductive path increases, and the bond between the CNTs becomes hard, so that the strength and the conductivity are excellent.
  • the conductivity (electrical conductivity) of the fiber composed of the CNT of the present embodiment is preferably 3000 S / cm to 60000 S / cm, more preferably 8000 S / cm to 60000 S / cm, still more preferably 15000 S / cm to 60000 S / It is cm. If the conductivity is 3000 S / cm or more, CNT fibers suitable for use as wires, coils (motors, inductors), etc. are obtained.
  • the Young's modulus of the fiber composed of the CNTs of this embodiment is preferably 0.5 GPa to 1000 GPa, more preferably 2 GPa to 1000 GPa, and still more preferably 5 GPa to 1000 GPa.
  • the breaking strength of the fiber composed of the CNT of this embodiment is preferably 50 MPa to 3000 MPa, more preferably 500 MPa to 3000 MPa, and still more preferably 1000 MPa to 3000 MPa.
  • Young's modulus and breaking strength can be measured in accordance with JIS L1013. Specifically, stress-strain measurement is performed, Young's modulus is obtained from the initial slope of the curve, and breaking strength is obtained from the stress at the cutting position. In addition, the conductivity is measured from the slope of the current-voltage measurement by the four-terminal method.
  • the production method of CNT is not particularly limited, but the super growth CVD method (Super-Growth method), direct injection pyrolysis synthesis method (DIPS method: Direct Injective Pyrolytic Synthesis), modified direct injection pyrolysis synthesis method (eDIPS method: enhanced) Direct Injective Pyrolytic Synthesis).
  • the CNTs of this embodiment may be either carbon nanotubes (SG-CNT) manufactured by the super growth CVD method or carbon nanotubes (eDIPS-CNT) manufactured by the modified direct injection pyrolysis synthesis method, but the conductivity is From the point of view, eDIPS-CNT is preferred.
  • SG-CNT see, for example, K. Hata, et al., Science 306, 1362 (2004)
  • eDIPS-CNT see, for example, T. Saito et al., J. Nanosci. Nanotechnol., 8 , 6153 (2008).
  • the present inventors reduced the cross-sectional area of the fiber composed of CNTs, and reduced the defects of the CNTs constituting the obtained fiber, and made the CNTs larger by increasing the effective length of the CNTs. It has been found that the mechanical properties and conductivity of the fibers are improved.
  • the fibers composed of the CNTs of the present embodiment are, for example, the following steps: An aqueous dispersion containing carbon nanotubes (CNTs) and a surfactant is discharged into a coagulation bath containing an organic solvent to obtain a CNT aggregate structure in the form of a yarn; and the obtained CNT aggregate structure Continuously pulling up from the coagulation bath at a linear velocity equal to or greater than a discharge linear velocity; With a thickness of 0.01 ⁇ m to 3 mm, unevenness of thickness with a coefficient of variation of 0.2 or less, a distribution rate a as roundness of 40% or more, and a distribution rate b of 70% or more It can manufacture by the manufacturing method of the fiber containing a certain CNT.
  • the production method may further include the steps of stretching and drying the continuously pulled yarn before drying in a state of being swollen with water, an organic solvent or the like.
  • CNTs are dispersed in an aqueous solution containing a surfactant.
  • a surfactant any of a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant may be used.
  • polyoxyethylene alkyl ether polyoxyethylene alkyl phenyl ether, sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, polyoxyethylene Fatty acid ester, polyoxyethylene polyoxypropylene block copolymer and the like
  • poly (oxyethylene) octyl phenyl ether for example, Triton (registered trademark) X-100
  • polyoxyethylene sorbitan monolaurate for example, , Tween (registered trademark) 20
  • alkyl benzene sulfonate for example, sodium dodecyl benzene sulfonate etc.
  • alkyl alcohol sulfate ester salt for example, sodium dodecyl sulfate etc
  • sodium alkyl diphenyl ether disulfonate sodium polyoxyethylene alkyl ether sulfate
  • sodium dialkylsulfosuccinate sodium alkyl allyl sulfosuccinate, sodium N-lauroyl sarcosine sodium
  • sodium polyoxyethylene alkylphenyl ether sulfate sodium (meth) acryloyl polyoxyalkylene sulfate
  • alkyl alcohol phosphate ester salt for example, sodium cholate, sodium deoxycholate, etc.
  • bile such as sodium cholate
  • An acid salt is preferably exemplified.
  • the present inventors include CNTs by reducing the cross-sectional area of fibers composed of CNTs, reducing defects in the CNTs that constitute the fibers, and increasing the effective length of the CNTs.
  • CNT fiber while maintaining the effective length without causing CNT defects, as a surfactant, taurodeoxychol It has been found that it is preferable to use sodium acid.
  • cationic surfactant examples include tetraalkyl ammonium halides, alkyl pyridinium halides, and alkyl imidazoline halides.
  • Amphoteric surfactants include alkyl betaines, alkyl imidazolinium betaines, lecithin and the like.
  • the amount of CNTs in the aqueous dispersion containing a surfactant is preferably 0.1% by mass to 10% by mass, and more preferably 0.15% by mass to 8% by mass.
  • the amount of surfactant in the aqueous dispersion containing CNTs and surfactant is preferably 0.2% by mass to 20% by mass, and more preferably 0.3% by mass to 16% by mass.
  • An aqueous dispersion containing CNTs and a surfactant is discharged from a syringe, a spinneret or the like into a coagulation bath containing an organic solvent in a spinning step to obtain a CNT aggregate structure in the form of a yarn, and the CNT aggregate structure is obtained And, pulling up from the coagulation bath continuously at a linear velocity equal to or higher than the linear velocity of discharge.
  • the diameter of the syringe, spinneret or the like at the time of discharge is preferably 10 ⁇ m to 5000 ⁇ m, and more preferably 20 ⁇ m to 1000 ⁇ m.
  • the aqueous dispersion is discharged in the direction of gravity, immersed in the coagulation bath through the air, changed in direction by the change roll or the change rod, and the CNT aggregate structure continues from the coagulation bath by a rotating roll such as Nelson roll. Be pulled up. At this time, it may be discharged from the syringe or spinneret directly into the coagulation bath without passing through the air. Alternatively, the syringe or spinneret may be submerged in the bottom of the coagulation bath and discharged in the direction of a rotating roll which is pulled up from the coagulation bath. In either case, the CNT aggregate structure is continuously pulled up from the coagulation bath at a linear velocity equal to or higher than the discharge linear velocity.
  • the linear velocity of the CNT aggregate structure is preferably 1 to 10 times, more preferably 1.2 to 5 times, and still more preferably 1.5 to 3 times the linear velocity of discharge.
  • the method of discharging the aqueous dispersion in the direction of gravity can apply more uniform tension when forming the CNT aggregate structure, make the thickness unevenness of fibers containing CNT smaller, and make the cross-sectional roundness more It is preferable in that it can be enhanced.
  • an organic solvent miscible with water is preferable.
  • lower alcohols such as ethanol, methanol, propanol and isopropanol
  • ketones such as acetone, methyl ethyl ketone and 4-methyl-2-pentanone (MIBK)
  • Ethers such as tetrahydrofuran and dioxane
  • Amides such as DMF, acetamide, formamide, dimethylacetamide, N-methylpyrrolidone
  • the solvent of the coagulation bath is preferably a water-containing organic solvent.
  • the temperature of the coagulation bath is not particularly limited, but the combination of the organic solvent and the temperature is selected so that the CNT aggregate structure is in a solidified state where it can be continuously pulled up from the coagulation bath at linear velocity higher than discharge linear velocity, A temperature range of 5 to 50 ° C. is preferable from the viewpoint of temperature controllability.
  • water may be used as a solvent for the aqueous dispersion and the coagulation bath.
  • salts can be added to either or both of the aqueous dispersion and the solvent of the coagulation bath. If both the aqueous dispersion and the solvent of the coagulation bath do not contain salts, it may be difficult to bring the CNT aggregate structure into a solidified state where it can be continuously pulled up from the coagulation bath at a linear velocity greater than the ejection linear velocity.
  • the salts any of inorganic salts and organic salts may be used, but inorganic salts are preferable.
  • the salts are water soluble.
  • the salts are preferably alkali metal salts and alkaline earth metal salts, more preferably sodium salts, potassium salts, lithium salts, calcium salts, calcium salts, magnesium salts, barium salts, strontium salts, more preferably sodium salts and calcium salts And magnesium salts.
  • chloride ion, fluoride ion, bromide ion, iodide ion, sulfate ion, sulfite ion, phosphate ion, nitrate ion, nitrite ion, methanesulfonate ion, benzenesulfonate ion, toluenesulfonate ion examples thereof include citrate ion, oxalate ion, malate ion, tartrate ion, maleate ion, fumarate ion and acetate ion.
  • Preferred salts include sodium chloride, potassium chloride, lithium chloride, calcium chloride, magnesium chloride, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, calcium nitrate, Magnesium nitrate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, Examples include monopotassium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, and monopotassium dihydrogen phosphate.
  • the concentration of salts in the aqueous dispersion and the solvent of the coagulation bath is preferably 0 to 25% by mass, more preferably 0 to 20% by mass in the aqueous dispersion, and 0 to 40% by mass in the coagulation bath. Preferably, it is 0 to 35% by mass.
  • the salts are dissolved alone or in combination of two or more salts in the aqueous dispersion and / or coagulation bath. When salts are contained in the coagulation bath or the aqueous dispersion, the salts are also contained in the solvent of the coagulation bath after discharging the aqueous dispersion.
  • the salt concentration in the solvent of the coagulation bath after discharging the aqueous dispersion is preferably 0.5 to 40% by mass, more preferably 1 to 35% by mass. Since the salts may be contained only in the aqueous dispersion or in the solvent of the coagulating liquid, the lower limit of the salt concentration in the solvent of the aqueous dispersion and the coagulating liquid is 00 mass% each, The lower limit of the salt concentration in the solvent of the coagulating bath containing the aqueous dispersion or salts is preferably about 0.5% by mass, more preferably about 1% by mass, and the upper limit is preferably about 40% by mass, Preferably, it is about 35% by mass.
  • the immersion time of the discharged CNT aqueous dispersion in the coagulation bath varies depending on the conditions of the coagulation bath, and the CNT aggregate structure is in a solidified state in which the CNT aggregation structure is continuously pulled up from the coagulation bath at a linear velocity equal to or higher than the ejection linear velocity.
