WO2012170338A1 - Method and apparatus (1) for making absorbent structures with absorbent material - Google Patents

Method and apparatus (1) for making absorbent structures with absorbent material Download PDF

Info

Publication number
WO2012170338A1
WO2012170338A1 PCT/US2012/040707 US2012040707W WO2012170338A1 WO 2012170338 A1 WO2012170338 A1 WO 2012170338A1 US 2012040707 W US2012040707 W US 2012040707W WO 2012170338 A1 WO2012170338 A1 WO 2012170338A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
rods
supporting sheet
absorbent material
moving endless
Prior art date
Application number
PCT/US2012/040707
Other languages
French (fr)
Inventor
Hans Adolf Jackels
Carsten Heinrich Kreuzer
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to SG2013086467A priority Critical patent/SG195104A1/en
Priority to BR112013030597A priority patent/BR112013030597A2/en
Priority to RU2013156992/12A priority patent/RU2573343C2/en
Priority to JP2014514521A priority patent/JP5951760B2/en
Priority to CA2838702A priority patent/CA2838702C/en
Priority to CN201280028312.2A priority patent/CN103596531B/en
Priority to MX2013014593A priority patent/MX2013014593A/en
Publication of WO2012170338A1 publication Critical patent/WO2012170338A1/en
Priority to ZA2013/09506A priority patent/ZA201309506B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F13/15764Transferring, feeding or handling devices; Drives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/49Absorbent articles specially adapted to be worn around the waist, e.g. diapers
    • A61F13/49001Absorbent articles specially adapted to be worn around the waist, e.g. diapers having preferential bending zones, e.g. fold lines or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F13/15617Making absorbent pads from fibres or pulverulent material with or without treatment of the fibres
    • A61F13/15642Making absorbent pads from fibres or pulverulent material with or without treatment of the fibres by depositing continuous layers or pads of fibrous material on single sheets or webs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F13/15617Making absorbent pads from fibres or pulverulent material with or without treatment of the fibres
    • A61F13/15658Forming continuous, e.g. composite, fibrous webs, e.g. involving the application of pulverulent material on parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F13/15804Plant, e.g. involving several steps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/47Sanitary towels, incontinence pads or napkins
    • A61F13/4704Sanitary towels, incontinence pads or napkins having preferential bending zones, e.g. fold lines or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/531Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad
    • A61F13/532Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/531Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad
    • A61F13/532Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad
    • A61F13/5323Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad having absorbent material located in discrete regions, e.g. pockets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F2013/15821Apparatus or processes for manufacturing characterized by the apparatus for manufacturing
    • A61F2013/15861Apparatus or processes for manufacturing characterized by the apparatus for manufacturing for bonding
    • A61F2013/1591Apparatus or processes for manufacturing characterized by the apparatus for manufacturing for bonding via adhesive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F2013/15821Apparatus or processes for manufacturing characterized by the apparatus for manufacturing
    • A61F2013/15926Apparatus or processes for manufacturing characterized by the apparatus for manufacturing for vacuum forming
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/539Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterised by the connection of the absorbent layers with each other or with the outer layers
    • A61F2013/53908Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterised by the connection of the absorbent layers with each other or with the outer layers with adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4871Underwear
    • B29L2031/4878Diapers, napkins

Definitions

  • the present invention relates to a method for making specific absorbent structures with absorbent material, preferably with longitudinally extending strips that are free of absorbent material, and apparatus for making such absorbent structures, and specific absorbent structures obtained therewith, suitable for absorbent articles, such as diapers and sanitary napkins.
  • Absorbent articles such as diapers and sanitary napkins, absorb and contain body exudates.
  • a disposable absorbent article such as a disposable diaper, may be worn for several hours in a dry state or in a urine-loaded state. Accordingly, efforts have been made toward improving the fit and comfort of the absorbent article to the wearer, both when the article is dry and when the article is fully or partially loaded with liquid exudate, while maintaining or enhancing the absorbing and containing functions of the article.
  • Some absorbent articles like diapers, contain absorbent material such as super absorbent polymers that absorbs very high quantities of liquid and causes the absorbent article to swell significantly. Such articles will thus increase significantly in volume during use, and sometimes in particular in the crotch area between the wearer's legs, which may render the article uncomfortable.
  • improved liquid transportation can be achieved by the provision of transportation channels for distributing liquid in the absorbent article, e.g. the absorbent structure thereof.
  • improved fit can be obtained by providing absorbent articles with absorbent structures whereby the absorbent material is structured in longitudinal direction, optionally with areas that comprise less or no absorbent material, for improved bending flexibility in use (in the direction corresponding to the longitudinal direction (e.g. this may be the machine direction).
  • the present invention provides an apparatus and method for providing such absorbent structures, and specific absorbent structures obtained thereby.
  • the present invention provides a method of making an absorbent structure having an absorbent layer and therein longitudinally extending strips that are substantially free of absorbent material (100), said absorbent layer being supported on a supporting sheet (200), said method comprising the steps of:
  • said moving endless surface (30) being connected to one or more vacuum systems (38) applying a vacuum suction to said receptacles (33) or part thereof,
  • the invention also provides an apparatus (1) for making an absorbent structure having an absorbent layer and therein substantially longitudinally extending strips that are substantially free of absorbent material (100), said layer being supported on a supporting sheet (200), said apparatus (1) comprising:
  • a feeder for feeding an absorbent material (100) to a moving endless surface (30), a supporting sheet (200) transporter (210), for transporting a supporting sheet (200) to said moving endless surface (30);
  • said feeder preferably being a further moving endless surface (20) with reservoir(s) for receiving and retaining a said absorbent material (100) and transferring said absorbent material (100) to said moving endless surface (30), said further moving endless surface (20) being connected to a vacuum system (28) to apply vacuum suction to said reservoir(s).
  • said absorbent structure comprise an absorbent layer with absorbent material (100) formed into substantially longitudinally extending strips of absorbent material (100) on said supporting sheet (200), optionally in said undulations (201), with therein between strips with substantially no absorbent material (100), optionally on said crests (202).
  • step viii) is performed; hereto the supporting sheet (200) placed on the receptacle, or the part thereof that is to overlap with the receptacle, may be wider than the width of the receptacle, so-called over-in-feeding of the supporting sheet (200) in transverse dimension, e.g. in the transverse direction, for example the Cross-machine dimension (CD).
  • the supporting sheet (200) placed on the receptacle, or the part thereof that is to overlap with the receptacle may be wider than the width of the receptacle, so-called over-in-feeding of the supporting sheet (200) in transverse dimension, e.g. in the transverse direction, for example the Cross-machine dimension (CD).
  • CD Cross-machine dimension
  • the receptacle(s) may have a first average width (e.g. in CD) dimension and said supporting sheet (200) on said receptacle (33) has a second average width dimension (e.g. in CD), and the ratio of said first to said second average width dimension is at least 1:1.1, or at least 1:1.2, or at least 1:1.3, typically up 1:3.
  • first average width e.g. in CD
  • second average width dimension e.g. in CD
  • the ratio of said first to said second average width dimension is at least 1:1.1, or at least 1:1.2, or at least 1:1.3, typically up 1:3.
  • the method may comprise the step of providing a first adhesive application unit (50), and applying an adhesive to said absorbent layer prior to removing it from said moving endless surface (30), or immediately subsequent thereto, and/or the step of providing a second adhesive application unit (51), and applying an adhesive to said supporting sheet (200), prior to deposition of said absorbent material (100) thereon; for example, this may be done selectively, either to the areas of the supporting sheet (200) that are to meet with the rods (36), or the areas of the supporting sheet (200) that are to be in between neighboring rods (36); for example said adhesive may be applied only in substantially longitudinal stripes on the areas of said supporting sheet (200) that coincides with said crests (202).
  • the method may be to provide a laminate of two of said absorbent structures, e.g. the method may be such that said steps i) to vii) and ix), and optionally step vii) are repeated to form a second absorbent structure, and whereby the method comprises the subsequent step of combining said first absorbent structure and said second absorbent structure, such that said absorbent materials (100) of both structures are sandwiched between said supporting sheet (200) of the first structure and the supporting sheet (200) of the second structure.
  • each of said rods (36) may for example have said maximum transverse dimension which is at least 1 mm, or at least 2 mm, or for example at least 3 mm or at least 4mm, and typically up to 20 mm or up to 15mm or up to 10 mm; the minimum distance transversely in between neighboring rods (36) may for example be at least 2 mm, or at least 3 mm, or at least 5 mm, or at least 10 mm, and for example up to 30 mm, or up to 20 mm; said rods (36) each may have an average height dimension of for example at least at least 2 mm, or for example at least 3 mm. There may for example be at least 5 rods (36), or for example at least 7 rods (36).
  • the method may comprise the step of providing a pressure roll (70) with a raised pressure pattern (71), corresponding to the pattern of said rods (36) and/or said crests (202) if present, and mating said pressure roll (70) pattern with said absorbent structure, on the supporting sheet thereof, and/or on a further material, after such a further material is superposed on said absorbent layer, (e.g.
  • the supporting sheet (200) is folded over it, a further supporting sheet (300) is placed on it, or and acquisition layer is placed on it, or a further absorbent structure is placed on it, such that the absorbent material (100) is sandwiched between the two supporting sheets (200; 300), whereby said pressure pattern (71) mates with said supporting sheet (200), or said further material, in the areas where, on the opposite surface, no absorbent material (100) is present
  • Said feeder is adjacent and in close proximity to said moving endless surface (30), and they transfer of said absorbent material (100) takes place in a so-called meeting point.
  • the feeder may be a further moving endless surface (20) with reservoir(s), such as a so-called print roll, and said method may comprise the steps of receiving absorbent material (100) on said further moving endless surface (20), retaining said absorbent material (100) in said reservoir(s) and transferring said absorbent material (100) to said moving endless surface (30); preferably said further moving endless surface's reservoir being formed by a multitude of grooves or a multitude of rows of cavities (22), each groove or row extending substantially longitudinally, said grooves or rows may be spaced from one another with raised strips.
  • the method may comprise the step that said raised strips and said rods (36) are mating during the transfer of said absorbent material (100), e.g. in said meeting point.
  • Said receptacle (33) may have a front edge zone, and back edge zone, each extending the width/transverse dimension of said receptacle, and said front edge zone and/ or back edge zone do not comprise said rods (36), with therein between a central zone with rods (36); or whereby said receptacle (33) has a centre region, front region and back region, and said receptacle (33) comprises said rods (36) in said front region only, or in said centre region only, or in said front and centre region only.
  • Said receptacle (33) may have in said region(s) or zone(s) that not comprising said rods (36) a higher friction than said rods (36).
  • said central zone (B) having said rods, having a lower friction than said front edge zone and back edge zones (A; C) without rods. This can aid to ensure the supporting sheet (200) is pulled in between the rods (36) in the low friction zone, and less or not at all in the high friction zone.
  • the apparatus (1) may comprises additional units, such as a unit (300) to cover the absorbent structure's absorbent layer with a further material, as described herein; and/ or an adhesive application unit (51) upstream from said moving endless surface (30), and/or a adhesive application unit (50), positioned downstream of the point where the feeder and said moving endless surface (30) meet (meeting point); and/or a pressure roll (70) with a raised pressure pattern (71), as described herein.
  • additional units such as a unit (300) to cover the absorbent structure's absorbent layer with a further material, as described herein; and/ or an adhesive application unit (51) upstream from said moving endless surface (30), and/or a adhesive application unit (50), positioned downstream of the point where the feeder and said moving endless surface (30) meet (meeting point); and/or a pressure roll (70) with a raised pressure pattern (71), as described herein.
  • the invention also relates to absorbent structures obtainable with the method or apparatus (1) herein, in particular those where the absorbent layer comprises such strips that comprise no absorbent material (100), and/or whereby said supporting sheet (200) comprises said undulations (201) with absorbent material (100) and crests, not comprising absorbent material (100), and/or whereby an adhesive is applied to immobilize said absorbent material (100), and/or whereby said absorbent structure comprises a further material on said absorbent layer, e.g. another absorbent structure , further supporting sheet (300) or acquisition layer, and a pressure is applied, to pressurize said supporting sheet (200) (further) into said strips where no absorbent material (100) is present, to render said strips more permanent in use.
  • the absorbent layer comprises such strips that comprise no absorbent material (100)
  • said supporting sheet (200) comprises said undulations (201) with absorbent material (100) and crests, not comprising absorbent material (100), and/or whereby an adhesive is applied to immobilize said absorb
  • the absorbent material (100), e.g. including or being a particulate superabsorbent polymer material, may be deposited on the supporting sheet (200) such that the absorbent layer comprises or consists of absorbent material (100) strips, extending substantially in the longitudinal direction, with therein between strips with no absorbent material (100), e.g. in the form of an absorbent layer with absorbent material (100) with therein substantially longitudinally extending strips that are free of absorbent material (100); such strips without absorbent material (100) may for example only extend at the most 90% or at the most 80%, or for example at the most 70% or for example at the most 60% of the full length of the absorbent layer.
  • Said strips without absorbent are material may preferably have an average width dimension of at least 2 mm, or at least 3 mm; said strips may have any of the dimensions and shapes and positions described herein for said rods (36) and/or raised portions.
  • Fig. 1 is a schematic view of an apparatus of the invention.
  • Fig. 2 is a perspective view of an apparatus of the invention.
  • Fig.3 is a perspective view of optional further units of the apparatus of the invention, combining absorbent structures into an absorbent article and bonding it.
  • Fig.4 is a partial and cross-sectional view of a moving endless surface and a receptacle thereof, of an apparatus of the invention.
  • Fig. 5 is a top view of a receptacle during production of an absorbent structure herein.
  • this invention encompasses a method and apparatus (1) for making an absorbent structure useful for absorbent article comprising absorbent material (100), preferably at least, or only, particulate superabsorbent polymer material, and preferred absorbent layers.
  • absorbent material 100
  • preferably at least, or only, particulate superabsorbent polymer material preferably at least, or only, particulate superabsorbent polymer material, and preferred absorbent layers.
  • Absorbent structure refers to a three-dimension structure with a longitudinally dimension and perpendicular thereto a transverse dimension and perpendicular to both a height dimension, and that comprises at least an absorbent material (100) and a supporting sheet (200), and that is useful in an absorbent article.
  • Absorbent layer refers to a three dimensional layer of absorbent material (100), formed by deposition of absorbent material (100) (s) onto the supporting sheet (200), and it may comprise other components, e.g. deposited onto the supporting sheet (200).
  • “Absorbent material (100)” refers to a material or mixture of materials that can absorb and retain bodily fluids; it typically includes or consists of Superabsorbent polymer material".
  • Superabsorbent polymer material also known as “absorbent gelling material,” or “AGM,” “superabsorbent,” refer to polymeric materials that can absorb at least 10 times their weight of an aqueous 0.9% saline solution as measured using the Centrifuge Retention Capacity test (Edana 441.2-02)., i.e. having a CRC of at least 10 g/g. . This is typically in particulate form.
  • “Particulate” is used herein to refer to a material which is in particulate form so as to be flowable in the dry state.
  • “Absorbent article” refers to a device that absorbs and contains body exudates, and, more specifically, refers to devices that are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body.
  • Absorbent articles may include adult and infant diapers, including pants, such as infant training pants and adult incontinence undergarments, and feminine hygiene products, such as sanitary napkins and panty- liners and adult in continent pads, and breast pads, care mats, bibs, wound dressing products, and the like.
  • Absorbent articles may further include floor cleaning articles, food industry articles, and the like.
  • body fluids or “body exudates” includes, but is not limited to, urine, blood, vaginal discharges, breast milk, sweat and fecal matter.
  • Diaper refers to an absorbent article generally worn by infants and incontinent persons about the lower torso so as to encircle the waist and legs of the wearer and that is specifically adapted to receive and contain urinary and fecal waste.
  • Pant or “training pant”, as used herein, refer to diaper having a waist opening and leg openings designed for infant or adult wearers.
  • a pant may be placed in position on the wearer by inserting the wearer's legs into the leg openings and sliding the pant into position about a wearer's lower torso.
  • a pant may be preformed by any suitable technique including, but not limited to, joining together portions of the article using refastenable and/or non-refastenable bonds (e.g., seam, weld, adhesive, cohesive bond, fastener, etc.).
  • a pant may be preformed anywhere along the circumference of the article (e.g., side fastened, front waist fastened).
  • pants are also commonly referred to as “closed diapers,” “prefastened diapers,” “pull-on diapers,” “training pants,” and “diaper-pants”. Suitable pants are disclosed in U.S. Patent No. 5,246,433, issued to Hasse, et al. on September 21, 1993; U.S. Patent No. 5,569,234, issued to Buell et al. on October 29, 1996; U.S. Patent No. 6,120,487, issued to Ashton on September 19, 2000; U.S. Patent No. 6,120,489, issued to Johnson et al. on September 19, 2000; U.S. Patent No.
  • a "nonwoven” is a manufactured sheet, web or batt of directionally or randomly orientated fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled.
  • the fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ.
  • Nonwoven fabrics can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, and carding. The basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm). "Substantially cellulose free” is used herein to an absorbent layer structure (or core), that contains less than 5% by weight cellulosic fibers.
  • a absorbent structure and absorbent layer thereof, and a receptacle (33) herein each have a longitudinal dimension and average length, and this may be corresponding the machine direction (MD), and perpendicular thereto a transverse dimension, and average width, which may be corresponding to the cross-machine direction (CD), said width being less than said length; and a front region, back region and central region, each being 1/3 of the average length of the structure/layer, respectively, and having each the full width.
  • Each has longitudinal edges and edge zones, extending the full length thereof- as further described below.
  • the method and apparatus (1) herein deploy a moving endless surface (30), moving in a machine direction (MD). It has an outer shell with one or more forming receptacles (33), for receiving thereon or therein the supporting sheet (200) (which may be a web material, as described herein below, or individual sheets that are placed on a receptacle).
  • the supporting sheet (200) which may be a web material, as described herein below, or individual sheets that are placed on a receptacle.
  • the following is described for a single receptacle (33) but may apply to each receptacles (33) of the moving endless surface (30) 's outer shell.
  • An exemplary apparatus is shown in Figure 1.
  • Each receptacle (33) corresponds typically to an absorbent structure to be produced, as suitable for an absorbent article.
  • the supporting sheet (200) may be a web material, so the method and apparatus (1) herein can thus serve to produce a web of such absorbent structures that are then subsequently separated into individual structures.
  • the moving endless surface (30) may have or be a rotating surface, such as a rotating, e.g. cylindrical, drum. It may be that the outer shell moves, e.g. rotates, around a stationary inner chamber, e.g. a so-called stator (230).
  • a rotating surface such as a rotating, e.g. cylindrical, drum. It may be that the outer shell moves, e.g. rotates, around a stationary inner chamber, e.g. a so-called stator (230).
  • the outer shell and the receptacle (33) have a transverse direction and average transverse dimension (average width), and the receptacle (33) has longitudinal direction and average longitudinal dimension (average length), perpendicular thereto.
  • the receptacle (33) has peripheral edges, and peripheral edge zones, including opposing longitudinal edges and edge zones, and a transverse front edge and front edge zone A, and a transverse back edge and back edge zone C, with a central zone B in between.
  • Each of said front and back edge zones, extending the complete transverse dimension may for example be in longitudinal dimension from about 5% to about 20%, or to 15%, or to 10% of the average longitudinal dimension of the receptacle.
  • Each of said longitudinal edge zone may extend the length and may have an average transverse dimension of for example from about 5% to about 20%, or typically to about 15% or to about 10% of the average transverse dimension of the receptacle.
  • the receptacle (33) may in addition, or alternatively, comprise a front region, back region and central region, therein between, as further described below.
  • the central region may be for example the central 1/3 of the receptacle, extending the full transverse dimension.
  • the receptacle (33) comprises a multitude of substantially longitudinally extending rods (36), spaced apart from one another in transverse direction.
  • the rods (36) are such that they form or partially form the most outer surface of said receptacle, so that the supporting sheet (200) is received and carried by said rods (36).
  • Figure 2 shows such a receptacle
  • Figure 4 shows a cross-section thereof.
  • the receptacle (33) may comprise said rods (36) over substantially the whole length of the receptacle; or for example over the whole length except the front edge zone and/or back edge zone; or, in some embodiments herein, the rods (36) may be present only in said central region; in some embodiments, the rods (36) may be present in the front region and optionally the central region, but not the back region; in some embodiments, the rods (36) may be present in the back region and optionally the central region, but not the front region.
  • the receptacle (33) may comprise such rods (36) over the whole width of said receptacle; or for example over the whole width except in said longitudinal edge zones.
  • the zone(s) or region(s) not comprising said rods (36) is herein referred to as rod-free zone or rod-free region; in said rod-free region or rod-free zone the supporting sheet (200) may be deposited onto said inner grid (37) (e.g. a mesh material) directly, or there may be an outer grid present, typically in the same plane as the rods (36); for example an outer grid made of a combination of transverse and longitudinal rods (36) that are intersecting in the same plane, like a mesh), or a plate with preferably apertures for vacuum suction. This is for example shown in Figure 4.
  • said inner grid (37) e.g. a mesh material
  • an outer grid present typically in the same plane as the rods (36)
  • a plate with preferably apertures for vacuum suction This is for example shown in Figure 4.
  • Said receptacle (33) may have in said region(s) or zone(s) that not comprising said rods (36) a higher friction than aid rods (36). This can aid to ensure the supporting sheet (200) is pulled in between the rods (36) in the low friction zone, and less or not at all in the high friction zone.
  • the receptacle (33) can be made of a higher friction material (e.g. a material with a less even surface), or may be treated with an friction-increasing agents, in those zones or regions not comprising said rods (36); or for example said zones or regions with rods (36), or only said rods (36), can be made of a lower friction material, or treated with friction-reducing agent.
  • a rod (36) is considered substantial longitudinally extending, if its longitudinal (length) extension is more than its transverse (width) extension.
  • a rod (36) may be under an angle with the longitudinal axis of the receptacle, provided said angle is less at the most 30°; or a rod (36) may be slightly curved (as described below); or a rod (36) may be wavy; or a rod (36) may comprise an angle, provided said angle is at least 120°, as described below; provided, in each case, its longitudinal (length) extension is more than its transverse (width) extension, e.g. they extend at least 50% or at least 100% more in longitudinal dimension of said receptacle (33) than in transverse dimension.
  • the rod (36) may be any shape or form. It may have a square, rectangular, round, oval or hexagonal cross-section in transverse dimension, for example.
  • Each rod (36) has a top portion (which may be the top surface for, for example, rods (36) that have a square or rectangular cross- section) and an opposing bottom portion or surface. Said top portion or surface is then in contact with the supporting sheet (200); said bottom surface may be adjacent (e.g.: on) an, at least partially, air-permeable inner grid (37).
  • the rod (36) is generally rectangular with optionally a triangular-shaped top portion.
  • Neighboring rods (36) are spaced apart, e.g. with a minimum distance (transversely) of for example at least 2 mm, or at least 3 mm, or at least 5 mm, or for example at least 10 mm.
  • Two or more rods (36) may be parallel to one another, so that the spacing distance between parallel neighboring rods (36), transversely, is at least said 2 mm along substantially the whole length.
  • void volume there is a void volume neighboring rods (36), e.g. between the inner grid (37) if present, and neighboring rods (36), and said void volume extends substantially in longitudinal direction in between said neighboring rods (36).
  • This void volume can serve to receive the supporting sheet (200) therein, as an undulation, and optionally said absorbent material (100).
  • Each rod (36) has a maximum transverse dimension which may be at least 0.3 mm, preferably at least 0.5 mm, or at least 1.0 mm, or at least 2 mm, and in some embodiments, for example at least 3 mm or at least 4 mm, and for example up to 20 mm, or up to 15mm or for example up to 10 mm.
  • Each rod (36) has a maximum and average height dimension.
  • Each rod (36) may for example have an average or maximum height dimension of at least 2 mm, or at least 3mm, or at least 4 mm, or at least 5 mm.
  • This may be preferably substantially equal to the distance from the top of a rod (36) to the inner grid (37), if present.
  • the receptacle (33) may for example have at least 2 such rods (36), or for example at least 4 such rods (36), or for example at least 5 or at least 7 such rods (36).
  • the rods (36) may be slightly curved (for example having a single curvature), having a curvature with a radius that is at least equal to, preferably at least 1.5 times or at least 2 times, the average transverse dimension of the receptacle; and/or having a curvature following for example the contour of the closest longitudinal side edge; and/or having multiple small curvatures, said rod(s) being then for example longitudinally extending wavy rod(s). In any such case, said rods (36) are considered to extend substantially longitudinally, as said out above.
  • the rods (36) are straight and parallel to the longitudinal axis of the receptacle.
  • the rods (36) are concave, whereby the longitudinal centre of the rod (36) is closer to the longitudinal axis of the receptacle (33) than the end point(s), and whereby the radius of curvature is at least 1.5 times the transverse dimension of the receptacle, preferably at least 2 times.
  • the moving endless surface (30) is connected to a vacuum system (38) that can apply a vacuum on said outer shell/ receptacles (33), to pull the supporting sheet (200) onto said outer shell/ receptacles (33), and to retain the absorbent material (100) thereon.
  • the moving endless surface (30) may thus move adjacent a vacuum system, such as a vacuum chamber (s) (38), that is present adjacent the outer shell (on the opposite side to the rods (36)).
  • the vacuum chamber(s) may be present in a stator (230) around which the moving endless surface (30) rotates.
  • the outer shell is hence at least partially air-permeable, which means it is such that it in air communication with said vacuum system, e.g.
  • the rods (36) themselves may for example not be air-permeable, i.e. not being in direct air communication with said vacuum system.
  • the surface area between rods (36) should however generally be air-permeable.
  • the inner grid (37) may be air-permeable, e.g. it may be a mesh material, for example.
  • the supporting sheet (200) is deposited onto said rods (36) and it bends in between neighboring rods (36), e.g. due to the vacuum suction to form thereby in said sheet undulations (201) between neighboring rods (36), and crests (202) supported on said rods (36) (on said top surface or top portion).
  • the inner grid (37) may control / determine the size (height) of said undulations (201). This is for example shown in Figures 4 and 5.
  • the supporting sheet (200) is transferred from a transfer means, such a transfer roll, to said moving endless surface (30) and deposited onto said outer surface / receptacles (33), e.g. onto said rods (36) at least. It may be transported to the outershell and receptacles (33) thereof as a web, or as individual sheets.
  • a transfer means such as a transfer roll
  • the supporting sheet (200) may be a nonwoven material, as further described herein.
  • said absorbent material (100) may be deposited onto said supporting sheet (200), on said receptacles (33).
  • the absorbent material (100) may be deposited such that it is only present on the portions (e.g. strips) of the supporting sheet (200) that is present between neighboring rods (36), e.g. in said undulations (201).
  • specific feeders as described below may be used.
  • the vacuum may be such that it pulls the absorbent material (100) to or towards the portions of the supporting sheet (200) present between neighboring rods (36), e.g. into said undulations (201).
  • Substantially no absorbent material (100) may for example be present on the supporting sheet (200) present on said rods (36), e.g. on said crests, as for example shown in Figures 4 and 5.
  • absorbent material (100) deposited onto the portions of the supporting sheet (200) on said rods (36) may be removed by means known in the art, such as a scraper or doctor blade.
  • the supporting sheet (200) may comprise adhesive.
  • said adhesive may be present on said portions of said supporting sheet (200) that are between neighboring rods (36), e.g. said undulations (201). This may help to adhere the absorbent material (100) in such portions, e.g. on said undulations (201).
  • the supporting sheet (200) may then, prior to addition of the absorbent material (100), comprise no adhesive applied on said portions supported by said rods (36), e.g. said crests (202), so that less or no absorbent material (100) adheres in said portions, e.g. crests. This is for example shown in Figure 1.
  • the absorbent structure may have said absorbent material (100) deposited in the form of strips of absorbent material (100) (e.g. corresponding to said undulations (201)), with therein in between strips that are free of such absorbent material (100) (e.g. corresponding to aid crests (202)); and/ or said absorbent layer formed herein may be a layer of absorbent material (100) with strips that are substantially free of absorbent material (100) (e.g. the crests (202) of said supporting sheet (200)).
  • the supporting sheet (200) may be transferred to said moving endless surface (30) such that it forms undulations (201) and crests (202). Then, when the supporting sheet (200) is removed from said moving endless surface (30), the supporting sheet (200) is pulled substantially flat, resulting in an absorbent structure with substantially longitudinally extending strips (that correspond to the crests (202) of said material) that comprise substantially no absorbent material (100). This is for example shown in Figure 5.
  • the moving endless surface (30) may for example have a speed of at least 1000 part per minute and/ or a speed of at least 4.5 m/s, or at least 6 m/s, or at least 8 m/s.
  • the absorbent material (100) may be delivered to the supporting sheet (200) by a feeder (60; 20) placed adjacent and in close proximity to said moving endless surface (30), for example substantially above said surface.
  • the absorbent material (100) may be deposited onto said supporting sheet (200) by any method, including substantially continuously.
  • the feeder herein is capable of holding the absorbent material (100), and letting it flow to the supporting sheet (200) on said moving endless surface (30).
  • the point or area where the material leaves the feeder is herein referred to as meeting point.
  • the feeder may be a (e.g. stationary) hopper (60) with a container portion, to hold the material, e.g. having a volume of at least 1000 cm 3 , and a guiding portion, e.g. a pipe-shapes portion, having one or more walls that guides the material from the container portion to the supporting sheet (200) on the moving endless surface (30).
  • the absorbent material (100) is deposited on the supporting sheet (200) carried on said moving endless surface (30) by a further moving endless surface (20) that moves, moving in a machine direction, e.g. rotates, adjacent and in close proximity to said moving endless surface (30).
  • a hopper (60) may feed the absorbent material (100) to this further moving endless surface (20).
  • the further moving endless surface (20) may be a rotating device.
  • the further moving endless surface (20) is typically a rotating device with a certain radius, such as a cylinder or drum or print roll, as for example shown in the Figures.
  • the radius of the further moving endless surface (20) may depend on what absorbent structure is produced, e.g. what size, and for example how many structures are produced per cycle of the further moving endless surface (20), e.g. print roll or drum.
  • the drum/print roll may have a radius of at least 40 mm, or of at least 50 mm; it may be for example up to 300 mm, or up to 200 mm.
  • the further moving endless surface (20) may have any suitable width, but for example a width corresponding to the width of the absorbent structure to be produced; this for example be at least 40 mm, or at least 60 mm, or for example up to 400 mm, or up to 200 mm.
  • Said further moving endless surface (20) may have one or more reservoirs with a certain volume for receiving said absorbent material (100) therein, and transporting it and then depositing it to said supporting sheet (200) on the moving endless surface (30) with receptacle(s) with rods (36), described above.
  • Such a reservoir may then correspond to an absorbent structure to be produced.
  • the reservoir may have a (average) longitudinal dimension, and (average) length, and a (average) transverse dimension and (average) width, said length being more than said width.
  • the reservoir may have raised strips (that have no void volume) and then, when the further moving endless surface (20) moves (rotates) adjacent said moving endless surface (30) with said supporting sheet (200) on said rods (36), said raised portions may mate with (correspond to) said rods (36) (herein referred to as "mating"). Then, the absorbent material (100) is deposited selectively between rods (36), e.g.in said undulations (201).
  • the reservoir is composed of multitude of groves, extending substantially longitudinally, or a multitude of rows of cavities (22), extending, for receiving the absorbent material (100) therein, whereby neighboring grooves or rows are being separated from one another by such raised strips that do not have a void volume for receiving absorbent material (100).
  • the raised strips move adjacent (mate) said rods (36) and said crests (202) of said supporting sheet (200), and the grooves or rows of cavities (22) move adjacent (mate) with said areas of the supporting sheet (200) between neighboring rods (36), e.g. said undulations (201).
  • the absorbent material (100) is deposited selectively between rods (36), e.g.in said undulations (201).
  • the resulting absorbent structure then comprises a supporting sheet (200) with thereon a layer of absorbent material (100) with substantially longitudinally extending strips that comprise no absorbent material (100).
  • the cavities (22) may have any dimensions and shape, including cubical, rectangular, cylindrical, semi-spherical, conical, or any other shape. This may be any suitable number of cavities (22), but for example at least 20 or at least 50.
  • the cavities (22) may be present as identical cavities (22) or they may vary in dimension(s) or shape.
  • the exact pattern, dimensions etc. will depend on the required structure to be formed, but may for example also depend on the particle size of the absorbent material (100), process speed etc.
  • at least 30% of the surface area of the reservoir of the further moving endless surface (20) comprises said cavities (22), preferably at least 40% , and preferably up to 55% or up to 50%.
  • the distance (longitudinally) between the centre point of a cavity (said centre point being in the plane of the outer surface of the further moving endless surface (20)) and the centre point of a neighboring cavity (in a row of cavities (22)) may for example be at least 3 mm, or at least 4 mm, or at least 6 mm, or for example up to 40 mm or up to 30 mm or up to 20 mm. This may apply to all such distances between neighboring cavities (22) longitudinally, or this may be an average over all such distances.
  • the distance transversely between the centre point of a cavity or groove (said centre point being in the plane of the outer surface of the further moving endless surface (20)) and the centre point of a neighboring cavity or groove (in a transverse line of cavities (22)) may for example also be as above.
  • the shortest distance transversely between two neighboring cavities (22) of a line of cavities (22) or between neighboring groves is at least 3.0 mm, or at least 4.0 mm, so that this can mate with the rods (36) of the moving endless surface (30).
  • Said rows or grooves may extend substantially parallel to, and equally spaced from, one another and/ or said lines may extend substantially parallel to, and equally spaced from, one another.
  • the grooves and rows have such a shape or pattern, that the distance between neighboring groves or rows is substantially corresponding to a rod; and/or that the grooves or rows correspond substantially to the areas between neighboring rods (36). Then the grooves or rows can mate with the areas between rods (36).
  • the length dimension of a cavity may be (on average over all cavities (22) and/ or for each cavity; measured over the outer surface of the further moving endless surface (20)) at least 1 mm, or at least 2 mm, or at least 4 mm, and for example at the most 20 mm or at the most 15 mm.
  • the width dimension may be within the same ranges as above, or it may even be the same as the length dimensions for one or more or each cavity.
  • a raised portion is completely overlapping a corresponding rod.
  • the average width dimension of each raised portions of the reservoir(s) that mates with a rod (36) is about at least 10% more than the average width dimension of said rod.
  • the reservoir, cavities (22) or grooves may have any suitable dept dimension, and it may depend for example on the height of the further moving endless surface (20) (e.g. radius), the thickness/ caliper of the desired structure to be produced, the particle size of the material, etc.
  • the maximum depth of a reservoir, cavities (22) or grooves and/ or the average maximum depth (average over all maximum depths of all cavities (22) and/or grooves) may for example be at least 1 mm, or at least 1.5 mm, or for example 2 mm or more, and for example up to 20 mm, or up to 15 mm, or in some embodiment herein, up to 10 mm, or to 5 mm, or to 4 mm.
  • the cavities (22) may have a an average width dimension and length dimension of from 2 to 8 mm or from 3 mm to 7 mm; and the cavities (22) may have a maximum depth and/ or average maximum depth of for example from 1.5 mm to 4 mm.
  • a scraper or doctor blade may be used to remove excess absorbent material (100). Excess material may be removed from the reservoir and recycled back to e.g. the hopper
  • One possibility to hold the material in the reservoir (or its groves or cavities (22)) may be a vacuum (28) applied to the inner side of the further moving endless surface (20), e.g. print roll or drum, in combination with suction holes in (the bottom) of the reservoir, or groves cavities (22) thereof, to thus apply the vacuum suction onto the absorbent material (100).
  • the vacuum is for example released just before or at the meeting point.
  • the vacuum may be any vacuum pressure such as, just as for the moving endless surface (30) above, for example at least 10 kPa, or at least 20 kPa.
  • the vacuum may be provided by providing one or a plurality of vacuum chambers (28) in said further moving endless surface (20) (e.g. in its interior), whereby said vacuum can be applied, reduced, increased, and released (disconnected), depending on the position thereof in the process/ apparatus (1).
  • Additional air pressure and air pressure chamber(s) (29) may be used/ applied to said absorbent material (100) close to or at the meeting point, to ensure that the material flows to the supporting sheet (200) on said moving endless surface (30).
  • the absorbent material (100) herein is preferably a flowable material (in the dry state), such as a particulate material; it may be any material in particulate form, which includes particles, flakes, fibers, spheres, agglomerated particles and other forms known in the art.
  • the absorbent material (100) may be a mixture of cellulose material, or so-called airfelt, and superabsorbent polymer material.
  • the first absorbent structure may comprise a first absorbent material (100)
  • the second structure may comprise a second, different absorbent material (100), for example having a different capacity (CRC).
  • the absorbent material (100), e.g. the particulate absorbent material (100), comprises at least or consists of (particulate) superabsorbent polymer material, herein referred to as SAP, and also known as particulate absorbent gelling material, AGM.
  • SAP superabsorbent polymer material
  • AGM particulate absorbent gelling material
  • the particulate SAP herein may have a high sorption capacity, e.g. having a CRC of for example at least 20 g/g, or at 30 g/g. Upper limits may for example be up to 150 g/g, or up to 100 g/g.
  • the particulate SAP may have a good permeability for liquid, for example, having a SFC value of at least 10 x 10 "7 cm 3 s/g; or preferably at least 30 x 10 "7 cm 3 .s/g, or at least 50 x 10 "7 cm 3 s/g 10 x 10 "7 cm 3 s/g, or possibly permeability SFC value of at least 100 xlO 7 cm 3 s/g, or at least a SFC of 120 xlO "7 cm 3 sec/g.
  • This SFC is a measure of permeability and an indication of porosity is provided by the saline flow conductivity of the gel bed as described in U.S. Patent No.
  • the polymers of said SAP are internally cross-linked and/ or surface crosslinked polymers.
  • the absorbent material (100) comprising or consisting of particles of polyacrylic acids/ polyacrylate polymers, for example having a neutralization degree of from 60% to 90%, or about 75%, having for example sodium counter ions, as known in the art, e.g. surface crosslinked and/ or internally crosslinked and/ or post-crosslinked polyacrylic acid/ polyacrylate polymers.
  • the absorbent material (100) is in the form of particles with, a mass medium particle size up to 2 mm, or between 50 microns and 2 mm or to 1 mm, or preferably from 100 or 200 or 300 or 400 or 500 ⁇ , or to 1000 or to 800 or to 700 ⁇ ; as can for example be measured by the method set out in for example EP-A-0691133.
  • the material is in the form of particles whereof at least 80% by weight are particles of a size between 50 ⁇ and 1200 ⁇ and having a mass median particle size between any of the range combinations above.
  • said particles are essentially spherical.
  • the absorbent material (100) has a relatively narrow range of particle sizes, e.g. with the majority (e.g. at least 80% or preferably at least 90% or even at least 95% by weight) of particles having a particle size between 50 ⁇ and ⁇ , preferably between ⁇ and 800 ⁇ , and more preferably between 200 ⁇ and 600 ⁇ .
  • the absorbent material (100) herein may advantageously comprise less than 15% by weight of water, or less than 10%, or less than 8% or less than 5%.
  • the water-content can be determined by the Edana test, number ERT 430.1-99 (February 1999) which involves drying the particulate material (100) at 105°Celsius for 3 hours and determining the moisture content by the weight loss of the particulate material (100) after drying.
  • the particulate SAP herein may be particles of SAP that are surface coated or surface treated (this not including surface-crosslinking, which may be an additional surface-treatment); such coatings and surface treatment steps are well known in the art, and include surface treatment with one or more inorganic powders, including silicates, phosphates, and coatings of polymeric material, including elastomeric polymeric materials, or film-forming polymeric materials.
  • the absorbent structure producible with the apparatus (1) and method of the invention comprises a supporting sheet (200), to receive the absorbent material (100).
  • This supporting sheet (200) may be any individual sheet or web sheet material, in particular paper, films, wovens or nonwovens, or laminate of any of these.
  • the supporting sheet (200) is a nonwoven, e.g. a nonwoven web, such as a carded nonwoven, spunbond nonwoven or meltblown nonwoven, and including nonwoven laminates of any of these.
  • the fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging typically from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms: short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yarn).
  • the fibers may be bicomponent fibers, for example having a sheet- core arrangement, e.g. with different polymers forming the sheet and the core.
  • Nonwoven fabrics can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, and carding. The basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm).
  • the nonwoven herein may be made of hydrophilic fibers; "Hydrophilic” describes fibers or surfaces of fibers, which are wettable by aqueous fluids (e.g. aqueous body fluids) deposited on these fibers. Hydrophilicity and wettability are typically defined in terms of contact angle and the strike through time of the fluids, for example through a nonwoven fabric. This is discussed in detail in the American Chemical Society publication entitled “Contact angle, wettability and adhesion", edited by Robert F. Gould (Copyright 1964). A fiber or surface of a fiber is said to be wetted by a fluid (i.e.
  • hydrophilic when either the contact angle between the fluid and the fiber, or its surface, is less than 90°, or when the fluid tends to spread spontaneously across the surface of the fiber, both conditions are normally co-existing. Conversely, a fiber or surface of the fiber is considered to be hydrophobic if the contact angle is greater than 90° and the fluid does not spread spontaneously across the surface of the fiber.
  • the supporting sheet (200) herein may be air-permeable. Films useful herein may therefore comprise micro pores. Nonwovens herein may for example be air permeable.
  • the supporting sheet (200) may have for example an air-permeability of from 40 or from 50, to 300 or to 200 m 3 / (m 2 x min), as determined by ED ANA method 140-1-99 (125 Pa, 38.3 cm 2 ).
  • the supporting sheet (200) may alternatively have a lower air-permeability, e.g. being non-air-permeable, to for example be better detained on a moving surface comprising vacuum.
  • the supporting sheet (200) is a nonwoven laminate material, a nonwoven laminate web, for example of the SMS or SMMS type.
  • the supporting sheet (200) may have a basis weight that is less than 60 gsm, or for example than 50 gsm, for example from 5 gsm to 40 gsm, or to 30 gsm. Adhesive application units and method steps.
  • the supporting sheet (200) may comprise and adhesive prior to transfer to said moving endless surface (30).
  • the apparatus (1) herein may comprise an adhesive application unit (51) upstream from said moving endless surface (30), and for example downstream from said supporting material transfer means (210), e.g. roll.
  • the method herein may thus comprise such an adhesive application step. This is for example shown in Figure 1.
  • This adhesive may be applied uniformly and/or continuously.
  • the adhesive may be applied as substantially longitudinal stripes.
  • the adhesive may be applied in substantially longitudinally extending stripes such that areas of the supporting sheet (200) with the stripes of adhesive are between neighboring rods (36), and the areas of the supporting sheet (200) that do not comprise said adhesive correspond to said rods (36), or the opposite.
  • the apparatus (1) may comprise a unit to apply an adhesive to said supporting sheet (200) in a pattern, for example the pattern of the rods (36), or the pattern of the areas between the rods (36). This may be done by spraying, or for example by selectively slot- coating; the apparatus (1) may thus comprise a slot-coater, for example with a coating pattern that corresponds to the rods (36), or the areas between the rods (36).
  • a further immobilization adhesive may be applied to said absorbent structure produced by the apparatus (1) or method herein, e.g. to ensure the absorbent material (100) will stay substantially in the applied pattern.
  • This immobilization adhesive may then for example be applied onto said absorbent layer just after application of said absorbent material (100) onto said supporting sheet (200).
  • the apparatus (1) herein may thus have a further immobilization adhesive application unit (50), e.g. downstream from said moving endless surface (30)' meeting point.
  • the method may have a corresponding method step. This is for example shown in Figure 1.
  • This adhesive may be applied uniformly and/or homogeneously.
  • This may be a thermoplastic adhesive material.
  • the thermoplastic adhesive material may comprise, in its entirety, a single thermoplastic polymer or a blend of thermoplastic polymers, having a softening point, as determined by the ASTM Method D-36-95 "Ring and Ball", in the range between 50 °C and 300 °C, or alternatively the thermoplastic adhesive material may be a hot melt adhesive comprising at least one thermoplastic polymer in combination with other thermoplastic diluents such as tackifying resins, plasticizers and additives such as antioxidants.
  • the thermoplastic polymer has typically a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) usually below room temperature or -6 °C > Tg ⁇ 16°C.
  • typical concentrations of the polymer in a hot melt are in the range of about 20 to about 40% by weight.
  • thermoplastic polymers may be water insensitive.
  • Exemplary polymers are (styrenic) block copolymers including A-B-A triblock structures, A-B diblock structures and (A-B)n radial block copolymer structures wherein the A blocks are non-elastomeric polymer blocks, typically comprising polystyrene, and the B blocks are unsaturated conjugated diene or (partly) hydrogenated versions of such.
  • the B block is typically isoprene, butadiene, ethylene/butylene (hydrogenated butadiene), ethylene/propylene (hydrogenated isoprene), and mixtures thereof.
  • suitable thermoplastic polymers that may be employed are metallocene polyolefins, which are ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer.
  • amorphous polyolefins or amorphous polyalphaolefins which are homopolymers, copolymers or terpolymers of C2 to C8 alpha olefins.
  • the tackifying resin has typically a Mw below 5,000 and a Tg usually above room temperature, typical concentrations of the resin in a hot melt are in the range of about 30 to about 60%, and the plasticizer has a low Mw of typically less than 1,000 and a Tg below room temperature, with a typical concentration of about 0 to about 15%.
  • the thermoplastic adhesive material is present in the form of fibers.
  • the fibers will have an average thickness of about 1 to about 50 micrometers or about 1 to about 35 micrometers and an average length of about 5 mm to about 50 mm or about 5mm to about 30 mm. .
  • the apparatus (1) and method herein may comprise the further step/ unit, of applying a further supporting sheet (300) onto said absorbent structure, to enclose said absorbent material (100), as know in the art. This is for example shown in Figure 1.
  • the apparatus (1) and method herein may alternatively or in addition comprise the apparatus (1) unit/method step of folding the supporting sheet (200) over the absorbent material (100) to enclose it thereby.
  • It may comprise a sealing unit, sealing step to seal the two supporting sheet (200) or the folded supporting sheet (200) along the peripheral edges of the absorbent structure/ layer.
  • the absorbent structure may alternatively or in addition be combined with other layers, such as an acquisition layer, or topsheet and the apparatus (1) and method herein may comprise according steps/units.
  • the method or apparatus (1) herein may be to produce an absorbent core or structure that comprises two or more of the above described absorbent structures; for example two such layers, superposed on one another such that the absorbent material (100) of a first layer and the absorbent material (100) of the other second layer are adjacent one another and sandwiched between the supporting sheet (200) of the first layer and the supporting sheet (200) of the second layer.
  • This is for example shown in Figure 3.
  • the apparatus (1) herein may thus be a combination apparatus (1), comprising two or more, e.g. two, of the apparatuses (1) described herein, to produce two or more, e.g. two, absorbent structures, and then comprising a combining unit to combine the absorbent structures.
  • the method may comprise according method step(s).
  • the strips where no absorbent material (100) of one layer is present may then be superposed on the strips where no absorbent material (100) is present of the other layer, to form joined strips; alternatively, they may be alternating, so that a strip where no absorbent material (100) of one layer is superposed onto the absorbent material (100) of the other layer.
  • the center (referring to the width) of a (or of each of) the absorbent material (100) strips of one layer overlays and contacts the center of a (or of the respective) strip where no absorbent material (100) is present of the other layer, and preferably vice versa.
  • one or more, or each, absorbent material (100) strip of the one layer may be placed centrally on or in the strip without absorbent material (100) of the other layer and vice versa.
  • the absorbent structure produced with the method/ apparatus (1) of the invention herein may also be combined with an absorbent structure produced by a method/apparatus (1) other than of the present invention, said combination may be done as set out above.
  • the apparatus (1) may comprise a pressure means, such as a pressure roll
  • the pressure may be applied selectively onto said supporting sheet (200) or on any of the further material/ layer that placed over the absorbent layer, as described above in this section.
  • This pressure application may preferably be done to selectively apply pressure only onto the strips of the supporting sheet (s) (200; 300) or further material that comprise (on the opposed surface) no absorbent material (100), to avoid compaction of said absorbent material (100) itself.
  • the apparatus (1) may comprise a pressure means (70) that has a raised pressuring pattern
  • the method may have an according method step.
  • the apparatus (1) and method of the invention are for example useful to produce absorbent structures, or absorbent cores (absorbent structures combined with a further material, as described herein) suitable for absorbent articles.
  • Absorbent articles may include diapers, including fastenable diapers and (refastenable) training pants; adult incontinence undergarments (pads, diapers) feminine hygiene products (sanitary napkins, panty-liners), breast pads, care mats, bibs, wound dressing products, and the like.
  • the absorbent article herein may comprise in addition to an absorbent structure or core produced by the method/apparatus (1) herein, a topsheet and backsheet, and for example one or more side flaps or cuffs.
  • the topsheet or cuffs or side flaps may comprise a skin care composition or lotion or powder, known in the art, panels, including those described in U.S. 5,607,760; U.S. 5,609,587; U.S. 5,635,191; U.S. 5,643,588.
  • Preferred absorbent articles herein comprise a topsheet, facing the wearer in use, for example a nonwoven sheet, and/ or an apertured sheet, including apertured formed films, as known in the art, and a backsheet.
  • the backsheet may be liquid impervious, as known in the art.
  • the liquid impervious backsheet comprises a thin plastic film such as a thermoplastic film having a thickness of about 0.01 mm to about 0.05 mm.
  • Suitable backsheet materials comprise typically breathable material, which permit vapors to escape from the diaper while still preventing exudates from passing through the backsheet.
  • Suitable backsheet films include those manufactured by Tredegar Industries Inc. of Terre Haute, IN and sold under the trade names X15306, X10962 and X10964.
  • the backsheet may be elastically extendable in one or more directions.
  • the backsheet may be attached or joined to a topsheet, the absorbent structure/ core herein, or any other element of the diaper by any attachment means known in the art.
  • Diapers herein may comprise leg cuffs and / or barrier cuffs; the article then typically has a pair of opposing side flaps and/ or leg and/ or barrier cuffs, each of a pair being positioned adjacent one longitudinal side of the absorbent structure/ core, and extending longitudinally along said absorbent structure/ core, and typically being mirror images of one another in the longitudinal axis (which may be MD axis) of the article; if leg cuffs and barrier cuffs are present, then each leg cuffs is typically positioned outwardly from a barrier cuff.
  • the cuffs may be extending longitudinally along at least 70% of the length of the article.
  • the cuff(s) may have a free longitudinal edge that can be positioned out of the X-Y plane (longitudinal/ transverse directions) of the article, i.e. in z-direction.
  • the side flaps or cuffs of a pair may be mirror images of one another in the longitudinal axis of the article.
  • the cuffs may comprise elastic material.
  • the diapers herein may comprise a waistband, or for example a front waistband and back waist band, which may comprise elastic material.
  • the diaper may comprise side panels, or so-called ear panels.
  • the diaper may comprise fastening means, to fasten the front and back, e.g. the front and back waistband.
  • Preferred fastening systems comprise fastening tabs and landing zones, wherein the fastening tabs are attached or joined to the back region of the diaper and the landing zones are part of the front region of the diaper.
  • the absorbent article may also include a sub-layer disposed between the topsheet and the absorbent structure/ core, capable of accepting, and distributing and/ or immobilizing bodily exudates.
  • Suitable sublayers include acquisition layers, surge layers and or fecal material storage layers, as known in the art.
  • Suitable materials for use as the sub-layer may include large cell open foams, macro-porous compression resistant non woven highlofts, large size particulate forms of open and closed cell foams (macro and/or microporous), highloft non-wovens, polyolefin, polystyrene, polyurethane foams or particles, structures comprising a multiplicity of vertically oriented, preferably looped, strands of fibers, or preferably apertured formed films, as described above with respect to the genital coversheet.
  • microporous refers to materials that are capable of transporting fluids by capillary action, but having a mean pore size of more than 50 microns.
  • macroporous refers to materials having pores too large to effect capillary transport of fluid, generally having pores greater than about 0.5 mm (mean) in diameter and more specifically, having pores greater than about 1.0 mm (mean) in diameter, but typically less than 10 mm or even less than 6 mm (mean).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Botany (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A method and apparatus (1) for making specific absorbent structures with an absorbent layer with absorbent material (100) with therein substantially longitudinally extending strips that are free of absorbent material (100), using or having thereto a moving endless surface (30) with receptacle(s) (33) with specific longitudinally extending rods (36); and specific absorbent structures obtained therewith, suitable for absorbent articles, such as diapers and sanitary napkins.

