WO2016039228A1 - 熱電変換素子、熱電変換層、熱電変換層形成用組成物 - Google Patents

熱電変換素子、熱電変換層、熱電変換層形成用組成物 Download PDF

Info

Publication number
WO2016039228A1
WO2016039228A1 PCT/JP2015/074883 JP2015074883W WO2016039228A1 WO 2016039228 A1 WO2016039228 A1 WO 2016039228A1 JP 2015074883 W JP2015074883 W JP 2015074883W WO 2016039228 A1 WO2016039228 A1 WO 2016039228A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermoelectric conversion
conversion layer
carbon atoms
general formula
Prior art date
Application number
PCT/JP2015/074883
Other languages
English (en)
French (fr)
Inventor
裕三 永田
寛記 杉浦
林 直之
野村 公篤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016547395A priority Critical patent/JP6220984B2/ja
Publication of WO2016039228A1 publication Critical patent/WO2016039228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a thermoelectric conversion element, a thermoelectric conversion layer, and a composition for forming a thermoelectric conversion layer.
  • thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used in thermoelectric conversion elements such as power generation elements and Peltier elements that generate electricity by heat.
  • the thermoelectric conversion element can directly convert heat energy into electric power and does not require a movable part.
  • the thermoelectric conversion element is used for a wristwatch operating at body temperature, a power source for remote areas, a power source for space, and the like.
  • thermoelectric conversion performance As one of the indexes for evaluating the thermoelectric conversion performance of the thermoelectric conversion element, there is a dimensionless figure of merit ZT (hereinafter simply referred to as the figure of merit ZT).
  • This figure of merit ZT is represented by the following formula (A).
  • thermoelectromotive force hereinafter sometimes referred to as thermoelectromotive force
  • conductivity ⁇ per absolute temperature 1K Reduction of thermal conductivity ⁇ is important.
  • thermoelectric conversion materials have attracted attention as thermoelectric conversion materials, and several techniques relating to thermoelectric conversion elements using CNTs have been proposed (for example, Patent Document 1).
  • a dispersing agent that disperses CNTs is generally used.
  • polystyrene is used in Examples.
  • thermoelectric conversion performance of thermoelectric conversion elements has been demanded in order to improve the performance of equipment in which thermoelectric conversion elements are used.
  • the present inventors first examined the characteristics of a composition containing CNT and polystyrene as described in Patent Document 1, and found that the dispersibility of CNT in the composition is not necessarily sufficient in the first place. I found out.
  • the performance of the thermoelectric conversion layer formed using such a composition with poor dispersibility of CNT was examined, the conductivity and thermoelectromotive force of the thermoelectric conversion layer satisfy the levels required recently. It was found that further improvement is necessary.
  • An object of this invention is to provide the thermoelectric conversion layer excellent in electrical conductivity and a thermoelectromotive force, and the thermoelectric conversion element which has this thermoelectric conversion layer in view of the said situation.
  • Another object of the present invention is to provide a composition for forming a thermoelectric conversion layer that can form a thermoelectric conversion layer that is excellent in dispersion stability of carbon nanotubes and that is excellent in conductivity and thermoelectromotive force.
  • the present inventors have found that a desired effect can be obtained by using a dispersant having a predetermined structure. More specifically, the present inventors have found that the above object can be achieved by the following configuration.
  • thermoelectric conversion element having a thermoelectric conversion layer and an electrode pair electrically connected to the thermoelectric conversion layer, The thermoelectric conversion element in which a thermoelectric conversion layer contains a carbon nanotube and the polymer dispersing agent represented by General formula (1) mentioned later.
  • a 1 is a monovalent organic group containing at least one site selected from a chain or cyclic alkyl group having 4 or more carbon atoms and an aryl group having 6 or more carbon atoms, (1) Or the thermoelectric conversion element as described in (2).
  • the non-conjugated polymer skeleton is derived from at least one selected from a polymer or copolymer of a vinyl monomer, an ester polymer, and a modified product or copolymer thereof.
  • a polymer or copolymer of a vinyl monomer an ester polymer, and a modified product or copolymer thereof.
  • m 2 to 3
  • n 4 to 3.
  • thermoelectric conversion layer according to (7) wherein the polymer dispersant represented by the general formula (1) is a polymer dispersant represented by the general formula (2) described later.
  • a 1 is a monovalent organic group containing at least one site selected from a chain or cyclic alkyl group having 4 or more carbon atoms and an aryl group having 6 or more carbon atoms, (7) Or the thermoelectric conversion layer as described in (8).
  • the non-conjugated polymer skeleton is derived from at least one selected from polymers or copolymers of vinyl monomers, ester polymers, and modified products or copolymers thereof (7
  • the composition for forming a thermoelectric conversion layer according to (13), wherein the polymer dispersant represented by the general formula (1) is a polymer dispersant represented by the following general formula (2).
  • a 1 is a monovalent organic group containing at least one site selected from a chain or cyclic alkyl group having 4 or more carbon atoms and an aryl group having 6 or more carbon atoms, (13) Or the composition for thermoelectric conversion layer formation as described in (14).
  • the non-conjugated polymer skeleton is derived from at least one selected from polymers or copolymers of vinyl monomers, ester polymers, and modified products or copolymers thereof (13 The composition for forming a thermoelectric conversion layer according to any one of (1) to (15).
  • thermoelectric conversion layer according to any one of (13) to (17), wherein the polymer dispersant has a weight average molecular weight of 15000 to 40000.
  • thermoelectric conversion layer excellent in electrical conductivity and thermoelectromotive force, and the thermoelectric conversion element which has this thermoelectric conversion layer can be provided.
  • composition for thermoelectric conversion layer formation which can form the thermoelectric conversion layer which is excellent in the dispersion stability of a carbon nanotube, and is excellent in electrical conductivity and a thermoelectromotive force can also be provided.
  • thermoelectric conversion element of this invention It is sectional drawing which shows typically an example of the thermoelectric conversion element of this invention.
  • the arrows in FIG. 1 indicate the direction of the temperature difference applied when the element is used.
  • FIG. 2 It is sectional drawing which shows typically an example of the thermoelectric conversion element of this invention.
  • the arrows in FIG. 2 indicate the direction of the temperature difference applied when the element is used.
  • thermoelectric conversion element of this invention a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a polymer dispersant having a predetermined structure is used. As will be described later, the polymer dispersant has a connecting part, an adsorption site extending from the connecting part and capable of forming an interaction with the CNT surface, and a non-conjugated polymer skeleton. By having such a structure, the dispersibility of CNTs is improved more than conventional dispersants.
  • the polymer dispersant has a linking portion at the terminal position of each non-conjugated polymer skeleton. Therefore, if the adsorption site extending from the connecting part interacts with the CNT, each non-conjugated polymer skeleton tends to radially expand from the connecting part, and the CNTs reaggregate due to the steric repulsion of the non-conjugated polymer skeleton. Is suppressed.
  • CNTs when a plurality of adsorption sites are included, since the adsorption sites are present in the vicinity of the connecting portion, the interaction with the CNT tends to become strong, and as a result, the dispersibility of the CNT tends to be improved.
  • CNTs often exist in a bundled state in which a plurality of CNTs are gathered, and this bundle state can be loosened by using a polymer dispersant.
  • the polymer dispersant having the above structure, it is presumed that the degree of unraveling the bundle state is large, and as a result, CNTs are easily dispersed uniformly.
  • thermoelectric conversion layer formed using a composition having such a high dispersibility of CNT tends to exhibit the original performance of CNT, and as a result, exhibits excellent conductivity and thermoelectromotive force.
  • thermoelectric conversion element having a thermoelectric conversion layer formed using this composition will be described in detail.
  • composition for forming a thermoelectric conversion layer includes at least carbon nanotubes and a polymer dispersant represented by the general formula (1).
  • composition includes at least carbon nanotubes and a polymer dispersant represented by the general formula (1).
  • carbon nanotube As the carbon nanotube (CNT) used in the present invention, for example, a single-walled CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape, a double-walled CNT in which two graphene sheets are wound in a concentric shape, There is a multilayer CNT in which a plurality of graphene sheets are wound concentrically.
  • single-walled CNTs, double-walled CNTs, and multilayered CNTs may be used alone, or two or more kinds may be used in combination.
  • the single-walled CNT used in the present invention may be semiconducting or metallic, and both may be used in combination.
  • a metal or the like may be included in the CNT, and a substance in which a molecule such as fullerene is included (in particular, a substance in which fullerene is included is referred to as a peapod) may be used.
  • CNTs can be produced by arc discharge, chemical vapor deposition (hereinafter referred to as CVD (chemical vapor deposition)), laser ablation, or the like.
  • the CNT used in the present invention may be obtained by any method, but is preferably obtained by an arc discharge method and a CVD method.
  • fullerenes, graphite, and amorphous carbon may be produced as by-products at the same time. You may refine
  • the purification method of CNT is not specifically limited, Methods, such as washing
  • acid treatment with nitric acid, sulfuric acid, etc. and ultrasonic treatment are also effective for removing impurities.
  • CNT After purification, the obtained CNT can be used as it is. Moreover, since CNT is generally produced in a string shape, it may be cut into a desired length depending on the application. CNTs can be cut into short fibers by acid treatment with nitric acid, sulfuric acid or the like, ultrasonic treatment, freeze pulverization method or the like. In addition, it is also preferable to perform separation using a filter from the viewpoint of improving purity. In the present invention, not only cut CNTs but also CNTs produced in the form of short fibers in advance can be used in the same manner.
  • the average length of CNTs is not particularly limited, but is preferably 0.01 to 1000 ⁇ m, more preferably 0.1 to 100 ⁇ m, from the viewpoints of manufacturability, film formability, conductivity, and the like.
  • the average diameter of the CNT is not particularly limited, but is 0.4 nm or more and 100 nm or less (more preferably 50 nm or less, more preferably 15 nm or less) from the viewpoint of durability, transparency, film formability, conductivity, and the like. It is preferable.
  • the content of carbon nanotubes in the composition is preferably 5 to 80% by mass and more preferably 5 to 70% by mass with respect to the total solid content in the composition in terms of thermoelectric conversion performance. Preferably, it is 5 to 50% by mass.
  • the carbon nanotubes may be used alone or in combination of two or more.
  • the said solid content intends the component which forms a thermoelectric conversion layer, and a solvent is not contained.
  • the composition contains a polymer dispersant represented by the general formula (1). As described above, the polymer dispersant functions as a CNT dispersant.
  • R 1 represents a (m + n) -valent linking group.
  • the molecular weight of the (m + n) -valent linking group represented by R 1 is not particularly limited, but the dispersibility of the carbon nanotube is more excellent and / or at least one of the conductivity and the thermoelectromotive force of the thermoelectric conversion layer is more. 3000 or less is preferable and 1500 or less is more preferable in terms of excellent points (hereinafter, simply referred to as “the point where the effect of the present invention is more excellent”). Although a minimum in particular is not restrict
  • (M + n) -valent linking groups include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and It is preferred that a group consisting of 0 to 20 sulfur atoms is included, which may be unsubstituted or may further have a substituent.
  • Specific examples of the (m + n) -valent linking group include the following structural units or groups formed by combining these structural units (which may form a ring structure).
  • the (m + n) -valent linking group may have a substituent, and examples of the substituent include carbon groups such as an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group. Carbon number such as aryloxy group having 6 to 16 carbon atoms, hydroxyl group, amino group, carboxyl group, sulfonamido group, N-sulfonylamido group, acetoxy group and the like, acyloxy group having 1 to 6 carbon atoms, methoxy group, ethoxy group, etc.
  • the (m + n) -valent linking group is preferably a group represented by any one of the following general formulas.
  • L 3 represents a trivalent group.
  • T 3 represents a single bond or a divalent linking group, and three T 3 s may be the same or different from each other.
  • L 4 represents a tetravalent group.
  • T 4 represents a single bond or a divalent linking group, and four T 4 s may be the same or different from each other.
  • L 5 represents a pentavalent group.
  • T 5 represents a single bond or a divalent linking group, and five T 5 s may be the same or different from each other.
  • L 6 represents a hexavalent group.
  • T 6 represents a single bond or a divalent linking group, and the six T 6 present may be the same or different from each other.
  • a trivalent hydrocarbon group (preferably having 1 to 10 carbon atoms, which may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group), or a trivalent complex is preferable.
  • a cyclic group (preferably a 5- to 7-membered heterocyclic group) is mentioned, and the hydrocarbon group may contain a heteroatom (for example, —O—).
  • a preferred embodiment of L 4 is a tetravalent hydrocarbon group (preferably having 1 to 10 carbon atoms, which may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group), and a tetravalent heterocyclic group.
  • a 5- to 7-membered heterocyclic group is preferred, and the hydrocarbon group may contain a heteroatom (eg, —O—).
  • a pentavalent hydrocarbon group having preferably 2 to 10 carbon atoms, which may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group), or a pentavalent complex is preferable.
  • a cyclic group preferably a 5- to 7-membered heterocyclic group
  • the hydrocarbon group may contain a heteroatom (for example, —O—).
  • a hexavalent hydrocarbon group (preferably having 2 to 10 carbon atoms, which may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group), or a hexavalent complex is preferable.
  • a cyclic group (a 6- to 7-membered heterocyclic group is preferred), and the hydrocarbon group may contain a heteroatom (eg, —O—).
  • Specific examples and preferred embodiments of the divalent linking group represented by T 3 to T 6 are the same as those of the divalent linking group represented by R 2 described later.
  • Specific examples of the (m + n) -valent linking group represented by R 1 [specific examples (1) to (17)] are shown below. However, the present invention is not limited to these.
  • the most preferable (m + n) -valent linking groups are the following (1), (2), (10), from the viewpoint of availability of raw materials, ease of synthesis, and solubility in various solvents. (11), (16) and (17).
  • a 1 is an organic dye structure, a heterocyclic structure, an acidic group, a group having a basic nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group Represents a monovalent organic group containing at least one site selected from an epoxy group, an isocyanate group, and a hydroxyl group (hereinafter collectively referred to as “adsorption site”).
  • a 1 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, or an isocyanate.
  • the n A 1 s may be the same or different.
  • a hydrocarbon group having 4 or more carbon atoms is preferable, a chain or cyclic alkyl group having 4 or more carbon atoms (preferably 8 or more carbon atoms), or 6 or more carbon atoms in terms of more excellent effects of the present invention.
  • the aryl group is more preferable.
  • the chain alkyl group may be a linear alkyl group or a branched alkyl group.
  • a cyclic alkyl group a cycloalkyl group etc. are mentioned, for example.
  • Adsorption sites in one A 1 may be contained at least one, may contain two or more kinds.
  • the “monovalent organic group containing at least one kind of adsorption site” includes the aforementioned adsorption site, 1 to 200 carbon atoms, 0 to 20 nitrogen atoms, and 0 to 100 oxygen atoms. It is preferably a monovalent organic group formed by bonding 1 to 400 hydrogen atoms and a linking group consisting of 0 to 40 sulfur atoms. In the case where adsorption sites themselves may constitute a monovalent organic group, adsorption sites itself may be a monovalent organic group represented by A 1. Further, one A 1 may contain a plurality of adsorption sites.
  • a chain saturated hydrocarbon group (which may be linear or branched, preferably having 1 to 10 carbon atoms), a cyclic saturated hydrocarbon group (Preferably having 3 to 10 carbon atoms), an aromatic group (preferably having 5 to 10 carbon atoms, for example, a phenylene group) and the like.
  • An embodiment in which a group is formed is exemplified, and an embodiment in which two or more adsorption sites are bonded via a chain saturated hydrocarbon group to form a monovalent organic group is preferable.
  • each group will be described in detail. In the latter part, these groups represented by A 1 may be collectively referred to as an adsorptive group.
  • organic dye structure examples include phthalocyanine, insoluble azo, azo lake, anthraquinone, quinacridone, dioxazine, diketopyrrolopyrrole, anthrapyridine, ansanthrone, indanthrone, flavanthrone.
  • the “organic dye structure” may be a group derived from an organic dye (preferably, a monovalent group derived from an organic dye), and represents, for example, a residue obtained by removing one hydrogen atom from an organic dye. It is preferable.
  • the above residue refers to a group having a structure in which one hydrogen atom is extracted from an arbitrary position in the organic dye and can be bonded at the position where the hydrogen atom is extracted.
  • heterocyclic structure examples include thiophene, furan, xanthene, pyrrole, pyrroline, pyrrolidine, dioxolane, pyrazole, pyrazoline, pyrazolidine, imidazole, oxazole, thiazole, oxadiazole, triazole, thiadiazole, pyran, pyridine, piperidine, Preferred are dioxane, morpholine, pyridazine, pyrimazine, piperazine, triazine, trithiane, isoindoline, isoindolinone, benzimidazolone, benzothiazole, succinimide, phthalimide, naphthalimide, hydantoin, indole, quinoline, carbazole, acridine, acridone, anthraquinone.
  • Examples include pyrroline, pyrrolidine, pyrazole, pyrazoline, pyrazolidine, imidazole, triazol , Pyridine, piperidine, morpholine, pyridazine, pyrimidine, piperazine, triazine, isoindoline, isoindolinone, benzimidazolone, benzothiazole, succinimide, phthalimide, naphthalimide, hydantoin, carbazole, acridine, acridone, anthraquinone are more preferable.
  • the “heterocyclic structure” may be a group derived from a heterocycle (preferably a monovalent group derived from a heterocycle), and represents, for example, a residue obtained by removing one hydrogen atom from a heterocycle. It is preferable. Note that the residue refers to a group having a structure in which one hydrogen atom is extracted from an arbitrary position in the heterocyclic ring and can be bonded at the position where the hydrogen atom is extracted.
  • Examples of the “acidic group” include carboxylic acid group, sulfonic acid group, monosulfate group, phosphoric acid group, monophosphate group, and boric acid group.
  • Preferred examples include carboxylic acid group, sulfonic acid group, monosulfuric acid group.
  • An ester group, a phosphate group, and a monophosphate ester group are more preferable, and a carboxylic acid group, a sulfonic acid group, and a phosphate group are particularly preferable.
