WO2018225347A1 - 走行障害検出装置及び車両ナビゲーションシステム - Google Patents

走行障害検出装置及び車両ナビゲーションシステム Download PDF

Info

Publication number
WO2018225347A1
WO2018225347A1 PCT/JP2018/012781 JP2018012781W WO2018225347A1 WO 2018225347 A1 WO2018225347 A1 WO 2018225347A1 JP 2018012781 W JP2018012781 W JP 2018012781W WO 2018225347 A1 WO2018225347 A1 WO 2018225347A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
travel
vehicle
failure
obstacle
Prior art date
Application number
PCT/JP2018/012781
Other languages
English (en)
French (fr)
Inventor
ラムクマル ジャガナタン
Original Assignee
ボッシュエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュエンジニアリング株式会社 filed Critical ボッシュエンジニアリング株式会社
Priority to EP18813142.9A priority Critical patent/EP3637385A4/en
Priority to JP2019523360A priority patent/JP6866479B2/ja
Priority to US16/619,560 priority patent/US20200166360A1/en
Priority to CN201880051505.7A priority patent/CN110998685B/zh
Publication of WO2018225347A1 publication Critical patent/WO2018225347A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/35Road bumpiness, e.g. potholes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/20Static objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Definitions

  • the present invention relates to a travel obstacle detection device and a vehicle navigation system.
  • Patent Document 1 discloses a road surface state detection device that acquires a road surface state such as road surface unevenness and cracks before traveling.
  • This road surface state detection device estimates a road surface state based on the acceleration acting on the acceleration sensor by the rotation of the wheel of the vehicle, and transmits it to the cloud server together with the position information of the vehicle.
  • Other vehicles can acquire the road surface state before traveling based on the position information and the road surface state information.
  • the present invention has been made in view of the above problems, and provides a travel failure detection apparatus and a vehicle navigation system that can appropriately detect the position of a travel failure on a road and provide travel failure information before the vehicle travels. For the purpose.
  • a data acquisition unit that receives at least data including vehicle position information from an in-vehicle control device, and a surrounding area of the travel position based on a travel locus of the vehicle obtained from a history of the received position information.
  • a travel fault detection device including a fault information generation unit that generates travel fault information and a fault information transmission unit that transmits the generated travel fault information to an in-vehicle control device.
  • the above-described travel failure detection device a location information acquisition unit that acquires location information of the host vehicle, and a data transmission unit that transmits data including at least location information to the travel failure detection device.
  • a vehicle navigation system comprising: an in-vehicle control device that includes a fault information acquisition unit that receives driving fault information from the driving fault detection device, and a navigation control unit that performs a navigation operation based on the driving fault information.
  • FIG. 1 is a schematic diagram of a vehicle navigation system according to an embodiment of the present invention. It is a schematic diagram which shows the structural example of the vehicle carrying the vehicle-mounted control apparatus which concerns on the embodiment. It is a block diagram which shows the structural example of the driving
  • the vehicle 10 when it is not particularly necessary to distinguish
  • the vehicles 10 a, 10 b, 10 c, and 10 d are traveling on the road 9.
  • the travel failure detection device 100 receives data including at least position information from the traveling vehicle 10, generates travel failure information based on these data, and transmits the travel failure information to the vehicle 10.
  • the travel failure detection device 100 is, for example, a cloud server.
  • the vehicles 10c and 10d traveling on the second lane 9b continue to travel on the second lane 9b.
  • the vehicles 10a and 10b that have traveled in the first lane 9a change the lane from the first lane 9a to the second lane 9b in order to avoid the travel obstacle 5. It is considered that almost all the vehicles 10 traveling in the first lane 9a change to the second lane 9b while the traveling obstacle 5 exists.
  • the travel obstacle detection device 100 when there is a travel obstacle 5 on the road 9, the travel obstacle detection device 100 according to the present embodiment is based on the fact that the plurality of vehicles 10 travel while avoiding the travel obstacle 5. When it can be determined from the traveling locus that the vehicle 10 is performing an operation of avoiding some traveling obstacle 5, it is determined that the traveling obstacle 5 exists on the road 9.
  • the travel failure detection device 100 transmits information on the detected travel failure 5 to the plurality of vehicles 10, so that each vehicle 10 acquires the presence of the travel failure 5 in advance, and the driver easily avoids the travel failure 5. be able to.
  • the road 9 on which the vehicle 10 travels is wider than the normal vehicle width. In many cases, the vehicle 10 passes through a part of the width direction of the road. In the vehicle navigation system 1 according to this embodiment, the position information of the vehicle 10 is obtained. By using the included data, it is possible to estimate the location of the running obstacle 5 with higher accuracy.
  • the driving obstacle 5 is caused by the vehicle 10 traveling away from the position, such as severe unevenness on the surface of the road 9, a road 9 being closed, a traffic accident on the road 9, or a falling object on the road 9. Including the event. Further, in the vehicle navigation system 1 according to the present embodiment, the travel obstacle detection device 100 further calculates information on the speed bumps on the road 9, snow cover, road slope, or curvature radius information of the curved road, Transmission to the vehicle 10 is possible.
  • the vehicle 10 includes an in-vehicle control device 50.
  • the in-vehicle control device 50 receives signals from various sensors or detection devices (hereinafter also simply referred to as “detectors”) mounted on the vehicle 10, and transmits the obtained information to the traveling obstacle detection device 100. Further, the in-vehicle control device 50 receives the travel failure information from the travel failure detection device 100 and performs the navigation operation of the vehicle 10.
  • the vehicle 10 includes four rotation sensors 13a, 13b, 13c, 13d, four impact sensors 15a, 15b, 15c, 15d, a GPS (Global Positioning system) unit 20, an imaging unit 22, an acceleration sensor 24, A display device 26, a steering angle sensor 34, and a brake control unit 40 are provided.
  • GPS Global Positioning system
  • the rotation sensors 13a, 13b, 13c, and 13d (hereinafter referred to as the rotation sensor 13 when it is not particularly necessary to distinguish) and the four impact sensors 15a, 15b, 15c, and 15d (hereinafter, particularly required to be distinguished). If not, the impact sensor 15 is indicated on the front, rear, left and right wheels 11FR, 11FL, 11RR, 11RL of the vehicle 10 (hereinafter referred to as the wheels 11 if it is not particularly necessary to distinguish). ing.
  • the rotation sensor 13 outputs a sensor signal corresponding to the number of rotations of each wheel 11.
  • the impact sensor 15 outputs a sensor signal corresponding to the impact received by each wheel 11.
  • the impact sensor 15 is provided, for example, in a shock observer provided on each wheel 11. Sensor signals from the rotation sensor 13 and the impact sensor 15 are output to the in-vehicle control device 50.
  • the GPS unit 20 has a GPS antenna and a GPS device.
  • the GPS device receives radio waves from a GPS satellite via a GPS antenna, and obtains the GPS device, that is, the current position of the vehicle 10 by positioning calculation.
  • the GPS unit 20 outputs the obtained position information to the in-vehicle control device 50.
  • the imaging unit 22 has a camera and an imaging processing device.
  • the camera is an imaging device having an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and images the front of the vehicle 10.
  • the imaging processing device performs known image processing based on the imaging data of the camera, and recognizes a vehicle in front of the vehicle 10, an obstacle, a traveling lane, a road surface condition, and the like.
  • the imaging processing device outputs the recognized forward information to the in-vehicle control device 50.
  • the camera may be a monocular camera or a stereo camera.
  • the acceleration sensor 24 outputs sensor signals corresponding to the inclination of the vehicle 10 from the horizontal direction in the front-rear direction and the vehicle width direction.
  • the sensor signal of the acceleration sensor 24 is output to the in-vehicle control device 50.
  • the steering angle sensor 34 outputs a sensor signal corresponding to the steering angle that is the rotation angle of the steering wheel 32.
  • the sensor signal of the steering angle sensor 34 is output to the in-vehicle control device 50.
  • the brake control unit 40 controls a braking force generated by a brake device (not shown) provided on each wheel 11.
  • the brake control unit 40 controls the hydraulic pressure supplied to the brake caliper provided in each wheel 11 by controlling the driving of the electromagnetic valve, and adjusts the braking force.
  • Information on the braking force generated in each wheel 11 is output to the in-vehicle control device 50.
  • the configuration of the brake device is not particularly limited.
  • the display device 26 displays a road map together with information around the travel position of the vehicle 10.
  • the display device 26 includes a display panel such as a liquid crystal panel, for example, and display control is performed by the in-vehicle control device 50.
  • the display device 26 may be a head-up display that performs display on the front window of the vehicle.
  • the in-vehicle control device 50 (50a, 50b, 50c, 50d) mounted on each vehicle 10 (10a, 10b, 10c, 10d) includes a communication unit 52, a traveling state detection unit 54, and a position information acquisition unit 56.
  • the in-vehicle control device 50 includes a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit).
  • the in-vehicle control device 50 may be configured by an updatable device such as firmware in addition to a processor such as a CPU or MPU, and is executed by a command from the CPU or the like. It may be a program module or the like.
  • the vehicle-mounted control apparatus 50 may be comprised by the some control apparatus which can mutually communicate.
  • the storage unit 62 stores a computer program executed by the processor, the acquired sensor signal or information, and information on the calculation result of the processor.
  • the storage unit 62 includes storage elements such as a ROM (Read Only Memory) for storing computer programs and control parameters, and a RAM (Random Access Memory) for storing acquired information, control parameters, calculation processing result information, and the like. But you can.
  • the storage unit 62 may include a storage device using another storage medium such as a CD-ROM or a storage device.
  • the communication unit 52 is an interface that transmits and receives signals to and from the travel failure detection device 100.
  • the communication unit 52 performs wireless communication with the travel failure detection device 100.
  • the in-vehicle control device 50 includes the communication unit 52, but the vehicle 10 includes a gateway control device that is different from the in-vehicle control device 50, and the gateway control device
  • the in-vehicle control device 50 may be configured to be able to communicate with the travel failure detection device 100.
  • the traveling state detection unit 54 acquires signals or information output from the rotation sensor 13, the impact sensor 15, the imaging unit 22, the acceleration sensor 24, the steering angle sensor 34, and the brake control unit 40 provided in the vehicle 10.
  • the traveling state detection unit 54 is a function realized by execution of a computer program by a processor. Based on the acquired signal or information, the traveling state detection unit 54 determines the rudder angle, the magnitude of impact received by each wheel 11, the rotational speed of each wheel 11, the vehicle speed, the inclination of the vehicle 10, and the The presence or absence of slip and the braking force generated on each wheel 11 are obtained.
  • the obtained information is information on the running state. Some of these running states may be omitted.
  • the position information acquisition unit 56 acquires position information output from the GPS unit 20 provided in the vehicle 10.