Description

METHOD AND APPARATUS (1) FOR MAKING ABSORBENT STRUCTURES WITH
ABSORBENT MATERIAL
FIELD OF THE INVENTION
The present invention relates to a method for making specific absorbent structures with absorbent material, preferably with longitudinally extending strips that are free of absorbent material, and apparatus for making such absorbent structures, and specific absorbent structures obtained therewith, suitable for absorbent articles, such as diapers and sanitary napkins. BACKGROUND OF THE INVENTION
Absorbent articles, such as diapers and sanitary napkins, absorb and contain body exudates.
They also are intended to prevent body exudates from soiling, wetting, or otherwise contaminating clothing or other articles, such as bedding, that come in contact with the wearer.
A disposable absorbent article, such as a disposable diaper, may be worn for several hours in a dry state or in a urine-loaded state. Accordingly, efforts have been made toward improving the fit and comfort of the absorbent article to the wearer, both when the article is dry and when the article is fully or partially loaded with liquid exudate, while maintaining or enhancing the absorbing and containing functions of the article.
Efforts have also been made to make absorbent article thinner when dry, to improve the comfort of such articles.
Some absorbent articles, like diapers, contain absorbent material such as super absorbent polymers that absorbs very high quantities of liquid and causes the absorbent article to swell significantly. Such articles will thus increase significantly in volume during use, and sometimes in particular in the crotch area between the wearer's legs, which may render the article uncomfortable.
There may thus still be a need to further improve the performance/ fit of such articles and/or the liquid transportation away from the crotch. There may also still be a need to further reduce the chance of leakage and to improve the efficiency of absorbency of an absorbent article, such as a diaper.
It has been found that improved liquid transportation can be achieved by the provision of transportation channels for distributing liquid in the absorbent article, e.g. the absorbent structure thereof. Furthermore, it has been found that improved fit can be obtained by providing absorbent articles with absorbent structures whereby the absorbent material is structured in longitudinal direction, optionally with areas that comprise less or no absorbent material, for improved bending flexibility in use (in the direction corresponding to the longitudinal direction (e.g. this may be the machine direction). The present invention provides an apparatus and method for providing such absorbent structures, and specific absorbent structures obtained thereby.
SUMMARY OF THE INVENTION
The present invention provides a method of making an absorbent structure having an absorbent layer and therein longitudinally extending strips that are substantially free of absorbent material (100), said absorbent layer being supported on a supporting sheet (200), said method comprising the steps of:
i) providing a feeder (20; 60) with absorbent material (100);
ii) providing a moving endless surface (30), such as for example a drum, moving in a machine direction (MD) having an outer shell with one or more forming receptacles (33), having an average longitudinal dimension and length (which may be in MD) and having an average transverse dimension and width (which may be in CD), said length being more than said width, said receptacle(s) comprising a multitude of substantially longitudinally extending rods (36), spaced apart from one another in transverse direction, each rod (36) having a maximum transverse dimension which is at least 0.3 mm and each of said rods (36) having a top portion and an opposing bottom portion, said bottom portion preferably being adjacent an inner grid (37), and the minimum distance in transverse dimension between neighboring rods (36) being at least 1 mm, and said rods (36) each having an average height dimension (perpendicular to the transverse and longitudinal dimensions) of at least 1 mm,
said moving endless surface (30) being connected to one or more vacuum systems (38) applying a vacuum suction to said receptacles (33) or part thereof,
iii) providing a supporting sheet (200) transporter (210);
iv) transporting said supporting sheet (200) to said outer shell, onto said top portions of said rods (36);
v) optionally pulling said supporting sheet (200) partially in between neighboring rods (36) by said vacuum suction, to form undulations (201) in said supporting sheet (200) between said rods (36) and to form crests (202) on said upper portion of said rods (36) (as for example shown in Figure 4);
vi) depositing with said feeder said absorbent material (100) onto said supporting sheet (200) present on said forming receptacles (33); vii) pulling said absorbent material (100) with said vacuum suction onto the supporting sheet (200) that is present between neighboring rods (36), to form absorbent strips, optionally into said undulations (201);
viii) optionally removing absorbent material (100) remaining on said crests (202) of said supporting sheet (200);
ix) removing said supporting sheet (200) and said absorbent material (100) from said moving endless surface (30);
to obtain said absorbent structure.
The invention also provides an apparatus (1) for making an absorbent structure having an absorbent layer and therein substantially longitudinally extending strips that are substantially free of absorbent material (100), said layer being supported on a supporting sheet (200), said apparatus (1) comprising:
a feeder for feeding an absorbent material (100) to a moving endless surface (30), a supporting sheet (200) transporter (210), for transporting a supporting sheet (200) to said moving endless surface (30); and
said moving endless surface (30) moving in a machine direction (MD) having an outer shell with one or more forming receptacles (33), as mentioned above, having a multitude of substantially longitudinally extending rods (36), each rod (36) having a maximum transverse dimension of at least 0.3 mm, each of said rods (36) having a top portion (surface) and an opposing bottom portion (surface), said bottom portion being adjacent an inner grid (37), and the minimum distance in transverse dimension between neighboring rods (36) being at least 1 mm, and said rods (36) having an average height dimension (perpendicular to the transverse and longitudinal dimensions) of at least 1 mm; and said moving endless surface (30) comprising a vacuum system (38) applying a vacuum suction to said receptacles (33) or part thereof; or any of the dimensions as describe above; and
said feeder preferably being a further moving endless surface (20) with reservoir(s) for receiving and retaining a said absorbent material (100) and transferring said absorbent material (100) to said moving endless surface (30), said further moving endless surface (20) being connected to a vacuum system (28) to apply vacuum suction to said reservoir(s). In some embodiments, in step vii), said absorbent structure comprise an absorbent layer with absorbent material (100) formed into substantially longitudinally extending strips of absorbent material (100) on said supporting sheet (200), optionally in said undulations (201), with therein between strips with substantially no absorbent material (100), optionally on said crests (202).
In some embodiments, step viii) is performed; hereto the supporting sheet (200) placed on the receptacle, or the part thereof that is to overlap with the receptacle, may be wider than the width of the receptacle, so-called over-in-feeding of the supporting sheet (200) in transverse dimension, e.g. in the transverse direction, for example the Cross-machine dimension (CD).
The receptacle(s) may have a first average width (e.g. in CD) dimension and said supporting sheet (200) on said receptacle (33) has a second average width dimension (e.g. in CD), and the ratio of said first to said second average width dimension is at least 1:1.1, or at least 1:1.2, or at least 1:1.3, typically up 1:3. The method may comprise the step of providing a first adhesive application unit (50), and applying an adhesive to said absorbent layer prior to removing it from said moving endless surface (30), or immediately subsequent thereto, and/or the step of providing a second adhesive application unit (51), and applying an adhesive to said supporting sheet (200), prior to deposition of said absorbent material (100) thereon; for example, this may be done selectively, either to the areas of the supporting sheet (200) that are to meet with the rods (36), or the areas of the supporting sheet (200) that are to be in between neighboring rods (36); for example said adhesive may be applied only in substantially longitudinal stripes on the areas of said supporting sheet (200) that coincides with said crests (202). The method may be to provide a laminate of two of said absorbent structures, e.g. the method may be such that said steps i) to vii) and ix), and optionally step vii) are repeated to form a second absorbent structure, and whereby the method comprises the subsequent step of combining said first absorbent structure and said second absorbent structure, such that said absorbent materials (100) of both structures are sandwiched between said supporting sheet (200) of the first structure and the supporting sheet (200) of the second structure.
Some or each of said rods (36) may for example have said maximum transverse dimension which is at least 1 mm, or at least 2 mm, or for example at least 3 mm or at least 4mm, and typically up to 20 mm or up to 15mm or up to 10 mm; the minimum distance transversely in between neighboring rods (36) may for example be at least 2 mm, or at least 3 mm, or at least 5 mm, or at least 10 mm, and for example up to 30 mm, or up to 20 mm; said rods (36) each may have an average height dimension of for example at least at least 2 mm, or for example at least 3 mm. There may for example be at least 5 rods (36), or for example at least 7 rods (36). The method may comprise the step of providing a pressure roll (70) with a raised pressure pattern (71), corresponding to the pattern of said rods (36) and/or said crests (202) if present, and mating said pressure roll (70) pattern with said absorbent structure, on the supporting sheet thereof, and/or on a further material, after such a further material is superposed on said absorbent layer, (e.g. the supporting sheet (200) is folded over it, a further supporting sheet (300) is placed on it, or and acquisition layer is placed on it, or a further absorbent structure is placed on it, such that the absorbent material (100) is sandwiched between the two supporting sheets (200; 300), whereby said pressure pattern (71) mates with said supporting sheet (200), or said further material, in the areas where, on the opposite surface, no absorbent material (100) is present Said feeder is adjacent and in close proximity to said moving endless surface (30), and they transfer of said absorbent material (100) takes place in a so-called meeting point. The feeder may be a further moving endless surface (20) with reservoir(s), such as a so-called print roll, and said method may comprise the steps of receiving absorbent material (100) on said further moving endless surface (20), retaining said absorbent material (100) in said reservoir(s) and transferring said absorbent material (100) to said moving endless surface (30); preferably said further moving endless surface's reservoir being formed by a multitude of grooves or a multitude of rows of cavities (22), each groove or row extending substantially longitudinally, said grooves or rows may be spaced from one another with raised strips. The method may comprise the step that said raised strips and said rods (36) are mating during the transfer of said absorbent material (100), e.g. in said meeting point.
Said receptacle (33) may have a front edge zone, and back edge zone, each extending the width/transverse dimension of said receptacle, and said front edge zone and/ or back edge zone do not comprise said rods (36), with therein between a central zone with rods (36); or whereby said receptacle (33) has a centre region, front region and back region, and said receptacle (33) comprises said rods (36) in said front region only, or in said centre region only, or in said front and centre region only. Said receptacle (33) may have in said region(s) or zone(s) that not comprising said rods (36) a higher friction than said rods (36).
For example, as also shown in Figure 6 for example, said central zone (B) having said rods, having a lower friction than said front edge zone and back edge zones (A; C) without rods. This can aid to ensure the supporting sheet (200) is pulled in between the rods (36) in the low friction zone, and less or not at all in the high friction zone.
The apparatus (1) may comprises additional units, such as a unit (300) to cover the absorbent structure's absorbent layer with a further material, as described herein; and/ or an adhesive application unit (51) upstream from said moving endless surface (30), and/or a adhesive application unit (50), positioned downstream of the point where the feeder and said moving endless surface (30) meet (meeting point); and/or a pressure roll (70) with a raised pressure pattern (71), as described herein.
The invention also relates to absorbent structures obtainable with the method or apparatus (1) herein, in particular those where the absorbent layer comprises such strips that comprise no absorbent material (100), and/or whereby said supporting sheet (200) comprises said undulations (201) with absorbent material (100) and crests, not comprising absorbent material (100), and/or whereby an adhesive is applied to immobilize said absorbent material (100), and/or whereby said absorbent structure comprises a further material on said absorbent layer, e.g. another absorbent structure , further supporting sheet (300) or acquisition layer, and a pressure is applied, to pressurize said supporting sheet (200) (further) into said strips where no absorbent material (100) is present, to render said strips more permanent in use.
The absorbent material (100), e.g. including or being a particulate superabsorbent polymer material, may be deposited on the supporting sheet (200) such that the absorbent layer comprises or consists of absorbent material (100) strips, extending substantially in the longitudinal direction, with therein between strips with no absorbent material (100), e.g. in the form of an absorbent layer with absorbent material (100) with therein substantially longitudinally extending strips that are free of absorbent material (100); such strips without absorbent material (100) may for example only extend at the most 90% or at the most 80%, or for example at the most 70% or for example at the most 60% of the full length of the absorbent layer. Said strips without absorbent are material may preferably have an average width dimension of at least 2 mm, or at least 3 mm; said strips may have any of the dimensions and shapes and positions described herein for said rods (36) and/or raised portions.
It should be understood that above and following description applies equally to the method and the apparatus (1) of the invention, and the absorbent structure obtained therewith, unless stated otherwise. BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a schematic view of an apparatus of the invention.
Fig. 2 is a perspective view of an apparatus of the invention.
Fig.3 is a perspective view of optional further units of the apparatus of the invention, combining absorbent structures into an absorbent article and bonding it.
Fig.4 is a partial and cross-sectional view of a moving endless surface and a receptacle thereof, of an apparatus of the invention.
Fig. 5 is a top view of a receptacle during production of an absorbent structure herein.
DETAILED DESCRIPTION OF THE INVENTION
As summarized above, this invention encompasses a method and apparatus (1) for making an absorbent structure useful for absorbent article comprising absorbent material (100), preferably at least, or only, particulate superabsorbent polymer material, and preferred absorbent layers. Embodiments of such method and apparatus (1) and resulting absorbent structures and absorbent articles are further described herein below, after the following definitions.
Definitions
"Absorbent structure" refers to a three-dimension structure with a longitudinally dimension and perpendicular thereto a transverse dimension and perpendicular to both a height dimension, and that comprises at least an absorbent material (100) and a supporting sheet (200), and that is useful in an absorbent article.
"Absorbent layer" refers to a three dimensional layer of absorbent material (100), formed by deposition of absorbent material (100) (s) onto the supporting sheet (200), and it may comprise other components, e.g. deposited onto the supporting sheet (200).
"Absorbent material (100)" refers to a material or mixture of materials that can absorb and retain bodily fluids; it typically includes or consists of Superabsorbent polymer material". "Superabsorbent polymer material" (also known as "absorbent gelling material," or "AGM," "superabsorbent,") refer to polymeric materials that can absorb at least 10 times their weight of an aqueous 0.9% saline solution as measured using the Centrifuge Retention Capacity test (Edana 441.2-02)., i.e. having a CRC of at least 10 g/g. . This is typically in particulate form. "Particulate" is used herein to refer to a material which is in particulate form so as to be flowable in the dry state. "Absorbent article" refers to a device that absorbs and contains body exudates, and, more specifically, refers to devices that are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. Absorbent articles may include adult and infant diapers, including pants, such as infant training pants and adult incontinence undergarments, and feminine hygiene products, such as sanitary napkins and panty- liners and adult in continent pads, and breast pads, care mats, bibs, wound dressing products, and the like. Absorbent articles may further include floor cleaning articles, food industry articles, and the like. As used herein, the term "body fluids" or "body exudates" includes, but is not limited to, urine, blood, vaginal discharges, breast milk, sweat and fecal matter.
"Diaper" refers to an absorbent article generally worn by infants and incontinent persons about the lower torso so as to encircle the waist and legs of the wearer and that is specifically adapted to receive and contain urinary and fecal waste.
"Pant" or "training pant", as used herein, refer to diaper having a waist opening and leg openings designed for infant or adult wearers. A pant may be placed in position on the wearer by inserting the wearer's legs into the leg openings and sliding the pant into position about a wearer's lower torso. A pant may be preformed by any suitable technique including, but not limited to, joining together portions of the article using refastenable and/or non-refastenable bonds (e.g., seam, weld, adhesive, cohesive bond, fastener, etc.). A pant may be preformed anywhere along the circumference of the article (e.g., side fastened, front waist fastened). While the terms "pant" or "pants" are used herein, pants are also commonly referred to as "closed diapers," "prefastened diapers," "pull-on diapers," "training pants," and "diaper-pants". Suitable pants are disclosed in U.S. Patent No. 5,246,433, issued to Hasse, et al. on September 21, 1993; U.S. Patent No. 5,569,234, issued to Buell et al. on October 29, 1996; U.S. Patent No. 6,120,487, issued to Ashton on September 19, 2000; U.S. Patent No. 6,120,489, issued to Johnson et al. on September 19, 2000; U.S. Patent No. 4,940,464, issued to Van Compel et al. on July 10, 1990; U.S. Patent No. 5,092,861, issued to Nomura et al. on March 3, 1992; U.S. Patent Publication No. 2003/0233082 Al, entitled "Highly Flexible And Low Deformation Fastening Device", filed on June 13, 2002; U.S. Patent No. 5,897,545, issued to Kline et al. on April 27, 1999; U.S. Patent No. 5,957,908, issued to Kline et al on September 28, 1999.
A "nonwoven" is a manufactured sheet, web or batt of directionally or randomly orientated fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded incorporating binding yarns or filaments, or felted by wet-milling, whether or not additionally needled. The fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms: short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yarn). Nonwoven fabrics can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, and carding. The basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm). "Substantially cellulose free" is used herein to an absorbent layer structure (or core), that contains less than 5% by weight cellulosic fibers.
"Thickness" and "height" are used herein interchangeably.
A absorbent structure and absorbent layer thereof, and a receptacle (33) herein each have a longitudinal dimension and average length, and this may be corresponding the machine direction (MD), and perpendicular thereto a transverse dimension, and average width, which may be corresponding to the cross-machine direction (CD), said width being less than said length; and a front region, back region and central region, each being 1/3 of the average length of the structure/layer, respectively, and having each the full width. Each has longitudinal edges and edge zones, extending the full length thereof- as further described below.
Moving endless surface (30)
The method and apparatus (1) herein deploy a moving endless surface (30), moving in a machine direction (MD). It has an outer shell with one or more forming receptacles (33), for receiving thereon or therein the supporting sheet (200) (which may be a web material, as described herein below, or individual sheets that are placed on a receptacle). The following is described for a single receptacle (33) but may apply to each receptacles (33) of the moving endless surface (30) 's outer shell. An exemplary apparatus is shown in Figure 1.
Each receptacle (33) corresponds typically to an absorbent structure to be produced, as suitable for an absorbent article. The supporting sheet (200) may be a web material, so the method and apparatus (1) herein can thus serve to produce a web of such absorbent structures that are then subsequently separated into individual structures.
The moving endless surface (30) may have or be a rotating surface, such as a rotating, e.g. cylindrical, drum. It may be that the outer shell moves, e.g. rotates, around a stationary inner chamber, e.g. a so-called stator (230).
The outer shell and the receptacle (33) have a transverse direction and average transverse dimension (average width), and the receptacle (33) has longitudinal direction and average longitudinal dimension (average length), perpendicular thereto. The receptacle (33) has peripheral edges, and peripheral edge zones, including opposing longitudinal edges and edge zones, and a transverse front edge and front edge zone A, and a transverse back edge and back edge zone C, with a central zone B in between. Each of said front and back edge zones, extending the complete transverse dimension, may for example be in longitudinal dimension from about 5% to about 20%, or to 15%, or to 10% of the average longitudinal dimension of the receptacle.
Each of said longitudinal edge zone may extend the length and may have an average transverse dimension of for example from about 5% to about 20%, or typically to about 15% or to about 10% of the average transverse dimension of the receptacle.
The receptacle (33) may in addition, or alternatively, comprise a front region, back region and central region, therein between, as further described below. The central region may be for example the central 1/3 of the receptacle, extending the full transverse dimension.
The receptacle (33) comprises a multitude of substantially longitudinally extending rods (36), spaced apart from one another in transverse direction. The rods (36) are such that they form or partially form the most outer surface of said receptacle, so that the supporting sheet (200) is received and carried by said rods (36). Thus, between rods (36) there is a spacing where the supporting sheet (200) may not be supported directly by the receptacle, or may not be in direct contact with the receptacle. For example, Figure 2 shows such a receptacle, and Figure 4 shows a cross-section thereof.
The receptacle (33) may comprise said rods (36) over substantially the whole length of the receptacle; or for example over the whole length except the front edge zone and/or back edge zone; or, in some embodiments herein, the rods (36) may be present only in said central region; in some embodiments, the rods (36) may be present in the front region and optionally the central region, but not the back region; in some embodiments, the rods (36) may be present in the back region and optionally the central region, but not the front region.
The receptacle (33) may comprise such rods (36) over the whole width of said receptacle; or for example over the whole width except in said longitudinal edge zones.
In any of these embodiments, the zone(s) or region(s) not comprising said rods (36) is herein referred to as rod-free zone or rod-free region; in said rod-free region or rod-free zone the supporting sheet (200) may be deposited onto said inner grid (37) (e.g. a mesh material) directly, or there may be an outer grid present, typically in the same plane as the rods (36); for example an outer grid made of a combination of transverse and longitudinal rods (36) that are intersecting in the same plane, like a mesh), or a plate with preferably apertures for vacuum suction. This is for example shown in Figure 4.
Said receptacle (33) may have in said region(s) or zone(s) that not comprising said rods (36) a higher friction than aid rods (36). This can aid to ensure the supporting sheet (200) is pulled in between the rods (36) in the low friction zone, and less or not at all in the high friction zone. For example, the receptacle (33) can be made of a higher friction material (e.g. a material with a less even surface), or may be treated with an friction-increasing agents, in those zones or regions not comprising said rods (36); or for example said zones or regions with rods (36), or only said rods (36), can be made of a lower friction material, or treated with friction-reducing agent.
A rod (36) is considered substantial longitudinally extending, if its longitudinal (length) extension is more than its transverse (width) extension. Thus, a rod (36) may be under an angle with the longitudinal axis of the receptacle, provided said angle is less at the most 30°; or a rod (36) may be slightly curved (as described below); or a rod (36) may be wavy; or a rod (36) may comprise an angle, provided said angle is at least 120°, as described below; provided, in each case, its longitudinal (length) extension is more than its transverse (width) extension, e.g. they extend at least 50% or at least 100% more in longitudinal dimension of said receptacle (33) than in transverse dimension.
The rod (36) may be any shape or form. It may have a square, rectangular, round, oval or hexagonal cross-section in transverse dimension, for example. Each rod (36) has a top portion (which may be the top surface for, for example, rods (36) that have a square or rectangular cross- section) and an opposing bottom portion or surface. Said top portion or surface is then in contact with the supporting sheet (200); said bottom surface may be adjacent (e.g.: on) an, at least partially, air-permeable inner grid (37).
In some embodiments, it may be preferred that the rod (36) is generally rectangular with optionally a triangular-shaped top portion.
Neighboring rods (36) are spaced apart, e.g. with a minimum distance (transversely) of for example at least 2 mm, or at least 3 mm, or at least 5 mm, or for example at least 10 mm.
Two or more rods (36) may be parallel to one another, so that the spacing distance between parallel neighboring rods (36), transversely, is at least said 2 mm along substantially the whole length.
Thus, there is a void volume neighboring rods (36), e.g. between the inner grid (37) if present, and neighboring rods (36), and said void volume extends substantially in longitudinal direction in between said neighboring rods (36). This void volume can serve to receive the supporting sheet (200) therein, as an undulation, and optionally said absorbent material (100).
Each rod (36) has a maximum transverse dimension which may be at least 0.3 mm, preferably at least 0.5 mm, or at least 1.0 mm, or at least 2 mm, and in some embodiments, for example at least 3 mm or at least 4 mm, and for example up to 20 mm, or up to 15mm or for example up to 10 mm.
Each rod (36) has a maximum and average height dimension. Each rod (36) may for example have an average or maximum height dimension of at least 2 mm, or at least 3mm, or at least 4 mm, or at least 5 mm.
This may be preferably substantially equal to the distance from the top of a rod (36) to the inner grid (37), if present.
The receptacle (33) may for example have at least 2 such rods (36), or for example at least 4 such rods (36), or for example at least 5 or at least 7 such rods (36). The rods (36) may be slightly curved (for example having a single curvature), having a curvature with a radius that is at least equal to, preferably at least 1.5 times or at least 2 times, the average transverse dimension of the receptacle; and/or having a curvature following for example the contour of the closest longitudinal side edge; and/or having multiple small curvatures, said rod(s) being then for example longitudinally extending wavy rod(s). In any such case, said rods (36) are considered to extend substantially longitudinally, as said out above.
In some embodiments the rods (36) are straight and parallel to the longitudinal axis of the receptacle.
In some embodiments it may be preferred that the rods (36) are concave, whereby the longitudinal centre of the rod (36) is closer to the longitudinal axis of the receptacle (33) than the end point(s), and whereby the radius of curvature is at least 1.5 times the transverse dimension of the receptacle, preferably at least 2 times.
The moving endless surface (30) is connected to a vacuum system (38) that can apply a vacuum on said outer shell/ receptacles (33), to pull the supporting sheet (200) onto said outer shell/ receptacles (33), and to retain the absorbent material (100) thereon. The moving endless surface (30) may thus move adjacent a vacuum system, such as a vacuum chamber (s) (38), that is present adjacent the outer shell (on the opposite side to the rods (36)). The vacuum chamber(s) may be present in a stator (230) around which the moving endless surface (30) rotates. The outer shell is hence at least partially air-permeable, which means it is such that it in air communication with said vacuum system, e.g. provided affective vacuum pressure can be applied through said shell onto said supporting sheet (200). For example, the rods (36) themselves may for example not be air-permeable, i.e. not being in direct air communication with said vacuum system. The surface area between rods (36) should however generally be air-permeable. Hence, the inner grid (37) may be air-permeable, e.g. it may be a mesh material, for example.
In some preferred embodiments, the supporting sheet (200) is deposited onto said rods (36) and it bends in between neighboring rods (36), e.g. due to the vacuum suction to form thereby in said sheet undulations (201) between neighboring rods (36), and crests (202) supported on said rods (36) (on said top surface or top portion). The inner grid (37) may control / determine the size (height) of said undulations (201). This is for example shown in Figures 4 and 5.
The supporting sheet (200) is transferred from a transfer means, such a transfer roll, to said moving endless surface (30) and deposited onto said outer surface / receptacles (33), e.g. onto said rods (36) at least. It may be transported to the outershell and receptacles (33) thereof as a web, or as individual sheets.
The supporting sheet (200) may be a nonwoven material, as further described herein.
Subsequently, said absorbent material (100) may be deposited onto said supporting sheet (200), on said receptacles (33). The absorbent material (100) may be deposited such that it is only present on the portions (e.g. strips) of the supporting sheet (200) that is present between neighboring rods (36), e.g. in said undulations (201). Thereto, specific feeders as described below may be used. Alternatively, or in addition, the vacuum may be such that it pulls the absorbent material (100) to or towards the portions of the supporting sheet (200) present between neighboring rods (36), e.g. into said undulations (201). Substantially no absorbent material (100) may for example be present on the supporting sheet (200) present on said rods (36), e.g. on said crests, as for example shown in Figures 4 and 5.
Alternatively, or in addition, absorbent material (100) deposited onto the portions of the supporting sheet (200) on said rods (36) (e.g. said crests (201)) may be removed by means known in the art, such as a scraper or doctor blade.
Alternatively, or in addition, the supporting sheet (200) may comprise adhesive. For example said adhesive may be present on said portions of said supporting sheet (200) that are between neighboring rods (36), e.g. said undulations (201). This may help to adhere the absorbent material (100) in such portions, e.g. on said undulations (201). The supporting sheet (200) may then, prior to addition of the absorbent material (100), comprise no adhesive applied on said portions supported by said rods (36), e.g. said crests (202), so that less or no absorbent material (100) adheres in said portions, e.g. crests. This is for example shown in Figure 1.
By use of these rods (36), the absorbent structure may have said absorbent material (100) deposited in the form of strips of absorbent material (100) (e.g. corresponding to said undulations (201)), with therein in between strips that are free of such absorbent material (100) (e.g. corresponding to aid crests (202)); and/ or said absorbent layer formed herein may be a layer of absorbent material (100) with strips that are substantially free of absorbent material (100) (e.g. the crests (202) of said supporting sheet (200)).
As described above, the supporting sheet (200) may be transferred to said moving endless surface (30) such that it forms undulations (201) and crests (202). Then, when the supporting sheet (200) is removed from said moving endless surface (30), the supporting sheet (200) is pulled substantially flat, resulting in an absorbent structure with substantially longitudinally extending strips (that correspond to the crests (202) of said material) that comprise substantially no absorbent material (100). This is for example shown in Figure 5.
In some embodiments, the moving endless surface (30) may for example have a speed of at least 1000 part per minute and/ or a speed of at least 4.5 m/s, or at least 6 m/s, or at least 8 m/s. Feeder (20; 60)/ Further moving endless surface (20)
The absorbent material (100) may be delivered to the supporting sheet (200) by a feeder (60; 20) placed adjacent and in close proximity to said moving endless surface (30), for example substantially above said surface.
The absorbent material (100) may be deposited onto said supporting sheet (200) by any method, including substantially continuously.
The feeder herein is capable of holding the absorbent material (100), and letting it flow to the supporting sheet (200) on said moving endless surface (30). The point or area where the material leaves the feeder is herein referred to as meeting point.
The feeder may be a (e.g. stationary) hopper (60) with a container portion, to hold the material, e.g. having a volume of at least 1000 cm3, and a guiding portion, e.g. a pipe-shapes portion, having one or more walls that guides the material from the container portion to the supporting sheet (200) on the moving endless surface (30). In a preferred embodiment, the absorbent material (100) is deposited on the supporting sheet (200) carried on said moving endless surface (30) by a further moving endless surface (20) that moves, moving in a machine direction, e.g. rotates, adjacent and in close proximity to said moving endless surface (30). In such a case, a hopper (60), as for example described above, may feed the absorbent material (100) to this further moving endless surface (20).
The further moving endless surface (20) may be a rotating device. The further moving endless surface (20) is typically a rotating device with a certain radius, such as a cylinder or drum or print roll, as for example shown in the Figures. The radius of the further moving endless surface (20) may depend on what absorbent structure is produced, e.g. what size, and for example how many structures are produced per cycle of the further moving endless surface (20), e.g. print roll or drum. For example, the drum/print roll may have a radius of at least 40 mm, or of at least 50 mm; it may be for example up to 300 mm, or up to 200 mm.
The further moving endless surface (20) may have any suitable width, but for example a width corresponding to the width of the absorbent structure to be produced; this for example be at least 40 mm, or at least 60 mm, or for example up to 400 mm, or up to 200 mm.
Said further moving endless surface (20) may have one or more reservoirs with a certain volume for receiving said absorbent material (100) therein, and transporting it and then depositing it to said supporting sheet (200) on the moving endless surface (30) with receptacle(s) with rods (36), described above.
Such a reservoir may then correspond to an absorbent structure to be produced. The reservoir may have a (average) longitudinal dimension, and (average) length, and a (average) transverse dimension and (average) width, said length being more than said width.
The reservoir may have raised strips (that have no void volume) and then, when the further moving endless surface (20) moves (rotates) adjacent said moving endless surface (30) with said supporting sheet (200) on said rods (36), said raised portions may mate with (correspond to) said rods (36) (herein referred to as "mating"). Then, the absorbent material (100) is deposited selectively between rods (36), e.g.in said undulations (201).
In some embodiments, the reservoir is composed of multitude of groves, extending substantially longitudinally, or a multitude of rows of cavities (22), extending, for receiving the absorbent material (100) therein, whereby neighboring grooves or rows are being separated from one another by such raised strips that do not have a void volume for receiving absorbent material (100). Then, typically, the raised strips move adjacent (mate) said rods (36) and said crests (202) of said supporting sheet (200), and the grooves or rows of cavities (22) move adjacent (mate) with said areas of the supporting sheet (200) between neighboring rods (36), e.g. said undulations (201). Then, the absorbent material (100) is deposited selectively between rods (36), e.g.in said undulations (201).
The resulting absorbent structure then comprises a supporting sheet (200) with thereon a layer of absorbent material (100) with substantially longitudinally extending strips that comprise no absorbent material (100). The cavities (22) may have any dimensions and shape, including cubical, rectangular, cylindrical, semi-spherical, conical, or any other shape. This may be any suitable number of cavities (22), but for example at least 20 or at least 50.
The cavities (22) may be present as identical cavities (22) or they may vary in dimension(s) or shape. The exact pattern, dimensions etc. will depend on the required structure to be formed, but may for example also depend on the particle size of the absorbent material (100), process speed etc. In some embodiments at least 30% of the surface area of the reservoir of the further moving endless surface (20) comprises said cavities (22), preferably at least 40% , and preferably up to 55% or up to 50%.
The distance (longitudinally) between the centre point of a cavity (said centre point being in the plane of the outer surface of the further moving endless surface (20)) and the centre point of a neighboring cavity (in a row of cavities (22)) may for example be at least 3 mm, or at least 4 mm, or at least 6 mm, or for example up to 40 mm or up to 30 mm or up to 20 mm. This may apply to all such distances between neighboring cavities (22) longitudinally, or this may be an average over all such distances.
The distance transversely between the centre point of a cavity or groove (said centre point being in the plane of the outer surface of the further moving endless surface (20)) and the centre point of a neighboring cavity or groove (in a transverse line of cavities (22)) may for example also be as above. In some embodiments, the shortest distance transversely between two neighboring cavities (22) of a line of cavities (22) or between neighboring groves is at least 3.0 mm, or at least 4.0 mm, so that this can mate with the rods (36) of the moving endless surface (30).
Said rows or grooves may extend substantially parallel to, and equally spaced from, one another and/ or said lines may extend substantially parallel to, and equally spaced from, one another. In some embodiments, the grooves and rows have such a shape or pattern, that the distance between neighboring groves or rows is substantially corresponding to a rod; and/or that the grooves or rows correspond substantially to the areas between neighboring rods (36). Then the grooves or rows can mate with the areas between rods (36).
In some embodiments, the length dimension of a cavity may be (on average over all cavities (22) and/ or for each cavity; measured over the outer surface of the further moving endless surface (20)) at least 1 mm, or at least 2 mm, or at least 4 mm, and for example at the most 20 mm or at the most 15 mm. The width dimension may be within the same ranges as above, or it may even be the same as the length dimensions for one or more or each cavity.
In some embodiments, a raised portion is completely overlapping a corresponding rod.
In some embodiments, the average width dimension of each raised portions of the reservoir(s) that mates with a rod (36) is about at least 10% more than the average width dimension of said rod.
The reservoir, cavities (22) or grooves may have any suitable dept dimension, and it may depend for example on the height of the further moving endless surface (20) (e.g. radius), the thickness/ caliper of the desired structure to be produced, the particle size of the material, etc. The maximum depth of a reservoir, cavities (22) or grooves and/ or the average maximum depth (average over all maximum depths of all cavities (22) and/or grooves) may for example be at least 1 mm, or at least 1.5 mm, or for example 2 mm or more, and for example up to 20 mm, or up to 15 mm, or in some embodiment herein, up to 10 mm, or to 5 mm, or to 4 mm.
According to some embodiments herein, the cavities (22) may have a an average width dimension and length dimension of from 2 to 8 mm or from 3 mm to 7 mm; and the cavities (22) may have a maximum depth and/ or average maximum depth of for example from 1.5 mm to 4 mm.
A scraper or doctor blade may be used to remove excess absorbent material (100). Excess material may be removed from the reservoir and recycled back to e.g. the hopper
One possibility to hold the material in the reservoir (or its groves or cavities (22)) may be a vacuum (28) applied to the inner side of the further moving endless surface (20), e.g. print roll or drum, in combination with suction holes in (the bottom) of the reservoir, or groves cavities (22) thereof, to thus apply the vacuum suction onto the absorbent material (100). The vacuum is for example released just before or at the meeting point. The vacuum may be any vacuum pressure such as, just as for the moving endless surface (30) above, for example at least 10 kPa, or at least 20 kPa.
The vacuum may be provided by providing one or a plurality of vacuum chambers (28) in said further moving endless surface (20) (e.g. in its interior), whereby said vacuum can be applied, reduced, increased, and released (disconnected), depending on the position thereof in the process/ apparatus (1).
Additional air pressure and air pressure chamber(s) (29) may be used/ applied to said absorbent material (100) close to or at the meeting point, to ensure that the material flows to the supporting sheet (200) on said moving endless surface (30).
Absorbent material (100)
The absorbent material (100) herein is preferably a flowable material (in the dry state), such as a particulate material; it may be any material in particulate form, which includes particles, flakes, fibers, spheres, agglomerated particles and other forms known in the art. The absorbent material (100) may be a mixture of cellulose material, or so-called airfelt, and superabsorbent polymer material.
Alternatively, or in addition, when two absorbent structures are combined as described herein, the first absorbent structure may comprise a first absorbent material (100), and the second structure may comprise a second, different absorbent material (100), for example having a different capacity (CRC).
In some embodiments herein, the absorbent material (100), e.g. the particulate absorbent material (100), comprises at least or consists of (particulate) superabsorbent polymer material, herein referred to as SAP, and also known as particulate absorbent gelling material, AGM. The particulate SAP herein may have a high sorption capacity, e.g. having a CRC of for example at least 20 g/g, or at 30 g/g. Upper limits may for example be up to 150 g/g, or up to 100 g/g.
The particulate SAP may have a good permeability for liquid, for example, having a SFC value of at least 10 x 10"7 cm3 s/g; or preferably at least 30 x 10"7 cm3.s/g, or at least 50 x 10"7 cm3s/g 10 x 10"7 cm3 s/g, or possibly permeability SFC value of at least 100 xlO 7 cm3 s/g, or at least a SFC of 120 xlO"7 cm3sec/g. This SFC is a measure of permeability and an indication of porosity is provided by the saline flow conductivity of the gel bed as described in U.S. Patent No. 5,562,646, (Goldman et al.) issued Oct. 8, 1996 (whereby however a 0.9% NaCl solution is used instead of Jayco solution). Upper limits may for example be up to 350 or up to 250 (x 10"7 cm3, s/g). In some embodiments herein the polymers of said SAP are internally cross-linked and/ or surface crosslinked polymers.
In some embodiments herein, the absorbent material (100) comprising or consisting of particles of polyacrylic acids/ polyacrylate polymers, for example having a neutralization degree of from 60% to 90%, or about 75%, having for example sodium counter ions, as known in the art, e.g. surface crosslinked and/ or internally crosslinked and/ or post-crosslinked polyacrylic acid/ polyacrylate polymers.
In some embodiments herein, the absorbent material (100) is in the form of particles with, a mass medium particle size up to 2 mm, or between 50 microns and 2 mm or to 1 mm, or preferably from 100 or 200 or 300 or 400 or 500μιη, or to 1000 or to 800 or to 700 μιη; as can for example be measured by the method set out in for example EP-A-0691133. In some embodiments of the invention, the material is in the form of particles whereof at least 80% by weight are particles of a size between 50 μιη and 1200 μιη and having a mass median particle size between any of the range combinations above. In addition, or in another embodiment of the invention, said particles are essentially spherical. In yet another or additional embodiment of the invention the absorbent material (100) has a relatively narrow range of particle sizes, e.g. with the majority (e.g. at least 80% or preferably at least 90% or even at least 95% by weight) of particles having a particle size between 50μιη and ΙΟΟΟμιη, preferably between ΙΟΟμιη and 800μιη, and more preferably between 200μιη and 600μιη.
The absorbent material (100) herein may advantageously comprise less than 15% by weight of water, or less than 10%, or less than 8% or less than 5%. The water-content can be determined by the Edana test, number ERT 430.1-99 (February 1999) which involves drying the particulate material (100) at 105°Celsius for 3 hours and determining the moisture content by the weight loss of the particulate material (100) after drying.
The particulate SAP herein may be particles of SAP that are surface coated or surface treated (this not including surface-crosslinking, which may be an additional surface-treatment); such coatings and surface treatment steps are well known in the art, and include surface treatment with one or more inorganic powders, including silicates, phosphates, and coatings of polymeric material, including elastomeric polymeric materials, or film-forming polymeric materials.
Supporting sheet (200)
The absorbent structure producible with the apparatus (1) and method of the invention comprises a supporting sheet (200), to receive the absorbent material (100). This supporting sheet (200) may be any individual sheet or web sheet material, in particular paper, films, wovens or nonwovens, or laminate of any of these.
In some embodiments herein, the supporting sheet (200) is a nonwoven, e.g. a nonwoven web, such as a carded nonwoven, spunbond nonwoven or meltblown nonwoven, and including nonwoven laminates of any of these.
The fibers may be of natural or man-made origin and may be staple or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging typically from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms: short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yarn). The fibers may be bicomponent fibers, for example having a sheet- core arrangement, e.g. with different polymers forming the sheet and the core. Nonwoven fabrics can be formed by many processes such as meltblowing, spunbonding, solvent spinning, electrospinning, and carding. The basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm).
The nonwoven herein may be made of hydrophilic fibers; "Hydrophilic" describes fibers or surfaces of fibers, which are wettable by aqueous fluids (e.g. aqueous body fluids) deposited on these fibers. Hydrophilicity and wettability are typically defined in terms of contact angle and the strike through time of the fluids, for example through a nonwoven fabric. This is discussed in detail in the American Chemical Society publication entitled "Contact angle, wettability and adhesion", edited by Robert F. Gould (Copyright 1964). A fiber or surface of a fiber is said to be wetted by a fluid (i.e. hydrophilic) when either the contact angle between the fluid and the fiber, or its surface, is less than 90°, or when the fluid tends to spread spontaneously across the surface of the fiber, both conditions are normally co-existing. Conversely, a fiber or surface of the fiber is considered to be hydrophobic if the contact angle is greater than 90° and the fluid does not spread spontaneously across the surface of the fiber.
The supporting sheet (200) herein may be air-permeable. Films useful herein may therefore comprise micro pores. Nonwovens herein may for example be air permeable. The supporting sheet (200) may have for example an air-permeability of from 40 or from 50, to 300 or to 200 m3/ (m2x min), as determined by ED ANA method 140-1-99 (125 Pa, 38.3 cm2). The supporting sheet (200) may alternatively have a lower air-permeability, e.g. being non-air-permeable, to for example be better detained on a moving surface comprising vacuum.
In preferred executions, the supporting sheet (200) is a nonwoven laminate material, a nonwoven laminate web, for example of the SMS or SMMS type. In order to form easily said undulations (201), the supporting sheet (200) may have a basis weight that is less than 60 gsm, or for example than 50 gsm, for example from 5 gsm to 40 gsm, or to 30 gsm. Adhesive application units and method steps.
The supporting sheet (200) may comprise and adhesive prior to transfer to said moving endless surface (30). Thus, the apparatus (1) herein may comprise an adhesive application unit (51) upstream from said moving endless surface (30), and for example downstream from said supporting material transfer means (210), e.g. roll. The method herein may thus comprise such an adhesive application step. This is for example shown in Figure 1.
This adhesive may be applied uniformly and/or continuously.
It may be applied as substantially longitudinal stripes. For example, the adhesive may be applied in substantially longitudinally extending stripes such that areas of the supporting sheet (200) with the stripes of adhesive are between neighboring rods (36), and the areas of the supporting sheet (200) that do not comprise said adhesive correspond to said rods (36), or the opposite.
In some embodiments, the apparatus (1) may comprise a unit to apply an adhesive to said supporting sheet (200) in a pattern, for example the pattern of the rods (36), or the pattern of the areas between the rods (36). This may be done by spraying, or for example by selectively slot- coating; the apparatus (1) may thus comprise a slot-coater, for example with a coating pattern that corresponds to the rods (36), or the areas between the rods (36).
Any suitable adhesive can be used for this, for example so-called hotmelt adhesives used. For example. A sprayable hot melt adhesives, such as H.B. Fuller Co. (St. Paul, MN) Product No. HL-1620-B, can be used.
Alternatively, or in addition, it may be beneficial to apply a further immobilization adhesive to said absorbent structure produced by the apparatus (1) or method herein, e.g. to ensure the absorbent material (100) will stay substantially in the applied pattern. This immobilization adhesive may then for example be applied onto said absorbent layer just after application of said absorbent material (100) onto said supporting sheet (200).
The apparatus (1) herein may thus have a further immobilization adhesive application unit (50), e.g. downstream from said moving endless surface (30)' meeting point. The method may have a corresponding method step. This is for example shown in Figure 1. This adhesive may be applied uniformly and/or homogeneously. This may be a thermoplastic adhesive material.
In accordance with certain embodiments, the thermoplastic adhesive material may comprise, in its entirety, a single thermoplastic polymer or a blend of thermoplastic polymers, having a softening point, as determined by the ASTM Method D-36-95 "Ring and Ball", in the range between 50 °C and 300 °C, or alternatively the thermoplastic adhesive material may be a hot melt adhesive comprising at least one thermoplastic polymer in combination with other thermoplastic diluents such as tackifying resins, plasticizers and additives such as antioxidants. In certain embodiments, the thermoplastic polymer has typically a molecular weight (Mw) of more than 10,000 and a glass transition temperature (Tg) usually below room temperature or -6 °C > Tg < 16°C. In certain embodiments, typical concentrations of the polymer in a hot melt are in the range of about 20 to about 40% by weight. In certain embodiments, thermoplastic polymers may be water insensitive. Exemplary polymers are (styrenic) block copolymers including A-B-A triblock structures, A-B diblock structures and (A-B)n radial block copolymer structures wherein the A blocks are non-elastomeric polymer blocks, typically comprising polystyrene, and the B blocks are unsaturated conjugated diene or (partly) hydrogenated versions of such. The B block is typically isoprene, butadiene, ethylene/butylene (hydrogenated butadiene), ethylene/propylene (hydrogenated isoprene), and mixtures thereof. Other suitable thermoplastic polymers that may be employed are metallocene polyolefins, which are ethylene polymers prepared using single-site or metallocene catalysts. Therein, at least one comonomer can be polymerized with ethylene to make a copolymer, terpolymer or higher order polymer. Also applicable are amorphous polyolefins or amorphous polyalphaolefins (APAO) which are homopolymers, copolymers or terpolymers of C2 to C8 alpha olefins. In exemplary embodiments, the tackifying resin has typically a Mw below 5,000 and a Tg usually above room temperature, typical concentrations of the resin in a hot melt are in the range of about 30 to about 60%, and the plasticizer has a low Mw of typically less than 1,000 and a Tg below room temperature, with a typical concentration of about 0 to about 15%. In certain embodiments, the thermoplastic adhesive material is present in the form of fibers. In some embodiments, the fibers will have an average thickness of about 1 to about 50 micrometers or about 1 to about 35 micrometers and an average length of about 5 mm to about 50 mm or about 5mm to about 30 mm. .
Further method steps/ apparatus (1) units
The apparatus (1) and method herein may comprise the further step/ unit, of applying a further supporting sheet (300) onto said absorbent structure, to enclose said absorbent material (100), as know in the art. This is for example shown in Figure 1.
The apparatus (1) and method herein may alternatively or in addition comprise the apparatus (1) unit/method step of folding the supporting sheet (200) over the absorbent material (100) to enclose it thereby.
It may comprise a sealing unit, sealing step to seal the two supporting sheet (200) or the folded supporting sheet (200) along the peripheral edges of the absorbent structure/ layer.
The absorbent structure may alternatively or in addition be combined with other layers, such as an acquisition layer, or topsheet and the apparatus (1) and method herein may comprise according steps/units.
The method or apparatus (1) herein may be to produce an absorbent core or structure that comprises two or more of the above described absorbent structures; for example two such layers, superposed on one another such that the absorbent material (100) of a first layer and the absorbent material (100) of the other second layer are adjacent one another and sandwiched between the supporting sheet (200) of the first layer and the supporting sheet (200) of the second layer. This is for example shown in Figure 3.
The apparatus (1) herein may thus be a combination apparatus (1), comprising two or more, e.g. two, of the apparatuses (1) described herein, to produce two or more, e.g. two, absorbent structures, and then comprising a combining unit to combine the absorbent structures. The method may comprise according method step(s).
The strips where no absorbent material (100) of one layer is present may then be superposed on the strips where no absorbent material (100) is present of the other layer, to form joined strips; alternatively, they may be alternating, so that a strip where no absorbent material (100) of one layer is superposed onto the absorbent material (100) of the other layer.
In some embodiments, when the two layers are combined, the center (referring to the width) of a (or of each of) the absorbent material (100) strips of one layer overlays and contacts the center of a (or of the respective) strip where no absorbent material (100) is present of the other layer, and preferably vice versa. Hence, one or more, or each, absorbent material (100) strip of the one layer may be placed centrally on or in the strip without absorbent material (100) of the other layer and vice versa. The absorbent structure produced with the method/ apparatus (1) of the invention herein may also be combined with an absorbent structure produced by a method/apparatus (1) other than of the present invention, said combination may be done as set out above. In some embodiments, the apparatus (1) may comprise a pressure means, such as a pressure roll
(70) , that can apply pressure onto the absorbent structure, and typically on the supporting sheet thereof, and/or onto the further material if combined with the absorbent structure as described herein; or as for example shown in Figure 3, on one of the supporting sheets (200; 300) sandwiched on either side of the absorbent layer or layers.
The pressure may be applied selectively onto said supporting sheet (200) or on any of the further material/ layer that placed over the absorbent layer, as described above in this section.
This pressure application may preferably be done to selectively apply pressure only onto the strips of the supporting sheet (s) (200; 300) or further material that comprise (on the opposed surface) no absorbent material (100), to avoid compaction of said absorbent material (100) itself. Thus, the apparatus (1) may comprise a pressure means (70) that has a raised pressuring pattern
(71) corresponding to said rods (36), so that the raised pressure pattern (71) can mate with the strips of the supporting sheet (200) that have no absorbent material (100) (on its surface), that are or were supported by said rods (36) . The method may have an according method step.
Absorbent articles
The apparatus (1) and method of the invention are for example useful to produce absorbent structures, or absorbent cores (absorbent structures combined with a further material, as described herein) suitable for absorbent articles.
Absorbent articles may include diapers, including fastenable diapers and (refastenable) training pants; adult incontinence undergarments (pads, diapers) feminine hygiene products (sanitary napkins, panty-liners), breast pads, care mats, bibs, wound dressing products, and the like. As The absorbent article herein may comprise in addition to an absorbent structure or core produced by the method/apparatus (1) herein, a topsheet and backsheet, and for example one or more side flaps or cuffs. The topsheet or cuffs or side flaps may comprise a skin care composition or lotion or powder, known in the art, panels, including those described in U.S. 5,607,760; U.S. 5,609,587; U.S. 5,635,191; U.S. 5,643,588.
Preferred absorbent articles herein comprise a topsheet, facing the wearer in use, for example a nonwoven sheet, and/ or an apertured sheet, including apertured formed films, as known in the art, and a backsheet.
The backsheet may be liquid impervious, as known in the art. In preferred embodiments, the liquid impervious backsheet comprises a thin plastic film such as a thermoplastic film having a thickness of about 0.01 mm to about 0.05 mm. Suitable backsheet materials comprise typically breathable material, which permit vapors to escape from the diaper while still preventing exudates from passing through the backsheet. Suitable backsheet films include those manufactured by Tredegar Industries Inc. of Terre Haute, IN and sold under the trade names X15306, X10962 and X10964.
The backsheet, or any portion thereof, may be elastically extendable in one or more directions. The backsheet may be attached or joined to a topsheet, the absorbent structure/ core herein, or any other element of the diaper by any attachment means known in the art.
Diapers herein may comprise leg cuffs and / or barrier cuffs; the article then typically has a pair of opposing side flaps and/ or leg and/ or barrier cuffs, each of a pair being positioned adjacent one longitudinal side of the absorbent structure/ core, and extending longitudinally along said absorbent structure/ core, and typically being mirror images of one another in the longitudinal axis (which may be MD axis) of the article; if leg cuffs and barrier cuffs are present, then each leg cuffs is typically positioned outwardly from a barrier cuff. The cuffs may be extending longitudinally along at least 70% of the length of the article. The cuff(s) may have a free longitudinal edge that can be positioned out of the X-Y plane (longitudinal/ transverse directions) of the article, i.e. in z-direction. The side flaps or cuffs of a pair may be mirror images of one another in the longitudinal axis of the article. The cuffs may comprise elastic material.
The diapers herein may comprise a waistband, or for example a front waistband and back waist band, which may comprise elastic material.
The diaper may comprise side panels, or so-called ear panels. The diaper may comprise fastening means, to fasten the front and back, e.g. the front and back waistband. Preferred fastening systems comprise fastening tabs and landing zones, wherein the fastening tabs are attached or joined to the back region of the diaper and the landing zones are part of the front region of the diaper.
The absorbent article may also include a sub-layer disposed between the topsheet and the absorbent structure/ core, capable of accepting, and distributing and/ or immobilizing bodily exudates. Suitable sublayers include acquisition layers, surge layers and or fecal material storage layers, as known in the art. Suitable materials for use as the sub-layer may include large cell open foams, macro-porous compression resistant non woven highlofts, large size particulate forms of open and closed cell foams (macro and/or microporous), highloft non-wovens, polyolefin, polystyrene, polyurethane foams or particles, structures comprising a multiplicity of vertically oriented, preferably looped, strands of fibers, or preferably apertured formed films, as described above with respect to the genital coversheet. (As used herein, the term "microporous" refers to materials that are capable of transporting fluids by capillary action, but having a mean pore size of more than 50 microns. The term "macroporous" refers to materials having pores too large to effect capillary transport of fluid, generally having pores greater than about 0.5 mm (mean) in diameter and more specifically, having pores greater than about 1.0 mm (mean) in diameter, but typically less than 10 mm or even less than 6 mm (mean).
All patents and patent applications (including any patents which issue thereon) assigned to the Procter & Gamble Company referred to herein are hereby incorporated by reference to the extent that it is consistent herewith.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm." All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