  • Examples of the “group having a basic nitrogen atom” include an amino group (—NH 2 ), a substituted imino group (—NHR 8 , —NR 9 R 10 , wherein R 8 , R 9 , and R 10 are each independently An alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, and an aralkyl group having 7 or more carbon atoms), a guanidyl group represented by the following formula (a1), and the following formula (a2) Preferred examples include the amidinyl group represented.
  • R 11 and R 12 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
  • R 13 and R 14 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
  • an amino group (—NH 2 ), a substituted imino group (—NHR 8 , —NR 9 R 10 , wherein R 8 , R 9 , and R 10 are each independently a group having 1 to 10 carbon atoms.
  • a guanidyl group represented by the formula (a1) [in the formula (a1), R 11 and R 12 are each independently an alkyl group having 1 to 10 carbon atoms; Represents a phenyl group and a benzyl group.
  • Amidinyl group represented by the formula (a2) [in the formula (a2), R 13 and R 14 each independently represents an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a benzyl group. ] Is more preferable.
  • an amino group (—NH 2 )
  • a substituted imino group (—NHR 8 , —NR 9 R 10 , wherein R 8 , R 9 , and R 10 are each independently an alkyl group having 1 to 5 carbon atoms.
  • a phenyl group and a benzyl group.) A guanidyl group represented by the formula (a1) [in the formula (a1), R 11 and R 12 each independently represents an alkyl group having 1 to 5 carbon atoms, a phenyl group Represents a benzyl group. ], In amidinyl group represented by Formula (a2) [Formula (a2), each independently R 13 and R 14 represents an alkyl group, a phenyl group, a benzyl group having 1 to 5 carbon atoms. Etc. are preferably used.
  • urea group for example, —NR 15 CONR 16 R 17 (wherein R 15 , R 16 , and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a carbon number of 6 The above aryl groups and aralkyl groups having 7 or more carbon atoms are preferred examples.
  • —NR 15 CONHR 17 (wherein R 15 and R 17 are each independently a hydrogen atom or a group having 1 carbon atom).
  • An alkyl group having up to 10 carbon atoms, an aryl group having 6 or more carbon atoms, and an aralkyl group having 7 or more carbon atoms are more preferred, and —NHCONHR 17 (wherein R 17 is a hydrogen atom or having 1 to 10 carbon atoms)
  • R 17 is a hydrogen atom or having 1 to 10 carbon atoms
  • An alkyl group, an aryl group having 6 or more carbon atoms, and an aralkyl group having 7 or more carbon atoms are particularly preferred.
  • urethane group for example, —NHCOOR 18 , —NR 19 COOR 20 , —OCONHR 21 , —OCONR 22 R 23 (where R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are each Independently, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, an aralkyl group having 7 or more carbon atoms, and the like can be cited as preferred examples, and —NHCOOR 18 , —OCONHR 21 (wherein , R 18 and R 21 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms, and the like, more preferably —NHCOOR 18 , — OCONHR 21 (wherein R 18 and R 21 each independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 or more
  • Examples of the “group having a coordinating oxygen atom” include an acetylacetonato group and a crown ether.
  • hydrocarbon group having 4 or more carbon atoms examples include a linear or cyclic alkyl group (eg, octyl group, dodecyl group, etc.), aryl group (eg, phenyl group, naphthyl group, etc.), aralkyl group (eg, benzyl group). Etc.) is a preferred example.
  • the number of carbon atoms in the hydrocarbon group is 4 or more, and the preferred range varies depending on each group, but 6 or more carbon atoms are preferred, and 8 or more are more preferred.
  • the number of carbon atoms of the alkyl group is preferably 8 or more, more preferably 13 or more, and particularly preferably 15 or more, from the viewpoint that the effects of the present invention are more excellent.
  • the upper limit is not particularly limited, but is preferably 20 or less from the viewpoint of synthesis.
  • the upper limit is not particularly limited, but is preferably 15 or less from the viewpoint of synthesis.
  • the number of carbon atoms in the aralkyl group is preferably 7 or more in that the effect of the present invention is more excellent.
  • the upper limit is not particularly limited, but is preferably 20 or less and more preferably 15 or less from the viewpoint of synthesis.
  • alkoxysilyl group examples include a trimethoxysilyl group and a triethoxysilyl group.
  • R 2 each independently represents a single bond or a divalent linking group.
  • Divalent linking groups include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 To 20 sulfur atoms are included, which may be unsubstituted or further substituted. More specifically, the divalent linking group may be, for example, a divalent hydrocarbon group (a divalent saturated hydrocarbon group or a divalent aromatic hydrocarbon group.
  • the valent saturated hydrocarbon group may be linear, branched or cyclic, and preferably has 1 to 20 carbon atoms, and examples thereof include an alkylene group.
  • the hydrogen group preferably has 5 to 20 carbon atoms, and examples thereof include a phenylene group, and may be an alkenylene group or an alkynylene group.
  • Group eg, alkyleneoxy group, alkyleneoxycal
  • R L represents a hydrogen atom or an alkyl group (preferably having 1 to 10 carbon atoms).
  • the divalent linking group may have a substituent, and when it has a substituent, examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group.
  • C1-C6 acyloxy groups such as aryl groups having 6 to 16 carbon atoms, such as aryl groups, hydroxyl groups, amino groups, carboxyl groups, sulfonamido groups, N-sulfonylamido groups, and acetoxy groups, methoxy groups, and ethoxy groups
  • An alkoxy group having 1 to 6 carbon atoms such as a halogen atom such as chlorine or bromine, an alkoxycarbonyl group having 2 to 7 carbon atoms such as a methoxycarbonyl group, an ethoxycarbonyl group, or a cyclohexyloxycarbonyl group, a cyano group, t- Examples thereof include carbonate ester groups such as butyl carbonate.
  • R 3 each independently represents a single bond or a divalent linking group.
  • m R 3 s may be the same or different.
  • Definition of the divalent linking group has the same meaning as the divalent linking group represented by R 2 above.
  • the non-conjugated polymer is a polymer in which the polymer main chain does not mainly form a conjugated system (non-conjugated).
  • the non-conjugated polymer skeleton means a group derived from a non-conjugated polymer (non-conjugated polymer residue), and is preferably capable of bonding at the main chain portion of the non-conjugated polymer. That is, it is a group having a structure derived from a non-conjugated polymer.
  • the non-conjugated polymer skeleton can be selected from known polymers according to the purpose.
  • m P 1 s may be the same or different.
  • a vinyl monomer polymer or copolymer, an ester polymer, an ether polymer, a urethane polymer, an amide polymer, an epoxy polymer are used to form a non-conjugated polymer skeleton represented by P 1.
  • Polymers, silicone polymers, and modified products or copolymers thereof eg, polyether / polyurethane copolymers, copolymers of polyether / vinyl monomer polymers, etc. (random copolymers, block copolymers) Or any of the graft copolymers).
  • At least one selected from the group consisting of a polymer or copolymer of a vinyl monomer, an ester-based polymer, and a modified product or copolymer thereof is more preferable.
  • Monomeric polymers or copolymers are particularly preferred.
  • the polymer is preferably soluble in an organic solvent.
  • vinyl monomer For example, (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, Styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile, vinyl monomers having an acidic group, and the like are preferable.
  • acrylic acid esters crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters
  • (meth) acrylamides Styrenes
  • vinyl ethers vinyl ketones
  • olefins vinyl ketones
  • olefins olefins
  • maleimides (meth) acrylonitrile
  • vinyl monomers having an acidic group, and the like are preferable.
  • preferable examples of these vinyl monomers will be described.
  • Examples of (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate , Isobutyl (meth) acrylate, t-butyl (meth) acrylate, amyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, 2-Methylhexyl acrylate, t-octyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate, (meth
  • Examples of crotonic acid esters include butyl crotonate and hexyl crotonate.
  • Examples of vinyl esters include vinyl acetate, vinyl chloroacetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.
  • Examples of maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.
  • Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, and dibutyl fumarate.
  • Examples of itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.
  • (Meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl Acrylic (meth) amide, Nt-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N -Diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-nitrophenyl acrylamide, N-ethyl-N-phenyl acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide, N- Methylo Le acrylamide, N- hydroxy
  • styrenes examples include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloromethyl.
  • Examples thereof include styrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc and the like), methyl vinylbenzoate, and ⁇ -methylstyrene.
  • vinyl ethers include methyl vinyl ether, ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, octyl vinyl ether, methoxyethyl vinyl ether and phenyl vinyl ether.
  • vinyl ketones include methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, and phenyl vinyl ketone.
  • olefins include ethylene, propylene, isobutylene, butadiene, isoprene and the like.
  • maleimides include maleimide, butyl maleimide, cyclohexyl maleimide, and phenyl maleimide.
  • (meth) acrylonitrile heterocyclic groups substituted with vinyl groups (eg, vinylpyridine, N-vinylpyrrolidone, vinylcarbazole, etc.), N-vinylformamide, N-vinylacetamide, N-vinylimidazole, vinylcaprolactone, etc. it can.
  • vinyl groups eg, vinylpyridine, N-vinylpyrrolidone, vinylcarbazole, etc.
  • N-vinylformamide N-vinylacetamide
  • N-vinylimidazole N-vinylimidazole
  • vinylcaprolactone etc. it can.
  • vinyl monomers having a functional group such as a urethane group, a urea group, a sulfonamide group, a phenol group, and an imide group can also be used.
  • a vinyl monomer having a urethane group or a urea group can be appropriately synthesized using an addition reaction between an isocyanate group and a hydroxyl group or an amino group, for example.
  • an addition reaction between an isocyanate group-containing monomer and a compound containing one hydroxyl group or a compound containing one primary or secondary amino group, or a hydroxyl group-containing monomer or primary or secondary amino group It can be appropriately synthesized by an addition reaction between a group-containing monomer and monoisocyanate.
  • Examples of the vinyl monomer having an acidic group include a vinyl monomer having a carboxyl group and a vinyl monomer having a sulfonic acid group.
  • Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid dimer.
  • an addition reaction product of a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and a cyclic anhydride such as maleic anhydride, phthalic anhydride, or cyclohexanedicarboxylic anhydride, ⁇ -carboxy-polycaprolactone Mono (meth) acrylates can also be used.
  • a cyclic anhydride such as maleic anhydride, phthalic anhydride, or cyclohexanedicarboxylic anhydride, ⁇ -carboxy-polycaprolactone Mono (meth) acrylates
  • anhydride containing monomers such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group.
  • (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, and the like.
  • Examples of the vinyl monomer having a sulfonic acid group include 2-acrylamido-2-methylpropanesulfonic acid, and examples of the vinyl monomer having a phosphoric acid group include phosphoric acid mono (2-acryloyloxyethyl ester) (1-methyl-2-acryloyloxyethyl ester) and the like.
  • vinyl monomers containing phenolic hydroxyl groups or vinyl monomers containing sulfonamide groups can be used as vinyl monomers having acidic groups.
  • the non-conjugated polymer skeleton preferably has a repeating unit represented by the following general formula (X) from the viewpoint that the effect of the present invention is more excellent. That is, a group having a repeating unit represented by the following general formula (X) is preferable.
  • Ra represents a hydrogen atom or an alkyl group.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 to 5, and more preferably 1 to 3.
  • La represents a single bond or a divalent linking group. Definition of the divalent linking group has the same meaning as the divalent linking group represented by R 2 above. Among these, —COO— is preferable as the divalent linking group in that the effect of the present invention is more excellent.
  • Rb represents a monovalent organic group.
  • Examples of the monovalent organic group represented by Rb include an alkyl group, a cycloalkyl group, an aryl group, an alkylcarbonyl group, a cycloalkylcarbonyl group, an arylcarbonyl group, an alkyloxycarbonyl group, a cycloalkyloxycarbonyl group, and an aryl group. Examples thereof include an oxycarbonyl group, an alkylaminocarbonyl group, a cycloalkylaminocarbonyl group, an arylaminocarbonyl group, or a group obtained by combining these. Further, the monovalent organic group may be a polymer chain.
  • the polymer chain is a group derived from a polymer and includes a predetermined repeating unit.
  • the polymer chain is preferably a main chain part capable of binding to the La.
  • the polymer constituting the polymer chain can be selected from known polymers according to the purpose, for example, polyester, poly (meth) acrylate, polystyrene, polyalkylene glycol, polyamide, polysiloxane, polyurethane, and These modified products or copolymers thereof may be mentioned. Of these, polyester is preferred because the effects of the present invention are more excellent and synthesis is easy.
  • Poly (meth) acrylate is a concept including polyacrylate and polymethacrylate.
  • Preferred examples of the monovalent organic group include an alkyl group (preferably having 1 to 6 carbon atoms), an aryl group, and a polymer chain.
  • m represents 1 to 8.
  • m is preferably 1 to 5, more preferably 2 to 4, and particularly preferably 2 to 3.
  • n represents 2 to 9.
  • n is preferably 2 to 8, more preferably 2 to 7, and particularly preferably 3 to 4.
  • m + n satisfies 3 to 10.
  • m + n is preferably 4 to 6, and more preferably 6.
  • One preferred embodiment of the polymer dispersant represented by the general formula (1) is a polymer dispersant represented by the general formula (2) in that the effect of the present invention is more excellent.
  • R 1 , A 1 and P 1 are the same as each group in the general formula (1), and the preferred range is also the same.
  • each R 4 independently represents a single bond or a divalent linking group.
  • the n R 4 s may be the same or different.
  • Definition of the divalent linking group has the same meaning as the divalent linking group represented by R 2 above.
  • R 5 each independently represent a single bond or a divalent linking group.
  • the m R 5 s may be the same or different.
  • Definition of the divalent linking group has the same meaning as the divalent linking group represented by R 2 above.
  • Preferable embodiments of the polymer dispersant represented by the general formula (2) include forms satisfying all of R 1 , R 4 , R 5 , P 1 , m, and n shown below.
  • R 1 Specific example (1), (2), (10), (11), (16) or (17) above
  • R 4 a single bond, or the following structural unit or a linking group formed by combining the structural units
  • R 5 single bond, ethylene group, propylene group, the following group (a), or the following group (b)
  • R 25 represents a hydrogen atom or a methyl group
  • l represents 1 or 2.
  • P 1 groups derived from at least one selected from polymers or copolymers of vinyl monomers, ester-based polymers, and modified products or copolymers thereof m: 1 to 5 n: 2-7
  • the molecular weight of the polymer dispersant represented by the general formula (1) is not particularly limited, but in terms of more excellent effects of the present invention, the weight average molecular weight is preferably 3000 to 100,000, more preferably 5000 to 80,000, and 7000. To 60000 is more preferable, and 15000 to 40000 is particularly preferable.
  • the weight average molecular weight is measured using HPC-8220GPC (manufactured by Tosoh Corp.), guard column: TSKguardcolumn SuperHZ-L, column: TSKgel SuperHZM-M, TSKgel SuperHZ4000, TSKgel SuperHZ3000, TSKgel SuperT 10 ⁇ l of a tetrahydrofuran solution with a sample concentration of 0.1% by mass is injected at 0 ° C., tetrahydrofuran is flowed at a flow rate of 0.35 ml per minute as an elution solvent, and the sample peak is detected by an RI (differential refraction) detector. . Moreover, it calculates using the calibration curve produced using standard polystyrene.
  • the method for synthesizing the polymer dispersant represented by the general formula (1) is not particularly limited, but can be synthesized by the following method.
  • Polymer having a functional group selected from a carboxyl group, hydroxyl group, amino group, etc. at its terminal, an acid halide having a plurality of adsorptive groups, an alkyl halide having a plurality of adsorptive groups, or a plurality of adsorptive groups A method of polymerizing an isocyanate and the like having a polymer.
  • a method in which a polymer having a terminal carbon-carbon double bond introduced and a mercaptan having a plurality of adsorptive groups are subjected to a Michael addition reaction. 3.
  • the content of the polymer dispersant represented by the general formula (1) in the composition is not particularly limited, but 50 to 1000 parts by mass with respect to 100 parts by mass of the carbon nanotube in terms of more excellent effects of the present invention. And more preferably 100 to 500 parts by mass.
  • the polymer dispersing agent represented by General formula (1) may use only 1 type, and may use 2 or more types together.
  • composition of the present invention includes the above-described carbon nanotube and other components other than the polymer dispersant represented by the general formula (1) (dispersion medium, polymer compound other than the polymer dispersant (hereinafter referred to as other polymer compounds). Molecular compounds), antioxidants, light stabilizers, heat stabilizers, plasticizers, and the like.
  • the dispersion medium only needs to be able to disperse the carbon nanotubes, and water, an organic solvent, and a mixed solvent thereof can be used.
  • it is an organic solvent, for example, an aprotic solvent such as an alcohol solvent, an aliphatic halogen solvent such as chloroform, DMF (dimethylformamide), NMP (N-methyl-2-pyrrolidone), DMSO (dimethylsulfoxide), etc.
  • Polar solvents aromatic solvents such as chlorobenzene, dichlorobenzene, benzene, toluene, xylene, mesitylene, tetralin, tetramethylbenzene, pyridine, ketone solvents such as cyclohexanone, acetone, methylethylkenton, diethyl ether, THF, t- And ether solvents such as butyl methyl ether, dimethoxyethane and diglyme.
  • a dispersion medium can be used individually by 1 type or in combination of 2 or more types.
  • the dispersion medium is preferably deaerated beforehand.
  • the dissolved oxygen concentration in the dispersion medium is preferably 10 ppm or less.
  • Examples of the degassing method include a method of irradiating ultrasonic waves under reduced pressure, a method of bubbling an inert gas such as argon, and the like.
  • the amount of water in the dispersion medium is preferably 1000 ppm or less, and more preferably 100 ppm or less.
  • a method for dehydrating the dispersion medium a known method such as a method using molecular sieve or distillation can be used.
  • the content of the dispersion medium in the composition is preferably 25 to 99.99% by mass, more preferably 30 to 99.95% by mass, and more preferably 30 to 99.9% with respect to the total amount of the composition. More preferably, it is mass%.
  • an alcohol solvent having a ClogP value of 3.0 or less is preferable in that the dispersibility of the carbon nanotubes is superior and the characteristics (conductivity and thermoelectromotive force) of the thermoelectric conversion layer are further improved. It is mentioned in. The description regarding the ClogP value will be described in detail later.
  • the alcohol solvent is intended to be a solvent containing an —OH group (hydroxy group).
  • the alcohol solvent has a ClogP value of 3.0 or less, but is preferably 1.0 or less, and more preferably 0 or less, in that the dispersibility of the carbon nanotubes is better and the characteristics of the thermoelectric conversion element are further improved.
  • the lower limit is not particularly limited, but is preferably ⁇ 3.0 or more, more preferably ⁇ 2.0 or more, and further preferably ⁇ 1.0 or more in terms of the above effects.
  • the alcohol solvent having the ClogP value include 1-nonanol (ClogP value: 2.94), 1-octanol (ClogP value: 2.41), 1-hexanol (ClogP value: 1.88), 1- Pentanol (ClogP value: 1.35), 1-butanol (ClogP value: 0.82), 1-propanol (ClogP value: 0.29), ethanol (ClogP value: -0.24), methanol (ClogP value) : -0.76), diethylene glycol (ClogP value: -1.30), methyl carbitol (diethylene glycol monomethyl ether) (ClogP value: -0.74), butyl carbitol (diethylene glycol monobutyl ether) (ClogP value: 0.00).
