JPH04322228A - Optical fiber amplifier - Google Patents

Optical fiber amplifier

Info

Publication number
JPH04322228A
JPH04322228A JP9052491A JP9052491A JPH04322228A JP H04322228 A JPH04322228 A JP H04322228A JP 9052491 A JP9052491 A JP 9052491A JP 9052491 A JP9052491 A JP 9052491A JP H04322228 A JPH04322228 A JP H04322228A
Authority
JP
Japan
Prior art keywords
optical fiber
light
mode
light source
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9052491A
Other languages
Japanese (ja)
Inventor
Takeshi Ota
太田猛史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP9052491A priority Critical patent/JPH04322228A/en
Publication of JPH04322228A publication Critical patent/JPH04322228A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To excite an optical fiber with sufficient excitation density and to level the excitation state of the core part of a multi-mode fiber while using a coherent light source as to the optical fiber amplifier which uses a rare-earth doped multi-mode optical fiber. CONSTITUTION:Excitation light beams from plural light sources 1a, 1b, and 1c are multiplexed by an optical multiplexer 5 and supplied to the multi-mode optical fiber 7 whose core is doped with rare earth to excite this multi-mode optical fiber. Consequently, the number of excited modes increases statistically to enable multi-mode operation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、コア部に希土類をドー
プした光ファイバを適当な光源によって励起して反転準
位を得、それによって光を増幅する光ファイバ増幅器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber amplifier in which an optical fiber whose core is doped with a rare earth element is excited by a suitable light source to obtain an inversion level, thereby amplifying light.

【0002】0002

【従来の技術】近年、希士類特にエルビウム(Er)を
ドープした光ファイバを用いた光増幅器が著しい進歩を
とげている(たとえば、中沢,「Erドープ光ファイバ
ーによる光増幅とその応用」,応用物理,第59巻,第
9号(1990),P1175〜1192、堀口,「光
ファイバ増幅器」,光学,第19巻,第5号(1990
)、P276〜282等参照)。
[Background Art] In recent years, optical amplifiers using optical fibers doped with rare elements, especially erbium (Er), have made remarkable progress (for example, Nakazawa, "Optical amplification using Er-doped optical fibers and its applications", Physics, Vol. 59, No. 9 (1990), P1175-1192, Horiguchi, "Optical Fiber Amplifier", Optics, Vol. 19, No. 5 (1990)
), see pages 276-282, etc.).

【0003】これらのErドープファイバ増幅器の研究
開発は、主に長距離の光通信を念頭に置いて行われてい
るので、シングルモードの光ファイバ系の光増幅が中心
課題となっている。
Research and development of these Er-doped fiber amplifiers has been carried out mainly with long-distance optical communications in mind, and therefore optical amplification of single-mode optical fiber systems has become a central issue.

【0004】しかし、光増幅は、たとえば、光LAN(
local areanetwork)や光CATV(
community antennatelevisi
on)系に於ける分配損失を補うというような用途にも
有望である。このような近距離の光通信ネットワークに
は、取り扱いの容易なマルチモード光ファイバが適して
いる。
However, optical amplification is difficult to achieve, for example, in an optical LAN (
local area network) and optical CATV (
community antennaelevisi
It is also promising for applications such as compensating for distribution losses in on) systems. Multimode optical fibers, which are easy to handle, are suitable for such short-distance optical communication networks.

【0005】[0005]

【発明が解決しようとする課題】光LAN用のマルチモ
ード光ファイバ増幅器の実現を考えると次のような問題
がある。
Problems to be Solved by the Invention When considering the realization of a multimode optical fiber amplifier for optical LAN, the following problems arise.