  • the position information acquisition unit 56 is a function realized by execution of a computer program by a processor.
  • the position information acquisition unit 56 acquires position information for each preset cycle.
  • the failure information reception unit 58 receives the travel failure information transmitted from the travel failure detection device 100.
  • the failure information receiving unit 58 is a function realized by execution of a computer program by a processor. For example, the failure information reception unit 58 receives the travel failure information transmitted for each preset cycle.
  • the data transmission unit 60 transmits data including at least the position information of the vehicle 10 to the traveling obstacle detection device 100.
  • the data transmission unit 60 is a function realized by execution of a computer program by a processor. For example, the data transmission unit 60 transmits data for each preset cycle. In the present embodiment, the data transmission unit 60 transmits data including travel state information together with the position information of the vehicle 10 to the travel failure detection device 100.
  • the navigation control unit 64 performs a navigation operation based on the travel failure information received from the travel failure detection device 100.
  • the navigation control unit 64 is a function realized by executing a computer program by a processor.
  • the navigation control unit 64 reflects the travel obstacle information in the road map information displayed on the display device 26 and causes the driver to recognize the travel obstacle information.
  • the navigation control unit 64 may specifically display the position of the travel obstacle present on the travel lane.
  • the navigation control unit 64 may cause the display device 26 to display the 3D virtual image.
  • the navigation control unit 64 may generate a warning sound to prompt the driver to be alerted as the vehicle 10 approaches a travel obstacle.
  • the travel failure detection device 100 includes a communication unit 101, a data acquisition unit 103, a failure information generation unit 105, a failure information transmission unit 107, and a storage unit 109.
  • the travel failure detection apparatus 100 includes a processor such as a CPU or MPU. Further, a part or all of the travel failure detection apparatus 100 may be configured by an updatable device such as firmware in addition to a processor such as a CPU or MPU, and is executed by a command from the CPU or the like. It may be a program module or the like.
  • the travel failure detection device 100 may be configured by a plurality of control devices that can communicate with each other.
  • the storage unit 109 stores a computer program executed by the processor, the acquired sensor signal or information, and information on the calculation result of the processor.
  • the storage unit 109 includes storage elements such as a ROM (Read Only Memory) for storing computer programs and control parameters, and a RAM (Random Access Memory) for storing acquired information, control parameters, calculation processing result information, and the like. But you can.
  • the storage unit 109 may include a storage device using another storage medium such as a CD-ROM or a storage device.
  • the communication unit 101 is an interface that transmits and receives signals to and from the in-vehicle control device 50.
  • the travel failure detection device 100 is a so-called cloud server, and the communication unit 101 performs wireless communication with the in-vehicle control device 50.
  • the data acquisition unit 103 acquires data transmitted from the in-vehicle control device 50.
  • the data acquisition unit 103 is a function realized by execution of a computer program by a processor.
  • the acquired data includes at least position information of the vehicle 10.
  • the data to be acquired includes travel state information together with the position information of the vehicle 10.
  • the failure information generation unit 105 obtains a travel locus of the vehicle 10 based on the acquired position information history. Further, the failure information generation unit 105 generates travel failure information around the travel position based on the obtained travel locus.
  • the failure information generation unit 105 is a function realized by executing a computer program by a processor. For example, the failure information generation unit 105 determines that the plurality of vehicles 10 are performing an avoidance operation at a specific position by superimposing the obtained travel locus information of the plurality of vehicles 10 on the road map information. The presence of fault 5 may be detected.
  • the failure information generation unit 105 may detect the road state based on the travel state information of the vehicle 10.
  • the road state is a state such as road surface unevenness, road inclination, curvature radius of a curved road, and the like, and the failure information generation unit 105 may cause danger to the traveling of the vehicle 10 by the failure information generation unit 105. Is determined to be travel fault information.
  • the failure information generation unit 105 may generate 3D virtual image information of the travel failure information based on the detected road state information, travel locus information, and road map information.
  • the failure information transmission unit 107 transmits the generated traveling failure information to the in-vehicle control device 50.
  • the failure information transmission unit 107 is a function realized by execution of a computer program by a processor.
  • the failure information transmission unit 107 also transmits the 3D virtual image information to the in-vehicle control device 50.
  • FIG. 4 is a flowchart showing data transmission processing by the in-vehicle control device 50.
  • the traveling state detection unit 54 of the in-vehicle control device 50 detects the traveling state of the host vehicle 10 (step S31). Specifically, the traveling state detection unit 54 receives signals or information output from the rotation sensor 13, the impact sensor 15, the imaging unit 22, the acceleration sensor 24, the steering angle sensor 34, and the brake control unit 40 provided in the vehicle 10. get. The traveling state detection unit 54 also determines the steering angle, the magnitude of the impact received by each wheel 11, the rotation speed of each wheel 11, the vehicle speed, the inclination of the vehicle 10, and each wheel based on the acquired signal or information. Eleven slips and the braking force generated in each wheel 11 are obtained. Some of these running states may be omitted.
  • the position information acquisition unit 56 of the in-vehicle control device 50 acquires the position information of the host vehicle 10 (step S33). Specifically, the position information acquisition unit 56 acquires position information output from the GPS unit 20 provided in the vehicle 10. Next, the data transmission unit 60 of the in-vehicle control device 50 transmits data including at least the position information of the host vehicle 10 and the traveling state information to the traveling failure detection device 100 via the communication unit 52 (step S35).
  • the in-vehicle control device 50 executes the data transmission process shown in FIG. 4 for each preset cycle. Alternatively, the in-vehicle control device 50 may execute the data transmission process in response to a transmission request from the travel failure detection device 100.
  • FIG. 5 is a flowchart showing a travel failure detection process performed by the travel failure detection apparatus 100.
  • the data acquisition unit 103 of the travel obstacle detection device 100 receives data including at least position information of the vehicle 10 from the in-vehicle control device 50 (step S11).
  • the data acquisition unit 103 receives data including travel state information together with the position information of the vehicle 10.
  • the data acquisition unit 103 receives data from a plurality of vehicles 10 on which the in-vehicle control device 50 is mounted.
  • the data acquisition unit 103 stores data including the received position information and travel state information in the storage unit 109.
  • the data acquisition unit 103 determines whether or not a predetermined period set in advance as a period for receiving data from the in-vehicle control device 50 has elapsed (step S13).
  • the predetermined period is set to an appropriate time sufficient to determine the presence or absence of the traveling obstacle 5 based on the received data.
  • the predetermined period may be set to 5 to 10 minutes.
  • the data acquisition unit 103 may increase the number of data receptions by shortening the data reception interval based on the number of data received in the past predetermined period. Thereby, the acquisition interval of the position information of the same vehicle 10 is shortened, and the traveling locus of the vehicle 10 can be obtained more accurately.
  • the data acquisition unit 103 may change the length of the predetermined period based on the number of data received in the past predetermined period. For example, when the number of data received within a certain period is small and the reliability of the generated travel failure information is low, the predetermined period may be lengthened.
  • the data acquisition unit 103 returns to step S11 and repeats reception of data from the in-vehicle control device 50.
  • the failure information generation unit 105 of the traveling failure detection apparatus 100 determines each vehicle 10 based on the history of position information among the data accumulated in the storage unit 109. Is calculated (step S15).
  • the failure information generation unit 105 calculates a travel locus for each vehicle 10 based on the history of position information.
  • the failure information generation unit 105 generates travel failure information around the travel position based on the travel locus information of the vehicle 10 (step S17). For example, the failure information generation unit 105 determines the avoidance operation of the vehicle 10 on the road 9 by integrating the travel locus information of each vehicle 10 and the road map information accumulated in the storage unit 109.
  • the position of the travel obstacle 5 is specified by For example, when the obstacle information generation unit 105 recognizes that the plurality of vehicles 10 are traveling so as to avoid a certain position on the road 9, the traveling obstacle 5 exists at the avoiding position. It is determined that
  • the failure information generation unit 105 may determine the presence of the travel failure 5 by using the travel state information of the vehicle 10 together with the travel locus information of the vehicle 10. For example, the failure information generation unit 105 can be recognized by the driver in the approaching state when the braking force applied to the wheels 11 is rapidly increased immediately before the turning motion of the vehicle 10 detected from the travel locus of the vehicle 10. It may be determined that there is such a traveling obstacle 5. Further, the obstacle information generation unit 105 may detect the traveling obstacle 5 on the road 9 by performing image processing on the imaging information in front of the vehicle 10 acquired using the imaging unit 22.
  • the failure information generation unit 105 may also detect the state of the road 9 based on the traveling state information of the vehicle 10. For example, the radius of curvature of the curved road 9 can be estimated based on information on the steering angle detected using the steering angle sensor 34. Further, the inclination angle of the road 9 can be estimated based on information on the inclination angle detected using the acceleration sensor 24. Further, road surface unevenness, speed bumps, and snow cover state are, for example, information on the rotational speed of each wheel 11 detected using the rotation sensor 13 and the impact on each wheel 11 detected using the impact sensor 15. It can be estimated based on information.
  • the obstacle information generating unit 105 has the traveling obstacle 5 on the road surface of the traveling position of the vehicle 10. Then, it may be determined. In particular, by detecting the state of the road 9 by superimposing the information on the traveling state received from the plurality of vehicles 10, the detection accuracy of the state of the road 9 can be improved.
  • the failure information generation unit 105 may generate 3D virtual image information of the road 9 based on the detected road 9 state information, travel locus information, and road map information.
  • the generated 3D virtual image is transmitted to the in-vehicle control device 50 of each vehicle 10. Thereby, it is not necessary to generate 3D virtual image information in each vehicle 10, and the same 3D virtual image information can be shared by a plurality of vehicles 10.