  • the log P value means the common logarithm of the partition coefficient P (Partition Coefficient), and quantifies how a compound is distributed in the equilibrium of a two-phase system of oil (here, n-octanol) and water. It is a physical property value expressed as a numerical value. A larger number indicates a hydrophobic compound, and a smaller number indicates a hydrophilic compound. Therefore, it can be used as an index indicating the hydrophilicity / hydrophobicity of a compound. it can.
  • the logP value can be obtained by actual measurement using n-octanol and water, but in the present invention, a distribution coefficient (ClogP value) (calculated value) obtained using a logP value estimation program is used. . Specifically, in this specification, the ClogP value obtained from “ChemBioDraw ultra ver.12” is used.
  • polymer compounds include conjugated polymers and nonconjugated polymers.
  • antioxidants Irganox 1010 (manufactured by Cigabi Nippon, Inc.), Sumilizer GA-80 (manufactured by Sumitomo Chemical Co., Ltd.), Sumilizer GS (manufactured by Sumitomo Chemical Co., Ltd.), Sumilizer GM (Sumitomo Chemical Industries, Ltd.) Manufactured) and the like.
  • the light-resistant stabilizer include TINUVIN 234 (manufactured by BASF), CHIMASSORB 81 (manufactured by BASF), and Siasorb UV-3853 (manufactured by Sun Chemical).
  • IRGANOX 1726 (made by BASF) is mentioned as a heat-resistant stabilizer.
  • plasticizer include Adeka Sizer RS (manufactured by Adeka).
  • the content of components other than the dispersion medium is preferably 5% by mass or less, more preferably 0 to 2% by mass, based on the total solid content in the composition.
  • thermoelectric conversion layer forming composition The composition of the present invention can be prepared by mixing the above components.
  • the carbon nanotubes are dispersed by mixing the carbon nanotubes, the polymer dispersant represented by the general formula (1), and optionally other components in a dispersion medium.
  • the preparation method of a composition It can carry out under normal temperature normal pressure using a normal mixing apparatus etc.
  • each component may be prepared by stirring, shaking, kneading and dissolving or dispersing in a solvent. Sonication may be performed to promote dissolution and dispersion.
  • the dispersibility of the carbon nanotubes is improved by heating the solvent to a temperature not lower than the room temperature and not higher than the boiling point, extending the dispersion time, or increasing the application strength of stirring, soaking, kneading, ultrasonic waves, etc. Can do.
  • thermoelectric conversion element of this invention is equipped with the thermoelectric conversion layer containing the polymer dispersing agent represented by the carbon nanotube mentioned above and General formula (1), the structure will not be restrict
  • the thermoelectric conversion layer can be formed using the composition described above.
  • a thermoelectric conversion layer containing a predetermined component and an electrode pair (a pair of electrodes) electrically connected to the thermoelectric conversion layer in other words, an electrode pair in contact with the thermoelectric conversion layer
  • thermoelectric conversion layer the first electrode that is electrically connected to the thermoelectric conversion layer, and the second electrode that is electrically connected to the thermoelectric conversion layer and is separated from the first electrode
  • a thermoelectric conversion layer may be sandwiched between a pair of electrodes, or two electrodes may be disposed on the main surface of the thermoelectric conversion layer so as to be separated from each other.
  • the thermoelectric conversion element may include a base material.
  • thermoelectric conversion element of the present invention is the structure of the element shown in FIGS.
  • the arrows indicate the direction of the temperature difference when the thermoelectric conversion element is used.
  • the thermoelectric conversion element 1 shown in FIG. 1 includes a pair of electrodes including a first electrode 13 and a second electrode 15 on a first base 12 and a gap between the first electrode 13 and the second electrode 15.
  • the thermoelectric conversion layer 14 containing the carbon nanotube and the polymer dispersant represented by the general formula (1) is provided.
  • a second substrate 16 is disposed on the other surface of the second electrode 15, and the metal plates 11 and 17 face each other outside the first substrate 12 and the second substrate 16. Is arranged.
  • a first electrode 23 and a second electrode 25 are disposed on a first base material 22, and a carbon nanotube and a high level represented by the general formula (1) are formed thereon.
  • a thermoelectric conversion layer 24 containing a molecular dispersant is provided.
  • the surface of the thermoelectric conversion layer is preferably covered with an electrode or a substrate.
  • one surface of the thermoelectric conversion layer 14 is covered with the first base material 12 via the first electrode 13, and the other surface is the second electrode via the second electrode 15. It is preferable that the substrate 16 is covered. In this case, the second electrode 15 may be exposed to the air as the outermost surface without providing the second substrate 16 outside the second electrode 15.
  • one surface of the thermoelectric conversion layer 24 is covered with the first electrode 23, the second electrode 25, and the first base material 22, and the other surface is also the second base material 26. It is preferable that it is covered with.
  • the electrode is previously formed in the surface (crimp surface with a thermoelectric conversion layer) of the base material used for a thermoelectric conversion element.
  • the pressure bonding between the substrate or electrode and the thermoelectric conversion layer is preferably performed by heating to about 100 ° C. to 200 ° C. from the viewpoint of improving adhesion.
  • each member which comprises a thermoelectric conversion element is explained in full detail.
  • the base material of the thermoelectric conversion element of the present invention (the first base material 12 in the thermoelectric conversion element 1, the second base material 16, the first base material 22 in the thermoelectric conversion element 2 and the second base material 26) Substrates such as glass, transparent ceramics, metal, and plastic film can be used.
  • the base material has flexibility. Specifically, the flexibility in which the number of bending resistances MIT according to the measurement method specified in ASTM D2176 is 10,000 cycles or more. It is preferable to have.
  • the substrate having such flexibility is preferably a plastic film.
  • polyethylene terephthalate polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), Polyethylene-2,6-phthalenedicarboxylate, polyester film such as polyester film of bisphenol A and iso and terephthalic acid, ZEONOR film (trade name, manufactured by ZEON Corporation), ARTON film (trade name, manufactured by JSR Corporation), Sumilite Polycycloolefin films such as FS1700 (trade name, manufactured by Sumitomo Bakelite), Kapton (trade name, manufactured by Toray DuPont), Apical (trade name, manufactured by Kaneka), Upilex (trade name, Ube) Sumilite FS1100 (product), polyimide film such as Pomilan (trade name, manufactured by Arakawa Chemical Co., Ltd.), polycarbonate film such as Pure Ace (trade name, manufactured by Teijin Chemicals), Elmec (trade name, manufactured by Kaneka) Name,
  • the thickness of the substrate is preferably from 30 to 3000 ⁇ m, more preferably from 50 to 1000 ⁇ m, still more preferably from 100 to 1000 ⁇ m, particularly preferably from 200 to 800 ⁇ m from the viewpoints of handleability and durability.
  • the base material is preferably used by providing an electrode on the pressure-bonding surface with the thermoelectric conversion layer.
  • electrode materials for forming the first electrode and the second electrode provided on the base material transparent electrode materials such as ITO (indium tin oxide) and ZnO, metal electrode materials such as silver, copper, gold, and aluminum, CNT , Carbon materials such as graphene, organic materials such as PEDOT (poly (3,4-ethylenedioxythiophene)) / PSS (Poly (4-styrenesulfonic acid)), conductive paste in which conductive fine particles such as silver and carbon are dispersed, silver
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS Poly (4-styrenesulfonic acid
  • conductive paste in which conductive fine particles such as silver and carbon are dispersed silver
  • a conductive paste containing metal nanowires such as copper and aluminum can be used.
  • metal electrode materials of aluminum, gold, silver or copper, or conductive paste containing these metals are prefer
  • thermoelectric conversion layer of the thermoelectric conversion element of the present invention includes carbon nanotubes and a polymer dispersant represented by the general formula (1).
  • the definitions of the carbon nanotube and the polymer dispersant represented by the general formula (1) are as described above.
  • the content of carbon nanotubes in the thermoelectric conversion layer is not particularly limited, but is preferably 5 to 80% by mass with respect to the total mass of the thermoelectric conversion layer in terms of better performance of the thermoelectric conversion layer. It is more preferably 70% by mass, and particularly preferably 5 to 50% by mass.
  • the content of the polymer dispersant represented by the general formula (1) in the thermoelectric conversion layer is not particularly limited, but is 50 to 1000 with respect to 100 parts by mass of the carbon nanotubes in that the performance of the thermoelectric conversion layer is more excellent. Part by mass is preferable, and 100 to 500 parts by mass is more preferable.
  • thermoelectric conversion layer may contain a material other than the carbon nanotube and the polymer dispersant represented by the general formula (1).
  • a material other than the carbon nanotube and the polymer dispersant represented by the general formula (1) for example, an optional component that may be contained in the above-described composition (For example, a binder) etc. are mentioned.
  • thermoelectric conversion layer can be formed by applying the composition of the present invention on a substrate and forming a film.
  • the film forming method is not particularly limited.
  • a known coating method such as a method or an ink jet method can be used.
  • a drying process is performed as needed.
  • the solvent can be volatilized and dried by blowing hot air.
  • the average thickness of the thermoelectric conversion layer is preferably 0.1 to 1000 ⁇ m, and more preferably 1 to 100 ⁇ m, from the viewpoint of imparting a temperature difference.
  • the average thickness of a thermoelectric conversion layer measures the thickness of the thermoelectric conversion layer in arbitrary 10 points
  • thermoelectric power generation article of the present invention is a thermoelectric power generation article using the thermoelectric conversion element of the present invention.
  • generators such as a hot spring thermal generator, a solar thermal generator, a waste heat generator, a power supply for wristwatches, a semiconductor drive power supply, a power supply for small sensors, etc. are mentioned. That is, the thermoelectric conversion element of the present invention described above can be suitably used for these applications.
  • the dispersants (polymer dispersants 1 to 15 and comparative dispersant 1) used in the examples are shown below.
  • Table 1 shows the molecular weight (weight average molecular weight) of these dispersants. The weight average molecular weight was measured by gel permeation chromatography (GPC) based on the conditions described above.
  • the polystyrene used in Comparative Example 2 was polystyrene Mw4000-200000 manufactured by Aldrich.
  • Mw4000-200000 manufactured by Aldrich.
  • Me represents a methyl group.
  • Polymer dispersants 1 to 15 and comparative dispersant 1 were synthesized as follows.
  • (Polymer dispersant 1) Dipentaerythritol hexakis (3-mercaptopropionate) [DPMP; manufactured by Sakai Chemical Industry Co., Ltd.] 7.83 parts by mass, glycerin monoacrylate 7.31 parts by mass, 1-methoxy-2-propanol 35.32 It melt
  • V-65 0.06 part by mass was added and reacted at 70 ° C. for 3 hours under a nitrogen stream.
  • a 30% mercaptan compound solution was synthesized. 90 parts by mass of methyl methacrylate and 210 parts by mass of 1-methoxy-2-propanol are added to the 30% solution of the mercaptan compound, and 2,2′-azobis (isobutyronitrile) [AIBN, [Manufactured by Kojun Pharmaceutical Co., Ltd.] 0.49 parts was added and heated for 3 hours, and then 0.49 parts by weight of AIBN was added again and reacted at 80 ° C. for 3 hours in a nitrogen stream. Then, it cooled to room temperature and diluted with acetone.
  • AIBN 2,2′-azobis (isobutyronitrile)
  • Polymer dispersant 3 was synthesized according to the same procedure as Polymer Dispersant 1, except that 7.31 parts by mass of glycerin monoacrylate was changed to 6.51 parts by mass of itaconic acid.
  • Polymer dispersant 4 was synthesized according to the same procedure as Polymer Dispersant 1, except that 7.31 parts by mass of glycerin monoacrylate was changed to 12.02 parts by mass of dodecyl acrylate.
  • Polymer dispersant 5 Polymer Dispersant 5 was synthesized according to the same procedure as Polymer Dispersant 1, except that 7.31 parts by mass of glycerin monoacrylate was changed to 16.23 parts by mass of stearyl acrylate.
  • Polymer dispersant 6 Polymer Dispersant 6 was synthesized according to the same procedure as Polymer Dispersant 1, except that 7.31 parts by mass of glycerin monoacrylate was changed to 7.71 parts by mass of vinyl naphthalene.
  • Polymer dispersant 7) Polymer Dispersant 7 was synthesized according to the same procedure as Polymer Dispersant 1 except that methyl methacrylate was changed to propyl methacrylate.
  • Polymer dispersant 8 The polymer dispersant 7 was synthesized according to the same procedure as the polymer dispersant 1 except that methyl methacrylate was changed to styrene.
  • Polymer dispersant 9 The polymer dispersant 9 was synthesized according to the same procedure as the polymer dispersant 1 except that methyl methacrylate was changed to a monomer below.
  • Polymer dispersant 10 Polymer Dispersant 10 was synthesized according to the same procedure as Polymer Dispersant 1, except that the amount of glycerin monoacrylate used was changed from 7.31 parts by weight to 5.85 parts by weight.
  • Polymer dispersant 11 The polymer dispersant 11 was synthesized according to the same procedure as the polymer dispersant 1 except that the amount of glycerin monoacrylate used was changed from 7.31 parts by mass to 4.39 parts by mass.
  • Polymer dispersant 12 The polymer dispersant 12 was synthesized according to the same procedure as the polymer dispersant 1 except that the amount of glycerin monoacrylate was changed from 7.31 parts by weight to 2.93 parts by weight.
  • Polymer dispersant 13 The procedure was the same as for Polymer Dispersant 1, except that the amount of methyl methacrylate used was changed from 90 parts by weight to 180 parts by weight, and the amount of 1-methoxy-2-propanol used was changed from 210 parts by weight to 420 parts by weight. Then, the polymer dispersant 13 was synthesized.
  • Polymer dispersant 14 The procedure was the same as for Polymer Dispersant 1, except that the amount of methyl methacrylate used was changed from 90 parts by weight to 450 parts by weight, and the amount of 1-methoxy-2-propanol used was changed from 210 parts by weight to 1050 parts by weight. Then, the polymer dispersant 14 was synthesized.
  • Polymer dispersant 15 Dipentaerythritol hexakis (3-mercaptopropionate) [DPMP; manufactured by Sakai Chemical Industry Co., Ltd.] 7.83 parts by mass was changed to 9.77 parts by mass of pentaerythritol penta (3-mercaptopropionate)
  • the polymer dispersant 15 was synthesized according to the same procedure as that for the polymer dispersant 1.
  • Comparative dispersant 1 45 parts by mass of 2-hydroxylethyl methacrylate, 45 parts by mass of methyl methacrylate and 210 parts by mass of 1-methoxy-2-propanol were mixed, and 2,2′-azobis (isobutyronitrile) [AIBN] under a nitrogen stream.
  • Example 1 Polymer Dispersant 1 (563 mg) and 188 mg of single-walled CNT (manufactured by Meijo Nanocarbon Co., Ltd.) are added to 15 ml of orthodichlorobenzene (o-dichlorobenzene) and dispersed with a homogenizer for 5 minutes. Dispersion treatment using high shear force (peripheral speed 30 m / s, stirring for 2.5 minutes) twice with -40 type (manufactured by Plymix), dispersion 101 (corresponding to thermoelectric conversion layer forming composition) Got. A glass substrate having a thickness of 1.1 mm and a size of 40 mm ⁇ 50 mm was used as a base material.
  • the substrate was ultrasonically cleaned in acetone and then subjected to UV (ultraviolet) -ozone treatment for 10 minutes. Thereafter, gold having a size of 30 mm ⁇ 5 mm and a thickness of 10 nm was formed as a first electrode and a second electrode on both ends of the substrate.
  • the prepared dispersion liquid 101 is attached to a Teflon (registered trademark) frame on a substrate on which an electrode is formed, and the solution is poured into the frame and dried on a hot plate at 60 ° C. for 1 hour.
  • the frame was removed, a thermoelectric conversion layer having a thickness of about 1.1 ⁇ m was formed, and the thermoelectric conversion element 101 having the configuration shown in FIG. 2 was produced.
  • the dispersibility of CNTs in the dispersion, the conductivity of the thermoelectric conversion element, and the thermoelectromotive force were evaluated by the following methods.
  • evaluation of the dispersibility of CNT the viscosity of the dispersion was measured. A lower viscosity indicates that CNT aggregation does not occur, and that CNT dispersibility is better.
  • Viscosity measurement The viscosity of the dispersion was measured with a rheometer (manufactured by Thermo Electron, HAAKE RheoStress 600) at a shear rate of 20 / s and a temperature of 25 ° C., and evaluated according to the following criteria. The results are summarized in Table 1.
  • AAA When the viscosity is less than 5 Pa ⁇ s “AA”: When the viscosity is 5 Pa ⁇ s or more and less than 6 Pa ⁇ s “A”: When the viscosity is 6 Pa ⁇ s or more and less than 7 Pa ⁇ s “B”: Viscosity When the viscosity is 7 Pa ⁇ s or more and less than 10 Pa ⁇ s “C”: When the viscosity is more than 10 Pa ⁇ s
  • the first electrode of the thermoelectric conversion element was placed on a hot plate maintained at a constant temperature, and the second electrode was placed on a Peltier element for temperature control. That is, in FIG. 2, a hot plate is installed under the first substrate 22 where the first electrode 23 is located, and a Peltier element is arranged under the first substrate 22 where the second electrode 25 is located. did. While keeping the temperature of the hot plate constant (100 ° C.), the temperature of the Peltier element was lowered to give a temperature difference (over 0K to 4K or less) between both electrodes.
  • thermoelectromotive force S ( ⁇ V / K) per unit temperature difference is obtained by dividing the thermoelectromotive force ( ⁇ V) generated between both electrodes by the specific temperature difference (K) generated between both electrodes. Calculated. At the same time, the conductivity (S / cm) was calculated by measuring the current generated between both electrodes. The results are summarized in Table 1.
  • thermoelectric conversion element was produced according to the same procedure as in Example 1, except that the type of the polymer dispersant and / or solvent used was changed as shown in Table 1 described later. Various evaluation was performed using the produced dispersion liquid and thermoelectric conversion element. The results are summarized in Table 1.
  • the “type of adsorption site” column represents the type of site contained in A 1 in the general formula (1).
  • the “P 1 type” column represents the type of P 1 in the general formula (1), “PMMA” is polymethyl methacrylate, “PPMA” is polypropyl methacrylate, “PS” is polystyrene, “polyester” "Intends a polyester-based polymer.
  • the “n: m” column represents the numerical values of “n” and “m” in the general formula (1).
  • the “molecular weight” column intends the weight average molecular weight of the polymer dispersant.
  • thermoelectric conversion element thermoelectric conversion layer of the present invention was excellent in conductivity and thermoelectromotive force. Moreover, the dispersibility of CNT in the obtained composition for thermoelectric conversion layer formation was also excellent.
  • a comparison between Examples 1 and 3 to 6 uses a hydrocarbon group having 4 or more carbon atoms (more specifically, an alkyl group having 4 or more carbon atoms or an aryl group having 6 or more carbon atoms) as an adsorption site. In this case, it was confirmed that a more excellent effect was obtained. In particular, in Example 5 using an alkyl group having 13 or more carbon atoms, the effect was excellent.
  • Comparative Example 2 corresponds to an embodiment using polystyrene which is specifically disclosed in Patent Document 1.