【0006】1)マルチモード光ファイバは、当然なが
ら多数のモードがあり、たとえば、コア径60μm、N
A(開口数)=0.2のグレーデッドインデックス型フ
ァイバでは、立ち得るモード数は500にもなる(たと
えば、野田, 「光ファイバ伝送」, 電子通信学会(
1978), P42参照。)。任意のモードに対して
等しい利得を得るには、コア内部が均一に励起されなけ
ればならない。言い換えれば、励起光を各モード均一に
照射しなければならない。しかしながら、レーザ光はコ
ヒーレンス(可干渉性)を有しているので、励起光源に
レーザ光源を用いた場合、励起光を各モード均一に照射
することは実現困難である。
1) Multimode optical fiber naturally has many modes, for example, a core diameter of 60 μm, N
In a graded index fiber with A (numerical aperture) = 0.2, the number of possible modes is as high as 500 (for example, Noda, "Optical fiber transmission", Institute of Electronics and Communication Engineers (IEICE)).
1978), p. 42. ). To obtain equal gain for any mode, the interior of the core must be uniformly excited. In other words, each mode must be uniformly irradiated with excitation light. However, since laser light has coherence, when a laser light source is used as an excitation light source, it is difficult to uniformly irradiate each mode with excitation light.

【0007】2)マルチモードファイバは、コア径が5
0〜60μmと大きく、コア径が10μm程のシングル
モードファイバに比べ、同じ励起密度を得るには数十倍
の励起光を照射する必要がある。
2) The multimode fiber has a core diameter of 5
Compared to a single mode fiber, which has a large diameter of 0 to 60 μm and a core diameter of about 10 μm, it is necessary to irradiate several tens of times as much excitation light to obtain the same excitation density.

【0008】本発明は、前記問題点を解決するために案
出されたものであって、マルチモード光ファイバを十分
な励起密度で励起できるようにすることを目的とする。 また、本発明は、コヒーレンントな光源を使用しつつ、
マルチモードファイバのコア部の励起状態を平準化する
ことを目的とする。
The present invention was devised to solve the above-mentioned problems, and an object of the present invention is to make it possible to pump a multimode optical fiber with sufficient pumping density. Further, the present invention uses a coherent light source and
The purpose is to equalize the excited state of the core of a multimode fiber.

【0009】[0009]

【課題を解決するための手段】本発明の光ファイバ増幅
器は、コアに希土類をドープしたマルチモード光ファイ
バと、複数の光源からの励起光を合成して前記マルチモ
ード光ファイバに供給して該マルチモード光ファイバを
励起する光合成手段とを有する。
[Means for Solving the Problems] The optical fiber amplifier of the present invention combines a multimode optical fiber whose core is doped with rare earth and pumping light from a plurality of light sources and supplies the combined pump light to the multimode optical fiber. and a light combining means for exciting the multimode optical fiber.

【0010】0010

【作用】複数の光源からの励起光が合成されることによ
り、励起密度が上昇しマルチモードファイバが十分励起
される。また、光源としてレーザを使用した場合でも、
複数の光源からの励起光が合成されることにより、各励
起光が有するコヒーレンスが減じられる。これにより、
希土類ドープファイバにおいて励起されるモードの数が
統計的に増し、マルチモード動作が可能となる。
[Operation] By combining excitation light from a plurality of light sources, the excitation density increases and the multimode fiber is sufficiently excited. Also, even when using a laser as a light source,
By combining excitation light from a plurality of light sources, the coherence of each excitation light is reduced. This results in
The number of modes excited in the rare earth doped fiber is statistically increased, allowing multimode operation.

【0011】[0011]

【実施例】以下、図面を参照しながら実施例に基づいて
本発明の特徴を具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, features of the present invention will be specifically explained based on embodiments with reference to the drawings.

【0012】本発明の光ファイバ増幅器の実施例の概略
の構成を第1図に示す。複数の独立した光源1a,1b
,1cから各入力光ファイバ2a,2b,2cを介して
供給される励起光と、信号入力端3から入力光ファイバ
4を介して供給される入力信号光を、合波器5によって
合波し、光アイソレータ6を通して希土類ドープファイ
バ7を励起する。前記合波器5は、図2に示すように、
ガラス或いはポリカーボネートの基板5a上にイオン選
択或いは選択重合により光導波路5bを形成することに
より構成されている。
FIG. 1 shows a schematic configuration of an embodiment of the optical fiber amplifier of the present invention. Multiple independent light sources 1a, 1b
, 1c via the respective input optical fibers 2a, 2b, 2c, and the input signal light supplied from the signal input end 3 via the input optical fiber 4, are multiplexed by a multiplexer 5. , pumps the rare earth doped fiber 7 through the optical isolator 6. The multiplexer 5, as shown in FIG.
It is constructed by forming an optical waveguide 5b on a glass or polycarbonate substrate 5a by ion selection or selective polymerization.