CLAIMS What is claimed is:
1. A method of making an absorbent structure having an absorbent layer and therein longitudinally extending strips that are substantially free of absorbent material (100), said absorbent layer being supported on a supporting sheet (200), said method comprising the steps of:
i) providing a feeder with absorbent material (100) and adjacent and in close proximity thereto: ii) providing a moving endless surface (30) moving in a machine direction (MD) having an outer shell with one or more forming receptacles (33), having an average width and transverse direction and dimension, and having an average length and longitudinal dimension, said average length being more than said average width; said receptacle(s) comprising a multitude of substantially longitudinally extending rods (36), spaced apart from one another in transverse direction, each rod (36) having a maximum transverse (width) dimension of at least 0.3 mm and each of said rods (36) having a top portion and an opposing bottom portion, said bottom portion preferably being adjacent an inner grid (37) , and the minimum distance transversely between neighboring rods (36) being at least 1 mm, and said rods (36) each having an average height dimension (perpendicular to the transverse and longitudinal dimensions) of at least 1 mm;
said moving endless surface (30) being preferably connected to one or more vacuum systems (38) applying a vacuum suction to said receptacles (33) or part thereof,
iii) providing a supporting sheet (200) transporter means (210);
iv) transporting said supporting sheet (200) to said outer shell, onto said top portions of said rods (36);
v) optionally pulling said supporting sheet (200) partially in between neighboring rods (36) by said vacuum suction, to form undulations (201) in said supporting sheet (200) between said rods (36) and to form crests (202) on said upper portion of said rods (36);
vi) depositing with said feeder said absorbent material (100) onto said supporting sheet (200) present on said forming receptacles (33);
vii) pulling said absorbent material (100) with said vacuum suction onto the supporting sheet (200) that is present between neighboring rods (36), to form absorbent strips, optionally into said undulations (201);
viii) optionally removing absorbent material (100) remaining on said crests (202) of said supporting sheet (200); ix) removing said supporting sheet (200) and said absorbent material (100) from said moving endless surface (30);
to obtain said absorbent structure.
2. A method as in claim 1, whereby in step vii) said absorbent layer comprises or consists of absorbent material (100) formed into substantially longitudinally extending strips on said supporting sheet (200), optionally in said undulations (201), with therein between strips with substantially no absorbent material (100), optionally on said crests (202).
3. A method as in claim 1 or 2, whereby said receptacle (33) has a front edge zone and back edge zone, each extending the respective transverse dimension of said receptacle, and whereby said front edge zone and/or back edge zone do not comprise said rods (36), and whereby the part(s) of the absorbent layer corresponding to said zone(s) do not have said strips with substantially no absorbent material (100), optionally whereby said portion(s) of said supporting sheet (200) adjacent said front edge zone and/ or back edge zone, respectively, do not comprise said undulations (201).
4. A method as in claim 1 or 2 or 3, whereby said receptacle(s) has a first average width (e.g.
CD) dimension and said supporting sheet (200), or portion thereof that is on said receptacle, has a second average width dimension (e.g. CD), and the ratio of said first to said second average width dimension is at least 1:1.2.
5. A method as in any preceding claim, comprising the step of providing a first adhesive application unit (50), and applying an adhesive to said absorbent structure prior to removing it form said moving endless surface (30), or immediately subsequent thereto.
6. A method as in any preceding claim, comprising the step of providing a second adhesive application unit (51), and applying an adhesive to said supporting sheet (200), prior to deposition of said absorbent material (100) thereon, optionally selectively, either to the areas of the supporting sheet (200) that are to meet with the rods (36), or the areas of the supporting sheet (200) that are to be in between neighboring rods (36), for example in substantially longitudinal stripes on the areas of said supporting sheet (200) that coincides with said undulations (201).
7. A method as in any preceding claim, whereby said steps i) to vii) and ix), and optionally step vii) are repeated to form a second absorbent structure, and whereby the method comprises the subsequent step of combining said first absorbent structure and said second absorbent structure, such that said absorbent layers of both structures are sandwiched between said supporting sheet (200) of the first structure and the supporting sheet (200) of the second structure.
8. A method as in any preceding claim, whereby said supporting sheet (200) is a nonwoven sheet and said absorbent material (100) comprises, or is, a particulate superabsorbent polymer material.
9. A method as in any preceding claim, whereby said rods (36) have a maximum width dimension which is at least 2 mm and the minimum distance transversely between neighboring rods (36) being at least 3 mm, and preferably said rods (36) each having an average height dimension of at least 2 mm.
10. A method as in any preceding claim, comprising the step of providing downstream from said moving endless surface (30) a unit to cover said absorbent layer with a further material, selected from a unit to fold said supporting sheet (200) over said absorbent layer; a unit for applying a further supporting sheet (300) onto said absorbent layer; a unit for applying a further layered material, for example an acquisition material, onto said absorbent layer; a unit for combining said absorbent structure with a further absorbent structure.
11. A method as in claim any preceding claim, comprising the step of providing a pressure roll (70) with a raised pressure pattern (71), corresponding to the pattern of said rods (36), and mating said pressure roll (70) pattern with said absorbent structure by contacting said the supporting sheet (200) of the absorbent structure, and/ or with said further material, if present, whereby said pressure is applied to said strips of the supporting sheet (200) or further material where no absorbent material (100) is present.
12. A method as in any preceding claim, whereby said feeder is a further moving endless surface (20) with reservoir(s), having an average width and transverse direction and dimension, and having an average length and longitudinal dimension, said average length being more than said average width, and a average depth, and a void volume, and whereby said method comprises the steps of receiving absorbent material (100) in said further moving endless surface (20), retaining said absorbent material (100) in said reservoir(s) and transferring said absorbent material (100) to said moving endless surface (30); preferably said further moving endless surface's reservoir being formed by a multitude of grooves and/or a multitude of rows of cavities (22), each groove or row extending substantially in longitudinal dimension, and said grooves and/ or rows being spaced from one another with raised strips, whereby said method comprises the step of mating said raised strips and said rods (36) during transfer of said absorbent material (100) to said moving endless surface (30).
13. An apparatus (1) for making an absorbent structure having an absorbent layer and therein substantially longitudinally extending strips that are substantially free of absorbent material (100), said layer being supported on a supporting sheet (200), said apparatus (1) comprising: a feeder (20; 60) for feeding an absorbent material (100) to a moving endless surface (30) adjacent and in close proximity thereto:
a supporting sheet (200) transporter means (210), for transporting a supporting sheet (200) to said moving endless surface (30); and
said moving endless surface (30) moving in a machine direction (MD) having an outer shell with one or more forming receptacles (33), having an average width and transverse direction and dimension, and having an average length and longitudinal dimension, said average length being more than said average width; said receptacle(s) comprising a multitude of substantially longitudinally extending rods (36), each rod (36) having a maximum transverse (width) dimension of at least 0.3 mm, each of said rods (36) having a top portion (surface) and an opposing bottom portion (surface), said bottom portion being preferably adjacent an inner grid (37), and the minimum distance transversely between neighboring rods (36) being at least 1 mm, and said rods (36) having an average height dimension (perpendicular to the transverse and longitudinal dimensions) of at least 1 mm; and said moving endless surface (30) preferably comprising a vacuum system (38) applying a vacuum suction to said receptacles (33) or part thereof; and
said feeder being a further moving endless surface (20) with reservoir(s), having an average width and transverse direction and dimension, and having an average length and longitudinal dimension, said average length being more than said average width, and a average depth, and a void volume, being for receiving and retaining a said absorbent material (100) and transferring said absorbent material (100) to said moving endless surface (30), said further moving endless surface (20) being connected to a vacuum system to apply vacuum suction to said reservoir(s).
14. An apparatus (1) of claim 13, whereby said further moving endless surface's reservoir is formed by a multitude of grooves and/or a multitude of rows of cavities (22), each groove or row extending substantially longitudinally, and said grooves and/ or rows being spaced from one another with raised strips, whereby preferably said raised strips surface and said rods (36) substantially coincide with one another during absorbent material transfer.
15. An apparatus (1) as in claim 13 or 14, whereby said receptacle (33) has a front edge zone A, and back edge zone C, with a central zone B in between, each extending the width dimension of said receptacle, and said central zone B comprises said rods (36) and front edge zone and/ or back edge zone do not comprise said rods (36); or whereby said receptacle (33) has a centre region, front region and back region, and said receptacle (33) comprises said rods (36) in said front region only, or in said centre region only, or in said front and centre region only.
16. An apparatus (1) as in claim 15, whereby said receptacle (33) has, in said region(s) or zone(s) that not comprising said rods (36), a higher friction than the friction of said rods (36); preferably, said central zone (B) having said rods only, having a lower friction than said front and back zones (A; C).
17. An apparatus (1) as in any of claims 13 to 16, comprising a second adhesive application unit (51) upstream from said moving endless surface (30), and/or a first adhesive application unit (50), positioned downstream of the meeting point.
18. An apparatus (1) as in any of claims 13 to 17, comprising downstream from said moving endless surface (30) a unit to cover said absorbent layer with a further material, selected from unit to fold said supporting sheet (200) over said absorbent layer; a unit for applying a further supporting sheet (300); a unit for applying a further layered material, for example an acquisition material; a unit for combining said absorbent structure with a further absorbent structure.
19. An apparatus (1) as in any of claims 13 to 18, comprising downstream from said moving endless surface (30) a pressure roll (70) with a raised pressure pattern (71), corresponding to the pattern of said rods (36).
20. Absorbent structure obtainable by the method /apparatus (1) of any preceding claim.
21. An absorbent article, such as a diaper, comprising the absorbent structure of claim 20.
PCT/US2012/040707 2011-06-10 2012-06-04 Method and apparatus (1) for making absorbent structures with absorbent material WO2012170338A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
SG2013086467A SG195104A1 (en) 2011-06-10 2012-06-04 Method and apparatus (1) for making absorbent structures with absorbent material
BR112013030597A BR112013030597A2 (en) 2011-06-10 2012-06-04 method and apparatus (1) for making absorbent structures with absorbent material
RU2013156992/12A RU2573343C2 (en) 2011-06-10 2012-06-04 Method and device for making absorbent structural members containing absorbent material
JP2014514521A JP5951760B2 (en) 2011-06-10 2012-06-04 Method and apparatus for making an absorbent structure with an absorbent material (1)
CA2838702A CA2838702C (en) 2011-06-10 2012-06-04 Method and apparatus for making absorbent structures with absorbent material
CN201280028312.2A CN103596531B (en) 2011-06-10 2012-06-04 There is the method and apparatus (1) of the absorbing structure of absorbing material for preparation
MX2013014593A MX2013014593A (en) 2011-06-10 2012-06-04 Method and apparatus (1) for making absorbent structures with absorbent material.
ZA2013/09506A ZA201309506B (en) 2011-06-10 2013-12-17 Method and apparatus (1) for making absorbent structures with absorbent material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11169395.8 2011-06-10
EP11169395.8A EP2532328B1 (en) 2011-06-10 2011-06-10 Method and apparatus for making absorbent structures with absorbent material

Publications (1)

Publication Number Publication Date
WO2012170338A1 true WO2012170338A1 (en) 2012-12-13

Family

ID=44720443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/040707 WO2012170338A1 (en) 2011-06-10 2012-06-04 Method and apparatus (1) for making absorbent structures with absorbent material

Country Status (14)

Country Link
US (2) US9668926B2 (en)
EP (1) EP2532328B1 (en)
JP (1) JP5951760B2 (en)
CN (1) CN103596531B (en)
BR (1) BR112013030597A2 (en)
CA (1) CA2838702C (en)
CL (1) CL2013003516A1 (en)
ES (1) ES2459724T3 (en)
MX (1) MX2013014593A (en)
PL (1) PL2532328T3 (en)
RU (1) RU2573343C2 (en)
SG (1) SG195104A1 (en)
WO (1) WO2012170338A1 (en)
ZA (1) ZA201309506B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949302A1 (en) * 2014-05-27 2015-12-02 The Procter and Gamble Company Absorbent core with curved channel-forming areas
EP2949301A1 (en) * 2014-05-27 2015-12-02 The Procter and Gamble Company Absorbent core with curved and straight absorbent material areas
EP3434241A1 (en) * 2017-07-28 2019-01-30 Jianhui Chen Water-absorbent core production system

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE409447T1 (en) 2003-02-12 2008-10-15 Procter & Gamble COMFORTABLE DIAPER
ES2452317T3 (en) 2003-02-12 2014-03-31 The Procter & Gamble Company Absorbent core for an absorbent article
ES2580953T3 (en) 2007-06-18 2016-08-30 The Procter & Gamble Company Disposable absorbent article with substantially continuous continuously distributed particle-shaped polymeric material and method
JP5259705B2 (en) 2007-06-18 2013-08-07 ザ プロクター アンド ギャンブル カンパニー Disposable absorbent article comprising a sealed absorbent core comprising a substantially continuously distributed absorbent particulate polymer material
WO2009134780A1 (en) 2008-04-29 2009-11-05 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
EP2329803B1 (en) 2009-12-02 2019-06-19 The Procter & Gamble Company Apparatus and method for transferring particulate material
PL2532328T3 (en) 2011-06-10 2014-07-31 Procter & Gamble Method and apparatus for making absorbent structures with absorbent material
JP2014515983A (en) 2011-06-10 2014-07-07 ザ プロクター アンド ギャンブル カンパニー Disposable diapers
PL2532332T5 (en) 2011-06-10 2018-07-31 The Procter And Gamble Company Disposable diaper having reduced attachment between absorbent core and backsheet
EP3287109B1 (en) 2011-06-10 2023-11-29 The Procter & Gamble Company Absorbent structure for absorbent articles
BR112013030599A2 (en) 2011-06-10 2016-09-27 Procter & Gamble absorbent core for disposable absorbent articles
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
EP2532329B1 (en) 2011-06-10 2018-09-19 The Procter and Gamble Company Method and apparatus for making absorbent structures with absorbent material
JP2014516756A (en) 2011-06-21 2014-07-17 ザ プロクター アンド ギャンブル カンパニー Absorbent article with waistband having shrinkage
JP2014516758A (en) 2011-06-21 2014-07-17 ザ プロクター アンド ギャンブル カンパニー Absorbent article with gathered waistband and leg cuff
FR2997842B1 (en) 2012-11-13 2021-06-11 Procter & Gamble ABSORBENT ARTICLES WITH CHANNELS AND SIGNALS
US9248054B2 (en) 2012-11-27 2016-02-02 The Procter & Gamble Company Methods and apparatus for making elastic laminates
US9295590B2 (en) 2012-11-27 2016-03-29 The Procter & Gamble Company Method and apparatus for applying an elastic material to a moving substrate in a curved path
US9265672B2 (en) 2012-11-27 2016-02-23 The Procter & Gamble Company Methods and apparatus for applying adhesives in patterns to an advancing substrate
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
PL2740452T3 (en) 2012-12-10 2022-01-31 The Procter & Gamble Company Absorbent article with high absorbent material content
EP2740450A1 (en) 2012-12-10 2014-06-11 The Procter & Gamble Company Absorbent core with high superabsorbent material content
EP2740449B1 (en) 2012-12-10 2019-01-23 The Procter & Gamble Company Absorbent article with high absorbent material content
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
PL3254656T3 (en) 2013-06-14 2022-01-10 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
JP6334705B2 (en) 2013-08-27 2018-05-30 ザ プロクター アンド ギャンブル カンパニー Absorbent articles having channels
MX2016003391A (en) 2013-09-16 2016-06-24 Procter & Gamble Absorbent articles with channels and signals.
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
EP3351225B1 (en) 2013-09-19 2021-12-29 The Procter & Gamble Company Absorbent cores having material free areas
EP2886092B1 (en) 2013-12-19 2016-09-14 The Procter and Gamble Company Absorbent cores having channel-forming areas and c-wrap seals
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
EP2905001B1 (en) 2014-02-11 2017-01-04 The Procter and Gamble Company Method and apparatus for making an absorbent structure comprising channels
US9999552B2 (en) 2014-02-28 2018-06-19 The Procter & Gamble Company Methods for profiling surface topographies of absorbent structures in absorbent articles
US20150290047A1 (en) 2014-04-15 2015-10-15 The Procter Gamble Company Methods for Inspecting Channel Regions in Absorbent Structures in Absorbent Articles
EP2949300B1 (en) 2014-05-27 2017-08-02 The Procter and Gamble Company Absorbent core with absorbent material pattern
EP2949299B1 (en) 2014-05-27 2017-08-02 The Procter and Gamble Company Absorbent core with absorbent material pattern
US10034801B2 (en) 2014-10-03 2018-07-31 The Procter & Gamble Company Adult disposable absorbent articles and arrays comprising improved product lengths
WO2016057736A1 (en) 2014-10-09 2016-04-14 The Procter & Gamble Company Adult disposable absorbent articles and arrays of said articles comprising improved designs
CN117084865A (en) 2015-01-16 2023-11-21 宝洁公司 Array of adult disposable absorbent articles comprising absorbent cores with channels
CN107405223B (en) 2015-03-16 2021-03-02 宝洁公司 Absorbent article with improved strength
GB2555016B (en) 2015-03-16 2021-05-12 Procter & Gamble Absorbent articles with improved cores
WO2016153863A1 (en) 2015-03-20 2016-09-29 The Procter & Gamble Company Disposable absorbent articles and arrays of said articles comprising visual characteristics
MX2017014428A (en) 2015-05-12 2018-04-10 Procter & Gamble Absorbent article with improved core-to-backsheet adhesive.
CN107683126A (en) 2015-05-29 2018-02-09 宝洁公司 Absorbent article with groove and wetness indicators
EP3313344B1 (en) 2015-06-25 2021-12-15 The Procter & Gamble Company Adult disposable absorbent articles and arrays of said articles comprising improved capacity profiles
CN107920928A (en) 2015-08-13 2018-04-17 宝洁公司 There is band structure with figure
US20170056257A1 (en) 2015-08-27 2017-03-02 The Procter & Gamble Company Belted structure
US11591755B2 (en) 2015-11-03 2023-02-28 Kimberly-Clark Worldwide, Inc. Paper tissue with high bulk and low lint
EP3167859B1 (en) 2015-11-16 2020-05-06 The Procter and Gamble Company Absorbent cores having material free areas
US20170165130A1 (en) 2015-12-15 2017-06-15 The Procter & Gamble Plaza Belted structure with tackifier-free adhesive
EP3238678B1 (en) 2016-04-29 2019-02-27 The Procter and Gamble Company Absorbent core with transversal folding lines
EP3238676B1 (en) 2016-04-29 2019-01-02 The Procter and Gamble Company Absorbent core with profiled distribution of absorbent material
US20170319397A1 (en) 2016-05-06 2017-11-09 The Procter & Gamble Company Absorbent Articles Comprising Elastics In The Crotch Region
JP6808461B2 (en) * 2016-11-29 2021-01-06 花王株式会社 Sheet-shaped manufacturing method and manufacturing equipment
US11096835B2 (en) 2016-12-19 2021-08-24 The Procter & Gamble Company Methods for sealing absorbent cores on absorbent articles
ES2734292T3 (en) 2016-12-27 2019-12-05 Ontex Bvba Absorbent core, articles comprising said core, and methods for manufacturing it
RU2764431C2 (en) 2017-05-15 2022-01-17 Драйлок Текнолоджиз НВ Absorbent product with channels and its manufacturing method
EP3403627B1 (en) 2017-05-15 2019-05-22 Drylock Technologies NV Absorbent article with channels and method for manufacturing thereof
PL3403632T3 (en) 2017-05-15 2020-02-28 Drylock Technologies Nv Absorbent article with channels and method for manufacturing thereof
US11266542B2 (en) * 2017-11-06 2022-03-08 The Procter & Gamble Company Absorbent article with conforming features
WO2019108172A1 (en) 2017-11-29 2019-06-06 Kimberly-Clark Worldwide, Inc. Fibrous sheet with improved properties
IT201800002181A1 (en) * 2018-01-30 2019-07-30 Gdm Spa APPARATUS AND METHOD OF FORMING AN ABSORBENT PADDING
CN112469857B (en) 2018-07-25 2022-06-17 金伯利-克拉克环球有限公司 Method for producing three-dimensional foam-laid nonwovens
EP4351492A1 (en) 2021-06-08 2024-04-17 The Procter & Gamble Company Absorbent articles including a waist panel with a frangible bond
US20230310229A1 (en) 2022-04-04 2023-10-05 The Procter & Gamble Company Absorbent articles including a waist panel

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940464A (en) 1987-12-16 1990-07-10 Kimberly-Clark Corporation Disposable incontinence garment or training pant
US5092861A (en) 1989-12-22 1992-03-03 Uni-Charm Corporation Disposable garments
US5246433A (en) 1991-11-21 1993-09-21 The Procter & Gamble Company Elasticized disposable training pant and method of making the same
EP0691133A1 (en) 1994-07-05 1996-01-10 The Procter & Gamble Company Absorbent gelling material comprising a dry mixture of at least two types of hydrogel-forming particles and method for making the same
US5562646A (en) 1994-03-29 1996-10-08 The Proctor & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity
US5569234A (en) 1995-04-03 1996-10-29 The Procter & Gamble Company Disposable pull-on pant
US5607760A (en) 1995-08-03 1997-03-04 The Procter & Gamble Company Disposable absorbent article having a lotioned topsheet containing an emollient and a polyol polyester immobilizing agent
US5609587A (en) 1995-08-03 1997-03-11 The Procter & Gamble Company Diaper having a lotioned topsheet comprising a liquid polyol polyester emollient and an immobilizing agent
US5635191A (en) 1994-11-28 1997-06-03 The Procter & Gamble Company Diaper having a lotioned topsheet containing a polysiloxane emollient
US5643588A (en) 1994-11-28 1997-07-01 The Procter & Gamble Company Diaper having a lotioned topsheet
US5897545A (en) 1996-04-02 1999-04-27 The Procter & Gamble Company Elastomeric side panel for use with convertible absorbent articles
US6120487A (en) 1996-04-03 2000-09-19 The Procter & Gamble Company Disposable pull-on pant
US6120489A (en) 1995-10-10 2000-09-19 The Procter & Gamble Company Flangeless seam for use in disposable articles
US20030233082A1 (en) 2002-06-13 2003-12-18 The Procter & Gamble Company Highly flexible and low deformation fastening device
EP1621166A1 (en) * 2004-07-28 2006-02-01 The Procter and Gamble Company Process for producing absorbent core structures
US20100051166A1 (en) * 2008-08-26 2010-03-04 Harald Hermann Hundorf Method And Apparatus For Making Disposable Absorbent Article With Absorbent Particulate Polymer Material And Article Made Therewith

