WO2013031095A1 - 車両運転支援装置 - Google Patents

車両運転支援装置 Download PDF

Info

Publication number
WO2013031095A1
WO2013031095A1 PCT/JP2012/004986 JP2012004986W WO2013031095A1 WO 2013031095 A1 WO2013031095 A1 WO 2013031095A1 JP 2012004986 W JP2012004986 W JP 2012004986W WO 2013031095 A1 WO2013031095 A1 WO 2013031095A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
obstacle
road shape
vehicle
host vehicle
Prior art date
Application number
PCT/JP2012/004986
Other languages
English (en)
French (fr)
Inventor
早川 泰久
修平 西牧
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12827578.1A priority Critical patent/EP2752833B1/en
Priority to JP2013531021A priority patent/JP5630583B2/ja
Priority to US14/128,952 priority patent/US9142131B2/en
Priority to RU2013157536/11A priority patent/RU2566175C1/ru
Priority to CN201280032324.2A priority patent/CN103635947B/zh
Publication of WO2013031095A1 publication Critical patent/WO2013031095A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17557Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for lane departure prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/08Lane monitoring; Lane Keeping Systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • B60T2210/24Curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/34Blind spots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/36Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres

Definitions

  • the present invention relates to a vehicle driving support technology that supports the driving of a driver so as to prevent the vehicle from approaching an obstacle located on the rear side of the host vehicle.
  • Patent Document 1 As a conventional vehicle driving support device, for example, there is a technique described in Patent Document 1.
  • the technique described in Patent Literature 1 when the driver's intention to change lanes is detected and an obstacle exists on the side of the rear of the host vehicle, the approach to the obstacle is notified to prevent the approach to the obstacle. To do.
  • the technique described in Patent Document 1 detects the operation of the direction indicator by the driver and also detects the position in the left-right direction (right end lane or left end lane position) in the lane of the host vehicle. When the operation direction of the vehicle and the position in the left-right direction in the lane of the host vehicle coincide with each other, it is detected that the driver intends to change the lane.
  • the travel position in the lane has a driver's preference and habit, and the vehicle does not necessarily travel in the center of the lane when there is no intention to change lanes. For this reason, the detection accuracy of the detection of the lane change intention based on the operation of the direction indicator and the travel position in the lane may be low. That is, even when the driver does not intend to approach the obstacle, there is a possibility that the control for preventing the approach to the obstacle intervenes and gives the driver an uncomfortable feeling.
  • the present invention pays attention to the above points, and an object of the present invention is to provide support control that can further suppress a sense of incongruity given to a driver when driving support for an obstacle on the rear side is performed.
  • an aspect of the present invention detects a road shape in front of the host vehicle, and determines the driver's intention to change lanes based on the detected road shape and a steering amount corresponding to the driver's steering. judge. Moreover, this invention detects the obstruction which is an obstruction which exists in the back side of the own vehicle. And this invention determines the start of the approach prevention control which prevents the approach of the own vehicle to the obstacle when it is determined that the driver intends to change the lane and the obstacle is detected. When it is determined that the vehicle has started, an approach prevention control that assists in preventing the host vehicle from approaching the obstacle is performed. At this time, this invention determines the detection accuracy of the road shape ahead of the said own vehicle, and suppresses the said control start determination, when the detection accuracy is low.
  • the control start of the approach prevention control is suppressed.
  • unnecessary approach prevention control when the road shape detection accuracy is poor (intervention) is reduced. This makes it possible to further suppress the sense of discomfort given to the driver when driving assistance for obstacles behind the side is performed.
  • This embodiment demonstrates the case where a vehicle driving assistance device is mounted with respect to a rear-wheel drive vehicle. Note that a front-wheel drive vehicle or a four-wheel drive vehicle can also be applied as a target vehicle. Further, the present invention can also be applied to EV vehicles and hybrid vehicles.
  • FIG. 1 is a schematic configuration diagram of an apparatus according to the present embodiment.
  • Reference numeral 1 in FIG. 1 denotes a brake pedal.
  • the brake pedal 1 is connected to the master cylinder 3 via the booster 2.
  • reference numeral 4 in FIG. 1 denotes a reservoir.
  • the master cylinder 3 is connected to each wheel cylinder 6FL to 6RR of each wheel via a fluid pressure circuit 30.
  • the brake fluid pressure is increased by the master cylinder 3 in accordance with the depression amount of the brake pedal 1 by the driver.
  • the increased braking fluid pressure is supplied to the wheel cylinders 6FL to 6RR of the wheels 5FL to 5RR through the fluid pressure circuit 30.
  • the braking fluid pressure control unit 7 controls the actuator in the fluid pressure circuit 30 to individually control the braking fluid pressure to each wheel. Then, the brake fluid pressure to each wheel is controlled to a value corresponding to the command value from the braking / driving force control unit 8.
  • an actuator there is a proportional solenoid valve capable of controlling each wheel cylinder hydraulic pressure to an arbitrary braking hydraulic pressure.
  • the brake fluid pressure control unit 7 and the fluid pressure circuit 30 may use, for example, a brake fluid pressure control unit used in anti-skid control (ABS), traction control (TCS), or vehicle dynamics control device (VDC). Good.
  • the brake fluid pressure control unit 7 may be configured to control the brake fluid pressure of each wheel cylinder 6FL to 6RR independently.
  • a braking fluid pressure command value is input from a braking / driving force control unit 8 to be described later, each braking fluid pressure is controlled according to the braking fluid pressure command value.
  • the vehicle also includes a drive torque control unit 12 and a lane shape acquisition unit 25.
  • the drive torque control unit 12 controls the drive torque to the rear wheels 5RL and 5RR that are drive wheels. This control is realized by controlling the operating state of the engine 9, the selected gear ratio of the automatic transmission 10, and the throttle opening of the throttle valve 11. That is, the drive torque control unit 12 controls the fuel injection amount and the ignition timing. At the same time, the throttle opening is controlled. Thereby, the operation state of the engine 9 is controlled.
  • This drive torque control unit 12 can also independently control the drive torque of the rear wheels 5RL and 5RR. However, when a driving torque command value is input from the braking / driving force control unit 8, the driving wheel torque is controlled according to the driving torque command value.
  • the vehicle also includes an imaging unit 26 with an image processing function.
  • the imaging unit 26 includes a camera, performs image processing on an image captured by the camera, and outputs the processed image.
  • the camera is composed of a CCD (Charge Coupled Device) camera or the like installed so as to capture the rear side of the host vehicle.
  • CCD Charge Coupled Device
  • the rear side of the host vehicle in this specification refers to the rear side of the host vehicle including the MM side of the host vehicle.
  • a camera of the imaging unit 26 a rear camera provided at the rear of the vehicle is illustrated.
  • the camera of the imaging unit 26 may be a side camera that is usually provided below the left and right mirrors.
  • the imaging unit 26 detects a lane marking such as a white line (lane marker) from the captured image, and detects a traveling lane based on the detected white line. Further, the imaging unit 26 detects the lateral displacement X of the host vehicle MM with respect to the traveling lane based on the detected traveling lane, and outputs the detected lateral displacement X to the braking / driving force control unit 8 described later. Then, as will be described later, the braking / driving force control unit 8 calculates the yaw angle ⁇ based on the detected lateral displacement X. Therefore, the yaw angle ⁇ calculated by the braking / driving force control unit 8 is greatly influenced by the white line detection accuracy S of the imaging unit 26.
  • a lane marking such as a white line (lane marker)
  • a navigation device 31 is mounted on the vehicle.
  • the navigation device 31 includes map data that stores map information. Then, the navigation device 31 outputs to the braking / driving force control unit 8 route information set based on the destination input by the driver together with road information and other map information. In addition, this device detects the road curvature ⁇ by the navigation device 31. A method for detecting the road curvature ⁇ will be described later.
  • the imaging unit 26 detects the presence of the obstacle SM traveling on the rear side of the host vehicle based on the rear side image of the host vehicle captured by the camera.
  • the imaging unit 26 can detect the relative lateral position POSXobst, the relative longitudinal position DISTobst, and the relative longitudinal velocity dDISTobst of the host vehicle MM and the obstacle SM individually on the left and right sides (see FIG. 3).
  • the relative lateral position POSXobst is an obstacle position in the lane width direction with respect to the host vehicle MM.
  • the relative vertical position DISTobst is an obstacle position (an obstacle position in a direction along the lane) in a direction perpendicular to the lane width direction with respect to the host vehicle MM.
  • the relative longitudinal speed dDISTobst is a relative speed in the traveling direction of the host vehicle MM. Note that FIG. 3 illustrates a side camera as an example of the camera.
  • the vehicle also includes a master cylinder pressure sensor 17, an accelerator opening sensor 18, a steering angle sensor 19, a direction indicating switch 20, and wheel speed sensors 22FL to 22RR. These sensors and the like output the detected detection signal to the braking / driving force control unit 8.
  • the master cylinder pressure sensor 17 detects the output pressure of the master cylinder 3, that is, the master cylinder hydraulic pressure Pm.
  • the accelerator opening sensor 18 detects the amount of depression of the accelerator pedal, that is, the accelerator opening ⁇ t.
  • the steering angle sensor 19 detects the steering angle (steering angle) ⁇ of the steering wheel 21.
  • the direction indication switch 20 detects a direction indication operation by the direction indicator.
  • the configuration to detect was illustrated.
  • the detection of the obstacle SM is not limited to this.
  • a configuration may be adopted in which a millimeter wave radar 24L / 24R that detects an obstacle SM behind the host vehicle is provided, and the obstacle SM is detected by the millimeter wave radar 24L / 24R.
  • a front camera 13 that images the front of the host vehicle MM is provided, and a traveling lane is detected based on an image captured by the front camera 13, and a state (lateral displacement X) of the host vehicle MM with respect to the traveling lane is detected. Also good.
  • the lane shape acquisition unit 25 acquires, as road shape information, a lane shape (a lane shape such as a lane width and a curvature ⁇ ) located within a set forward range set in front of the host vehicle MM, that is, within a preset set forward distance. Then, the acquired lane shape is output to the braking / driving force control unit 8. Specifically, the lane shape acquisition unit 25 detects the shape of the lane within a set forward distance set in advance in the traveling direction from the current position of the host vehicle MM based on, for example, map information included in the navigation device 31 and detects the lane shape. The adjusted lane shape is output to the braking / driving force control unit 8.
  • a lane shape a lane shape such as a lane width and a curvature ⁇
  • the lane shape acquisition unit 25 includes a front camera 13 that images the front of the host vehicle MM, detects a lane marking such as a white line (lane marker) from the image captured by the front camera 13, and detects the detected lane marking.
  • the lane shape may be detected based on the above.
  • the lane shape acquisition unit 25 may detect the lane shape based on data transmitted from a road infrastructure outside the vehicle (such as VICS (registered trademark)).
  • the braking / driving force control unit 8 and the lane shape acquisition unit 25 are configured by a controller including a microcomputer and its peripheral circuits.
  • the lane shape acquisition unit 25 may be configured independently of the braking / driving force control unit 8.
  • the lane shape acquisition unit 25 is a part of processing (program) executed by the braking / driving force control unit 8. This will be described in the case of configuration.
  • FIG. 5 is a flowchart showing a calculation processing procedure of the driving support control performed by the braking / driving force control unit 8.
  • the calculation process of the driving support control is executed by a timer interrupt every preset predetermined sampling time ⁇ T.
  • the calculation process of the driving support control is executed by a timer interrupt every 10 msec., For example.
  • no communication process is provided in the process shown in FIG. 5, information obtained by the arithmetic process is updated and stored in the storage device as needed, and necessary information is read out from the storage device as needed.
  • step S10 the braking / driving force control unit 8 reads various data from the sensors, the controller, and the control unit. Specifically, each wheel speed Vwi, steering angle ⁇ , master cylinder hydraulic pressure Pm, and direction indicator switch signal detected by each sensor are read, and the vehicle speed V of the host vehicle MM is calculated.
  • the calculation of the vehicle speed V is performed by the following equation (1) based on, for example, the read wheel speed Vwi.
  • Vwfl and Vwfr are the wheel speeds of the left and right front wheels
  • Vwrl and Vwrr are the wheel speeds of the left and right rear wheels. That is, in the equation (1), the vehicle speed V is calculated as an average value of the wheel speeds of the driven wheels.
  • the vehicle speed V is calculated from the latter equation, that is, the wheel speed of the front wheels.
  • an ABS Anti-lock Brake System
  • an estimated vehicle speed estimated in the ABS control may be used as the vehicle speed V.
  • step S20 an obstacle SM detection process is performed. That is, in step S20, the braking / driving force control unit 8 sets the obstacle SM (the obstacle SM on the rear side of the host vehicle) for each obstacle detection area K-AREA set on the right side and the left side of the host vehicle MM.
  • the presence / absence of existence Lobst / Robst is detected.
  • the presence / absence of the obstacle SM is determined when the obstacle SM exists within a predetermined relative position range (hereinafter referred to as the obstacle detection area K-AREA) set in advance for the host vehicle. Detection is performed assuming that an obstacle SM exists.
  • the braking / driving force control unit 8 detects that the obstacle SM has been imaged within the range corresponding to the obstacle detection area K-AREA set on the rear side of the host vehicle in the camera image of the imaging unit 26. It is determined that the object SM exists. Alternatively, the braking / driving force control unit 8 detects the relative position of the obstacle SM with respect to the host vehicle MM from the camera image, and the obstacle SM exists when the detected relative position is within the obstacle detection area K-AREA. Then, it may be determined. When the braking / driving force control unit 8 includes the millimeter wave radars 24L and 24R (see FIG.
  • the relative position of the obstacle SM with respect to the host vehicle MM detected by the radar is within the obstacle detection area K-AREA. If it is, it may be determined that the obstacle SM exists. Furthermore, when the relative position of the obstacle SM with respect to the host vehicle MM can be detected as described above, the braking / driving force control unit 8 detects the obstacle SM based on the change in the relative position of the obstacle SM. When the time required to reach the object detection area K-AREA is calculated, and the calculated time is less than or equal to the preset set time Tobstdetect, the obstacle SM enters the obstacle detection area K-AREA. It may be predicted that the obstacle SM exists.
  • step S30 the braking / driving force control unit 8 refers to the map information that the navigation device 31 has, and acquires the map information of the set forward range F-AREA that is a range preset in front of the host vehicle MM. Then, the braking / driving force control unit 8 acquires the curvature ⁇ (lane shape) of the traveling lane of the host vehicle MM as road shape information based on the acquired map information.
  • the braking / driving force control unit 8 acquires the node point of the set forward range F-AREA from the current position of the host vehicle MM from the map information stored in the navigation device 31, and connects the acquired node points.
  • An approximate curve is calculated, and the curvature ⁇ of the calculated approximate curve is acquired as the curvature ⁇ of the traveling lane.
  • the current position of the host vehicle MM can be detected by a GPS receiver included in the navigation device 31 or the like.
  • the method for obtaining the curvature ⁇ of the traveling lane is not limited to this.
  • the map information includes the curvature ⁇ corresponding to the road as the road information
  • the braking / driving force control unit 8 reads the curvature ⁇ stored as the road information, thereby obtaining the curvature ⁇ of the traveling lane. You may get it.
  • a front camera 13 that images the front of the host vehicle MM is provided, image processing is performed on an image captured by the front camera 13, and candidate points on the lane marker are extracted by edge detection.
  • a line segment that passes through the extracted candidate points may be detected as the shape of the lane marker, and the curvature ⁇ of the traveling lane may be acquired from the detected shape of the lane marker.
  • the braking / driving force control unit 8 does not acquire the curvature ⁇ based on the map information of the navigation device 31, but performs road-to-vehicle communication with VICS (registered trademark) or other infrastructure (road infrastructure), or forward.
  • Information regarding the road shape ahead of the host vehicle MM may be acquired by inter-vehicle communication with another vehicle that is traveling. That is, for example, when node point information can be received from an infrastructure or another vehicle, the set forward range F-AREA set in front of the host vehicle MM from the current position of the host vehicle MM based on the received node point.
  • a node point is acquired, a curve connecting the node points is calculated, and a curvature ⁇ of the calculated curve is acquired as a curvature ⁇ of the traveling lane.
  • the information of road curvature (beta) can be received from an infrastructure or another vehicle, what is necessary is just to receive this and to acquire curvature (beta) of a driving lane.
  • step S30 the yaw angle ⁇ is calculated from the lateral displacement X based on the following equation.
  • dX is the amount of change per unit time of the lateral displacement X
  • dY is the amount of change per unit time in the traveling direction (the one along the lane)
  • dX ′ is the amount of change dX. It is a differential value. Note that “′” indicates one-time differentiation.
  • the predicted steering angle ⁇ path is obtained using the curvature ⁇ of the traveling lane obtained as the forward curve information.
  • the predicted steering angle ⁇ path is a steering angle necessary for the host vehicle MM to maintain the traveling route, that is, a steering angle necessary for the host vehicle MM to travel along the traveling lane.
  • the predicted steering angle ⁇ path is calculated by multiplying the curvature ⁇ by a gain WBg determined in advance according to the vehicle specifications (wheel base).
  • a deviation angle ⁇ driverhosei which is a steering angle increase amount according to a lane change by the driver of the host vehicle MM.
  • the steering angle deviation angle ⁇ driverhosei is a deviation between the current steering angle ⁇ and the predicted steering angle ⁇ path, which is a steering angle for causing the host vehicle MM to travel along the traveling lane. That is, the deviation angle ⁇ driverhosei is a steering amount that serves as an index for the driver of the host vehicle MM to determine the intention of changing lanes.
  • ⁇ driverhosei ⁇ - ⁇ path (3)
  • step S60 an initial value is set for the set deviation angle ⁇ th used for determining whether to start the approach prevention control for suppressing the approach of the host vehicle MM to the obstacle SM.