  • the failure information generation unit 105 overwrites the information on the travel failure 5 stored in the storage unit 109 and updates the information to the latest information (step S19). At this time, the failure information generation unit 105 may delete the data used to generate the latest information on the travel failure 5 from the storage unit 109. As a result, in the next period, the information on the traveling obstacle 5 is generated based on the data accumulated in the period, so that the latest information on the traveling obstacle 5 can be generated at any time. In addition, it is possible to avoid an enormous amount of data stored in the storage unit 109.
  • the failure information transmitting unit 107 transmits information on the traveling failure 5 to the in-vehicle control device 50 of the vehicle 10 via the communication unit 101 (step S21).
  • the information on the travel obstacle 5 may be transmitted toward all the vehicles 10 on which the in-vehicle control device 50 is mounted, or is transmitted toward the vehicle 10 traveling within a predetermined distance from the position where the travel obstacle 5 exists. May be.
  • the travel failure detection device 100 executes the travel failure 5 detection process shown in FIG. 5 for each preset cycle, and provides information on the travel failure 5 to the in-vehicle control device 50 of each vehicle 10.
  • FIG. 6 is a flowchart illustrating another example of the travel failure detection process performed by the travel failure detection apparatus 100.
  • the data acquisition unit 103 of the travel failure detection apparatus 100 receives data including at least position information of the vehicle 10 and travel state information from the in-vehicle control device 50 at a preset reception interval (step S61).
  • the data acquisition unit 103 determines whether or not the received data is different from the information on the driving obstacle 5 or the information on the state of the road 9 that is already stored in the storage unit 109 of the driving obstacle detection device 100 (step). S63). For example, when the travel locus of the vehicle 10 in the newly received data passes through a position where it is recognized that the travel obstacle 5 exists, the travel state of the vehicle 10 in the newly received data is road When the data acquisition unit 103 indicates a different state at the position where it is recognized that the 9 unevenness or the sharp curve exists, the data acquisition unit 103 determines that the received data is different from the information already stored in the storage unit 109. To do.
  • the data acquisition unit 103 ends the process while maintaining the current data reception interval.
  • the data acquisition unit 103 applies to all the vehicles 10 traveling around the target road 9. A request is made to shorten the data transmission interval, that is, to increase the data transmission frequency (step S65).
  • the data acquisition unit 103 determines whether or not all the vehicles 10 traveling around the target road 9 avoid a specific position on the road 9 (step S67). If all the vehicles 10 do not avoid a specific position on the road 9 (S67 / No), the data acquisition unit 103 considers that the data mismatch has occurred temporarily and ignores it (step S67). S75). On the other hand, when all the vehicles 10 avoid a specific position on the road 9 (S67 / Yes), the fault information generation unit 105 determines the state of the driving fault 5 or the road 9 based on the newly acquired data. The information on the road fault 5 or the state of the road 9 detected and stored in the storage unit 109 is updated to information reflecting the latest state (step S69).
  • the failure information transmission unit 107 transmits the updated information on the traveling failure 5 and the information on the state of the road 9 to the in-vehicle control device 50 of each vehicle 10 (step S71). That is, in the example of the flowchart shown in FIG. 6, only when the information on the driving obstacle 5 or the information on the state of the road 9 is updated, the information on the driving obstacle 5 and the state of the road 9 are transmitted to the in-vehicle control device 50. Information is sent.
  • the data acquisition unit 103 requests all the vehicles 10 to restore the data transmission interval, that is, to reduce the data transmission frequency, and terminates the process. (Step S73).
  • the data transmission interval from the in-vehicle control device 50 to the travel failure detection device 100 and the data transmission interval from the travel failure detection device 100 to the in-vehicle control device 50 are changed to meet the necessity.
  • the frequency of data communication is increased, and the load on the in-vehicle control device 50 and the travel failure detection device 100 can be reduced.
  • the driving failure detection device 100 collects the latest data earlier, and the new driving failure 5 information. And the information on the state of the road 9 can be updated and provided to the in-vehicle control device 50.
  • FIG. 7 is a flowchart showing an example of navigation operation processing by the in-vehicle control device 50.
  • the failure information receiving unit 58 of the in-vehicle control device 50 receives the information on the travel failure 5 transmitted from the travel failure detection device 100 (step S31).
  • the information on the travel obstacle 5 includes information that specifically indicates the position of the travel obstacle 5 on the road 9.
  • the information on the driving obstacle 5 is information on which lane the driving obstacle 5 exists, or any position on the center, right side, or left side of the road 9 Information on whether or not it exists.
  • the obstacle information receiving unit 58 may receive information on the driving obstacle 5 transmitted at predetermined time intervals while the vehicle 10 is traveling, and a passenger such as a driver sets the destination of the vehicle navigation system 1. Sometimes, the travel failure detection device 100 may be requested to transmit information about the travel failure 5 and received. Further, the fault information receiving unit 58 may receive information on the 3D virtual image of the state of the road 9 together with the information on the driving fault 5.
  • the navigation control unit 64 of the in-vehicle control device 50 controls the navigation operation using the received information on the travel failure 5 (step S43).
  • the navigation control unit 64 reflects the information on the driving obstacle 5 in the navigation display displayed on the display device 26.
  • FIG. 8 shows an example of navigation display by the navigation control unit 64.
  • This navigation display when the vehicle 6 approaches the driving obstacle 5 while the symbol 6 indicating the presence of the driving obstacle 5 is displayed on the small-scale road map on the display screen 45, An enlarged window 47 is launched in the right half, and the position of the traveling obstacle 5 on the road 9 is specifically displayed by the symbol 6. For this reason, a passenger such as a driver can grasp in advance the position of the traveling obstacle 5 existing on the road 9 to be traveled, and can avoid the traveling obstacle 5 safely.
  • the navigation control unit 64 may cause the display device 26 to display the 3D virtual image.
  • the navigation control unit 64 executes a warning process (step S45).
  • the warning process is a process for alerting a passenger such as a driver when the travel obstacle 5 is present ahead of the traveling direction of the host vehicle 10.
  • FIG. 9 is a flowchart illustrating an example of the warning process.
  • the navigation control unit 64 determines whether or not the travel obstacle 5 exists ahead of the traveling direction of the host vehicle 10 (step S51). Specifically, the navigation control unit 64 determines whether or not the traveling obstacle 5 exists ahead on the road 9 on which the host vehicle 10 travels. When the travel obstacle 5 does not exist ahead of the traveling direction of the host vehicle 10 (S51 / No), the navigation control unit 64 returns to the start and repeats the determination in step S51.
  • the navigation control unit 64 determines whether the host vehicle 10 has approached the traveling obstacle 5 (step S53). For example, the navigation control unit 64 determines whether or not the distance between the host vehicle 10 and the travel obstacle 5 existing ahead in the traveling direction is less than a preset distance. If the host vehicle 10 is not approaching the travel obstacle 5 (S53 / No), the navigation control unit 64 returns to the start and performs the determination in step S51.
  • the navigation control unit 64 performs a notification process such as generating a sound or a warning sound (step S55).
  • a passenger such as a driver can recognize the travel obstacle 5 and perform a safe avoidance operation even when the navigation display is not being viewed.
  • the travel failure detection device 100 As described above, the travel failure detection device 100 according to the present embodiment generates travel failure information around the travel position based on the travel locus of the vehicle 10 obtained from the history of position information received from the vehicle 10, It transmits to the vehicle-mounted control apparatus 50 mounted in the vehicle 10. Since the travel failure detection device 100 generates information on the travel failure 5 based on the travel locus of the vehicle 10, the travel failure detection device 100 can appropriately detect the position of the travel failure 5.
  • each vehicle 10 can specifically acquire the position of the travel obstacle 5, so that the driver can improve the certainty of avoiding the travel obstacle 5. it can.
  • the travel failure detection device 100 detects the travel failure 5 using travel trajectories of the plurality of vehicles 10 based on data received within a predetermined period set in advance. For this reason, the estimation accuracy of the presence of the running obstacle 5 can be increased. In addition, when the number of data received within a predetermined period is small, the traveling failure detection apparatus 100 shortens the data reception interval so that more data can be accumulated. Thereby, the estimation precision of presence of the driving
  • the travel failure detection device 100 detects the travel failure 5 using the travel state information together with the travel locus information of the vehicle 10. For this reason, even when the road on which the vehicle is traveling is in a dangerous state for the vehicle, the vehicle is detected as the driving obstacle 5, and the driver can improve the certainty of avoiding the driving obstacle 5 related to the road condition. it can.
  • the travel failure detection device 100 changes the data transmission interval from the in-vehicle control device 50 to the travel failure detection device 100 and the data transmission interval from the travel failure detection device 100 to the in-vehicle control device 50. By doing so, it becomes the communication frequency of the data according to necessity, and the load of the vehicle-mounted control apparatus 50 and the driving
  • the travel failure detection device 100 collects the latest data earlier, and information on the new travel failure 5 and the state of the road 9 Can be updated and provided to the in-vehicle control device 50.
  • the travel failure detection device 100 detects the state of the road 9 based on the information received from the vehicle 10, and uses the information on the state of the road 9, the travel locus information, and the road map information. Based on this, a 3D virtual image of the road 9 may be generated.
  • the generated 3D virtual image is transmitted to each vehicle 10 and used for navigation control. Therefore, each vehicle 10 can share the same 3D virtual image information without generating the 3D virtual image information in each vehicle 10.
  • the information on the driving obstacle 5 or the information on the 3D virtual image of the road 9 transmitted to the vehicle 10 side is used for the navigation control operation, but the present invention is not limited to such an example.
  • the fault information receiving unit 58 integrally controls the automatic driving of the received driving fault 5 information or 3D virtual image information of the road 9. May be sent to.
  • the integrated control device uses the information on the traveling obstacle 5 or the information on the 3D virtual image of the road 9 together with the information acquired by the camera or sensor mounted on the vehicle 10 to The angle or the braking force may be controlled.
  • SYMBOLS 1 Vehicle navigation system, 5 ... Running obstacle, 9 ... Road, 9a ... 1st lane, 9b ... 2nd lane, 10 ... Vehicle, 50 ... In-vehicle Control device, 52 ... communication unit, 54 ... running state detection unit, 56 ... position information acquisition unit, 58 ... failure information reception unit, 60 ... data transmission unit, 64 ... navigation Control unit, 100... Travel obstacle detection device, 101... Communication unit, 103... Data acquisition unit, 105 .. fault information generation unit, 107.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