Abstract

 本発明は、導電率および熱起電力に優れた熱電変換層、および、この熱電変換層を有する熱電変換素子、並びに、熱電変換層形成用組成物を提供する。本発明の熱電変換素子は、熱電変換層と、熱電変換層と電気的に接続する電極対とを有する熱電変換素子であって、熱電変換層が、カーボンナノチューブと、一般式(1)で表される高分子分散剤とを含有する。

Description

熱電変換素子、熱電変換層、熱電変換層形成用組成物
 本発明は、熱電変換素子、熱電変換層、および、熱電変換層形成用組成物に関する。
 熱エネルギーと電気エネルギーを相互に変換することができる熱電変換材料が、熱によって発電する発電素子やペルチェ素子のような熱電変換素子に用いられている。熱電変換素子は、熱エネルギーを直接電力に変換することができ、可動部を必要とせず、例えば、体温で作動する腕時計や僻地用電源、宇宙用電源等に用いられている。
 なお、熱電変換素子の熱電変換性能を評価する指標の1つとして、無次元性能指数ZT(以下、単に性能指数ZTということがある)がある。この性能指数ZTは、下記式(A)で示され、熱電変換性能の向上には、絶対温度1K当りの熱起電力(以下、熱起電力ということがある)Sおよび導電率σの向上、熱伝導率κの低減が重要である。
    性能指数ZT=S・σ・T/κ   (A)
 式(A)において、 S(V/K):絶対温度1K当りの熱起電力(ゼーベック係数)
           σ(S/m):導電率
           κ(W/mK):熱伝導率
           T(K):絶対温度
 近年、熱電変換材料としてカーボンナノチューブ(以後、「CNT」とも称する)が着目されており、CNTを用いた熱電変換素子に関する技術がいくつか提案されている(例えば、特許文献1)。CNTを含む熱電変換層を作製する際には、一般的にCNTを分散させる分散剤が使用されるが、特許文献1では実施例においてポリスチレンが用いられている。
国際公開第2012/121133号
 一方、近年、熱電変換素子が使用される機器の性能向上のために、熱電変換素子の熱電変換性能のより一層の向上が求められている。
 本発明者らは、まず、特許文献1に記載されるようなCNTとポリスチレンとを含有する組成物の特性について検討を行ったところ、そもそも組成物中におけるCNTの分散性が必ずしも十分でないことを知見した。
 また、このようなCNTの分散性が悪い組成物を用いて形成される熱電変換層の性能に関して検討を行ったところ、熱電変換層の導電率や熱起電力は昨今要求されるレベルを満たしておらず、更なる改良が必要であることを知見した。
 本発明は、上記実情に鑑みて、導電率および熱起電力に優れた熱電変換層、および、この熱電変換層を有する熱電変換素子を提供することを目的とする。
 また、本発明は、カーボンナノチューブの分散安定性に優れ、かつ、導電率および熱起電力に優れる熱電変換層を形成することができる熱電変換層形成用組成物を提供することも目的とする。
 本発明者らは、上記課題について鋭意検討した結果、所定の構造を有する分散剤を使用することにより、所望の効果が得られることを見出した。
 より具体的には、以下の構成により上記目的を達成することができることを見出した。
(1) 熱電変換層と、熱電変換層と電気的に接続する電極対とを有する熱電変換素子であって、
 熱電変換層が、カーボンナノチューブと、後述する一般式(1)で表される高分子分散剤とを含有する、熱電変換素子。
(2) 一般式(1)で表される高分子分散剤が、後述する一般式(2)で表される高分子分散剤である、(1)に記載の熱電変換素子。
(3) A1が、炭素数4以上の鎖状または環状のアルキル基、および、炭素数6以上のアリール基から選択される部位を少なくとも1種含む1価の有機基である、(1)または(2)に記載の熱電変換素子。
(4) 非共役系高分子骨格が、ビニルモノマーの重合体または共重合体、エステル系ポリマー、および、これらの変性物または共重合体より選ばれる少なくとも1種に由来するものである、(1)~(3)のいずれかに記載の熱電変換素子。
(5) mが2~3であり、nが4~3である、(1)~(4)のいずれかに記載の熱電変換素子。
(6) 高分子分散剤の重量平均分子量が15000~40000である、(1)~(5)のいずれかに記載の熱電変換素子。
(7) カーボンナノチューブと、後述する一般式(1)で表される高分子分散剤とを含有する、熱電変換層。
(8) 一般式(1)で表される高分子分散剤が、後述する一般式(2)で表される高分子分散剤である、(7)に記載の熱電変換層。
(9) A1が、炭素数4以上の鎖状または環状のアルキル基、および、炭素数6以上のアリール基から選択される部位を少なくとも1種含む1価の有機基である、(7)または(8)に記載の熱電変換層。
(10) 非共役系高分子骨格が、ビニルモノマーの重合体または共重合体、エステル系ポリマー、および、これらの変性物または共重合体より選ばれる少なくとも1種に由来するものである、(7)~(9)のいずれかに記載の熱電変換層。
(11) mが2~3であり、nが4~3である、(7)~(10)のいずれかに記載の熱電変換層。
(12) 高分子分散剤の重量平均分子量が15000~40000である、(7)~(11)のいずれかに記載の熱電変換層。
(13) カーボンナノチューブと、後述する一般式(1)で表される高分子分散剤とを含有する、熱電変換層形成用組成物。
(14) 一般式(1)で表される高分子分散剤が、後述する一般式(2)で表される高分子分散剤である、(13)に記載の熱電変換層形成用組成物。
(15) A1が、炭素数4以上の鎖状または環状のアルキル基、および、炭素数6以上のアリール基から選択される部位を少なくとも1種含む1価の有機基である、(13)または(14)に記載の熱電変換層形成用組成物。
(16) 非共役系高分子骨格が、ビニルモノマーの重合体または共重合体、エステル系ポリマー、および、これらの変性物または共重合体より選ばれる少なくとも1種に由来するものである、(13)~(15)のいずれかに記載の熱電変換層形成用組成物。
(17) mが2~3であり、nが4~3である、(13)~(16)のいずれかに記載の熱電変換層形成用組成物。
(18) 高分子分散剤の重量平均分子量が15000~40000である、(13)~(17)のいずれかに記載の熱電変換層形成用組成物。
(19) さらに、ClogP値が3.0以下であるアルコール系溶媒を含む、(13)~(18)のいずれかに記載の熱電変換層形成用組成物。
 本発明によれば、導電率および熱起電力に優れた熱電変換層、および、この熱電変換層を有する熱電変換素子を提供することができる。
 また、本発明によれば、カーボンナノチューブの分散安定性に優れ、かつ、導電率および熱起電力に優れる熱電変換層を形成することができる熱電変換層形成用組成物を提供することもできる。
本発明の熱電変換素子の一例を模式的に示す断面図である。図1中の矢印は素子の使用時に付与される温度差の方向を示す。 本発明の熱電変換素子の一例を模式的に示す断面図である。図2中の矢印は素子の使用時に付与される温度差の方向を示す。
 以下に、本発明の熱電変換素子などの好適態様について説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の熱電変換素子の特徴点の一つとしては、所定の構造を有する高分子分散剤を使用している点が挙げられる。後述するように、高分子分散剤は、連結部と、連結部からのびる、CNT表面と相互作用を形成しうる吸着部位と、非共役系高分子骨格とを有する。このような構造を有することにより、従来の分散剤よりもCNTの分散性がより向上する。その理由の詳細は不明だが、高分子分散剤の構造が大きく寄与していると推測される。
 具体的には、まず、上記高分子分散剤は、各非共役系高分子骨格の末端位置に連結部が存在している。そのため、連結部からのびる吸着部位がCNTに相互作用すると、その連結部から各非共役系高分子骨格が放射状に広がる構造をとりやすく、非共役系高分子骨格の立体反発によりCNT同士の再凝集が抑制されている。特に、吸着部位が複数含まれる場合は、連結部近辺に吸着部位がまとまって存在するため、CNTとの相互作用が強固になりやすく、結果としてCNTの分散性も向上しやすい。
 一般的に、CNTは、複数が集まったバンドル状の状態で存在している場合が多く、高分子分散剤を使用することにより、このバンドル状態をほぐすことができる。本発明においては、上記構造を有する高分子分散剤を使用することにより、バンドル状態をほぐす程度が大きく、結果としてCNTが均一に分散しやすくなっていると推測される。このようなCNTの分散性が向上すると、組成物の粘度自体も低下し、取り扱い性も向上する。さらに、このようなCNTの分散性が高い組成物を用いて形成される熱電変換層は、CNT本来の性能が出やすく、結果として優れた導電率および熱起電力を示す。
 以下では、まず、所定の熱電変換層を形成するために使用される組成物について詳述し、その後、この組成物を用いて形成される熱電変換層を有する熱電変換素子について詳述する。
<熱電変換層形成用組成物>
 熱電変換層形成用組成物(以後、単に「組成物」とも称する)には、カーボンナノチューブと、一般式(1)で表される高分子分散剤とが少なくとも含まれる。
 以下、組成物中に含まれる各成分について詳述する。
(カーボンナノチューブ)
 本発明で用いるカーボンナノチューブ(CNT)としては、例えば、1枚の炭素膜(グラフェンシート)が円筒状に巻かれた単層CNT、2枚のグラフェンシートが同心円状に巻かれた2層CNT、および、複数のグラフェンシートが同心円状に巻かれた多層CNTがある。本発明においては、単層CNT、2層CNT、多層CNTを各々単独で用いてもよく、2種以上を併せて用いてもよい。特に、導電性および半導体特性において優れた性質を持つ単層CNTおよび2層CNTを用いることが好ましく、単層CNTを用いることがより好ましい。
 本発明で用いる単層CNTは、半導体性のものであっても、金属性のものであってもよく、両者を併せて用いてもよい。また、CNTには金属等が内包されていてもよく、フラーレン等の分子が内包されたもの(特にフラーレンを内包したものをピーポッドという)を用いてもよい。
 CNTはアーク放電法、化学気相成長法(以下、CVD法(chemical vapor deposition)法という)、レーザー・アブレーション法等によって製造することができる。本発明に用いられるCNTは、いずれの方法によって得られたものであってもよいが、好ましくはアーク放電法およびCVD法により得られたものである。
 CNTを製造する際には、同時にフラーレンやグラファイト、非晶性炭素が副生成物として生じることがある。これら副生成物を除去するために精製してもよい。CNTの精製方法は特に限定されないが、洗浄、遠心分離、ろ過、酸化、クロマトグラフ等の方法が挙げられる。その他に、硝酸、硫酸等による酸処理、超音波処理も不純物の除去には有効である。併せて、フィルターによる分離除去を行うことも、純度を向上させる観点からより好ましい。
 精製の後、得られたCNTをそのまま用いることもできる。また、CNTは一般に紐状で生成されるため、用途に応じて所望の長さにカットして用いてもよい。CNTは、硝酸、硫酸等による酸処理、超音波処理、凍結粉砕法等により短繊維状にカットすることができる。また、併せてフィルターによる分離を行うことも、純度を向上させる観点から好ましい。
 本発明においては、カットしたCNTだけではなく、あらかじめ短繊維状に作製したCNTも同様に使用できる。
 CNTの平均長さは特に限定されないが、製造容易性、成膜性、導電性等の観点から、0.01~1000μmであることが好ましく、0.1~100μmであることがより好ましい。また、CNTの平均直径は特に限定されないが、耐久性、透明性、成膜性、導電性等の観点から、0.4nm以上100nm以下(より好ましくは50nm以下、さらに好ましくは15nm以下)であることが好ましい。
 組成物中のカーボンナノチューブの含有量は、熱電変換性能の点で、組成物中の全固形分に対して、5~80質量%であることが好ましく、5~70質量%であることがより好ましく、5~50質量%であることが特に好ましい。
 カーボンナノチューブは、1種のみを単独で使用してもよく、2種以上を併用してもよい。
 なお、上記固形分とは、熱電変換層を形成する成分を意図し、溶媒は含まれない。
(高分子分散剤)
 組成物中には、一般式(1)で表される高分子分散剤が含まれる。上述したように、高分子分散剤は、CNTの分散剤として機能する。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、R1は、(m+n)価の連結基を表す。
 R1で表される(m+n)価の連結基の分子量は特に制限されないが、カーボンナノチューブの分散性がより優れる点、および/または、熱電変換層の導電率および熱起電力の少なくとも一方がより優れる点(以後、単に「本発明の効果がより優れる点」とも称する)で、3000以下が好ましく、1500以下がより好ましい。下限は特に制限されないが、合成上の点から、50以上が好ましく、100以上がより好ましく、500以上が好ましい。
 (m+n)価の連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が含まれることが好ましく、無置換でも置換基を更に有していてもよい。
 (m+n)価の連結基は、具体的な例として、下記の構造単位、または、これら構造単位が組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。
Figure JPOXMLDOC01-appb-C000008
 (m+n)価の連結基は置換基を有していてもよく、置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。
 (m+n)価の連結基は下記一般式のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記一般式中、
 Lは3価の基を表す。Tは単結合または2価の連結基を表し、3個存在するTは互いに同一であっても異なっていてもよい。
 Lは4価の基を表す。Tは単結合または2価の連結基を表し、4個存在するTは互いに同一であっても異なっていてもよい。
 Lは5価の基を表す。Tは単結合または2価の連結基を表し、5個存在するTは互いに同一であっても異なっていてもよい。
 Lは6価の基を表す。Tは単結合または2価の連結基を表し、6個存在するTは互いに同一であっても異なっていてもよい。
 なお、Lの好適な態様としては、3価の炭化水素基(炭素数1~10が好ましい。なお、芳香族炭化水素基でも脂肪族炭化水素基でもよい。)、または、3価の複素環基(5~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。
 なお、Lの好適な態様としては、4価の炭化水素基(炭素数1~10が好ましい。なお、芳香族炭化水素基でも脂肪族炭化水素基でもよい。)、4価の複素環基(5~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。
 なお、Lの好適な態様としては、5価の炭化水素基(炭素数2~10が好ましい。なお、芳香族炭化水素基でも脂肪族炭化水素基でもよい。)、または、5価の複素環基(5~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。
 なお、Lの好適な態様としては、6価の炭化水素基(炭素数2~10が好ましい。なお、芳香族炭化水素基でも脂肪族炭化水素基でもよい。)、または、6価の複素環基(6~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。
 なお、T~Tで表される2価の連結基の具体例および好適な態様は、後述するR2で表される2価の連結基と同じである。
 R1で表される(m+n)価の連結基の具体的な例〔具体例(1)~(17)〕を以下に示す。但し、本発明においては、これらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記の具体例の中でも、原料の入手性、合成の容易さ、各種溶媒への溶解性の観点から、最も好ましい(m+n)価の連結基は下記(1)、(2)、(10)、(11)、(16)、(17)の基である。
Figure JPOXMLDOC01-appb-C000012
 A1は、有機色素構造、複素環構造、酸性基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基から選択される部位(以後、これらを総称して「吸着部位」とも称す)を少なくとも1種含む1価の有機基を表す。言い換えると、A1は、酸性基、窒素原子を有する塩基性基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基からなる群より選ばれる基を有する1価の有機基、または、有機色素構造もしくは複素環構造を含有する1価の有機基を表す。これらの基は、カーボンナノチューブ表面と相互作用しやすく、いわゆる吸着性基として機能する。n個のA1は、同一であっても、異なっていてもよい。