  • This set deviation angle ⁇ th serves as a determination threshold value for detecting the driver's intention to change lanes.
  • the set deviation angle ⁇ th is stored as a map corresponding to the vehicle speed so that the value decreases as the vehicle speed increases, and is determined and set by map drawing based on the vehicle speed.
  • the set deviation angle ⁇ th may be set to be smaller as the host vehicle MM is closer to the white line (the smaller the lateral displacement X is).
  • the set deviation angle ⁇ th obtained by map drawing can be obtained by multiplying by a coefficient of 1 or less that becomes smaller as the host vehicle MM is closer to the white line.
  • the set deviation angle ⁇ th may be set to be smaller as the host vehicle MM is closer to the obstacle SM.
  • the set deviation angle ⁇ th obtained by map drawing can be obtained by multiplying by a coefficient of 1 or less that becomes smaller as the host vehicle MM is closer to the obstacle SM.
  • a pre-curve distance that is a distance from the current position of the host vehicle MM to the start position of the curved road existing ahead in the traveling direction of the host vehicle MM is detected.
  • the current position of the host vehicle MM is detected by GPS information, and the distance before the curve is detected from the detected current position and the map information included in the navigation device 31.
  • the distance before the curve is the distance along the lane from the point where the curve ahead in the direction of travel starts (the absolute value of the curvature ⁇ is greater than or equal to the preset value) to the point where the vehicle is located on the map Let DISTtocurve [m].
  • step S80 a setting curve pre-curve distance setting process is executed. Specifically, the setting curve pre-curve distance is set longer as the accuracy Sx of the pre-curve distance, which is the distance from the current position of the host vehicle MM to the curve, is lower.
  • the accuracy Sx of the distance before the curve is determined based on, for example, the location accuracy Sx of the host vehicle MM.
  • the position of the host vehicle MM usually receives radio waves from a plurality of GPS satellites, and detects the position of the host vehicle MM by calculating the distance from each GPS satellite that has received the radio waves. For this reason, the detection accuracy Sx (location accuracy) of the position of the host vehicle MM is higher as the number of GPS satellites that have received radio waves (number of GPS satellites acquired) is larger. Therefore, for example, when the number of information acquired from GPS satellites is 3 or less, the accuracy Sx of the pre-curve distance is low, 4 to 5 are medium accuracy of the pre-curve distance Sx, and 6 or more are the accuracy of the pre-curve distance Let Sx be high.
  • GPS satellites whose positions are close to less than a preset distance are counted as one.
  • the accuracy Sx is changed from a high state to a medium or low state, the setting change of the accuracy Sx is determined after the traveling distance after the change of the state becomes equal to or more than a preset distance. May be.
  • the accuracy Sx shifts from a low direction to a high direction, the accuracy Sx is determined without delay. In this way, the location accuracy Sx (accuracy of the distance before the curve) of the host vehicle MM is repeatedly calculated and updated in a preset time cycle.
  • step S80 the distance before the curve is set according to the accuracy Sx of the distance before the curve. That is, the setting curve distance is set to a value larger than the initial value as the accuracy Sx of the curve distance is lower. For example, if the accuracy Sx is medium, a predetermined distance X [m] set in advance is set as the distance before the setting curve, and if the accuracy Sx is high, the coefficient Gain height ( For example, a value obtained by multiplying 0.5) is set. If the accuracy Sx is low, a value obtained by multiplying a coefficient Gain low (for example, 1.5) is set as the distance before the setting curve.
  • a coefficient Gain height For example, a value obtained by multiplying 0.5
  • the distance before the set curve may be changed according to the vehicle speed of the host vehicle MM. Specifically, the distance before the set curve is set shorter as the vehicle speed is faster. In this case, it is synonymous with using the arrival time to the curve as the distance before the set curve. Note that a process of changing the relative position of the set forward range F-AREA with respect to the host vehicle MM according to the distance before the set curve may be performed.
  • step S90 when the distance before the curve to the curve is less than the distance before the set curve, the process proceeds to step S120 without executing the start suppression process.
  • step S100 when the distance before the curve to the curve is equal to or greater than the distance before the set curve, the process proceeds to step S100.
  • step S100 the detection accuracy S of the curvature ⁇ (lane shape) of the detected forward curve is obtained.
  • the detection accuracy S of the curvature ⁇ of the forward curve is obtained as follows, for example.
  • step S100 it is determined that the accuracy S is higher as the number of detection points of the node is larger.
  • S S1
  • Nn0 is the reference number of nodes, and if the number of nodes is Nn0 or more, Nn0 is a number that is estimated to have a high accuracy S of the detected curvature ⁇ .
  • S1 is 1, it can be determined that the detection accuracy S of the curvature ⁇ as road shape information is high. On the other hand, it is possible to detect that the detection accuracy S is lower as S1 is smaller.
  • Nb0 is a value of the standard degree of dispersion, and if it is equal to or greater than the value Nb0, it is a number that is estimated that the accuracy S of the detected curvature ⁇ is high. In this case, if S2 is 1, it can be determined that the detection accuracy S of the curvature ⁇ as road shape information is high. On the other hand, it can be detected that the detection accuracy S is lower as S2 is smaller.
  • the final accuracy S may be obtained by multiplying both the accuracy S1 based on the number of detection points of the node and the accuracy S2 based on the degree of dispersion.
  • S S1 ⁇ S2 (6)
  • S S1 ⁇ S2 (6)
  • the determination method of the road shape detection accuracy S is not limited to the above.
  • the detection reliability of each node point may be calculated based on the distance from the approximate curve to each node point, and the road shape detection accuracy S may be calculated based on the detection reliability and the number of node points.
  • the distance (deviation) from the approximate curve to each node point is calculated, the reliability of the node point whose distance from the calculated approximate curve is 0 is set to 100%, and the distance from the approximate curve is calculated.
  • a node point with a larger distance is set as a node point with lower reliability.
  • the road shape detection accuracy S is obtained by multiplying the average value of the detection reliability of all the node points by the number of detection points.
  • the detection accuracy S 1
  • the curvature ⁇ of the curve is stored as the map information, and even when the stored road curvature ⁇ is read and the curvature ⁇ is acquired, the accuracy S is obtained based on the node points as described above. Judgment is sufficient. That is, the road shape generally stored in the map information for navigation is created based on the node points. For this reason, since it is considered that the accuracy S of the curvature ⁇ of the curve stored as the map information is higher as the number of node points between the preset distances is larger, the accuracy S is determined based on the node points as described above. It is possible.
  • step S110 a process of suppressing the control start of the obstacle approach prevention control according to the detection accuracy S of the curvature ⁇ (lane shape) that is the road shape information is performed (it is difficult to determine whether to start the control).
  • the control start of the obstacle approach prevention control is suppressed by changing the setting of the set deviation angle ⁇ th when determining the driver's lane change operation. That is, according to the detection accuracy S of the curvature ⁇ (lane shape) obtained in step S100, the setting is changed so that the lower the accuracy S, the larger the set deviation angle ⁇ th.
  • a set deviation angle ⁇ th (a set deviation angle ⁇ th used in step S120), which becomes larger as the detection accuracy S becomes lower, is stored in advance in a map or the like, and the map is drawn according to the detected accuracy S of the detected curvature ⁇ .
  • a correction coefficient (> 1) that increases as the detection accuracy S of the curvature ⁇ decreases, and a process is performed to obtain the final set deviation angle ⁇ th by multiplying the set correction coefficient by the set deviation angle ⁇ th.
  • the set deviation angle ⁇ th may be corrected to be larger as the detection accuracy S of the curvature ⁇ is lower.
  • step S120 it is determined whether to start control. Specifically, it is determined whether or not the deviation angle ⁇ driverhosei obtained in step S50 is larger than the set deviation angle ⁇ th. If the deviation angle ⁇ driverhosei is larger than the set deviation angle ⁇ th, the obstacle approach prevention control determination flag Fout_obst is set to ON. On the other hand, when the deviation angle ⁇ driverhosei is equal to or smaller than the set deviation angle ⁇ th, the obstacle approaching prevention control determination flag Fout_obst is set to OFF.
  • the process of changing the obstacle approach prevention control judgment flag from OFF to ON is implemented. do not do.
  • Whether or not the obstacle approach prevention control determination flag Fout_obst is set to OFF is determined by whether or not the obstacle approach prevention control judgment flag Fout_obst is turned on, as in “ ⁇ driverhosei ⁇ th ⁇ F”. F may be given hiss.
  • the obstacle approach prevention control determination flag Fout_obst is set to ON.
  • step S130 processing for generating an alarm is performed. Specifically, when it is determined that the deviation angle ⁇ driverhosei obtained in step S50 is larger than a preset threshold value ⁇ th1, processing for generating an alarm sound is performed.
  • the threshold value ⁇ th1 used for determining whether or not to generate this alarm may be the same as the threshold value ⁇ th used for the determination in step S120. However, it is preferable to set the threshold value ⁇ th1 to a threshold value smaller than the threshold value ⁇ th, and to determine that an alarm sound is generated when it is determined that ⁇ driverhosei is larger than the set threshold value.
  • a target yaw moment Ms_str is set.
  • K1recv is a proportional gain determined from vehicle specifications
  • K2recv is a gain that varies according to the vehicle speed V.
  • the gain K2recv is, for example, a first value set in advance in a low speed range.
  • the gain K2recv has an inversely proportional relationship with the vehicle speed V.
  • the gain K2recv is smaller than the first value. It becomes a constant value.
  • K0, K1mom, and K2mom are gains that are appropriately set in advance through experiments or the like.
  • ⁇ X is the amount of change in lateral displacement per unit time, and the amount of change in the direction in which the host vehicle MM approaches the white line is positive.
  • the target yaw moment Ms_str increases as the yaw angle ⁇ with respect to the white line or the yaw rate that is constantly generated by increasing the steering in the direction in which the driver approaches the white line increases.
  • step S150 a process for generating a yaw rate for avoiding an obstacle approach is performed.
  • a yaw moment is generated using a brake.
  • a method for outputting Ms will be specifically described below.
  • Pmf is the brake fluid pressure for the front wheels.
  • Pmr is the braking fluid pressure for the rear wheels, and is a value calculated based on the braking fluid pressure Pmf for the front wheels in consideration of the front-rear distribution.
  • the brake fluid pressures Pmf and Pmr are values corresponding to the operation amount (master cylinder fluid pressure Pm) of the driver's brake operation.
  • the front wheel target braking hydraulic pressure difference ⁇ Psf and the rear wheel are based on the target yaw moment Ms_str.
  • FRratio indicates the distribution of braking force between the front and rear wheels.
  • T represents a tread.
  • the tread T is treated as the same value before and after here for convenience.
  • Kbf and Kbr are conversion coefficients for the front wheels and the rear wheels when the braking force is converted into the braking hydraulic pressure, and are determined by the brake specifications.
  • the braking force difference between the left and right wheels is generated so that the braking force of the wheels in the lane inner direction of the host vehicle MM is increased.
  • the technology for generating the yaw rate in the vehicle is not limited to this.
  • the coefficient Ka is a coefficient for converting the yaw moment into the turning angle, and is a coefficient that is determined and set in advance through experiments or the like.
  • the coefficient Kb is a coefficient for converting the yaw moment into the steering torque, and is a coefficient that has been obtained and set in advance through experiments or the like.
  • a detection process is performed to determine whether or not an obstacle SM exists in the obstacle detection area K-AREA set at the left and right rear of the host vehicle MM. Further, the curvature ⁇ (lane shape) of the travel lane in the set forward range F-AREA set in front of the host vehicle MM is acquired as road shape information. Further, a deviation angle ⁇ driverhisei which is a deviation (amount of addition) between the predicted steering angle ⁇ path obtained from the curvature ⁇ of the traveling lane and the actual steering angle ⁇ is obtained.
  • the deviation angle ⁇ driverhisei is larger than the set deviation angle ⁇ th1 and the steering is to the obstacle SM side, an alarm sound is generated because there is an intention to change the lane to the obstacle SM side. To alert the driver. Further, when the deviation angle ⁇ driverhisei becomes larger than the set deviation angle ⁇ th, a yaw moment for avoiding an obstacle approach is generated on the assumption that there is an intention to change the lane to the obstacle SM side. This assists in preventing the host vehicle MM from approaching the obstacle SM.
  • the detection accuracy S of the curvature ⁇ of the traveling lane ahead of the host vehicle MM is obtained, and the set deviation angle ⁇ th is set such that the lower the detection accuracy S, the larger the set deviation angle ⁇ th. change.
  • the control start of the obstacle approach prevention control is suppressed, that is, the control start determination is difficult to be performed.
  • the control start determination is suppressed. Therefore, when the road shape detection accuracy S is poor, unnecessary access prevention control is performed. It can be reduced. As a result, it is possible to reduce the uncomfortable feeling caused by the driver's unnecessary approach prevention control.
  • the decrease in the accuracy of detecting the intention to change lane due to the road shape is low, so the distance before the curve, which is the distance from the current position of the vehicle to the curve, is the distance before the set curve.
  • the suppression of the start of the control is prohibited.
  • the detection accuracy Sx of the pre-curve distance is low, the control start of the obstacle approach prevention control is suppressed by increasing the pre-curve distance, that is, it is difficult to determine whether to start the control.
  • step S100 When road shape information (curve information) ahead of the host vehicle MM is detected by the front camera 13, the process of step S100 may be performed as follows. That is, the set front range F-AREA set in front of the traveling direction of the host vehicle MM is picked up by the front camera 13, and the picked-up image is processed to obtain the white line edge of the lane.
  • a method for acquiring the white line edge a known method as described above is adopted. Based on the number of white line edge detection points acquired in the set forward range F-AREA (which may be the number of points between the preset distances), the number of detection points is more than the preset reference number. The smaller the number, the lower the road shape detection accuracy S.
  • an approximate curve connecting each edge point is drawn, and it is determined that the road shape detection accuracy S is lower as the degree of dispersion of the distance from the approximate curve to the edge point is larger.
  • the road shape detection accuracy S may be calculated based on the number of detected white line edge points and the detection reliability of the white line edge points. Specifically, for example, if the luminance of the edge point is equal to or higher than a predetermined luminance, the detection reliability is set to 100%, and the edge point having a lower luminance is set to an edge point having a lower detection reliability. Then, the road shape detection accuracy S is calculated by multiplying the average value of the detection reliability of all edge points by the number of edge point detection points.
  • the detection accuracy S1 and the detection reliability When the average value of the degrees is 50% and the edge points are 10 points, the detection accuracy S0.5 is calculated. In addition, what is necessary is just to detect the detection method of these detection accuracy S by the above-mentioned method.
  • step S100 When the road shape information (curve information) ahead of the host vehicle MM is acquired by road-to-vehicle communication with the infrastructure or communication such as vehicle-to-vehicle communication, the process of step S100 is performed as follows. good. That is, when node point information related to a lane ahead in the traveling direction is acquired by road-to-vehicle communication or vehicle-to-vehicle communication, the detection accuracy S is determined based on the node point as in the above modification (2).
  • the accuracy S is increased as the curvature ⁇ is closer to the single curvature ⁇ . Is determined to be low. That is, in an actual road shape, even a single curve is usually formed with a curve having a plurality of curvatures ⁇ , and there are few curved roads formed with a single curvature ⁇ . Therefore, it can be estimated that the accuracy S is lower as the curvature ⁇ is closer to the single curvature ⁇ .
  • step S110 the following processing may be performed separately from or in combination with the above-described processing to suppress control start (it is difficult to determine whether control starts).
  • the control start of the obstacle approach prevention control is suppressed by adjusting the detection range of the obstacle SM.
  • the detection accuracy S of the curvature ⁇ (lane shape) detected in step S30 the lower the detection accuracy S, the more the obstacle detection area K-AREA that detects the presence of the obstacle SM. Set a narrower vertical distance range.
  • the detection range is from the side of the host vehicle MM to the rear 7 m of the host vehicle MM
  • the detection range is from the side of the host vehicle MM to the rear 3 m of the host vehicle MM. Linear adjustment is performed according to the accuracy S.
  • the lateral distance range of the obstacle detection area K-AREA that detects the presence of the obstacle SM as the accuracy S is lower in accordance with the detection accuracy S of the curvature ⁇ (lane shape) detected in step S30.
  • the accuracy S is high, up to 3 m laterally from the host vehicle MM, and when the accuracy S is low, up to 1.5 m lateral from the host vehicle MM is set as a detection range, and linearly according to the detection accuracy S during that period. Make adjustments.
  • step S30 constitutes a road shape detection unit.
  • the steering angle sensor 19 constitutes a steering amount detection unit.
  • the imaging unit 26 and step S20 constitute an obstacle detection unit.
  • Step S50 constitutes a driver intention determination unit.
  • Step S120 constitutes a control start determination unit.
  • Steps S130 to S150 constitute an obstacle approach prevention control unit.
  • Step S100 constitutes a detection accuracy determination unit and an edge point extraction processing unit.
  • Steps S70 to S90 and S110 constitute a start determination suppressing unit.
  • Step S40 constitutes a predicted steering angle calculation unit.
  • the front camera 13 constitutes a front imaging unit.
  • Step S70 constitutes a pre-curve distance detection unit and a vehicle position measurement unit.
  • Step S80 constitutes a positioning accuracy detector and a pre-curve distance detector.
  • the braking / driving force control unit 8 detects a road shape in a set forward range F-AREA that is a preset range with respect to the front of the host vehicle MM.
  • the braking / driving force control unit 8 uses at least the rear side of the host vehicle MM as an obstacle detection area K-AREA, and detects an obstacle SM present in the obstacle detection area K-AREA.
  • the braking / driving force control unit 8 determines the driver's intention to change lanes based on the detected road shape (road curvature ⁇ ) and the detected steering angle (steering amount).