【0013】希土類ドープファイバ7の励起により増幅
された信号光は、狭帯域フィルタ8を介して出力端9に
至り出力信号光が得られる。
The signal light amplified by the excitation of the rare earth doped fiber 7 passes through a narrow band filter 8 and reaches an output end 9, where an output signal light is obtained.

【0014】各光源1a,1b,1cは、同一構成を有
しており、光源1aを例に挙げると、たとえば図3に示
すように、通常の半導体レーザダイオード10からの励
起光11を、レンズ12で収束してマルチモードの入力
光ファイバ2aのコア部13に照射する。なお、14は
入力光ファイバ2aのクラッド部である。
Each of the light sources 1a, 1b, and 1c has the same configuration. Taking the light source 1a as an example, as shown in FIG. 3, for example, as shown in FIG. 12 and irradiates the core portion 13 of the multimode input optical fiber 2a. Note that 14 is a cladding portion of the input optical fiber 2a.

【0015】上述のように複数の光源1a,1b,1c
からの光を合成して希土類ドープファイバ7を励起する
ことにより、励起されるモードの数が統計的に増す。す
なわち、複数の光源1a,1b,1cからの各光の位相
が互いに異なってくるので、励起されるモードの数は増
す。また、励起光量も、単独光源の場合に比べ増加する
。すなわち、個々にはコヒーレントな複数個の光源から
の光を合成して励起光源とすることにより、全体のコヒ
ーレンス(可干渉性)を低減し、あわせて光量増加を図
っている。
As mentioned above, a plurality of light sources 1a, 1b, 1c
The number of excited modes is statistically increased by combining the light from the light source and exciting the rare earth-doped fiber 7. That is, since the phases of the lights from the plurality of light sources 1a, 1b, and 1c become different from each other, the number of excited modes increases. Furthermore, the amount of excitation light also increases compared to the case of a single light source. That is, by combining light from a plurality of individually coherent light sources to form an excitation light source, the overall coherence is reduced, and at the same time, the amount of light is increased.

【0016】次に、光ファイバ増幅器において使用され
る光源の他の構成例を図4に示す。図4に示す例におい
ては、各光源1a,1b,1cとしてレーザダイオード
アレイ15を使用した点が図3に示す光源と異なってい
る。図4に示すように、3個の独立した、すなわち位相
同期していないレーザダイオード15a,15b,15
cを10μm間隔でひとつのチップ上に形成した発光素
子を光源として用いている。各レーザダイオードを位相
同期させないようにするためには、たとえば、各ダイオ
ードを比較的閉じ込め効果の高い光導波路中に入れてや
ればよい。
Next, another configuration example of a light source used in an optical fiber amplifier is shown in FIG. The example shown in FIG. 4 differs from the light source shown in FIG. 3 in that a laser diode array 15 is used as each light source 1a, 1b, 1c. As shown in FIG.
A light emitting element formed on one chip at intervals of 10 μm is used as a light source. In order to prevent the laser diodes from being phase-synchronized, for example, each diode may be placed in an optical waveguide with a relatively high confinement effect.

【0017】これにより、3本の入力光ファイバ2a,
2b,2cのそれぞれに対して3個のレーザ光源が配置
されることになる。したがって、合計9個の互いに独立
したレーザ光源からの光を合成して励起光のコヒーレン
スを一層低下させ、かつ光量を増加させることができる
[0017] As a result, the three input optical fibers 2a,
Three laser light sources are arranged for each of 2b and 2c. Therefore, by combining the lights from a total of nine independent laser light sources, it is possible to further reduce the coherence of the excitation light and increase the amount of light.