Family Cites Families (1188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1733997A (en) 1928-04-30 1929-10-29 Paul Molnar Catamenial bandage
US1734499A (en) 1928-12-04 1929-11-05 Marinsky Davis Sanitary napkin
US1989283A (en) 1934-05-03 1935-01-29 Walter P Limacher Diaper
US2058509A (en) 1936-01-30 1936-10-27 Rose David Infant's undergarment
US2271676A (en) 1939-11-24 1942-02-03 Bjornbak Elna Diaper
US2450789A (en) 1945-07-05 1948-10-05 Jacob G Frieman Sanitary garment
US2508811A (en) 1947-07-15 1950-05-23 Edna E Best Diaper
US2583553A (en) 1949-04-07 1952-01-29 Faureed Company Sanitary protector for bedridden patients
US2568910A (en) 1949-10-07 1951-09-25 Jessie C Condylis Fastening means for garments, and more particularly diapers
US2570963A (en) 1949-11-21 1951-10-09 John E Mesmer Infant's diaper
US2570796A (en) 1950-12-06 1951-10-09 Gross Rose Diaper
US2705957A (en) 1953-07-08 1955-04-12 Mauro Virginia Sanitary panty
US2807263A (en) 1953-08-18 1957-09-24 Newton Jewel Mae Ladies' sanitary garment
US2830589A (en) 1953-12-07 1958-04-15 Joseph B Doner Diapers
US2890700A (en) 1954-02-18 1959-06-16 Ethel C Lonberg-Holm Disposable diaper
US2890701A (en) 1954-10-06 1959-06-16 Weinman Mary Support for a sanitary napkin
US2788003A (en) 1955-06-06 1957-04-09 Chicopee Mfg Corp Disposable absorbent pad
US2788786A (en) 1955-09-23 1957-04-16 Fred F Dexter Disposable diaper
US2798489A (en) 1955-10-20 1957-07-09 Behrman Mayes Protective garment
US2898912A (en) 1956-02-09 1959-08-11 Adams Jane Infant's diaper
US2977957A (en) 1957-08-28 1961-04-04 Napette Sanitary Napkin Holder Sanitary napkin holders and holder units
US2931361A (en) 1957-12-18 1960-04-05 Sostrin Alice Self-fastening infant's diaper
US3071138A (en) 1958-11-07 1963-01-01 Garcia Gustavo Sanitary napkin
NL281020A (en) 1961-07-17 1900-01-01
US3207158A (en) 1961-08-17 1965-09-21 Yoshitake Kazuko Sanitary napkin supporting panty
US3386442A (en) 1965-03-29 1968-06-04 Sabee Reinhardt Disposable diaper
US3670731A (en) 1966-05-20 1972-06-20 Johnson & Johnson Absorbent product containing a hydrocolloidal composition
US3572342A (en) 1968-01-19 1971-03-23 Johnson & Johnson Diaper
US3578155A (en) 1969-02-24 1971-05-11 Paper Converting Machine Co Disposable product
US3592194A (en) 1969-03-05 1971-07-13 Procter & Gamble Diaper having improved wicking and dryness
US3575174A (en) 1969-07-11 1971-04-20 Personal Products Co Sanitary napkin
US3572432A (en) 1969-09-25 1971-03-23 Halliburton Co Apparatus for flotation completion for highly deviated wells
US3610244A (en) 1969-10-20 1971-10-05 Jones Sr John L Integral diaper waistband fasteners
US3847702A (en) 1969-10-20 1974-11-12 J Jones Process for manufacture of integral diaper waist band fastener
GB1333081A (en) 1970-01-17 1973-10-10 Southalls Birmingham Ltd Absorbent products
US3606887A (en) 1970-02-05 1971-09-21 Kimberly Clark Co Overlap seal and support strip for a sanitary napkin wrapper
US3618608A (en) 1970-02-16 1971-11-09 Mary E Brink Diaper with fastener
US3840418A (en) 1970-03-09 1974-10-08 R Sabee Method of manufacture of a sanitary article and ply having selectively thickened areas
US3653381A (en) 1970-03-23 1972-04-04 Crystal E Warnken Belted diapers
FR2082803A5 (en) 1970-03-26 1971-12-10 Consortium General Textile
US3667468A (en) 1970-04-28 1972-06-06 Paper Converting Machine Co Sanitary napkin and method and means of producing
US3642001A (en) 1970-07-27 1972-02-15 Reinhardt N Sabee Disposable diaper or the like
FR2110515A5 (en) 1970-10-20 1972-06-02 Beghin
US3710797A (en) 1971-02-26 1973-01-16 Procter & Gamble Disposable diaper
US3776233A (en) 1971-05-17 1973-12-04 Colgate Palmolive Co Edge contourable diaper
US3731688A (en) 1971-06-30 1973-05-08 Techmation Corp Disposable diaper
US3882870A (en) 1971-07-09 1975-05-13 Lucille Hathaway Diaper
JPS4850272U (en) 1971-10-16 1973-06-30
US3774241A (en) 1972-02-16 1973-11-27 J Zerkle Loincloth and spreader therefor
US3828784A (en) 1972-08-21 1974-08-13 Kendall & Co Conformable baby diaper
JPS4971491U (en) 1972-10-09 1974-06-21
US3863637A (en) 1972-12-08 1975-02-04 Int Paper Co Folded disposable diaper
US3924626A (en) 1972-12-08 1975-12-09 Int Paper Co Rectangular disposable diaper having a contoured absorbent pad
US3911173A (en) 1973-02-05 1975-10-07 Usm Corp Adhesive process
SE370313B (en) 1973-02-09 1974-10-14 O Heurlen
US3848595A (en) 1973-04-26 1974-11-19 Kimberly Clark Co Prefolded diaper with improved leg fit
US3848594A (en) 1973-06-27 1974-11-19 Procter & Gamble Tape fastening system for disposable diaper
US3848597A (en) 1973-07-05 1974-11-19 Kimberly Clark Co Prefolded disposable diaper
US3884234A (en) 1973-10-18 1975-05-20 Colgate Palmolive Co Disposable diaper
US3860003B2 (en) 1973-11-21 1990-06-19 Contractable side portions for disposable diaper
JPS5085770U (en) 1973-12-10 1975-07-22
US3929134A (en) 1974-08-29 1975-12-30 Colgate Palmolive Co Absorbent article and method
US3978861A (en) 1974-05-23 1976-09-07 Colgate-Palmolive Company Disposable diaper with end flap means and method
US3930501A (en) 1974-05-23 1976-01-06 Colgate-Palmolive Company Disposable diaper with end flap means and method
US3926189A (en) 1974-08-05 1975-12-16 Colgate Palmolive Co Selectively positionable diaper assembly
US3920017A (en) 1974-09-27 1975-11-18 Colgate Palmolive Co Crotch-shaped diaper and method
US3938523A (en) 1974-10-17 1976-02-17 Scott Paper Company Prefolded and packaged disposable diaper
US3987794A (en) 1974-10-31 1976-10-26 Colgate-Palmolive Company Diaper with elastic crotch means
US3995637A (en) 1974-10-31 1976-12-07 Colgate-Palmolive Company Diaper with waist means
US4014338A (en) 1974-10-31 1977-03-29 Colgate-Palmolive Company Diaper with elastic means
US3929135A (en) 1974-12-20 1975-12-30 Procter & Gamble Absorptive structure having tapered capillaries
US4084592A (en) 1975-01-08 1978-04-18 Johnson & Johnson Disposable prefolded diaper with permanently attached adhesive closure system
US3968799A (en) 1975-04-04 1976-07-13 Kimberly-Clark Corporation Prefolded disposable diaper
GB1513055A (en) 1975-07-02 1978-06-07 Mccullins J Disposable diapers
US4100922A (en) 1975-07-09 1978-07-18 Colgate-Palmolive Company Disposable diaper
US3981306A (en) 1975-08-11 1976-09-21 Scott Paper Company Multilayer one-piece disposable diapers
GB1563697A (en) 1975-08-22 1980-03-26 Unilever Ltd Liquid absorption devices
US3999547A (en) 1975-12-29 1976-12-28 Colgate-Palmolive Company Disposable diaper having front side edge sealing means
US3995640A (en) 1976-01-05 1976-12-07 Colgate-Palmolive Company Diaper with elastic means
US4034760A (en) 1976-03-18 1977-07-12 Filitsa Amirsakis Self contained disposable diaper
US4055180A (en) 1976-04-23 1977-10-25 Colgate-Palmolive Company Absorbent article with retained hydrocolloid material
US4059114A (en) 1976-05-12 1977-11-22 Minnesota Mining And Manufacturing Company Garment shield
US4154883A (en) 1976-10-20 1979-05-15 Johnson & Johnson Emboss laminated fibrous material
US4074508A (en) 1976-12-21 1978-02-21 Riegel Textile Corporation Apparatus for compressing and banding a predetermined number of articles
US4388075A (en) 1977-12-20 1983-06-14 Johnson & Johnson Baby Products Company Disposable diaper with wide elastic gathering means for improved comfort
US4259220A (en) 1978-12-06 1981-03-31 H. B. Fuller Company Hot melt adhesive for elastic banding
US4381783A (en) 1978-10-24 1983-05-03 Johnson & Johnson Absorbent article
JPS5925369Y2 (en) 1978-11-15 1984-07-25 日本バイリ−ン株式会社 Liquid-absorbing articles
US4257418A (en) 1979-01-22 1981-03-24 Mo Och Domsjo Aktiebolag Device for absorbing urine with incontinent persons
US4342314A (en) 1979-03-05 1982-08-03 The Procter & Gamble Company Resilient plastic web exhibiting fiber-like properties
US4296750A (en) 1979-06-22 1981-10-27 Kimberly-Clark Corporation Refastenable pressure-sensitive tape closure system for disposable diapers and method for its manufacture
JPS6025045B2 (en) 1980-03-19 1985-06-15 製鉄化学工業株式会社 Method for producing acrylic acid polymer with excellent salt water absorption ability
US4315508A (en) 1980-03-31 1982-02-16 Kimberly-Clark Corporation Self-centering multiple use garment suspension system
US4324246A (en) 1980-05-12 1982-04-13 The Procter & Gamble Company Disposable absorbent article having a stain resistant topsheet
US4341216A (en) 1981-02-27 1982-07-27 The Procter & Gamble Company Breathable backsheet for disposable diapers
US4463045A (en) 1981-03-02 1984-07-31 The Procter & Gamble Company Macroscopically expanded three-dimensional plastic web exhibiting non-glossy visible surface and cloth-like tactile impression
NZ200464A (en) 1981-05-18 1984-10-19 Colgate Palmolive Co Box-pleated diaper with cushioned elastic members
US4808178A (en) 1981-07-17 1989-02-28 The Proctor & Gamble Company Disposable absorbent article having elasticized flaps provided with leakage resistant portions
US4909803A (en) 1983-06-30 1990-03-20 The Procter And Gamble Company Disposable absorbent article having elasticized flaps provided with leakage resistant portions
US4461621A (en) 1981-10-19 1984-07-24 Colgate-Palmolive Company Disposable diaper with polymer coating
US4475912A (en) 1981-10-26 1984-10-09 Coates Fredrica V Adjustable diapers with fastening means
JPS6018690B2 (en) 1981-12-30 1985-05-11 住友精化株式会社 Method for improving water absorbency of water absorbent resin
DE3205931C2 (en) 1982-02-19 1985-08-29 Vereinigte Papierwerke Schickedanz & Co, 8500 Nürnberg Absorbent pads for hygienic pulp products
JPS58180233A (en) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd Absorbing agent
SE453071B (en) 1982-06-21 1988-01-11 Tetra Pak Ab DEVICE FOR PROCESSING A PACKAGING CONTAINER
SE446055B (en) 1982-07-01 1986-08-11 Landstingens Inkopscentral CONTINENTAL PROTECTION OR BLOW WITH SIGNIFICANT RECTANGULAR FORM
JPS604500Y2 (en) 1982-07-06 1985-02-08 ユニ・チヤ−ム株式会社 sanitary napkin
US4527990A (en) 1982-09-30 1985-07-09 Kimberly-Clark Corporation Elasticized garment and method for its manufacture
US4469710A (en) 1982-10-14 1984-09-04 The Procter & Gamble Company Pourable solid shortening
US4900317A (en) 1982-11-15 1990-02-13 The Procter & Gamble Company Disposable garment with breathable leg cuffs
US5085654A (en) 1982-11-15 1992-02-04 The Procter & Gamble Company Disposable garment with breathable leg cuffs
US4636207A (en) 1982-11-15 1987-01-13 The Procter & Gamble Company Disposable garment with breathable leg cuffs
US4515595A (en) 1982-11-26 1985-05-07 The Procter & Gamble Company Disposable diapers with elastically contractible waistbands
US4610678A (en) 1983-06-24 1986-09-09 Weisman Paul T High-density absorbent structures
US4710189A (en) 1983-03-18 1987-12-01 The Procter & Gamble Company Shaped disposable diapers with shaped elastically contractible waistbands
FR2543430B1 (en) 1983-03-29 1986-11-14 Beghin Say Sa DISPOSABLE LAYER, PARTICULARLY FOR INCONTINENT ADULT
JPS59180339A (en) 1983-03-30 1984-10-13 Shimadzu Corp Differential pressure transmitter
EP0149880A3 (en) 1983-05-26 1986-07-16 BASF Aktiengesellschaft Non-woven webs of synthetic fibres consolidated by means of carboxylated styrene-butadiene latices, and disposable articles made therefrom
JPS6027803A (en) 1983-07-23 1985-02-12 Anritsu Corp Work measuring apparatus
JPS60104502A (en) 1983-11-07 1985-06-08 花王株式会社 Disposable diaper
EP0144726B2 (en) 1983-11-17 1995-05-24 Akzo Nobel N.V. Anti-microbial compositions
US4670011A (en) 1983-12-01 1987-06-02 Personal Products Company Disposable diaper with folded absorbent batt
US4960477A (en) 1983-12-01 1990-10-02 Mcneil-Ppc, Inc. Disposable diaper with folded absorbent batt
US4681581A (en) 1983-12-05 1987-07-21 Coates Fredrica V Adjustable size diaper and folding method therefor
US4578072A (en) 1983-12-08 1986-03-25 Weyerhaeuser Company Leak resistant diaper or incontinent garment
GB8332828D0 (en) 1983-12-08 1984-01-18 Procter & Gamble Diaper with fold points
US4731066A (en) 1984-03-30 1988-03-15 Personal Products Company Elastic disposable diaper
JPS60215810A (en) 1984-04-11 1985-10-29 Unitika Ltd Polyvinylidene fluoride monofilament and its production
US4731070A (en) 1984-04-19 1988-03-15 Personal Products Company Adult incontinent absorbent article
US4681793A (en) 1985-05-31 1987-07-21 The Procter & Gamble Company Non-occluding, liquid-impervious, composite backsheet for absorptive devices
JPS60259922A (en) 1984-06-05 1985-12-23 Sumitomo Electric Ind Ltd Strain sensor
JPS619213A (en) 1984-06-21 1986-01-16 井関農機株式会社 Slide type roller in combine
FR2566631B1 (en) 1984-06-28 1988-08-05 Boussac Saint Freres Bsf PULLOVER WITH ELASTIC BELT AND METHOD FOR MANUFACTURING SUCH PULLOVER
US5415644A (en) 1984-07-02 1995-05-16 Kimberly-Clark Corporation Diapers with elasticized side pockets
CA1341430C (en) 1984-07-02 2003-06-03 Kenneth Maynard Enloe Diapers with elasticized side pockets
US4624666A (en) 1984-07-20 1986-11-25 Personal Products Company Channeled napkin with dry cover
JPS6135701A (en) 1984-07-26 1986-02-20 ヤンマーディーゼル株式会社 Biaxial type rotary plow apparatus
US4573986A (en) 1984-09-17 1986-03-04 The Procter & Gamble Company Disposable waste-containment garment
US4689193A (en) 1984-10-15 1987-08-25 Exxon Nuclear Company Inc. Mechanism for testing fuel tubes in nuclear fuel bundles
US4596568A (en) 1984-10-22 1986-06-24 Diaperaps Limited Diaper cover
DE3565131D1 (en) 1984-12-10 1988-10-27 Rieter Ag Maschf Apparatus for cleaning measuring rolls
US4585448A (en) 1984-12-19 1986-04-29 Kimberly-Clark Corporation Disposable garment having high-absorbency area
US4641381A (en) 1985-01-10 1987-02-10 Kimberly-Clark Corporation Disposable underpants, such as infant's training pants and the like
JPS61248733A (en) 1985-04-26 1986-11-06 ノードソン株式会社 Moisture absorbing cloth and manufacture thereof
US4894277A (en) 1985-01-16 1990-01-16 Nordson Corporation Application method and products that use a foamed hot melt adhesive
FR2575905B1 (en) 1985-01-17 1987-03-20 Boussac Saint Freres Bsf HYGIENE PRODUCT COMPRISING AN ABSORBENT MATTRESS PROVIDED WITH A HUMIDITY INDICATOR AND MANUFACTURING METHOD
SE453556B (en) 1985-01-30 1988-02-15 Moelnlycke Ab Absorbent articles, such as flea, incontinence protection or menstrual bindings
CA1259151A (en) 1985-02-01 1989-09-12 Kenneth B. Buell Disposable waste containment garment
JPS61233562A (en) 1985-04-08 1986-10-17 Mitsubishi Electric Corp Thermal head
US4585450A (en) 1985-04-29 1986-04-29 Kimberly-Clark Corporation Refastenable tape system for disposable diapers and similar garments
JPS61259484A (en) 1985-05-13 1986-11-17 株式会社明電舎 High frequency hardening apparatus
GB8512206D0 (en) 1985-05-14 1985-06-19 Kimberly Clark Ltd Non-woven material
US4609518A (en) 1985-05-31 1986-09-02 The Procter & Gamble Company Multi-phase process for debossing and perforating a polymeric web to coincide with the image of one or more three-dimensional forming structures
US4629643A (en) 1985-05-31 1986-12-16 The Procter & Gamble Company Microapertured polymeric web exhibiting soft and silky tactile impression
USRE32649E (en) 1985-06-18 1988-04-19 The Procter & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
FR2583621B1 (en) 1985-06-19 1990-10-05 Boussac Saint Freres Bsf DISPOSABLE PANTY LAYER WITH ELASTIC BELT
US5030314A (en) 1985-06-26 1991-07-09 Kimberly-Clark Corporation Apparatus for forming discrete particulate areas in a composite article
US4994053A (en) 1985-06-26 1991-02-19 Kimberly-Clark Corporation Composite article having discrete particulate areas formed therein
US4670012A (en) 1985-07-15 1987-06-02 Weyerhaeuser Company Diaper or incontinent pad having pleated attachment strap
US4681579A (en) 1985-10-11 1987-07-21 The Procter & Gamble Co. Absorbent article having reservoirs
US4695278A (en) 1985-10-11 1987-09-22 The Procter & Gamble Company Absorbent article having dual cuffs
CA1291327C (en) 1985-11-04 1991-10-29 Dawn Ilnicki Houghton Absorbent article having liquid impervious shelves
US4680030A (en) 1985-11-13 1987-07-14 Coates Fredrica V Garment having improved, self closing, filamentary fasteners
US4606964A (en) 1985-11-22 1986-08-19 Kimberly-Clark Corporation Bulked web composite and method of making the same
US4662875A (en) 1985-11-27 1987-05-05 The Procter & Gamble Company Absorbent article
ES2034957T3 (en) 1985-12-10 1993-04-16 Kimberly-Clark Corporation APPARATUS AND METHOD FOR THE CONFORMATION OF FIBROUS LAMINAR GENEROS.
DE3608114A1 (en) 1986-03-12 1987-09-17 Puttfarcken Ulf Wrapper with moisture indicator, e.g. diaper
US4763191A (en) 1986-03-17 1988-08-09 American Telephone And Telegraph Company, At&T Bell Laboratories Dial-up telephone network equipment for requesting an identified selection
US4699622A (en) 1986-03-21 1987-10-13 The Procter & Gamble Company Disposable diaper having an improved side closure
PH26871A (en) 1986-03-31 1992-11-16 Uni Charm Corp Disposable diaper
IL82511A (en) 1986-05-28 1992-09-06 Procter & Gamble Apparatus for and methods of airlaying fibrous webs having discrete particles therein
US4690680A (en) 1986-06-27 1987-09-01 The Procter & Gamble Company Adhesive attachment means for absorbent articles
GB2193625B (en) 1986-07-04 1990-11-28 Uni Charm Corp Disposable diaper
SE453720B (en) 1986-07-17 1988-02-29 Moelnlycke Ab PUT IN CONNECTION WITH THE PREPARATION, VIKING AN ABSORBING disposable item, such as a diaper, for packaging condition
US4834735A (en) 1986-07-18 1989-05-30 The Proctor & Gamble Company High density absorbent members having lower density and lower basis weight acquisition zones
US4834742A (en) 1986-09-03 1989-05-30 Kimberly-Clark Corporation Fastening system for a disposable absorbent garment
MA21077A1 (en) 1986-10-10 1988-07-01 Procter & Gamble ABSORBENT ARTICLE COMPRISING DOUBLE FLUID RESISTANT CUFFS.
PH26008A (en) 1986-10-24 1992-01-29 Uni Charm Corp Method for making wearable article
BE905791A (en) 1986-11-19 1987-03-16 Lynes Holding Sa POURING CAP.
JPS63162242A (en) 1986-12-26 1988-07-05 Kowa Koki Seisakusho:Kk Plate registering device in lithographic printing
US4808176A (en) 1986-12-31 1989-02-28 Kimberly-Clark Corporation Elasticized waist integration member for disposable absorbent garments
US4846815A (en) 1987-01-26 1989-07-11 The Procter & Gamble Company Disposable diaper having an improved fastening device
US4940463A (en) 1987-02-17 1990-07-10 Sherman Leathers Disposable combined panty with sanitary napkin
ES2042612T3 (en) 1987-03-07 1993-12-16 Fuller H B Licensing Financ PROCEDURE FOR THE PERMANENT JOINING OF EXPANDABLE ELEMENTS IN THE FORM OF THREADS OR RIBBONS ON A SURFACE SUBSTRATE AS WELL AS USING IT FOR THE MANUFACTURE OF CURLED LEAF BAND SECTORS.
US4838886A (en) 1987-03-09 1989-06-13 Kent Gail H Pad holder
JPS63220159A (en) 1987-03-10 1988-09-13 Canon Inc Electrophotographic sensitive body
JPH0433848Y2 (en) 1987-03-19 1992-08-13
US5549593A (en) 1987-03-24 1996-08-27 Molnlycke Ab Device for the support of an absorbent article
FR2612770B1 (en) 1987-03-26 1995-06-30 Celatose Sa EXCHANGE FOR INCONTINENTS
US4904251A (en) 1987-03-30 1990-02-27 Uni-Charm Corporation Disposable diaper
US4747846A (en) 1987-04-03 1988-05-31 Kimberly-Clark Corporation Stretchable disposable absorbent undergarment
US4909802A (en) 1987-04-16 1990-03-20 The Procter & Gamble Company Absorbent garment having a waist belt attachment system
US4785996A (en) 1987-04-23 1988-11-22 Nordson Corporation Adhesive spray gun and nozzle attachment
US4968313A (en) 1987-04-27 1990-11-06 Sabee Reinhardt N Diaper with waist band elastic
FR2617020B1 (en) 1987-06-26 1993-09-24 Boussac Saint Freres Bsf IMPROVED ABSORBENT MATTRESS, PARTICULARLY FOR HYGIENE PRODUCTS, AND PROCESS FOR THE CONTINUOUS MANUFACTURE OF SUCH MATTRESSES
US4892535A (en) 1987-08-07 1990-01-09 Landstingens Inkopscentral, Lic, Ekonomisk Forening Absorbent pad and method and apparatus for making the same
US4936839A (en) 1987-08-27 1990-06-26 Mcneil-Ppc, Inc. Winged napkin having cross-channeling
US4773905A (en) 1987-08-27 1988-09-27 Personal Products Company Winged napkin having cross-channeling
US4861652A (en) 1987-10-13 1989-08-29 Kimberly-Clark Corporation Diaper article with elasticized waist panel
US4846825A (en) 1987-10-30 1989-07-11 Kimberly-Clark Corporation Diapers with elasticized side pockets
US4963140A (en) 1987-12-17 1990-10-16 The Procter & Gamble Company Mechanical fastening systems with disposal means for disposable absorbent articles
US4869724A (en) 1987-12-17 1989-09-26 The Procter & Gamble Company Mechanical fastening systems with adhesive tape disposal means for disposable absorbent articles
US5611879A (en) 1987-12-18 1997-03-18 Kimberly-Clark Corporation Absorbent article having an absorbent with a variable density in the Z direction and a method of forming said article
US4894060A (en) 1988-01-11 1990-01-16 Minnesota Mining And Manufacturing Company Disposable diaper with improved hook fastener portion
US4950264A (en) 1988-03-31 1990-08-21 The Procter & Gamble Company Thin, flexible sanitary napkin
US5147343B1 (en) 1988-04-21 1998-03-17 Kimberly Clark Co Absorbent products containing hydrogels with ability to swell against pressure
US4886697A (en) 1988-04-29 1989-12-12 Weyerhaeuser Company Thermoplastic material containing absorbent pad or other article
US5006394A (en) 1988-06-23 1991-04-09 The Procter & Gamble Company Multilayer polymeric film
US4990147A (en) 1988-09-02 1991-02-05 The Procter & Gamble Company Absorbent article with elastic liner for waste material isolation
US4892536A (en) 1988-09-02 1990-01-09 The Procter & Gamble Company Absorbent article having elastic strands
US5797894A (en) 1988-09-12 1998-08-25 Johnson & Johnson, Inc. Unitized sanitary napkin
GR1001048B (en) 1988-10-24 1993-04-28 Mcneil Ppc Inc Absorbing construction having many canals
US5151091A (en) 1988-10-24 1992-09-29 Mcneil-Ppc, Inc. Absorbent structure having multiple canals
US5072687A (en) 1988-11-16 1991-12-17 James G. Mitchell Absorbent product for personal use
US5637106A (en) 1988-11-16 1997-06-10 Carol M. Stocking Absorbent product for personal use
ES2061901T3 (en) 1988-12-20 1994-12-16 Procter & Gamble IMPROVED BRAGA.
US5087255A (en) 1988-12-21 1992-02-11 The Procter & Gamble Company Absorbent article having inflected barrier cuffs
US5312386A (en) 1989-02-15 1994-05-17 Johnson & Johnson Disposable sanitary pad
US5076774A (en) 1989-02-16 1991-12-31 Chicopee Apparatus for forming three dimensional composite webs
US5037416A (en) 1989-03-09 1991-08-06 The Procter & Gamble Company Disposable absorbent article having elastically extensible topsheet
US5032120A (en) 1989-03-09 1991-07-16 The Procter & Gamble Company Disposable absorbent article having improved leg cuffs
US5021051A (en) 1989-04-06 1991-06-04 The Procter & Gamble Company Disposable absorbent article having improved barrier leg cuffs
JPH0622344Y2 (en) 1989-05-29 1994-06-15 ユニ・チャーム株式会社 Disposable diapers
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
US5246432A (en) 1989-07-17 1993-09-21 Uni-Charm Corporation Disposable absorbent articles
US4946527A (en) 1989-09-19 1990-08-07 The Procter & Gamble Company Pressure-sensitive adhesive fastener and method of making same
US5019063A (en) 1989-10-30 1991-05-28 The Procter & Gamble Company Absorbent articles containing mechanical pulp and polymeric gelling material
US5034008A (en) 1989-11-07 1991-07-23 Chicopee Elasticized absorbent article
US5137537A (en) 1989-11-07 1992-08-11 The Procter & Gamble Cellulose Company Absorbent structure containing individualized, polycarboxylic acid crosslinked wood pulp cellulose fibers
US5190563A (en) 1989-11-07 1993-03-02 The Proctor & Gamble Co. Process for preparing individualized, polycarboxylic acid crosslinked fibers
US5071414A (en) 1989-11-27 1991-12-10 Elliott Donald P Packaging pocket for disposable diaper
CN1024746C (en) 1989-12-20 1994-06-01 李清祈 Cooking vessel with heat-energy regulating function
US5584829A (en) 1991-05-21 1996-12-17 The Procter & Gamble Company Absorbent articles having panty covering components that naturally wrap the sides of panties
JPH0636735B2 (en) 1990-01-26 1994-05-18 日本鉱業株式会社 A novel rhabdovirus isolated from horseradish
US5246431A (en) 1990-01-31 1993-09-21 Pope & Talbot Company Diaper with source reduction overlay and having improved fecal containment characteristics
US5075142A (en) 1990-02-20 1991-12-24 E. I. Du Pont De Nemours And Company Thermoformable composite sheet
US5149335A (en) 1990-02-23 1992-09-22 Kimberly-Clark Corporation Absorbent structure
US5019072A (en) 1990-02-27 1991-05-28 Minnesota Mining And Manufacturing Company Disposable diaper that is fastened by contact between overlapping adhesive patches
US5180622A (en) 1990-04-02 1993-01-19 The Procter & Gamble Company Absorbent members containing interparticle crosslinked aggregates
US5124188A (en) 1990-04-02 1992-06-23 The Procter & Gamble Company Porous, absorbent, polymeric macrostructures and methods of making the same
CA2023043A1 (en) 1990-04-02 1991-10-03 Anne M. Fahrenkrug Diaper having disposable chassis assembly and reusable elasticized belt removably retained by said chassis assembly
US5149334A (en) 1990-04-02 1992-09-22 The Procter & Gamble Company Absorbent articles containing interparticle crosslinked aggregates
US5492962A (en) 1990-04-02 1996-02-20 The Procter & Gamble Company Method for producing compositions containing interparticle crosslinked aggregates
USD329697S (en) 1990-04-02 1992-09-22 Kimberly-Clark Corporation Belted diaper
US5300565A (en) 1990-04-02 1994-04-05 The Procter & Gamble Company Particulate, absorbent, polymeric compositions containing interparticle crosslinked aggregates
IT1239718B (en) 1990-04-23 1993-11-15 Cge Compagnia Generale Elettromeccanica CONNECTION CLAMP
US5204997A (en) 1990-05-24 1993-04-27 Uni-Charm Corporation Disposable garments of pants type
JPH05105884A (en) 1990-06-07 1993-04-27 Tonen Corp Gasoline additive composition
US5824004A (en) 1990-06-18 1998-10-20 The Procter & Gamble Company Stretchable absorbent articles
DE4020780C1 (en) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
BR9102840A (en) 1990-07-06 1992-04-28 Johnson & Johnson ABSORBENT PRODUCT AND METHOD OF DOING THE SAME
US5248309A (en) 1990-07-19 1993-09-28 Kimberly-Clark Corporation Thin sanitary napkin having a central absorbent zone and a method of forming the napkin
JP2666533B2 (en) 1990-08-06 1997-10-22 日本電気株式会社 Switch module
JP2810519B2 (en) 1990-09-13 1998-10-15 ユニ・チャーム株式会社 Disposable diapers
JPH0776451B2 (en) 1990-09-17 1995-08-16 株式会社ニチコン INVERT FORMING METHOD AND INVERT FORM
JPH04148594A (en) 1990-10-12 1992-05-21 Nec Corp Device and method for forming multipin through hole formation
JP2936428B2 (en) 1990-10-12 1999-08-23 森産業株式会社 Method and apparatus for artificially cultivating mushroom logs
JPH04162609A (en) 1990-10-25 1992-06-08 Naoetsu Denshi Kogyo Kk Manufacture of substrate for discrete element use
JP2786327B2 (en) 1990-10-25 1998-08-13 三菱電機株式会社 Heterojunction field effect transistor
US6231556B1 (en) 1990-10-29 2001-05-15 The Procter & Gamble Company Generally thin, flexible sanitary napkin with stiffened center
JPH04167406A (en) 1990-10-31 1992-06-15 Sony Corp Photomagnetic recording medium
JPH04166923A (en) 1990-10-31 1992-06-12 Brother Ind Ltd Projecting device
JP3429756B2 (en) 1990-11-01 2003-07-22 ザ、プロクター、エンド、ギャンブル、カンパニー Fibrous superabsorbent core with integrally attached hydrophobic facing layer
JP2868887B2 (en) 1990-11-06 1999-03-10 花王株式会社 Medicated cosmetics
US5462541A (en) 1990-11-13 1995-10-31 Kimberly-Clark Corporation Pocket-like diaper or absorbent article
JPH04190675A (en) 1990-11-21 1992-07-09 Hitachi Ltd Protecting device for power semiconductor
JPH04190693A (en) 1990-11-26 1992-07-09 Secoh Giken Inc Circuit for controlling energizing of inductance load
JP3019873B2 (en) 1990-11-30 2000-03-13 松下精工株式会社 Fan for pipe
JP2892843B2 (en) 1990-12-18 1999-05-17 ユニ・チャーム株式会社 Disposable wearing articles
JP3216142B2 (en) 1990-12-31 2001-10-09 カシオ計算機株式会社 Score interpreter
US5460622A (en) 1991-01-03 1995-10-24 The Procter & Gamble Company Absorbent article having blended multi-layer absorbent structure with improved integrity
US5151092A (en) 1991-06-13 1992-09-29 The Procter & Gamble Company Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge
US5167897A (en) 1991-02-28 1992-12-01 The Procter & Gamble Company Method for incrementally stretching a zero strain stretch laminate web to impart elasticity thereto
US5628741A (en) 1991-02-28 1997-05-13 The Procter & Gamble Company Absorbent article with elastic feature having a prestrained web portion and method for forming same
US5221274A (en) 1991-06-13 1993-06-22 The Procter & Gamble Company Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge
US5156793A (en) 1991-02-28 1992-10-20 The Procter & Gamble Company Method for incrementally stretching zero strain stretch laminate web in a non-uniform manner to impart a varying degree of elasticity thereto
US5143679A (en) 1991-02-28 1992-09-01 The Procter & Gamble Company Method for sequentially stretching zero strain stretch laminate web to impart elasticity thereto without rupturing the web
US5175046A (en) 1991-03-04 1992-12-29 Chicopee Superabsorbent laminate structure
JPH04322228A (en) 1991-04-22 1992-11-12 Fuji Xerox Co Ltd Optical fiber amplifier
US5196000A (en) 1991-06-13 1993-03-23 The Proctor & Gamble Company Absorbent article with dynamic elastic waist feature comprising an expansive tummy panel
SK141493A3 (en) 1991-06-13 1994-12-07 Procter & Gamble Absorbent article with fastening system providing dynamic elastized waistband fit
US5190606A (en) 1991-06-14 1993-03-02 Paper Converting Machine Company Method for producing raised leg cuff for diapers including two folding boards
US5147345A (en) 1991-08-12 1992-09-15 The Procter & Gamble Company High efficiency absorbent articles for incontinence management
US5260345A (en) 1991-08-12 1993-11-09 The Procter & Gamble Company Absorbent foam materials for aqueous body fluids and absorbent articles containing such materials
US5387207A (en) 1991-08-12 1995-02-07 The Procter & Gamble Company Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same
US5690627A (en) 1991-08-22 1997-11-25 The Procter & Gamble Company Absorbent article with fit enhancement system
ES2097235T3 (en) 1991-09-03 1997-04-01 Hoechst Celanese Corp SUPER ABSORBENT POLYMER THAT HAS IMPROVED ABSORPTION PROPERTIES.
ZA92308B (en) 1991-09-11 1992-10-28 Kimberly Clark Co Thin absorbent article having rapid uptake of liquid
JP2942036B2 (en) 1991-09-27 1999-08-30 東北リコー株式会社 Barcode printer
JPH05113146A (en) 1991-10-23 1993-05-07 Toyota Motor Corp Internal combustion engine
JPH05129536A (en) 1991-11-01 1993-05-25 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
DE4138408A1 (en) 1991-11-22 1993-05-27 Cassella Ag HYDROPHILES, HIGHLY SOURCE HYDROGELS
JP2823402B2 (en) 1991-12-04 1998-11-11 ユニ・チャーム株式会社 Body fluid absorbent articles
US5451442A (en) 1991-12-17 1995-09-19 Paragon Trade Brands, Inc. Absorbent panel structure for a disposable garment
JP3045422B2 (en) 1991-12-18 2000-05-29 株式会社日本触媒 Method for producing water absorbent resin
SE9103851L (en) 1991-12-30 1993-07-01 Moelnlycke Ab ABSORBING ALSTER
CA2072689A1 (en) 1991-12-31 1993-07-01 Kimberly-Clark Corporation Disposable absorbent article with flushable insert
US5235515A (en) 1992-02-07 1993-08-10 Kimberly-Clark Corporation Method and apparatus for controlling the cutting and placement of components on a moving substrate
US5532323A (en) 1992-03-05 1996-07-02 Nippon Shokubai Co., Ltd. Method for production of absorbent resin