  • the braking / driving force control unit 8 determines that the driver intends to change lanes and, when the obstacle SM is detected, the approach prevention control that supports the approach of the host vehicle MM to the obstacle SM. Determine the start of The braking / driving force control unit 8 performs the approach prevention control when it is determined that the control is started. The braking / driving force control unit 8 detects the road shape detection accuracy S. The braking / driving force control unit 8 suppresses the start determination of the approach prevention control when the detected detection accuracy S is lower than a preset accuracy threshold.
  • the braking / driving force control unit 8 calculates a predicted steering angle that is a steering angle necessary for traveling along the detected road shape.
  • the braking / driving force control unit 8 determines that the driver intends to change the lane when the deviation angle between the detected actual steering angle and the predicted predicted steering angle is equal to or larger than a preset deviation angle. According to this configuration, the steering angle is adopted as the steering amount. For this reason, for example, the driver's intention to change lanes can be determined by steering larger than the steering angle necessary for traveling on a curved road.
  • the braking / driving force control unit 8 suppresses the start determination of the approach prevention control by changing the value of the set deviation angle to a large value. According to this configuration, it is possible to suppress the start determination of the approach prevention control by increasing the threshold value of the driver's lane change intention determination.
  • the braking / driving force control unit 8 suppresses the start determination of the upper approach prevention control by narrowing the range of the obstacle detection area K-AREA. According to this configuration, it is possible to suppress the start determination of the access prevention control by narrowing the range of the obstacle detection area K-AREA.
  • the braking / driving force control unit 8 is based on a plurality of node points existing in the map position corresponding to the set forward range F-AREA set in front of the host vehicle MM in the map information of the navigation device 31.
  • the road shape in the set forward range F-AREA is detected.
  • the braking / driving force control unit 8 detects the road shape detection accuracy S lower as the interval between the plurality of node points becomes wider. According to this configuration, the detection accuracy S is set based on the interval between the nodes (point sequences) that define the curve shape. For this reason, it becomes possible to detect the detection accuracy S in conjunction with the detection accuracy S of how the rate of change of the curve changes.
  • the braking / driving force control unit 8 is based on a plurality of node points existing in the map position corresponding to the set forward range F-AREA set in front of the host vehicle MM in the map information of the navigation device 31.
  • the road shape in the set forward range F-AREA is detected.
  • the braking / driving force control unit 8 calculates the approximate curve of the plurality of node points, and detects the detection accuracy S of the road shape as the variance of the distance of the plurality of node points with respect to the approximate curve increases.
  • the detection accuracy S is set based on the variance of the nodes that define the curve shape. For this reason, it is possible to detect the detection accuracy S in conjunction with the detection accuracy S of how the rate of change of the curve changes.
  • the braking / driving force control unit 8 performs image processing on the image captured by the front camera 13 and extracts a plurality of edge points for specifying the lane markings existing in the set forward range F-AREA.
  • the braking / driving force control unit 8 detects the road shape of the set forward range F-AREA ahead of the host vehicle MM based on the extracted plurality of edge points.
  • the braking / driving force control unit 8 detects the road shape detection accuracy S lower as the number of detected edge points decreases. According to this configuration, the road shape of the set forward range F-AREA ahead of the host vehicle MM is detected based on the extracted plurality of edge points. When the imaging accuracy is poor, the edge points are reduced. As a result, the road shape detection accuracy S can be detected.
  • the braking / driving force control unit 8 performs image processing on the image captured by the front camera 13 and extracts a plurality of edge points for specifying the lane markings existing in the set forward range F-AREA.
  • the braking / driving force control unit 8 detects the road shape of the set forward range F-AREA ahead of the host vehicle MM based on the extracted plurality of edge points.
  • the braking / driving force control unit 8 calculates the approximate curve of the plurality of edge points, and detects the road shape detection accuracy S lower as the variance of the distance between the approximate curve and the plurality of edge points increases. According to this configuration, the detection accuracy S is set based on the dispersion of edge points that define the curve shape. For this reason, it is possible to detect the detection accuracy S in conjunction with the detection accuracy S of how the rate of change of the curve changes.
  • the braking / driving force control unit 8 detects a pre-curve distance that is a distance from the current position of the host vehicle MM to the start position of the curve road ahead in the host vehicle traveling direction.
  • the braking / driving force control unit 8 suppresses the start determination of the approach prevention control only when the detected distance before the curve is equal to or less than the preset distance before the curve.
  • the road shape in determining the intention to change lanes is a curved road. In view of this, by suppressing the start determination of the access prevention control only when the distance is equal to or less than the distance before the set curve, it is possible to reduce unnecessary start determination suppression of the access prevention control.
  • the braking / driving force control unit 8 detects the detection accuracy of the position of the host vehicle MM.
  • the braking / driving force control unit 8 detects the distance before the curve based on the detected position of the host vehicle MM.
  • the braking / driving force control unit 8 increases the distance before the set curve as the detected accuracy decreases. According to this configuration, when the distance accuracy for detecting the distance to the curve is poor, the start determination of the access prevention control is suppressed by increasing the distance before the set curve. As a result, it is possible to reduce unnecessary access prevention control.
  • the braking / driving force control unit 8 detects the road curvature ⁇ as the road shape. Thereby, the road shape can be detected.
  • the approach prevention control is at least one of notification control to the driver and control for giving a yaw moment in the opposite direction to the lane change direction of the host vehicle MM. As a result, it is possible to provide support for preventing access.
  • step S20a detection process of the obstacle SM
  • the first embodiment has been described in the case where the obstacle SM is detected using the rear camera.
  • the configuration shown in FIG. 4 is adopted, and the obstacle SM is detected using the millimeter wave radar (24L, 24R).
  • the curvature ⁇ of the traveling chain line is acquired by performing image processing on an image captured by the front camera 13.
  • the predicted steering speed ⁇ path ′ is obtained using the curvature ⁇ of the traveling lane obtained as the forward curve information.
  • the predicted steering angle ⁇ path ′ is a steering speed necessary for the host vehicle MM to maintain the travel route, that is, a steering speed necessary for the host vehicle MM to travel along the travel lane.
  • the predicted steering speed ⁇ path ′ can be obtained by differentiating the predicted steering angle ⁇ path.
  • step S50a the deviation speed ⁇ driverhosei ′ is detected.
  • “′” indicates a single differentiation.
  • the deviation speed ⁇ driverhosei ′ is obtained by the following equation.
  • ⁇ driverhosei ′ ⁇ ′ ⁇ path ′ (14)
  • a set deviation speed ⁇ thx for determining whether to start the approach prevention control for the obstacle SM is set.
  • the set deviation speed ⁇ thx is a value that decreases as the vehicle speed increases.
  • the set deviation speed ⁇ thx is set as a map corresponding to the vehicle speed, for example.
  • the set deviation speed ⁇ thx may be set as a map so as to become smaller as the own vehicle MM is closer to the white line.
  • the set deviation speed ⁇ thx may be set as a map so as to become smaller as the host vehicle MM is closer to the obstacle SM.
  • step S100a for example, the setting deviation speed ⁇ thx for determining that the lane change has been performed is changed.
  • the setting change of the set deviation speed ⁇ thx may be executed by a process similar to the process described in step S100 of the first embodiment.
  • step S120a it is determined whether to start control. Specifically, it is determined whether or not the deviation speed ⁇ driverhosei ′ calculated in step S50a is larger than the set deviation speed ⁇ thx. If it is determined that ⁇ driverhosei ′ is greater than the set deviation speed ⁇ thx, the obstacle approach prevention control is set to ON. On the other hand, when the deviation speed ⁇ driverhosei ′ is equal to or less than the set deviation speed ⁇ thx, the obstacle approach prevention control determination flag is set to OFF. However, when the steering direction and the obstacle detection direction are different, changing the setting of the obstacle approach prevention control determination flag from OFF to ON is prohibited. Note that a hysteresis of F may be given as in “ ⁇ driverhosei ′ ⁇ thx ⁇ F”. Other configurations are the same as those in the first embodiment.
  • detection processing is performed to determine whether or not an obstacle SM exists in the obstacle detection area K-AREA set on the left and right sides of the host vehicle MM. Further, the curvature ⁇ (lane shape) of the travel lane in the set forward range F-AREA set in front of the host vehicle MM is acquired as road shape information. Further, a deviation speed ⁇ driverhisei ′, which is a deviation between the predicted steering speed ⁇ path ′ obtained from the curvature ⁇ of the traveling lane and the actual steering speed angle ⁇ ′, is obtained.
  • the detection accuracy S of the curvature ⁇ of the traveling lane ahead of the host vehicle MM is obtained, and the determination threshold value ⁇ ht ′ is set so that the set deviation speed ⁇ thx increases as the detection accuracy S decreases. change.
  • the detection accuracy S of the curvature ⁇ is lower, the control start of the obstacle approach prevention control is suppressed, that is, it is difficult to determine the start of the control.
  • step S50a constitutes a predicted steering speed calculation unit.
  • step S120a constitutes a driver intention determination unit.
  • Step S110 constitutes a start determination suppression unit.
  • the present embodiment has the following effects in addition to the effects described in the first embodiment.
  • the braking / driving force control unit 8 calculates a predicted steering speed that is a steering speed necessary for traveling along the detected road shape.
  • the braking / driving force control unit 8 determines that the driver intends to change the lane when the deviation speed between the detected actual steering speed and the calculated predicted steering speed is equal to or higher than a preset setting deviation speed.
  • the steering deviation for determining the driver's intention estimation is detected by the steering angular velocity, so that the steering for maintaining the lane is not performed when there is steering exceeding the steering angular velocity necessary for traveling on the curve. Can be determined. That is, it is possible to detect the driver's intention to change lanes.
  • the braking / driving force control unit 8 suppresses the start determination of the approach prevention control by changing the value of the set deviation speed to a large value. According to this configuration, it is possible to suppress the start determination of the approach prevention control by increasing the threshold value of the driver's lane change intention determination.
  • a neutral yaw rate ⁇ ′path for maintaining the travel route is determined using the travel curvature ⁇ .
  • the neutral yaw rate ⁇ ′path is calculated based on the following equation, for example.
  • ⁇ ′path ⁇ ⁇ V (15)
  • the neutral yaw rate ⁇ ′path for maintaining the travel route the average value ⁇ ′ave of the yaw rate ⁇ ′ for a preset time is used, or a value obtained by applying a filter with a large time constant to the yaw rate ⁇ ′ is simplified. It may be used.
  • a forward gaze time Tt is set.
  • the forward gaze time Tt is an index for determining a threshold for predicting the contact situation of the driver with the obstacle SM in the future.
  • the predicted lateral position ⁇ Xb of the host vehicle in the lateral direction with respect to the current traveling path position is calculated in order to determine that the lane change is to be made after leaving the traveling path.
  • ⁇ Xb L (K1 ⁇ + K2 ⁇ m ⁇ T + K3 ⁇ m ′ ⁇ T 2 ) ... (17) Considering these characteristics, K1 is a vehicle speed, K2 is a vehicle speed and a forward gaze time, and K3 is a set gain based on a characteristic as a function of the square of the vehicle speed and the forward gaze time.
  • ⁇ Xb obtained here is used to determine whether or not to start the approach prevention control to the obstacle SM in the subsequent stage.
  • step S60b a set lateral position that is a determination threshold value for determining whether to start the approach prevention control for the obstacle SM is set.
  • the set lateral position of the obstacle SM when the traveling path is the Y axis, the lateral position of the obstacle SM is detected on the X-axis coordinate in the direction perpendicular to the traveling path. The distance between the host vehicle MM and the obstacle SM indicated by ⁇ O in FIG. 9 is obtained and set as the set lateral position.
  • the obstacle is detected in the obstacle detection area K-AREA set in advance in the lateral direction of the host vehicle MM. Based on whether or not the object SM is detected, it may be set that the obstacle SM is virtually present at the set lateral position outside the white line. In this case, for example, it is assumed that the obstacle SM exists at a predetermined position outside the white line.
  • the detection area set as whether or not the obstacle SM is detected is set to be a predetermined vertical / horizontal position next to the host vehicle MM.
  • the set lateral position ⁇ O (in the case of determination in condition 1) is set such that the lower the detection accuracy S, the harder the determination is made. Reset it so that it becomes larger.
  • the set lateral position ⁇ O corresponding to the detection accuracy S of the curvature ⁇ is stored in advance in a map or the like, and the set lateral position ⁇ O is reset by map drawing according to the detected detection accuracy S of the curvature ⁇ .
  • a correction coefficient (> 1) that increases as the detection accuracy S of the curvature ⁇ decreases, is multiplied by the set correction coefficient, and the set horizontal position ⁇ O decreases as the detection accuracy S of the curvature ⁇ decreases. You may correct large.
  • a predetermined initial value is set as XO or Xthresh as the set lateral position.
  • step S120b as shown in FIG. 9, the lateral position of the host vehicle MM after a preset set elapsed time is estimated, and the predicted lateral position that is the deviation between the estimated lateral position after the set elapsed time and the current lateral position.
  • the position ⁇ Xb is equal to or greater than the lateral distance ⁇ O between the host vehicle MM and the detected obstacle SM, it is determined that the driver has performed a lane change operation to approach the obstacle SM (Condition 1).
  • ⁇ O is set as a value obtained by dividing a predetermined margin by the distance from the actual obstacle SM. And the correction of the position described later is performed so as to be performed for this margin. If the distance ⁇ O between the host vehicle MM and the obstacle SM is not detected or cannot be detected, the set horizontal position X2obst is set from the white line to a predetermined position instead of the white line, and the estimated future position ⁇ X2 from the white line is set instead. A determination may be made based on whether or not the current position has reached (Condition 2).
  • the threshold value provided at a predetermined position from the white line may be set so as to be inside the white line.
  • it may be determined when it is predicted that a specific distance Xthresh future position set in advance from the vehicle position will move (condition 3).
  • the lateral position relationship may be simply detected with the obstacle SM or the white line.
  • the predicted lateral position ⁇ Xb is determined as ⁇ XbL / ⁇ XbR for each of the left end and the right end of the vehicle.
  • step S140b an output yaw moment Ms is set.
  • the output yaw moment Ms is obtained by the following equation.
  • K1recv is a proportional gain determined from vehicle specifications
  • K2recv is a gain that varies according to the vehicle speed V.
  • the gain K2 has a large value in a low speed range, and when the vehicle speed V reaches a certain value, the gain K2 has an inversely proportional relationship with the vehicle speed V, and thereafter reaches a certain vehicle speed V and becomes a constant value with a small value.
  • Other configurations are the same as those in the first embodiment.
  • a predicted lateral position that is a lateral position of the host vehicle MM in the lane width direction estimated to be located after a preset time is estimated. Then, when the estimated predicted lateral position ⁇ Xb is outside the set lateral position, which is a preset lane width direction position, it is determined that the driver intends to change lanes.
  • the approach prevention control is started. At this time, the lower the detection accuracy S of the road shape is, the lower the lane width direction position of the set lateral position is changed to a position outside the lane width direction, thereby suppressing the start determination of the approach prevention control.
  • step S50b constitutes a steering amount detection unit.
  • step S120b constitutes a driver intention determination unit.
  • Step S110b constitutes a start determination suppression unit.
  • Step S60b constitutes an obstacle position detector.
  • the present embodiment has the following effects in addition to the effects described in the first embodiment.
  • the braking / driving force control unit 8 is a lateral position of the host vehicle MM in the lane width direction that is estimated to be located after a preset time based on the road shape detected by the road shape detection unit. Estimate a certain predicted lateral position.
  • the braking / driving force control unit 8 determines that the driver intends to change lanes when the estimated predicted lateral position is outside the set lateral position that is a preset position in the lane width direction. .
  • the steering amount for determining the driver intention estimation is obtained from the future lateral position change. For this reason, since the steering angle and the steering speed are determined based on a steering amount that comprehensively considers, it is possible to determine that there is an intention to change lanes when there is steering exceeding the steering angular speed necessary for traveling on a curve. Become.
  • the braking / driving force control unit 8 suppresses the start determination of the approach prevention control by changing the lane width direction position of the set lateral position to a position outside the lane width direction. According to this configuration, it is possible to realize start determination suppression of the approach prevention control.
  • the braking / driving force control unit 8 detects the position in the lane width direction of the obstacle SM detected by the obstacle detection unit with respect to the host vehicle MM.
  • the set lateral position is set to the lane width direction position ⁇ O of the obstacle SM with respect to the host vehicle MM detected by the obstacle position detector. According to this configuration, it is possible to realize start determination suppression of the approach prevention control.
  • the set lateral position is set to a position Xthresh that is separated in the lane width direction by a preset distance from the current lateral position that is the current position of the host vehicle MM in the lane width direction. According to this configuration, it is possible to realize start determination suppression of the approach prevention control.
  • the set lateral position is set to a position ⁇ X2obbst that is a predetermined distance away from the lane edge in the lane width direction. According to this configuration, it is possible to realize start determination suppression of the approach prevention control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)
  • Regulating Braking Force (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 側後方の障害物に対する運転支援を実施する際に、運転者に与える違和感をより抑制可能な支援制御を提供する。制駆動力コントロールユニット(8)は、自車両前方の道路形状を検出し検出した道路形状と運転者の操舵量とに基づいて運転者の車線変更意図を判定する。また制駆動力コントロールユニット(8)は、自車両の後側方に存在する障害物である障害物を検出する。そして、制駆動力コントロールユニット(8)は、運転者の車線変更意図があると判定され且つ上記障害物が検出されている場合に、自車両の障害物への接近を防止する接近防止制御の開始を判定し、制御開始と判定された場合に自車両の上記障害物への接近防止を支援する接近防止制御を行う。このとき、制駆動力コントロールユニット(8)は、上記自車両前方の道路形状の検出精度を判定し、その検出精度が低い場合に上記制御開始判定を抑制する。