  • the coagulation bath may be a stationary bath or a fluid bath using a tube or the like.
  • Fibers composed of CNTs pulled up from the coagulation bath are further immersed in water or an organic solvent similar to the coagulation bath solvent to wash out the surfactant and / or salts.
  • the temperature of water or the organic solvent in this washing step is not particularly limited, but may be, for example, about 5 to 50 ° C., preferably about room temperature.
  • the immersion time is also not particularly limited, and may be, for example, 2 hours or more, preferably 24 hours or more.
  • the fibers composed of CNTs are subjected to the next drawing step in the wet state. Stretching is performed between a rotating roll, such as a Nelson roll, and a rotating roll, and is stretched due to different rotational speeds.
  • the stretching ratio is preferably 5 to 70%, more preferably 10 to 50%. By such stretching, the CNT bundles in the fibers composed of CNTs are aligned in the fiber axial direction, the cross-sectional area is reduced, and the CNT fiber density is improved.
  • the fiber After stretching, if necessary, the fiber is further washed with water or an organic solvent similar to the solvent of the coagulation bath, and dried to obtain a fiber composed of CNTs.
  • Fig. 1 Two ultra-high-speed, high-precision size measurement devices (manufactured by Keyence Corporation, model number LS-9006) are arranged with respect to the cross section of the CNT fiber, and two axes of X axis and Y axis cross sections The thickness in the X-axis and Y-axis directions was measured in the contact state. The number of measurement was measured in the range of 565 points every 5. cm of CNT fiber and the length 5.65 m, and the average value of each 565 points in the X-axis and Y-axis directions was taken as the thickness.
  • the thickness unevenness measures the numerical value in the X-axis and Y-axis, the average value of all 1130 points, calculates the standard deviation, and then divides the standard deviation of the thickness by the average value of the thickness to obtain the thick
  • the coefficient of variation which is a parameter of the macula, was used.
  • [Roundness] X / Y is determined for each of the 565 points in the X-axis direction and the Y-axis direction, and a distribution rate a (%) of 0.9 ⁇ X / Y ⁇ 1.1, and 0. A distribution ratio b (%) of 8 ⁇ X / Y ⁇ 1.2 was determined and taken as roundness.
  • G / D ratio in resonance Raman scattering measurement The G / D ratio was measured by measuring at a wavelength of 532 nm using a triple Raman spectrometer (T64000 manufactured by Horiba, Ltd.).
  • Conductivity measured the voltage value at the time of applying a predetermined
  • Measuring instrument with fixed CNT fiber and fixed distance between terminals as conductivity measurement Oscillator (ATF3022 made by Tektronix, Potentio Galvanostat (HAL3001 made by Hokuto Denko Co., Ltd.) Oscilloscope (Yokogawa Measurement Co., Ltd. The measurement was performed using a company-made DL850E).
  • the obtained CNT fiber was wound up 4 m in length so as to be stacked layer by layer while traversing with a bobbin made of polyethylene 2 mm wide and 3 mm in diameter with a tension of 10 g.
  • the wound CNT fiber was fixed so as not to be loosened, and the whole bobbin was solidified with epoxy resin.
  • a 0.5 mm-thick section was cut out so as to obtain a cross section of a CNT fiber, and a 1000 ⁇ photograph was taken with a microscope (VHX-5000 manufactured by Keyence Corporation).
  • the surface properties of the CNT fiber portion and the epoxy resin (void) portion were measured by image processing in the field of view, and the area ratio (%) of the CNT fiber was calculated and used as an index of coil compactness.
  • Example 1 4 g of CNT (manufactured by Meijo Nano Carbon Co., EC 1.4, hereinafter also referred to as eDIPS-CNT) manufactured by an improved direct injection pyrolysis synthesis method (eDIPS method) and sodium taurodeoxycholate (Sigma Aldrich) 8 g was added to 1988 g of water, and dispersed for 60 minutes using an ultra-high-speed multi-stirring system (Lab Solution, manufactured by Primix, Inc.).
  • eDIPS-CNT CNT manufactured by Meijo Nano Carbon Co., EC 1.4, hereinafter also referred to as eDIPS-CNT
  • eDIPS method improved direct injection pyrolysis synthesis method
  • Sigma Aldrich sodium taurodeoxycholate 8 g was added to 1988 g of water, and dispersed for 60 minutes using an ultra-high-speed multi-stirring system (Lab Solution, manufactured by Primix, Inc.).
  • eDIPS-CNT having a weight concentration of 0.2 mass% of eDIPS-CNT A dispersion was obtained.
  • the resulting eDIPS-CNT dispersion was heated on a hot plate to evaporate water so that the weight concentration of eDIPS-CNT was 0.4% by mass.
  • the eDIPS-CNT dispersion is packed in a syringe, and after mounting an injection spinning nozzle with an inner diameter of 0.21 mm, using a syringe pump (YSP-301, YSP-301), conditions of discharge speed 5.25 m / min
  • YSP-301, YSP-301 a syringe pump
  • the speed of the take-up device under the condition of rotation speed 6.45 m / min so that the coagulated yarn is coagulated into a filament by discharging it directly in the direction of gravity in ethanol solution at a rotation speed of 6.45 m / min. I pulled it up and wound it up.
  • the coagulated yarn was immersed in a water tank using a feed roller, and pulled up from water and dried using a winding device. By changing the rotation speed of the feed roller and the winding device in this step, the original yarn was stretched by 10% and dried to obtain CNT fibers.
  • the average diameter, distribution rate a, distribution rate b, coefficient of variation, which is a parameter of thickness unevenness, and roundness are measured for the obtained CNT fibers, and the existence ratio of CNTs having a diameter of 5 nm or less, conductivity, The G / D ratio was measured.
  • the obtained CNT fibers have an average diameter of 26 ⁇ m, a coefficient of variation of 0.111, a distribution rate of 5%, a distribution rate b of 84%, and an abundance ratio of CNTs having a diameter of 5 nm or less: 94%, G / D ratio
  • the conductivity was 5800 S / cm, and the fiber density was 0.6 g / cm 3 .
  • Example 2 The water of the eDIPS-CNT dispersion liquid of Example 1 was further evaporated, and the eDIPS-CNT dispersion liquid was adjusted so that the weight concentration of eDips-CNT would be 0.6% by mass; The same procedure was followed to obtain CNT fibers.
  • the obtained CNT fibers have an average diameter of 30 ⁇ m, a coefficient of variation of 0.10, a distribution ratio a of 52%, a distribution ratio b of 80%, and an abundance ratio of CNTs having a diameter of 5 nm or less: 95%, G / D ratio
  • the conductivity was 5,600 S / cm, and the fiber density was 0.6 g / cm 3 .
  • Example 3 A CNT fiber was obtained in the same manner as in Example 1 except that an injection spinning nozzle with an inner diameter of 0.21 mm was used and an injection spinning nozzle with an inner diameter of 0.41 mm was used.
  • the obtained CNT fibers had an average diameter of 53 ⁇ m, a coefficient of variation of 0.15, a distribution rate of 49%, a distribution rate b of 75%, and an abundance ratio of CNTs having a diameter of 5 nm or less: 96%, G / D ratio
  • the conductivity was 4000 S / cm, and the fiber density was 0.5 g / cm 3 . Further, the compactness of the coil was also evaluated, and the compactness of the coil (area ratio of CNT fibers) was 85%, which was higher than that of Comparative Example 1.
  • Example 4 A CNT fiber was obtained in the same manner as in Example 1 except that SG-CNT was substituted for eDIPS-CNT.
  • the obtained CNT fibers have an average diameter of 23 ⁇ m, a variation coefficient of 0.07, a distribution ratio a of 55%, a distribution ratio b of 82%, and an abundance ratio of CNTs having a diameter of 5 nm or less: 70%, G / D
  • the ratio was 2.5, the conductivity was 450 S / cm, and the fiber density was 0.6 g / cm 3 .
  • Example 5 A CNT fiber was obtained in the same manner as in Example 1 except that the rotational speed of the winding device was 11.00 m / min and the stretching was 20%.
  • the obtained CNT fiber has an average diameter: 16 ⁇ m, coefficient of variation: 0.07, distribution rate a: 65%, distribution rate b: 90%, existence ratio of CNT having a diameter of 5 nm or less: 95%, G / D ratio
  • the conductivity was 18,000 S / cm, and the fiber density was 0.8 g / cm 3 .
  • Comparative Example 1 The 0.4% by mass eDIPS-CNT dispersion as in Example 1 was packed in a syringe, and then an injection spinning nozzle with an inner diameter of 0.41 mm was attached, and then a syringe pump (YSP-301, manufactured by YMC Co., Ltd.) was used. The solution was discharged directly into the ethanol solution contained in the petri dish under conditions of a discharge speed of 5.26 m / min. The petri dish was rotated so that the locus at the position taken out from the petri dish was 6.45 m / min, to obtain a coagulated yarn having a thread-like shape. The obtained coagulated yarn was left in ethanol for 1 day, then transferred to water and immersed for 3 days. The both ends of 1 m of coagulated yarn taken out from water were fixed with a jig, 10% stretching was performed by driving one end using a stretching apparatus (made by SDI Corporation), and CNT fibers were obtained by drying.
  • the average diameter, distribution rate a, distribution rate b, coefficient of variation, which is a parameter of thickness unevenness, and roundness are measured as in the example.
  • the abundance ratio of SWCNT and / or DWCNT in CNT, conductivity, and G / D ratio were measured.
  • the compactness of the coil was also evaluated.
  • the obtained CNT fibers have an average diameter of 52 ⁇ m, a coefficient of variation of 0.28, a distribution rate of 15%, a distribution rate b of 43%, and an abundance ratio of CNTs having a diameter of 5 nm or less 98%, G / D ratio
  • the conductivity was 3400 S / cm, and the fiber density was 0.55 g / cm 3 .
  • the compactness (area ratio of CNT fibers) of the coil was 71%, which was lower than that of Example 3.
  • the fiber composed of the CNT according to the present invention has a thickness of 0.01 ⁇ m to 3 mm, a thickness unevenness having a coefficient of variation of 0.2 or less, and a distribution rate a as a roundness of 40% or more.
  • the distribution ratio b is 70% or more, that is, it is thin, small in thickness unevenness, high in roundness, good in winding property (coiling property) at coil processing, and excellent in conductivity. Since it is a fiber comprised from these CNTs, it can utilize suitably for applications, such as a coil (a motor, an inductor), and an electric wire.
  • the conductivity and the current density depend on the smallest cross-sectional area of one fiber, so the thickness unevenness is small, the roundness of the cross section is high, and if uniform, the conductivity of one fiber is relatively Get higher.
  • the winding property to the coil is good, and the coil can be wound densely, so that the conductive portion occupied in the coil relatively increases.