US5649917A (en) 1992-03-31 1997-07-22 The Procter & Gamble Company Sanitary napkin having barrier means
JPH0579931U (en) 1992-03-31 1993-10-29 太陽誘電株式会社 Winding machine
GB9208449D0 (en) 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
ES2120502T3 (en) 1992-04-28 1998-11-01 Procter & Gamble THIN AND FLEXIBLE SANITARY PURCHASE WITH A RIGIDIZED CENTER.
JP2573306Y2 (en) 1992-05-08 1998-05-28 松下電器産業株式会社 Packaging structure
JP3350094B2 (en) 1992-05-22 2002-11-25 ザ、プロクター、エンド、ギャンブル、カンパニー Disposable training pants with improved elastic side panels
CA2079140C (en) 1992-05-29 2002-05-14 Joseph Dipalma An absorbent article having a non-absorbent, resilient layer
JP3563417B2 (en) 1992-06-01 2004-09-08 株式会社日本吸収体技術研究所 Diaper with pocket structure and method of manufacturing the same
US5269775A (en) 1992-06-12 1993-12-14 The Procter & Gamble Company Trisection topsheets for disposable absorbent articles and disposable absorbent articles having such trisection topsheets
EP0591647B2 (en) 1992-08-13 2004-04-21 Japan Absorbent Technology Institute Stretchable absorbent article
US5366782A (en) 1992-08-25 1994-11-22 The Procter & Gamble Company Polymeric web having deformed sections which provide a substantially increased elasticity to the web
US5336552A (en) 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
FI934518A (en) 1992-10-14 1994-04-15 Mcneil Ppc Inc TROSSKYDD
SE508450C2 (en) 1992-11-11 1998-10-05 Sca Hygiene Prod Ab Absorbent article and method of making it
JP3579905B2 (en) 1992-12-11 2004-10-20 株式会社日本吸収体技術研究所 Diaper
US5540872A (en) 1992-12-31 1996-07-30 Mcneil-Ppc, Inc. Method and system for making three-dimensional fabrics
AU687766B2 (en) 1993-02-22 1998-03-05 Mcneil-Ppc, Inc. Absorbent articles
CA2114815C (en) 1993-02-24 2005-06-14 Mark Kevin Melius Absorbent composite
JP3190761B2 (en) 1993-03-16 2001-07-23 ユニ・チャーム株式会社 Body fluid treatment article and method of manufacturing the same
US5348547A (en) 1993-04-05 1994-09-20 The Procter & Gamble Company Absorbent members having improved fluid distribution via low density and basis weight acquisition zones
JP3177341B2 (en) 1993-05-19 2001-06-18 ユニ・チャーム株式会社 Manufacturing method of pants-type disposable diapers
US5358500A (en) 1993-06-03 1994-10-25 The Procter & Gamble Company Absorbent articles providing sustained dynamic fit
US5540671A (en) 1993-06-10 1996-07-30 The Procter & Gamble Company Absorbent article having a pocket cuff with an apex
EP0632068B1 (en) 1993-06-18 1998-08-19 Nippon Shokubai Co., Ltd. Process for preparing absorbent resin
US5397316A (en) 1993-06-25 1995-03-14 The Procter & Gamble Company Slitted absorbent members for aqueous body fluids formed of expandable absorbent materials
DK0631768T3 (en) 1993-06-30 1998-06-02 Procter & Gamble Absorbent core with improved fluid handling properties
EP0640330B1 (en) 1993-06-30 2000-05-24 The Procter & Gamble Company Hygienic absorbent articles
FR2707159B1 (en) 1993-07-09 1995-09-08 Peaudouce Disposable absorbent hygiene article.
ES2145147T3 (en) 1993-07-26 2000-07-01 Procter & Gamble ABSORBENT ARTICLE THAT HAS IMPROVED DRY / WET INTEGRITY.
US5389095A (en) 1993-07-28 1995-02-14 Paragon Trade Brands, Inc. Suspended absorbent diaper article
US5451219A (en) 1993-07-28 1995-09-19 Paragon Trade Brands, Inc. Stretchable absorbent article
US5518801A (en) 1993-08-03 1996-05-21 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
US5968029A (en) 1993-08-03 1999-10-19 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
US5891544A (en) 1993-08-03 1999-04-06 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
AU685833B2 (en) 1993-10-15 1998-01-29 Uni-Charm Corporation Disposable absorbent pad
US5466409A (en) 1993-10-19 1995-11-14 Kimberly-Clark Corporation Forming belt for three-dimensional forming applications
WO1995010996A1 (en) 1993-10-21 1995-04-27 The Procter & Gamble Company Catamenial absorbent structures
US5425725A (en) 1993-10-29 1995-06-20 Kimberly-Clark Corporation Absorbent article which includes superabsorbent material and hydrophilic fibers located in discrete pockets
CA2116953C (en) 1993-10-29 2003-08-19 Kimberly-Clark Worldwide, Inc. Absorbent article which includes superabsorbent material located in discrete elongate pockets placed in selected patterns
US5433715A (en) 1993-10-29 1995-07-18 Kimberly-Clark Corporation Absorbent article which includes superabsorbent material located in discrete pockets having water-sensitive and water-insensitive containment structures
US5411497A (en) 1993-10-29 1995-05-02 Kimberly-Clark Corporation Absorbent article which includes superabsorbent material located in discrete pockets having an improved containment structure
US5401792A (en) 1993-11-10 1995-03-28 Minnesota Mining And Manufacturing Company Sprayable thermoplastic compositions
KR100353701B1 (en) 1993-11-19 2003-10-04 더 프록터 앤드 갬블 캄파니 Absorbent product
WO1995014453A2 (en) 1993-11-19 1995-06-01 The Procter & Gamble Company Absorbent article with structural elastic-like film web waist belt
JP4014626B2 (en) 1993-11-30 2007-11-28 ザ プロクター アンド ギャンブル カンパニー Absorbent articles with asymmetric shapes for improved protection
EP0657502A1 (en) 1993-12-13 1995-06-14 Du Pont De Nemours International S.A. Thermoplastic composition containing compatibilizer
CA2122660A1 (en) 1993-12-14 1995-06-15 John Philip Vukos Absorbent article having a body adhesive
US5476458A (en) 1993-12-22 1995-12-19 Kimberly-Clark Corporation Liquid-retaining absorbent garment and method of manufacture
IT1261155B (en) 1993-12-31 1996-05-09 P & G Spa STRATIFIED ABSORBENT STRUCTURE, ABSORBENT ITEM INCLUDING SUCH STRUCTURE AND METHOD FOR ITS REALIZATION.
US5542943A (en) 1994-01-07 1996-08-06 The Procter & Gamble Company Absorbent article having inflected barrier cuffs and method for making the same
SE508628C2 (en) 1994-02-18 1998-10-19 Sca Hygiene Prod Ab Absorbent pants diaper
CA2180825A1 (en) 1994-01-19 1995-07-27 Kathleen Quinlan Ames Convertible belted diaper
GB9402706D0 (en) 1994-02-11 1994-04-06 Minnesota Mining & Mfg Absorbent materials and preparation thereof
NZ270463A (en) 1994-02-18 1998-07-28 Mcneil Ppc Inc Absorbent article comprises a fluid-permeable cover on a body-facing surface and a fluid-impermeable barrier on a garment facing surface, details of bending zone of fluid-absorbent core
SE508244C2 (en) 1994-02-24 1998-09-21 Moelnlycke Ab Absorption body and apparatus for making such an absorption body
US5624424A (en) 1994-02-25 1997-04-29 New Oji Paper Co., Ltd. Disposable diaper
US5554145A (en) 1994-02-28 1996-09-10 The Procter & Gamble Company Absorbent article with multiple zone structural elastic-like film web extensible waist feature
US5486166A (en) 1994-03-04 1996-01-23 Kimberly-Clark Corporation Fibrous nonwoven web surge layer for personal care absorbent articles and the like
EP0672774B1 (en) 1994-03-04 1999-07-14 Kimberly-Clark Worldwide, Inc. Improved surge management fibrous nonwoven web for personal care absorbent articles and the like
USH1732H (en) 1994-03-10 1998-06-02 Johnson; Theresa Louise Absorbent articles containing antibacterial agents in the topsheet for odor control
SE502549C2 (en) 1994-03-18 1995-11-13 Moelnlycke Ab Absorbent article, such as a diaper, comprising an apertured top layer
CA2129210A1 (en) 1994-03-31 1995-10-01 Debra Jean Mcdowall Liquid distribution layer for absorbent articles
US5591148A (en) 1994-04-08 1997-01-07 The Procter & Gamble Company Sanitary napkin having an independently displaceable central core segment
GB2288540A (en) 1994-04-23 1995-10-25 Skippingdale Paper Products Li A diaper
DE69506538T3 (en) 1994-04-29 2005-03-24 The Procter & Gamble Company, Cincinnati CLOSING DEVICE FOR DISPOSABLE HEMS WITH ELASTIC WAISTBANDS
JPH07299093A (en) 1994-05-10 1995-11-14 Uni Charm Corp Body fluid absorbent article for wear
US5520674A (en) 1994-05-31 1996-05-28 The Procter & Gamble Company Disposable absorbent article having a sealed expandable component
JP3215262B2 (en) 1994-06-03 2001-10-02 ユニ・チャーム株式会社 Disposable body fluid absorbent articles
CA2134268C (en) 1994-06-13 2005-10-04 Frederich Oma Lassen Absorbent article having a body-accommodating absorbent core
US5549791A (en) 1994-06-15 1996-08-27 The Procter & Gamble Company Individualized cellulosic fibers crosslinked with polyacrylic acid polymers
JP3863179B2 (en) 1994-06-15 2006-12-27 ザ、プロクター、エンド、ギャンブル、カンパニー Absorbent structure containing individualized cellulose fibers crosslinked by polyacrylic acid polymer
CA2136810A1 (en) 1994-06-30 1995-12-31 Franklin M. C. Chen Absorbent structure including an adhesive
US5714156A (en) 1994-07-05 1998-02-03 The Procter & Gamble Company Absorbent gelling material comprising a dry mixture of at least two types of hydrogel-forming particles and method for making the same
US5494622A (en) 1994-07-12 1996-02-27 Kimberly-Clark Corporation Apparatus and method for the zoned placement of superabsorbent material
US5830202A (en) 1994-08-01 1998-11-03 The Procter & Gamble Company Absorbent comprising upper and lower gel layers
US5849816A (en) 1994-08-01 1998-12-15 Leonard Pearlstein Method of making high performance superabsorbent material
US5593401A (en) 1994-08-03 1997-01-14 Kimberly-Clark Corporation Absorbent article with bridge flap
US5527300A (en) 1994-08-31 1996-06-18 Kimberly-Clark Corporation Absorbent article with high capacity surge management component
CA2153125A1 (en) 1994-08-31 1996-03-01 Frank Paul Abuto Liquid-absorbing article
US5536341A (en) 1994-09-01 1996-07-16 Davidson Textron Inc. Soft panel with thermoplastic fiber cluster layer
ATE214906T1 (en) 1994-09-09 2002-04-15 Procter & Gamble METHOD FOR PRODUCING AN ABSORBENT STRUCTURE
US5643243A (en) 1994-09-26 1997-07-01 Drypers Corporation Disposable diaper with cuff
JP3224481B2 (en) 1994-10-26 2001-10-29 ユニ・チャーム株式会社 Sanitary napkin
AU703318B2 (en) 1994-11-23 1999-03-25 Kimberly-Clark Worldwide, Inc. Absorbent article having a composite absorbent core
US5560878A (en) 1994-11-30 1996-10-01 The Procter & Gamble Company Method and apparatus for making stretchable absorbent articles
EP0794751B2 (en) 1994-11-30 2003-01-02 The Procter & Gamble Company Stretchable absorbent article core
US5624423A (en) 1994-11-30 1997-04-29 Kimberly-Clark Corporation Absorbent article having barrier means and medial bulge
IN187105B (en) 1994-12-07 2002-02-02 Mcneil Ppc Inc
ATE199491T1 (en) 1994-12-21 2001-03-15 Procter & Gamble ABSORBENT ITEM WITH INTEGRATED TIGHT EDGES
US5649914A (en) 1994-12-22 1997-07-22 Kimberly-Clark Corporation Toilet training aid
US5772825A (en) 1994-12-22 1998-06-30 The Procter & Gamble Company Method for making an undergarment having side seams
US5614283A (en) 1994-12-22 1997-03-25 Tredegar Industries Absorbent composite with three-dimensional film surface for use in absorbent disposable products
US5779831A (en) 1994-12-24 1998-07-14 The Procter & Gamble Company Method and apparatus for making an undergarment having overlapping or butt-type side seams
US5580411A (en) 1995-02-10 1996-12-03 The Procter & Gamble Company Zero scrap method for manufacturing side panels for absorbent articles
US6110157A (en) 1995-02-24 2000-08-29 Kimberly-Clark Worldwide, Inc. Disposable absorbent article having an integrated fastening system
AU701286B2 (en) 1995-04-03 1999-01-21 Mcneil-Ppc, Inc. Multiple folded side barriers for improved leakage protection
US5549592A (en) 1995-04-03 1996-08-27 Kimberly-Clark Corporation Absorbent article with a laminated tape
CA2219140C (en) 1995-04-28 2001-12-04 Karl Kristian Kobs Kroyer (Deceased) Method of producing flow lines in a sanitary product
US5522810A (en) 1995-06-05 1996-06-04 Kimberly-Clark Corporation Compressively resistant and resilient fibrous nonwoven web
US5575785A (en) 1995-06-07 1996-11-19 Kimberly-Clark Corporation Absorbent article including liquid containment beams and leakage barriers
US5662634A (en) 1995-06-08 1997-09-02 Uni-Charm Corporation Method for making a liquid absorbent pad
US6120866A (en) 1995-08-07 2000-09-19 Nitto Denko Corporation Re-peeling pressure-sensitive adhesive tape or pressure-sensitive adhesive, and fastening system using the same
US5938650A (en) 1995-08-09 1999-08-17 Fibertech Group, Inc. Absorbent core for absorbing body liquids and method
GB9614668D0 (en) 1995-08-11 1996-09-04 Camelot Superabsorbents Ltd Absorbent articles
JP3208289B2 (en) 1995-08-15 2001-09-10 ユニ・チャーム株式会社 Disposable absorbent undergarment
MY117986A (en) 1995-08-25 2004-08-30 Uni Charm Corp Disposable absorbent undergarment
US5891118A (en) 1995-09-05 1999-04-06 Kao Corporation Absorbent article
US5571096A (en) 1995-09-19 1996-11-05 The Procter & Gamble Company Absorbent article having breathable side panels
US5643238A (en) 1995-09-29 1997-07-01 Paragon Trade Brands, Inc. Absorbent core structure comprised of storage and acquisition cells
DE69618170T2 (en) 1995-10-05 2002-07-04 Kao Corp., Tokio/Tokyo DISPOSABLE DIAPERS
US5622589A (en) 1995-10-10 1997-04-22 The Procter & Gamble Company Method for making a flangeless seam for use in disposable articles
US5662638A (en) 1995-10-10 1997-09-02 The Procter & Gamble Company Flangeless seam for use in disposable articles
US5607537A (en) 1995-10-10 1997-03-04 The Procter & Gamble Company Method for making a flangeless seam for use in disposable articles
JP3053561B2 (en) 1995-10-19 2000-06-19 ユニ・チャーム株式会社 Sanitary napkin
US5658268A (en) 1995-10-31 1997-08-19 Kimberly-Clark Worldwide, Inc. Enhanced wet signal response in absorbent articles
US5843059A (en) 1995-11-15 1998-12-01 Kimberly-Clark Worldwide, Inc. Absorbent composite and disposable absorbent garment comprising same
SE9504077L (en) 1995-11-16 1997-02-10 Moelnlycke Ab Absorbent article such as a diaper having a cup-shaped absorbent body having at least one recess in the form of grooves or compression lines
DE19543368C2 (en) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Water-absorbing polymers with improved properties, processes for their production and their use
DE19646484C2 (en) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Liquid absorbing polymers, processes for their production and their use
US5626571A (en) 1995-11-30 1997-05-06 The Procter & Gamble Company Absorbent articles having soft, strong nonwoven component
US6117121A (en) 1995-12-11 2000-09-12 Kimberly-Clark Worldwide, Inc. Absorbent article using extensible leg cuffs
US5846232A (en) 1995-12-20 1998-12-08 Kimberly-Clark Worldwide, Inc. Absorbent article containing extensible zones
EP0781537A1 (en) 1995-12-27 1997-07-02 The Procter & Gamble Company Disposable absorbent article
US5766389A (en) 1995-12-29 1998-06-16 Kimberly-Clark Worldwide, Inc. Disposable absorbent article having a registered graphic and process for making
JP3469385B2 (en) 1996-01-10 2003-11-25 花王株式会社 Absorbent articles
DE69616089T3 (en) 1996-01-11 2006-04-20 The Procter & Gamble Company, Cincinnati Absorbent structure with zones surrounded by a continuous layer of hydrogel-forming polymer material
AU2243397A (en) 1996-01-16 1997-08-11 Avery Dennison Corporation Stretchable mechanical/adhesive closure for a disposable diaper
BR9706989A (en) 1996-01-16 2001-08-28 Avery Dennison Corp Improvements in diaper closure systems
US6376034B1 (en) 1996-01-23 2002-04-23 William M. Brander Absorbent material for use in disposable articles and articles prepared therefrom
US5691036A (en) 1996-01-30 1997-11-25 Du Pont Taiwan Limited High pressure high temperature cushioning material
JP3345248B2 (en) 1996-01-31 2002-11-18 ユニ・チャーム株式会社 Urine collection bag for men
IN189366B (en) 1996-02-12 2003-02-15 Mcneil Ppc Inc
US5685874A (en) 1996-02-22 1997-11-11 The Procter & Gamble Company Disposable pull-on pant
JP2001500025A (en) 1996-02-29 2001-01-09 キンバリー クラーク ワールドワイド インコーポレイテッド Double elastic liquid barrier storage flap for disposable absorbent articles
SE504624C2 (en) 1996-03-13 1997-03-17 Moelnlycke Ab Waist belt for absorbent articles and method of manufacture thereof
US6372952B1 (en) 1996-03-22 2002-04-16 The Procter & Gamble Company Absorbent components having a sustained acquisition rate capability upon absorbing multiple discharges of aqueous body fluids
US5855572A (en) 1996-03-22 1999-01-05 The Procter & Gamble Company Absorbent components having a fluid acquisition zone
EP0802251B1 (en) 1996-04-15 2003-10-15 Eastman Chemical Resins, Inc. Styrenic block copolymer based hot-melt adhesives
US5865823A (en) 1996-11-06 1999-02-02 The Procter & Gamble Company Absorbent article having a breathable, fluid impervious backsheet
US5650214A (en) 1996-05-31 1997-07-22 The Procter & Gamble Company Web materials exhibiting elastic-like behavior and soft, cloth-like texture
US6336922B1 (en) 1996-06-19 2002-01-08 Kimberly-Clark Worldwide, Inc. Absorbent article having a fit panel
US5810800A (en) 1996-06-27 1998-09-22 The Procter & Gamble Company Absorbent article having flexure resistant elasticized cuffs
JP3499375B2 (en) 1996-07-02 2004-02-23 ユニ・チャーム株式会社 Absorbent sheet and method for producing the same
JP3155711B2 (en) 1996-07-15 2001-04-16 ユニ・チャーム株式会社 Disposable diapers
JP3434649B2 (en) 1996-08-07 2003-08-11 ユニ・チャーム株式会社 Disposable diapers
JP3589528B2 (en) 1996-08-08 2004-11-17 ユニ・チャーム株式会社 Diapers
JP3688403B2 (en) 1996-09-17 2005-08-31 花王株式会社 Disposable diapers
JP3640475B2 (en) 1996-09-27 2005-04-20 花王株式会社 Absorbent articles
US6423884B1 (en) 1996-10-11 2002-07-23 Kimberly-Clark Worldwide, Inc. Absorbent article having apertures for fecal material
ATE232074T1 (en) 1996-10-15 2003-02-15 Procter & Gamble DISPOSABLE ABSORBENT ARTICLE AND METHOD FOR PRODUCING THE SAME
US6585713B1 (en) 1996-11-14 2003-07-01 Kimberly-Clark Worldwide, Inc. Absorbent article providing a dynamic fit
US5820973A (en) 1996-11-22 1998-10-13 Kimberly-Clark Worldwide, Inc. Heterogeneous surge material for absorbent articles
GB2354449C (en) 1996-11-29 2005-09-21 Kao Corp Absorbent article
US20050090789A1 (en) 1996-12-06 2005-04-28 Graef Peter A. Absorbent composite having improved surface dryness
US6734335B1 (en) 1996-12-06 2004-05-11 Weyerhaeuser Company Unitary absorbent system
ATE258851T1 (en) 1996-12-06 2004-02-15 Weyerhaeuser Co ONE-PIECE COMPOSITE LAMINATE
US20020007169A1 (en) 1996-12-06 2002-01-17 Weyerhaeuser Company Absorbent composite having improved surface dryness
ATE531758T1 (en) 1996-12-13 2011-11-15 Dsg Internat Ltd ABSORBENT LAYER CONTAINING HIGHLY ABSORBENT COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF
SE519601C2 (en) 1996-12-17 2003-03-18 Sca Moelnlycke Ab Absorbent structure for diaper, incontinence cover, sanitary napkin or the like with high utilization rate
US6060115A (en) 1996-12-17 2000-05-09 Kimberly-Clark Worldwide, Inc. Method of making an absorbent pad
US6102892A (en) 1996-12-23 2000-08-15 Kimberly-Clark Worldwide, Inc. Diaper with pleats for containment of liquid and solid waste
SE513075C2 (en) 1996-12-27 2000-07-03 Sca Hygiene Prod Ab Absorbing garment fastener
US6648869B1 (en) 1996-12-30 2003-11-18 Kimberly-Clark Worldwide, Inc. Vertically pleated diaper liner
US6315765B1 (en) 1997-01-17 2001-11-13 Kimberly-Clark Worldwide, Inc. Elasticized absorbent pad
JP3566012B2 (en) 1997-01-28 2004-09-15 花王株式会社 Absorbent articles
US6461343B1 (en) 1997-02-18 2002-10-08 The Procter & Gamble Company Disposable absorbent article with folded ear panels and method of making same
TR199902794T2 (en) 1997-02-19 2000-04-21 The Procter & Gamble Company Ion, interchangeable hydrogel-forming polymer compositions in a mixed layer and absorbent elements containing these compositions in relatively high concentrations.
SE512761C2 (en) 1997-02-28 2000-05-08 Sca Hygiene Prod Ab Diaper, comprising a waist belt and absorbent unit
US6083210A (en) 1997-03-27 2000-07-04 The Procter & Gamble Company Absorbent articles providing improved fit when wet
DE19713189A1 (en) 1997-03-27 1998-10-01 Kimberly Clark Gmbh Personal hygiene product applied to the human skin
US6383431B1 (en) 1997-04-04 2002-05-07 The Procter & Gamble Company Method of modifying a nonwoven fibrous web for use as component of a disposable absorbent article
US5928184A (en) 1997-04-14 1999-07-27 Tampax Corporation Multi-layer absorbent article
US5865824A (en) 1997-04-21 1999-02-02 Chen; Fung-Jou Self-texturing absorbent structures and absorbent articles made therefrom
TW418677U (en) 1997-04-21 2001-01-11 Kao Corp Disposable garments
EP0875224A1 (en) 1997-04-28 1998-11-04 Cidieffe S.r.l. Absorbent article which includes superabsorbent material located in discrete pockets and manufacturing process
JP3323100B2 (en) 1997-04-30 2002-09-09 ユニ・チャーム株式会社 Disposable pants-type wearing article
EP1011577A4 (en) 1997-05-13 2004-06-16 Weyerhaeuser Co Reticulated absorbent composite
US20030139718A1 (en) 1997-05-13 2003-07-24 Weyerhaeuser Company Reticulated absorbent composite
US6042673A (en) 1997-05-15 2000-03-28 The Procter & Gamble Company Method for making a flangeless seam for use in disposable articles
GB2325432B (en) 1997-05-21 1999-12-22 Bristol Myers Squibb Co Absorbing aqueous matter
WO1998052507A1 (en) 1997-05-22 1998-11-26 Bba Nonwovens Simpsonville, Inc. Composite fabric for coverstock having separate liquid pervious and impervious regions
JP3850102B2 (en) 1997-05-28 2006-11-29 花王株式会社 Absorbent articles
TW538745U (en) 1997-05-29 2003-06-21 Kao Corp Absorbent article
US6132411A (en) 1997-06-04 2000-10-17 The Procter & Gamble Company Absorbent article with multiple zone side panels
JP3719819B2 (en) 1997-06-13 2005-11-24 花王株式会社 Method for manufacturing absorbent body for absorbent article and absorbent article
US5989236A (en) 1997-06-13 1999-11-23 The Procter & Gamble Company Absorbent article with adjustable waist feature
US6342715B1 (en) 1997-06-27 2002-01-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
JPH1133056A (en) 1997-07-16 1999-02-09 Uni Charm Corp Disposable training pants for infant
JPH1142252A (en) 1997-07-25 1999-02-16 Ykk Corp Disposable diaper
DE19732499C2 (en) 1997-07-29 2001-05-17 Hartmann Paul Ag diaper
US6402731B1 (en) 1997-08-08 2002-06-11 Kimberly-Clark Worldwide, Inc. Multi-functional fastener for disposable absorbent articles
US6117803A (en) 1997-08-29 2000-09-12 Kimberly-Clark Worldwide, Inc. Personal care articles with abrasion resistant meltblown layer
JP3874499B2 (en) 1997-08-29 2007-01-31 花王株式会社 Shorts napkin
US6432098B1 (en) 1997-09-04 2002-08-13 The Procter & Gamble Company Absorbent article fastening device
US6107537A (en) 1997-09-10 2000-08-22 The Procter & Gamble Company Disposable absorbent articles providing a skin condition benefit
EP1014909A4 (en) 1997-09-16 2005-03-30 Paragon Trade Brands Inc Disposable training pant with elasticized side panels
CA2246903C (en) 1997-09-29 2003-06-17 Uni-Charm Corporation Absorbent article
JP3385188B2 (en) 1997-09-30 2003-03-10 ユニ・チャーム株式会社 Disposable diapers
SE514291C2 (en) 1997-09-30 2001-02-05 Sca Hygiene Prod Ab Absorbent disposable articles with high collection capacity
JP3420481B2 (en) 1997-09-30 2003-06-23 ユニ・チャーム株式会社 Infant wear article
US6383960B1 (en) 1997-10-08 2002-05-07 Kimberly-Clark Worldwide, Inc. Layered absorbent structure
PH11998002499B1 (en) 1997-10-08 2004-11-05 Kimberly Clark Co Layered absorbent structure
CO5261577A1 (en) 1997-10-08 2003-03-31 Kimberly Clark Co ABSORBENT ARTICLE WITH ABSORBENT STRUCTURE WITH HETEROGENOUS COAT REGION
US6156424A (en) 1997-10-31 2000-12-05 Andover Coated Products, Inc. Cohesive products
FR2770395B1 (en) 1997-11-04 2000-02-18 Proteco HYGIENE ARTICLE WITH BREATHABLE NON-WOVEN PANELS
US6410820B1 (en) 1997-11-14 2002-06-25 The Procter & Gamble Company Method of making a slitted or particulate absorbent material and structures formed thereby
US6171985B1 (en) 1997-12-01 2001-01-09 3M Innovative Properties Company Low trauma adhesive article
US5938648A (en) 1997-12-03 1999-08-17 The Procter & Gamble Co. Absorbent articles exhibiting improved internal environmental conditions
JP3510093B2 (en) 1997-12-16 2004-03-22 ユニ・チャーム株式会社 Disposable diapers
US6955733B2 (en) 1997-12-19 2005-10-18 The Procter & Gamble Company Method and system for registering pre-produced webs with variable pitch length
US6444064B1 (en) 1997-12-19 2002-09-03 Procter & Gamble Company Registration system for phasing simultaneously advancing webs of material having variable pitch lengths
SE517865C2 (en) 1997-12-29 2002-07-23 Sca Hygiene Prod Ab Absorbent articles with fixed radius compression lines
US6129720A (en) 1997-12-31 2000-10-10 Kimberly-Clark Worldwide, Inc. Extensible absorbent article including an extensible absorbent pad layer
US6121509A (en) 1998-01-07 2000-09-19 The Procter & Gamble Company Absorbent polymer compositions having high sorption capacities under an applied pressure and improved integrity when wet
ATE389421T1 (en) 1998-01-07 2008-04-15 Procter & Gamble WATER ABSORBING POLYMER COMPOSITIONS WITH HIGH SORPTION CAPACITY AND HIGH LIQUID PERMEABILITY UNDER APPLIED PRESSURE
JP3406214B2 (en) 1998-01-30 2003-05-12 ユニ・チャーム株式会社 Disposable diapers
DE19807502B4 (en) 1998-02-21 2004-04-08 Basf Ag Process for post-crosslinking hydrogels with 2-oxazolidinones, hydrogels made therefrom and their use
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6503979B1 (en) 1998-02-26 2003-01-07 Basf Aktiengesellschaft Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
WO1999045973A1 (en) 1998-03-12 1999-09-16 The Procter & Gamble Company Disposable absorbent article having a skin care composition containing an enzyme inhibitor
CN1293556A (en) 1998-03-19 2001-05-02 韦尔豪泽公司 Fluted composite and related absorbent articles
US6630054B1 (en) 1998-03-19 2003-10-07 Weyerhaeuser Company Methods for forming a fluted composite
JP3411211B2 (en) 1998-03-27 2003-05-26 ユニ・チャーム株式会社 Disposable diapers
US6632209B1 (en) 1998-03-30 2003-10-14 Paragon Trade Brands, Inc. Thin absorbent core made from folded absorbent laminate
US6068620A (en) 1998-03-30 2000-05-30 Paragon Trade Brands Absorbent laminate
US6440117B1 (en) 1998-04-02 2002-08-27 Kao Corporation Disposable diaper having upstanding walls for improving leakage prevention
AU3097699A (en) 1998-04-03 1999-10-25 Kimberly-Clark Worldwide, Inc. An absorbent article
JP3660816B2 (en) 1998-04-06 2005-06-15 白十字株式会社 Disposable diapers
JP3856941B2 (en) 1998-04-15 2006-12-13 花王株式会社 Absorbent articles
JP3330076B2 (en) 1998-04-20 2002-09-30 ユニ・チャーム株式会社 Disposable diapers
JPH11308127A (en) 1998-04-20 1999-11-05 Kokusai Electric Co Ltd Transmission output stabilization device for millimeter wave band transmitter
JP3398047B2 (en) 1998-04-24 2003-04-21 ユニ・チャーム株式会社 Disposable pants-type diapers
JPH11313851A (en) 1998-05-01 1999-11-16 Uni Charm Corp Sanitary napkin
US6534572B1 (en) 1998-05-07 2003-03-18 H. B. Fuller Licensing & Financing, Inc. Compositions comprising a thermoplastic component and superabsorbent polymer
JP3909953B2 (en) 1998-05-12 2007-04-25 ユニ・チャームペットケア株式会社 Absorber manufacturing method
JP3490291B2 (en) 1998-05-18 2004-01-26 ユニ・チャーム株式会社 Absorbent articles
JPH11318980A (en) 1998-05-18 1999-11-24 Zuiko Corp Disposable diaper
JPH11342154A (en) 1998-06-03 1999-12-14 Uni Charm Corp Humor absorption article
US5873868A (en) 1998-06-05 1999-02-23 The Procter & Gamble Company Absorbent article having a topsheet that includes selectively openable and closable openings
US6403857B1 (en) 1998-06-08 2002-06-11 Buckeye Technologies Inc. Absorbent structures with integral layer of superabsorbent polymer particles
CN1238171A (en) 1998-06-09 1999-12-15 顺德市妇康卫生用品有限公司 New-type sanitary napkin
US7037299B2 (en) 1998-06-12 2006-05-02 First Quality Products, Inc. Disposable elastic absorbent article having retaining enclosures
US6413249B1 (en) 1998-06-12 2002-07-02 First Quality Enterprises, Inc. Disposable absorbent article having elastically contractible waist and sides
JP3612424B2 (en) 1998-06-12 2005-01-19 ユニ・チャーム株式会社 Sanitary napkin
US20040033750A1 (en) 1998-06-12 2004-02-19 Everett Rob D Layered absorbent structure with a heterogeneous layer region
US6710225B1 (en) 1998-06-15 2004-03-23 Kimberly-Clark Worldwide, Inc. Layered absorbent structure with a zoned basis weight
US6022431A (en) 1998-06-19 2000-02-08 Kimberly-Clark Worldwide, Inc. Method of making prefastened absorbent articles having a stretch band
US6022430A (en) 1998-06-19 2000-02-08 Kimberly-Clark Worldwide, Inc. Method of making absorbent articles having an adjustable belt
US6322552B1 (en) 1998-06-19 2001-11-27 Kimberly-Clark Worldwide, Inc. Absorbent articles having belt loops and an adjustable belt
JP3868628B2 (en) 1998-06-25 2007-01-17 花王株式会社 Absorbent articles
AU8267098A (en) 1998-06-26 2000-01-17 Procter & Gamble Company, The Faecal collector with improved adhesive flange attachment means to facilitate removal with low pain level
JP3568146B2 (en) 1998-07-03 2004-09-22 花王株式会社 Method and apparatus for manufacturing absorbent article
US6562168B1 (en) 1998-07-07 2003-05-13 The Procter & Gamble Company Method for cutting and sealing an absorbent member
US6531027B1 (en) 1998-08-03 2003-03-11 The Procter & Gamble Company Adhesive printing process for disposable absorbent articles
EP0978263A1 (en) 1998-08-03 2000-02-09 The Procter & Gamble Company Improved adhesive printing process for disposable absorbent articles
US6531025B1 (en) 1998-08-03 2003-03-11 The Procter & Gamble Company Gravure roll printing process for adhesive application for disposable absorbent articles
JP3926042B2 (en) 1998-08-06 2007-06-06 花王株式会社 Absorbent articles
US6231566B1 (en) 1998-08-12 2001-05-15 Katana Research, Inc. Method for scanning a pulsed laser beam for surface ablation
JP3616723B2 (en) 1998-09-11 2005-02-02 ユニ・チャーム株式会社 Sanitary napkin
JP3652523B2 (en) 1998-09-11 2005-05-25 ユニ・チャーム株式会社 Sanitary napkin
JP3411224B2 (en) 1998-09-14 2003-05-26 ユニ・チャーム株式会社 Disposable diapers
US6673982B1 (en) 1998-10-02 2004-01-06 Kimberly-Clark Worldwide, Inc. Absorbent article with center fill performance
US6562192B1 (en) 1998-10-02 2003-05-13 Kimberly-Clark Worldwide, Inc. Absorbent articles with absorbent free-flowing particles and methods for producing the same
US6503233B1 (en) 1998-10-02 2003-01-07 Kimberly-Clark Worldwide, Inc. Absorbent article having good body fit under dynamic conditions
US6667424B1 (en) 1998-10-02 2003-12-23 Kimberly-Clark Worldwide, Inc. Absorbent articles with nits and free-flowing particles
CN2362468Y (en) 1998-10-16 2000-02-09 保定三利报业纸品有限公司 Four concave trough leakage-proof feminine napkin
US6520947B1 (en) 1998-10-16 2003-02-18 The Procter & Gamble Company Disposable absorbent article having reusable fastening means
US6090994A (en) 1998-10-26 2000-07-18 Chen; Chuan-Mei Structure of a diaper
JP2000185074A (en) 1998-11-09 2000-07-04 Johnson & Johnson Inc Sanitary napkin with rear extension having leak preventive function
JP3724963B2 (en) 1998-11-17 2005-12-07 花王株式会社 Pants-type absorbent article
JP3705943B2 (en) 1998-11-19 2005-10-12 ユニ・チャーム株式会社 Sanitary napkin
DE19854574A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with N-acyl-2-oxazolidinones
DE19854573A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with 2-oxo-tetrahydro-1,3-oxazines
EP1135089B1 (en) 1998-11-30 2003-08-06 The Procter & Gamble Company Absorbent article having channel
JP4198849B2 (en) 1998-12-01 2008-12-17 ユニ・チャーム株式会社 Absorbent articles
JP3639447B2 (en) 1998-12-11 2005-04-20 ユニ・チャーム株式会社 Disposable body fluid absorbent article
AU771295B2 (en) 1998-12-23 2004-03-18 Mcneil-Ppc, Inc. Absorbent article with superabsorbent particles and densified region
US6573422B1 (en) 1998-12-23 2003-06-03 Mcneil-Ppc, Inc. Absorbent article with high absorbency zone
US6183601B1 (en) 1999-02-03 2001-02-06 Kimberly-Clark Worldwide, Inc. Method of calendering a sheet material web carried by a fabric