Description

車両運転支援装置
 本発明は、自車両の側後方に位置する障害物への自車両の接近を防止するように運転者の運転を支援する車両運転の支援技術に関する。
 従来の車両運転支援装置としては、例えば特許文献1に記載の技術がある。特許文献1に記載の技術では、運転者の車線変更意図を検出し且つ自車両後側方に障害物が存在した場合には、障害物への接近を報知して障害物への接近を防止する。このとき特許文献1に記載の技術は、運転者による方向指示器の操作を検出すると共に自車両の車線内での左右方向の位置(右端車線若しくは左端車線位置)を検出し、その方向指示器の操作方向と自車両の車線内での左右方向の位置とが一致した場合に、運転者の車線変更意図があると検出する。
特開2009-184554号公報
 しかし、例えば、車線内の走行位置には運転者の好みや癖が有り、車線変更意図が無い場合に必ずしも車線中央を走行するとは限らない。このため、方向指示器の操作と車線内での走行位置とによる車線変更意図の検出は、その検出精度が低いおそれがある。すなわち、運転者が障害物への接近を意図していない場合であっても、障害物への接近を防止する制御が介入し、運転者に違和感を与える可能性がある。
 本発明は、上記のような点に着目したもので、側後方の障害物に対する運転支援を実施する際に、運転者に与える違和感をより抑制可能な支援制御を提供することを目的としている。
 上記課題を解決するために、本発明の一態様は、自車両前方の道路形状を検出し、検出した道路形状と運転者の操舵に応じた操舵量とに基づいて運転者の車線変更意図を判定する。また本発明は、自車両の後側方に存在する障害物である障害物を検出する。そして、本発明は、運転者の車線変更意図があると判定され且つ上記障害物が検出されている場合に、自車両の障害物への接近を防止する接近防止制御の開始を判定し、制御開始と判定された場合に自車両の上記障害物への接近防止を支援する接近防止制御を行う。このとき、本発明は、上記自車両前方の道路形状の検出精度を判定し、その検出精度が低い場合には上記制御開始判定を抑制する。
 本発明の一態様によれば、道路形状の検出精度が悪い場合に、接近防止制御の制御開始を抑制する。これによって、道路形状の検出精度が悪い場合に不要な接近防止制御が実施(介入)することが低減する。これによって、側後方の障害物に対する運転支援を実施する際に、運転者に与える違和感をより抑制可能となる。
本発明に基づく第1実施形態に係る装置の概要構成図である。 本発明に基づく第1実施形態に係る装置の別の概要構成図である。 後側方の障害物検出エリアその他を説明する概念図である。 本発明に基づく実施形態に係る装置の別の概要構成図である。 第1実施形態におけるコントロールユニットの処理手順例を示すフローチャートである。 自車両と障害物との関係を示す概念図である。 第2実施形態におけるコントロールユニットの処理手順例を示すフローチャートである。 第3実施形態におけるコントロールユニットの処理手順例を示すフローチャートである。 自車両と障害物との関係を示す概念図である。
 以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
 本実施形態では、後輪駆動車両に対し、車両運転支援装置を搭載する場合について説明する。なお、対象とする車両として、前輪駆動車両や四輪駆動車両を適用することもできる。また、EV車両やハイブリッド車両であっても適用可能である。
(構成)
 図1は、本実施形態に係る装置の概要構成図である。
 図1中符号1はブレーキペダルである。ブレーキペダル1は、ブースタ2を介してマスタシリンダ3に連結する。また、図1中符号4はリザーバである。
 マスタシリンダ3は、流体圧回路30を介して各輪の各ホイールシリンダ6FL~6RRに連結する。これにより、制動制御が作動しない状態では、運転者によるブレーキペダル1の踏込み量に応じて、マスタシリンダ3で制動流体圧を昇圧する。その昇圧した制動流体圧を、流体圧回路30を通じて、各車輪5FL~5RRの各ホイールシリンダ6FL~6RRに供給する。
 制動流体圧制御部7は、流体圧回路30中のアクチュエータを制御して、各輪への制動流体圧を個別に制御する。そして、各輪への制動流体圧を、制駆動力コントロールユニット8からの指令値に応じた値に制御する。アクチュエータとしては、各ホイールシリンダ液圧を任意の制動液圧に制御可能な比例ソレノイド弁がある。
 ここで、制動流体圧制御部7及び流体圧回路30は、例えばアンチスキッド制御(ABS)、トラクション制御(TCS)又はビークルダイナミックスコントロール装置(VDC)で使用する制動流体圧制御部を利用すればよい。制動流体圧制御部7は、単独で各ホイールシリンダ6FL~6RRの制動流体圧を制御する構成とすることもできる。そして、後述する制駆動力コントロールユニット8から制動流体圧指令値を入力した場合には、その制動流体圧指令値に応じて各制動流体圧を制御する。
 また、この車両は、駆動トルクコントロールユニット12及び車線形状取得部25を備える。
 駆動トルクコントロールユニット12は、駆動輪である後輪5RL、5RRへの駆動トルクを制御する。この制御は、エンジン9の運転状態、自動変速機10の選択変速比、及びスロットルバルブ11のスロットル開度を制御することで実現する。すなわち、駆動トルクコントロールユニット12は、燃料噴射量や点火時期を制御する。また同時に、スロットル開度を制御する。これにより、エンジン9の運転状態を制御する。
 この駆動トルクコントロールユニット12は、単独で後輪5RL、5RRの駆動トルクを制御することも可能である。ただし、制駆動力コントロールユニット8から駆動トルク指令値を入力したときには、その駆動トルク指令値に応じて駆動輪トルクを制御する。
 またこの車両は、画像処理機能付きの撮像部26を備える。撮像部26は、カメラを備え、そのカメラで撮像した画像を画像処理して出力する。上記カメラは、自車両後側方を撮像するように設置されたCCD(Charge Coupled Device)カメラ等から構成される。
 ここで、本明細書における自車両後側方とは、自車両のMM側方を含む自車両後方を指す。図1では、撮像部26のカメラとして、車両後部に設けられたリアカメラが例示されている。撮像部26のカメラは、図2に示すように、通常、左右ミラー下に設けられるサイドカメラであっても良い。
 撮像部26は、撮像画像から例えば白線(レーンマーカ)等の車線区分線を検出し、その検出した白線に基づいて走行車線を検出する。さらに、撮像部26は、その検出した走行車線に基づいて、自車両MMの走行車線に対する横変位Xを検出し、検出した横変位Xを後述する制駆動力コントロールユニット8に出力する。そして、後述するように、制駆動力コントロールユニット8は、検出された横変位Xに基づいてヨー角φを算出する。このため、制駆動力コントロールユニット8で算出されるヨー角φは、撮像部26の白線の検出精度Sに大きく影響される。
 ここで、この車両には、ナビゲーション装置31が搭載されている。ナビゲーション装置31は、地図情報を記憶した地図データを備える。そして、ナビゲーション装置31は、道路情報その他の地図情報と共に、運転者による目的地の入力に基づいて設定した経路情報を、制駆動力コントロールユニット8に出力する。
 また本装置は、道路曲率βを、ナビゲーション装置31によって検出する。この道路曲率βの検出方法に関しては後述する。
 さらに撮像部26は、カメラで撮像した自車両後側方の画像に基づいて、自車両後側方を走行する障害物SMの存在を検出する。撮像部26は、望ましくは、自車両MMと障害物SMとの相対横位置POSXobst、相対縦位置DISTobst、相対縦速度dDISTobstの検出を左
右それぞれ個別に検出できるものとする(図3参照)。相対横位置POSXobstは、自車両MMに対する車線幅方向での障害物位置である。相対縦位置 DISTobstは、自車両MMに対
する車線幅方向に直交する方向での障害物位置(車線に沿った方向での障害物位置)である。相対縦速度dDISTobstは、自車両MMの進行方向における相対速度である。なお、図3では、カメラの例としてサイドカメラの場合を例示している。
 また、この車両は、マスタシリンダ圧センサ17、アクセル開度センサ18、操舵角センサ19、方向指示スイッチ20、及び車輪速度センサ22FL~22RRを備える。そして、これらセンサ等は、検出した検出信号を制駆動力コントロールユニット8に出力する。
 マスタシリンダ圧センサ17は、マスタシリンダ3の出力圧、すなわちマスタシリンダ液圧Pmを検出する。アクセル開度センサ18は、アクセルペダルの踏込み量、すなわちアクセル開度θtを検出する。操舵角センサ19は、ステアリングホイール21の操舵角(ステアリング舵角)δを検出する。方向指示スイッチ20は、方向指示器による方向指示操作を検出する。車輪速度センサ22FL~22RRは、各車輪5FL~5RRの回転速度、所謂車輪速度Vwi(i=fl,fr,rl,rr)を検出する。
 なお、上記説明では、上記撮像部26のカメラで撮像された画像に基づいて、自車両後側方の障害物SMの存在や、自車両MMの走行車線に対する状態(ヨー角や横位置)を検出する構成を例示した。しかし障害物SMの検出は、これに限らない。例えば図4に記載のように、自車両後側方の障害物SMを検出するミリ波レーダー24L/24Rを備え、そのミリ波レーダー24L/24Rで障害物SMを検出する構成としても良い。また、自車両MM前方を撮像するフロントカメラ13を備え、該フロントカメラ13で撮像した画像に基づいて走行車線を検出して、自車両MMの走行車線に対する状態(横変位X)を検出しても良い。
 車線形状取得部25は、自車両MM前方に設定した設定前方範囲以内つまり予め設定した設定前方距離内に位置する車線形状(車線の幅、曲率β等の車線形状)を道路形状の情報として取得し、取得した車線形状を制駆動力コントロールユニット8に出力する。具体的には、車線形状取得部25は、例えばナビゲーション装置31が有する地図情報に基づいて、自車両MMの現在位置から進行方向に予め設定した設定前方距離以内の車線の形状を検出し、検出した車線形状を制駆動力コントロールユニット8に出力する。ここで、車線形状取得部25は、自車両MM前方を撮像するフロントカメラ13を備え、該フロントカメラ13によって撮像した画像から白線(レーンマーカ)等の車線区分線を検出し、検出した車線区分線に基づいて車線形状を検出しても良い。また車線形状取得部25は、車外の道路インフラ(VICS(登録商標)など)から送信されたデータに基づいて、車線形状の検出を行なっても良い。
 ここで、制駆動力コントロールユニット8及び車線形状取得部25は、マイクロコンピュータおよびその周辺回路を備えるコントローラで構成される。車線形状取得部25は、制駆動力コントロールユニット8と独立した構成でも良いが、以下の説明では、車線形状取得部25は、制駆動力コントロールユニット8で実施する処理(プログラム)の一部として構成する場合で説明する。
 図5は、制駆動力コントロールユニット8で実施する運転支援制御の演算処理手順を示すフローチャートである。
 この運転支援制御の演算処理は、予め設定した所定サンプリング時間ΔT毎にタイマ割込によって実行される。運転支援制御の演算処理は、例えば10msec.毎にタイマ割込によって実行される。なお、この図5に示す処理内には通信処理を設けていないが、演算処理によって得られた情報を随時記憶装置に更新記憶すると共に、必要な情報を随時記憶装置から読み出す。
 次に、上記運転支援制御の演算処理について、図5を参照して説明する。
 先ずステップS10において、制駆動力コントロールユニット8は、上記各センサやコントローラ、コントロールユニットから各種データを読み込む。具体的には、各センサが検出した、各車輪速度Vwi、操舵角δ、マスタシリンダ液圧Pm及び方向指示器のスイッチ信号を読み込むと共に、自車両MMの車速Vを算出する。
 上記車速Vの算出は、例えば読み込んだ車輪速度Vwiに基づいて、下記(1)式によって実施する。
 「前輪駆動の場合」
 V=(Vwrl+Vwrr)/2
 「後輪駆動の場合」
 V=(Vwfl+Vwfr)/2
                 ・・・(1)
 ここで、Vwfl,Vwfrは左右前輪それぞれの車輪速度であり、Vwrl,Vwrrは左右後輪それぞれの車輪速度である。すなわち、この(1)式では、従動輪の車輪速の平均値として車速Vを算出している。なお、本実施形態では、後輪駆動の車両であるので、後者の式、すなわち前輪の車輪速度により車速Vを算出する。
 なお、ABS(Anti-lock Brake System)制御等が作動している場合には、そのABS制御内で推定している推定車体速度を上記車速Vとして用いるようにしても良い。
 次にステップS20では、障害物SMの検出処理を行う。すなわち、ステップS20では、制駆動力コントロールユニット8が、自車両MMの右側及び左側のそれぞれに設定した各障害物検出エリアK-AREAに対する障害物SM(自車両後側方の障害物SM)の存在Lobst・Robstの有無を検出する。具体的には、障害物SMの有無の判定は、自車に対してあらかじめ設定した所定の相対位置範囲内(以下、障害物検出エリアK-AREA内)に障害物SMが存在する場合に、障害物SMが存在するとして検出を行う。
 すなわち、制駆動力コントロールユニット8は、撮像部26のカメラ画像のうち、自車両後側方に設定した障害物検出エリアK-AREAに対応する範囲内に障害物SMが撮像されていれば障害物SMが存在すると判定する。または、制駆動力コントロールユニット8は、カメラの画像から自車両MMに対する障害物SMの相対位置を検出し、検出した相対位置が障害物検出エリアK-AREA内である場合に障害物SMが存在すると判定しても良い。また制駆動力コントロールユニット8は、ミリ波レーダー24L及び24Rを備える場合(図4参照)は、そのレーダーによって検出された自車両MMに対する障害物SMの相対位置が障害物検出エリアK-AREA内である場合に障害物SMが存在すると判定しても良い。さらにまた、制駆動力コントロールユニット8は、上記のように、自車両MMに対する障害物SMの相対位置が検出可能である場合は、障害物SMの相対位置の変化に基づいて障害物SMが障害物検出エリアK-AREA内に到達するまでの時間を算出し、算出した時間が予め任意に設定した設定時間Tobstdetect以下である場合に、障害物SMが障害物検出エリアK-AREA内に進入すると予測して、障害物SMが存在すると判定しても良い。
 次にステップS30では、制駆動力コントロールユニット8は、ナビゲーション装置31の有する地図情報を参照して、自車両MM前方に予め設定した範囲である設定前方範囲F-AREAの地図情報を取得する。そして、制駆動力コントロールユニット8は、その取得した地図情報に基づき自車両MMの走行車線の曲率β(車線形状)を道路形状情報として取得する。
 例えば、制駆動力コントロールユニット8は、ナビゲーション装置31に記憶された地図情報から、自車両MMの現在位置から上記設定前方範囲F-AREAのノード点を取得し、その取得した各ノード点を結ぶ近似曲線を算出し、その算出した近似曲線の曲率βを走行車線の曲率βとして取得する。自車両MMの現在位置は、ナビゲーション装置31などが有するGPS受信機によって検出可能である。
 なお、走行車線の曲率βの取得方法はこれに限定されない。例えば地図情報に、道路に対応した曲率βが道路情報として含まれる場合には、制駆動力コントロールユニット8は、道路情報として記憶されている上記曲率βを読み出すことで、走行車線の曲率βを取得しても良い。または、図6に示すように、自車両MM前方を撮像するフロントカメラ13を設け、そのフロントカメラ13が撮像した画像に対して画像処理を施し、エッジ検出によってレーンマーカ上の候補点を抽出するようにしても良い。この場合には、その抽出した候補点を通る線分をレーンマーカの形状として検出し、検出したレーンマーカの形状から走行車線の曲率βを取得しても良い。
 更にまた、制駆動力コントロールユニット8は、曲率βをナビゲーション装置31の地図情報に基づいて取得する代わりに、VICS(登録商標)その他のインフラストラクチャ(道路インフラ)との路車間通信、もしくは前方を走行中の他車両との車車間通信によって自車両MM前方の道路形状に関する情報を取得しても良い。すなわち、例えばインフラストラクチャや他車両からノード点の情報を受信可能な場合には、その受信したノード点に基づいて自車両MMの現在位置から自車両MM前方に設定した設定前方範囲F-AREAのノード点を取得すると共に、各ノード点を結ぶ曲線を算出し、その算出した曲線の曲率βを走行車線の曲率βとして取得する。また、インフラストラクチャや他車両から道路曲率βの情報を受信可能な場合には、これを受信して走行車線の曲率βを取得すれば良い。
 またステップS30では、下記式に基づき、横変位Xからヨー角φを算出する。
    φ=tan-1(V/dX′(=dY/dX)) ・・・(2)
 ここで、dXは、横変位Xの単位時間当たりの変化量であり、dYは、単位時間当たりの進行方向(車線に沿った方)の変化量であり、dX′は、上記変化量dXの微分値である。なお、「′」は1回微分を示す。
 次に、ステップS40では、前方カーブ情報として得た走行車線の曲率βを用いて、予測操舵角δpathを求める。予測操舵角δpathは、自車両MMが走行経路を維持するために必要な操舵角、つまり自車両MMが走行車線に沿って走行するために必要な操舵角である。この予測操舵角δpathは、曲率βに車両諸元(ホイールベース)に応じて予め定めたゲインWBgを乗じることによって算出される。
 次に、ステップS50では、下記式に基づき、自車両MMの運転者による、車線変更に応じた操舵角の切り増し量である偏差角δdriverhoseiを検出する。操舵角の偏差角δdriverhoseiとは、現在の操舵角δと自車両MMを走行車線に沿って走行させる為の操舵角である上記予測操舵角δpathとの偏差である。すなわち、偏差角δdriverhoseiは、自車両MMの運転者が車線変更の意図を判定するための指標となる操舵量である。
    δdriverhosei = δ - δpath ・・・(3)
 次に、ステップS60では、自車両MMの障害物SMに対する接近を抑制する接近防止制御を開始するか否かの判定に使用する設定偏差角δthに対し、初期値を設定する。
 この設定偏差角δthは、運転者の車線変更意図を検出する判定閾値となる。
 設定偏差角δthは、車速が高ければ高くなるほど値が小さくなるように、自車速に応じたマップとして記憶しておき、自車速に基づいてマップ引きにより求めて設定する。
 また設定偏差角δthは、自車両MMが白線に近ければ近いほど(横変位Xが小さい程)、小さくなるように設定しても良い。この場合例えば、マップ引きにより求めた設定偏差角δthに対し、自車両MMが白線に近ければ近いほど小さくなる1以下の係数を乗算して補正して求めることができる。
 あるいは設定偏差角δthは、自車両MMが障害物SMに近ければ近いほど、小さくなるように設定しても良い。この場合例えば、マップ引きにより求めた設定偏差角δthに対し、自車両MMが障害物SMに近ければ近いほど小さくなる1以下の係数を乗算して補正して求めることができる。
 ステップS70では、自車両MMの現在位置から自車両MM進行方向前方に存在するカーブ路の開始位置までの距離であるカーブ前距離を検出する。具体的には、ステップS70では、自車両MMの現在位置は、GPS情報によって検出し、その検出した現在位置とナビゲーション装置31が有する地図情報とから、カーブ前距離を検出する。カーブ前距離は、進行方向前方のカーブが開始される(曲率βの絶対値が予め設定した所定以上となる)地点から、自車が地図上にロケートされている地点までの車線に沿った距離 DISTtocurve [m]とする。
 ステップS80では、設定カーブ前距離の設定処理を実行する。
 具体的には自車両MMの現在位置からカーブまでの距離であるカーブ前距離の精度Sxが低ければ低いほど、設定カーブ前距離を長く設定する。カーブ前距離の精度Sxは、例えば自車両MMのロケーション精度Sxによって判断する。
 自車両MMの位置は通常、複数のGPS衛星からの電波を受信し、電波を受信した各GPS衛星からの距離を算出する事によって自車両MMの位置を検出する。このため、電波を受信したGPS衛星の数(GPS衛星の取得個数)が多いほど、自車両MMの位置の検出精度Sx(ロケーション精度)が高い。このため、例えばGPS衛星からの情報の取得個数が3個以下はカーブ前距離の精度Sxを低、4個~5個はカーブ前距離の精度Sxを中、6個以上はカーブ前距離の精度Sxを高とする。なお、位置が予め設定した距離未満と近いGPS衛星同士は1つとカウントする。また上記精度Sxが高い状態から中・低いいずれかの状態となった場合には、状態が変わってからの走行距離が予め設定した距離以上となってから精度Sxの設定変更を判断するようにしても良い。この際、逆に精度Sxが低い方向から高い方向に移行した場合には遅延なく精度Sxの判定を行う。このようにして、予め設定した時間サイクルで、自車両MMのロケーション精度Sx(カーブ前距離の精度)を繰り返し算出して更新する。
 そして、ステップS80では、上記カーブ前距離の精度Sxに応じて設定カーブ前距離を設定する。すなわち、カーブ前距離の精度Sxが低いほど設定カーブ前距離が初期値よりも大きい値に設定する。例えば、精度Sxが中であれば、設定カーブ前距離として予め定められた既定距離X[m]を設定し、精度Sxが高ければ設定カーブ前距離として既定距離X[m]に係数Gain高(例えば0.5)を乗じた値を設定し、精度Sxが低ければ設定カーブ前距離として係数Gain低(例えば1.5)を乗じた値を設定する。
 ここで、設定カーブ前距離を自車両MMの車速に応じて設定変更しても良い。具体的には、車速が早いほど設定カーブ前距離を短く設定する。この場合には、設定カーブ前距離としてカーブまでの到達時間を使用することと同義となる。
 尚、設定カーブ前距離に応じて、自車両MMに対する上記設定前方範囲F-AREAの相対位置を変更する処理を行っても良い。
