JPH05113146A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JPH05113146A
JPH05113146A JP27550091A JP27550091A JPH05113146A JP H05113146 A JPH05113146 A JP H05113146A JP 27550091 A JP27550091 A JP 27550091A JP 27550091 A JP27550091 A JP 27550091A JP H05113146 A JPH05113146 A JP H05113146A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
compression stroke
injection amount
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27550091A
Other languages
Japanese (ja)
Inventor
Soichi Matsushita
宗一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27550091A priority Critical patent/JPH05113146A/en
Publication of JPH05113146A publication Critical patent/JPH05113146A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts

Abstract

PURPOSE:To form a fuel-air mixture with a good ignitability around an ignition plug at the time of firing in an internal combustion engine wherein the required injection amount of fuel in total to the vicinity of the ignition plug during a compression stroke so as to fire the fuel, by determining the fuel injection timing on the basis of the fuel injection amount and the ignition timing. CONSTITUTION:A swirl type fuel injection valve 5 for injecting an atomized fuel large in the angle of spread and weak in the piercing force is disposed at the top of a cylinder 64 in a condition of being directed obliquely downwardly so as to inject the fuel toward the vicinity of an ignition plug 6. A required injection amount of fuel which is determined in corresponding relation to the engine operation condition is injected in total from the fuel injection valve 5 during a compression stroke, and is fired by means of the ignition plug 6. Control is so made as to inject the fuel during the compression stroke as mentioned above and fire it after injecting the fuel in a suction stroke to form a preliminary fuel-air mixture. At this time, in any case, the fuel injection timing during the compression stroke is determined on the basis of the fuel injection amount in the compression stroke and the ignition timing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関に関する。FIELD OF THE INVENTION This invention relates to internal combustion engines.

【0002】[0002]

【従来の技術】特開平2−169834号公報には、低
負荷運転時には、機関運転状態に応じて求められた要求
燃料噴射量の全量を圧縮行程において噴射して点火栓周
りに混合気を形成し、中高負荷運転時には、吸気行程に
おいて機関気筒内に燃料を噴射して予混合気を形成する
と共に、圧縮行程において機関気筒内に燃料を噴射して
点火栓近傍に着火用混合気を形成せしめるようにした内
燃機関が開示されている。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 2-169834 discloses that, during low load operation, the entire required fuel injection amount determined according to the engine operating state is injected in a compression stroke to form a mixture around the spark plug. During medium and high load operation, fuel is injected into the engine cylinder during the intake stroke to form a premixed mixture, and fuel is injected into the engine cylinder during the compression stroke to form an ignition mixture near the spark plug. Such an internal combustion engine is disclosed.

【0003】[0003]

【発明が解決しようとする課題】ところがこの内燃機関
では、圧縮行程における燃料噴射量、点火時期、および
吸気行程における燃料噴射量の値如何によって、着火時
において点火栓周りに着火の良好な混合気を形成するこ
とができない場合があり、このため燃焼が不安定になる
という問題があった。
However, in this internal combustion engine, the air-fuel mixture having good ignition around the ignition plug is ignited depending on the values of the fuel injection amount in the compression stroke, the ignition timing, and the fuel injection amount in the intake stroke. However, there is a problem in that combustion becomes unstable.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
め請求項1記載の第1の発明によれば、機関気筒内に燃
料を直接噴射せしめる燃料噴射弁を設け、機関運転状態
に応じて求められた要求燃料噴射量の全量を圧縮行程に
おいて燃料噴射弁から点火栓近傍に噴射せしめて点火栓
によって着火せしめるようにした内燃機関において、圧
縮行程における燃料噴射時期を、圧縮行程における燃料
噴射量および点火時期に基づいて定めるようにしてい
る。
In order to solve the above problems, according to the first aspect of the present invention, a fuel injection valve for directly injecting fuel into the engine cylinder is provided, and the fuel injection valve is provided according to the engine operating condition. In an internal combustion engine in which all of the required fuel injection amount obtained is injected from the fuel injection valve to the vicinity of the ignition plug in the compression stroke and ignited by the ignition plug, the fuel injection timing in the compression stroke is set to the fuel injection amount in the compression stroke. And the ignition timing.