JP3616728B2 (en) 1999-01-19 2005-02-02 ユニ・チャーム株式会社 Body fluid absorbent article
JP2000232985A (en) 1999-02-15 2000-08-29 Fukuyoo:Kk Incontinence liner
JP3908403B2 (en) 1999-02-22 2007-04-25 株式会社リブドゥコーポレーション Laminated body for disposable products
US6220999B1 (en) 1999-03-19 2001-04-24 Kimberly-Clark Worldwide, Inc. Method and apparatus for forming an apertured pad
US6091336A (en) 1999-03-24 2000-07-18 Franz Zand Moisture detection apparatus
JP3535984B2 (en) 1999-04-02 2004-06-07 ユニ・チャーム株式会社 Worn article
US6534149B1 (en) 1999-04-03 2003-03-18 Kimberly-Clark Worldwide, Inc. Intake/distribution material for personal care products
JP4208338B2 (en) 1999-04-07 2009-01-14 花王株式会社 Sanitary napkin
WO2000061048A1 (en) 1999-04-12 2000-10-19 Kao Corporation Disposable diaper
US6409883B1 (en) 1999-04-16 2002-06-25 Kimberly-Clark Worldwide, Inc. Methods of making fiber bundles and fibrous structures
PE20001393A1 (en) 1999-04-16 2000-12-13 Kimberly Clark Co FIBROUS STRUCTURES INCLUDING A SET OF FIBERS AND A RELEASING AGENT
CN100337608C (en) 1999-04-16 2007-09-19 金伯利-克拉克环球有限公司 Absorbent articles including fibrous nits and free flowing particles
US6139912A (en) 1999-05-10 2000-10-31 Mcneil-Ppc, Inc. Method for intermittent application of particulate material
JP3510150B2 (en) 1999-05-12 2004-03-22 ユニ・チャーム株式会社 Disposable body fluid treatment articles
KR20000074441A (en) 1999-05-21 2000-12-15 문국현 Fluid Intake Intensifier
JP4148594B2 (en) 1999-05-25 2008-09-10 花王株式会社 Absorbent articles
CN1119442C (en) 1999-05-25 2003-08-27 Bki控股公司 Multifunctional fibrous material with improved edge seal
JP2001046435A (en) 1999-05-28 2001-02-20 Oji Paper Co Ltd Absorbent article
JP3541144B2 (en) 1999-05-31 2004-07-07 ユニ・チャーム株式会社 Disposable wearing articles for stool processing
JP3638819B2 (en) 1999-06-07 2005-04-13 ユニ・チャーム株式会社 Disposable diapers with back leak prevention function
US6177607B1 (en) 1999-06-25 2001-01-23 Kimberly-Clark Worldwide, Inc. Absorbent product with nonwoven dampness inhibitor
JP3986210B2 (en) 1999-06-30 2007-10-03 花王株式会社 Absorbent articles
JP3856990B2 (en) 1999-07-28 2006-12-13 花王株式会社 Absorbent articles
US20030105190A1 (en) 1999-08-05 2003-06-05 Diehl David F. Latex binder for nonwoven fibers and article made therewith
DE60026715T2 (en) * 1999-08-16 2006-11-23 Johnson & Johnson Inc., Montreal ABSORBENT WOMEN'S BAND
US6515195B1 (en) 1999-08-16 2003-02-04 Johnson & Johnson Inc. Sanitary napkin with improved liquid retention capability
DE60034850T2 (en) 1999-08-16 2008-01-10 Johnson & Johnson Inc., Montreal Sanitary napkin with improved fluid absorption
US6610900B1 (en) 1999-08-27 2003-08-26 Kimberly-Clark Worldwide, Inc. Absorbent article having superabsorbent in discrete pockets on a stretchable substrate
US6429350B1 (en) 1999-08-27 2002-08-06 Kimberly-Clark Worldwide, Inc. Absorbent article having superabsorbent pockets in a non-absorbent carrier layer
US6867346B1 (en) 1999-09-21 2005-03-15 Weyerhaeuser Company Absorbent composite having fibrous bands
BR9904370A (en) 1999-09-28 2001-06-05 Johnson & Johnson Ind Com Female sanitary pad
JP3196933B2 (en) 1999-09-29 2001-08-06 株式会社日本吸収体技術研究所 Water-absorbing composite surface-coated with fibrous hot melt, method for producing the same, and absorbent article
US6605172B1 (en) * 1999-09-30 2003-08-12 The Procter & Gamble Company Method of making a breathable and liquid impermeable web
JP4190675B2 (en) 1999-09-30 2008-12-03 大王製紙株式会社 Sanitary napkin with gathered cuffs
US6700034B1 (en) 1999-10-01 2004-03-02 Kimberly-Clark Worldwide, Inc. Absorbent article with unitary absorbent layer for center fill performance
US6414214B1 (en) 1999-10-04 2002-07-02 Basf Aktiengesellschaft Mechanically stable hydrogel-forming polymers
US6723892B1 (en) 1999-10-14 2004-04-20 Kimberly-Clark Worldwide, Inc. Personal care products having reduced leakage
US20030036741A1 (en) 1999-10-14 2003-02-20 Kimberly-Clark Worldwide, Inc. Textured airlaid materials
US7247152B2 (en) 1999-10-15 2007-07-24 Associated Hygienic Products Llc Disposable absorbent article with containment structure
JP3989144B2 (en) 1999-10-25 2007-10-10 花王株式会社 Absorbent articles
US6710224B2 (en) 1999-10-25 2004-03-23 Paragon Trade Brands Superabsorbent polymers providing long-term generation of free volume in partially hydrated absorbent cores
JP3986222B2 (en) 1999-11-04 2007-10-03 花王株式会社 Absorbent articles
US7059474B2 (en) 1999-11-08 2006-06-13 Kimberly-Clark Worldwide, Inc. Packaged array of flexible articles
JP3595471B2 (en) 1999-11-19 2004-12-02 ユニ・チャーム株式会社 Disposable urine pad
JP3515932B2 (en) 1999-11-30 2004-04-05 ユニ・チャーム株式会社 Disposable wearing articles
JP2001158074A (en) 1999-12-01 2001-06-12 Oji Paper Co Ltd Water absorption sheet
JP3904356B2 (en) 1999-12-16 2007-04-11 花王株式会社 Absorbent articles
US6878433B2 (en) 1999-12-21 2005-04-12 The Procter & Gamble Company Applications for laminate web
US6863960B2 (en) 1999-12-21 2005-03-08 The Procter & Gamble Company User-activatible substance delivery system
US6830800B2 (en) 1999-12-21 2004-12-14 The Procter & Gamble Company Elastic laminate web
US6459016B1 (en) 1999-12-23 2002-10-01 Mcneil-Ppc, Inc. Absorbent article with multiple high absorbency zones
JP2001178768A (en) 1999-12-27 2001-07-03 Kao Corp Absorbent article
JP4148620B2 (en) 1999-12-27 2008-09-10 花王株式会社 Absorbent articles
US20010044610A1 (en) 1999-12-29 2001-11-22 Kim Hyung Byum Absorbent article with fluid intake intensifier
JP3705981B2 (en) 2000-01-06 2005-10-12 ユニ・チャーム株式会社 Water-decomposable absorbent article
US6437214B1 (en) 2000-01-06 2002-08-20 Kimberly-Clark Worldwide, Inc. Layered absorbent structure with a zoned basis weight and a heterogeneous layer region
JP2001190581A (en) 2000-01-12 2001-07-17 Nippon Kyushutai Gijutsu Kenkyusho:Kk Absorbing pad for incontinence
JP4392936B2 (en) 2000-01-25 2010-01-06 花王株式会社 Sanitary napkin
ATE282388T1 (en) 2000-01-31 2004-12-15 Bki Holding Corp ABSORBENT ARTICLE WITH IMPROVED VERTICAL WICKING AND REMOISTURE PROPERTIES
JP4190693B2 (en) 2000-02-17 2008-12-03 大王製紙株式会社 Sanitary napkin with gathered flap
JP2001224626A (en) 2000-02-17 2001-08-21 Michiko Kiba Shape duplicating solid napkin
JP3850618B2 (en) 2000-03-06 2006-11-29 ユニ・チャーム株式会社 Absorbent articles
US6632504B1 (en) 2000-03-17 2003-10-14 Bba Nonwovens Simpsonville, Inc. Multicomponent apertured nonwoven
US20010037101A1 (en) 2000-03-17 2001-11-01 Allan David S. Tagged superabsorbent polymers in a multicomponent structure
US6494873B2 (en) 2000-03-31 2002-12-17 Sca Hygiene Products Absorbent article provided with a belt
JP4166923B2 (en) 2000-04-28 2008-10-15 花王株式会社 Absorbent articles
US6506186B1 (en) 2000-05-03 2003-01-14 Kimberly-Clark Worldwide, Inc. Absorbent article having enhanced leg curvature in use
US6846374B2 (en) 2000-05-16 2005-01-25 Kimberly-Clark Worldwide Method and apparatus for making prefastened and refastenable pant with desired waist and hip fit
US20020019614A1 (en) 2000-05-17 2002-02-14 Woon Paul S. Absorbent articles having improved performance
AU775265B2 (en) * 2000-05-23 2004-07-29 Toyo Eizai Kabushiki Kaisha Ultra-thin absorbing sheet body, disposable absorbent article provided with ultra-thin absorbing sheet body and production device for ultra-thin absorbing sheet body
JP3934855B2 (en) 2000-05-31 2007-06-20 ユニ・チャーム株式会社 Disposable diapers
US20030208175A1 (en) 2000-06-12 2003-11-06 Gross James R. Absorbent products with improved vertical wicking and rewet capability
US8309789B2 (en) 2000-06-13 2012-11-13 Sca Hygiene Products Ab Absorbent article
FR2810234B1 (en) 2000-06-14 2004-11-19 Proteco SINGLE-USE PANTY LAYER
JP2001353174A (en) 2000-06-16 2001-12-25 Kao Corp Absorbable article
JP3933847B2 (en) * 2000-06-19 2007-06-20 ユニ・チャーム株式会社 Absorbent articles
JP3725008B2 (en) 2000-06-21 2005-12-07 花王株式会社 Absorbent articles
US6506961B1 (en) 2000-07-24 2003-01-14 Tyco Healthcare Retail Services Ag Light incontinent product
JP4115077B2 (en) 2000-08-08 2008-07-09 花王株式会社 Absorber and production method thereof
US6689115B1 (en) 2000-08-15 2004-02-10 Kimberly-Clark Worldwide, Inc. Absorbent garment with asymmetrical leg elastic spacing
JP3781617B2 (en) 2000-08-29 2006-05-31 花王株式会社 Absorbent articles
JP3967873B2 (en) 2000-09-04 2007-08-29 ユニ・チャーム株式会社 Absorbent article using continuous filament and absorbent sheet
US6648871B2 (en) 2000-09-18 2003-11-18 Sca Hygiene Products Ab Absorbent article and a method for its manufacture
JP3850207B2 (en) 2000-09-22 2006-11-29 花王株式会社 Absorbent articles
US7147628B2 (en) 2000-10-02 2006-12-12 Sca Hygiene Products Ab Absorbent article with improved liquid-handling ability
JP5133474B2 (en) 2000-10-11 2013-01-30 大王製紙株式会社 Multifunctional multilayer absorber and method for producing the same
JP3820096B2 (en) 2000-10-19 2006-09-13 ユニ・チャーム株式会社 Body fluid absorbing panel
JP3676219B2 (en) 2000-10-19 2005-07-27 株式会社瑞光 Wearing article and manufacturing apparatus thereof
US6979564B2 (en) 2000-10-20 2005-12-27 Millennium Pharmaceuticals, Inc. 80090, human fucosyltransferase nucleic acid molecules and uses thereof
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
US6946585B2 (en) 2000-10-23 2005-09-20 Mcneil-Ppc, Inc. Absorbent article
SE517522C2 (en) 2000-10-30 2002-06-11 Sca Hygiene Prod Ab Absorbent articles with channels in the absorption layer and compressed surface for high liquid absorption
US6605752B2 (en) 2000-10-30 2003-08-12 Sca Hygiene Products Ab Absorbent product with improved instantaneous liquid adsorption, and improved fit
US6705465B2 (en) 2000-11-15 2004-03-16 Kimberly-Clark Worldwide, Inc. Package for feminine care articles
SG96660A1 (en) 2000-11-21 2003-06-16 Uni Charm Corp Sanitary napkin
JP3987684B2 (en) 2000-11-21 2007-10-10 ユニ・チャーム株式会社 Absorbent articles
JP3810999B2 (en) 2000-11-24 2006-08-16 ユニ・チャーム株式会社 Disposable wearing items
JP3717397B2 (en) 2000-11-30 2005-11-16 ユニ・チャーム株式会社 Disposable diapers
JP2002165832A (en) 2000-11-30 2002-06-11 Daio Paper Corp Paper diaper
JP3811000B2 (en) 2000-11-30 2006-08-16 ユニ・チャーム株式会社 Disposable diapers
JP4187180B2 (en) 2000-12-01 2008-11-26 大王製紙株式会社 Sanitary napkin
MXPA03005184A (en) 2000-12-07 2003-09-10 Weyerhaeuser Co Unitary distribution layer.
JP2001198157A (en) 2000-12-07 2001-07-24 Kao Corp Throwaway diaper
US20010007065A1 (en) 2000-12-22 2001-07-05 Blanchard Stephen John Sanitary napkin having multiple longitudinal hinges
US6716205B2 (en) 2000-12-28 2004-04-06 Kimberly-Clark Worldwide, Inc. Pant-like absorbent garment having tailored flap and leg elastic
US7037571B2 (en) 2000-12-28 2006-05-02 Kimberly-Clark Worldwide, Inc. Disposable shoe liner
US20020102392A1 (en) 2000-12-28 2002-08-01 Kimberly-Clark Worldwide, Inc. Flexible laminate structures having enclosed discrete regions of a material
US20020133131A1 (en) 2001-01-09 2002-09-19 Krishnakumar Rangachari Absorbent material incorporating synthetic fibers and process for making the material
JP3703723B2 (en) 2001-01-19 2005-10-05 ユニ・チャーム株式会社 Disposable underwear
JP3964624B2 (en) 2001-01-23 2007-08-22 ユニ・チャーム株式会社 Disposable diapers
JP3748813B2 (en) 2001-01-29 2006-02-22 花王株式会社 Absorbent articles
US6863933B2 (en) 2001-01-30 2005-03-08 The Procter And Gamble Company Method of hydrophilizing materials
US20040158212A1 (en) 2003-02-10 2004-08-12 The Procter & Gamble Company Disposable absorbent article comprising a durable hydrophilic core wrap
US6330735B1 (en) 2001-02-16 2001-12-18 Kimberly-Clark Worldwide, Inc. Apparatus and process for forming a laid fibrous web with enhanced basis weight capability
JP4840895B2 (en) 2001-02-20 2011-12-21 株式会社日本吸収体技術研究所 Liquid distribution unit and absorbent product comprising the same
JP3801449B2 (en) 2001-02-20 2006-07-26 花王株式会社 Absorbent articles
US6717029B2 (en) 2001-03-06 2004-04-06 Paragon Trade Brands, Inc. Absorbent article having an ideal core distribution and method of preparing same
JP4458702B2 (en) 2001-03-14 2010-04-28 花王株式会社 Absorbent articles
JP2002272769A (en) 2001-03-19 2002-09-24 Kao Corp Absorbable article
JP3737376B2 (en) 2001-03-23 2006-01-18 花王株式会社 Absorbent articles
US20030088223A1 (en) 2001-04-13 2003-05-08 Kimberly-Clark Worldwide, Inc. Passive bonds for personal care article
US6972010B2 (en) 2001-04-17 2005-12-06 The Procter & Gamble Company Absorbent article comprising an agent able to convey a perception to the wearer, without the need to create the external condition perceived
US6929629B2 (en) 2001-04-20 2005-08-16 Sca Hygiene Products Ab Absorbent article with improved fit
JP4388241B2 (en) 2001-05-01 2009-12-24 大王製紙株式会社 Absorbent articles
JP4556017B2 (en) 2001-05-02 2010-10-06 株式会社日本吸収体技術研究所 Water-absorbing water-resistant sheet, method for producing the same, and absorbent product using the same
JP3734720B2 (en) 2001-05-18 2006-01-11 ユニ・チャーム株式会社 Pants-type disposable wearing articles
JP4824882B2 (en) 2001-05-24 2011-11-30 ユニ・チャーム株式会社 Laminated sheet
JP4167406B2 (en) 2001-05-30 2008-10-15 大王製紙株式会社 Absorbent article and manufacturing method thereof
ATE312888T1 (en) 2001-06-02 2005-12-15 Procter & Gamble METHOD FOR PRINTING ADHESIVES, ADHESIVE ITEMS AND GRAVO ROLL
US7163740B2 (en) 2001-06-02 2007-01-16 The Procter & Gamble Company Process for printing adhesives, adhesive articles and printing equipment
US6605070B2 (en) 2001-06-29 2003-08-12 The Procter & Gamble Company Absorbent article having selectively changeable size adjustment
WO2003003961A1 (en) 2001-07-02 2003-01-16 The Procter & Gamble Company Absorbent article having extensibility at waist panel
JP3971136B2 (en) 2001-07-12 2007-09-05 ユニ・チャーム株式会社 Absorbent articles
JP3926587B2 (en) 2001-07-12 2007-06-06 ユニ・チャーム株式会社 Absorbent articles
JP4652626B2 (en) 2001-07-16 2011-03-16 大王製紙株式会社 Absorbent article and manufacturing method thereof
TW552196B (en) 2001-07-20 2003-09-11 Clopay Corp Laminated sheet and method of making same
JP4246413B2 (en) 2001-07-23 2009-04-02 王子製紙株式会社 Sheet-like absorbent body and absorbent product using the same
JP4638087B2 (en) 2001-07-24 2011-02-23 ユニ・チャーム株式会社 Absorbent articles
CA2451529A1 (en) 2001-07-25 2003-02-06 Tyco Healthcare Retail Group, Inc. Protective undergarment and belt therefor
JP4620299B2 (en) 2001-07-30 2011-01-26 ユニ・チャーム株式会社 Sanitary napkin
WO2003013406A1 (en) 2001-08-03 2003-02-20 Asahi Kasei Life & Living Corporation Color masking component for use with feminine sanitary pad and the like
US7795492B2 (en) 2001-08-31 2010-09-14 Sca Hygiene Products Ab Absorbent article having openings in the absorbent body
JP5027364B2 (en) 2001-09-19 2012-09-19 ユニ・チャーム株式会社 Disposable diapers
KR20040040487A (en) 2001-10-05 2004-05-12 바스프 악티엔게젤샤프트 Method for Crosslinking Hydrogels wtih Morpholine-2,3-diones
JP3971150B2 (en) 2001-10-23 2007-09-05 ユニ・チャーム株式会社 Absorbent article and container for absorbent article
US6772708B2 (en) 2001-10-30 2004-08-10 The Procter And Gamble Company Wetness indicator having improved colorant retention
US6461034B1 (en) 2001-11-14 2002-10-08 V & P Scientific, Inc. Use of a bubble paddle tumble stirrer to mix the contents of a vessel while the contents are being removed
US6840929B2 (en) 2001-11-14 2005-01-11 Zuiko Corporation Disposable worn absorbent article including stand-up cuffs
JP2003153955A (en) 2001-11-22 2003-05-27 Uni Charm Corp Open type disposal diaper
US6939914B2 (en) 2002-11-08 2005-09-06 Kimberly-Clark Worldwide, Inc. High stiffness absorbent polymers having improved absorbency rates and method for making the same
US20030139712A1 (en) 2001-12-14 2003-07-24 Dodge Richard Norris Absorbent materials having improved fluid intake and lock-up properties
US20030139715A1 (en) 2001-12-14 2003-07-24 Richard Norris Dodge Absorbent materials having high stiffness and fast absorbency rates
US6689934B2 (en) 2001-12-14 2004-02-10 Kimberly-Clark Worldwide, Inc. Absorbent materials having improved fluid intake and lock-up properties
US6726668B2 (en) 2001-12-14 2004-04-27 Kimberly-Clark Worldwide, Inc. Disposable absorbent article
US6884238B2 (en) 2001-12-19 2005-04-26 Kimberly-Clark Worldwide, Inc. Method of providing a series of disposable absorbent articles to consumers
WO2003053297A2 (en) 2001-12-20 2003-07-03 Kimberly-Clark Worldwide, Inc. Absorbent article with stabilized absorbent structure
GB0130461D0 (en) 2001-12-20 2002-02-06 Scimat Ltd An absorbent hygiene product
JP3919638B2 (en) 2001-12-20 2007-05-30 花王株式会社 Absorbent articles
US7799968B2 (en) 2001-12-21 2010-09-21 Kimberly-Clark Worldwide, Inc. Sponge-like pad comprising paper layers and method of manufacture
US7189888B2 (en) 2001-12-21 2007-03-13 Kimberly-Clark Worldwide, Inc. Nonabsorbent surge layer having discrete regions of superabsorbent and method for making
US7767875B2 (en) 2001-12-31 2010-08-03 Kimberly-Clark Worldwide, Inc. Wetness indicator for alerting a wearer to urination
US6682516B2 (en) 2002-01-16 2004-01-27 Paragon Trade Brands, Inc. Leg gasketing index for absorbent undergarments
US20050008839A1 (en) 2002-01-30 2005-01-13 Cramer Ronald Dean Method for hydrophilizing materials using hydrophilic polymeric materials with discrete charges
US20030148684A1 (en) 2002-01-30 2003-08-07 The Procter & Gamble Company Method for hydrophilizing materials using charged particles
JP4051208B2 (en) 2002-01-31 2008-02-20 ユニ・チャーム株式会社 Pants-type disposable wearing articles
EP1332742B9 (en) 2002-02-04 2009-08-05 McNEIL-PPC, INC. Sanitary napkin having multiple longitudinal hinges
CN2527254Y (en) 2002-02-04 2002-12-25 福建恒安集团有限公司 Disposable absorbent article with diffusible flow-guiding groove
US20030148694A1 (en) 2002-02-05 2003-08-07 Ghiam Farid F. Absorbent composition and method of assembling
DE10204937A1 (en) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials and liquid absorbing hygiene articles
JP4061086B2 (en) 2002-02-08 2008-03-12 大王製紙株式会社 Sanitary napkin
JP4035341B2 (en) 2002-02-12 2008-01-23 大王製紙株式会社 Sanitary napkin
WO2003068123A2 (en) * 2002-02-14 2003-08-21 Mcneil-Ppc, Inc. Two-layer structure for absorbent articles
JP4058281B2 (en) 2002-03-12 2008-03-05 大王製紙株式会社 Absorbent articles
JP4124322B2 (en) 2002-03-13 2008-07-23 大王製紙株式会社 Absorbent articles
JP3953848B2 (en) 2002-03-13 2007-08-08 ユニ・チャーム株式会社 Pants-type disposable diapers
JP2003275237A (en) 2002-03-22 2003-09-30 Daio Paper Corp Napkin for physiology
JP4057321B2 (en) 2002-03-25 2008-03-05 ユニ・チャーム株式会社 Pants-type disposable diapers
JP3586256B2 (en) 2002-04-01 2004-11-10 ユニ・チャーム株式会社 Method for producing disposable diaper having patterned sheet
JP4261120B2 (en) 2002-04-05 2009-04-30 株式会社日本吸収体技術研究所 Absorber comprising bypass channel member and absorbent product using the same
CN2535020Y (en) 2002-04-13 2003-02-12 福建恒安集团有限公司 Anti side-leakge sanitary napkin with U-shaped PE membrane
CN2548609Y (en) 2002-04-16 2003-05-07 福建恒安集团有限公司 Side-leakageproof sanitary towel
US20030225385A1 (en) 2002-05-28 2003-12-04 Glaug Frank S. Absorbent article with multiple core
DE10225943A1 (en) 2002-06-11 2004-01-08 Basf Ag Process for the preparation of esters of polyalcohols
MXPA04012180A (en) 2002-06-11 2005-02-25 Basf Ag (meth)acrylic esters of polyalkoxylated glycerine.
AU2003238476A1 (en) 2002-06-11 2003-12-22 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
US6880211B2 (en) 2002-06-13 2005-04-19 3M Innovative Properties Company Macro closure device for disposable articles
JP4495405B2 (en) 2002-06-14 2010-07-07 ユニ・チャーム株式会社 Absorbent articles
US20030236512A1 (en) 2002-06-19 2003-12-25 Baker Andrew A. Absorbent core with folding zones for absorbency distribution
JP3616077B2 (en) 2002-07-09 2005-02-02 大王製紙株式会社 Disposable diapers
US7219403B2 (en) 2002-07-23 2007-05-22 The Procter & Gamble Company Fastening member comprising shaped tab
US7759540B2 (en) 2002-07-23 2010-07-20 Paragon Trade Brands, Llc Absorbent articles containing absorbent cores having zoned absorbency and methods of making same
US7001167B2 (en) 2002-07-30 2006-02-21 Kimberly-Clark Worldwide, Inc. Apparatus and form for making an air formed fibrous web
JP3878085B2 (en) 2002-08-09 2007-02-07 ユニ・チャーム株式会社 Disposable body fluid absorbent article
DE10239074A1 (en) 2002-08-26 2004-03-11 Basf Ag Water-absorbing product, e.g. useful for making hygiene articles, comprises water-absorbing polymer particles and a nitrogen-containing polymer
JP3779946B2 (en) 2002-08-29 2006-05-31 ピジョン株式会社 Absorbent pad
JP4160807B2 (en) 2002-08-30 2008-10-08 ユニ・チャーム株式会社 Pants-type disposable wearing articles
US8109915B2 (en) 2002-08-30 2012-02-07 Uni-Charm Corporation Pull-on disposable wearing article
JP4119718B2 (en) 2002-08-31 2008-07-16 ユニ・チャーム株式会社 Pants-type disposable diapers
US7550646B2 (en) 2002-09-09 2009-06-23 Uni-Charm Corporation Absorbent article with resilient portion and method for manufacturing the same
JP4180865B2 (en) 2002-09-09 2008-11-12 ユニ・チャーム株式会社 Absorbent article with flexible shaft
EP1403419B1 (en) 2002-09-30 2006-05-31 The Procter & Gamble Company Absorbent articles comprising hydrophilic nonwoven fabrics
US20040064125A1 (en) 2002-09-30 2004-04-01 Justmann David A. Pleated tissue and adhesive arrangement for the absorbent core of an extensible absorbent article
US20040064115A1 (en) 2002-09-30 2004-04-01 Arora Tarun K. Disposable articles having a failure detection system
US6953451B2 (en) 2002-09-30 2005-10-11 Mcneil-Ppc, Inc. Thin comfortable sanitary napkin having reduced bunching
US20040064116A1 (en) 2002-09-30 2004-04-01 Arora Tarun K. Intravaginal disposable articles having a failure detection system
US7067711B2 (en) 2002-12-05 2006-06-27 Uni-Charm Corporation Elongated absorbent article
JP4173723B2 (en) 2002-12-05 2008-10-29 ユニ・チャーム株式会社 Absorbent articles
JP4323786B2 (en) 2002-12-05 2009-09-02 ユニ・チャーム株式会社 Absorbent article with vertically long compressed groove
JP4198978B2 (en) 2002-12-05 2008-12-17 ユニ・チャーム株式会社 Long absorbent article
JP4390445B2 (en) 2002-12-05 2009-12-24 ユニ・チャーム株式会社 Long absorbent article
US7132585B2 (en) 2002-12-05 2006-11-07 Uni-Charm Corporation Absorbent article with liquid acquisition layer
MXPA02012811A (en) 2002-12-19 2004-09-03 Grupo P I Mabe Sa De C V Disposable diaper having fastening strap.
US7727217B2 (en) 2002-12-20 2010-06-01 Kimberly-Clark Worldwide, Inc Absorbent article with unitary elastomeric waistband with multiple extension zones
JP4324375B2 (en) 2002-12-27 2009-09-02 ユニ・チャーム株式会社 Absorbent article provided with compressed groove and flexible part
JP4426754B2 (en) 2002-12-27 2010-03-03 ユニ・チャーム株式会社 Body fluid absorbent article indicator
US7943813B2 (en) 2002-12-30 2011-05-17 Kimberly-Clark Worldwide, Inc. Absorbent products with enhanced rewet, intake, and stain masking performance
US20040127871A1 (en) 2002-12-31 2004-07-01 Odorzynski Thomas W. Secondary absorbent article
JP2004216082A (en) 2003-01-10 2004-08-05 Uni Charm Corp Pants-type disposable article to wear
JP4392170B2 (en) 2003-01-17 2009-12-24 ユニ・チャーム株式会社 Disposable diapers
WO2004069293A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Water-absorbent resin composition and its production process
ATE409447T1 (en) 2003-02-12 2008-10-15 Procter & Gamble COMFORTABLE DIAPER
ES2452317T3 (en) 2003-02-12 2014-03-31 The Procter & Gamble Company Absorbent core for an absorbent article
US20040167489A1 (en) 2003-02-14 2004-08-26 Kellenberger Stanley R. Compact absorbent article
JP2003265524A (en) 2003-02-25 2003-09-24 Kao Corp Absorbent article
US7686790B2 (en) * 2003-03-04 2010-03-30 Kimberly-Clark Worldwide, Inc. Nonlinear, undulating perimeter embossing in an absorbent article
PT1609448E (en) 2003-03-12 2010-04-29 Livedo Corp Disposable absorbent article
SE0300878D0 (en) 2003-03-26 2003-03-26 Sca Hygiene Prod Ab Absorbent article compressining and absorbent structure
US20040193127A1 (en) 2003-03-26 2004-09-30 Sca Hygiene Products Ab Absorbent article comprising an absorbent structure
US7850672B2 (en) 2003-03-26 2010-12-14 Sca Hygiene Products Ab Absorbent article comprising an absorbent structure
JP3877702B2 (en) 2003-04-23 2007-02-07 ピジョン株式会社 Absorbent products
JP3978406B2 (en) 2003-04-24 2007-09-19 ユニ・チャーム株式会社 Disposable diapers
US8118799B2 (en) 2003-05-05 2012-02-21 Kimberly-Clark Worldwide, Inc. Disposable garment having first and second attachment members
JP4416431B2 (en) 2003-05-09 2010-02-17 株式会社リブドゥコーポレーション Disposable absorbent article
JP2004337314A (en) 2003-05-14 2004-12-02 Kao Corp Absorbent article and its manufacturing apparatus
JP4393108B2 (en) 2003-05-16 2010-01-06 花王株式会社 Absorbent articles
US8333749B2 (en) 2003-05-20 2012-12-18 Dsg Technology Holdings Ltd. Disposable absorbent article with regions of varying elasticity
JP4298377B2 (en) 2003-05-22 2009-07-15 ユニ・チャーム株式会社 Disposable pants-type wearing articles
JP4430338B2 (en) 2003-05-27 2010-03-10 ユニ・チャーム株式会社 Absorbent articles
CL2004001285A1 (en) 2003-05-27 2005-04-15 Procter & Gamble A DISPOSABLE GARMENT THAT IS REMOVED AND SET, WITH OPENINGS FOR WAIST AND LEGS, WHICH INCLUDES; MAIN ABSORBENT BODY WITH UPPER LEAF, LOWER LEAF AND NUCELO; ELASTIC BELT SIMILAR TO A RING WITH CENTRAL AND SIDE PANEL; AND CAPE CUB
JP4476611B2 (en) 2003-05-29 2010-06-09 ユニ・チャーム株式会社 Sanitary napkin
JP4476563B2 (en) 2003-05-29 2010-06-09 ユニ・チャーム株式会社 Sanitary napkin
JP4421222B2 (en) 2003-06-09 2010-02-24 ユニ・チャーム株式会社 Absorbent articles
JP4313097B2 (en) 2003-06-10 2009-08-12 ユニ・チャーム株式会社 Absorbent article and manufacturing method thereof
US7754940B2 (en) 2003-06-12 2010-07-13 Johnson & Johnson Inc. Thin sanitary napkin having protrusions
US8211815B2 (en) 2003-06-13 2012-07-03 Kimberly-Clark Worldwide, Inc. Absorbent structure having three-dimensional topography on upper and lower surfaces
JP4421223B2 (en) 2003-06-20 2010-02-24 ユニ・チャーム株式会社 Sanitary napkin
US7311968B2 (en) 2004-06-30 2007-12-25 The Procter & Gamble Company Absorbent structures comprising coated super-absorbent polymer particles
EP2221068A2 (en) 2003-06-30 2010-08-25 The Procter & Gamble Company Absorbent structures comprising coated super-absorbent polymer articles
US7435244B2 (en) 2003-07-01 2008-10-14 Arquest, Inc. Diaper design having zones of reduced stiffness and continuous breathability
JP3691499B2 (en) 2003-07-02 2005-09-07 ユニ・チャーム株式会社 Disposable pants-type wearing articles
DE10331450A1 (en) 2003-07-10 2005-01-27 Basf Ag (Meth) acrylic esters of monoalkoxylated polyols and their preparation
DE10331456A1 (en) 2003-07-10 2005-02-24 Basf Ag (Meth) acrylic esters of alkoxylated unsaturated polyol ethers and their preparation
DE10334584A1 (en) 2003-07-28 2005-02-24 Basf Ag Post crosslinking of water absorbing polymers, useful for hygiene articles and packaging, comprises treatment with a bicyclic amideacetal crosslinking agent with simultaneous or subsequent heating
JP4325994B2 (en) * 2003-07-31 2009-09-02 株式会社リブドゥコーポレーション Manufacturing method and apparatus for sheet-like body, and manufacturing method for disposable absorbent article using sheet-like body
EP1504740B1 (en) 2003-08-07 2013-03-06 The Procter & Gamble Company Latex bonded acquisition layer having temperature insensitive liquid handling properties
JP3822869B2 (en) 2003-08-14 2006-09-20 ユニ・チャーム株式会社 Disposable diapers
MXPA06001813A (en) 2003-08-20 2006-05-31 Tyco Healthcare Retail Serv Ag Absorbent cores for absorbent articles and method for making same.
EP1518567B1 (en) 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
JP3950098B2 (en) 2003-09-30 2007-07-25 大王製紙株式会社 Absorbent articles
US7160281B2 (en) 2003-10-21 2007-01-09 Kimberly-Clark Worldwide, Inc. Absorbent article having an absorbent structure secured to a stretchable component of the article
US20050096615A1 (en) * 2003-10-31 2005-05-05 Kimberly-Clark Worldwide, Inc. Absorbent article with segmented absorbent structure
US7872168B2 (en) 2003-10-31 2011-01-18 Kimberely-Clark Worldwide, Inc. Stretchable absorbent article
JP4342330B2 (en) 2003-11-14 2009-10-14 ユニ・チャーム株式会社 Disposable wearing items
US20050109442A1 (en) 2003-11-24 2005-05-26 Kimberly-Clark Worldwide, Inc. Quick change gender specific forming surface and method of using same
US7073373B2 (en) 2003-11-24 2006-07-11 Kimberly-Clark Worldwide, Inc. Absorbent structure having enhanced intake performance characteristics and method for evaluating such characteristics
DE10355401A1 (en) 2003-11-25 2005-06-30 Basf Ag (Meth) acrylic esters of unsaturated amino alcohols and their preparation
US7108759B2 (en) 2003-12-19 2006-09-19 Kimberly-Clark Worldwide, Inc. Method for improved bond strength in an elastomeric material
EP1547625A1 (en) 2003-12-23 2005-06-29 The Procter & Gamble Company Superabsorbent material comprising multicomponent particles
US20050148258A1 (en) 2003-12-31 2005-07-07 Jayant Chakravarty Absorbent structures having enhanced flexibility
US7736351B2 (en) 2004-02-02 2010-06-15 The Procter & Gamble Company Simple disposable absorbent article
JP4162609B2 (en) 2004-02-05 2008-10-08 花王株式会社 Method for manufacturing absorbent article
US7318820B2 (en) 2004-03-12 2008-01-15 The Procter & Gamble Company Simple disposable absorbent article having breathable side barriers
JP4532940B2 (en) 2004-03-12 2010-08-25 ユニ・チャーム株式会社 Disposable wearing articles
DE602004021351D1 (en) 2004-03-29 2009-07-16 Procter & Gamble Absorbent element for absorbent articles containing hydrogel-forming, swellable polymers with high permeability
JP4473032B2 (en) 2004-04-12 2010-06-02 ユニ・チャーム株式会社 Disposable wearing items
JP4845344B2 (en) 2004-04-14 2011-12-28 ユニ・チャーム株式会社 Disposable diapers
JP4410022B2 (en) 2004-04-27 2010-02-03 ユニ・チャーム株式会社 Absorbent articles
US8246594B2 (en) 2004-04-30 2012-08-21 Kimberly-Clark Worldwide, Inc. Absorbent article having an absorbent structure configured for improved donning and lateral stretch distribution
US7993319B2 (en) 2004-04-30 2011-08-09 Kimberly-Clark Worldwide, Inc. Absorbent article having an absorbent structure configured for improved donning of the article
JP4599096B2 (en) 2004-05-31 2010-12-15 ユニ・チャーム株式会社 Disposable wearing items
WO2006006395A1 (en) 2004-06-28 2006-01-19 Daio Paper Corporation Absorber and absorbent article
EP1772126B1 (en) 2004-06-28 2013-09-11 Daio Paper Corporation Apparatus for producing absorbing material, absorbing material and absorbent article
WO2006001457A1 (en) 2004-06-28 2006-01-05 Daio Paper Corporation Absorbing material
US8684988B2 (en) 2004-06-29 2014-04-01 The Procter & Gamble Company Disposable absorbent article having barrier cuff strips
US6962578B1 (en) 2004-06-29 2005-11-08 The Procter & Gamble Company Disposable absorbent article having backsheet strips
US20060004334A1 (en) 2004-06-30 2006-01-05 Kimberly-Clark Worldwide, Inc. Stabilized absorbent structures
US7938813B2 (en) 2004-06-30 2011-05-10 Kimberly-Clark Worldwide, Inc. Absorbent article having shaped absorbent core formed on a substrate
WO2006003942A1 (en) 2004-06-30 2006-01-12 Daio Paper Corporation Paper diaper
US8466334B2 (en) 2004-06-30 2013-06-18 Daio Paper Corporation Body fluid absorbent article
JP2006014792A (en) 2004-06-30 2006-01-19 Daiichi Eizai Kk Absorbent implement
EP1787611B1 (en) 2004-06-30 2011-09-07 Daio Paper Corporation Humor absorbent article and process for producing the same
US7563257B2 (en) 2004-07-09 2009-07-21 Uni-Charm Corporation Disposable wearing article
JP4162637B2 (en) 2004-07-09 2008-10-08 花王株式会社 Absorbent article and manufacturing method thereof
DE602004026566D1 (en) * 2004-07-28 2010-05-27 Procter & Gamble Indirect pressure from AMG
ATE464034T1 (en) 2004-07-28 2010-04-15 Procter & Gamble INDIRECT PRESSURE FROM AMG
JP4230971B2 (en) 2004-08-12 2009-02-25 ユニ・チャーム株式会社 Excrement disposal pad and pants with the pad
US20060184149A1 (en) 2004-08-20 2006-08-17 Kao Corporation Absorbent article
JP2006110329A (en) 2004-08-20 2006-04-27 Kao Corp Absorptive article