 次に、ステップS90では、カーブまでのカーブ前距離が設定カーブ前距離未満の場合には、開始抑制処理を実行することなくステップS120に移行する。一方、カーブまでのカーブ前距離が設定カーブ前距離以上の場合には、ステップS100に移行する。
 次に、ステップS100では、検出している前方カーブの曲率β(車線形状)の検出精度Sを求める。前方カーブの曲率βの検出精度Sは例えば下記のように求める。
 ナビゲーション装置31の地図情報におけるノード点に基づいて曲率β(車線形状)を検出している場合には、設定前方範囲F-AREAに存在するノードの検出点の数N1(所定距離の間の点の数)が、認識状況を示す情報となる。このため、ステップS100では、そのノードの検出点の数が多いほど精度Sが高いと判定する。
 例えば、下記式によって精度S1を求める。
 S1 =N1/Nn0  ・・・・(4)
 ここで、S1>1の場合には、S1=1とする。
 S =S1
 但し、Nn0は基準となるノード数であって、そのノード数Nn0以上であれば、検出した曲率βの精度Sが高いと推定される数である。この場合、S1が1であれば、道路形状情報としての上記曲率βの検出精度Sが高いと判定出来る。一方、S1が小さいほど検出精度Sが低いことを検出可能となる。
 またはノードの検出点に対して近似曲線を描き、近似曲線からノード点までの距離の分散度合いN2を求め、その分散度合いが小さければ小さいほど精度Sが高いと判定をする。
 例えば、下記式によって精度S2を求める。
 S2 =N2/Nb0   ・・・(5)
 ここで、S2>1の場合には、S2=1とする。
 S =S2
 但し、Nb0は基準となる分散度合いの値であって、その値Nb0以上であれば、検出した曲率βの精度Sが高いと推定される数である。この場合、S2が1であれば、道路形状情報としての上記曲率βの検出精度Sが高いと判定出来る。一方、S2が小さいほど検出精度Sが低いことを検出可能となる。
 ここで、下記式のように、ノードの検出点の多さに基づく精度S1と分散度合に基づく精度S2の両方を掛け合わせて、最終的な精度Sとしても良い。
   S =S1・S2   ・・・(6)
 この場合、Sが1であれば、道路形状情報としての上記曲率βの検出精度Sが高いと判定出来る。一方、Sが小さいほど検出精度Sが低いことを検出可能となる。
 ここで、道路形状の検出精度Sの判定方法は上記に限定されない。例えば、近似曲線から各ノード点までの距離に基づいて各ノード点の検出信頼度を算出し、検出信頼度とノード点の数に基づいて道路形状の検出精度Sを算出しても良い。具体的には、例えば近似曲線から各ノード点までの距離(偏差)を算出し、算出された近似曲線からの距離が0であるノード点の信頼度を100%と設定し、近似曲線からの距離が大きいノード点ほど信頼度の低いノード点として設定する。そして、全ノード点の検出信頼度の平均値と検出点の数とを乗算して道路形状の検出精度Sとする。この場合、例えば通常であればノード点が10点検出されるエリアにおいて、検出信頼度の平均値が100%であってノード点が10点である場合に検出精度S=1、検出信頼度の平均値が50%であってノード点が10点である場合に検出精度S=0.5といったように算出する。
 ここで、地図情報としてカーブの曲率βが記憶されており、この記憶されている道路曲率βを読み出して曲率βを取得する場合であっても、上記と同様にノード点に基づいて精度Sを判定すれば良い。すなわち、一般的にナビゲーションの地図情報に記憶されている道路形状はノード点に基づいて作成されている。このため、予め設定した距離の間のノード点が多いほど地図情報として記憶されているカーブの曲率βの精度Sが高いと考えられるため、上記と同様にノード点に基づいて精度Sを判定することが可能である。
 次に、ステップS110では、道路形状情報である曲率β(車線形状)の検出精度Sに応じて障害物接近防止制御の制御開始を抑制(制御の開始の判定が行われ難く)する処理を実行する。
 ここでは、運転者の車線変更操作を判定する際の設定偏差角δthを設定変更することで、障害物接近防止制御の制御開始を抑制する場合で説明する。
 すなわち、ステップS100で求めた曲率β(車線形状)の検出精度Sに応じて精度Sが低ければ低いほど設定偏差角δthが大きくなるように設定変更する。
 例えば、予め検出精度Sが低いほど大きくなる設定偏差角δth(ステップS120で用いられる設定偏差角δth)を予めマップ等に記憶しておき、検出した曲率βの検出精度Sに応じてマップ引きにより設定偏差角δthを設定する。この場合には、上記ステップS60での処理をここで実行するように構成しても良い。
 あるいは曲率βの検出精度Sが低くなるほど大きくなる補正係数(>1)を設定し、設
定した補正係数を設定偏差角δthに乗算して、最終的な設定偏差角δthを求める処理を行うことで、曲率βの検出精度Sが低いほど設定偏差角δthを大きく補正しても良い。
 次に、ステップS120では制御を開始するかどうかの判定を実施する。具体的には、ステップS50で求めた偏差角δdriverhoseiが、上記設定偏差角δthより大きいかどうかを判定する。
 そして偏差角δdriverhoseiが設定偏差角δthより大きい場合には障害物接近防止制御判断フラグFout_obstをONに設定する。一方、偏差角δdriverhoseiが設定偏差角δth以下の場合には、障害物接近防止制御判断フラグFout_obstをOFFに設定する。
 但し、操舵による車線変更の方向と障害物SMの検出方向とが異なる場合には、接近防止制御を実施する必要がないので、障害物接近防止制御判断フラグをOFFからONへ変更する処理は実施しない。
 なお、障害物接近防止制御判断フラグFout_obstをOFFに設定するか否かの判定は、「δdriverhosei<δth-F」のように、障害物接近防止制御判断フラグFout_obstをONとするか否かの判定に対してF分のヒスをもたせても良い。
 ここで、障害物接近防止制御判断フラグFout_obstをONに設定可能とする条件としては、障害物接近防止制御判断フラグFout_obstがOFFに設定されている場合とする。また障害物接近防止制御判断フラグFout_obstをONに設定可能とする条件として障害物接近防止制御判断フラグFout_obstをOFFと設定した後に予め設定した所定時間経過した後とするなど、時間的な条件を加えても良い。なお障害物接近防止制御判断フラグFout_obstをONに設定した後、予め設定した所定時間Tcontrolが経過したら障害物接近防止制御判断フラグFout_obst=OFFとし制御を終了しても良い。
 なお、以下では障害物接近防止制御判断フラグFout_obstを、単に障害物接近防止制御判断フラグと記載する。
 さらに、障害物接近防止制御判断フラグがONとなった場合には、制御の実施方向Dout_obstを判定する。運転者が左方向に操舵操作して障害物接近防止制御判断フラグがONとなった場合にはDout_obst=LEFTとし、右方向に操舵操作して障害物接近防止制御判断フラグがONとなった場合にはDout_obst=RIGHTと設定する。
 なお、アンチスキッド制御(ABS)、トラクション制御(TCS)又はビークルダイナミックスコントロール装置(VDC)が作動している場合には、障害物接近防止制御を作動させないようにするために、障害物接近防止制御判断フラグをOFFとするようにしてもよい。
 次に、ステップS130では、警報を発生する処理を行う。具体的には、ステップS50で求めた偏差角δdriverhoseiが予め設定した閾値δth1よりも大きいと判定されたら警報音を発生する処理を実施する。
 なお、この警報を発生するか否かの判定に用いる閾値δth1は、ステップS120の判定に用いる閾値δthと同一であっても良い。但し、閾値δth1は閾値δthよりも小さい閾値に設定し、δdriverhoseiがこの設定した閾値より大きいと判定された場合に警報音を発生すると判断することが好ましい。
 次に、ステップS140では、目標ヨーモーメントMs_strを設定する。
 目標ヨーモーメントMs_strは、次式によって求めるものとする。
「障害物接近防止制御判断フラグがONの場合」
  Ms_str=K1recv×K2recv×ΔXs
   ΔXs =(K0・ΔX+K1mom・φ+K2mom・δdriverhosei)
「障害物接近防止制御判断フラグがOFFの場合」
  Ms_str =0
                  ・・・(7)
 ここで、K1recvは車両諸元から決まる比例ゲインであり、K2recvは車速Vに応じて変動するゲインである。ゲインK2recvは、例えば低速域で予め設定した第1の値になり、車速Vがある値になると、車速Vと反比例の関係となり、その後ある車速Vに達すると上記第1の値より小さな値で一定値となる。また、K0、K1mom、K2momは予め実験等によって適宜設定されるゲインである。また、ΔXは、単位時間当たりの横変位の変化量であり、自車両MMが白線へ近づく方向の変化量を正とする。
 この(7)式によれば、白線とのヨー角度φや運転者が白線に近づく方向にステアリングを切り増して定常的に発生するヨーレートが大きくなるほど、目標ヨーモーメントMs_strは大きくなる。
 次に、ステップS150では、障害物接近回避のためのヨーレートを発生するための処理を実施する。ここでは、ブレーキを用いてヨーモーメントを発生することする。そして、Msの出力方法について以下に具体的に説明をする。
 目標ヨーモーメントMs_strが「0」の場合、すなわち接近防止制御としてのヨーモーメント制御を実施しない条件との判定結果を得た場合、下記(8)式及び(9)式に示すように、各車輪の目標制動液圧Psi(i=fl,fr,rl,rr)を制動液圧Pmf,Pmrにする。
 Psfl=Psfr=Pmf ・・・(8)
 Psrl=Psrr=Pmr ・・・(9)
 ここで、Pmfは前輪用の制動液圧である。また、Pmrは後輪用の制動液圧であり、前後配分を考慮して前輪用の制動液圧Pmfに基づいて算出した値になる。制動液圧Pmf,Pmrは運転者のブレーキ操作の操作量(マスタシリンダ液圧Pm)に応じた値である。
 一方、目標ヨーモーメントMs_strの絶対値が0よりも大きい場合、すなわち障害物接近防止制御を開始するとの判定結果を得た場合、目標ヨーモーメントMs_strに基づいて、前輪目標制動液圧差ΔPsf及び後輪目標制動液圧差ΔPsrを算出する。具体的には、下記(10)式、及び(11)式により目標制動液圧差ΔPsf,ΔPsrを算出する。
 ΔPsf=2・Kbf・(Ms×FRratio)/T    ・・・(10)
 ΔPsr=2・Kbr・(Ms×(1-FRratio))/T・・・(11)
 ここで、FRratioは前後車輪の制動力の配分を示す。また、Tはトレッドを示す。なお、ここでは、トレッドTは、ここでは便宜上前後同じ値として扱う。また、Kbf,Kbrは、制動力を制動液圧に換算する場合の前輪及び後輪についての換算係数であり、ブレーキ諸元により定まる。
 このように、目標ヨーモーメントMs_strの大きさに応じて車輪で発生させる制動力を配分し、各目標制動液圧差ΔPsf,ΔPsrに所定値を与え、前後それぞれの左右輪で制動力差を発生させる。そして、算出した目標制動液圧差ΔPsf,ΔPsrを用いて、最終的な各車輪の目標制動液圧Psi(i=fl,fr,rl,rr)を算出する。
 具体的には、目標ヨーモーメントMs_strの絶対値が0よりも大きく、かつ制御の実施方向Dout_obstがLEFTの場合、すなわち左側の障害物SMに対する障害物接近防止制御を実施する場合、下記(12)式により各車輪の目標制動液圧Psi(i=fl,fr,rl,rr)を算出する。
 Psfl=Pmf
 Psfr=Pmf+ΔPsf
 Psrl=Pmr
 Psrr=Pmr+ΔPsr
             ・・・(12)
 また、目標ヨーモーメントMs_strの絶対値が0よりも大きく、かつ制御の実施方向Dout_obstがRIGHTの場合、すなわち右側の障害物SMに対する障害物接近防止制御を実施する場合、下記(13)式により各車輪の目標制動液圧Psi(i=fl,fr,rl,rr)を算出する。
 Psfl=Pmf+ΔPsf
 Psfr=Pmf
 Psrl=Pmr+ΔPsr
 Psrr=Pmr
             ・・・(13)
 この(12)式及び(13)式によれば、自車両MMの車線内側方向の車輪の制動力が大きくなるように、左右輪の制動力差が発生する。
 また、ここでは、(12)式及び(13)式が示すように、運転者によるブレーキ操作、すなわち制動液圧Pmf,Pmrを考慮して各車輪の目標制動液圧Psi(i=fl,fr,rl,rr)を算出している。
そして、制駆動力コントロールユニット8は、このようにして算出した各車輪の目標制動液圧Psi(i=fl,fr,rl,rr)を制動流体圧指令値として制動流体圧制御部7に出力する。
 ここで、上記説明においては、車両の左右輪に制動力差を発生させることによって車両にヨーレートを発生する例を説明したが、車両にヨーレートを発生させる技術はこれに限らない。例えばヨーレートを発生させる技術として、操向輪の転舵角を制御する転舵角制御装置を用いる場合には、目標転舵角STRθをSTRθ=Ka×Msとして求め、実際の転舵角が目標転舵角STRθだけ障害物SMの存在する方向とは逆方向に変化するように制御しても良い。なお、係数Kaは、ヨーモーメントを転舵角に変換する為の係数であり、予め実験等によって求めて設定された係数である。
 またヨーレートを発生させる技術としては例えば電動パワーステアリング等の操舵角制御装置を用い、その操舵力(操舵トルク)をSTRtrg=Kb×Msとして求めてステアリングに付与することにより、ステアリングの操舵角が障害物SMの存在する方向とは逆方向に変化するように制御しても良い。なお、係数Kbは、ヨーモーメントを操舵トルクに変換する為の係数であり、予め実験等によって求めて設定された係数である。
(動作その他)
 本実施形態では、図6のように、自車両MMの左右側後方に設定した障害物検出エリアK-AREA内に障害物SMが存在するか否かの検出処理を行う。また、自車両MM前方に設定した設定前方範囲F-AREAの走行車線の曲率β(車線形状)を道路形状情報として取得する。更に、走行車線の曲率βから求めた予測操舵角δpathと実操舵角δの偏差(切り増し量)である偏差角δdriverhiseiを求める。そして、偏差角δdriverhiseiが設定偏差角δth1よりも大きい場合であって操舵が障害物SM側への操舵である場合には、障害物SM側に車線変更する意図があるとして、警報音を発生して運転者に警告の報知を行う。更に、偏差角δdriverhiseiが設定偏差角δthよりも大きくなると、より障害物SM側に車線変更する意図があるとして、障害物接近回避のためのヨーモーメントを発生する。これによって、自車両MMの障害物SMへの接近防止を支援する。
 このとき、本実施形態では、自車両MM前方の走行車線の曲率βの検出精度Sを求め、検出精度Sが低いほど、上記設定偏差角δthが大きくなるように、当該設定偏差角δthを設定変更する。この結果、曲率βの検出精度Sが低いほど、障害物接近防止制御の制御開始を抑制、つまり制御の開始判定が行われ難くなる。
 このように、本実施形態では、道路形状の検出精度Sが悪い場合に、制御開始判定を抑制するので、道路形状の検出精度Sが悪い場合に、不要な接近防止制御が実施されることを低減することが出来る。この結果、運転者の不要な接近防止制御による違和感を低減することが可能となる。
 また、現在走行中の道路の直進路の場合には、道路形状による車線変更意図の検出精度の低下は低いので、自車両の現在位置からカーブまでの距離であるカーブ前距離が設定カーブ前距離以上の場合には、上記制御開始の抑制を禁止する。
 このとき、カーブ前距離の検出精度Sxが低い場合には、設定カーブ前距離を大きくすることで障害物接近防止制御の制御開始を抑制、つまり制御の開始判定が行われ難くする。
(変形例)
 (1)上記実施形態では、曲率βの検出精度Sが低いほど、上記設定偏差角δthが大きくなるように設定変更する場合を例示した。これに代えて、若しくは併用して、曲率βの検出精度Sが低いほど、上記警報用の設定偏差角δth1が大きくなるように設定変更する構成としても良い。この場合には、曲率βの検出精度Sが低いほど警報の発生処理が抑制される。
 (2)自車両MM前方の道路形状情報(カーブ情報)をフロントカメラ13によって検出する場合には、ステップS100の処理は、次のよう行えば良い。
 すなわち、自車両MMの進行方向前方に設定した設定前方範囲F-AREAをフロントカメラ13で撮像し、その撮像画像を画像処理することで車線の白線エッジを取得する。白線エッジの取得方法は、前述のような公知の方法を採用する。そして、設定前方範囲F-AREAで取得した白線エッジの検出点の数(予め設定した距離の間の点の数でも良い)に基づき、その検出点の数が予め設定した基準とする数よりも少ないほど道路形状の検出精度Sが低いと判定する。あるいは各エッジ点を結ぶ近似曲線を描き、近似曲線からエッジ点までの距離の分散度合いが大きいほど道路形状の検出精度Sが低いと判定をする。
 更に、例えば前方道路形状をフロントカメラ13によって検出する場合においては、検出された白線エッジ点の数と、白線エッジ点の検出信頼度に基づいて道路形状の検出精度Sを算出しても良い。具体的には、例えば、エッジ点の輝度が予め定められた輝度以上であれば検出信頼度を100%とし、輝度の低いエッジ点ほど検出信頼度の低いエッジ点とする。そして、全エッジ点の検出信頼度の平均値とエッジ点の検出点数とを乗算して道路形状の検出精度Sを算出する。この場合、例えば上記と同様に、通常であればエッジ点が10点検出されるエリアにおいて、検出信頼度の平均値が100%であってエッジ点が10点である場合に検出精度S1、検出信頼度の平均値が50%であってエッジ点が10点である場合に検出精度S0.5といったように算出する。
 なお、これらの検出精度Sの検出方法は、前述の方法で検出すればよい。
 (3)自車両MM前方の道路形状情報(カーブ情報)をインフラストラクチャとの路車間通信、もしくは車車間通信等の通信によって取得する場合には、ステップS100の処理は、次のように行えば良い。
 すなわち、路車間通信もしくは車車間通信によって進行方向前方の車線に関するノード点情報を取得する場合には、上述の変形例(2)のようにノード点に基づき検出精度Sを判定する。
 また、路車間通信もしくは車車間通信によって、インフラストラクチャや他車両等から送信される道路曲率βを受信して曲率βを取得する場合には、曲率βが単一の曲率βに近いほど精度Sが低いと判定する。すなわち実際の道路形状においては通常、単一のカーブであっても複数曲率βのカーブで形成されており、単一の曲率βで形成されたカーブ路は少ない。従って、曲率βが単一の曲率βに近いほど精度Sが低いと推定することができる。
 (4)ステップS110の処理として、上記説明した処理とは別に、または併用して次の処理を実施して、制御開始を抑制(制御の開始の判定が行われ難く)するようにしても良い。
 この変形例では、障害物SMの検出範囲を調整して障害物接近防止制御の制御開始を抑制する。
 具体的には、ステップS30にて検出をされた曲率β(車線形状)の検出精度Sに応じて、検出精度Sが低ければ低いほど障害物SMの存在を検出する障害物検出エリアK-AREAの縦方向の距離範囲を狭く設定する。例えば検出精度Sが高い場合には自車両MM側方から自車両MMの後方7mまで、精度Sが低い場合には自車両MM側方から自車両MMの後方3mまでを検出範囲としてその間は検出精度Sに応じてリニアに調整をする。
 あるいはステップS30にて検出をされた曲率β(車線形状)の検出精度Sに応じて精度Sが低ければ低いほど障害物SMの存在を検出する障害物検出エリアK-AREAの横方向の距離範囲を狭く設定する。例えば精度Sが高い場合には自車両MMからの側方3mまで、精度Sが低い場合には自車両MMからの側方1.5mまでを検出範囲としてその間は検出精度Sに応じてリニアに調整をする。
 (5)また、自車両MMと白線との距離が近ければ近いほど障害物検出エリアK-AREAを狭める度合いが小さくなるように設定して、自車両MMと白線との距離が近ければ近いほど障害物接近防止制御の制御開始の抑制量を低減しても良い。
 ここで、ステップS30は道路形状検出部を構成する。操舵角センサ19は操舵量検出部を構成する。撮像部26,ステップS20は障害物検出部を構成する。ステップS50は運転者意図判定部を構成する。ステップS120は制御開始判定部を構成する。ステップS130~S150は障害物接近防止制御部を構成する。ステップS100は検出精度判定部、エッジ点抽出処理部を構成する。ステップS70~S90、S110は開始判定抑制部を構成する。ステップS40は予測操舵角算出部を構成する。フロントカメラ13は前方撮像部を構成する。ステップS70はカーブ前距離検出部、自車位置測位部を構成する。ステップS80は測位精度検出部、カーブ前距離検出部を構成する。
(本実施形態の効果)
 本実施形態は、次の効果を奏する。
 (1)制駆動力コントロールユニット8は、自車両MM前方に対し予め設定した範囲である設定前方範囲F-AREAの道路形状を検出する。制駆動力コントロールユニット8は、少なくとも自車両MMの後側方を障害物検出エリアK-AREAとし、その障害物検出エリアK-AREAに存在する障害物SMを検出する。制駆動力コントロールユニット8は、上記検出された道路形状(道路曲率β)と検出された操舵角(操舵量)とに基づいて運転者の車線変更意図を判定する。制駆動力コントロールユニット8は、運転者の車線変更意図があると判定され、且つ上記障害物SMが検出されている場合に、自車両MMの障害物SMへの接近防止を支援する接近防止制御の開始を判定する。制駆動力コントロールユニット8は、制御開始と判定された場合に上記接近防止制御を行う。制駆動力コントロールユニット8は、上記道路形状の検出精度Sを検出する。制駆動力コントロールユニット8は、検出した検出精度Sが予め設定した精度閾値よりも低い場合に、上記接近防止制御の開始判定を抑制する。
 この構成によれば、道路形状の検出精度Sが悪い場合に、接近防止制御の制御開始を抑制する。これによって、道路形状の検出精度Sが悪い場合に不要な接近防止制御が実施(介入)することが低減する。これによって、側後方の障害物SMに対する運転支援を実施する際に、運転者に与える違和感をより抑制可能となる。