【0005】また、請求項2記載の第2の発明によれ
ば、吸気行程において燃料を噴射して予混合気を形成す
ると共に、圧縮行程において機関気筒内に燃料を噴射し
て点火栓近傍に着火用混合気を形成せしめるようにした
内燃機関において、圧縮行程における燃料噴射時期を、
圧縮行程における燃料噴射量と、点火時期と、吸気行程
における燃料噴射量とに基づいて定めるようにしてい
る。
According to the second aspect of the present invention, the fuel is injected in the intake stroke to form a premixed gas, and the fuel is injected into the engine cylinder in the compression stroke to near the spark plug. In an internal combustion engine configured to form an air-fuel mixture for ignition, the fuel injection timing in the compression stroke is
It is determined based on the fuel injection amount in the compression stroke, the ignition timing, and the fuel injection amount in the intake stroke.

【0006】[0006]

【作用】第1の発明によれば、圧縮行程噴射だけが実行
される場合においては、圧縮行程における燃料噴射時期
は、圧縮行程における燃料噴射量および点火時期に基づ
いて定められる。これによって、着火時において点火栓
周りに着火の良好な混合気を形成することができる。
According to the first aspect of the invention, when only the compression stroke injection is executed, the fuel injection timing in the compression stroke is determined based on the fuel injection amount and the ignition timing in the compression stroke. As a result, a mixture with good ignition can be formed around the spark plug during ignition.

【0007】第2の発明によれば、吸気行程噴射および
圧縮行程噴射が実行される場合には、圧縮行程における
燃料噴射時期は、圧縮行程における燃料噴射量と、点火
時期と、吸気行程における燃料噴射量とに基づいて定め
られる。これによって、着火時において点火栓周りに着
火の良好な混合気を形成することができる。
According to the second invention, when the intake stroke injection and the compression stroke injection are executed, the fuel injection timing in the compression stroke is the fuel injection amount in the compression stroke, the ignition timing, and the fuel in the intake stroke. It is determined based on the injection amount. As a result, a mixture with good ignition can be formed around the spark plug during ignition.

【0008】[0008]

【実施例】図1には本発明の一実施例である4気筒ガソ
リン機関の全体図を示す。同図において、1は機関本
体、2はサージタンク、3はサージタンク2から延びる
吸気管、4は吸気管3の途中に設けられたスロットル
弁、5は各気筒内に燃料を直接噴射する燃料噴射弁、6
は点火栓、7は高圧用リザーバタンク、8は高圧導管9
を介して高圧燃料をリザーバタンク7内に圧送するする
ための、吐出圧制御可能な高圧燃料ポンプ、10は燃料
タンク、11は導管12を介して燃料タンク10から高
圧燃料ポンプ8に燃料を供給する低圧燃料ポンプを夫々
示す。低圧燃料ポンプ11の吐出側は、各燃料噴射弁5
のピエゾ圧電素子を冷却するための圧電素子冷却用導入
管13に接続される。圧電素子冷却用返戻管14は燃料
タンク10に連結され、この返戻管14を介して圧電素
子冷却用導入管13を流れる燃料を燃料タンク10に回
収する。各枝管15は、各高圧燃料噴射弁5を高圧用リ
ザーバタンク7に接続する。
1 is a general view of a four-cylinder gasoline engine which is an embodiment of the present invention. In the figure, 1 is an engine body, 2 is a surge tank, 3 is an intake pipe extending from the surge tank 2, 4 is a throttle valve provided in the middle of the intake pipe 3, and 5 is fuel for directly injecting fuel into each cylinder. Injection valve, 6
Is a spark plug, 7 is a high pressure reservoir tank, 8 is a high pressure conduit 9
A high-pressure fuel pump capable of controlling the discharge pressure for pumping the high-pressure fuel into the reservoir tank 7 via a fuel tank, 10 is a fuel tank, and 11 is a fuel supplied from the fuel tank 10 to the high-pressure fuel pump 8 via a conduit 12. Each low pressure fuel pump is shown. The discharge side of the low-pressure fuel pump 11 is connected to each fuel injection valve 5
It is connected to a piezoelectric element cooling introducing pipe 13 for cooling the piezoelectric element. The return pipe 14 for cooling the piezoelectric element is connected to the fuel tank 10, and the fuel flowing through the introduction pipe 13 for cooling the piezoelectric element is collected in the fuel tank 10 via the return pipe 14. Each branch pipe 15 connects each high-pressure fuel injection valve 5 to the high-pressure reservoir tank 7.