JP4092319B2 (en) 2004-09-06 2008-05-28 大王製紙株式会社 Disposable diapers
JP4455241B2 (en) 2004-09-14 2010-04-21 ユニ・チャーム株式会社 Sanitary napkin
US7695461B2 (en) 2004-09-16 2010-04-13 Mcneil-Ppc, Inc. Drapeable sanitary absorbent napkin
US7594904B2 (en) 2004-09-16 2009-09-29 Mcneil-Ppc, Inc. Drapeable sanitary absorbent napkin
JP4683892B2 (en) 2004-09-30 2011-05-18 ユニ・チャーム株式会社 Absorbent pad
JP4459013B2 (en) 2004-10-20 2010-04-28 花王株式会社 Absorbent articles
JP2006116036A (en) 2004-10-21 2006-05-11 Kao Corp Absorbent article
PL1827336T5 (en) 2004-11-30 2017-09-29 Essity Hygiene & Health Ab Absorbent article
JP4540104B2 (en) 2004-11-30 2010-09-08 大王製紙株式会社 Absorbent articles
US20090298963A1 (en) 2004-12-10 2009-12-03 Nippon Shokubai Co., Ltd Method for production of modified water absorbent resin
US8039685B2 (en) 2004-12-15 2011-10-18 The Procter & Gamble Company Absorbent article having a functional enhancement indicator
WO2006068549A1 (en) 2004-12-23 2006-06-29 Sca Hygiene Products Ab Absorbent article
JP4648698B2 (en) 2004-12-28 2011-03-09 ユニ・チャーム株式会社 Sanitary napkin
JP4712374B2 (en) 2004-12-28 2011-06-29 ユニ・チャーム株式会社 Sanitary napkin
EP1679055B1 (en) 2005-01-11 2010-04-07 The Procter & Gamble Company End seal for an absorbent core
ATE487500T1 (en) 2005-02-04 2010-11-15 Procter & Gamble ABSORBENT STRUCTURE WITH IMPROVED WATER-ABSORBENT MATERIAL
JP4663740B2 (en) 2005-02-04 2011-04-06 ザ プロクター アンド ギャンブル カンパニー Absorbent structure with improved water swellable material
CN101115508A (en) 2005-02-04 2008-01-30 宝洁公司 Absorbent structure with improved water-absorbing material
JP4870365B2 (en) 2005-02-23 2012-02-08 ユニ・チャーム株式会社 Sanitary napkin
JP5046488B2 (en) 2005-02-24 2012-10-10 花王株式会社 Absorbent articles
US20060206091A1 (en) 2005-03-10 2006-09-14 Tyco Healthcare Retail Services Ag Absorbent article having a channeled absorbent layer and method of making the same
US20060202380A1 (en) 2005-03-11 2006-09-14 Rachelle Bentley Method of making absorbent core structures with undulations
JP4492957B2 (en) 2005-03-24 2010-06-30 大王製紙株式会社 Absorbent articles
JP4653537B2 (en) 2005-03-29 2011-03-16 ユニ・チャーム株式会社 Absorbent articles
US7763004B2 (en) 2005-05-18 2010-07-27 The Procter & Gamble Company Disposable absorbent article having layered containment pockets
JP4727494B2 (en) 2005-05-19 2011-07-20 ユニ・チャーム株式会社 Pants-type disposable wearing articles
US20060264861A1 (en) 2005-05-20 2006-11-23 Lavon Gary D Disposable absorbent article having breathable side flaps
JP4484765B2 (en) 2005-05-23 2010-06-16 花王株式会社 Absorbent articles
JP4322228B2 (en) 2005-05-30 2009-08-26 花王株式会社 Sanitary napkin
US7435316B2 (en) 2005-06-08 2008-10-14 The Procter & Gamble Company Embossing process including discrete and linear embossing elements
JP4352027B2 (en) 2005-06-13 2009-10-28 大王製紙株式会社 Absorbent articles
WO2006134906A1 (en) 2005-06-14 2006-12-21 Daio Paper Corporation Absorbent article
JP4954502B2 (en) 2005-06-14 2012-06-20 大王製紙株式会社 Absorbent articles
EP1862155A1 (en) 2006-05-29 2007-12-05 Paper-Pak Sweden Ab Absorbent pad
DE102005030182A1 (en) 2005-06-29 2007-01-04 Paul Hartmann Ag Disposable absorbent hygiene product in pant form
JP4652911B2 (en) 2005-07-01 2011-03-16 ユニ・チャーム株式会社 Absorbent articles
JP4540563B2 (en) 2005-07-08 2010-09-08 花王株式会社 Absorbent articles
WO2007008125A1 (en) * 2005-07-13 2007-01-18 Sca Hygiene Products Ab Absorbent article having improved fit
ATE523179T1 (en) 2005-07-26 2011-09-15 Procter & Gamble FLEXIBLE, ABSORBENT ARTICLE WITH IMPROVED ADJUSTMENT TO THE BODY
US7931636B2 (en) 2005-08-04 2011-04-26 The Procter & Gamble Company Simple disposable absorbent article
WO2007022486A1 (en) 2005-08-19 2007-02-22 The Procter & Gamble Company Absorbent article
ITBO20050551A1 (en) 2005-09-09 2007-03-10 Gdm Spa UNIT AND METHOD FOR THE FORMATION OF ABSORBENT PADDING PADS
JP4913381B2 (en) 2005-09-26 2012-04-11 ユニ・チャーム株式会社 Absorbent articles
JP4627473B2 (en) 2005-09-28 2011-02-09 株式会社リブドゥコーポレーション Men's urine absorbent product
JP4627472B2 (en) 2005-09-28 2011-02-09 株式会社リブドゥコーポレーション Men's urine absorbent product
JP4619253B2 (en) 2005-09-29 2011-01-26 花王株式会社 Absorbent articles
JP4693574B2 (en) 2005-09-29 2011-06-01 花王株式会社 Absorbent articles
US20070078422A1 (en) 2005-09-30 2007-04-05 Tyco Healthcare Retail Services Ag Absorbent article configured for controlled deformation and method of making the same
JP4889276B2 (en) 2005-10-13 2012-03-07 花王株式会社 Absorbent articles
US8114059B2 (en) 2005-10-14 2012-02-14 The Procter & Gamble Company Absorbent article including barrier leg cuff structure and absorbent core with superabsorbent material
DE602006013565D1 (en) 2005-10-21 2010-05-27 Procter & Gamble Absorbent article with increased ability to absorb and retain proteinaceous or serous body fluids
EP1776966A1 (en) 2005-10-21 2007-04-25 The Procter and Gamble Company Absorbent article having improved absorption and retention capacity for proteinaceous or serous body fluids
WO2007049725A1 (en) 2005-10-26 2007-05-03 Daio Paper Corporation Absorbable article
UA92036C2 (en) 2005-11-02 2010-09-27 Уни-Шарм Корпорейшн Absorbent article
JP4953618B2 (en) 2005-11-02 2012-06-13 ユニ・チャーム株式会社 Absorbent articles
EP1787663B1 (en) 2005-11-21 2013-03-13 The Procter & Gamble Company Fluid acquisition layer for absorbent articles
JP5024918B2 (en) 2005-11-25 2012-09-12 大王製紙株式会社 Absorbent articles
US20070123834A1 (en) 2005-11-28 2007-05-31 Kimberly-Clark Worldwide, Inc. Flexible absorbent article
JP4587947B2 (en) 2005-12-08 2010-11-24 ユニ・チャーム株式会社 Absorbent articles
JP2007152033A (en) 2005-12-08 2007-06-21 Uni Charm Corp Absorbent article
EP1959903B1 (en) 2005-12-15 2014-02-12 SCA Hygiene Products AB Absorbent article
ES2624149T3 (en) 2005-12-21 2017-07-13 Sca Hygiene Products Ab Absorbent article comprising a layer of liquid permeable material
JP4739942B2 (en) 2005-12-22 2011-08-03 ユニ・チャーム株式会社 Absorbent articles
JP4974524B2 (en) 2005-12-27 2012-07-11 花王株式会社 Absorbent articles
US20070156110A1 (en) 2006-01-05 2007-07-05 Kevin Thyfault Diaper with baffle overflow protection
JP4757039B2 (en) 2006-01-25 2011-08-24 花王株式会社 Absorbent articles
JP2007202575A (en) 2006-01-30 2007-08-16 Livedo Corporation Absorbing laminated body and disposable absorbing article
US8148598B2 (en) 2006-02-22 2012-04-03 Dsg Technology Holdings Limited Method of making an absorbent composite and absorbent articles employing the same
US7803145B2 (en) 2006-03-16 2010-09-28 Mcneil-Ppc, Inc. Drapeable absorbent article
US20070219521A1 (en) 2006-03-17 2007-09-20 The Procter & Gamble Company Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article
JP2007267763A (en) 2006-03-30 2007-10-18 Kao Corp Absorbent article and manufacturing method thereof
JP5074703B2 (en) 2006-04-06 2012-11-14 ユニ・チャーム株式会社 Disposable diapers
JP4836639B2 (en) 2006-04-12 2011-12-14 花王株式会社 Absorbent articles
US7718021B2 (en) 2006-04-21 2010-05-18 Kimberly-Clark Worldwide, Inc. Method for making a stabilized absorbent composite
US8198506B2 (en) 2006-04-21 2012-06-12 Kimberly-Clark Worldwide, Inc. Stabilized absorbent composite
JP5154143B2 (en) 2006-06-02 2013-02-27 ユニ・チャーム株式会社 Absorbent articles
JP4890947B2 (en) 2006-06-02 2012-03-07 ユニ・チャーム株式会社 Absorbent articles
JP5123512B2 (en) 2006-06-23 2013-01-23 ユニ・チャーム株式会社 Non-woven
KR20090042241A (en) 2006-07-05 2009-04-29 유니챰 가부시키가이샤 Absorptive article
RU2463310C2 (en) 2006-07-19 2012-10-10 Басф Се Method of producing water-absorbing polymer particles with high permeability by polymerising droplets of monomer solution
US8202957B2 (en) 2006-07-19 2012-06-19 Basf Se Method for producing post-cured water-absorbent polymer particles with a higher absorption by polymerising droplets of a monomer solution
MY157687A (en) 2006-07-19 2016-07-15 Basf Se Process for preparing water-absorbing polymer particle having high permeability by polymerization
WO2008018922A1 (en) 2006-08-04 2008-02-14 Litvay John D Absorbent product with dehydration detection system
US7910797B2 (en) 2006-09-18 2011-03-22 The Procter & Gamble Company Absorbent articles having a sensation aspect
JP4785693B2 (en) 2006-09-27 2011-10-05 花王株式会社 Absorbent articles
JP4315970B2 (en) 2006-10-05 2009-08-19 花王株式会社 Absorbent articles
JP4439504B2 (en) 2006-10-05 2010-03-24 花王株式会社 Sanitary napkin
JP5080189B2 (en) 2006-10-06 2012-11-21 花王株式会社 Sanitary napkin
JP2008093289A (en) 2006-10-13 2008-04-24 Kao Corp Absorbent article
JP4889451B2 (en) 2006-11-09 2012-03-07 花王株式会社 Absorbent articles
US8998871B2 (en) 2006-11-22 2015-04-07 Uni-Charm Corporation Absorbent article with compressed channel portions
EP2087866A4 (en) 2006-11-22 2011-12-28 Uni Charm Corp Absorptive article and method of producing the same
JP5054963B2 (en) 2006-11-27 2012-10-24 ユニ・チャーム株式会社 Absorbent articles
US8258367B2 (en) 2006-11-29 2012-09-04 The Procter & Gamble Company Disposable absorbent articles having an interior design signal
JP2008136739A (en) 2006-12-04 2008-06-19 Kao Corp Absorbent article
EA016491B1 (en) 2006-12-07 2012-05-30 Юни-Чарм Корпорейшн Absorbing article
JP4776516B2 (en) 2006-12-11 2011-09-21 花王株式会社 Absorbent articles
US8273943B2 (en) 2006-12-12 2012-09-25 Uni-Charm Corporation Composite sheet and absorbent article using the composite sheet
JP5171643B2 (en) 2006-12-13 2013-03-27 ユニ・チャーム株式会社 Absorbent articles
JP4931572B2 (en) 2006-12-18 2012-05-16 花王株式会社 Disposable diapers
JP4789793B2 (en) 2006-12-20 2011-10-12 花王株式会社 Absorbent articles
JP5105884B2 (en) 2007-01-17 2012-12-26 花王株式会社 Absorbent articles
JP4825149B2 (en) 2007-02-16 2011-11-30 ユニ・チャーム株式会社 Disposable body fluid treatment article
US8502013B2 (en) 2007-03-05 2013-08-06 The Procter And Gamble Company Disposable absorbent article
US20080221539A1 (en) 2007-03-05 2008-09-11 Jean Jianqun Zhao Absorbent core for disposable absorbent article
US7935207B2 (en) 2007-03-05 2011-05-03 Procter And Gamble Company Absorbent core for disposable absorbent article
US7935099B2 (en) 2007-03-14 2011-05-03 The Procter & Gamble Company Absorbent article with patterned SBS based adhesive
PL1974705T3 (en) 2007-03-26 2014-06-30 Fameccanica Data Spa Absorbing element for sanitary products, having expandable pockets containing superabsorbent material and manufacturing process
JP4922802B2 (en) 2007-03-26 2012-04-25 ユニ・チャーム株式会社 Absorbent articles
JP5060815B2 (en) 2007-03-30 2012-10-31 ユニ・チャーム株式会社 Absorbent articles
US7914723B2 (en) 2007-04-24 2011-03-29 Ahlstrom Corporation Nonwoven bonding patterns producing fabrics with improved abrasion resistance and softness
JP4261593B2 (en) 2007-04-27 2009-04-30 ユニ・チャーム株式会社 Absorbent articles
US20080281287A1 (en) 2007-05-08 2008-11-13 Marcelo Ana Maria Elena R Sanitary napkin including body-facing protrusions for preventing side leakage and obliquely arranged embossed channels
US8672912B2 (en) 2007-05-21 2014-03-18 Sca Hygiene Products Ab Absorbent article with improved fit
ES2368352T3 (en) 2007-05-25 2011-11-16 The Procter & Gamble Company FEMALE HYGIENE ITEM WITH A PRINTED DESIGN AND A PRINTED DESIGN.
JP4754528B2 (en) 2007-05-28 2011-08-24 ユニ・チャーム株式会社 Absorbent articles
JP5007156B2 (en) 2007-05-29 2012-08-22 大王製紙株式会社 Absorbent articles
JP5007157B2 (en) 2007-05-31 2012-08-22 大王製紙株式会社 Absorbent articles
WO2009047596A1 (en) 2007-06-12 2009-04-16 Dsg Technology Holdings Ltd. Absorbent article with a slit absorbent core
ES2580953T3 (en) 2007-06-18 2016-08-30 The Procter & Gamble Company Disposable absorbent article with substantially continuous continuously distributed particle-shaped polymeric material and method
DE112008000012T5 (en) 2007-06-18 2009-04-23 The Procter & Gamble Company, Cincinnati Disposable absorbent articles having improved absorbent properties with substantially continuously dispersed polymer particle absorbent material
CN101686879B (en) 2007-06-18 2013-03-27 宝洁公司 Disposable absorbent article with improved acquisition system with substantially continuously distributed absorbent particulate polymer material
JP2010529878A (en) 2007-06-18 2010-09-02 ザ プロクター アンド ギャンブル カンパニー A better-fit disposable absorbent article having a substantially continuously distributed absorbent particulate polymer material
US20080312628A1 (en) 2007-06-18 2008-12-18 Harald Hermann Hundorf Disposable Absorbent Article With Sealed Absorbent Core With Absorbent Particulate Polymer Material
DE112008000009T5 (en) 2007-06-18 2009-04-23 The Procter & Gamble Company, Cincinnati Double-folded disposable absorbent article, packaged absorbent article, and packaged absorbent article array with substantially continuously dispersed particulate polymeric absorbent material
JP5259705B2 (en) 2007-06-18 2013-08-07 ザ プロクター アンド ギャンブル カンパニー Disposable absorbent article comprising a sealed absorbent core comprising a substantially continuously distributed absorbent particulate polymer material
US8017827B2 (en) 2007-06-18 2011-09-13 The Procter & Gamble Company Disposable absorbent article with enhanced absorption properties
US20080312622A1 (en) 2007-06-18 2008-12-18 Harald Hermann Hundorf Disposable Absorbent Article With Improved Acquisition System
US20080312620A1 (en) 2007-06-18 2008-12-18 Gregory Ashton Better Fitting Disposable Absorbent Article With Absorbent Particulate Polymer Material
JP4540126B2 (en) 2007-06-28 2010-09-08 大王製紙株式会社 Individual absorbent articles
JP5123583B2 (en) 2007-06-29 2013-01-23 ユニ・チャーム株式会社 Absorbent articles
JP5089269B2 (en) 2007-06-29 2012-12-05 大王製紙株式会社 Absorbent pad and absorbent article
US7942858B2 (en) 2007-07-03 2011-05-17 Mcneil-Ppc, Inc. Sanitary napkin including body-facing protrusions and arcuately arranged embossed channels
EP2173303B1 (en) 2007-07-05 2012-04-18 SCA Hygiene Products AB Absorbent article
US7816426B2 (en) 2007-07-16 2010-10-19 Evonik Stockhausen, Llc Superabsorbent polymer compositions having color stability
JP5210565B2 (en) 2007-07-30 2013-06-12 ユニ・チャーム株式会社 Absorbent articles
GB2452260A (en) 2007-08-28 2009-03-04 Simon Rhys David Nappy having an uneven outer surface when wet
JP5053765B2 (en) 2007-09-04 2012-10-17 花王株式会社 Single body of sanitary napkin
JP5043569B2 (en) 2007-09-04 2012-10-10 花王株式会社 Sanitary napkin
JP4481325B2 (en) 2007-09-06 2010-06-16 花王株式会社 Sanitary napkin
JP5139017B2 (en) 2007-09-26 2013-02-06 ユニ・チャーム株式会社 Absorbent articles
JP5129536B2 (en) 2007-09-28 2013-01-30 大王製紙株式会社 Sanitary napkin
JP5043591B2 (en) 2007-10-22 2012-10-10 花王株式会社 Sanitary napkin
JP5084442B2 (en) 2007-10-25 2012-11-28 花王株式会社 Sanitary napkin
US20090112173A1 (en) 2007-10-30 2009-04-30 Kofi Ayensu Bissah Absorbent article including an absorbent layer having a plurality of spaced beam elements
US20090112175A1 (en) 2007-10-30 2009-04-30 Kofi Ayensu Bissah Absorbent article including an absorbent layer having a plurality of spaced beam elements
JP5132264B2 (en) 2007-11-07 2013-01-30 花王株式会社 Absorbent articles
JP5199646B2 (en) * 2007-11-16 2013-05-15 ユニ・チャーム株式会社 Absorbent articles
JP4801035B2 (en) 2007-11-30 2011-10-26 大王製紙株式会社 Absorbent article and manufacturing method thereof
JP5084476B2 (en) 2007-12-05 2012-11-28 花王株式会社 Absorbent articles
JP5070022B2 (en) 2007-12-10 2012-11-07 花王株式会社 Absorbent articles
JP2009142401A (en) 2007-12-12 2009-07-02 Kao Corp Absorbent article
US20090157022A1 (en) 2007-12-13 2009-06-18 Kimberly-Clark Worldwide, Inc. Absorbent articles having a wetness indicator
BRPI0722308A2 (en) 2007-12-21 2014-04-22 Sca Hygiene Prod Ab ABSORBENT ARTICLE WITH VENTILATED TOP SHEET
JP4969437B2 (en) 2007-12-28 2012-07-04 花王株式会社 Absorbent articles
JP4615026B2 (en) 2008-01-18 2011-01-19 花王株式会社 Absorbent articles
JP5091698B2 (en) 2008-01-30 2012-12-05 ユニ・チャーム株式会社 Absorbent articles
JP5164602B2 (en) 2008-02-25 2013-03-21 ユニ・チャーム株式会社 Absorbent articles
JP2009201878A (en) 2008-02-29 2009-09-10 Uni Charm Corp Absorbent article
WO2009107791A1 (en) 2008-02-29 2009-09-03 ユニ・チャーム株式会社 Absorptive article
JP5185665B2 (en) 2008-03-14 2013-04-17 ユニ・チャーム株式会社 Absorbent articles
US20090240220A1 (en) 2008-03-20 2009-09-24 Kimberly-Clark Worldwide, Inc Compressed Substrates Configured to Deliver Active Agents
JP5075703B2 (en) 2008-03-26 2012-11-21 王子ネピア株式会社 Absorbent articles
JP5279318B2 (en) 2008-03-31 2013-09-04 ユニ・チャーム株式会社 Absorbent article and manufacturing method thereof
JP5328203B2 (en) 2008-03-31 2013-10-30 ユニ・チャーム株式会社 Disposable absorbent wearing articles
JP5264270B2 (en) 2008-04-28 2013-08-14 花王株式会社 Absorbent articles
US9044359B2 (en) 2008-04-29 2015-06-02 The Procter & Gamble Company Disposable absorbent article with absorbent particulate polymer material distributed for improved isolation of body exudates
JP5258380B2 (en) 2008-05-15 2013-08-07 ユニ・チャーム株式会社 Absorbent articles
JP5258379B2 (en) 2008-05-15 2013-08-07 ユニ・チャーム株式会社 Absorbent articles
JP5197147B2 (en) 2008-05-15 2013-05-15 ユニ・チャーム株式会社 Absorbent articles
JP5075980B2 (en) 2008-05-28 2012-11-21 ユニ・チャーム株式会社 Absorbent article and sanitary napkin
US20090299312A1 (en) 2008-05-30 2009-12-03 Kimberly-Clark Worldwide, Inc. Twisted, Compressed Substrates as Wetness Indicators in Absorbent Articles
JP5189901B2 (en) 2008-06-06 2013-04-24 花王株式会社 Absorbent articles
JP5173616B2 (en) 2008-06-10 2013-04-03 花王株式会社 Absorbent articles
CA2727408A1 (en) 2008-06-13 2009-12-17 The Procter & Gamble Company Better fitting diaper or pant with absorbent particulate polymer material and preformed crotch
US20090318884A1 (en) 2008-06-20 2009-12-24 Axel Meyer Absorbent structures with immobilized absorbent material
EP2293824B1 (en) 2008-06-20 2016-12-14 The Procter & Gamble Company Absorbent structures including coated absorbent material
JP5230289B2 (en) 2008-07-18 2013-07-10 大王製紙株式会社 Absorbent articles
CN201263750Y (en) 2008-08-07 2009-07-01 江苏紫荆花纺织科技股份有限公司 Feminine napkin
JP5175147B2 (en) 2008-08-29 2013-04-03 花王株式会社 Absorbent articles
JP5306753B2 (en) 2008-09-12 2013-10-02 ユニ・チャーム株式会社 Body fluid absorbent article
JP5285706B2 (en) 2008-09-12 2013-09-11 ユニ・チャーム株式会社 Absorbent articles
JP5328273B2 (en) 2008-09-17 2013-10-30 ユニ・チャーム株式会社 Body fluid absorbent article
JP5336138B2 (en) 2008-09-26 2013-11-06 花王株式会社 Absorbent articles
JP5305812B2 (en) 2008-09-30 2013-10-02 大王製紙株式会社 Absorbent articles
JP4937225B2 (en) 2008-10-02 2012-05-23 ユニ・チャーム株式会社 Sanitary napkin
JP5306773B2 (en) 2008-10-29 2013-10-02 ユニ・チャーム株式会社 Liquid absorbing structure for worn articles
JP5270301B2 (en) 2008-10-30 2013-08-21 花王株式会社 Absorbent article and manufacturing method thereof
JP5250386B2 (en) 2008-10-30 2013-07-31 花王株式会社 Absorbent article and manufacturing method thereof
JP5384909B2 (en) 2008-11-07 2014-01-08 ユニ・チャーム株式会社 Liquid absorbing structure and wearing article including the same
JP5243195B2 (en) 2008-11-17 2013-07-24 花王株式会社 Absorbent articles
JP5384915B2 (en) 2008-11-19 2014-01-08 ユニ・チャーム株式会社 Wearing article
JP5199040B2 (en) 2008-11-21 2013-05-15 花王株式会社 Absorbent article and manufacturing method thereof
JP5329930B2 (en) 2008-12-03 2013-10-30 花王株式会社 Absorbent article and manufacturing method thereof
JP5243212B2 (en) 2008-12-03 2013-07-24 花王株式会社 Absorbent articles
JP5590790B2 (en) 2008-12-04 2014-09-17 大王製紙株式会社 Absorbent articles
JP5452910B2 (en) 2008-12-08 2014-03-26 花王株式会社 Absorbent articles
JP5319263B2 (en) 2008-12-12 2013-10-16 花王株式会社 Absorbent articles
JP5503867B2 (en) 2008-12-15 2014-05-28 花王株式会社 Absorbent article and manufacturing method thereof
WO2010071508A1 (en) 2008-12-16 2010-06-24 Sca Hygiene Products Ab Absorbent article with improved waste containment
JP5294837B2 (en) 2008-12-25 2013-09-18 ユニ・チャーム株式会社 Absorbent articles
JP5455363B2 (en) 2008-12-25 2014-03-26 ユニ・チャーム株式会社 Thin absorbent article
JP5317685B2 (en) 2008-12-25 2013-10-16 ユニ・チャーム株式会社 Absorbent articles
JP5407413B2 (en) 2009-02-25 2014-02-05 王子ホールディングス株式会社 Disposable diapers
JP5243308B2 (en) 2009-03-05 2013-07-24 花王株式会社 Absorbent articles
BRPI1006461A2 (en) 2009-03-19 2018-02-27 Uni-Charm Corporation Absorptive article
JP5815916B2 (en) 2009-03-31 2015-11-17 ユニ・チャーム株式会社 Absorbent articles
JP5414099B2 (en) 2009-03-31 2014-02-12 ユニ・チャーム株式会社 Absorbent articles
JP4850272B2 (en) 2009-05-29 2012-01-11 大王製紙株式会社 Absorbent articles
US8283516B2 (en) 2009-04-01 2012-10-09 Litvay John D Absorbent product with low dryness index
GB0906056D0 (en) 2009-04-08 2009-05-20 Brightwake Ltd Absorbent wound dressing for wrapping around jointed limbs
JP5602382B2 (en) 2009-04-10 2014-10-08 ユニ・チャーム株式会社 Absorbent articles
US8927801B2 (en) 2009-04-13 2015-01-06 The Procter & Gamble Company Absorbent articles comprising wetness indicators
US8034991B2 (en) 2009-04-29 2011-10-11 Johnson & Johnson Ind. E Com. Ltda Absorbent article including a plurality of longitudinally extending channels
US8975466B2 (en) 2009-04-29 2015-03-10 Eveready Battery Company, Inc. Absorbent article including a plurality of longitudinally extending channels
WO2010133529A2 (en) 2009-05-20 2010-11-25 Basf Se Water-absorbent storage layers
JP5775250B2 (en) 2009-05-28 2015-09-09 王子ホールディングス株式会社 Method for manufacturing absorbent article
US20100312208A1 (en) 2009-06-03 2010-12-09 Eric Bryan Bond Fluid Permeable Structured Fibrous Web
JP5444864B2 (en) 2009-06-15 2014-03-19 王子ホールディングス株式会社 Absorbent articles
JP5390976B2 (en) 2009-07-31 2014-01-15 大王製紙株式会社 Absorbent articles
US8764719B2 (en) 2009-09-04 2014-07-01 Johnson & Johnson Ind. E Com. Ltda Absorbent article including an absorbent core layer having a material free zone and a transfer layer arranged below the absorbent core layer
JP2011067484A (en) 2009-09-28 2011-04-07 Kao Corp Absorbent article
JP2011072720A (en) 2009-10-01 2011-04-14 Livedo Corporation Absorbent article
KR101651675B1 (en) 2009-10-30 2016-08-29 유한킴벌리 주식회사 Absorbent article with annular absorbent member
JP5548431B2 (en) 2009-11-13 2014-07-16 花王株式会社 Absorbent articles
JP5411663B2 (en) 2009-11-17 2014-02-12 花王株式会社 Absorbent articles
JP5258736B2 (en) 2009-11-30 2013-08-07 ユニ・チャーム株式会社 Disposable diapers
EP2329803B1 (en) 2009-12-02 2019-06-19 The Procter & Gamble Company Apparatus and method for transferring particulate material
KR20120091391A (en) 2009-12-04 2012-08-17 가오 가부시키가이샤 Method and device for manufacturing absorption body
JP5374345B2 (en) 2009-12-09 2013-12-25 花王株式会社 Sanitary napkin
US20110144602A1 (en) 2009-12-11 2011-06-16 Andrew Mark Long Absorbent Article With Shorter Rise And Tactile Training Cue
JP5341738B2 (en) 2009-12-15 2013-11-13 花王株式会社 Absorbent articles
US20110152813A1 (en) 2009-12-17 2011-06-23 Daniel Lee Ellingson Absorbent Article with Channel Portion
JP5394909B2 (en) 2009-12-18 2014-01-22 白十字株式会社 Disposable absorbent article
JP5475431B2 (en) 2009-12-22 2014-04-16 花王株式会社 Absorbent articles
JP5548439B2 (en) 2009-12-22 2014-07-16 花王株式会社 Absorbent articles
JP4914487B2 (en) 2009-12-25 2012-04-11 花王株式会社 Absorbent articles
JP4969640B2 (en) 2009-12-25 2012-07-04 花王株式会社 Absorbent articles
JP5016020B2 (en) 2009-12-25 2012-09-05 花王株式会社 Cage sheet
JP5113146B2 (en) 2009-12-25 2013-01-09 花王株式会社 Sanitary napkin
JP5070275B2 (en) 2009-12-25 2012-11-07 花王株式会社 Absorbent article surface sheet
JP5457829B2 (en) 2009-12-28 2014-04-02 ユニ・チャーム株式会社 Disposable wearing items
US8052454B2 (en) 2009-12-31 2011-11-08 Hon Hai Precision Ind. Co., Ltd. Electrical connector with improved feature for securing solder ball thereon
US9549858B2 (en) 2010-01-06 2017-01-24 Ching-Yun Morris Yang Ultra-thin absorbent article
CN201591689U (en) 2010-01-19 2010-09-29 重庆丝爽卫生用品有限公司 Novel sanitary napkin
JP5503988B2 (en) 2010-01-29 2014-05-28 大王製紙株式会社 Absorbent articles
JP5530733B2 (en) 2010-01-29 2014-06-25 大王製紙株式会社 Absorbent articles
JP5575496B2 (en) 2010-02-03 2014-08-20 花王株式会社 Absorbent articles
JP4979780B2 (en) 2010-02-09 2012-07-18 花王株式会社 Sanitary napkin
CN102770592A (en) 2010-02-25 2012-11-07 宝洁公司 Bond patterns for fibrous webs
JP5649313B2 (en) 2010-02-26 2015-01-07 ユニ・チャーム株式会社 Absorbent article and method for manufacturing absorbent article
KR20130050934A (en) 2010-03-23 2013-05-16 유니챰 가부시키가이샤 Absorbent article
JP5665338B2 (en) 2010-03-24 2015-02-04 ユニ・チャーム株式会社 Body fluid treatment article and method for producing the same
JP5391140B2 (en) 2010-04-30 2014-01-15 ユニ・チャーム株式会社 Absorbent articles
WO2011137323A2 (en) 2010-04-30 2011-11-03 The Procter & Gamble Company Nonwoven having durable hydrophilic coating
US8186296B2 (en) 2010-05-05 2012-05-29 The Procter & Gamble Company Methods and apparatus for applying adhesives in patterns to an advancing substrate
JP5504049B2 (en) 2010-05-17 2014-05-28 株式会社リブドゥコーポレーション Diapers
JP5383589B2 (en) 2010-05-20 2014-01-08 ユニ・チャーム株式会社 Body fluid absorber and method for producing the same
WO2011150955A1 (en) 2010-05-31 2011-12-08 Sca Hygiene Products Ab Disposable absorbent article and set for forming an absorbent article
EP2399557B2 (en) 2010-06-25 2017-03-29 The Procter and Gamble Company Disposable diaper with reduced bulk
US8680362B2 (en) 2010-06-28 2014-03-25 The Procter & Gamble Company Substrate coated with a hydrophilic elastomer
JP5737873B2 (en) 2010-06-30 2015-06-17 ユニ・チャーム株式会社 Disposable diapers
JP2010221067A (en) 2010-07-09 2010-10-07 Uni Charm Corp Absorbent article
WO2012009591A1 (en) 2010-07-15 2012-01-19 The Procter & Gamble Company Absorbent core
JP4980450B2 (en) 2010-07-26 2012-07-18 ユニ・チャーム株式会社 Disposable absorbent article
US8710293B2 (en) 2010-09-21 2014-04-29 Basf Se Ultrathin fluid-absorbent cores
JP5769398B2 (en) 2010-09-29 2015-08-26 ユニ・チャーム株式会社 Disposable wearing items
JP5602568B2 (en) 2010-09-30 2014-10-08 ユニ・チャーム株式会社 Disposable wearing items
JP5627978B2 (en) 2010-09-30 2014-11-19 ユニ・チャーム株式会社 Disposable wearing items
JP5847999B2 (en) 2010-09-30 2016-01-27 ユニ・チャーム株式会社 Pants-type diapers
JP2011000480A (en) 2010-10-05 2011-01-06 Uni Charm Corp Absorptive article
JP4855533B2 (en) 2010-10-05 2012-01-18 ユニ・チャーム株式会社 Absorbent articles
JP5031082B2 (en) 2010-10-12 2012-09-19 ユニ・チャーム株式会社 Method for manufacturing absorbent article
NO2810630T3 (en) 2010-10-13 2018-07-21
JP4971491B2 (en) 2010-10-15 2012-07-11 ユニ・チャーム株式会社 Sanitary napkin
EP2444046A1 (en) 2010-10-20 2012-04-25 Vynka Bvba Environmentally friendly absorbent structure
DE102010043113A1 (en) 2010-10-29 2012-05-03 Evonik Stockhausen Gmbh Process for the preparation of improved absorbent polymers by cryogenic milling
JP5042351B2 (en) 2010-11-17 2012-10-03 花王株式会社 Absorbent articles
JP5679777B2 (en) 2010-11-19 2015-03-04 ユニ・チャーム株式会社 Absorbent articles
JP5701027B2 (en) 2010-11-30 2015-04-15 ユニ・チャーム株式会社 Disposable wearing items
KR101479143B1 (en) 2010-11-30 2015-01-05 캐논 아네르바 가부시키가이샤 Plasma Treatment Apparatus
US20120165771A1 (en) 2010-12-22 2012-06-28 Kimberly-Clark Worldwide, Inc. Absorbent Articles With Multiple Active Graphics
JP5697439B2 (en) 2010-12-27 2015-04-08 ユニ・チャーム株式会社 Absorbent article package and method for folding absorbent article package
JP5783719B2 (en) 2010-12-28 2015-09-24 ユニ・チャーム株式会社 Body fluid absorbent article including body fluid absorbent core
JP5769432B2 (en) 2011-01-27 2015-08-26 ユニ・チャーム株式会社 Water-absorbent article having a pad form
JP2012152471A (en) 2011-01-27 2012-08-16 Unicharm Corp Pad-shaped absorbent article
JP5390550B2 (en) 2011-02-28 2014-01-15 大王製紙株式会社 Disposable diapers
JP5818483B2 (en) 2011-03-31 2015-11-18 ユニ・チャーム株式会社 Water-absorbing articles
US8884769B2 (en) 2011-04-05 2014-11-11 Guy R. Novak Dimensionally-sensitive moisture sensor and an alarm system for an absorbent article
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
PL2532332T5 (en) 2011-06-10 2018-07-31 The Procter And Gamble Company Disposable diaper having reduced attachment between absorbent core and backsheet
EP3287109B1 (en) 2011-06-10 2023-11-29 The Procter & Gamble Company Absorbent structure for absorbent articles
EP2532329B1 (en) 2011-06-10 2018-09-19 The Procter and Gamble Company Method and apparatus for making absorbent structures with absorbent material
BR112013030599A2 (en) 2011-06-10 2016-09-27 Procter & Gamble absorbent core for disposable absorbent articles
PL2532328T3 (en) 2011-06-10 2014-07-31 Procter & Gamble Method and apparatus for making absorbent structures with absorbent material
JP2014515983A (en) 2011-06-10 2014-07-07 ザ プロクター アンド ギャンブル カンパニー Disposable diapers
EP2535027B1 (en) 2011-06-17 2022-08-17 The Procter & Gamble Company Absorbent article having improved absorption properties
JP5085770B2 (en) 2011-06-27 2012-11-28 大王製紙株式会社 Absorbent articles
JP5851128B2 (en) 2011-06-27 2016-02-03 ユニ・チャーム株式会社 Disposable wearing items
US9681996B2 (en) 2011-08-11 2017-06-20 3M Innovative Properties Company Wetness sensors
EP2586410A1 (en) 2011-10-24 2013-05-01 Bostik SA Novel process for preparing an absorbent article
CN104185465B (en) 2012-03-15 2016-03-02 大王制纸株式会社 Absorbent article
JP5270776B2 (en) 2012-03-30 2013-08-21 大王製紙株式会社 Sanitary napkin
EP2679210B1 (en) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbent articles with improved core
EP2679209B1 (en) 2012-06-28 2015-03-04 The Procter & Gamble Company Absorbent articles with improved core
FR2997842B1 (en) 2012-11-13 2021-06-11 Procter & Gamble ABSORBENT ARTICLES WITH CHANNELS AND SIGNALS
EP2740450A1 (en) 2012-12-10 2014-06-11 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
EP2740449B1 (en) 2012-12-10 2019-01-23 The Procter & Gamble Company Absorbent article with high absorbent material content
PL2740452T3 (en) 2012-12-10 2022-01-31 The Procter & Gamble Company Absorbent article with high absorbent material content
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940464A (en) 1987-12-16 1990-07-10 Kimberly-Clark Corporation Disposable incontinence garment or training pant
US5092861A (en) 1989-12-22 1992-03-03 Uni-Charm Corporation Disposable garments
US5246433A (en) 1991-11-21 1993-09-21 The Procter & Gamble Company Elasticized disposable training pant and method of making the same
US5562646A (en) 1994-03-29 1996-10-08 The Proctor & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity
EP0691133A1 (en) 1994-07-05 1996-01-10 The Procter & Gamble Company Absorbent gelling material comprising a dry mixture of at least two types of hydrogel-forming particles and method for making the same
US5635191A (en) 1994-11-28 1997-06-03 The Procter & Gamble Company Diaper having a lotioned topsheet containing a polysiloxane emollient
US5643588A (en) 1994-11-28 1997-07-01 The Procter & Gamble Company Diaper having a lotioned topsheet
US5569234A (en) 1995-04-03 1996-10-29 The Procter & Gamble Company Disposable pull-on pant
US5607760A (en) 1995-08-03 1997-03-04 The Procter & Gamble Company Disposable absorbent article having a lotioned topsheet containing an emollient and a polyol polyester immobilizing agent
US5609587A (en) 1995-08-03 1997-03-11 The Procter & Gamble Company Diaper having a lotioned topsheet comprising a liquid polyol polyester emollient and an immobilizing agent
US6120489A (en) 1995-10-10 2000-09-19 The Procter & Gamble Company Flangeless seam for use in disposable articles
US5897545A (en) 1996-04-02 1999-04-27 The Procter & Gamble Company Elastomeric side panel for use with convertible absorbent articles
US5957908A (en) 1996-04-02 1999-09-28 The Procter & Gamble Company Elastomeric side panel for use with convertible absorbent articles
US6120487A (en) 1996-04-03 2000-09-19 The Procter & Gamble Company Disposable pull-on pant
US20030233082A1 (en) 2002-06-13 2003-12-18 The Procter & Gamble Company Highly flexible and low deformation fastening device
EP1621166A1 (en) * 2004-07-28 2006-02-01 The Procter and Gamble Company Process for producing absorbent core structures
US20100051166A1 (en) * 2008-08-26 2010-03-04 Harald Hermann Hundorf Method And Apparatus For Making Disposable Absorbent Article With Absorbent Particulate Polymer Material And Article Made Therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Contact angle, wettability and adhesion", 1964, AMERICAN CHEMICAL SOCIETY