 (2)制駆動力コントロールユニット8は、上記検出された道路形状に沿って走行するために必要な操舵角である予測操舵角を算出する。制駆動力コントロールユニット8は、検出した実操舵角と予測した予測操舵角との偏差角が、予め設定された設定偏差角以上の場合に、運転者の車線変更意図があると判定する。
 この構成によれば、操舵量として操舵角を採用する。このため、例えばカーブ路を走行するために必要な操舵角よりも大きな操舵によって、運転者の車線変更意図を判定可能となる。
 (3)制駆動力コントロールユニット8は、上記設定偏差角の値を大きな値に変更することで、上記接近防止制御の開始判定を抑制する。
 この構成によれば、運転者の車線変更意図判定の閾値を大きくすることで、接近防止制御の開始判定を抑制することを実現可能となる。
 (4)制駆動力コントロールユニット8は、上記障害物検出エリアK-AREAの範囲を狭くすることで、上接近防止制御の開始判定を抑制する。
 この構成によれば、障害物検出エリアK-AREAの範囲を狭くすることで、接近防止制御の開始判定を抑制することを実現可能となる。
 (5)制駆動力コントロールユニット8は、ナビゲーション装置31の有する地図情報における、自車両MM前方に設定した上記設定前方範囲F-AREAに対応した地図位置に存在する複数のノード点に基づいて、上記設定前方範囲F-AREAの道路形状を検出する。制駆動力コントロールユニット8は、上記複数のノード点の間隔が広くなるほど、道路形状の検出精度Sを低く検出する。
 この構成によれば、検出精度Sをカーブ形状を規定するノード(点列)の間隔に基づき設定する。このため、カーブの変化率がどのように推移するかの検出精度Sと連動して検出精度Sを検出することが可能となる。
 (6)制駆動力コントロールユニット8は、ナビゲーション装置31の有する地図情報における、自車両MM前方に設定した上記設定前方範囲F-AREAに対応した地図位置に存在する複数のノード点に基づいて、上記設定前方範囲F-AREAの道路形状を検出する。制駆動力コントロールユニット8は、上記複数のノード点の近似曲線を算出し、該近似曲線に対する複数のノード点の距離の分散が大きくなるほど道路形状の検出精度Sを低く検出する。
 この構成によれば、検出精度Sをカーブ形状を規定するノードの分散に基づき設定する。このため、カーブの変化率がどのように推移するかの検出精度Sと連動して検出精度Sを検出することが出来る。
 (7)制駆動力コントロールユニット8は、フロントカメラ13が撮像した画像を画像処理して、上記設定前方範囲F-AREAに存在する車線区分線を特定するための複数のエッジ点を抽出する。制駆動力コントロールユニット8は、抽出した複数のエッジ点に基づき、自車両MM前方の上記設定前方範囲F-AREAの道路形状を検出する。制駆動力コントロールユニット8は、検出されたエッジ点の数が少なくなるほど、道路形状の検出精度Sを低く検出する。
 この構成によれば、抽出した複数のエッジ点に基づき、自車両MM前方の上記設定前方範囲F-AREAの道路形状を検出する。撮像精度が悪い場合にはエッジ点が少なくなる。この結果、道路形状の検出精度Sを検出することが可能となる。
 (8)制駆動力コントロールユニット8は、フロントカメラ13が撮像した画像を画像処理して、上記設定前方範囲F-AREAに存在する車線区分線を特定するための複数のエッジ点を抽出する。制駆動力コントロールユニット8は、抽出した複数のエッジ点に基づき、自車両MM前方の上記設定前方範囲F-AREAの道路形状を検出する。制駆動力コントロールユニット8は、上記複数のエッジ点の近似曲線を算出し、該近似曲線と複数のエッジ点との距離の分散が大きくなるほど道路形状の検出精度Sを低く検出する。
 この構成によれば、検出精度Sをカーブ形状を規定するエッジ点の分散に基づき設定する。このため、カーブの変化率がどのように推移するかの検出精度Sと連動して検出精度Sを検出することが出来る。
 (9)制駆動力コントロールユニット8は、自車両MMの現在位置から自車進行方向前方のカーブ路の開始位置までの距離であるカーブ前距離を検出する。制駆動力コントロールユニット8は、検出した上記カーブ前距離が予め設定した設定カーブ前距離以下の場合にだけ接近防止制御の開始判定を抑制する。
 車線変更意図を判定する際における道路形状が問題となるのは、カーブ路である。このことに鑑み、設定カーブ前距離以下の場合にだけ接近防止制御の開始判定を抑制する事で、不必要な接近防止制御の開始判定抑制を低減可能となる。
 (10)制駆動力コントロールユニット8は、自車両MMの位置の検出精度を検出する。制駆動力コントロールユニット8は、検出された自車両MMの位置に基づいて上記カーブ前距離を検出する。制駆動力コントロールユニット8は、検出した検出精度が低くなるほど、上記設定カーブ前距離を長くする。
 この構成によれば、カーブまでの距離検出の距離精度が悪い場合に、設定カーブ前距離を長くすることで、接近防止制御の開始判定を抑制する。この結果、不要な接近防止制御の実行を低減することができる。
 (11)制駆動力コントロールユニット8は、道路形状として道路の曲率βを検出する。
 これによって、道路形状を検出可能となる。
 (12)上記接近防止制御は、運転者への報知制御、及び自車両MMの車線変更方向に対して逆方向のヨーモーメントを付与する制御の少なくとも1方の制御である。
 これによって、接近防止のための支援が可能となる。
「第2実施形態」
 次に、第2実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
 本実施形態の基本構成は、上記第1実施形態と同様である。但し、本第2実施形態では、操舵量として、操舵角の代わりに操舵速度を用いる場合の例である。
 次に、第1実施形態と異なる処理について説明する。
 本実施形態では、第1実施形態で説明した処理(図5)に代えて、図7に示す処理を実行する。以下異なる点に説明する。
 ステップS20aの処理(障害物SMの検出処理)において、第1実施形態ではリアカメラを使用して障害物SMの検出を実施する場合で説明した。これに対し、本第2実施形態では、図4に示す構成を採用して、ミリ波レーダー(24L、24R)を用いて障害物SMを検出する。
 ステップS30aの処理において、本第2実施形態では、フロントカメラ13で撮像した画像を画像処理することで、走行鎖線の曲率βを取得する。
 ステップS40aでは、前方カーブ情報として得た走行車線の曲率βを用いて、予測操舵速度δpath′を求める。予測操舵角δpath′は、自車両MMが走行経路を維持するために必要な操舵速度、つまり自車両MMが走行車線に沿って走行するために必要な操舵速度である。この予測操舵速度δpath′は、予測操舵角δpathを微分処理することで求めることが出来る。
 そして、ステップS50aにおいて、偏差速度δdriverhosei′を検出する。ここで「′」は、1回微分を示す。
 偏差速度δdriverhosei′は、下記式によって求める。
    δdriverhosei′ = δ′ - δpath′ ・・・(14)
 続くステップS60aでは、障害物SMに対する接近防止制御を開始するかどうかの設定偏差速度δthxを設定する。
 設定偏差速度δthxは、車速が高ければ高くなるほど値が小さくなる値である。この設定偏差速度δthxは、例えば車速に応じたマップとして設定をする。
 また設定偏差速度δthxは、自車両MMが白線に近ければ近いほど小さくなるようにマップとして設定しても良い。あるいは設定偏差速度δthxは、自車両MMが障害物SMに近ければ近いほど小さくなるようにマップとして設定しても良い。
 ステップS100aにおいて、例えば、車線変更を行ったと判定するための設定偏差速度δthxを設定変更する。
 設定偏差速度δthxの設定変更は、上記第1実施形態のステップS100で説明した処理と同様な処理で実行すればよい。
 次に、ステップS120aでは制御を開始するかどうかの判定を実施する。具体的には、ステップS50aで算出した偏差速度δdriverhosei′が、設定偏差速度δthxより大きいかどうかを判定する。そしてδdriverhosei′が設定偏差速度δthxより大きいと判定した場合には、障害物接近防止制御をONに設定する。一方、偏差速度δdriverhosei′が設定偏差速度δthx以下の場合には、障害物接近防止制御判断フラグをOFFに設定する。但し、操舵方向と障害物検出方向とは異なる場合には、障害物接近防止制御判断フラグをOFFからONに設定変更することを禁止する。
 なお、「δdriverhosei′<δthx-F」のようにしてF分のヒスをもたせても良い。
 その他の構成は、上記第1実施形態と同様である。
(動作その他)
 本実施形態では、自車両MMの左右側後方に設定した障害物検出エリアK-AREA内に障害物SMが存在するか否かの検出処理を行う。また、自車両MM前方に設定した設定前方範囲F-AREAの走行車線の曲率β(車線形状)を道路形状情報として取得する。更に、走行車線の曲率βから求めた予測操舵速度δpath′と実操舵速度角δ′の偏差である、偏差速度δdriverhisei′を求める。そして、偏差速度δdriverhisei′が設定偏差速度δth1xよりも大きい場合であって操舵が障害物SM側への操舵である場合には、障害物SM側に車線変更する意図があるとして、警報音を発生して運転者に警告の報知を行う。更に、偏差速度δdriverhisei′が設定偏差速度δthxよりも大きくなると、より障害物SM側に車線変更する意図があるとして、障害物接近回避のためのヨーモーメントを発生する。これによって、自車両MMの障害物SMへの接近防止を支援する。
 このとき、本実施形態では、自車両MM前方の走行車線の曲率βの検出精度Sを求め、検出精度Sが低いほど、上記設定偏差速度δthxが大きくなるように、当該判定閾値δht′を設定変更する。この結果、曲率βの検出精度Sが低いほど、障害物接近防止制御の制御開始を抑制、つまり制御の開始の判定が行われ難くなる。
 このように、本実施形態では、道路形状の検出精度Sが悪い場合に、制御開始判定を抑制するので、道路形状の検出精度Sが悪い場合に、不要な接近防止制御が実施されることを低減することが出来る。この結果、運転者の不要な接近防止制御による違和感を低減することが可能となる。
 ここで、ステップS50aは予測操舵速度算出部を構成する。ステップS120aは運転者意図判定部を構成する。ステップS110は開始判定抑制部を構成する。
 (本実施形態の効果)
 本実施形態は、上記第1実施形態で説明した効果に加え次の効果を奏する。
 (1)制駆動力コントロールユニット8は、検出された道路形状に沿って走行するために必要な操舵速度である予測操舵速度を算出する。制駆動力コントロールユニット8は、検出した実操舵速度と算出した予測操舵速度との偏差速度が、予め設定された設定偏差速度以上である場合に、運転者の車線変更意図があると判定する。
 この構成によれば、運転者意図推定を判定する操舵の偏差は操舵角速度で検出をするので、カーブを走行するために必要な操舵角速度以上の操舵があった場合に車線維持のための操舵でないと判定することができる。すなわち、運転者の車線変更意図の検出を実現可能となる。
 (2)制駆動力コントロールユニット8は、上記設定偏差速度の値を大きな値に変更することで接近防止制御の開始判定を抑制する。
 この構成によれば、運転者の車線変更意図判定の閾値を大きくすることで、接近防止制御の開始判定を抑制することを実現可能となる。
「第3実施形態」
 次に、第3実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
 本実施形態の基本構成は、上記第1実施形態と同様である。
 但し、本第3実施形態では、実際の操舵量自体を用いる代わりに、操舵から予想される将来横位置に基づいて制御開始を判定する場合について説明する。具体的には、予め設定した所定時間Ts後の自車両MMの横位置変位量に基づき制御を行う。
 そして、第1実施形態で説明したステップS40~S120、S140の代わりに、図8に示すように、次のステップS40b~120b、140bを実施する。
 以下異なるステップの処理について説明する。
 ステップS40bでは、走行曲率βを用いて走行経路を維持するための中立ヨーレートφ′pathを求める。中立ヨーレートφ’pathは、例えば下記式に基づき算出する。
     φ′path=β×V   ・・・(15)
 走行経路を維持するための中立ヨーレートφ′pathとして、予め設定した時間のヨーレートφ′の平均値φ′aveを用いたり、あるいは時定数の大きいフィルタをヨーレートφ’にかけたりした値を簡易的に用いても良い。
 またステップS45bでは、前方注視時間Ttを設定する。前方注視時間Ttは、運転者の将来の障害物SMとの接触状況を予測するための閾値を決定づけるための指標である。
 またステップS50bでは、走行路を離脱して車線変更を行うと判定するために、現在の走行路位置に対する横方向の自車両の予測横位置ΔXbを算出をする。
 将来の自車両の予測横位置ΔXbは、次式によって算出する。
     ΔXb =(K1φ+K2φm+K3φm′)  ・・・(16)
 ここで、
  L:前方注視点距離 =前方注視時間Tt×V
  φ:ヨー角
  φm:目標ヨー角速度(目標ヨーレートΨdriverhosei×前方注視時間T)
  φm′:目標ヨー角加速度(目標ヨー角速度φm′×前方注視時間T
 である。
 なおこれらをヨー角の次元とするために前方注視時間Tを用いることで下式で表すことができる。
     ΔXb =L(K1φ+K2φm×T+K3φm′×T
                         ・・・(17)
 こうした特性をふまえると、K1は車速、K2は車速と前方注視時間、K3は車速と前方注視時間の2乗の関数としての特性を踏まえての設定ゲインとなる。
 ここで求めたΔXbは、後段において障害物SMへの接近防止制御を開始するかどうかの判定に用いられる。
 なおΔXbはカーブ路を走行するための操舵に影響を区別するために、上記の式中の目標ヨーレートΨdriverhoseiは操舵角と車速度より求まるいわゆる目標ヨーレートΨdriverからステップS40bで求めた経路を走行するために必要となるヨーレートφ′pathを除くように次式によって求めたものである。
 Ψdriverhosei=Ψdriver -φ′path   ・・・(18)
 ステップS60bでは、障害物SMに対する接近防止制御を開始するかどうかの判定閾値である設定横位置を設定する。
 障害物SMの設定横位置としては、走行路をY軸とした場合に、走行路と垂直方向のX軸座標上で障害物SMの横位置を検出する。図9のΔOに示す自車両MMと障害物SMとの距離を求め設定横位置とする。
 ここで、レーダーによる検出で障害物SMとの距離がばらついたりするなどして検出が困難な場合には、例えば自車両MMの側面方向のあらかじめ設定をした障害物検出エリアK-AREA内に障害物SMが検出されているかどうかに基づいて、白線の外側の設定横位置に仮想的に障害物SMが存在するものとして設定をするようにしても良い。この場合には例えば白線の外側の所定位置に障害物SMが存在するものとする。
 障害物SMを検出するかどうかとして設定する検出エリアは、自車両MMの横の所定の縦・横位置となるように設定する。
 ステップS110bでは、ステップS100で検出した道路形状(カーブ)の検出精度Sに基づき、検出精度Sが低ければ低いほど、判定がされにくいように、設定横位置ΔO(条件1で判定の場合)が大きくなるように再設定をする。
 具体的には例えば曲率βの検出精度Sに応じた設定横位置ΔOを予めマップ等に記憶し、検出した曲率βの検出精度Sに応じてマップ引きにより設定横位置ΔOを再設定する。あるいは曲率βの検出精度Sが低くなるほど大きくなる補正係数(>1)を設定し、設定横位置ΔOに設定した補正係数を乗算して、曲率βの検出精度Sが低いほど設定横位置ΔOを大きく補正しても良い。
 ここで、後述の条件2若しくは条件3を採用する場合には、設定横位置としてXO若しくはXthreshに予め決定した初期値を設定する。
 ステップS120bでは、図9に示すように、自車両MMの予め設定した設定経過時間後の横位置を推定し、推定した設定経過時間後の横位置と現在の横位置との偏差である予測横位置ΔXbが、自車両MMと検出障害物SMとの横方向距離ΔO以上となった場合に、運転者が障害物SMに接近するような車線変更操作などを行ったと判断する(条件1)。
 ここで、ΔOは実際の障害物SMとの距離から所定の余裕代を除算した値として設定する。そして、後述の位置の補正は、この余裕代分に対して行うように実施する。
 また、自車両MMと障害物SMとの距離ΔOを検出しない、もしくは検出できない場合には、かわりに白線を基準として白線から所定位置に設定横位置X2obstを設定し、白線からの推定将来位置ΔX2がそこに到達したかどうかで判定を行うようにしても良い(条件2)。
 また白線からの所定位置に設ける閾値は、白線の内側になるように設定をしても良い。あるいは自車位置からあらかじめ設定された特定の距離Xthresh将来位置が移動すると予測される場合に判定しても良い(条件3)。また予測横位置ΔXbのかわりに障害物SMもしくは白線と単純に横位置関係を検出するようにしても良い。
 上述の各条件を式で記載すると次の関係にある。
 条件1: ΔXb >=ΔO
 条件2: ΔXb >=X2obst+X0
 条件3: ΔXb >=Xthresh
 なおこの予測横位置ΔXbは、車両の左端、右端それぞれについてΔXbL/ΔXbRとして求め判定を行うものとする。
 またここで対象とする障害物SMは自車両MMの後側方向の車両に対して設定するだけでなく、隣接車線前方の対向車両に対しても制御対象としても良い。
 ステップS140bでは、出力ヨーモーメントMsを設定する。
 出力ヨーモーメントMsは、次式によって求める。
   Ms_str=K1recv×K2recv×ΔXs
   ΔXs =(K0mom×横位置+K1momφ+K2momφm)
 あるいは、ΔXs=Δ0-ΔXb、X2obst+X0-ΔXb、Xthresh-ΔXbのいずれかを用いても良い。(予測横位置での基準閾値に対する逸脱量)
 ここで、K1recvは車両諸元から決まる比例ゲインであり、K2recvは車速Vに応じて変動するゲインである。
 ゲインK2は、例えば、低速域で大きい値になり、車速Vがある値になると、車速Vと反比例の関係となり、その後ある車速Vに達すると小さい値で一定値となる。
 その他の構成は、上記第1実施形態と同様である。
(動作その他)
 本実施形態では、上記検出された道路形状に基づいて、予め設定された設定時間後に位置すると推定される車線幅方向での自車両MMの横位置である予測横位置を推定する。そして、推定した予測横位置ΔXbが、予め設定された車線幅方向位置である設定横位置よりも車線幅方向外側である場合に、運転者の車線変更意図があると判定する。そして、その車線変更方向に障害物SMを検出している場合には接近防止の制御を開始する。
 このとき、道路形状の検出精度Sが低くなるほど上記設定横位置の車線幅方向位置を車線幅方向外側の位置に変更することで、接近防止制御の開始判定を抑制する。
 この結果、本実施形態では、道路形状の検出精度Sが悪い場合に、制御開始判定を抑制するので、道路形状の検出精度Sが悪い場合に、不要な接近防止制御が実施されることを低減することが出来る。この結果、運転者の不要な接近防止制御による違和感を低減することが可能となる。
 ここで、ステップS50bは操舵量検出部を構成する。ステップS120bは運転者意図判定部を構成する。ステップS110bは開始判定抑制部を構成する。ステップS60bは障害物位置検出部を構成する。
 (本実施形態の効果)
 本実施形態は、上記第1実施形態で説明した効果に加え次の効果を奏する。
 (1)制駆動力コントロールユニット8は、上記道路形状検出部によって検出された道路形状に基づいて、予め設定された設定時間後に位置すると推定される車線幅方向での自車両MMの横位置である予測横位置を推定する。制駆動力コントロールユニット8は、推定した予測横位置が、予め設定された車線幅方向位置である設定横位置よりも車線幅方向外側である場合に、運転者の車線変更意図があると判定する。
 この構成によれば、運転者意図推定を判定する操舵量を将来横位置変化で求める。このため、操舵角・操舵速度を総合的に加味をした操舵量で判定するので、カーブを走行するために必要な操舵角速度以上の操舵があった場合に、車線変更意図があると判定可能となる。
 (2)制駆動力コントロールユニット8は、上記設定横位置の車線幅方向位置を車線幅方向外側の位置に変更することで接近防止制御の開始判定を抑制する。
 この構成によれば、接近防止制御の開始判定抑制を実現可能となる。
 (3)制駆動力コントロールユニット8は、自車両MMに対する、上記障害物検出部が検出した障害物SMの車線幅方向位置を検出する。上記設定横位置を、上記障害物位置検出部が検出した自車両MMに対する障害物SMの車線幅方向位置ΔOに設定する。
 この構成によれば、接近防止制御の開始判定抑制を実現可能となる。
 (4)上記設定横位置を、現在の自車両MMの車線幅方向における位置である現在横位置から、予め設定した距離だけ車線幅方向に離れた位置Xthreshに設定する。
 この構成によれば、接近防止制御の開始判定抑制を実現可能となる。
 (5)上記設定横位置を、車線端から車線幅方向に予め設定した距離だけ離れた位置ΔX2obbstに設定する。
 この構成によれば、接近防止制御の開始判定抑制を実現可能となる。
 以上、本願が優先権を主張する日本国特許出願2011-189504(2011年8月31日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
8 制駆動力コントロールユニット
19 操舵角センサ
21 ステアリングホイール(操舵輪)
24L/24Rミリ波レーダー
26 撮像部
30 流体圧回路
31 ナビゲーション装置
13 フロントカメラ