Abstract

細く、太さ斑が小さく、コイル加工時の捲回性が良く、導電性に優れる配向したカーボンナノチューブ(CNT)から構成されるCNT繊維を提供する。本発明は、太さが0.01μm~3mmであり、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上であるカーボンナノチューブ(CNT)から構成されるCNT繊維、並びに、以下の工程:カーボンナノチューブ(CNT)と界面活性剤を含有する水性分散液を、有機溶媒を含む凝固浴中に吐出して、糸の形状のCNT凝集構造物を得る紡糸工程;及び得られたCNT凝集構造物を、該凝固浴から吐出線速度以上の線速度で連続的に引き上げる工程;を含む該CNT繊維の製造方法である。

Description

カーボンナノチューブから構成される繊維及びその製造方法
 本発明は、細く、太さ斑(ムラ)が小さく、加工時の捲回性が良く、導電性に優れる、配向したカーボンナノチューブ(以下、CNTともいう。)から構成されるCNT繊維、及び当該CNT繊維の製造方法に関する。
 CNTとは、炭素で構成されるグラフェンシートが単層又は多層の同軸管状になった物質であり、超微細径、軽量性、高強度、高屈曲性、高電流密度、高熱伝導性、高電気伝導性(導電性)を有する材料である。CNTは、次世代の軽量材料の候補となる特性を有しており、鋼、銅、ダイヤモンドをも凌ぐ機械的特性、電気特性、熱特性を有し、CNTを用いた多くの用途が構想されているが、CNT原料をデバイスへと加工する点に多くの問題があり、結果としてCNTの特性を最大限生かし切れていない。CNTの特性を生かすために、一方向にCNTを配向させたCNT構造物を形成すること、例えば、優れた特性を有するCNTを糸状にすることができれば、電線やコイル(モーター、インダクター)用途において、銅線よりも細く、高強度で、かつ、導電性も高い代替材料として使用することができる。それゆえ、高度に配向したCNTから構成される従来にない特性を持つ繊維状材料を提供するために、以下のような製造方法が提案されている。
 例えば、以下の非特許文献1では、ポリビニルアルコールを含む凝集液にCNT分散液を注入してCNT糸を製造しているが、得られたCNT糸の導電性が低いという問題がある。
 また、以下の非特許文献2では、CNTフォレストからCNTを引出し、撚りながら導電性CNT糸を製造しているが、この方法では、単層カーボンナノチューブ(SWCNT)や二層カーボンナノチューブ(DWCNT)より導電性が低い多層カーボンナノチューブ(MWCNT)使用する必要があり、導電性が低くなる。また、CNTフォレストを使用するために長いCNT繊維を製造するには限界がある。
 また、以下の特許文献1には、クロロスルホン酸等の超酸溶媒中でCNTが液晶状態になるように紡糸する高密度CNT繊維の製造法が開示されている。しかしながら、超酸溶液の押出においては、超酸の吸湿性、反応性が問題となる。すなわち、同書段落[0040]に記載されるように、押出を中断してCNT繊維を空隙中に吊下させると、繊維が凝固液中に導入される前に水滴が繊維の該表面上に凝結し、押出物の想起凝固を引き起こし、更なる伸長が抑止されるため、凝集斑、延伸斑により、繊維の太さ斑の発生が避けられない。空隙に乾燥ガスを充填することによって、かかる問題が防止できる可能性はあるが、その場合であっても、バラス効果により凝固性に影響し、太さ斑、延伸斑をなくすことは困難である。また、特許文献1には、得られたCNT繊維の真円度については一切記載されていない。
 以下の特許文献2には、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム等の界面活性剤を用いて、CNTの分散液を形成し、これをN,N-ジメトルアセトアミド、N-メトルアセトアミド、エタノール等の凝集液中に注入・落下させてCNT凝集防止構造体を製造する方法(同書図1参照)が記載されているが、この方法は、有機溶媒をシャーレ―等に満たしたものを凝集液として用いており、凝集液に注入した直後の紡糸体の強度が弱く、また、紡糸された糸が凝固前にシャーレ―の底に到達してしまうため、得られるCNT繊維が扁平となり、また、太さ斑の発生が避けられない。さらに、特許文献2には、得られたCNT繊維の真円度、太さ斑については一切記載されていない。
 以下の特許文献3には、延伸倍率が10~50%であるSWCNTから構成される延伸糸が開示されている。しかしながら、分散液に含有される界面活性剤として、胆汁酸塩(例えば、コール酸ナトリウム、デオキシコール酸ナトリウムなど)が一例として挙げられているが、実施例ではコール酸ナトリウム(SC)が使用され、また、内径0.9mmの注入ノズルからイソプロパノール凝固液に注入して得たCNT繊維の導電率は、延伸倍率12~17%で5707~7345S/cmであったと記載されている。しかしながら、特許文献2と同様にシャーレを用いた方法であり、得られるCNT繊維が扁平となり、また、太さ斑の発生は避けられない。また、特許文献3には、得られたCNT繊維の真円度、太さ斑については一切記載されていない。
特表2011-502925号公報 特開2012-127043号公報 国際公開第2014/185497号
Vigolo et al., Science 290, 1331 (2000) Inoue et al., Carbon 49, 2437 (2011)
 以上の従来技術の問題点に鑑み、本発明が解決しようとする課題は、細く、太さ斑が小さく、真円度が高く、コイル加工時の巻取り性(捲回性)が良く、導電性に優れる配向したCNTから構成される繊維、及びその製造方法を提供することである。
 すなわち、本発明は以下のとおりのものである。
 [1]太さが0.01μm~3mmであり、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上であるカーボンナノチューブ(CNT)から構成されるCNT繊維。
 [2]透過型電子顕微鏡で観察するとき、任意の100本のCNTの内、直径5nm以下のCNTが50本以上で存在している、前記[1]に記載のCNT繊維。
 [3]共鳴ラマン散乱測定により得られるスペクトルにおいて、1550cm-1~1650cm-1の範囲内で最大のピーク強度をG、1300cm-1~1400cm-1の範囲内で最大のピーク強度をDとするとき、G/D比が0.1以上である、前記[1]又は[2]に記載のCNT繊維。
 [4]繊維密度が0.3g/cm~2.0g/cmである、前記[1]~[3]のいずれかに記載のCNT繊維。
 [5]導電率が3000S/cm~60000S/cmである、前記[1]~[4]のいずれかに記載のCNT繊維。
 [6]前記[1]~[5]のいずれかに記載のCNT繊維を含む電線。
 [7]前記[1]~[5]のいずれかに記載のCNT繊維を含むコイル。
 [8]以下の工程:
 カーボンナノチューブ(CNT)と界面活性剤を含有する水性分散液を、有機溶媒を含む凝固浴中に吐出して、糸の形状のCNT凝集構造物を得る紡糸工程;及び
 得られたCNT凝集構造物を、該凝固浴から吐出線速度以上の線速度で連続的に引き上げる工程;
を含む、太さ0.01μm~3mm、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上であるCNT繊維の製造方法。
 本発明に係るCNTから構成される繊維(本書中、単にCNT繊維ともいう。)は、太さが0.01μm~3mmであり、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上である、すなわち、細く、太さ斑が小さく、真円度が高く、コイル加工時の巻取り性(捲回性)が良く、導電性に優れる配向したCNTから構成される繊維であるため、コイル(モーター、インダクター)や電線等の用途に適する。導電率や電流密度は繊維1本の最も断面積の小さい部分に依存するため、太さ斑が小さく、断面の真円度が高く、均一であれば、繊維1本の導電性は相対的に高くなる。また、コイルへの巻取り性が良く、コイルが緻密に巻けるために、コイルに占める導電性部位が相対的に多くなる。
CNT繊維の形状を測定する装置の写真である。 実施例3で得られたCNT繊維の高分解能透過型電子顕微鏡写真(32万倍)である。
 以下、本発明の実施形態を詳細に説明する。
 本実施形態のCNT繊維は、太さが0.01μm~3mmであり、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上であるカーボンナノチューブ(CNT)から構成される繊維である。
 本明細書中、用語「から構成される」とは、本実施形態の所望の性質が奏される限り、他の成分を含有することを排除することを意図しない。
 CNTは、グラフェンシートが筒形に巻いた形状から成る炭素系材料である。CNTとしては、各種のものが知られているが、例えば、その周壁の構成数から単層カーボンナノチューブ(Single Wall Carbon Nanotube: SWCNT)、二層カーボンナノチューブ(Double Wall Carbon Nanotube: DWCNT)、三層以上の多層カーボンナノチューブ(Multi Wall Carbon Nanotube: MWCNT)とに大別される。また、グラフェンシートの構造の違いからカイラル(らせん)型、ジグザグ型、アームチェア型に分けられる。