 なかでも、本発明の効果がより優れる点で、炭素数4以上の炭化水素基が好ましく、炭素数4以上(好ましくは、炭素数8以上)の鎖状または環状のアルキル基、炭素数6以上のアリール基がより好ましい。鎖状のアルキル基としては、直鎖状のアルキル基でも、分岐鎖状のアルキル基でもよい。また、環状のアルキル基としては、例えば、シクロアルキル基などが挙げられる。
 吸着部位は、1つのAの中に、少なくとも1種含まれていればよく、2種以上が含まれていてもよい。「吸着部位を少なくとも1種含む1価の有機基」は、前述の吸着部位と、1から200個までの炭素原子、0個から20個までの窒素原子、0個から100個までの酸素原子、1個から400個までの水素原子、および0個から40個までの硫黄原子から成り立つ連結基と、が結合してなる1価の有機基であることが好ましい。なお、吸着部位自体が1価の有機基を構成しうる場合には、吸着部位そのものがAで表される一価の有機基であってもよい。
 また、1つのA中には、複数の吸着部位が含まれていてもよい。上述した吸着部位が2つ以上含まれる態様としては、鎖状飽和炭化水素基(直鎖状でも分岐状であってもよく、炭素数1~10であることが好ましい)、環状飽和炭化水素基(炭素数3~10であることが好ましい)、芳香族基(炭素数5~10であることが好ましく、例えば、フェニレン基)等を介して2個以上の吸着部位が結合し1価の有機基を形成する態様等が挙げられ、鎖状飽和炭化水素基を介して2個以上の吸着部位が結合し1価の有機基を形成する態様が好ましい。
 以下、各基について詳述する。なお、後段においては、A1で表されるこれらの基を吸着性基と総称して、説明する場合もある。
 「有機色素構造」としては、例えば、フタロシアニン系、不溶性アゾ系、アゾレーキ系、アントラキノン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリジン系、アンサンスロン系、インダンスロン系、フラバンスロン系、ペリノン系、ペリレン系、チオインジゴ系の色素構造が好ましい例として挙げられ、フタロシアニン系、アゾレーキ系、アントラキノン系、ジオキサジン系、ジケトピロロピロール系の色素構造がより好ましく、フタロシアニン系、アントラキノン系、ジケトピロロピロール系の色素構造が特に好ましい。
 なお、「有機色素構造」は、有機色素由来の基(好ましくは、有機色素由来の1価の基)であってもよく、例えば、有機色素から1個の水素原子を除いた残基を表すことが好ましい。なお、上記残基とは、有機色素中の任意の位置から水素原子が1個引き抜かれ、水素原子が引き抜かれた位置で結合可能な構造の基をいう。
 「複素環構造」としては、例えば、チオフェン、フラン、キサンテン、ピロール、ピロリン、ピロリジン、ジオキソラン、ピラゾール、ピラゾリン、ピラゾリジン、イミダゾール、オキサゾール、チアゾール、オキサジアゾール、トリアゾール、チアジアゾール、ピラン、ピリジン、ピペリジン、ジオキサン、モルホリン、ピリダジン、ピリミジン、ピペラジン、トリアジン、トリチアン、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンゾチアゾール、コハクイミド、フタルイミド、ナフタルイミド、ヒダントイン、インドール、キノリン、カルバゾール、アクリジン、アクリドン、アントラキノンが好ましい例として挙げられ、ピロリン、ピロリジン、ピラゾール、ピラゾリン、ピラゾリジン、イミダゾール、トリアゾール、ピリジン、ピペリジン、モルホリン、ピリダジン、ピリミジン、ピペラジン、トリアジン、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンゾチアゾール、コハクイミド、フタルイミド、ナフタルイミド、ヒダントイン、カルバゾール、アクリジン、アクリドン、アントラキノンがより好ましい。
 なお、「複素環構造」は、複素環由来の基(好ましくは、複素環由来の1価の基)であってもよく、例えば、複素環から1個の水素原子を除いた残基を表すことが好ましい。なお、上記残基とは、複素環中の任意の位置から水素原子が1個引き抜かれ、水素原子が引き抜かれた位置で結合可能な構造の基をいう。
 「酸性基」として、例えば、カルボン酸基、スルホン酸基、モノ硫酸エステル基、リン酸基、モノリン酸エステル基、ホウ酸基が好ましい例として挙げられ、カルボン酸基、スルホン酸基、モノ硫酸エステル基、リン酸基、モノリン酸エステル基がより好ましく、カルボン酸基、スルホン酸基、リン酸基が特に好ましい。
 「塩基性窒素原子を有する基」として、例えば、アミノ基(-NH2)、置換イミノ基(-NHR8、-NR910、ここで、R8、R9、およびR10は各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)、下記式(a1)で表されるグアニジル基、下記式(a2)で表されるアミジニル基などが好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式(a1)中、R11およびR12は各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。
 式(a2)中、R13およびR14は各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。
 これらの中でも、アミノ基(-NH2)、置換イミノ基(-NHR8、-NR910、ここで、R8、R9、およびR10は各々独立に、炭素数1から10までのアルキル基、フェニル基、ベンジル基を表す。)、式(a1)で表されるグアニジル基〔式(a1)中、R11およびR12は各々独立に、炭素数1から10までのアルキル基、フェニル基、ベンジル基を表す。〕、式(a2)で表されるアミジニル基〔式(a2)中、R13およびR14は各々独立に、炭素数1から10までのアルキル基、フェニル基、ベンジル基を表す。〕などがより好ましい。
 特に、アミノ基(-NH2)、置換イミノ基(-NHR8、-NR910、ここで、R8、R9、およびR10は各々独立に、炭素数1から5までのアルキル基、フェニル基、ベンジル基を表す。)、式(a1)で表されるグアニジル基〔式(a1)中、R11およびR12は各々独立に、炭素数1から5までのアルキル基、フェニル基、ベンジル基を表す。〕、式(a2)で表されるアミジニル基〔式(a2)中、R13およびR14は各々独立に、炭素数1から5までのアルキル基、フェニル基、ベンジル基を表す。〕などが好ましく用いられる。
 「ウレア基」として、例えば、-NR15CONR1617(ここで、R15、R16、およびR17は各々独立に、水素原子あるいは、炭素数1から20までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)が好ましい例として挙げられ、-NR15CONHR17(ここで、R15およびR17は各々独立に、水素原子あるいは、炭素数1から10までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)がより好ましく、-NHCONHR17(ここで、R17は水素原子あるいは、炭素数1から10までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)が特に好ましい。
 「ウレタン基」として、例えば、-NHCOOR18、-NR19COOR20、-OCONHR21、-OCONR2223(ここで、R18、R19、R20、R21、R22およびR23は各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)などが好ましい例として挙げられ、-NHCOOR18、-OCONHR21(ここで、R18、R21は各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)などがより好ましく、-NHCOOR18、-OCONHR21(ここで、R18、R21は各々独立に、炭素数1から10までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)などが特に好ましい。
 「配位性酸素原子を有する基」としては、例えば、アセチルアセトナト基、クラウンエーテルなどが挙げられる。
 「炭素数4以上の炭化水素基」としては、鎖状または環状のアルキル基(例えば、オクチル基、ドデシル基など)、アリール基(例えば、フェニル基、ナフチル基など)、アラルキル基(例えばベンジル基など)などが好ましい例として挙げられる。
 炭化水素基中の炭素数は4以上であり、その好適範囲は各基によって異なるが、炭素数6以上が好ましく、8以上がより好ましい。
 アルキル基の炭素数としては、本発明の効果がより優れる点で、8以上が好ましく、13以上がより好ましく、15以上が特に好ましい。上限は特に制限されないが、合成上の点から、20以下が好ましい。
 アリール基の炭素数としては、本発明の効果がより優れる点で、6以上が好ましい。上限は特に制限されないが、合成上の点から、15以下が好ましい。
 アラルキル基の炭素数としては、本発明の効果がより優れる点で、7以上が好ましい。上限は特に制限されないが、合成上の点から、20以下が好ましく、15以下がより好ましい。
 「アルコキシシリル基」としては、例えば、トリメトキシシリル基、トリエトキシシリル基などが挙げられる。
 R2は、それぞれ独立に、単結合または2価の連結基を表す。n個のR2は、同一であっても、異なっていてもよい。
 2価の連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基を更に有していてもよい。
 より具体的には、2価の連結基としては、例えば、2価の炭化水素基(2価の飽和炭化水素基であっても、2価の芳香族炭化水素基であってもよい。2価の飽和炭化水素基としては、直鎖状、分岐状または環状であってもよく、炭素数1~20であることが好ましく、例えば、アルキレン基が挙げられる。また、2価の芳香族炭化水素基としては、炭素数5~20であることが好ましく、例えば、フェニレン基が挙げられる。それ以外にも、アルケニレン基、アルキニレン基であってもよい。)、2価の複素環基、-O-、-S-、-SO-、-NR-、-CO-、-COO-、-CONR-、-SO-、-SONR-、または、これらを2種以上組み合わせた基(例えば、アルキレンオキシ基、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。ここで、Rは、水素原子またはアルキル基(好ましくは炭素数1~10)を表す。
 2価の連結基は置換基を有していてもよく、置換基を有する場合、置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。
 R3は、それぞれ独立に、単結合または2価の連結基を表す。mが2以上の場合、m個のR3は、同一であっても、異なっていてもよい。2価の連結基の定義は、上述したR2で表される2価の連結基と同義である。
 P1は、非共役系高分子骨格を表す。非共役系高分子とは、ポリマー主鎖が主として共役系を形成しない(非共役)高分子である。非共役系高分子骨格とは、非共役系高分子由来の基(非共役系高分子残基)を意図し、非共役系高分子の主鎖部分で結合可能であることが好ましい。つまり、非共役系高分子由来の構造を有する基である。
 非共役系高分子骨格としては、公知のポリマーなどから目的等に応じて選択することができる。mが2以上の場合、m個のP1は、同一であっても、異なっていてもよい。
 ポリマーの中でも、P1で表される非共役系高分子骨格を構成するには、ビニルモノマーの重合体もしくは共重合体、エステル系ポリマー、エーテル系ポリマー、ウレタン系ポリマー、アミド系ポリマー、エポキシ系ポリマー、シリコーン系ポリマー、およびこれらの変性物、または共重合体〔例えば、ポリエーテル/ポリウレタン共重合体、ポリエーテル/ビニルモノマーの重合体の共重合体など(ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよい。)を含む。〕からなる群より選択される少なくとも一種が好ましく、ビニルモノマーの重合体もしくは共重合体、エステル系ポリマー、およびこれらの変性物または共重合体からなる群より選択される少なくとも一種がより好ましく、ビニルモノマーの重合体もしくは共重合体が特に好ましい。
 更には、ポリマーは有機溶媒に可溶であることが好ましい。
 ビニルモノマーとしては、特に制限されないが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、スチレン類、ビニルエーテル類、ビニルケトン類、オレフィン類、マレイミド類、(メタ)アクリロニトリル、酸性基を有するビニルモノマーなどが好ましい。
 以下、これらのビニルモノマーの好ましい例について説明する。
 (メタ)アクリル酸エステル類の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸t-オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸アセトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-(2-メトキシエトキシ)エチル、(メタ)アクリル酸3-フェノキシ-2-ヒドロキシプロピル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、(メタ)アクリル酸ビニル、(メタ)アクリル酸2-フェニルビニル、(メタ)アクリル酸1-プロペニル、(メタ)アクリル酸アリル、(メタ)アクリル酸2-アリロキシエチル、(メタ)アクリル酸プロパルギル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジエチレングリコールモノメチルエーテル、(メタ)アクリル酸ジエチレングリコールモノエチルエーテル、(メタ)アクリル酸トリエチレングリコールモノメチルエーテル、(メタ)アクリル酸トリエチレングリコールモノエチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノエチルエーテル、(メタ)アクリル酸β-フェノキシエトキシエチル、(メタ)アクリル酸ノニルフェノキシポリエチレングリコール、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸トリフロロエチル、(メタ)アクリル酸オクタフロロペンチル、(メタ)アクリル酸パーフロロオクチルエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸トリブロモフェニルオキシエチル、(メタ)アクリル酸γ-ブチロラクトンなどが挙げられる。
 クロトン酸エステル類の例としては、クロトン酸ブチル、およびクロトン酸ヘキシル等が挙げられる。
 ビニルエステル類の例としては、ビニルアセテート、ビニルクロロアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、および安息香酸ビニルなどが挙げられる。
 マレイン酸ジエステル類の例としては、マレイン酸ジメチル、マレイン酸ジエチル、およびマレイン酸ジブチルなどが挙げられる。
 フマル酸ジエステル類の例としては、フマル酸ジメチル、フマル酸ジエチル、およびフマル酸ジブチルなどが挙げられる。
 イタコン酸ジエステル類の例としては、イタコン酸ジメチル、イタコン酸ジエチル、およびイタコン酸ジブチルなどが挙げられる。
 (メタ)アクリルアミド類としては、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチルアクリル(メタ)アミド、N-t-ブチル(メタ)アクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N-(2-メトキシエチル)(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-ニトロフェニルアクリルアミド、N-エチル-N-フェニルアクリルアミド、N-ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミド、N-メチロールアクリルアミド、N-ヒドロキシエチルアクリルアミド、ビニル(メタ)アクリルアミド、N,N-ジアリル(メタ)アクリルアミド、N-アリル(メタ)アクリルアミドなどが挙げられる。
 スチレン類の例としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えばt-Bocなど)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、およびα-メチルスチレンなどが挙げられる。
 ビニルエーテル類の例としては、メチルビニルエーテル、エチルビニルエーテル、2-クロロエチルビニルエーテル、ヒドロキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテル、メトキシエチルビニルエーテルおよびフェニルビニルエーテルなどが挙げられる。
 ビニルケトン類の例としては、メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトンなどが挙げられる。
 オレフィン類の例としては、エチレン、プロピレン、イソブチレン、ブタジエン、イソプレンなどが挙げられる。