【0009】高圧用リザーバタンク7には圧力センサ1
7が取付けられ、この圧力センサ17は高圧用リザーバ
タンク7内の燃料圧を検出する。圧力センサ17の検出
値に基づいて、高圧用リザーバタンク7内の燃料圧が目
標燃料圧となるように高圧燃料ポンプ8が制御せしめら
れる吸気管3の入口部には、吸入空気量QAを検出する
ためのエアフローメータ18が配置される。
A pressure sensor 1 is installed in the high pressure reservoir tank 7.
7 is attached, and this pressure sensor 17 detects the fuel pressure in the high pressure reservoir tank 7. The intake air amount QA is detected at the inlet of the intake pipe 3 where the high-pressure fuel pump 8 is controlled so that the fuel pressure in the high-pressure reservoir tank 7 becomes the target fuel pressure based on the detection value of the pressure sensor 17. An air flow meter 18 for performing the operation is arranged.

【0010】エアフローメータ18近傍の吸気管3には
吸気温を検出するための吸気温センサ19が配置され、
機関本体1には機関冷却水温を検出するための水温セン
サ20が配置される。図2は電子制御ユニット70の構
成を示すブロック線図である。図2を参照すると、電子
制御ユニット70はディジタルコンピュータからなり、
双方向性バス71によって相互に接続されたROM(リ
ードオンリメモリ)72、RAM(ランダムアクセスメ
モリ)73、CPU(マイクロプロセッサ)74、入力
ポート75および出力ポート76を具備する。
An intake air temperature sensor 19 for detecting the intake air temperature is arranged in the intake pipe 3 near the air flow meter 18,
A water temperature sensor 20 for detecting the engine cooling water temperature is arranged in the engine body 1. FIG. 2 is a block diagram showing the configuration of the electronic control unit 70. Referring to FIG. 2, the electronic control unit 70 comprises a digital computer,
A ROM (Read Only Memory) 72, a RAM (Random Access Memory) 73, a CPU (Microprocessor) 74, an input port 75 and an output port 76 are connected to each other by a bidirectional bus 71.

【0011】圧力センサ17、エアフローメータ18、
吸気温センサ19、および水温センサ20は対応するA
D変換器30から33を介して入力ポート75に夫々接
続される。機関回転数Ne に比例した出力パルスを発生
するクランク角センサ21は入力ポート75に接続され
る。一方、出力ポート76は、対応する駆動回路34か
ら37を介して夫々高圧燃料ポンプ7、燃料噴射弁5、
EGR制御弁24、および吸気制御弁25に接続され
る。
A pressure sensor 17, an air flow meter 18,
The intake air temperature sensor 19 and the water temperature sensor 20 correspond to A
It is connected to the input ports 75 via the D converters 30 to 33, respectively. The crank angle sensor 21 that generates an output pulse proportional to the engine speed Ne is connected to the input port 75. On the other hand, the output port 76 is connected to the high pressure fuel pump 7, the fuel injection valve 5, and the fuel injection valve 5 via the corresponding drive circuits 34 to 37, respectively.
It is connected to the EGR control valve 24 and the intake control valve 25.

【0012】EGR制御弁24は排気ガス再循環量を制
御し、EGR制御弁24の開度が大きい程多量の排気ガ
スが吸気通路に還流される。また、各気筒にはストレー
ト吸気ポートとヘリカル吸気ポートとが接続され、吸気
制御弁25はストレート吸気ポートの開度を制御する。
これによって、吸気制御弁25の開度が小さい程、ヘリ
カル吸気ポートから気筒内に流入する空気量が増大し、
このため強いスワールが発生する。
The EGR control valve 24 controls the exhaust gas recirculation amount, and the larger the opening degree of the EGR control valve 24, the larger amount of the exhaust gas is recirculated to the intake passage. A straight intake port and a helical intake port are connected to each cylinder, and the intake control valve 25 controls the opening of the straight intake port.
As a result, the smaller the opening degree of the intake control valve 25, the larger the amount of air flowing into the cylinder from the helical intake port.
This causes a strong swirl.