【0018】合波器5における合波数をさらに増やせば
、コヒーレンスをさらに低下させ、かつ、光量を増すこ
とができる。アレイの数を増すことについては、光ファ
イバのコア径が50〜60μmmということによって制
約を受けるので、現在の製造技術ではアレイの数をこれ
以上増すことは難しい。但し、製造技術上が向上して、
レーザダイオード間の間隔を10μmより十分短くする
ことができるようになれば、アレイの数を更に増やすこ
とは可能である。
If the number of multiplexed waves in the multiplexer 5 is further increased, the coherence can be further reduced and the amount of light can be increased. Increasing the number of arrays is limited by the fact that the core diameter of the optical fiber is 50 to 60 μmm, so it is difficult to increase the number of arrays any further with current manufacturing technology. However, as manufacturing technology improves,
If the distance between laser diodes can be made sufficiently shorter than 10 μm, it is possible to further increase the number of arrays.

【0019】[0019]

【発明の効果】以上に述べたように、本発明においては
、複数の光源からの光を合成してマルチモード希土類ド
ープファイバを励起しているので、光源単体としてレー
ザ等のコヒーレントな光源を使用した場合でも、光のコ
ヒーレンスが低下された状態で励起される。したがって
、励起されるモードの数が増加し、コア部の励起を平準
化することができる。また、光を合成するので励起光量
が増加し、径大なマルチモード光ファイバを十分な励起
密度で励起することができる。
[Effects of the Invention] As described above, in the present invention, since the light from multiple light sources is combined to excite the multimode rare earth doped fiber, a coherent light source such as a laser is used as the single light source. Even in this case, the light is excited with reduced coherence. Therefore, the number of excited modes increases, and the excitation of the core can be leveled. Furthermore, since the light is combined, the amount of pumping light increases, and a large-diameter multimode optical fiber can be pumped with sufficient pumping density.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の光ファイバ増幅器の全体構成を示
す光配線図である。
FIG. 1 is an optical wiring diagram showing the overall configuration of an optical fiber amplifier of the present invention.

【図2】  図1に示す光ファイバ増幅器において使用
される光合波器の構成例を示す概略平面図である。
2 is a schematic plan view showing a configuration example of an optical multiplexer used in the optical fiber amplifier shown in FIG. 1. FIG.

【図3】  図1に示す光ファイバ増幅器において使用
される光源の構成例を示す要部拡大図である。
3 is an enlarged view of a main part showing an example of the configuration of a light source used in the optical fiber amplifier shown in FIG. 1. FIG.

【図4】  図1に示す光ファイバ増幅器において使用
される光源の他の構成例を示す要部拡大図である。
4 is an enlarged view of main parts showing another example of the configuration of a light source used in the optical fiber amplifier shown in FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1a,1b,1c  光源、2a,2b,2c  入力
光ファイバ、3  信号入力端、4  入力光ファイバ
、5  合波器、5a  基板、5b  導波路、6 
 光アイソレイータ、7  希土類ドープファイバ、8
  狭帯域フィルタ、9  出力端、10  半導体レ
ーザダイオード、11  励起光、12  レンズ、1
3  コア部、14  クラッド部、15  レーザダ
イオードアレイ、15a,15b,15c  レーザダ
イオード
1a, 1b, 1c light source, 2a, 2b, 2c input optical fiber, 3 signal input end, 4 input optical fiber, 5 multiplexer, 5a substrate, 5b waveguide, 6
Optical isolator, 7 Rare earth doped fiber, 8
Narrowband filter, 9 Output end, 10 Semiconductor laser diode, 11 Pumping light, 12 Lens, 1
3 core part, 14 clad part, 15 laser diode array, 15a, 15b, 15c laser diode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  コアに希土類をドープしたマルチモー
ド光ファイバと、複数の光源からの励起光を合成して前
記マルチモード光ファイバに供給して該マルチモード光
ファイバを励起する光合成手段とを有する光ファイバ増
幅器。
1. A multimode optical fiber having a core doped with a rare earth element, and a light synthesizing means for combining excitation light from a plurality of light sources and supplying the combined excitation light to the multimode optical fiber to excite the multimode optical fiber. fiber optic amplifier.
JP9052491A 1991-04-22 1991-04-22 Optical fiber amplifier Pending JPH04322228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9052491A JPH04322228A (en) 1991-04-22 1991-04-22 Optical fiber amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9052491A JPH04322228A (en) 1991-04-22 1991-04-22 Optical fiber amplifier

Publications (1)