 マレイミド類の例としては、マレイミド、ブチルマレイミド、シクロヘキシルマレイミド、フェニルマレイミドなどが挙げられる。
 (メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、N-ビニルピロリドン、ビニルカルバゾールなど)、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルイミダゾール、ビニルカプロラクトン等も使用できる。
 上記の化合物以外にも、例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基などの官能基を有するビニルモノマーも用いることができる。このようなウレタン基、またはウレア基を有するビニルモノマーは、例えば、イソシアナート基と、水酸基またはアミノ基との付加反応を利用して、適宜合成することが可能である。具体的には、イソシアナート基含有モノマーと、水酸基を1個含有する化合物または1級若しくは2級アミノ基を1個含有する化合物との付加反応、または、水酸基含有モノマーまたは1級若しくは2級アミノ基含有モノマーと、モノイソシアネートとの付加反応等により適宜合成することができる。
 酸性基を有するビニルモノマーの例としては、カルボキシル基を有するビニルモノマーやスルホン酸基を有するビニルモノマーが挙げられる。
 カルボキシル基を有するビニルモノマーとして、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマーなどが挙げられる。また、2-ヒドロキシエチル(メタ)アクリレートなどの水酸基を有する単量体と無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物のような環状無水物との付加反応物、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレートなども利用できる。また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸などの無水物含有モノマーを用いてもよい。なお、これらの内では、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
 また、スルホン酸基を有するビニルモノマーとして、2-アクリルアミド-2-メチルプロパンスルホン酸などが挙げられ、リン酸基を有するビニルモノマーとして、リン酸モノ(2-アクリロイルオキシエチルエステル)、リン酸モノ(1-メチル-2-アクリロイルオキシエチルエステル)などが挙げられる。
 更に、酸性基を有するビニルモノマーとして、フェノール性ヒドロキシル基を含有するビニルモノマーやスルホンアミド基を含有するビニルモノマーなども利用することができる
 なお、非共役系高分子骨格としては、本発明の効果がより優れる点で、以下の一般式(X)で表される繰り返し単位を有することが好ましい。つまり、以下の一般式(X)で表される繰り返し単位を有する基であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(X)中、Raは、水素原子またはアルキル基を表す。アルキル基の炭素数は特に制限されないが、1~5が好ましく、1~3がより好ましい。
 Laは、単結合または2価の連結基を表す。2価の連結基の定義は、上述したR2で表される2価の連結基と同義である。なかでも、本発明の効果がより優れる点で、2価の連結基としては、-COO-が好ましい。
 Rbは、1価の有機基を表す。Rbで表される1価の有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アルキルカルボニル基、シクロアルキルカルボニル基、アリールカルボニル基、アルキルオキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、シクロアルキルアミノカルボニル基、アリールアミノカルボニル基、または、これらを組み合わせた基が挙げられる。
 また、1価の有機基としては、ポリマー鎖であってもよい。ポリマー鎖とは、ポリマー由来の基であり、所定の繰り返し単位を含む。ポリマー鎖はその主鎖部分で、上記Laと結合可能であることが好ましい。
 ポリマー鎖を構成するポリマーとしては、公知のポリマーなどから目的等に応じて選択することができ、例えば、ポリエステル、ポリ(メタ)アクリレート、ポリスチレン、ポリアルキレングリコール、ポリアミド、ポリシロキサン、ポリウレタン、および、これらの変成物、または、これらの共重合体が挙げられる。なかでも、本発明の効果がより優れ、合成が容易である点から、ポリエステルが好ましい。
 なお、ポリ(メタ)アクリレートとは、ポリアクリレートおよびポリメタクリレートを含む概念である。
 なお、1価の有機基としては、アルキル基(好ましくは、炭素数1~6)、アリール基、ポリマー鎖が好ましく挙げられる。
 一般式(1)中、mは1~8を表す。mとしては、1~5が好ましく、2~4がより好ましく、2~3が特に好ましい。
 また、一般式(1)中、nは2~9を表す。nとしては、2~8が好ましく、2~7がより好ましく、3~4が特に好ましい。
 m+nは3~10を満たす。なかでも、m+nとしては、4~6が好ましく、6がより好ましい。
 一般式(1)で表される高分子分散剤の好適態様の一つとしては、本発明の効果がより優れる点で、一般式(2)で表される高分子分散剤が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 一般式(2)中、R1、A1およびP1は、一般式(1)中の各基と同じであり、好適範囲も同じである。
 一般式(2)中、R4は、それぞれ独立に、単結合または2価の連結基を表す。n個のR4は、同一であっても、異なっていてもよい。2価の連結基の定義は、上述したR2で表される2価の連結基と同義である。
 一般式(2)中、R5は、それぞれ独立に、単結合または2価の連結基を表す。m個のR5は、同一であっても、異なっていてもよい。2価の連結基の定義は、上述したR2で表される2価の連結基と同義である。
 一般式(2)で表される高分子分散剤の好適態様としては、以下に示すR1、R4、R5、P1、m、およびnを全て満たす形態が挙げられる。
1:上記具体例(1)、(2)、(10)、(11)、(16)、または(17)
4:単結合、または、下記の構造単位または該構造単位が組み合わさって構成される連結基
Figure JPOXMLDOC01-appb-C000016
5:単結合、エチレン基、プロピレン基、下記基(a)、または下記基(b)
なお、下記基中、R25は水素原子またはメチル基を表し、lは1または2を表す。
Figure JPOXMLDOC01-appb-C000017
1:ビニルモノマーの重合体または共重合体、エステル系ポリマー、およびこれらの変性物または共重合体より選ばれる少なくとも1種に由来する基
m:1~5
n:2~7
 一般式(1)で表される高分子分散剤の分子量は特に制限されないが、本発明の効果がより優れる点で、重量平均分子量で、3000~100000が好ましく、5000~80000がより好ましく、7000~60000がさらに好ましく、15000~40000が特に好ましい。
 本明細書において、重量平均分子量の測定は、HPC-8220GPC(東ソー製)、ガードカラム:TSKguardcolumn SuperHZ-L、カラム:TSKgel SuperHZM-M、TSKgel SuperHZ4000、TSKgel SuperHZ3000、TSKgel SuperHZ2000を直結し、カラム温度40℃、試料濃度0.1質量%のテトラヒドロフラン溶液を10μl注入し、溶出溶媒としてテトラヒドロフランを毎分0.35mlの流量でフローさせ、RI(示差屈折)検出装置にて試料ピークを検出することで行う。また、標準ポリスチレンを用いて作製した検量線を用いて計算する。
 (合成方法)
 一般式(1)で表される高分子分散剤の合成方法は、特に制限されないが、下記方法などにより合成することができる。
1.カルボキシル基、ヒドロキシル基、アミノ基等から選択される官能基を末端に導入したポリマーと、複数の吸着性基を有する酸ハライド、複数の吸着性基を有するアルキルハライド、または、複数の吸着性基を有するイソシアネート等と、を高分子反応させる方法。
2.末端に炭素-炭素二重結合を導入したポリマーと、複数の吸着性基を有するメルカプタンと、をマイケル付加反応させる方法。
3.末端に炭素-炭素二重結合を導入したポリマーと、吸着性基を有するメルカプタンと、をラジカル発生剤存在下で反応させる方法。
4.末端に複数のメルカプタンを導入したポリマーと、炭素-炭素二重結合と吸着性基を有する化合物と、をラジカル発生剤存在下で反応させる方法。
5.複数の吸着性基を有するメルカプタン化合物存在下で、ビニルモノマーをラジカル重合する方法。
 より具体的には、特許5553957号公報の段落0103~0133の記載の合成法などが挙げられる。
 組成物中における一般式(1)で表される高分子分散剤の含有量は特に制限されないが、本発明の効果がより優れる点で、カーボンナノチューブ100質量部に対して、50~1000質量部が好ましく、100~500質量部がより好ましい。
 なお、一般式(1)で表される高分子分散剤は、1種のみを用いてもよいし、2種以上併用してもよい。
(その他任意成分)
 本発明の組成物には、上述したカーボンナノチューブおよび一般式(1)で表される高分子分散剤以外の他の成分(分散媒、高分子分散剤以外の高分子化合物(以下、他の高分子化合物)、酸化防止剤、耐光安定剤、耐熱安定剤、可塑剤など)が含まれていてもよい。
 分散媒(溶媒)は、カーボンナノチューブを分散できればよく、水、有機溶媒およびこれらの混合溶媒を用いることができる。好ましくは有機溶媒であり、例えば、アルコール系溶媒、クロロホルム等の脂肪族ハロゲン系溶媒、DMF(ジメチルホルムアミド)、NMP(N-メチル-2-ピロリドン)、DMSO(ジメチルスルホキシド)等の非プロトン性の極性溶媒、クロロベンゼン、ジクロロベンゼン、ベンゼン、トルエン、キシレン、メシチレン、テトラリン、テトラメチルベンゼン、ピリジン等の芳香族系溶媒、シクロヘキサノン、アセトン、メチルエチルケントン等のケトン系溶媒、ジエチルエーテル、THF、t-ブチルメチルエーテル、ジメトキシエタン、ジグライム等のエーテル系溶媒等が挙げられる。
 分散媒は、1種単独でまたは2種以上組み合わせて使用することができる。
 また、分散媒は、あらかじめ脱気しておくことが好ましい。分散媒中における溶存酸素濃度を、10ppm以下とすることが好ましい。脱気の方法としては、減圧下超音波を照射する方法、アルゴン等の不活性ガスをバブリングする方法等が挙げられる。
 さらに、分散媒として水以外を使用する場合は、あらかじめ脱水しておくことが好ましい。分散媒中における水分量を、1000ppm以下とすることが好ましく、100ppm以下とすることがより好ましい。分散媒の脱水方法としては、モレキュラーシーブを用いる方法、蒸留等、公知の方法を用いることができる。
 組成物中の分散媒の含有量は、組成物全量に対して、25~99.99質量%であることが好ましく、30~99.95質量%であることがより好ましく、30~99.9質量%であることがさらに好ましい。
 なかでも、分散媒としては、カーボンナノチューブの分散性がより優れ、熱電変換層の特性(導電率および熱起電力)がより向上する点で、ClogP値が3.0以下のアルコール系溶媒が好適に挙げられる。ClogP値に関する説明は、後段で詳述する。
 アルコール系溶媒とは、-OH基(ヒドロキシ基)を含む溶媒を意図する。
 上記アルコール系溶媒はClogP値が3.0以下を示すが、カーボンナノチューブの分散性がより優れ、熱電変換素子の特性がより向上する点で、1.0以下が好ましく、0以下がより好ましい。下限は特に制限されないが、上記効果の点で、-3.0以上が好ましく、-2.0以上がより好ましく、-1.0以上がさらに好ましい。
 上記ClogP値のアルコール系溶媒としては、例えば、1-ノナノール(ClogP値:2.94)、1-オクタノール(ClogP値:2.41)、1-ヘキサノール(ClogP値:1.88)、1-ペンタノール(ClogP値:1.35)、1-ブタノール(ClogP値:0.82)、1-プロパノール(ClogP値:0.29)、エタノール(ClogP値:-0.24)、メタノール(ClogP値:-0.76)、ジエチレングリコール(ClogP値:-1.30)、メチルカルビトール(ジエチレングリコールモノメチルエーテル)(ClogP値:-0.74)、ブチルカルビトール(ジエチレングリコールモノブチルエーテル)(ClogP値:0.71)、トリエチレングリコール(ClogP値:-1.44)、テトラエチレングリコール(ClogP値:-1.57)、テトラエチレングリコールモノメチルエーテル(ClogP値:-1.01)、プロピレングリコール(ClogP値:-1.06)、プロピレングリコールモノメチルエーテル(ClogP値:-1.01)などが挙げられる。
 まず、logP値とは、分配係数P(Partition Coefficient)の常用対数を意味し、ある化合物が油(ここではn-オクタノール)と水の2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、数字が大きいほど疎水性の化合物であることを示し、数字が小さいほど親水性の化合物であることを示すため、化合物の親疎水性を表す指標として用いることができる。
logP=log(Coil/Cwater)
Coil=油相中のモル濃度
Cwater=水相中のモル濃度
 一般に、logP値は、n-オクタノールと水を用いて実測により求めることもできるが、本発明においては、logP値推算プログラムを使用して求められる分配係数(ClogP値)(計算値)を使用する。具体的には、本明細書においては、“ChemBioDraw ultra ver.12”から求められるClogP値を使用する。
 他の高分子化合物としては、共役系高分子および非共役系高分子が挙げられる。
 酸化防止剤としては、イルガノックス1010(日本チガバイギー製)、スミライザーGA-80(住友化学工業(株)製)、スミライザーGS(住友化学工業(株)製)、スミライザーGM(住友化学工業(株)製)等が挙げられる。
 耐光安定剤としては、TINUVIN 234(BASF製)、CHIMASSORB 81(BASF製)、サイアソーブUV-3853(サンケミカル製)等が挙げられる。
 耐熱安定剤としては、IRGANOX 1726(BASF製)が挙げられる。可塑剤としては、アデカサイザーRS(アデカ製)等が挙げられる。
 上記分散媒以外の他の成分の含有率は、組成物中の全固形分中、5質量%以下が好ましく、0~2質量%がより好ましい。
(熱電変換層形成用組成物の調製)
 本発明の組成物は、上記の各成分を混合して調製することができる。好ましくは、分散媒にカーボンナノチューブ、一般式(1)で表される高分子分散剤、所望により他の成分を混合して、カーボンナノチューブを分散させて調製する。
 組成物の調製方法に特に制限はなく、通常の混合装置等を用いて常温常圧下で行うことができる。例えば、各成分を溶媒中で撹拌、振とう、混練して溶解または分散させて調製すればよい。溶解や分散を促進するため超音波処理を行ってもよい。
 また、上記分散工程において溶媒を室温以上沸点以下の温度まで加熱する、分散時間を延ばす、または撹拌、浸とう、混練、超音波等の印加強度を上げる等によって、カーボンナノチューブの分散性を高めることができる。
<熱電変換素子、および、熱電変換層>
 本発明の熱電変換素子は、上述したカーボンナノチューブと一般式(1)で表される高分子分散剤とを含む熱電変換層を備えていれば、その構成は特に制限されない。なお、後述するように、熱電変換層は、上述した組成物を用いて形成することができる。
 熱電変換素子の好ましい態様としては、所定の成分を含む熱電変換層と、熱電変換層と電気的に接続する電極対(一対の電極)(言い換えれば、熱電変換層と接触する電極対)とを有する態様が挙げられる。より具体的には、熱電変換層と、熱電変換層と電気的に接続する第1の電極と、熱電変換層と電気的に接続し、第1の電極と離間した位置にある第2の電極とを有する態様が挙げられる。例えば、一対の電極間に熱電変換層が挟持されていてもよいし、熱電変換層の主面上に2つの電極が離間するように配置されていてもよい。
 なお、後述するように、熱電変換素子には、基材が含まれていてもよい。
 本発明の熱電変換素子の構造の一例として、図1および図2に示す素子の構造が挙げられる。図1および図2中、矢印は、熱電変換素子の使用時における温度差の向きを示す。
 図1に示す熱電変換素子1は、第1の基材12上に、第1の電極13および第2の電極15を含む一対の電極と、第1の電極13および第2の電極15間に、カーボンナノチューブと一般式(1)で表される高分子分散剤とを含む熱電変換層14を備えている。第2の電極15の他方の表面には第2の基材16が配設されており、第1の基材12および第2の基材16の外側には互いに対向して金属板11および17が配設されている。