【0013】また、出力ポート76は駆動回路38を介
してイグナイタ26に接続される。このイグナイタ26
は点火コイル27を介して点火栓6に接続される。図3
には燃料噴射弁5の側面断面図を示す。図3を参照する
と、40はノズル50内に挿入されたニードル、41は
加圧ロッド、42は可動プランジャ、43はばね収容室
44内に配置されかつニードル40を下方に向けて押圧
する圧縮ばね、45は加圧ピストン、46はピエゾ圧電
素子、47は可動プランジャ42の頂部とピストン45
間に形成されかつ燃料で満たされた加圧室、48はニー
ドル加圧室を夫々示す。ニードル加圧室48は燃料通路
49および枝管14を介して高圧用リザーバタンク7
(図1)に連結され、従って高圧用リザーバタンク7内
の高圧燃料が枝管14および燃料通路49を介してニー
ドル加圧室48内に供給される。ピエゾ圧電素子46に
電荷がチャージされるとピエゾ圧電素子46が伸長し、
それによって加圧室47内の燃料圧が高められる。その
結果、可動プランジャ42が下方に押圧され、ノズル口
53は、ニードル40によって閉弁状態に保持される。
一方、ピエゾ圧電素子46にチャージされた電荷がディ
スチャージされるとピエゾ圧電素子46が収縮し、加圧
室47内の燃料圧が低下する。その結果、可動プランジ
ャ42が上昇するためにニードル40が上昇し、ノズル
口53から燃料が噴射される。
The output port 76 is also connected to the igniter 26 via the drive circuit 38. This igniter 26
Is connected to the spark plug 6 via the ignition coil 27. Figure 3
1 shows a side sectional view of the fuel injection valve 5. Referring to FIG. 3, 40 is a needle inserted into the nozzle 50, 41 is a pressure rod, 42 is a movable plunger, 43 is a compression spring which is arranged in a spring accommodating chamber 44 and presses the needle 40 downward. , 45 is a pressure piston, 46 is a piezoelectric element, and 47 is the top of the movable plunger 42 and the piston 45.
A pressure chamber formed between and filled with fuel, 48 denotes a needle pressure chamber, respectively. The needle pressurizing chamber 48 is connected to the high pressure reservoir tank 7 via the fuel passage 49 and the branch pipe 14.
Therefore, the high pressure fuel in the high pressure reservoir tank 7 is supplied into the needle pressurizing chamber 48 through the branch pipe 14 and the fuel passage 49. When the piezoelectric element 46 is charged, the piezoelectric element 46 expands,
As a result, the fuel pressure in the pressurizing chamber 47 is increased. As a result, the movable plunger 42 is pressed downward, and the nozzle opening 53 is kept closed by the needle 40.
On the other hand, when the electric charge charged in the piezoelectric element 46 is discharged, the piezoelectric element 46 contracts and the fuel pressure in the pressurizing chamber 47 decreases. As a result, the movable plunger 42 moves up, the needle 40 moves up, and the fuel is injected from the nozzle port 53.