 本実施形態のCNTから構成される繊維の太さは、0.01μm~3mmであり、好ましくは1μm~100μmであり、より好ましくは10μm~50μmである。
 太さが0.01μm以上3mm以下あれば、紡糸工程におけるCNT繊維の歩留まりが向上する。尚、太さは、後述する平均値により求めた。本明細書中「~」は、例えば、0.01μm以上3mm以下を意味する。
 また、本実施形態のCNTから構成される繊維の太さ斑は、変動係数0.2以下であり、好ましくは0.15以下、より好ましくは0.07以下である。
 太さ斑が、変動係数0.2以下であれば、1本のCNT繊維内のCNTの配列状態が良好で、1本のCNT繊維内の最小断面積が相対的に大きくなり、断面積に依存する導電性が高くなる。
 太さ斑を指標する変動係数の算出方法としては、CNT繊維の断面方向に対し、X軸及びX軸と垂直なY軸断面の2軸で、X軸、Y軸方向の幅を非接触のレーザーによる高精度寸法測定器や接触型の装置で測定し、幅と規定できる。他の幅の測定方法としては、光学顕微鏡や電子顕微鏡像より得られた画像データを用い、画像解析ソフトにより算出することもでき、マクロメータやノギス等の接触型の装置を用いて算出することもできる。測定数として総数100点以上の範囲で測定し、X軸、Y軸方向の数値の平均値を太さとする。
 また、平均値をCNT繊維の平均直径とし、断面積の算出を行った。
 太さ斑は、X軸、Y軸での数値、全数の平均値を計測し、さらに、標準偏差を算出した上、太さの標準偏差を太さの平均値で割った値を太さ斑のパラメータである変動係数で指標した。
 本実施形態のCNTから構成される繊維の真円度としての、分布率aは40%以上、分布率bは70%以上であるが、好ましくは、分布率a50%以上、分布率b80%以上であり、より好ましくは、分布率a55%以上、分布率b85%以上であり、さらに好ましくは、分布率a60%以上、分布率b90%以上である。
 分布率aが40%以上、分布率bが70%以上であれば、導電率が高くなるとともに、コイルへの巻取り性が良く、コイルが緻密に巻けるために、コイルに占める導電性部位が相対的に多くなる。
 真円度の算出方法としては、前記の太さ斑の算出で計測したX軸方向及びY軸方向の幅に対して、X/Yを求め、全測定点のうち、0.9≦X/Y≦1.1の存在率を分布率a(%)、とし、0.8≦X/Y≦1.2の存在率を分布率b(%)とし、分布率a(%)と分布率b(%)の値で真円度を評価した。
 本実施形態のCNTから構成される繊維の長さは、0.5m以上が好ましく、1m以上であることがより好ましく、5m以上であることがさらに好ましい。繊維の長さが0.5m以上であれば、コイル等の用途で巻き数の選択肢が増える。
 尚、本実施形態のCNTから構成される繊維は、50質量%より多くのCNTを含んでいれば、本実施形態の実質的な効果を発揮するため問題ないが、80質量%より多くのCNTを含むことが好ましく、90質量%より多くのCNTを含むことがより好ましく、95質量%より多くのCNTを含むことがさらに好ましく、98質量%より多くのCNTを含むことが最も好ましい。
 本実施形態では、このような所謂CNTと称されるものであれば、いずれのタイプのCNTも用いてもよいが、一般的には、導電性が高い単層カーボンナノチューブ(SWCNT)や二層カーボンナノチューブ(DWCNT)を原料として用いることが、高い導電率のCNTが得られるために好ましい。三層以上の多層カーボンナノチューブ(MWCNT)が含有しても構わないが、SWCNT及び/又はDWCNTの比率が高いことが好ましい。一般的にSWCNTとDWCNTの直径は5nm以下であるため、図2に示すように、透過型電子顕微鏡において画像解析によりCNT1本の直径を測定することができる20~100万倍で観察し、視野の中からCNTバンドルがほぐれCNTが1本で存在している100箇所を選び、選んだ100本のCNTについて画像解析ソフトから直径を評価し、直径5nm以下のCNTが50本以上で存在しているものが、好ましい。このとき、CNT1本とは、視野内で1本の状態で存在しているCNTが見えていれば1本として計上し、必ずしも両端が見えている必要はない。また、視野内で2本の状態で存在していても、視野外でつながって1本となっていることもあり得るが、その場合は2本として計上する。任意の100本のCNTの内、直径5nm以下のCNTが70本以上であることがより好ましく、90本以上であることがさらに好ましく、100本であることが最も好ましい。
 本実施形態のCNTから構成される繊維のG/Dは、好ましくは0.1以上、より好ましくは1以上、さらに好ましくは2以上である。すなわち、共鳴ラマン散乱測定により得られるスペクトルで、1550~1650cm-1の範囲内で最大のピーク強度をG、1300~1400cm-1の範囲内で最大のピーク強度をDとするとき、G/D比は0.1以上であることが好ましい。
 1550~1650cm-1の範囲内のピークはGバンドと呼ばれ、CNTのグラファイト構造に由来するピークであり、1300~1400cm-1の範囲内のピークはDバンドと呼ばれ、アモルファスカーボンやカーボンナノチューブの格子欠陥に由来するピークである。CNT中の欠陥部位の相対的発生率は、G/D比を用いて数値化することができる。G/D比が1以上であることは、格子欠陥の少ない高品質のカーボンナノチューブで構成されることを意味し、特に2以上、さらに20以上、特に30以上であれば、より高品質のCNTで構成され、熱伝導性、電気伝導性、耐熱性に優れるものとなる。
 本実施形態のCNTから構成される繊維の密度は、好ましくは0.3g/cm以上、より好ましくは0.5g/cm以上、さらに好ましくは0.8g/cm以上である。繊維密度が、0.3g/cm以上であれば、CNT繊維内の空隙が減少し、導電パスが増えるとともに、CNT同士の結合が強硬になるため、強度、導電率に優れるものとなる。
 本実施形態のCNTから構成される繊維の導電率(電気伝導度)は、好ましくは3000S/cm~60000S/cm、より好ましくは8000S/cm~60000S/cm、さらに好ましくは15000S/cm~60000S/cmである。
 導電率が3000S/cm以上であれば、電線、コイル(モーター、インダクター)用途等として好適なCNT繊維となる。
 本実施形態のCNTから構成される繊維のヤング率は、好ましくは0.5GPa~1000GPa、より好ましくは2GPa~1000GPa、さらに好ましくは5GPa~1000GPaである。
 本実施形態のCNTから構成される繊維の破断強度は、好ましくは50MPa~3000MPa、より好ましくは500MPa~3000MPa、さらに好ましくは1000MPa~3000MPaである。
 上記各物性値は、当業者に公知の手法で測定することができる。例えば、ヤング率と破断強度は、JIS L 1013に準拠して測定することができる。具体的には、応力-歪み測定を行い、その曲線の初期傾きからヤング率を、切断位置の応力から破断強度を求める。また、導電率は4端子法による電流―電圧測定を行い、その傾きから求める。
 CNTの製造方法は、特に限定されないが、スーパーグロースCVD法(Super-Growth method)、直噴熱分解合成法(DIPS法: Direct Injective Pyrolytic Synthesis)、改良直噴熱分解合成法(eDIPS法: enhanced Direct Injective Pyrolytic Synthesis)が挙げられる。本実施形態のCNTは、スーパーグロースCVD法により製造されたカーボンナノチューブ(SG-CNT)、改良直噴熱分解合成法により製造されたカーボンナノチューブ(eDIPS-CNT)のいずれでも構わないが、導電率の観点から、eDIPS-CNTが好ましい。
 SG-CNTについては、例えば、K. Hata, et al., Science 306, 1362 (2004)に、また、eDIPS-CNTについては、例えば、T. Saito et al., J. Nanosci. Nanotechnol., 8, 6153 (2008)に記載されている。
 本願発明者らは、CNTから構成される繊維の断面積を小さくするとともに、得られた該繊維を構成するCNTの欠陥を少なくすること、CNTの有効長を大きくすることにより、CNTから構成される繊維の機械特性と導電性が改善されることを見出した。
 本実施形態のCNTから構成される繊維は、例えば、以下の工程:
 カーボンナノチューブ(CNT)と界面活性剤を含有する水性分散液を、有機溶媒を含む凝固浴中に吐出して、糸の形状のCNT凝集構造物を得る紡糸工程;及び
 得られたCNT凝集構造物を、該凝固浴から吐出線速度以上の線速度で連続的に引き上げる工程;
を含む、太さ0.01μm~3mm、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上であるCNTを含む繊維の製造方法により製造することができる。かかる製造方法は、連続的に引き上げた乾燥前の糸を、水や有機溶剤等で膨潤した状態で延伸する工程、乾燥する工程をさらに含むことができる。
 まず、CNTは、界面活性剤を含有する水溶液に分散される。界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤のいずれを使用してもよい。
 ノニオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックコポリマーなどが挙げられ、具体的にはポリ(オキシエチレン)オクチルフェニルエーテル(例えば、Triton(登録商標)X-100)、ポリオキシエチレンソルビタンモノラウラート(例えば、Tween(登録商標)20)などが挙げられる。
 アニオン界面活性剤としては、アルキルベンゼンスルホン酸塩(例えば、ドデシルベンゼンスルホン酸ナトリウム等)、アルキルアルコール硫酸エステル塩(例えば、ドデシル硫酸ナトリウム等)、アルキルジフェニルエーテルジスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸エステルナトリウム、ジアルキルスルホコハク酸ナトリウム、アルキルアリルスルホコハク酸ナトリウム、N-ラウロイルサルコシンナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸エステルナトリウム、(メタ)アクリロイルポリオキシアルキレン硫酸エステルナトリウム、アルキルアルコールリン酸エステル塩、胆汁酸塩(例えば、コール酸ナトリウム、デオキシコール酸ナトリウムなど)が挙げられ、コール酸ナトリウムなどの胆汁酸塩が好ましく例示される。
 前記したように、本願発明者らは、CNTから構成される繊維の断面積を小さくするとともに、繊維を構成するCNTの欠陥を少なくすること、CNTの有効長を大きくすることにより、CNTを含む繊維の機械特性と導電性が改善されること、そしてCNTの欠陥を発生させず、有効長を保持したまま均一なCNT分散液、CNT繊維を得るためには、界面活性剤として、タウロデオキシコール酸ナトリウムを用いることが好ましいことを見出した。
 カチオン界面活性剤としては、テトラアルキルアンモニウムハライド、アルキルピリジニウムハライド、アルキルイミダゾリンハライドなどが挙げられる。
 両性界面活性剤としては、アルキルベタイン、アルキルイミダゾリニウムベタイン、レシチンなどが挙げられる。
 界面活性剤を含有する水性分散液のCNT量は、0.1質量%~10質量%が好ましく、より好ましくは0.15質量%~8質量%である。
 CNT及び界面活性剤を含有する水性分散液の界面活性剤量は、0.2質量%~20質量%が好ましく、より好ましくは0.3質量%~16質量%である。
 CNT及び界面活性剤を含有する水性分散液は、紡糸工程においてシリンジ、紡糸口金などから有機溶媒を含む凝固浴中に吐出され、糸の形状のCNT凝集構造物を得、該CNT凝集構造物を、該凝固浴から吐出線速度以上の線速度で連続的に引き上げる。吐出する際のシリンジ、紡糸口金などの口径は、10μm~5000μmが好ましく、より好ましくは20μm~1000μmであることができる。この範囲内で口径を変えることにより、凝固速度やCNTから構成される繊維の径を調節することができる。前記水性分散液は重力方向に吐出され、空中を介して凝固浴中に浸漬し、変更ロールや変更棒で方向転換して、ネルソンロールのような回転ロールにより凝固浴からCNT凝集構造物が連続的に引き上げられる。この際、空中を介さずにシリンジや紡糸口金から直接凝固浴に吐出されてもよい。また、シリンジや紡糸口金を凝固浴の底に沈め、凝固浴から引き上げる回転ロール方向に吐出されてもよい。いずれもCNT凝集構造物が、凝固浴から吐出線速度以上の線速度で連続的に引き上げられる。CNT凝集構造物の線速度は、吐出線速度の1~10倍が好ましく、1.2~5倍がより好ましく、1.5~3倍がさらに好ましい。水性分散液を重力方向に吐出する方法は、CNT凝集構造物を形成する際により均一な張力をかけることができ、CNTを含む繊維の太さ斑をより小さくし、断面の真円度をより高めることが可能な点で、好ましい。
 凝固浴に含まれる有機溶媒としては、水と混和する有機溶媒が好ましく、例えば、エタノール、メタノール、プロパノール、イソプロパノール等の低級アルコール、アセトン、メチルエチルケトン、4-メチル-2-ペンタノン(MIBK)などのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類、DMF、アセトアミド、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどのアミド類、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリンなどのグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル、ジメチルスルホキシド、アセトニトリルなどが挙げられる。凝固浴の溶媒は含水有機溶媒が好ましい。凝固浴の温度に特に制限は無いが、CNT凝集構造物が、凝固浴から吐出線速度以上の線速度で連続的に引き上げられる凝固状態となるように、有機溶剤と温度の組合せを選ぶが、5~50℃の温度範囲が温度制御のし易さの観点から好ましい。
 別の態様においては、水性分散液及び凝固浴の溶媒として、水を用いてもよい。その場合、水性分散液と凝固浴の溶媒のいずれか一方又は両方に塩類を添加することができる。水性分散液と凝固浴の溶媒の両方に塩類が含まれない場合、CNT凝集構造物が吐出線速度以上の線速度で凝固浴から連続的に引き上げられる凝固状態とすることが難しくなるおそれがある。塩類としては、無機塩及び有機塩のいずれでもよいが、無機塩類が好ましい。塩類は水溶性である。塩類は、アルカリ金属塩、アルカリ土類金属塩が好ましく、より好ましくはナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、バリウム塩、ストロンチウム塩が挙げられ、さらに好ましくはナトリウム塩、カルシウム塩、マグネシウム塩が挙げられる。塩類のアニオンとしては、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、亜硫酸イオン、リン酸イオン、硝酸イオン、亜硝酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、クエン酸イオン、シュウ酸イオン、リンゴ酸イオン、酒石酸イオン、マレイン酸イオン、フマル酸イオン、酢酸イオンなどが挙げられる。
 好ましい塩類としては、塩化ナトリウム、塩化カリウム、塩化リチウム、塩化カルシウム、塩化マグネシウム、臭化ナトリウム、臭化カリウム、臭化カルシウム、臭化マグネシウム、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、硝酸カリウム、硝酸カルシウム、硝酸マグネシウム、リン酸ナトリウム、リン酸一水素二ナトリウム、リン酸二水素一ナトリウム、リン酸ナトリウム、リン酸一水素二ナトリウム、リン酸二水素一ナトリウム、リン酸カリウム、リン酸一水素二カリウム、リン酸二水素一カリウム、リン酸カリウム、リン酸一水素二カリウム、リン酸二水素一カリウムなどが挙げられる。
 水性分散液及び凝固浴の溶媒中の塩類の濃度は、水性分散液中では0~25質量%が好ましく、より好ましくは0~20質量%であり、凝固浴中では、0~40質量%が好ましく、より好ましくは0~35質量%である。塩類は単独で又は2種以上の塩類を組み合わせて水性分散液及び/又は凝固浴に溶解される。凝固浴又は水性分散液中に塩類が含まれる場合、水性分散液を吐出した後の凝固浴の溶媒中にも塩類が含まれる。水性分散液を吐出した後の凝固浴の溶媒中の塩類濃度は0.5~40質量%が好ましく、より好ましくは1~35質量%である。塩類は、水性分散液のみに又は凝固液の溶媒中にのみに含まれていてもよいので、水性分散液と凝固液の溶媒中の塩類濃度の下限は各00質量%であるが、塩類を含む水性分散液又は塩類を含む凝固浴の溶媒中の塩類濃度の下限は、0.5質量%程度が好ましく、より好ましくは1質量%程度であり、上限は、40質量%程度が好ましく、より好ましくは35質量%程度である。
 吐出されたCNT水性分散液の凝固浴中での浸漬時間は、凝固浴の条件により異なり、CNT凝集構造物が、凝固浴から吐出線速度以上の線速度で連続的に引き上げられる凝固状態となっていれば、特に制限は無い。凝固浴は、静止浴であっても、チューブ等を用いた流動浴であってもよい。
 凝固浴から引き上げられたCNTから構成される繊維を、水や凝固浴の溶媒と同様の有機溶剤にさらに浸漬し、界面活性剤、及び/又は塩類を洗浄除去する。この洗浄工程における水や有機溶剤の温度は特に制限はないが、例えば、5~50℃程度、好ましくは室温程度の温度であることができる。浸漬時間も特に制限はなく、例えば、2時間以上、好ましくは24時間以上であることができる。この水中の浸漬工程により、界面活性剤、及び/又は塩類が適量除去されたCNTから構成される繊維が得ることができる。
 CNTから構成される繊維は、湿潤状態で次の延伸工程に供される。延伸は、ネルソンロールのような回転ロールと回転ロールの間で行われ、回転速度が異なることにより延伸される。延伸倍率は、好ましくは5~70%、より好ましくは10~50%である。かかる延伸により、CNTから構成される繊維内のCNTバンドルが繊維軸方向に配列され、断面積が減少し、CNT繊維密度が向上する。延伸倍率は、下記式:
   延伸倍率(%)=[{(延伸後の長さ)-(延伸前の長さ)}/(延伸前の長さ)]×100
により定義される。
 延伸後は、必要に応じて、水や凝固浴の溶媒同様の有機溶剤でさらに洗浄し、乾燥することによりCNTから構成される繊維を得ることができる。
 以下、本発明を実施例及び比較例を用いて具体的に説明する。尚、本発明は以下の実施例に限定されるものではない。