道路上の走行障害の位置を適切に検出して車両の走行前に走行障害情報を提供可能な走行障害検出装置及び車両ナビゲーションシステムを提供する。 走行障害検出装置は、少なくとも車両の位置情報を含むデータを車載制御装置から受信するデータ取得部と、受信した位置情報の履歴から求められる車両の走行軌跡に基づいて走行位置の周囲の走行障害情報を生成する障害情報生成部と、生成した走行障害情報を車載制御装置に送信する障害情報送信部と、を備える。

Description

走行障害検出装置及び車両ナビゲーションシステム
 本発明は、走行障害検出装置及び車両ナビゲーションシステムに関する。
 自動車等の車両が走行する道路において、走行の障害となる事象が発生する場合がある。例えば特許文献1には、路面の凹凸や亀裂等の路面状態を走行前に取得する路面状態検出装置が開示されている。この路面状態検出装置は車両の車輪の回転により加速度センサに作用する加速度に基づいて路面状態を推定し、車両の位置情報と併せてクラウドサーバに送信する。他の車両は、位置情報及び路面状態の情報に基づいて、走行前の路面の状態を取得することが可能になる。
特開2015-229433号公報
 ここで、路面に存在する凹凸や亀裂等の程度が激しく車両の通行が困難な場合に、多くの車両が傷んでいる路面の走行を回避すると、加速度センサの検出値に路面状態が反映されなくなる。そうすると、これから当該路面を走行しようとする車両に対して路面状態の情報が提供されないことになる。また、路面状態だけでなく、工事や事故等によって車両の通行が制限されている場合においても、事前に車両に対してそのような障害の情報を提供することができれば、ドライバはより安全に障害を回避することができると考えられる。
 本発明は上記問題に鑑みてなされたものであり、道路上の走行障害の位置を適切に検出して車両の走行前に走行障害情報を提供可能な走行障害検出装置及び車両ナビゲーションシステムを提供することを目的とする。
 本発明のある観点によれば、少なくとも車両の位置情報を含むデータを車載制御装置から受信するデータ取得部と、受信した位置情報の履歴から求められる車両の走行軌跡に基づいて走行位置の周囲の走行障害情報を生成する障害情報生成部と、生成した走行障害情報を車載制御装置に送信する障害情報送信部と、を備える、走行障害検出装置が提供される。
 また、本発明の別の観点によれば、上述した走行障害検出装置と、自車両の位置情報を取得する位置情報取得部、少なくとも位置情報を含むデータを走行障害検出装置に送信するデータ送信部、走行障害検出装置から走行障害情報を受信する障害情報取得部、及び走行障害情報に基づいてナビゲーション動作を行うナビゲーション制御部、を有する車載制御装置と、を備える、車両ナビゲーションシステムが提供される。
 以上説明したように本発明によれば、道路上の走行障害の位置を適切に検出して車両の走行前に走行障害情報を提供することができる。
本発明の実施の形態に係る車両ナビゲーションシステムの模式図である。 同実施形態に係る車載制御装置を搭載した車両の構成例を示す模式図である。 同実施形態に係る走行障害検出装置及び車載制御装置の構成例を示すブロック図である。 車載制御装置によるデータ送信処理の一例を示すフローチャートである。 走行障害検出装置による走行障害検出処理の一例を示すフローチャートである。 走行障害検出装置によるデータ受信間隔の設定処理の一例を示すフローチャートである。 車載制御装置によるナビゲーション動作処理の一例を示すフローチャートである。 ナビゲーション表示の一例を示す説明図である。 車載制御装置による警告処理の一例を示すフローチャートである。
 以下に添付図面を参照しながら本発明の好適な実施の形態について詳細に説明する。なお本明細書及び図面において実質的に同一の機能構成を有する構成要素については同一の符号を付することにより重複説明を省略する。
 <1.車両ナビゲーションシステムの概要>
 まず、図1を参照して、本実施形態に係る車両ナビゲーションシステム1の概要を説明する。本実施形態に係る車両ナビゲーションシステム1は、道路9を走行中の車両10a,10b,10c,10d(以下、特に区別することを要しない場合には車両10と表記する)が走行障害検出装置100と無線通信を行い、進行方向の前方にある走行障害5の情報を事前に取得して車両10のナビゲーション動作を行うシステムである。走行障害検出装置100は、走行中の車両10から少なくとも位置情報を含むデータを受信し、これらのデータに基づいて走行障害情報を生成し、車両10に送信する。走行障害検出装置100は、例えばクラウドサーバである。
 例えば図1に示すように、片側二車線の道路9の第1の車線9aに走行障害5がある場合、第2の車線9bを走行する車両10c,10dは第2の車線9bを走行し続ける一方、第1の車線9aを走行してきた車両10a,10bは、走行障害5を回避するため第1の車線9aから第2の車線9bに車線変更する。走行障害5が存在する間、第1の車線9aを走行するほぼすべての車両10は、第2の車線9bへと車線変更すると考えられる。
 このように、道路9上に走行障害5がある場合には複数の車両10が当該走行障害5を回避して走行することを踏まえ、本実施形態に係る走行障害検出装置100は、車両10の走行軌跡から車両10が何らかの走行障害5の回避動作をしていると判断できる場合に、道路9上に走行障害5が存在していると判定する。走行障害検出装置100は、検出した走行障害5の情報を複数の車両10に送信することで、各車両10は走行障害5の存在を事前に取得し、ドライバが容易に走行障害5を回避することができる。
 車両10が走行する道路9は通常車幅よりも広く、多くの場合車両10は道路の幅方向の一部を通過するが、本実施形態に係る車両ナビゲーションシステム1では、車両10の位置情報を含むデータが用いられることによって走行障害5の存在位置をより高い精度で推定することができる。
 なお、走行障害5とは、道路9の表面の激しい凹凸、道路9の通行止め、道路9上での交通事故又は道路9上の落下物等、車両10が当該位置を回避して走行する起因となる事象を含む。また、本実施形態に係る車両ナビゲーションシステム1において、走行障害検出装置100は、さらに道路9上のスピードバンプ、積雪、路面の傾斜、又は湾曲する道路の曲率半径の情報を併せて算出し、各車両10に送信可能になっている。
 <2.車両の構成例>
 次に、図2を参照して、本実施形態に係る車両ナビゲーションシステム1の車載制御装置50を搭載した車両10の構成例を説明する。車両10は、車載制御装置50を備える。車載制御装置50は、車両10に搭載された各種のセンサあるいは検出装置(以下、単に「検出器」ともいう。)の信号を受信し、得られた情報を走行障害検出装置100に送信する。また、車載制御装置50は、走行障害検出装置100から走行障害情報を受信し、車両10のナビゲーション動作を行う。
 車両10は、4つの回転センサ13a,13b,13c,13dと、4つの衝撃センサ15a,15b,15c,15dと、GPS(Global Positioning system)ユニット20と、撮像ユニット22と、加速度センサ24と、表示装置26と、舵角センサ34と、ブレーキ制御ユニット40とを備える。
 回転センサ13a,13b,13c,13d(以下、特に区別することを要しない場合には回転センサ13と表記する)及び4つの衝撃センサ15a,15b,15c,15d(以下、特に区別することを要しない場合には衝撃センサ15と表記する)は、車両10の前後左右の車輪11FR,11FL,11RR,11RL(以下、特に区別することを要しない場合には車輪11と表記する)にそれぞれ設けられている。回転センサ13は、それぞれの車輪11の回転数に応じたセンサ信号を出力する。衝撃センサ15は、それぞれの車輪11が受ける衝撃に応じたセンサ信号を出力する。衝撃センサ15は、例えばそれぞれの車輪11に設けられたショックオブザーバに設けられる。回転センサ13及び衝撃センサ15のセンサ信号は車載制御装置50に出力される。
 GPSユニット20は、GPSアンテナ及びGPS装置を有する。GPS装置は、GPSアンテナを介してGPS衛星からの電波を受信し、測位計算によりGPS装置すなわち車両10の現在位置を求める。GPSユニット20は、求めた位置情報を車載制御装置50に出力する。
 撮像ユニット22は、カメラ及び撮像処理装置を有する。カメラは、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を有する撮像装置であり、車両10の前方を撮影する。撮像処理装置は、カメラの撮像データに基づいて公知の画像処理を行い、車両10の前方の車両や障害物、走行車線、路面状態等を認識する。撮像処理装置は、認識した前方の情報を車載制御装置50に出力する。なお、カメラは単眼カメラであってもよく、ステレオカメラであってもよい。
 加速度センサ24は、車両10の前後方向及び車幅方向の水平方向からの傾きに応じたセンサ信号を出力する。加速度センサ24のセンサ信号は、車載制御装置50に出力される。
 舵角センサ34は、ステアリングホイール32の回転角度である舵角に応じたセンサ信号を出力する。舵角センサ34のセンサ信号は、車載制御装置50に出力される。