 図2に示す熱電変換素子2は、第1の基材22上に、第1の電極23および第2の電極25が配置され、その上にカーボンナノチューブと一般式(1)で表される高分子分散剤とを含む熱電変換層24が設けられている。
 熱電変換層の保護の観点から、熱電変換層の表面は電極または基材により覆われることが好ましい。例えば、図1に示すように、熱電変換層14の一方の表面が第1の電極13を介して第1の基材12で覆われ、他方の表面が第2の電極15を介して第2の基材16で覆われていることが好ましい。この場合、第2の電極15の外側に第2の基材16を設けることなく第2の電極15が最表面として空気にさらされていてもよい。また、図2に示すように、熱電変換層24の一方の表面が第1の電極23および第2の電極25並びに第1の基材22で覆われ、他方の表面も第2の基材26により覆われることが好ましい。
 また、熱電変換素子に使用される基材の表面(熱電変換層との圧着面)には、予め電極が形成されていることが好ましい。基材または電極と熱電変換層との圧着は、密着性向上の観点から100℃~200℃程度に加熱して行うことが好ましい。
 以下、熱電変換素子を構成する各部材について詳述する。
(基材)
 本発明の熱電変換素子の基材(熱電変換素子1における第1の基材12、第2の基材16、熱電変換素子2における第1の基材22、第2の基材26)は、ガラス、透明セラミックス、金属、プラスチックフィルム等の基材を用いることができる。本発明の熱電変換素子において、基材はフレキシビリティーを有しているのが好ましく、具体的には、ASTM D2176に規定の測定法による耐屈曲回数MITが1万サイクル以上であるフレキシビリティーを有しているのが好ましい。このようなフレキシビリティーを有する基材は、プラスチックフィルムが好ましく、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-フタレンジカルボキシレート、ビスフェノールAとイソおよびテレフタル酸のポリエステルフィルム等のポリエステルフィルム、ゼオノアフィルム(商品名、日本ゼオン社製)、アートンフィルム(商品名、JSR社製)、スミライトFS1700(商品名、住友ベークライト社製)等のポリシクロオレフィンフィルム、カプトン(商品名、東レ・デュポン社製)、アピカル(商品名、カネカ社製)、ユーピレックス(商品名、宇部興産社製)、ポミラン(商品名、荒川化学社製)等のポリイミドフィルム、ピュアエース(商品名、帝人化成社製)、エルメック(商品名、カネカ社製)等のポリカーボネートフィルム、スミライトFS1100(商品名、住友ベークライト社製)等のポリエーテルエーテルケトンフィルム、トレリナ(商品名、東レ社製)等のポリフェニルスルフィドフィルム等が挙げられる。入手の容易性、耐熱性(好ましくは100℃以上)、経済性および効果の観点から、市販のポリエチレンテレフタレート、ポリエチレンナフタレート、各種ポリイミドやポリカーボネートフィルム等が好ましい。
 基材の厚さは、取り扱い性、耐久性等の点から、好ましくは30~3000μm、より好ましくは50~1000μm、さらに好ましくは100~1000μm、特に好ましくは200~800μmである。基材の厚みをこの範囲にすることで、熱伝導率が低下せず、外部衝撃による熱電変換層の損傷も起こりにくい。
(電極)
 基材は、熱電変換層との圧着面に電極を設けて用いることが好ましい。
 基材上に設ける第1の電極および第2の電極を形成する電極材料としては、ITO(酸化インジウムスズ)、ZnO等の透明電極材料、銀、銅、金、アルミニウム等の金属電極材料、CNT、グラフェン等の炭素材料、PEDOT(poly(3,4-ethylenedioxythiophene))/PSS(Poly(4-styrenesulfonic acid))等の有機材料、銀、カーボン等の導電性微粒子を分散した導電性ペースト、銀、銅、アルミニウム等の金属ナノワイヤーを含有する導電性ペースト等が使用できる。これらの中でも、アルミニウム、金、銀もしくは銅の金属電極材料、またはこれらの金属を含有する導電性ペーストが好ましい。
(熱電変換層)
 本発明の熱電変換素子が有する熱電変換層は、カーボンナノチューブと一般式(1)で表される高分子分散剤とを含む。
 カーボンナノチューブおよび一般式(1)で表される高分子分散剤の定義については、上述の通りである。
 熱電変換層中におけるカーボンナノチューブの含有量は特に制限されないが、熱電変換層の性能がより優れる点で、熱電変換層の全質量に対して、5~80質量%であることが好ましく、5~70質量%であることがより好ましく、5~50質量%であることが特に好ましい。
 熱電変換層中における一般式(1)で表される高分子分散剤の含有量は特に制限されないが、熱電変換層の性能がより優れる点で、カーボンナノチューブ100質量部に対して、50~1000質量部が好ましく、100~500質量部がより好ましい。
 また、熱電変換層には、カーボンナノチューブおよび一般式(1)で表される高分子分散剤以外の材料が含まれていてもよく、例えば、上述した組成物に含まれていてもよい任意成分(例えば、バインダー)などが挙げられる。
 熱電変換層の形成方法は特に制限されないが、工業的な生産性に優れる点で、上記組成物を用いて形成することが好ましい。より具体的には、基材上に本発明の組成物を塗布し、成膜することにより、熱電変換層を形成することができる。
 成膜方法は特に限定されず、例えば、スピンコート法、エクストルージョンダイコート法、ブレードコート法、バーコート法、スクリーン印刷法、ステンシル印刷法、ロールコート法、カーテンコート法、スプレーコート法、ディップコート法、インクジェット法など、公知の塗布方法を用いることができる。
 また、塗布後は、必要に応じて乾燥工程を行う。例えば、熱風を吹き付けることにより溶媒を揮発、乾燥させることができる。
 本発明においては、熱電変換層の平均厚さは、温度差を付与する観点等から、0.1~1000μmであることが好ましく、1~100μmであることがより好ましい。
 なお、熱電変換層の平均厚さは、任意の10点における熱電変換層の厚みを測定し、それらを算術平均して求める。
<熱電発電用物品>
 本発明の熱電発電物品は、本発明の熱電変換素子を用いた熱電発電物品である。
 ここで、熱電発電物品としては、具体的には、温泉熱発電機、太陽熱発電機、廃熱発電機等の発電機や、腕時計用電源、半導体駆動電源、小型センサー用電源などが挙げられる。
 すなわち、上述した本発明の熱電変換素子は、これらの用途に好適に用いることができる。
 以下、実施例によって本発明をより詳しく説明するが、本発明はそれらに限定されるものではない。
 実施例に用いた分散剤(高分子分散剤1~15、および、比較分散剤1)を以下に示す。これらの分散剤の分子量(重量平均分子量)は表1の通りである。重量平均分子量は、上述した条件に基づいて、ゲル浸透クロマトグラフィー(GPC)で測定した。
 なお、比較例2で使用したポリスチレンとしては、アルドリッチ社製ポリスチレンMw4000-200000を用いた。
 以下、式中、「Me」はメチル基を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 なお、高分子分散剤1~15、および、比較分散剤1は、以下のようにして合成した。
(高分子分散剤1)
 ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)〔DPMP;堺化学工業(株)製〕7.83質量部、グリセリンモノアクリレート7.31質量部を、1-メトキシ-2-プロパノール35.32質量部に溶解させ、窒素気流下、70℃に加熱した。これに2,2’-アゾビス(2,4-ジメチルバレロニトリル)〔V-65、和光純薬工業(株)製〕0.06質量部を加えて3時間加熱した。更に、V-65を0.06質量部加え、窒素気流下、70℃で3時間反応させた。室温まで冷却することで、メルカプタン化合物30%溶液を合成した。そのメルカプタン化合物30%溶液に対して、メタクリル酸メチル90質量部、1-メトキシ-2-プロパノール210質量部を加え、窒素気流下、2,2’-アゾビス(イソブチロニトリル)〔AIBN、和光純薬工業(株)製〕0.49部を加えて3時間加熱後、再度AIBN0.49質量部を加えて、窒素気流下、80℃で3時間反応させた。その後、室温まで冷却し、アセトンで希釈した。多量のメタノールを用いて再沈殿させた後、真空乾燥させ、高分子分散剤1を得た。
(高分子分散剤3)
 グリセリンモノアクリレート7.31質量部をイタコン酸6.51質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤3の合成を行った。
(高分子分散剤4)
 グリセリンモノアクリレート7.31質量部をドデシルアクリレート12.02質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤4の合成を行った。
(高分子分散剤5)
 グリセリンモノアクリレート7.31質量部をステアリルアクリレート16.23質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤5の合成を行った。
(高分子分散剤6)
 グリセリンモノアクリレート7.31質量部をビニルナフタレン7.71質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤6の合成を行った。
(高分子分散剤7)
 メタクリル酸メチルをメタクリル酸プロピルに変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤7の合成を行った。
(高分子分散剤8)
 メタクリル酸メチルをスチレンに変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤7の合成を行った。
(高分子分散剤9)
 メタクリル酸メチルを以下モノマーに変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤9の合成を行った。
Figure JPOXMLDOC01-appb-C000024
(高分子分散剤10)
 グリセリンモノアクリレートの使用量を7.31質量部から5.85質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤10の合成を行った。
(高分子分散剤11)
 グリセリンモノアクリレートの使用量を7.31質量部から4.39質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤11の合成を行った。
(高分子分散剤12)
 グリセリンモノアクリレートの使用量を7.31質量部から2.93質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤12の合成を行った。
(高分子分散剤13)
 メタクリル酸メチルの使用量を90質量部から180質量部に、1-メトキシ-2-プロパノールの使用量を210質量部から420質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤13の合成を行った。
(高分子分散剤14)
 メタクリル酸メチルの使用量を90質量部から450質量部に、1-メトキシ-2-プロパノールの使用量を210質量部から1050質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤14の合成を行った。
(高分子分散剤15)
 ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)〔DPMP;堺化学工業(株)製〕7.83質量部をペンタエリスリトールペンタ(3-メルカプトプロピオネート)9.77質量部に変更した以外は、高分子分散剤1と同様の手順に従って、高分子分散剤15の合成を行った。
(比較分散剤1)
 2-ヒドロキシルエチルメタクリレート45質量部、メタクリル酸メチル45質量部、1-メトキシ-2-プロパノール210質量部を混合し、窒素気流下にて、2,2’-アゾビス(イソブチロニトリル)〔AIBN、和光純薬工業(株)製〕0.49部を加えて80℃で3時間加熱後、再度AIBN0.49質量部を加えて、窒素気流下にて、80℃で3時間反応させた。その後、室温まで冷却し、多量のメタノールを用いて再沈殿させた後、真空乾燥させ、比較分散剤1を得た。
<実施例1>
 高分子分散剤1(563mg)、単層CNT(名城ナノカーボン社製)188mgを、オルトジクロロベンゼン(o-ジクロロベンゼン)15ml中に添加し、ホモジナイザーにて5分間分散させ、その後、フィルミックス40-40型(プライミックス社製)にて高せん断力を用いる分散処理(周速30m/s、2.5分間攪拌)を2回行い、分散液101(熱電変換層形成用組成物に該当)を得た。
 基材として厚さ1.1mm、大きさ40mm×50mmのガラス基板を用いた。この基材をアセトン中で超音波洗浄した後、10分間UV(紫外線)-オゾン処理を行った。その後、この基材上の両端部側それぞれに、大きさ30mm×5mm、厚さ10nmの金を第1の電極および第2の電極として形成した。
 調製した分散液101を、電極が形成された基材上にテフロン(登録商標)製の枠を貼り付け、その枠内に溶液を流し込み、60℃のホットプレート上で1時間乾燥させ、乾燥後に枠を取り外し、厚さ約1.1μmの熱電変換層を形成し、図2に示す構成の熱電変換素子101を作製した。
 分散液中でのCNTの分散性、並びに、熱電変換素子の導電率および熱起電力を下記の方法で評価した。
 なお、CNTの分散性の評価としては、分散液の粘度を測定した。粘度が低いほうがCNTの凝集が生じておらず、CNTの分散性がよいことを表す。
[粘度測定]
 レオメーター(サーモエレクトロン社製、HAAKE RheoStress 600)により、せん断速度20/s、温度25℃の下で、分散液の粘度を測定し、以下の基準により評価した。結果は、表1にまとめて示す。
「AAA」:粘度が5Pa・s未満の場合
「AA」:粘度が5Pa・s以上6Pa・s未満の場合
「A」:粘度が6Pa・s以上7Pa・s未満の場合
「B」:粘度が7Pa・s以上10Pa・s未満の場合
「C」:粘度が10Pa・s超の場合
[熱起電力、導電率]
 熱電変換素子の第1の電極を一定温度に保ったホットプレート上に設置し、第2の電極を温度制御用のペルチェ素子上を設置した。つまり、図2中の第1の電極23が位置する第1の基材22の下部にホットプレートを設置し、第2の電極25が位置する第1の基材22の下部にペルチェ素子を配置した。
 ホットプレートの温度を一定(100℃)に保ちつつ、ペルチェ素子の温度を低下させることにより両電極間に温度差(0Kを超え4K以下の範囲)を付与した。
 この時、両電極間に発生した熱起電力(μV)を両電極間に生じた特定の温度差(K)で除することにより、単位温度差当たりの熱起電力S(μV/K)を算出した。また同時に、両電極間に発生した電流を測定する事で導電率(S/cm)を算出した。結果は、表1にまとめて示す。
<実施例2~15、比較例1~2>
 使用する高分子分散剤、および/または、溶媒の種類を後述する表1のように変更した以外は、実施例1と同様の手順に従って、熱電変換素子を作製した。作製された分散液および熱電変換素子を用いて、各種評価を行った。結果は、表1にまとめて示す。
 表1中、「吸着部位の種類」欄は、一般式(1)中のA1中に含まれる部位の種類を表す。
 「P1の種類」欄は、一般式(1)中のP1の種類を表し、「PMMA」はポリメチルメタクリレートを、「PPMA」はポリプロピルメタクリレートを、「PS」はポリスチレンを、「ポリエステル」はポリエステル系ポリマーを意図する。
 「n:m」欄は、一般式(1)中の「n」「m」の数値を表す。
 「分子量」欄は、高分子分散剤の重量平均分子量を意図する。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 上記表1に示すように、本発明の熱電変換素子(熱電変換層)は、導電率および熱起電力に優れることが確認された。また、得られた熱電変換層形成用組成物中におけるCNTの分散性も優れていた。
 なかでも、実施例1、3~6の比較より、吸着部位として炭素数4以上の炭化水素基(より具体的には、炭素数4以上のアルキル基、炭素数6以上のアリール基)を使用した場合、より優れた効果が得られることが確認された。特に、炭素数13以上のアルキル基を使用した実施例5において、効果が優れていた。
 また、実施例1、10~12の比較より、nが3~4、mが2~3において、より優れた効果が得られることが確認された。
 また、実施例1、13~14の比較より、高分子分散剤の重量平均分子量が15000~40000において、より優れた効果が得られることが確認された。
 また、実施例1と2との比較より、ClogP値が3.0以下である溶媒を使用した場合、より優れた効果が得られることが確認された。
 一方、所定の分散剤を使用していない比較例1および2においては、所望の効果が得られなかった。特に、比較例2は特許文献1に具体的に開示されているポリスチレンを使用した態様に該当する。
 1、2    熱電変換素子
 11、17  金属板
 12、22  第1の基材
 13、23  第1の電極
 14、24  熱電変換層
 15、25  第2の電極
 16、26  第2の基材