 CNT糸の物性測定方法は以下のとおりであった。
[太さ、太さ斑]
 超高速・高精度寸法測定器 (キーエンス株式会社製,型番LS-9006)2台を、図1に示すようにCNT繊維の断面に対し配置し、X軸及びY軸断面の2軸で、非接触状態でX軸、Y軸方向の太さを測定した。測定数として、CNT繊維1cmおきに565点、長さ5.65mの範囲で測定し、X軸、Y軸方向の各565点の平均値を太さとした。
 太さ斑は、X軸、Y軸での数値、全1130点の平均値を計測し、さらに、標準偏差を算出した上、太さの標準偏差を太さの平均値で割った値を太さ斑のパラメータである変動係数とした。
[真円度]
 前記X軸方向及びY軸方向の565点それぞれの点につき、X/Yを求め、全565点のうち、0.9≦X/Y≦1.1の分布率a(%)、及び0.8≦X/Y≦1.2の分布率b(%)を求め、真円度とした。真円度の測定に関しては、X軸方向、Y軸方向のそれぞれにおいてCNT繊維が超高速・高精度寸法測定器を通過する時間、速度、測定器間の距離を測定し、その測定値を用いて統計処理を行いプロット点の補正を行うことで、CNT繊維における同断面部位内のX軸とY軸の数値を求め、X/Yを算出した。
[直径が5nm以下のCNTの存在比率]
 CNT繊維をN-メチル-2-ピロリドン中でせん断分散させ、その分散液をグリッド上にて塗布して乾燥した。図2に示すように、これを透過型電子顕微鏡(FEI社製TECNAIG2F20)にて20~100万倍、加速電圧200Vにて写真撮影を行い、画像解析ソフト(三谷商事株式会社製 WinROOF)を用い、直径を測定し、100本のうち、5nm以下の直径のCNTの合計本数を測定した。
[共鳴ラマン散乱測定におけるG/D比]
 トリプルラマン分光装置(株式会社堀場製作所製 T64000)を用い、532nmの波長で測定することによりG/D比を測定した。
[繊維密度]
 精密天秤(METTLER TOLEDO社製,XPE205)を用い、5m当たりのCNT繊維の重量を測定し、他方、前記の超高速・高精度寸法測定器を用いた太さの平均値からCNT繊維の断面積を算出し、その断面積とCNT繊維の長さを乗ずることによりCNT繊維の体積とし、CNT繊維の重量を体積で割ることにより繊維密度(g/cm)を算出した。
[導電率]
 導電率は4端子法を用い、CNT繊維に、所定の電流を印加した際の電圧値の測定を行い、その電流―電圧の傾きから抵抗値を算出した。導電率測定としてはCNT繊維を固定し端子間の距離が定まっている測定治具、発振器(Tektronix社製、AFG3022)、ポテンシオガルバノスタット(北斗電工株式会社製、HAL3001)オシロスコープ(横河計測株式会社製、DL850E)を用いて測定を行った。
 得られた抵抗値、前記の超高速・高精度寸法測定器を用いた太さの平均値から得られるCNT繊維の断面積の値、測定治具の端子間の距離の値を用いて導電率を算出した。
[コイルの緻密性]
 得られたCNT繊維を、幅2mm、直径3mmのポリエチレン製のボビンに10gの張力でトラバースをかけながら、一層ずつ積み重なるように、長さ4m巻き上げた。その巻いたCNT繊維が緩まないように固定し、ボビンごとエポキシ樹脂で固めた。CNT繊維の断面が得られるように厚み0.5mmの切片を切り出し、マイクロスコープ(キーエンス社製 VHX-5000)で1000倍の写真を撮影した。その視野内の画像処理により、CNT繊維部分とエポキシ樹脂(空隙)部分の面性を測定し、CNT繊維の面積比率(%)を計算し、コイルの緻密性の指標とした。
[実施例1]
 改良直噴熱分解合成法(eDIPS法)により製造されたCNT(名城ナノカーボン社製、EC1.4、以下、eDIPS-CNTともいう。)4gとタウロデオキシコール酸ナトリウム(シグマ・アルドリッチ社製、TDOCともいう。)8gを、水1988gに加え、超高速マルチ攪拌システム(プライミクス株式会社製、ラボ・リューション)を用い60分間分散を行った。その後、自転公転式ミキサー(株式会社シンキー社製、あわとり練太郎ARE-250)を用い、10分間脱泡作業を行って、eDIPS-CNTの重量濃度が0.2質量%であるeDIPS-CNT分散液を得た。
 得られたeDIPS-CNT分散液をホットプレート上で熱を加えることによりeDIPS-CNTの重量濃度が0.4質量%となるように水を蒸発させた。
 このeDIPS-CNT分散液をシリンジに詰め込んだ後、内径0.21mmの注入紡糸ノズルを装着した後、シリンジポンプ(YMC株式会社製、YSP-301)を用い、吐出速度5.25m/minの条件でエタノール溶液内に重力方向に直接吐出することにより糸状に凝固し、凝固糸が緩まないように回転速度6.45m/minの条件で巻き取り装置の速度を設定し、凝固糸をエタノール溶液から引き上げ巻き取った。
 次いで、凝固糸を送りローラを用い水槽に浸漬させ、巻き取り装置を用い、水から引き上げ乾燥させた。本工程で送りローラと巻き取り装置の回転数を変更することにより原糸に対して10%の延伸を行い、乾燥することでCNT繊維を得た。
 得られたCNT繊維について平均直径、分布率a、分布率b、太さ斑のパラメータである変動係数、さらには真円度を測定するとともに、直径が5nm以下のCNTの存在比率、導電率、G/D比を計測した。
 得られたCNT繊維は、平均直径:26μm、変動係数:0.111、分布率a:5%、分布率b:84%、直径が5nm以下のCNTの存在比率:94%、G/D比:30、導電率:5800S/cm、繊維密度:0.6g/cmであった。
[実施例2]
 実施例1のeDIPS-CNT分散液の水をさらに蒸発させて、eDips-CNTの重量濃度が0.6質量%となるように調整したeDIPS-CNT分散液を用いた他は、実施例1と同様に行い、CNT繊維を得た。得られたCNT繊維は、平均直径:30μm、変動係数:0.10、分布率a:52%、分布率b:80%、直径が5nm以下のCNTの存在比率:95%、G/D比:28、導電率:5600S/cm、繊維密度:0.6g/cmであった。
[実施例3]
 内径0.21mmの注入紡糸ノズルに代えて、内径0.41mmの注入紡糸ノズルを用いた他は、実施例1と同様にCNT繊維を得た。得られたCNT繊維は、平均直径:53μm、変動係数:0.15、分布率a:49%、分布率b:75%、直径が5nm以下のCNTの存在比率:96%、G/D比:25、導電率4000S/cm、繊維密度:0.5g/cmであった。また、コイルの緻密性の評価も行い、コイルの緻密性(CNT繊維の面積比率)は85%であり、比較例1と比較して高い値を示した。
[実施例4]
 eDIPS-CNTに代えて、SG-CNTとした他は、実施例1と同様にCNT繊維を得た。得られたCNT繊維は、平均直径:23μmで、変動係数:0.07、分布率a:55%、分布率b:82%、直径が5nm以下のCNTの存在比率:70%、G/D比:2.5、導電率:450S/cm、繊維密度:0.6g/cmであった。
[実施例5]
 巻き取り装置の回転速度を11.00m/minとし、20%延伸とした他は、実施例1と同様にCNT繊維を得た。
 得られたCNT繊維は、平均直径:16μm、変動係数:0.07、分布率a:65%、分布率b:90%、直径が5nm以下のCNTの存在比率:95%、G/D比:30、導電率:18000S/cm、繊維密度:0.8g/cmであった。
[比較例1]
 実施例1と同様の0.4質量%のeDIPS-CNT分散液をシリンジに詰め込んだ後、内径0.41mmの注入紡糸ノズルを装着した後、シリンジポンプ(YMC株式会社製、YSP-301)を用い、吐出速度5.26m/minの条件で、シャーレに入ったエタノール溶液内に直接吐出した。シャーレから取り出す位置における軌跡が6.45m/minとなるようにシャーレを回転させ、糸状に凝固した凝固糸を得た。
 得られた凝固糸をエタノール中に1日放置した後、水中に移して3日間浸漬した。水中から取り出した凝固糸1mの両端を治具で固定し、延伸装置(株式会社SDI社製)を用い片端駆動させることにより10%の延伸を行い、乾燥することでCNT繊維を得た。
 得られた長さ1.1mのCNT繊維6本を用いて、実施例と同様に平均直径、分布率a、分布率b、太さ斑のパラメータである変動係数、真円度を測定するとともに、CNT中のSWCNT及び/又はDWCNTの存在比率、導電率、G/D比を計測した。また、コイルの緻密性の評価も行った。
 得られたCNT繊維は、平均直径:52μm、変動係数:0.28、分布率a:15%、分布率b:43%、直径が5nm以下のCNTの存在比率:98%、G/D比:30、導電率:3400S/cm、繊維密度:0.55g/cmであった。コイルの緻密性(CNT繊維の面積比率)は71%であり、実施例3と比較して低い値を示した。
 本発明に係るCNTから構成される繊維は、太さが0.01μm~3mmであり、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上である、すなわち、細く、太さ斑が小さく、真円度が高く、コイル加工時の巻取り性(捲回性)が良く、導電性に優れる配向したCNTから構成される繊維であるため、コイル(モーター、インダクター)や電線等の用途に好適に利用可能である。導電率や電流密度は繊維1本の最も断面積の小さい部分に依存するため、太さ斑が小さく、断面の真円度が高く、均一であれば、繊維1本の導電性は相対的に高くなる。また、コイルへの巻取り性が良く、コイルが緻密に巻けるために、コイルに占める導電性部位が相対的に多くなる。