 ブレーキ制御ユニット40は、それぞれの車輪11に設けられた図示しないブレーキ装置により発生させるブレーキ力を制御する。例えば、ブレーキ制御ユニット40は、電磁弁の駆動を制御することにより、それぞれの車輪11に設けられたブレーキキャリパに供給する油圧を制御し、ブレーキ力を調節する。それぞれの車輪11に生じるブレーキ力の情報は、車載制御装置50に出力される。なお、ブレーキ装置の構成は特に限定されない。
 表示装置26は、車両10の走行位置の周囲の情報とともに道路地図を表示する。表示装置26は、例えば液晶パネル等の表示パネルを有し、車載制御装置50により表示の制御が行われる。表示装置26は、車両のフロントウィンドウへの表示を行うヘッドアップディスプレイであってもよい。
 <3.車載制御装置の構成例>
 次に、図3を参照して、本実施形態に係る車両ナビゲーションシステム1の車載制御装置50の構成例を説明する。それぞれの車両10(10a,10b,10c,10d)に搭載された車載制御装置50(50a,50b,50c,50d)は、通信部52と、走行状態検出部54と、位置情報取得部56と、障害情報受信部58と、データ送信部60と、記憶部62と、ナビゲーション制御部64とを備える。車載制御装置50はCPU(Central Processing Unit)又はMPU(Micro Processing Unit)等のプロセッサを含む。また、車載制御装置50の一部又は全部はCPUやMPU等のプロセッサにより構成される以外に、ファームウェア等の更新可能なもので構成されていてもよく、またCPU等からの指令によって実行されるプログラムモジュール等であってもよい。また、車載制御装置50は、互いに通信可能な複数の制御装置により構成されていてもよい。
 記憶部62は、プロセッサにより実行されるコンピュータプログラム、取得したセンサ信号あるいは情報、及びプロセッサの演算結果の情報を記憶する。記憶部62は、コンピュータプログラム及び制御パラメータ等を記憶するROM(Read Only Memory)や、取得した情報、制御パラメータ及び演算処理結果の情報等を記憶するRAM(Random Access Memory)等の記憶素子を含んでもよい。また、記憶部62は、CD-ROMやストレージ装置等の他の記憶媒体による記憶装置を含んでもよい。
 通信部52は、走行障害検出装置100との間で信号の送受信を行うインタフェースである。通信部52は、走行障害検出装置100と無線通信を行う。なお、図2に示した車両10の構成例では車載制御装置50が通信部52を備えているが、車両10が車載制御装置50とは異なるゲイトウェイ制御装置を備え、当該ゲイトウェイ制御装置を介して車載制御装置50が走行障害検出装置100と通信可能に構成されていてもよい。
 走行状態検出部54は、車両10に備えられた回転センサ13、衝撃センサ15、撮像ユニット22、加速度センサ24、舵角センサ34及びブレーキ制御ユニット40から出力される信号あるいは情報を取得する。走行状態検出部54は、プロセッサによるコンピュータプログラムの実行により実現される機能である。走行状態検出部54は、取得した信号あるいは情報に基づいて、舵角、それぞれの車輪11が受ける衝撃の大きさ、それぞれの車輪11の回転数、車速、車両10の傾き、それぞれの車輪11のスリップの有無、それぞれの車輪11に生じているブレーキ力を求める。求められた情報は、走行状態の情報である。これらの走行状態の幾つかは省略されてもよい。
 位置情報取得部56は、車両10に備えられたGPSユニット20から出力される位置情報を取得する。位置情報取得部56は、プロセッサによるコンピュータプログラムの実行により実現される機能である。位置情報取得部56は、あらかじめ設定されたサイクルごとに位置情報を取得する。
 障害情報受信部58は、走行障害検出装置100から送信される走行障害情報を受信する。障害情報受信部58は、プロセッサによるコンピュータプログラムの実行により実現される機能である。例えば障害情報受信部58は、あらかじめ設定されたサイクルごとに送信されてくる走行障害情報を受信する。
 データ送信部60は、少なくとも車両10の位置情報を含むデータを走行障害検出装置100に送信する。データ送信部60は、プロセッサによるコンピュータプログラムの実行により実現される機能である。例えばデータ送信部60は、あらかじめ設定されたサイクルごとにデータを送信する。本実施形態において、データ送信部60は、車両10の位置情報と併せて走行状態の情報を含むデータを走行障害検出装置100に送信する。
 ナビゲーション制御部64は、走行障害検出装置100から受信した走行障害情報に基づいてナビゲーション動作を行う。ナビゲーション制御部64は、プロセッサによるコンピュータプログラムの実行により実現される機能である。本実施形態において、ナビゲーション制御部64は、表示装置26に表示させる道路地図情報に走行障害情報を反映させ、ドライバに走行障害情報を認識させる。本実施形態において、ナビゲーション制御部64は、走行車線上に存在する走行障害の位置を具体的に表示させてもよい。このとき車載制御装置50が走行障害検出装置100から走行障害情報の3Dバーチャル画像を取得する場合、ナビゲーション制御部64は、当該3Dバーチャル画像を表示装置26に表示させてもよい。また、ナビゲーション制御部64は、走行障害への車両10の接近に伴い、警告音を発生させてドライバに注意喚起を促してもよい。
 <4.走行障害検出装置の構成例>
 次に、図3を参照して、本実施形態に係る走行障害検出装置100の構成例を説明する。走行障害検出装置100は、通信部101と、データ取得部103と、障害情報生成部105と、障害情報送信部107と、記憶部109とを備える。走行障害検出装置100は、CPU又はMPU等のプロセッサを含む。また、走行障害検出装置100の一部又は全部はCPUやMPU等のプロセッサにより構成される以外に、ファームウェア等の更新可能なもので構成されていてもよく、またCPU等からの指令によって実行されるプログラムモジュール等であってもよい。また、走行障害検出装置100は、互いに通信可能な複数の制御装置により構成されていてもよい。
 記憶部109は、プロセッサにより実行されるコンピュータプログラム、取得したセンサ信号あるいは情報、及びプロセッサの演算結果の情報を記憶する。記憶部109は、コンピュータプログラム及び制御パラメータ等を記憶するROM(Read Only Memory)や、取得した情報、制御パラメータ及び演算処理結果の情報等を記憶するRAM(Random Access Memory)等の記憶素子を含んでもよい。また、記憶部109は、CD-ROMやストレージ装置等の他の記憶媒体による記憶装置を含んでもよい。
 通信部101は、車載制御装置50との間で信号の送受信を行うインタフェースである。本実施形態において走行障害検出装置100はいわゆるクラウドサーバであり、通信部101は、車載制御装置50と無線通信を行う。
 データ取得部103は、車載制御装置50から送信されてくるデータを取得する。データ取得部103は、プロセッサによるコンピュータプログラムの実行により実現される機能である。取得するデータには、少なくとも車両10の位置情報が含まれる。本実施形態において、取得するデータには、車両10の位置情報と併せて走行状態の情報が含まれている。
 障害情報生成部105は、取得した位置情報の履歴に基づいて車両10の走行軌跡を求める。また、障害情報生成部105は、求めた走行軌跡に基づいて走行位置の周囲の走行障害情報を生成する。障害情報生成部105は、プロセッサによるコンピュータプログラムの実行により実現される機能である。例えば障害情報生成部105は、求めた複数の車両10の走行軌跡の情報を道路地図情報に重ね合わせることで、複数の車両10が特定の位置で回避動作をしていることを判別し、走行障害5の存在を検出してもよい。
 また、本実施形態に係る走行障害検出装置100において、障害情報生成部105は、車両10の走行状態の情報に基づいて道路の状態を検出してもよい。道路の状態とは、路面の凹凸、道路の傾斜、湾曲する道路の曲率半径等の状態であり、障害情報生成部105は検出した道路の状態が車両10の走行に危険を及ぼすおそれがある場合には走行障害情報と判定する。障害情報生成部105は検出した道路の状態の情報と走行軌跡の情報と道路地図の情報とに基づいて走行障害情報の3Dバーチャル画像の情報を生成してもよい。
 障害情報送信部107は、生成された走行障害情報を車載制御装置50に送信する。障害情報送信部107は、プロセッサによるコンピュータプログラムの実行により実現される機能である。障害情報生成部70が3Dバーチャル画像の情報を生成する場合、障害情報送信部107は併せて3Dバーチャル画像の情報を車載制御装置50に送信する。
 <5.車両ナビゲーションシステムの動作例>
 次に、本実施形態に係る車両ナビゲーションシステム1の動作例を説明する。
 (5-1.車載制御装置によるデータ送信処理)
 図4は、車載制御装置50によるデータ送信処理を示すフローチャートである。