Publication Number Publication Date
JPH04322228A true JPH04322228A (en) 1992-11-12

Family

ID=14000824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9052491A Pending JPH04322228A (en) 1991-04-22 1991-04-22 Optical fiber amplifier

Country Status (1)

Country Link
JP (1) JPH04322228A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054765A1 (en) * 1998-04-22 1999-10-28 Sumitomo Electric Industries, Ltd. Optical fiber, light-emitting module, and optical fiber amplifier
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9060904B2 (en) 2007-06-18 2015-06-23 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9072634B2 (en) 2007-06-18 2015-07-07 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US9153929B2 (en) 1998-11-25 2015-10-06 Imra America, Inc. Mode-locked multi-mode fiber laser pulse source
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US9375358B2 (en) 2012-12-10 2016-06-28 The Procter & Gamble Company Absorbent article with high absorbent material content
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9713556B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US9713557B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent article with high absorbent material content
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US10071002B2 (en) 2013-06-14 2018-09-11 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10470948B2 (en) 2003-02-12 2019-11-12 The Procter & Gamble Company Thin and dry diaper
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US10632029B2 (en) 2015-11-16 2020-04-28 The Procter & Gamble Company Absorbent cores having material free areas
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US10842690B2 (en) 2016-04-29 2020-11-24 The Procter & Gamble Company Absorbent core with profiled distribution of absorbent material
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11123240B2 (en) 2016-04-29 2021-09-21 The Procter & Gamble Company Absorbent core with transversal folding lines
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
US11510829B2 (en) 2014-05-27 2022-11-29 The Procter & Gamble Company Absorbent core with absorbent material pattern

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327412B1 (en) 1998-04-22 2001-12-04 Sumitomo Electric Industries, Ltd. Optical fiber, light-emitting module, and optical fiber amplifier
WO1999054765A1 (en) * 1998-04-22 1999-10-28 Sumitomo Electric Industries, Ltd. Optical fiber, light-emitting module, and optical fiber amplifier
US9153929B2 (en) 1998-11-25 2015-10-06 Imra America, Inc. Mode-locked multi-mode fiber laser pulse source
US9595802B2 (en) 1998-11-25 2017-03-14 Imra America, Inc. Multi-mode fiber amplifier
US9450371B2 (en) 1998-11-25 2016-09-20 Imra America, Inc. Mode-locked multi-mode fiber laser pulse source
US9570880B2 (en) 1998-11-25 2017-02-14 Imra America, Inc. Multi-mode fiber amplifier
US10660800B2 (en) 2003-02-12 2020-05-26 The Procter & Gamble Company Comfortable diaper
US11135096B2 (en) 2003-02-12 2021-10-05 The Procter & Gamble Company Comfortable diaper
US11234868B2 (en) 2003-02-12 2022-02-01 The Procter & Gamble Company Comfortable diaper
US10470948B2 (en) 2003-02-12 2019-11-12 The Procter & Gamble Company Thin and dry diaper
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US11793682B2 (en) 2003-02-12 2023-10-24 The Procter & Gamble Company Thin and dry diaper
US9072634B2 (en) 2007-06-18 2015-07-07 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US9241845B2 (en) 2007-06-18 2016-01-26 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9060904B2 (en) 2007-06-18 2015-06-23 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US10004647B2 (en) 2009-12-02 2018-06-26 The Procter & Gamble Company Apparatus and method for transferring particulate material
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US11602467B2 (en) 2011-06-10 2023-03-14 The Procter & Gamble Company Absorbent structure for absorbent articles
US9649232B2 (en) 2011-06-10 2017-05-16 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10893987B2 (en) 2011-06-10 2021-01-19 The Procter & Gamble Company Disposable diapers with main channels and secondary channels
US11000422B2 (en) 2011-06-10 2021-05-11 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US11911250B2 (en) 2011-06-10 2024-02-27 The Procter & Gamble Company Absorbent structure for absorbent articles
US11110011B2 (en) 2011-06-10 2021-09-07 The Procter & Gamble Company Absorbent structure for absorbent articles
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US11135105B2 (en) 2011-06-10 2021-10-05 The Procter & Gamble Company Absorbent structure for absorbent articles
US10245188B2 (en) 2011-06-10 2019-04-02 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10813794B2 (en) 2011-06-10 2020-10-27 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9173784B2 (en) 2011-06-10 2015-11-03 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US10449097B2 (en) 2012-11-13 2019-10-22 The Procter & Gamble Company Absorbent articles with channels and signals
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9375358B2 (en) 2012-12-10 2016-06-28 The Procter & Gamble Company Absorbent article with high absorbent material content
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9713557B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent article with high absorbent material content
US9713556B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US10071002B2 (en) 2013-06-14 2018-09-11 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10765567B2 (en) 2013-08-27 2020-09-08 The Procter & Gamble Company Absorbent articles with channels
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US11612523B2 (en) 2013-08-27 2023-03-28 The Procter & Gamble Company Absorbent articles with channels
US11406544B2 (en) 2013-08-27 2022-08-09 The Procter & Gamble Company Absorbent articles with channels
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US10335324B2 (en) 2013-08-27 2019-07-02 The Procter & Gamble Company Absorbent articles with channels
US11759376B2 (en) 2013-08-27 2023-09-19 The Procter & Gamble Company Absorbent articles with channels
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
US11957551B2 (en) 2013-09-16 2024-04-16 The Procter & Gamble Company Absorbent articles with channels and signals
US11944526B2 (en) 2013-09-19 2024-04-02 The Procter & Gamble Company Absorbent cores having material free areas
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US10828206B2 (en) 2013-12-19 2020-11-10 Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US11191679B2 (en) 2013-12-19 2021-12-07 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US10675187B2 (en) 2013-12-19 2020-06-09 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11510829B2 (en) 2014-05-27 2022-11-29 The Procter & Gamble Company Absorbent core with absorbent material pattern
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
US11918445B2 (en) 2015-05-12 2024-03-05 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US11497657B2 (en) 2015-05-29 2022-11-15 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10632029B2 (en) 2015-11-16 2020-04-28 The Procter & Gamble Company Absorbent cores having material free areas
US11123240B2 (en) 2016-04-29 2021-09-21 The Procter & Gamble Company Absorbent core with transversal folding lines
US10842690B2 (en) 2016-04-29 2020-11-24 The Procter & Gamble Company Absorbent core with profiled distribution of absorbent material