Claims (8)

  1.  太さが0.01μm~3mmであり、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上であるカーボンナノチューブ(CNT)から構成されるCNT繊維。
  2.  透過型電子顕微鏡で観察するとき、任意の100本のCNTの内、直径5nm以下のCNTが50本以上で存在している、請求項1に記載のCNT繊維。
  3.  共鳴ラマン散乱測定により得られるスペクトルにおいて、1550cm-1~1650cm-1の範囲内で最大のピーク強度をG、1300cm-1~1400cm-1の範囲内で最大のピーク強度をDとするとき、G/D比が0.1以上である、請求項1又は2に記載のCNT繊維。
  4.  繊維密度が0.3g/cm~2.0g/cmである、請求項1~3のいずれか1項に記載のCNT繊維。
  5.  導電率が3000S/cm~60000S/cmである、請求項1~4のいずれか1項に記載のCNT繊維。
  6.  請求項1~5のいずれか1項に記載のCNT繊維を含む電線。
  7.  請求項1~5のいずれか1項に記載のCNT繊維を含むコイル。
  8.  以下の工程:
     カーボンナノチューブ(CNT)と界面活性剤を含有する水性分散液を、有機溶媒を含む凝固浴中に吐出して、糸の形状のCNT凝集構造物を得る紡糸工程;及び
     得られたCNT凝集構造物を、該凝固浴から吐出線速度以上の線速度で連続的に引き上げる工程;
    を含む、太さ0.01μm~3mm、太さ斑が変動係数で0.2以下であり、真円度としての分布率aが40%以上であり、かつ、分布率bが70%以上であるCNT繊維の製造方法。
PCT/JP2018/037978 2017-10-13 2018-10-11 カーボンナノチューブから構成される繊維及びその製造方法 WO2019074072A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/644,656 US11686019B2 (en) 2017-10-13 2018-10-11 Fiber constituted from carbon nanotube and method for manufacturing same
EP18865890.0A EP3696303B1 (en) 2017-10-13 2018-10-11 Fiber constituted from carbon nanotube and method for manufacturing same
CN201880066448.XA CN111201343B (zh) 2017-10-13 2018-10-11 由碳纳米管构成的纤维和其制造方法
ES18865890T ES2910168T3 (es) 2017-10-13 2018-10-11 Fibra constituida a partir de nanotubos de carbono y método para fabricar la misma
JP2019548242A JP6933846B2 (ja) 2017-10-13 2018-10-11 カーボンナノチューブから構成される繊維及びその製造方法
KR1020207009506A KR102320084B1 (ko) 2017-10-13 2018-10-11 카본 나노 튜브로 구성되는 섬유 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-199838 2017-10-13
JP2017199838 2017-10-13