Claims (18)

  1.  自車両前方に対し予め設定した範囲である設定前方範囲の道路形状を検出する道路形状検出部と、
     運転者が操舵する操舵輪の操作量に応じた操舵量を検出する操舵量検出部と、
     少なくとも自車両の後側方を障害物検出エリアとし、その障害物検出エリアに存在する障害物を検出する障害物検出部と、
     上記道路形状検出部によって検出された道路形状と上記操舵量検出部によって検出された上記操舵量とに基づいて運転者の車線変更意図を判定する運転者意図判定部と、
     上記運転者意図判定部によって運転者の車線変更意図があると判定され、且つ上記障害物検出部によって障害物が検出されている場合に、自車両の障害物への接近防止を支援する接近防止制御の開始を判定する制御開始判定部と、
     上記制御開始判定部によって制御開始と判定された場合に上記接近防止制御を行う障害物接近防止制御部と、
     上記道路形状検出部による道路形状の検出精度を判定する検出精度判定部と、
     上記検出精度判定部が判定した検出精度が予め設定した精度閾値よりも低い場合に上記制御開始判定部による接近防止制御の開始判定を抑制する開始判定抑制部と、
     上記道路形状検出部によって検出された道路形状に沿って走行するために必要な操舵角である予測操舵角を算出する予測操舵角算出部と、を備え、
     上記操舵量検出部は、上記操舵量として上記操舵輪の操舵角である実操舵角を検出し、
     上記運転者意図判定部は、上記操舵量検出部が検出した実操舵角と上記予測操舵角算出部が予測した予測操舵角との偏差角が、予め設定された設定偏差角以上の場合に、運転者の車線変更意図があると判定することを特徴とする車両運転支援装置。
  2.  上記開始判定抑制部は、上記設定偏差角の値を大きな値に変更することで、上記制御開始判定部による接近防止制御の開始判定を抑制することを特徴とする請求項1に記載した車両運転支援装置。
  3.  上記道路形状検出部によって検出された道路形状に沿って走行するために必要な操舵速度である予測操舵速度を算出する予測操舵速度算出部を備え、
     上記操舵量検出部は、上記操舵量として上記操舵輪の操舵速度である実操舵速度を検出し、
     上記運転者意図判定部は、上記操舵量検出部が検出した実操舵速度と上記予測操舵速度算出部が算出した予測操舵速度との偏差速度が、予め設定された設定偏差速度以上である場合に、運転者の車線変更意図があると判定することを特徴とする請求項1に記載の車両運転支援装置。
  4.  上記開始判定抑制部は、上記設定偏差速度の値を大きな値に変更することで、上記制御開始判定部による接近防止制御の開始判定を抑制することを特徴とする請求項3に記載した車両運転支援装置。
  5.  上記操舵量検出部は、運転者が操舵する操舵輪の操作量と上記道路形状検出部によって検出された道路形状に基づいて、予め設定された設定時間後に位置すると予測される車線幅方向での自車両の横位置である予測横位置を上記操舵量として求め、
     上記運転者意図判定部は、上記操舵量検出部が求めた予測横位置が、予め設定された車線幅方向位置である設定横位置よりも車線幅方向外側である場合に、運転者の車線変更意図があると判定することを特徴とする請求項1に記載した車両運転支援装置。
  6.  上記開始判定抑制部は、上記設定横位置の車線幅方向位置を車線幅方向外側の位置に変更することで、上記制御開始判定部による接近防止制御の開始判定を抑制することを特徴とする請求項5に記載した車両運転支援装置。
  7.  自車両に対する、上記障害物検出部が検出した障害物の車線幅方向位置を検出する障害物位置検出部を備え、
     上記設定横位置を、上記障害物位置検出部が検出した自車両に対する障害物の車線幅方向位置に設定することを特徴とする請求項5又は請求項6に記載した車両運転支援装置。
  8.  上記設定横位置を、現在の自車両の車線幅方向における位置である現在横位置から、予め設定した距離だけ車線幅方向に離れた位置に設定することを特徴とする請求項5又は請求項6に記載した車両運転支援装置。
  9.  上記設定横位置を、車線端から車線幅方向に予め設定した距離だけ離れた位置に設定することを特徴とする請求項5又は請求項6に記載した車両運転支援装置。
  10.  上記開始判定抑制部は、上記障害物検出エリアの範囲を狭くすることで、上記制御開始判定部による接近防止制御の開始判定を抑制することを特徴とする請求項1、請求項3及び請求項5のいずれか1項に記載した車両運転支援装置。
  11.  ナビゲーション装置を備え、
     上記道路形状検出部は、ナビゲーション装置の有する地図情報における、自車両前方に設定した上記設定前方範囲に対応した地図位置に存在する複数のノード点に基づいて、上記設定前方範囲の道路形状を検出し、
     上記検出精度判定部は、上記複数のノード点の間隔が広くなるほど、道路形状検出部による道路形状の検出精度を低く検出することを特徴とする請求項1~請求項10のいずれか1項に記載した車両運転支援装置。
  12.  ナビゲーション装置を備え、
     上記道路形状検出部は、ナビゲーション装置の有する地図情報における、自車両前方に設定した上記設定前方範囲に対応した地図位置に存在する複数のノード点に基づいて、上記設定前方範囲の道路形状を検出し、
     上記検出精度判定部は、上記複数のノード点の近似曲線を算出し、該近似曲線に対する複数のノード点の距離の分散が大きくなるほど、道路形状検出部による道路形状の検出精度を低く検出することを特徴とする請求項1~請求項10のいずれか1項に記載した車両運転支援装置。
  13.  自車両前方に設定した上記設定前方範囲を撮像する前方撮像部と、
     上記前方撮像部が撮像した画像を画像処理して、上記設定前方範囲に存在する車線区分線を特定するための複数のエッジ点を抽出するエッジ点抽出処理部と、を備え、
     上記道路形状検出部は、上記エッジ点抽出処理部が抽出した複数のエッジ点に基づき、自車両前方の上記設定前方範囲の道路形状を検出し、
     上記検出精度判定部は、上記エッジ点抽出処理部によって抽出されたエッジ点の数が少なくなるほど、道路形状検出部による道路形状の検出精度を低く検出することを特徴とする請求項1~請求項10のいずれか1項に記載した車両運転支援装置。
  14.  自車両前方に設定した上記設定前方範囲を撮像する前方撮像部と、
     上記前方撮像部が撮像した画像を画像処理して、上記設定前方範囲に存在する車線区分線を特定するための複数のエッジ点を抽出するエッジ点抽出処理部と、を備え、
     上記道路形状検出部は、上記エッジ点抽出処理部が抽出した複数のエッジ点に基づき、自車両前方の上記設定前方範囲の道路形状を検出し、
    上記検出精度判定部は、上記複数のエッジ点の近似曲線を算出し、該近似曲線と複数のエッジ点との距離の分散が大きくなるほど、道路形状検出部による道路形状の検出精度を低く検出することを特徴とする請求項1~請求項10のいずれか1項に記載した車両運転支援装置。
  15.  自車両の現在位置から自車進行方向前方のカーブ路の開始位置までの距離であるカーブ前距離を検出するカーブ前距離検出部を備え、
     上記開始判定抑制部は、上記カーブ前距離検出部が検出した上記カーブ前距離が予め設定した設定カーブ前距離以下の場合にだけ、上記制御開始判定部による接近防止制御の開始判定を抑制することを特徴とする請求項1~請求項14のいずれか1項に記載した車両運転支援装置。
  16.  自車両の位置を検出する自車位置測位部と、
    上記自車位置測位部の自車両の位置の検出精度を判定する測位精度検出部と、を備え、上記カーブ前距離検出部は、上記測位部によって検出された自車両の位置に基づいて上記カーブ前距離を検出し、
     上記開始判定抑制部は、上記測位精度検出部が検出した検出精度が低くなるほど、上記設定カーブ前距離を長くすることを特徴とする請求項15に記載した車両運転支援装置。
  17.  上記道路形状検出部は、道路形状として道路の曲率を検出する請求項1~請求項16のいずれか1項に記載した車両運転支援装置。
  18.  上記接近防止制御は、運転者への報知制御、及び自車両の車線変更方向に対して逆方向のヨーモーメントを付与する制御の少なくとも1方の制御であることを特徴とする請求項1~請求項17のいずれか1項に記載した車両運転支援装置。
PCT/JP2012/004986 2011-08-31 2012-08-06 車両運転支援装置 WO2013031095A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12827578.1A EP2752833B1 (en) 2011-08-31 2012-08-06 Vehicle driving assistance device
JP2013531021A JP5630583B2 (ja) 2011-08-31 2012-08-06 車両運転支援装置
US14/128,952 US9142131B2 (en) 2011-08-31 2012-08-06 Vehicle driving support apparatus
RU2013157536/11A RU2566175C1 (ru) 2011-08-31 2012-08-06 Устройство помощи при вождении транспортного средства
CN201280032324.2A CN103635947B (zh) 2011-08-31 2012-08-06 车辆驾驶辅助装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-189504 2011-08-31
JP2011189504 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031095A1 true WO2013031095A1 (ja) 2013-03-07

Family

ID=47755627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004986 WO2013031095A1 (ja) 2011-08-31 2012-08-06 車両運転支援装置

Country Status (6)

Country Link
US (1) US9142131B2 (ja)
EP (1) EP2752833B1 (ja)
JP (1) JP5630583B2 (ja)
CN (1) CN103635947B (ja)
RU (1) RU2566175C1 (ja)
WO (1) WO2013031095A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063201A (ja) * 2013-09-25 2015-04-09 日産自動車株式会社 車両用走行制御装置
CN105936294A (zh) * 2015-03-03 2016-09-14 富士重工业株式会社 车辆的行驶控制装置
JP2017068617A (ja) * 2015-09-30 2017-04-06 株式会社日本自動車部品総合研究所 走行区画線認識装置
JPWO2015151191A1 (ja) * 2014-03-31 2017-04-13 パイオニア株式会社 移動支援装置、移動支援方法及び移動支援用プログラム
JP2019003234A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 運転支援装置
RU2681984C1 (ru) * 2015-07-31 2019-03-14 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Система и способ определения траектории для транспортного средства
EP2727794B1 (en) * 2012-11-06 2021-03-10 Hyundai Mobis Co., Ltd. Control apparatus of vehicle for changing lane and control method of the same
JP2021037952A (ja) * 2020-11-18 2021-03-11 パナソニックIpマネジメント株式会社 走行レーン検出装置
JP2021039659A (ja) * 2019-09-05 2021-03-11 トヨタ自動車株式会社 運転支援装置
CN113474225A (zh) * 2019-02-22 2021-10-01 株式会社电装 车辆中的制动辅助控制装置、制动辅助系统以及制动辅助控制方法