【0014】図4には図1に示す機関の縦断面図を示
す。図4を参照すると、60はシリンダブロック、61
はシリンダヘッド、62はピストン、63はピストン6
2の頂面に形成された略円筒状凹部、64はピストン6
2頂面とシリンダヘッド61内壁面間に形成されたシリ
ンダ室を夫々示す。点火栓6はシリンダ室64に臨んで
シリンダヘッド61のほぼ中央部に取り付けられる。図
面には示さないがシリンダヘッド61内にはストレート
吸気ポート、ヘリカル吸気ポート、および排気ポートが
形成され、これら吸気ポートおよび排気ポートのシリン
ダ室64内への開口部には夫々吸気弁66(図7(a) 参
照) および排気弁が配置される。燃料噴射弁5はスワー
ル型の燃料噴射弁であり、広がり角が大きく貫徹力の弱
い噴霧状の燃料を噴射する。燃料噴射弁5は、斜め下方
を指向してシリンダ室64の頂部に配置され、点火栓6
近傍に向かって燃料噴射するように配置される。また、
燃料噴射弁5の燃料噴射方向および燃料噴射時期は、噴
射燃料がピストン62頂部に形成された凹部63を指向
するように決められる。
FIG. 4 is a vertical sectional view of the engine shown in FIG. Referring to FIG. 4, 60 is a cylinder block, 61
Is a cylinder head, 62 is a piston, 63 is a piston 6
2 is a substantially cylindrical recess formed on the top surface of the piston 2, 64 is the piston 6
2 shows cylinder chambers formed between the top surface and the inner wall surface of the cylinder head 61, respectively. The spark plug 6 faces the cylinder chamber 64 and is attached to a substantially central portion of the cylinder head 61. Although not shown in the drawing, a straight intake port, a helical intake port, and an exhaust port are formed in the cylinder head 61, and the intake valve 66 (Fig. 7 (a)) and the exhaust valve. The fuel injection valve 5 is a swirl type fuel injection valve, and injects a fuel atomized fuel having a wide spread angle and a weak penetration force. The fuel injection valve 5 is arranged diagonally downward and is arranged at the top of the cylinder chamber 64.
It is arranged to inject fuel toward the vicinity. Also,
The fuel injection direction and the fuel injection timing of the fuel injection valve 5 are determined so that the injected fuel is directed to the recess 63 formed at the top of the piston 62.

【0015】本実施例の内燃機関は機関運転状態に応じ
た燃料噴射量を吸気行程と圧縮行程とに分割噴射可能な
筒内噴射式内燃機関であって、図5には所定の機関回転
数における吸気行程燃料噴射量と圧縮行程燃料噴射量の
割合を示す。図5を参照すると、横軸は機関の負荷を表
しており、図5では負荷として燃料噴射量Qをとり、縦
軸にも燃料噴射量Qをとっている。
The internal combustion engine of the present embodiment is a cylinder injection type internal combustion engine in which the fuel injection amount according to the engine operating state can be dividedly injected into the intake stroke and the compression stroke, and in FIG. Shows the ratio of the intake stroke fuel injection amount and the compression stroke fuel injection amount in. Referring to FIG. 5, the horizontal axis represents the load of the engine. In FIG. 5, the fuel injection amount Q is taken as the load, and the vertical axis also shows the fuel injection amount Q.

【0016】機関負荷を示す燃料噴射量がアイドル時の
燃料噴射量QI から中負荷時の燃料噴射量QM までは、
圧縮行程においてだけ燃料が噴射され、圧縮行程におけ
る燃料噴射量(以下「圧縮行程燃料噴射量」という)Q
C はアイドル燃料噴射量QI から中負荷燃料噴射量QM
まで漸次増大せしめられる。機関負荷を示す燃料噴射量
がQM を越えると、圧縮行程燃料噴射量はQM からQD
まで急激に減少せしめられると共に吸気行程における燃
料噴射量(以下「吸気行程燃料噴射量」という)QS
P まで急激に増大せしめられる。QM は中負荷付近の
燃料噴射量であり、QD とQP との和として次式で示さ
れる。
From the fuel injection amount Q I when the fuel injection amount indicating the engine load is idling to the fuel injection amount Q M when the medium load is
Fuel is injected only in the compression stroke, and the fuel injection amount in the compression stroke (hereinafter referred to as "compression stroke fuel injection amount") Q
C is the idle fuel injection amount Q I to the medium load fuel injection amount Q M
It is gradually increased until. When the fuel injection amount indicating the engine load exceeds Q M , the compression stroke fuel injection amount changes from Q M to Q D.
The fuel injection amount Q S in the intake stroke (hereinafter referred to as “intake stroke fuel injection amount”) Q S is rapidly increased to Q P. Q M is a fuel injection amount near the medium load, represented by the following formula as the sum of the Q D and Q P.