Publications (1)

Publication Number Publication Date
WO2019074072A1 true WO2019074072A1 (ja) 2019-04-18

Family

ID=66100914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037978 WO2019074072A1 (ja) 2017-10-13 2018-10-11 カーボンナノチューブから構成される繊維及びその製造方法

Country Status (8)

Country Link
US (1) US11686019B2 (ja)
EP (1) EP3696303B1 (ja)
JP (1) JP6933846B2 (ja)
KR (1) KR102320084B1 (ja)
CN (1) CN111201343B (ja)
ES (1) ES2910168T3 (ja)
TW (1) TWI693312B (ja)
WO (1) WO2019074072A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178466A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 カーボンナノチューブ線材の製造方法及びカーボンナノチューブ線材
US11780731B2 (en) * 2018-03-30 2023-10-10 Furukawa Electric Co., Ltd. Carbon nanotube wire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200115228A1 (en) * 2018-10-15 2020-04-16 Crystal Elaine Owens Systems, devices, and methods for direct-write printing of elongated nanostructures
CN111334897A (zh) * 2020-03-30 2020-06-26 中国科学院苏州纳米技术与纳米仿生研究所 一种碳纳米基纤维、其制备方法及应用
CN112458553A (zh) * 2020-10-29 2021-03-09 烟台泰和新材料股份有限公司 一种高性能碳纳米/MXene复合纤维及其制备方法
CN112575411B (zh) * 2020-11-29 2022-04-05 中国科学院金属研究所 高强度、高导电性单壁碳纳米管纤维的湿法纺丝制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122010A (en) * 1979-03-12 1980-09-19 Kuraray Co Ltd Preparation of hollow ethylene-vinyl alcohol compolymer membrane
WO2012070537A1 (ja) * 2010-11-22 2012-05-31 古河電気工業株式会社 凝集紡糸構造体およびその製造方法ならびにそれを用いた電線
JP2012127043A (ja) 2010-11-22 2012-07-05 Furukawa Electric Co Ltd:The 凝集紡糸構造体および電線
JP2014502678A (ja) * 2010-12-31 2014-02-03 コンティプロ ビオテック スポレチノスト エス ルチェニム オメゼニム ヒアルロナン繊維,その調製方法及び使用
WO2014185497A1 (ja) 2013-05-17 2014-11-20 独立行政法人産業技術総合研究所 カーボンナノチューブ延伸糸及びその製造方法
JP2014530964A (ja) * 2011-09-07 2014-11-20 テイジン・アラミド・ビー.ブイ. 低抵抗率、高弾性率、および/または高熱伝導率を有するカーボンナノチューブ繊維、ならびに、繊維紡糸ドープを用いた紡糸による当該繊維の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060077982A (ko) * 2004-12-30 2006-07-05 주식회사 효성 탄소 나노튜브 섬유의 제조방법 및 그 방법에 의해 제조된섬유
EP2173655B1 (en) * 2007-07-09 2020-04-08 Nanocomp Technologies, Inc. Chemically-assisted alignment of nanotubes within extensible structures
JP5299884B2 (ja) 2007-10-23 2013-09-25 地方独立行政法人大阪府立産業技術総合研究所 微細炭素繊維糸の製造方法、該製造方法に用いる微細炭素繊維形成基板、及び、前記製造方法によって製造された微細炭素繊維糸
US20110110843A1 (en) 2007-10-29 2011-05-12 William March Rice University Neat carbon nanotube articles processed from super acid solutions and methods for production thereof
KR101252182B1 (ko) 2008-07-16 2013-04-05 호도가야 케미칼 컴파니 리미티드 탄소섬유 집합체, 그 제조방법 및 그들을 함유하는 복합재료
EP2568064A1 (en) * 2011-09-07 2013-03-13 Teijin Aramid B.V. Carbon nanotubes fiber having low resistivity
CN104936895A (zh) 2013-01-24 2015-09-23 日本瑞翁株式会社 碳纳米管分散液及其制造方法、以及碳纳米管组合物及其制造方法
KR20160131484A (ko) 2015-05-07 2016-11-16 신동수 탄소나노튜브를 함유하는 도전성 모노 폴리에스테르 필라멘트
JP6703427B2 (ja) * 2016-03-25 2020-06-03 ニッタ株式会社 複合織物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122010A (en) * 1979-03-12 1980-09-19 Kuraray Co Ltd Preparation of hollow ethylene-vinyl alcohol compolymer membrane
WO2012070537A1 (ja) * 2010-11-22 2012-05-31 古河電気工業株式会社 凝集紡糸構造体およびその製造方法ならびにそれを用いた電線
JP2012127043A (ja) 2010-11-22 2012-07-05 Furukawa Electric Co Ltd:The 凝集紡糸構造体および電線
JP2014502678A (ja) * 2010-12-31 2014-02-03 コンティプロ ビオテック スポレチノスト エス ルチェニム オメゼニム ヒアルロナン繊維,その調製方法及び使用
JP2014530964A (ja) * 2011-09-07 2014-11-20 テイジン・アラミド・ビー.ブイ. 低抵抗率、高弾性率、および/または高熱伝導率を有するカーボンナノチューブ繊維、ならびに、繊維紡糸ドープを用いた紡糸による当該繊維の製造方法
WO2014185497A1 (ja) 2013-05-17 2014-11-20 独立行政法人産業技術総合研究所 カーボンナノチューブ延伸糸及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
INOUE ET AL., CARBON, vol. 49, 2011, pages 2437
K. HATA ET AL., SCIENCE, vol. 306, 2004, pages 1362
See also references of EP3696303A4
T. SAITO ET AL., J. NANOSCI. NANOTECHNOL., vol. 8, 2008, pages 6153
VIGOLO, SCIENCE, vol. 290, 2000, pages 1331

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178466A (ja) * 2018-03-30 2019-10-17 古河電気工業株式会社 カーボンナノチューブ線材の製造方法及びカーボンナノチューブ線材
US11780731B2 (en) * 2018-03-30 2023-10-10 Furukawa Electric Co., Ltd. Carbon nanotube wire

Also Published As

Publication number Publication date
EP3696303B1 (en) 2022-03-09
EP3696303A1 (en) 2020-08-19
KR102320084B1 (ko) 2021-11-02
JP6933846B2 (ja) 2021-09-08
EP3696303A4 (en) 2021-04-07
TWI693312B (zh) 2020-05-11
CN111201343A (zh) 2020-05-26
CN111201343B (zh) 2022-05-06
TW201923182A (zh) 2019-06-16
US20210071320A1 (en) 2021-03-11
JPWO2019074072A1 (ja) 2020-05-28
KR20200046095A (ko) 2020-05-06
US11686019B2 (en) 2023-06-27
ES2910168T3 (es) 2022-05-11

Similar Documents

Publication Publication Date Title
JP6933846B2 (ja) カーボンナノチューブから構成される繊維及びその製造方法
US9424960B2 (en) Aggregated thread structure, production method thereof, and electric wire using the same
JP5288359B2 (ja) 凝集紡糸構造体および電線
JP5131571B2 (ja) 凝集紡糸構造体の製造方法および凝集紡糸構造体
JP6666866B2 (ja) カーボンナノチューブ撚糸電線の製造方法
JP5963095B2 (ja) 低抵抗率、高弾性率、および/または高熱伝導率を有するカーボンナノチューブ繊維、ならびに、繊維紡糸ドープを用いた紡糸による当該繊維の製造方法
US20140084219A1 (en) Doped multiwalled carbon nanotube fibers and methods of making the same
TWI704249B (zh) 碳奈米管薄片的製造方法、碳奈米管薄片及碳奈米管薄片層合體
RU2757283C2 (ru) Способ формования профилированных изделий, включающих углеродные нанотрубки
KR102556948B1 (ko) 탄소나노튜브 나노복합 전도성 다섬유 및 그 제조방법
Sun et al. Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes
KR102313612B1 (ko) 조밀화된 탄소나노튜브 섬유의 제조방법
KR102322833B1 (ko) 고성능·경량 탄소나노튜브 섬유 및 그 제조방법
Liu et al. Glassy carbon nanofibers from electrospun cellulose nanofiber
JP2020077643A (ja) カーボンナノチューブ撚糸電線
US20220227631A1 (en) Carbon nanotube fiber having improved physical properties and method for manufacturing same
JP7087740B2 (ja) 炭素繊維束の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548242

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009506

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018865890

Country of ref document: EP

Effective date: 20200513