 まず、車載制御装置50の走行状態検出部54は、自車両10の走行状態を検出する(ステップS31)。具体的に、走行状態検出部54は、車両10に備えられた回転センサ13、衝撃センサ15、撮像ユニット22、加速度センサ24、舵角センサ34及びブレーキ制御ユニット40から出力される信号あるいは情報を取得する。また、走行状態検出部54は、取得した信号あるいは情報に基づいて、舵角、それぞれの車輪11が受ける衝撃の大きさ、それぞれの車輪11の回転数、車速、車両10の傾き、それぞれの車輪11のスリップ、それぞれの車輪11に生じているブレーキ力を求める。これらの走行状態の幾つかは省略されてもよい。
 次いで、車載制御装置50の位置情報取得部56は、自車両10の位置情報を取得する(ステップS33)。具体的に、位置情報取得部56は、車両10に備えられたGPSユニット20から出力される位置情報を取得する。次いで、車載制御装置50のデータ送信部60は、通信部52を介して、少なくとも自車両10の位置情報及び走行状態の情報を含むデータを走行障害検出装置100に送信する(ステップS35)。
 車載制御装置50は、図4に示すデータ送信処理を、あらかじめ設定されたサイクルごとに実行する。あるいは、車載制御装置50は、走行障害検出装置100からの送信要求を受けて、当該データ送信処理を実行してもよい。
 (5-2.走行障害検出装置による走行障害検出処理)
 図5は、走行障害検出装置100による走行障害検出処理を示すフローチャートである。
 まず、走行障害検出装置100のデータ取得部103は、少なくとも車両10の位置情報を含むデータを車載制御装置50から受信する(ステップS11)。本実施形態において、データ取得部103は、車両10の位置情報と併せて走行状態の情報を含むデータを受信する。データ取得部103は、車載制御装置50を搭載した複数の車両10からデータを受信する。データ取得部103は、受信した位置情報及び走行状態の情報を含むデータを記憶部109に記憶する。
 次いで、データ取得部103は、車載制御装置50からデータを受信する期間としてあらかじめ設定された所定期間が経過したか否かを判別する(ステップS13)。所定期間は、受信したデータに基づいて走行障害5の有無を判別するに足りる適切な時間に設定される。例えば所定期間は、5~10分に設定されてもよい。
 データ取得部103は、過去の所定期間内に受信したデータ数に基づいてデータを受信する間隔を短くしてデータの受信回数を多くしてもよい。これにより、また、同一車両10の位置情報の取得間隔が短くなって、当該車両10の走行軌跡をより精度よく求めることができる。あるいは、データ取得部103は、過去の所定期間内に受信したデータ数に基づいて所定期間の長さを変更してもよい。例えばある期間内に受信したデータ数が少なく、生成される走行障害情報の信頼性が低い場合には、所定期間を長くしてもよい。
 所定期間が経過していない場合(S13/No)、データ取得部103は、ステップS11に戻って車載制御装置50からのデータの受信を繰り返す。一方、所定期間が経過した場合(S13/Yes)、走行障害検出装置100の障害情報生成部105は、記憶部109に蓄積されたデータのうちの位置情報の履歴に基づいてそれぞれの車両10ごとの走行軌跡を演算する(ステップS15)。障害情報生成部105は、それぞれの車両10ごとに、位置情報の履歴に基づいて走行軌跡を演算する。
 次いで、障害情報生成部105は、車両10の走行軌跡の情報に基づいて走行位置の周囲の走行障害情報を生成する(ステップS17)。例えば、障害情報生成部105は、記憶部109に蓄積されたそれぞれの車両10の走行軌跡の情報と道路地図の情報とを統合して、道路9上での車両10の回避動作を判定することにより走行障害5の位置を特定する。例えば、障害情報生成部105は、複数の車両10が道路9上のある特定の位置を回避するように走行していることを認識したときに、当該回避している位置に走行障害5が存在していると判定する。
 障害情報生成部105は、車両10の走行軌跡の情報と併せて車両10の走行状態の情報を用いて、走行障害5の存在を判定してもよい。例えば障害情報生成部105は、車両10の走行軌跡から検出される車両10の旋回動作の直前に車輪11へのブレーキ力が急激に上昇している場合には、接近状態でドライバが認識し得るような走行障害5が存在すると判定してもよい。また、障害情報生成部105は、撮像ユニット22を用いて取得される車両10の前方の撮像情報を画像処理することにより、道路9上の走行障害5を検出してもよい。
 さらに、本実施形態において、障害情報生成部105は、車両10の走行状態の情報に基づいて道路9の状態を併せて検出してもよい。例えば湾曲する道路9の曲率半径は、舵角センサ34を用いて検出される舵角の情報に基づいて推定することができる。また、道路9の傾斜角度は、加速度センサ24を用いて検出される傾斜角度の情報に基づいて推定することができる。また、路面の凹凸やスピードバンプ、積雪状態は、例えば回転センサ13を用いて検出されるそれぞれの車輪11の回転数の情報及び衝撃センサ15を用いて検出されるそれぞれの車輪11への衝撃の情報に基づいて推定することができる。そして、障害情報生成部105は、検出した道路9の状態が、車両10の走行に影響を及ぼし得る状態にあると判定される場合に、当該車両10の走行位置の路面に走行障害5が存在すると判定してもよい。特に複数の車両10から受信した走行状態の情報を重ね合わせて道路9の状態を検出することにより、道路9の状態の検出精度を高めることができる。
 このとき、障害情報生成部105は、検出した道路9の状態の情報と走行軌跡の情報と道路地図の情報とに基づいて、道路9の3Dバーチャル画像の情報を生成してもよい。生成される3Dバーチャル画像はそれぞれの車両10の車載制御装置50に送信される。これにより、それぞれの車両10において3Dバーチャル画像の情報を生成する必要がなく、同一の3Dバーチャル画像の情報を複数の車両10で共有することができる。
 次いで、障害情報生成部105は、記憶部109に記憶されている走行障害5の情報を上書きし、最新の情報に更新する(ステップS19)。このとき、障害情報生成部105は、最新の走行障害5の情報の生成に用いたデータを記憶部109から消去してもよい。これにより、次の期間においては、当該期間に蓄積されたデータに基づいて走行障害5の情報が生成されるため、随時最新の走行障害5の情報を生成することができる。また、記憶部109に蓄積されるデータ量が膨大になることを避けることができる。
 次いで、障害情報送信部107は、通信部101を介して走行障害5の情報を車両10の車載制御装置50に送信する(ステップS21)。この走行障害5の情報は、車載制御装置50を搭載したすべての車両10に向けて送信されてもよく、走行障害5が存在する位置から所定の距離内を走行する車両10に向けて送信されてもよい。
 走行障害検出装置100は、図5に示す走行障害5の検出処理を、あらかじめ設定されたサイクルごとに実行し、それぞれの車両10の車載制御装置50に対して走行障害5の情報を提供する。
 (5-3.走行障害検出装置による走行障害検出処理の別の例)
 走行障害検出装置100のデータ取得部103が車載制御装置50からデータを受信する間隔や、走行障害送信部107が車載制御装置50に走行障害5の情報あるいは道路9の状態の情報を送信する間隔は、適宜変更されてもよい。
 図6は、走行障害検出装置100による走行障害検出処理の別の例を示すフローチャートである。
 まず、走行障害検出装置100のデータ取得部103はあらかじめ設定された受信間隔で車載制御装置50から少なくとも車両10の位置情報と走行状態の情報を含むデータを受信する(ステップS61)。
 次いで、データ取得部103は、受信したデータがすでに走行障害検出装置100の記憶部109に記憶されている走行障害5の情報あるいは道路9の状態の情報と異なっているか否かを判別する(ステップS63)。例えば新たに受信したデータにおける車両10の走行軌跡が、走行障害5が存在していると認識されている位置を通過している場合や、新たに受信したデータにおける車両10の走行状態が、道路9の凹凸や急カーブが存在していると認識されている位置において異なる状態を示す場合に、データ取得部103は受信したデータがすでに記憶部109に記憶されている情報と異なっていると判定する。
 受信したデータがすでに記憶部109に記憶されている情報と異なっていない場合(S63/No)、データ取得部103は、現在のデータ受信間隔を維持して処理を終了する。一方、受信したデータがすでに記憶部109に記憶されている情報と異なっている場合(S63/Yes)、データ取得部103は、対象の道路9の周囲を走行中のすべての車両10に対して、データの送信間隔を短くするよう、つまりデータの送信頻度を高くするよう要求する(ステップS65)。
 次いで、データ取得部103は、対象の道路9の周囲を走行中のすべての車両10が道路9上の特定の位置を回避しているか否かを判別する(ステップS67)。すべての車両10が道路9上の特定の位置を回避していない場合(S67/No)、データ取得部103はデータの不一致が一時的に生じたものであると見做して無視する(ステップS75)。一方、すべての車両10が道路9上の特定の位置を回避している場合(S67/Yes)、障害情報生成部105は、新たに取得したデータに基づいて走行障害5あるいは道路9の状態を検出し、記憶部109に記憶されている走行障害5の情報あるいは道路9の状態の情報を、直近の状態を反映した情報に更新する(ステップS69)。