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011375962B2 (en) * 2011-08-31 2015-08-20 Toyota Jidosha Kabushiki Kaisha Vehicle drive-control device
WO2013037855A1 (de) * 2011-09-12 2013-03-21 Continental Teves Ag & Co. Ohg Sensorsystem mit einer fahrzeugmodelleinheit
JP5944781B2 (ja) * 2012-07-31 2016-07-05 株式会社デンソーアイティーラボラトリ 移動体認識システム、移動体認識プログラム、及び移動体認識方法
DE102013203216A1 (de) * 2013-02-27 2014-08-28 Robert Bosch Gmbh Verfahren zur Unterstützung des Fahrers eines Kraftfahrzeugs bei einem Kollisionsvermeidungsmanöver
DE102013214308B4 (de) * 2013-07-22 2024-07-11 Robert Bosch Gmbh Abstandsregler für Kraftfahrzeuge
JP5977270B2 (ja) * 2014-01-14 2016-08-24 株式会社デンソー 車両制御装置、及びプログラム
JP6496982B2 (ja) * 2014-04-11 2019-04-10 株式会社デンソー 認知支援システム
US9404761B2 (en) 2014-05-30 2016-08-02 Nissan North America, Inc. Autonomous vehicle lane routing and navigation
US20150345967A1 (en) * 2014-06-03 2015-12-03 Nissan North America, Inc. Probabilistic autonomous vehicle routing and navigation
CN104019825A (zh) * 2014-06-23 2014-09-03 中国北方车辆研究所 一种路径规划的确定方法
JP6165120B2 (ja) * 2014-10-20 2017-07-19 株式会社Soken 走行区画線認識装置
JP6035306B2 (ja) * 2014-10-27 2016-11-30 富士重工業株式会社 車両の走行制御装置
JP6325425B2 (ja) * 2014-11-28 2018-05-16 株式会社デンソー 車両制御装置
JP6443063B2 (ja) * 2015-01-15 2018-12-26 株式会社デンソー 道路形状情報生成装置、道路形状情報集配システム及び道路形状情報生成プログラム
JP6363517B2 (ja) * 2015-01-21 2018-07-25 株式会社デンソー 車両の走行制御装置
US9612596B2 (en) * 2015-05-05 2017-04-04 Ford Global Technologies, Llc Hands-off steering wheel governed by pedestrian detection
CN107924624B (zh) * 2015-07-28 2019-06-21 日产自动车株式会社 行驶控制方法及行驶控制装置
US10421491B2 (en) 2015-07-31 2019-09-24 Hitachi Automotive Systems, Ltd. Vehicular steering assistance control device
CN107848533B (zh) * 2015-08-06 2020-07-17 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储车辆控制程序的介质
SE539098C2 (en) * 2015-08-20 2017-04-11 Scania Cv Ab Method, control unit and system for path prediction
JP6300181B2 (ja) * 2015-08-25 2018-03-28 マツダ株式会社 車両の制御装置
JP6027659B1 (ja) * 2015-08-27 2016-11-16 富士重工業株式会社 車両の走行制御装置
EP3350036A1 (de) * 2015-09-14 2018-07-25 Continental Teves AG & Co. oHG Verfahren zur regelung eines kraftfahrzeugs und elektronisches bremsensteuergerät
US10071748B2 (en) 2015-09-17 2018-09-11 Sony Corporation System and method for providing driving assistance to safely overtake a vehicle
JP6384446B2 (ja) * 2015-10-14 2018-09-05 株式会社デンソー 車両制御装置、車両制御方法
DE102015224711A1 (de) 2015-12-09 2017-06-14 Robert Bosch Gmbh Verfahren zum Betätigen einer hydraulischen Bremseinrichtung in einem Kraftfahrzeug
JP6387948B2 (ja) * 2015-12-11 2018-09-12 トヨタ自動車株式会社 車両の運転支援装置
US10479373B2 (en) * 2016-01-06 2019-11-19 GM Global Technology Operations LLC Determining driver intention at traffic intersections for automotive crash avoidance
KR102509433B1 (ko) * 2016-01-19 2023-03-13 주식회사 에이치엘클레무브 충돌방지장치 및 충돌방지방법
DE102016202829A1 (de) * 2016-02-24 2017-08-24 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Querführungsunterstützung für ein straßengebundenes Fahrzeug
CN107179767B (zh) 2016-03-10 2021-10-08 松下电器(美国)知识产权公司 驾驶控制装置、驾驶控制方法以及非瞬时性记录介质
DE102016207436A1 (de) 2016-04-29 2017-11-02 Ford Global Technologies, Llc System und Verfahren zum Steuern- und/oder Regeln eines Lenksystems eines Fahrzeugs sowie Fahrzeug
JP6293213B2 (ja) * 2016-08-01 2018-03-14 三菱電機株式会社 車線区画線検知補正装置、車線区画線検知補正方法、及び自動運転システム
CN109641617B (zh) * 2016-08-31 2020-09-22 本田技研工业株式会社 出库辅助装置
JP6305484B2 (ja) * 2016-09-12 2018-04-04 本田技研工業株式会社 車両制御装置
JP6764312B2 (ja) * 2016-10-19 2020-09-30 日立オートモティブシステムズ株式会社 車両運動制御装置、車両運動制御方法、車両運動制御プログラム
US10539961B2 (en) * 2016-11-01 2020-01-21 Ford Global Technologies Steering capability prediction
JP6547969B2 (ja) * 2016-11-30 2019-07-24 トヨタ自動車株式会社 車両運転支援装置
JP6881164B2 (ja) * 2016-12-21 2021-06-02 トヨタ自動車株式会社 運転支援装置
CA3055702A1 (en) * 2017-03-07 2018-09-13 Nissan Motor Co., Ltd. Traveling assistance method and driving control device
JP7103753B2 (ja) * 2017-03-16 2022-07-20 トヨタ自動車株式会社 衝突回避装置
JP6450413B2 (ja) * 2017-03-31 2019-01-09 本田技研工業株式会社 車両制御装置
CN107150682B (zh) * 2017-04-27 2019-08-02 同济大学 一种车道保持辅助系统
DE102017004118B4 (de) * 2017-04-27 2024-10-17 Mercedes-Benz Group AG Verfahren zum Betrieb eines Fahrerassistenzsystems
JP6961995B2 (ja) * 2017-05-12 2021-11-05 トヨタ自動車株式会社 運転支援装置
JP6801591B2 (ja) * 2017-06-06 2020-12-16 トヨタ自動車株式会社 操舵支援装置
JP6627821B2 (ja) * 2017-06-06 2020-01-08 トヨタ自動車株式会社 車線変更支援装置
WO2018225347A1 (ja) * 2017-06-09 2018-12-13 ボッシュエンジニアリング株式会社 走行障害検出装置及び車両ナビゲーションシステム
US11396290B2 (en) * 2017-07-27 2022-07-26 Nissan Motor Co., Ltd. Travel assistance method and travel assistance device
CA3071227C (en) * 2017-07-27 2020-08-04 Nissan Motor Co., Ltd. Self-position correction method and self-position correction device for drive-assisted vehicle
MX2020002171A (es) * 2017-08-30 2020-07-14 Nissan Motor Metodo de correccion de posicion y dispositivo de correccion de error de posicion para vehiculo de conduccion asistida.
JP6596772B2 (ja) 2017-09-01 2019-10-30 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2019095851A (ja) * 2017-11-17 2019-06-20 アイシン・エィ・ダブリュ株式会社 車両運転補助システム、車両運転補助方法、及び車両運転補助プログラム
CN109829351B (zh) * 2017-11-23 2021-06-01 华为技术有限公司 车道信息的检测方法、装置及计算机可读存储介质
RU2710150C2 (ru) * 2018-03-02 2019-12-24 Станислав Дмитриевич Кащенко Адаптивная помощь при управлении транспортным средством
US10782699B2 (en) * 2018-03-10 2020-09-22 Baidu Usa Llc Real-time perception adjustment and driving adaption based on surrounding vehicles' behavior for autonomous driving vehicles
JP7108916B2 (ja) * 2018-03-13 2022-07-29 パナソニックIpマネジメント株式会社 車両制御装置
US11548508B2 (en) * 2018-06-26 2023-01-10 Nissan Motor Co., Ltd. Driving assist method and driving assist device
US10726642B1 (en) 2019-03-29 2020-07-28 Toyota Motor North America, Inc. Vehicle data sharing with interested parties
US10896555B2 (en) 2019-03-29 2021-01-19 Toyota Motor North America, Inc. Vehicle data sharing with interested parties
US10535207B1 (en) 2019-03-29 2020-01-14 Toyota Motor North America, Inc. Vehicle data sharing with interested parties
JP7227072B2 (ja) * 2019-05-22 2023-02-21 日立Astemo株式会社 車両制御装置
CN112046478B (zh) * 2019-06-06 2024-04-26 本田技研工业株式会社 车辆控制装置及其动作方法、车辆以及存储介质
US11529918B2 (en) 2019-09-02 2022-12-20 Toyota Motor North America, Inc. Adjustment of environment of transports
CN110723140B (zh) * 2019-09-18 2021-03-09 爱驰汽车有限公司 变道过程中的车辆控制方法、装置及计算设备
JP7272228B2 (ja) * 2019-10-11 2023-05-12 株式会社デンソー 車両用運転支援装置及び車両用運転支援方法
CN111238520B (zh) * 2020-02-06 2022-10-14 阿波罗智能技术(北京)有限公司 自动驾驶变道路径规划方法、装置和电子设备
CN112130563B (zh) * 2020-09-10 2022-04-29 东风汽车集团有限公司 一种多目标筛选辅助驾驶控制方法
US11872988B2 (en) * 2020-11-10 2024-01-16 GM Global Technology Operations LLC Method and system to adapt overtake decision and scheduling based on driver assertions
KR20220073898A (ko) * 2020-11-26 2022-06-03 현대자동차주식회사 차량 제어 장치 및 그 방법
JP2022142510A (ja) * 2021-03-16 2022-09-30 パナソニックIpマネジメント株式会社 車両用周辺警戒装置および車両用周辺警戒方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585221A (ja) * 1991-09-30 1993-04-06 Toyota Central Res & Dev Lab Inc ドライバーの異常操舵判定装置
US20020091479A1 (en) * 2001-01-09 2002-07-11 Nissan Motor Co., Ltd. Braking control system with object detection system interaction
JP2009184554A (ja) 2008-02-07 2009-08-20 Denso Corp 安全走行支援システム
EP2263926A2 (en) * 2009-06-18 2010-12-22 Nissan Motor Co., Ltd. Vehicle operation supporting device and vehicle operation supporting method
WO2011007835A1 (ja) * 2009-07-15 2011-01-20 日産自動車株式会社 車両運転支援装置と車両運転支援方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183966B2 (ja) * 1992-04-20 2001-07-09 マツダ株式会社 車両の走行制御装置
US5314037A (en) * 1993-01-22 1994-05-24 Shaw David C H Automobile collision avoidance system
JP3167990B2 (ja) * 1999-09-14 2001-05-21 富士重工業株式会社 カーブ進入制御装置
JP3736413B2 (ja) * 2001-09-28 2006-01-18 日産自動車株式会社 車線逸脱防止装置
JP3758586B2 (ja) * 2002-02-27 2006-03-22 日産自動車株式会社 車両用走行制御装置
US6879896B2 (en) * 2002-04-11 2005-04-12 Delphi Technologies, Inc. System and method for using vehicle operator intent to adjust vehicle control system response
JP3606276B2 (ja) * 2002-11-26 2005-01-05 日産自動車株式会社 車線逸脱防止装置
JP3661684B2 (ja) * 2002-11-28 2005-06-15 日産自動車株式会社 車線逸脱防止装置
JP3873919B2 (ja) * 2003-03-20 2007-01-31 日産自動車株式会社 車線逸脱防止装置
JP4055653B2 (ja) * 2003-05-27 2008-03-05 株式会社デンソー 車速制御装置およびプログラム
EP1632925A1 (en) * 2003-06-11 2006-03-08 Matsushita Electric Industrial Co., Ltd. Digital map position information compressing method and device
EP1495932B1 (en) * 2003-07-07 2007-08-29 Nissan Motor Company, Limited Lane departure prevention apparatus
JP4366145B2 (ja) * 2003-08-26 2009-11-18 富士重工業株式会社 運転者の覚醒度推定装置及び覚醒度推定方法
JP4226455B2 (ja) * 2003-12-16 2009-02-18 日産自動車株式会社 運転意図推定装置、車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4020089B2 (ja) * 2004-03-03 2007-12-12 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2005297855A (ja) * 2004-04-14 2005-10-27 Toyota Motor Corp 車両の減速制御装置
DE102004048011A1 (de) * 2004-10-01 2006-04-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrerunterstützung
RU2310922C2 (ru) * 2005-10-12 2007-11-20 Общество С Ограниченной Ответственностью Научно-Производственная Компания "Двина" Способ предотвращения столкновений автомобиля и устройство для его осуществления
CN1986306B (zh) * 2005-12-22 2013-01-09 日产自动车株式会社 车辆用驾驶操作辅助装置以及具备它的车辆
US20070225914A1 (en) * 2006-03-21 2007-09-27 Hiroshi Kawazoe Lane departure avoidance control
EP1849669B1 (en) * 2006-04-28 2011-10-05 Nissan Motor Co., Ltd. Lane departure prevention apparatus and method for a motor vehicle
JP4650362B2 (ja) * 2006-07-18 2011-03-16 日産自動車株式会社 車線逸脱防止装置
JP2008137551A (ja) * 2006-12-04 2008-06-19 Aisin Seiki Co Ltd 車両用シート装置
US7660669B2 (en) * 2007-03-28 2010-02-09 Nissan Technical Center North America, Inc. Lane departure avoidance system
JP5336052B2 (ja) * 2007-05-28 2013-11-06 株式会社デンソー クルーズ制御装置、プログラム、及び目標車速の設定方法
JP2009061878A (ja) * 2007-09-05 2009-03-26 Toyota Motor Corp 走行制御装置
US8090516B2 (en) * 2007-11-20 2012-01-03 Nissan Motor Co., Ltd. Lane deviation prevention device and method
US8170739B2 (en) * 2008-06-20 2012-05-01 GM Global Technology Operations LLC Path generation algorithm for automated lane centering and lane changing control system
JP5177076B2 (ja) * 2008-07-28 2013-04-03 日産自動車株式会社 車両運転支援装置及び車両運転支援方法
JP5359516B2 (ja) * 2008-07-29 2013-12-04 日産自動車株式会社 車両運転支援装置及び車両運転支援方法
JP4596063B2 (ja) * 2008-09-30 2010-12-08 株式会社デンソー 車両操舵制御装置
CN102171084B (zh) * 2008-09-30 2013-12-04 日产自动车株式会社 配置有用于辅助系统操作员的辅助控制器的系统、控制操作辅助装置、控制操作辅助方法、驾驶操作辅助装置和驾驶操作辅助方法
JP5075152B2 (ja) * 2009-03-24 2012-11-14 日立オートモティブシステムズ株式会社 車両制御装置
US8630779B2 (en) * 2010-04-09 2014-01-14 Navteq B.V. Method and system for vehicle ESC system using map data
US8437936B2 (en) * 2010-04-09 2013-05-07 Navteq B.V. Method and system for vehicle ESC system using map data
KR101294059B1 (ko) * 2011-07-28 2013-08-08 현대자동차주식회사 인휠 시스템을 이용한 차선 유지 보조 시스템
US8564425B2 (en) * 2011-08-19 2013-10-22 Ahmad I. S. I. Al-Jafar Blind spot monitoring system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585221A (ja) * 1991-09-30 1993-04-06 Toyota Central Res & Dev Lab Inc ドライバーの異常操舵判定装置
US20020091479A1 (en) * 2001-01-09 2002-07-11 Nissan Motor Co., Ltd. Braking control system with object detection system interaction
EP1223093A2 (en) * 2001-01-09 2002-07-17 Nissan Motor Company, Limited Braking control system with object detection system interaction
JP2002205630A (ja) * 2001-01-09 2002-07-23 Nissan Motor Co Ltd 制動制御装置
DE60126398D1 (de) * 2001-01-09 2007-03-22 Nissan Motor Bremssteuerungssystem mit Systemeingriff bei Objekterkennung
DE60126398T2 (de) * 2001-01-09 2007-11-29 Nissan Motor Co., Ltd., Yokohama Bremssteuerungssystem mit Systemeingriff bei Objekterkennung
JP2009184554A (ja) 2008-02-07 2009-08-20 Denso Corp 安全走行支援システム
EP2263926A2 (en) * 2009-06-18 2010-12-22 Nissan Motor Co., Ltd. Vehicle operation supporting device and vehicle operation supporting method
US20100324823A1 (en) * 2009-06-18 2010-12-23 Nissan Motor Co., Ltd. Vehicle operation supporting device and vehicle operation supporting method
CN101927745A (zh) * 2009-06-18 2010-12-29 日产自动车株式会社 车辆操作支持装置和车辆操作支持方法
JP2011022990A (ja) * 2009-06-18 2011-02-03 Nissan Motor Co Ltd 車両運転支援装置及び車両運転支援方法
WO2011007835A1 (ja) * 2009-07-15 2011-01-20 日産自動車株式会社 車両運転支援装置と車両運転支援方法
MX2012000425A (es) * 2009-07-15 2012-02-13 Nissan Motor Asistente de conduccion del vehiculo y metodo de asistencia de conduccion del vehiculo.
CN102470832A (zh) * 2009-07-15 2012-05-23 日产自动车株式会社 车辆驾驶辅助装置和车辆驾驶辅助方法
EP2455266A1 (en) * 2009-07-15 2012-05-23 Nissan Motor Co., Ltd. Vehicle-driving support system and vehicle-driving support method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752833A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2727794B1 (en) * 2012-11-06 2021-03-10 Hyundai Mobis Co., Ltd. Control apparatus of vehicle for changing lane and control method of the same
JP2015063201A (ja) * 2013-09-25 2015-04-09 日産自動車株式会社 車両用走行制御装置
JPWO2015151191A1 (ja) * 2014-03-31 2017-04-13 パイオニア株式会社 移動支援装置、移動支援方法及び移動支援用プログラム
CN105936294A (zh) * 2015-03-03 2016-09-14 富士重工业株式会社 车辆的行驶控制装置
RU2681984C1 (ru) * 2015-07-31 2019-03-14 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Система и способ определения траектории для транспортного средства
JP2017068617A (ja) * 2015-09-30 2017-04-06 株式会社日本自動車部品総合研究所 走行区画線認識装置
JP2019003234A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 運転支援装置
CN113474225A (zh) * 2019-02-22 2021-10-01 株式会社电装 车辆中的制动辅助控制装置、制动辅助系统以及制动辅助控制方法
CN113474225B (zh) * 2019-02-22 2024-02-02 株式会社电装 车辆中的制动辅助控制装置、制动辅助系统以及制动辅助控制方法
JP2021039659A (ja) * 2019-09-05 2021-03-11 トヨタ自動車株式会社 運転支援装置
JP7056632B2 (ja) 2019-09-05 2022-04-19 トヨタ自動車株式会社 運転支援装置
US11987239B2 (en) 2019-09-05 2024-05-21 Toyota Jidosha Kabushiki Kaisha Driving assistance device
JP2021037952A (ja) * 2020-11-18 2021-03-11 パナソニックIpマネジメント株式会社 走行レーン検出装置

Also Published As

Publication number Publication date
CN103635947A (zh) 2014-03-12
JP5630583B2 (ja) 2014-11-26
US9142131B2 (en) 2015-09-22
EP2752833A4 (en) 2015-01-28
EP2752833B1 (en) 2016-05-18
JPWO2013031095A1 (ja) 2015-03-23
US20140136015A1 (en) 2014-05-15
CN103635947B (zh) 2015-10-07
EP2752833A1 (en) 2014-07-09
RU2013157536A (ru) 2015-10-10
RU2566175C1 (ru) 2015-10-20

Similar Documents

Publication Publication Date Title
JP5630583B2 (ja) 車両運転支援装置
JP5375752B2 (ja) 車両運転支援装置
JP5407952B2 (ja) 車両運転支援装置及び車両運転支援方法
JP5177076B2 (ja) 車両運転支援装置及び車両運転支援方法
JP5088350B2 (ja) 車両運転支援装置及び車両運転支援方法
JP4748122B2 (ja) 車線逸脱防止装置
JP5278378B2 (ja) 車両運転支援装置及び車両運転支援方法
JP4534754B2 (ja) 車線逸脱防止装置
JP5359092B2 (ja) 車両運転支援装置及び車両運転支援方法
JP4461780B2 (ja) 車線逸脱防止装置
JP2005157754A (ja) 車線逸脱防止装置
JP5309764B2 (ja) 側方障害物回避装置及び側方障害物回避方法
JP2006182129A (ja) 車線逸脱防止装置
JP5387204B2 (ja) 車両運転支援装置及び車両運転支援方法
JP2005182406A (ja) 車線逸脱防止装置
JP4983089B2 (ja) 車線逸脱防止装置
JP4601946B2 (ja) 車線逸脱防止装置
JP2005132182A (ja) 車線逸脱防止装置
JP2005170197A (ja) 車線逸脱防止装置
JP2005132185A (ja) 車線逸脱防止装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531021

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14128952

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013157536

Country of ref document: RU

Kind code of ref document: A