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949302A1 (en) * 2014-05-27 2015-12-02 The Procter and Gamble Company Absorbent core with curved channel-forming areas
EP2949301A1 (en) * 2014-05-27 2015-12-02 The Procter and Gamble Company Absorbent core with curved and straight absorbent material areas
WO2015183671A1 (en) * 2014-05-27 2015-12-03 The Procter & Gamble Company Absorbent core with curved channel-forming areas
WO2015183670A1 (en) * 2014-05-27 2015-12-03 The Procter & Gamble Company Absorbent core with curved and straight absorbent material areas
EP3434241A1 (en) * 2017-07-28 2019-01-30 Jianhui Chen Water-absorbent core production system
US10806636B2 (en) 2017-07-28 2020-10-20 Jianhui Chen Water-absorbent core production system

Also Published As

Publication number Publication date
CN103596531A (en) 2014-02-19
JP2014515972A (en) 2014-07-07
EP2532328A1 (en) 2012-12-12
CA2838702A1 (en) 2012-12-13
CL2013003516A1 (en) 2014-07-11
BR112013030597A2 (en) 2016-09-27
EP2532328B1 (en) 2014-02-26
US20170095377A1 (en) 2017-04-06
ES2459724T3 (en) 2014-05-12
RU2013156992A (en) 2015-07-20
MX2013014593A (en) 2014-01-24
PL2532328T3 (en) 2014-07-31
RU2573343C2 (en) 2016-01-20
CA2838702C (en) 2017-02-14
CN103596531B (en) 2016-08-17
JP5951760B2 (en) 2016-07-13
US10813794B2 (en) 2020-10-27
US9668926B2 (en) 2017-06-06
ZA201309506B (en) 2015-10-28
US20120316046A1 (en) 2012-12-13
SG195104A1 (en) 2013-12-30

Similar Documents

Publication Publication Date Title
US11000422B2 (en) Method and apparatus for making absorbent structures with absorbent material
US10813794B2 (en) Method and apparatus for making absorbent structures with absorbent material
US11090199B2 (en) Method and apparatus for making an absorbent structure comprising channels
EP2905000B1 (en) Method and apparatus for making an absorbent structure comprising channels
CA2890759C (en) Absorbent articles with channels and signals
EP2329803B1 (en) Apparatus and method for transferring particulate material
US20220071810A1 (en) Absorbent articles with channels and signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12727032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514521

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2838702

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/014593

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013030597

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013156992

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12727032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013030597

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131128