Claims (19)

  1.  熱電変換層と、前記熱電変換層と電気的に接続する電極対とを有する熱電変換素子であって、
     前記熱電変換層が、カーボンナノチューブと、一般式(1)で表される高分子分散剤とを含有する、熱電変換素子。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、R1は、(m+n)価の連結基を表す。
     R2は、単結合または2価の連結基を表す。
     A1は、有機色素構造、複素環構造、酸性基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基から選択される部位を少なくとも1種含む1価の有機基を表す。
     R3は、単結合または2価の連結基を表す。
     P1は、非共役系高分子骨格を表す。
     mは1~8、nは2~9を表し、m+nは3~10を満たす。mが2以上の場合、m個のP1およびR3は、同一であっても、異なっていてもよい。n個のA1およびR2は、同一であっても、異なっていてもよい。
  2.  前記一般式(1)で表される高分子分散剤が、一般式(2)で表される高分子分散剤である、請求項1に記載の熱電変換素子。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、R1は、(m+n)価の連結基を表す。
     R4およびR5は、それぞれ独立に、単結合または2価の連結基を表す。
     A1は、有機色素構造、複素環構造、酸性基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基から選択される部位を少なくとも1種含む1価の有機基を表す。
     P1は、非共役系高分子骨格を表す。
     mは1~8、nは2~9を表し、m+nは3~10を満たす。mが2以上の場合、m個のP1およびR5は、同一であっても、異なっていてもよい。n個のA1およびR4は、同一であっても、異なっていてもよい。
  3.  前記A1が、炭素数4以上の鎖状または環状のアルキル基、および、炭素数6以上のアリール基から選択される部位を少なくとも1種含む1価の有機基である、請求項1または2に記載の熱電変換素子。
  4.  前記非共役系高分子骨格が、ビニルモノマーの重合体または共重合体、エステル系ポリマー、および、これらの変性物または共重合体より選ばれる少なくとも1種に由来するものである、請求項1~3のいずれか1項に記載の熱電変換素子。
  5.  前記mが2~3であり、前記nが3~4である、請求項1~4のいずれか1項に記載の熱電変換素子。
  6.  前記高分子分散剤の重量平均分子量が15000~40000である、請求項1~5のいずれか1項に記載の熱電変換素子。
  7.  カーボンナノチューブと、一般式(1)で表される高分子分散剤とを含有する、熱電変換層。
    Figure JPOXMLDOC01-appb-C000003
     一般式(1)中、R1は、(m+n)価の連結基を表す。
     R2は、単結合または2価の連結基を表す。
     A1は、有機色素構造、複素環構造、酸性基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基から選択される部位を少なくとも1種含む1価の有機基を表す。
     R3は、単結合または2価の連結基を表す。
     P1は、非共役系高分子骨格を表す。
     mは1~8、nは2~9を表し、m+nは3~10を満たす。mが2以上の場合、m個のP1およびR3は、同一であっても、異なっていてもよい。n個のA1およびR2は、同一であっても、異なっていてもよい。
  8.  前記一般式(1)で表される高分子分散剤が、一般式(2)で表される高分子分散剤である、請求項7に記載の熱電変換層。
    Figure JPOXMLDOC01-appb-C000004
     一般式(2)中、R1は、(m+n)価の連結基を表す。
     R4およびR5は、それぞれ独立に、単結合または2価の連結基を表す。
     A1は、有機色素構造、複素環構造、酸性基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基から選択される部位を少なくとも1種含む1価の有機基を表す。
     P1は、非共役系高分子骨格を表す。
     mは1~8、nは2~9を表し、m+nは3~10を満たす。mが2以上の場合、m個のP1およびR5は、同一であっても、異なっていてもよい。n個のA1およびR4は、同一であっても、異なっていてもよい。
  9.  前記A1が、炭素数4以上の鎖状または環状のアルキル基、および、炭素数6以上のアリール基から選択される部位を少なくとも1種含む1価の有機基である、請求項7または8に記載の熱電変換層。
  10.  前記非共役系高分子骨格が、ビニルモノマーの重合体または共重合体、エステル系ポリマー、および、これらの変性物または共重合体より選ばれる少なくとも1種に由来するものである、請求項7~9のいずれか1項に記載の熱電変換層。
  11.  前記mが2~3であり、前記nが3~4である、請求項7~10のいずれか1項に記載の熱電変換層。
  12.  前記高分子分散剤の重量平均分子量が15000~40000である、請求項7~11のいずれか1項に記載の熱電変換層。
  13.  カーボンナノチューブと、一般式(1)で表される高分子分散剤とを含有する、熱電変換層形成用組成物。
    Figure JPOXMLDOC01-appb-C000005
     一般式(1)中、R1は、(m+n)価の連結基を表す。
     R2は、単結合または2価の連結基を表す。
     A1は、有機色素構造、複素環構造、酸性基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基から選択される部位を少なくとも1種含む1価の有機基を表す。
     R3は、単結合または2価の連結基を表す。
     P1は、非共役系高分子骨格を表す。
     mは1~8、nは2~9を表し、m+nは3~10を満たす。mが2以上の場合、m個のP1およびR3は、同一であっても、異なっていてもよい。n個のA1およびR2は、同一であっても、異なっていてもよい。
  14.  前記一般式(1)で表される高分子分散剤が、一般式(2)で表される高分子分散剤である、請求項13に記載の熱電変換層形成用組成物。
    Figure JPOXMLDOC01-appb-C000006
     一般式(2)中、R1は、(m+n)価の連結基を表す。
     R4およびR5は、それぞれ独立に、単結合または2価の連結基を表す。
     A1は、有機色素構造、複素環構造、酸性基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基から選択される部位を少なくとも1種含む1価の有機基を表す。
     P1は、非共役系高分子骨格を表す。
     mは1~8、nは2~9を表し、m+nは3~10を満たす。mが2以上の場合、m個のP1およびR5は、同一であっても、異なっていてもよい。n個のA1およびR4は、同一であっても、異なっていてもよい。
  15.  前記A1が、炭素数4以上の鎖状または環状のアルキル基、および、炭素数6以上のアリール基から選択される部位を少なくとも1種含む1価の有機基である、請求項13または14に記載の熱電変換層形成用組成物。
  16.  前記非共役系高分子骨格が、ビニルモノマーの重合体または共重合体、エステル系ポリマー、および、これらの変性物または共重合体より選ばれる少なくとも1種に由来するものである、請求項13~15のいずれか1項に記載の熱電変換層形成用組成物。
  17.  前記mが2~3であり、前記nが3~4である、請求項13~16のいずれか1項に記載の熱電変換層形成用組成物。
  18.  前記高分子分散剤の重量平均分子量が15000~40000である、請求項13~17のいずれか1項に記載の熱電変換層形成用組成物。
  19.  さらに、ClogP値が3.0以下であるアルコール系溶媒を含む、請求項13~18のいずれか1項に記載の熱電変換層形成用組成物。
PCT/JP2015/074883 2014-09-08 2015-09-01 熱電変換素子、熱電変換層、熱電変換層形成用組成物 WO2016039228A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547395A JP6220984B2 (ja) 2014-09-08 2015-09-01 熱電変換素子、熱電変換層、熱電変換層形成用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182221 2014-09-08
JP2014182221 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039228A1 true WO2016039228A1 (ja) 2016-03-17

Family

ID=55458977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074883 WO2016039228A1 (ja) 2014-09-08 2015-09-01 熱電変換素子、熱電変換層、熱電変換層形成用組成物

Country Status (2)

Country Link
JP (1) JP6220984B2 (ja)
WO (1) WO2016039228A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133420A (ja) * 2017-02-14 2018-08-23 東洋インキScホールディングス株式会社 炭素材料含有架橋性熱電変換複合体、および、それを用いた熱電変換素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041750A1 (ja) * 2008-10-10 2010-04-15 保土谷化学工業株式会社 微細炭素繊維水分散液、該水分散液の製造方法及びそれを用いた物品
WO2011016172A1 (ja) * 2009-08-03 2011-02-10 日本電気株式会社 カーボンナノチューブインク組成物
JP2011038228A (ja) * 2009-08-18 2011-02-24 Kao Corp 液体柔軟剤組成物
JP2012148970A (ja) * 2012-03-09 2012-08-09 Asahi Kasei Chemicals Corp 分散剤組成物
JP2013095821A (ja) * 2011-10-31 2013-05-20 Fujifilm Corp 導電性組成物、並びにこれを用いた導電性膜及び導電性積層体
WO2014115560A1 (ja) * 2013-01-24 2014-07-31 日本ゼオン株式会社 カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法
JP2014146681A (ja) * 2013-01-29 2014-08-14 Fujifilm Corp 熱電変換材料、熱電変換素子並びにこれを用いた熱電発電用物品及びセンサー用電源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041750A1 (ja) * 2008-10-10 2010-04-15 保土谷化学工業株式会社 微細炭素繊維水分散液、該水分散液の製造方法及びそれを用いた物品
WO2011016172A1 (ja) * 2009-08-03 2011-02-10 日本電気株式会社 カーボンナノチューブインク組成物
JP2011038228A (ja) * 2009-08-18 2011-02-24 Kao Corp 液体柔軟剤組成物
JP2013095821A (ja) * 2011-10-31 2013-05-20 Fujifilm Corp 導電性組成物、並びにこれを用いた導電性膜及び導電性積層体
JP2012148970A (ja) * 2012-03-09 2012-08-09 Asahi Kasei Chemicals Corp 分散剤組成物
WO2014115560A1 (ja) * 2013-01-24 2014-07-31 日本ゼオン株式会社 カーボンナノチューブ分散液及びその製造方法、並びにカーボンナノチューブ組成物及びその製造方法
JP2014146681A (ja) * 2013-01-29 2014-08-14 Fujifilm Corp 熱電変換材料、熱電変換素子並びにこれを用いた熱電発電用物品及びセンサー用電源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133420A (ja) * 2017-02-14 2018-08-23 東洋インキScホールディングス株式会社 炭素材料含有架橋性熱電変換複合体、および、それを用いた熱電変換素子

Also Published As

Publication number Publication date
JP6220984B2 (ja) 2017-10-25
JPWO2016039228A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
Lu et al. Highly transparent and flexible polyimide–AgNW hybrid electrodes with excellent thermal stability for electrochromic applications and defogging devices
KR102327147B1 (ko) 표시장치용 윈도우 및 이를 포함하는 표시 장치
JP5789335B1 (ja) 分散剤及び分散組成物
US20160211433A1 (en) Thermoelectric conversion material and thermoelectric conversion element
Mandal et al. Noncovalent functionalization of multiwalled carbon nanotube by a polythiophene-based compatibilizer: reinforcement and conductivity improvement in poly (vinylidene fluoride) films
JP4807817B2 (ja) 導電性成形体の製造方法、及び導電性成形体
US9832818B2 (en) Resistive heating coatings containing graphenic carbon particles
US9461230B2 (en) Thermoelectric conversion material, thermoelectric conversion element and article for thermoelectric power generation using same, and method for manufacturing thermoelectric conversion element
US20160211434A1 (en) Thermoelectric conversion material, thermoelectric conversion element and method for manufacturing thermoelectric conversion element
US20200066958A1 (en) THERMOELECTRIC CONVERSION ELEMENT, n-TYPE THERMOELECTRIC CONVERSION LAYER, AND COMPOSITION FOR FORMING n-TYPE THERMOELECTRIC CONVERSION LAYER
JP2011228243A (ja) 導電性組成物、並びに、それを用いた透明導電体、タッチパネル及び太陽電池
Gao et al. A novel low colored and transparent shape memory copolyimide and its durability in space thermal cycling environments
TW202017975A (zh) 光學膜
JP6220984B2 (ja) 熱電変換素子、熱電変換層、熱電変換層形成用組成物
JP4995618B2 (ja) 光学フィルム、及び画像表示装置
JP6205326B2 (ja) 熱電変換素子、熱電変換材料
JP2016118772A (ja) 樹脂組成物及び積層体
KR101705625B1 (ko) 고분자내에 분산이 용이한 그래핀 소재와 그 제조방법
WO2018016616A1 (ja) 調光材料、調光フィルム及び調光積層体
JP2016071323A (ja) 近赤外線カットフィルター
JP6220983B2 (ja) 熱電変換素子、熱電変換層、熱電変換層形成用組成物
TWI786192B (zh) 暫時接著層形成用組成物及暫時接著層
WO2017104591A1 (ja) n型熱電変換層、熱電変換素子およびn型熱電変換層形成用組成物
US11066304B2 (en) Polymer grafted graphene and method for preparation thereof
YEŞİL et al. Synthesis, Characterization and Investigation of Electrical Conductivity of Poly (2-Oxo-2-Phenyl Ethyl-2-Amino Benzoate)/Bentonite Nanocomposite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839324

Country of ref document: EP

Kind code of ref document: A1