Similar Documents

Publication Publication Date Title
JPH04322228A (en) Optical fiber amplifier
US5566196A (en) Multiple core fiber laser and optical amplifier
US5187759A (en) High gain multi-mode optical amplifier
US5887097A (en) Apparatus for pumping an optical fiber laser
US7649914B2 (en) Optical fibre laser
US9537282B2 (en) System and method for a multi-mode pump in an optical amplifier
US6353499B2 (en) Optical fiber amplifier with oscillating pump energy
US5861973A (en) Optical amplifier for collectively amplifying optical signals having a plurality of multiplexed wavelengths
JPH07181529A (en) Optical-fiber amplification system
JP6445938B2 (en) Multi-core optical fiber and optical amplifier
US6600597B2 (en) Photonic crystal amplifier for optical telecommunications system
JP4134511B2 (en) Rare earth element doped optical fiber and optical device using the same
JP2667255B2 (en) Rare earth element doped glass waveguide amplifier
JP2693662B2 (en) Optical amplifier
RU2309500C2 (en) Optical amplifier pumped at multiple wavelengths
JP4460298B2 (en) Optical amplifier that pumps multiple wavelengths
US20040207908A1 (en) Raman amplifier system
US20030117699A1 (en) Use of photonic band gap structures in optical amplifiers
JP2006505117A (en) Optical amplifier
Toccafondo et al. Evanescent Multimode Longitudinal Pumping Scheme for Si-Nanocluster SensitizedEr $^{3+} $-Doped Waveguide Amplifiers
NASSIRI et al. Modeling of Combining SDM-WDM Erbium Doped Multicore Fiber Amplifier for Optical Telecommunication.
US6556343B1 (en) Optical fiber device
JPH03134632A (en) Optical fiber amplifying method and optical fiber amplifier
JPH0493091A (en) Optical amplifier
JP3019272B2 (en) Optical distributor