 次いで、障害情報送信部107は、更新された走行障害5の情報及び道路9の状態の情報をそれぞれの車両10の車載制御装置50に送信する(ステップS71)。つまり、図6に示したフローチャートの例では、走行障害5の情報あるいは道路9の状態の情報が更新された場合にのみ、車載制御装置50に対して走行障害5の情報及び道路9の状態の情報が送信される。ステップS71又はステップS75の処理の終了後、データ取得部103は、すべての車両10に対して、データの送信間隔を元に戻すよう、つまりデータの送信頻度を低くするよう要求して処理を終了する(ステップS73)。
 以上のように、車載制御装置50から走行障害検出装置100へのデータの送信間隔、及び走行障害検出装置100から車載制御装置50へのデータの送信間隔を変更することにより、必要性に見合ったデータの通信頻度となり、車載制御装置50及び走行障害検出装置100の負荷を低減することができる。また、上記の例では、走行障害検出装置100は、車載制御装置50から受信したデータが現在記憶されている情報と食い違う場合には、より早く最新のデータを集め、新たな走行障害5の情報及び道路9の状態の情報に更新し、車載制御装置50に提供することができる。
 (5-4.車載制御装置によるナビゲーション動作処理)
 図7は、車載制御装置50によるナビゲーション動作処理の一例を示すフローチャートである。
 まず、車載制御装置50の障害情報受信部58は、走行障害検出装置100から送信されてくる走行障害5の情報を受信する(ステップS31)。この走行障害5の情報は、道路9上の走行障害5の位置を具体的に示す情報を含む。例えば走行障害5の情報は、片側二車線以上の道路9の場合、走行障害5がどの車線に存在するのかといった情報や、あるいは、走行障害5が道路9の中央、右側、左側のいずれの位置に存在するのかといった情報を含む。障害情報受信部58は、車両10の走行中に所定の時間間隔で送信されてくる走行障害5の情報を受信してもよく、ドライバ等の搭乗者が車両ナビゲーションシステム1の目的地を設定したときに走行障害検出装置100に対して走行障害5の情報の送信を要求し、受信してもよい。さらに障害情報受信部58は、走行障害5の情報と併せて道路9の状態の3Dバーチャル画像の情報を受信してもよい。
 次いで、車載制御装置50のナビゲーション制御部64は、受信した走行障害5の情報を用いてナビゲーション動作を制御する(ステップS43)。本実施形態において、ナビゲーション制御部64は、表示装置26に表示させるナビゲーション表示に走行障害5の情報を反映させる。図8は、ナビゲーション制御部64によるナビゲーション表示の一例を示す。このナビゲーション表示においては、表示画面45に縮尺の小さい道路地図上に走行障害5の存在を示す記号6が表示されつつ、自車両10が走行障害5に接近した場合には、表示画面45内の右半分に拡大ウィンドウ47が立ち上げられ、道路9上の走行障害5の位置が記号6により具体的に表示されるようになっている。このため、ドライバ等の搭乗者は、これから走行する道路9上に存在する走行障害5の位置を事前に把握することができ、走行障害5を安全に回避することができる。
 また、障害情報受信部58が走行障害検出装置100から道路9の3Dバーチャル画像の情報を受信する場合、ナビゲーション制御部64は表示装置26に当該3Dバーチャル画像を表示させてもよい。
 次いで、ナビゲーション制御部64は、警告処理を実行する(ステップS45)。警告処理は、自車両10の進行方向の前方に走行障害5が存在する場合に、ドライバ等の搭乗者に注意喚起するための処理である。
 図9は、警告処理の一例を示すフローチャートである。
 まず、ナビゲーション制御部64は、自車両10の進行方向前方に走行障害5が存在するか否かを判別する(ステップS51)。具体的に、ナビゲーション制御部64は、自車両10が走行する道路9上の前方に走行障害5が存在するか否かを判別する。自車両10の進行方向前方に走行障害5が存在しない場合(S51/No)、ナビゲーション制御部64は、スタートに戻ってステップS51の判別を繰り返す。
 一方、自車両10の進行方向前方に走行障害5が存在する場合(S51/Yes)、ナビゲーション制御部64は、自車両10が走行障害5に接近したか否かを判別する(ステップS53)。例えばナビゲーション制御部64は、自車両10と、進行方向前方に存在する走行障害5との距離があらかじめ設定した距離未満になったか否かを判別する。自車両10が走行障害5に接近していない場合(S53/No)、ナビゲーション制御部64は、スタートに戻ってステップS51の判別を行う。
 一方、自車両10が走行障害5に接近した場合(S53/Yes)、ナビゲーション制御部64は、音声又は警告音を発生させる等の報知処理を行う(ステップS55)。これにより、ドライバ等の搭乗者は、ナビゲーション表示を見ていない場合であっても走行障害5を認知して、安全な回避動作を行うことができる。
 <6.本実施形態による効果>
 以上説明したように、本実施形態に係る走行障害検出装置100は、車両10から受信した位置情報の履歴から求められる車両10の走行軌跡に基づいて走行位置の周囲の走行障害情報を生成し、車両10に搭載された車載制御装置50に送信する。走行障害検出装置100は、車両10の走行軌跡に基づいて走行障害5の情報を生成することから、走行障害5の位置を適切に検出することができる。
 また、本実施形態に係る車両ナビゲーションシステム1によれば、それぞれの車両10が走行障害5の位置を具体的に取得することができるため、ドライバが走行障害5を回避する確実性を高めることができる。
 また、本実施形態に係る走行障害検出装置100は、あらかじめ設定した所定期間内に受信したデータに基づいて複数の車両10の走行軌跡を用いて走行障害5を検出する。このため、走行障害5の存在の推定精度を高めることができる。また、走行障害検出装置100は、所定期間内に受信したデータ数が少ない場合にはデータの受信間隔を短くして、より多くのデータを蓄積できるようにする。これにより、走行障害5の存在の推定精度を高めることができる。
 また、本実施形態に係る走行障害検出装置100は、車両10の走行軌跡の情報と併せて走行状態の情報を用いて走行障害5を検出する。このため、走行する道路が車両の走行に危険な状態となっている場合にも走行障害5として検出されるようになり、ドライバが道路の状態に関する走行障害5を回避する確実性を高めることができる。
 また、本実施形態に係る走行障害検出装置100は、車載制御装置50から走行障害検出装置100へのデータの送信間隔、及び走行障害検出装置100から車載制御装置50へのデータの送信間隔を変更することにより、必要性に見合ったデータの通信頻度となり、車載制御装置50及び走行障害検出装置100の負荷を低減することができる。また、走行障害検出装置100は、車載制御装置50から受信したデータが現在記憶されている情報と食い違う場合には、より早く最新のデータを集め、新たな走行障害5の情報及び道路9の状態の情報に更新し、車載制御装置50に提供することができる。
 また、本実施形態に係る走行障害検出装置100は、車両10から受信した情報に基づいて道路9の状態を検出し、当該道路9の状態の情報と走行軌跡の情報と道路地図の情報とに基づいて道路9の3Dバーチャル画像を生成してもよい。生成された3Dバーチャル画像はそれぞれの車両10に送信されてナビゲーション制御に用いられる。したがって、それぞれの車両10において3Dバーチャル画像の情報を生成することなく、それぞれの車両10が同一の3Dバーチャル画像の情報を共有することができる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば上記の実施形態では車両10側に送信された走行障害5の情報又は道路9の3Dバーチャル画像の情報がナビゲーション制御動作に用いられていたが、本発明はかかる例に限定されない。車両10が自動運転制御を実行可能な車両である場合、障害情報受信部58は受信した走行障害5の情報又は道路9の3Dバーチャル画像の情報を、自動運転を統合的に制御する統合制御装置に送信してもよい。この場合、統合制御装置は、車両10に搭載されたカメラやセンサ等が取得する情報と併せて走行障害5の情報又は道路9の3Dバーチャル画像の情報を用いて、車両10の加減速、舵角又はブレーキ力等を制御してもよい。
1・・・車両ナビゲーションシステム、5・・・走行障害、9・・・道路、9a・・・第1の車線、9b・・・第2の車線、10・・・車両、50・・・車載制御装置、52・・・通信部、54・・・走行状態検出部、56・・・位置情報取得部、58・・・障害情報受信部、60・・・データ送信部、64・・・ナビゲーション制御部、100・・・走行障害検出装置、101・・・通信部、103・・・データ取得部、105・・・障害情報生成部、107・・・障害情報送信部
 

Claims (8)

  1.  少なくとも車両の位置情報を含むデータを車載制御装置から受信するデータ取得部と、
     受信した前記位置情報の履歴から求められる前記車両の走行軌跡に基づいて走行位置の周囲の走行障害情報を生成する障害情報生成部と、
     生成した前記走行障害情報を車載制御装置に送信する障害情報送信部と、
     を備える、走行障害検出装置。
  2.  前記障害情報生成部は、前記車両の走行軌跡と道路地図の情報とを統合して道路に存在する走行障害情報を生成する、請求項1に記載の走行障害検出装置。
  3.  前記障害情報生成部は、あらかじめ設定した所定期間ごとに、複数の車載制御装置から受信した前記データに基づいて前記走行障害情報を生成する、請求項1又は2に記載の走行障害検出装置。
  4.  前記障害情報生成部は、前記所定期間内に受信したデータ数に基づいて前記データを受信する間隔を変更する、請求項3に記載の走行障害検出装置。
  5.  前記障害情報生成部は、前記所定期間内に受信した前記データに基づいて前記走行障害情報を生成した後、前記走行障害情報の生成に用いた前記データを消去する、請求項3又は4に記載の走行障害検出装置。
  6.  前記データ取得部は、前記車両の走行状態の情報をさらに含むデータを受信し、
     前記障害情報生成部は、前記走行軌跡の情報及び前記走行状態の情報に基づいて前記走行障害情報を生成する、請求項1~5のいずれか1項に記載の走行障害検出装置。
  7.  前記走行状態の情報が、ステアリングホイールの舵角の情報、車輪の回転数の情報、車速の情報、車輪の衝撃監視装置に生じた衝撃の情報、車両の傾斜角の情報、車輪のスリップ量の情報又は車輪のブレーキ力の情報のうちの少なくとも一つの情報を含む、請求項6に記載の走行障害検出装置。
  8.  請求項1~7のいずれか1項に記載の走行障害検出装置と、
     自車両の位置情報を取得する位置情報取得部、少なくとも前記位置情報を含むデータを前記走行障害検出装置に送信するデータ送信部、前記走行障害検出装置から走行障害情報を受信する障害情報取得部、及び前記走行障害情報に基づいてナビゲーション動作を行うナビゲーション制御部、を有する車載制御装置と、
     を備える、車両ナビゲーションシステム。
     
PCT/JP2018/012781 2017-06-09 2018-03-28 走行障害検出装置及び車両ナビゲーションシステム WO2018225347A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18813142.9A EP3637385A4 (en) 2017-06-09 2018-03-28 DRIVING OBSTACLE DETECTION DEVICE AND VEHICLE NAVIGATION SYSTEM
JP2019523360A JP6866479B2 (ja) 2017-06-09 2018-03-28 走行障害検出装置及び車両ナビゲーションシステム
US16/619,560 US20200166360A1 (en) 2017-06-09 2018-03-28 Travel obstruction detection device and vehicle navigation system
CN201880051505.7A CN110998685B (zh) 2017-06-09 2018-03-28 行进障碍检测装置和车辆导航系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-114151 2017-06-09
JP2017114151 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225347A1 true WO2018225347A1 (ja) 2018-12-13

Family

ID=64566449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012781 WO2018225347A1 (ja) 2017-06-09 2018-03-28 走行障害検出装置及び車両ナビゲーションシステム

Country Status (5)

Country Link
US (1) US20200166360A1 (ja)
EP (1) EP3637385A4 (ja)
JP (1) JP6866479B2 (ja)
CN (1) CN110998685B (ja)
WO (1) WO2018225347A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020304A1 (ja) * 2019-07-29 2021-02-04 京セラ株式会社 基地局、路側機、交通通信システム、交通管理方法、及び教師データ生成方法
JP2021022221A (ja) * 2019-07-29 2021-02-18 京セラ株式会社 基地局、交通通信システム、及び交通管理方法
WO2022209607A1 (ja) * 2021-03-29 2022-10-06 本田技研工業株式会社 情報処理装置、車両、走行支援方法および走行支援プログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359551B2 (ja) * 2019-02-26 2023-10-11 本田技研工業株式会社 道路管理システム
DE102019206562A1 (de) * 2019-05-07 2020-11-12 Volkswagen Aktiengesellschaft Verfahren zum Ermitteln einer Fahrzeugtrajektorie
EP4189658A4 (en) * 2020-07-28 2024-08-14 Ception Tech Ltd ROAD CONDITION MONITORING THROUGH ANOMALY DETECTION
WO2022208765A1 (ja) * 2021-03-31 2022-10-06 株式会社Subaru ナビゲーションシステム、サーバ装置、ナビゲーション装置および車両
CN118015589B (zh) * 2024-01-19 2024-08-30 元橡科技(北京)有限公司 全局障碍物识别方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171317A (ja) * 2012-02-17 2013-09-02 Aisin Aw Co Ltd 交通情報配信システム、ナビゲーションシステム、交通情報配信プログラム、及び交通情報配信方法
JP2015138316A (ja) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 特異走行箇所検出装置及び特異走行箇所検出方法
JP2015229433A (ja) 2014-06-05 2015-12-21 太平洋工業株式会社 路面状態検出装置及び路面状態検出システム
WO2016030934A1 (ja) * 2014-08-25 2016-03-03 パイオニア株式会社 情報処理装置、制御方法、プログラム及び記憶媒体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7421334B2 (en) * 2003-04-07 2008-09-02 Zoom Information Systems Centralized facility and intelligent on-board vehicle platform for collecting, analyzing and distributing information relating to transportation infrastructure and conditions
WO2013031095A1 (ja) * 2011-08-31 2013-03-07 日産自動車株式会社 車両運転支援装置
CN104471350A (zh) * 2012-07-17 2015-03-25 三菱电机株式会社 车载用交通信息通知装置
JP2014115891A (ja) * 2012-12-11 2014-06-26 Suzuki Motor Corp 車両用運転支援システム
US9812007B2 (en) * 2013-03-28 2017-11-07 Honda Motor Co., Ltd. Map generation system, map generation device, map generation method, and program
US9475500B2 (en) * 2014-11-12 2016-10-25 GM Global Technology Operations LLC Use of participative sensing systems to enable enhanced road friction estimation
DE102015220821A1 (de) * 2015-10-26 2017-04-27 Robert Bosch Gmbh Steuern eines Kraftfahrzeugs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171317A (ja) * 2012-02-17 2013-09-02 Aisin Aw Co Ltd 交通情報配信システム、ナビゲーションシステム、交通情報配信プログラム、及び交通情報配信方法
JP2015138316A (ja) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 特異走行箇所検出装置及び特異走行箇所検出方法
JP2015229433A (ja) 2014-06-05 2015-12-21 太平洋工業株式会社 路面状態検出装置及び路面状態検出システム
WO2016030934A1 (ja) * 2014-08-25 2016-03-03 パイオニア株式会社 情報処理装置、制御方法、プログラム及び記憶媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637385A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020304A1 (ja) * 2019-07-29 2021-02-04 京セラ株式会社 基地局、路側機、交通通信システム、交通管理方法、及び教師データ生成方法
JP2021022221A (ja) * 2019-07-29 2021-02-18 京セラ株式会社 基地局、交通通信システム、及び交通管理方法
JP7401217B2 (ja) 2019-07-29 2023-12-19 京セラ株式会社 基地局、交通通信システム、及び交通管理方法
WO2022209607A1 (ja) * 2021-03-29 2022-10-06 本田技研工業株式会社 情報処理装置、車両、走行支援方法および走行支援プログラム

Also Published As

Publication number Publication date
JPWO2018225347A1 (ja) 2020-03-19
EP3637385A4 (en) 2020-07-01
CN110998685B (zh) 2023-02-14
CN110998685A (zh) 2020-04-10
EP3637385A1 (en) 2020-04-15
US20200166360A1 (en) 2020-05-28
JP6866479B2 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2018225347A1 (ja) 走行障害検出装置及び車両ナビゲーションシステム
US10429848B2 (en) Automatic driving system
US9896094B2 (en) Collision avoidance control system and control method
US11150649B2 (en) Abnormality detection device
US11890986B2 (en) Notification device
JP6428713B2 (ja) 情報表示装置
JP6402684B2 (ja) 表示装置
JP6639194B2 (ja) 情報表示装置
US9896098B2 (en) Vehicle travel control device
US8977420B2 (en) Vehicle procession control through a traffic intersection
US20190071071A1 (en) Vehicle control device, vehicle control method, and storage medium
JP6705368B2 (ja) 自動運転装置
US10421394B2 (en) Driving assistance device, and storage medium
US11511805B2 (en) Vehicle guidance device, method, and computer program product
CN111332273A (zh) 自动挂接操纵期间的拖车和车辆碰撞检测及响应
WO2019203160A1 (ja) 運転支援システムおよび方法
US11511733B2 (en) Vehicle parking system
JP2011063106A (ja) 車両制御装置および車両制御方法
WO2016194135A1 (ja) 車両制御装置及び車両制御方法
JP2011063105A (ja) 車両制御装置
CN112622894A (zh) 滑水预防
JP6354646B2 (ja) 衝突回避支援装置
WO2024154271A1 (ja) 運転支援装置、運転支援方法及び記録媒体
JP7340669B2 (ja) 制御装置、制御方法、制御プログラム及び制御システム
JP5287464B2 (ja) 運転支援システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523360

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018813142

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018813142

Country of ref document: EP

Effective date: 20200109