【0017】QM =QD +QP ここで、QD は点火栓6により着火可能な混合気を形成
し得る最小限の圧縮行程燃料噴射量でありアイドル燃料
噴射量QI より少量である。また、QP は吸気行程にお
いて噴射された燃料がシリンダ室64内に均質に拡散し
た際に点火栓6による着火火炎が伝播可能な最小限の吸
気行程燃料噴射量である。中負荷時の燃料噴射量QM
ら高負荷時の燃料噴射量QH までは燃料噴射量を圧縮行
程と吸気行程とに分割して噴射し、圧縮行程燃料噴射量
は機関負荷によらずQD で一定とし、吸気行程燃料噴射
量は機関負荷の増大に伴って増大せしめる。
Q M = Q D + Q P Here, Q D is the minimum compression stroke fuel injection amount that can form an air-fuel mixture that can be ignited by the spark plug 6, and is smaller than the idle fuel injection amount Q I. Further, the Q P is the minimum intake stroke fuel injection amount capable ignition flame propagation due to spark plug 6 when the injected fuel homogeneously diffused in the cylinder chamber 64 during the intake stroke. From the fuel injection amount Q M at medium load to the fuel injection amount Q H at high load, the fuel injection amount is divided into a compression stroke and an intake stroke for injection, and the compression stroke fuel injection amount is Q regardless of the engine load. The intake stroke fuel injection amount is made to increase as the engine load increases, with D being constant.

【0018】機関負荷が高負荷時燃料噴射量QH を越え
て最大燃料噴射量QW までのごく高負荷時においては、
燃料噴射量が多いため吸気行程噴射によって形成される
シリンダ室内の予混合気の濃度が着火に十分なほど濃い
ため、着火のための圧縮行程噴射をやめて、要求燃料噴
射量の全量を吸気行程において噴射することとしてい
る。高負荷時燃料噴射量QH はシリンダ室内に燃料が均
質に拡散した場合にも点火栓により着火可能な均質混合
気を形成可能な最小限吸気行程燃料噴射量である。
When the engine load exceeds the fuel injection amount Q H under high load and reaches the maximum fuel injection amount Q W at a very high load,
Since the amount of fuel injection is large, the concentration of the pre-mixture formed in the intake stroke injection is sufficiently high for ignition, so the compression stroke injection for ignition is stopped and the total amount of fuel injection required in the intake stroke It is supposed to be jetted. The high-load fuel injection amount Q H is the minimum intake stroke fuel injection amount that can form a homogeneous mixture that can be ignited by the spark plug even when the fuel is uniformly diffused in the cylinder chamber.

【0019】図6に示されるように、吸気行程とは排気
プロセスの上死点から吸入プロセスの下死点までの期間
を意味し、圧縮行程とは吸入プロセスの下死点から圧縮
プロセスの上死点までの期間を意味する。吸気行程噴射
はDI で示される期間内で実行される。この期間DI
吸気行程のほぼ前半に相当する。圧縮行程噴射はDC
示される期間内で実行される。この期間DC は圧縮行程
のほぼ後半に相当する。燃料は期間DI またはDC 内で
噴射されるために、燃料噴射はシリンダブロック60に
直接衝突することはなく、このため噴射燃料はシリンダ
ブロック60の内面にほとんど付着しない。
As shown in FIG. 6, the intake stroke means the period from the top dead center of the exhaust process to the bottom dead center of the intake process, and the compression stroke is from the bottom dead center of the intake process to the top dead center of the compression process. It means the period to the dead point. The intake stroke injection is executed within the period indicated by D I. This period D I corresponds to almost the first half of the intake stroke. The compression stroke injection is performed within the period indicated by D C. This period D C corresponds to almost the latter half of the compression stroke. Since the fuel is injected within the period D I or D C , the fuel injection does not impinge directly on the cylinder block 60, so that the injected fuel adheres very little to the inner surface of the cylinder block 60.

【0020】中負荷付近(燃料噴射量QM )より低い負
荷領域においては、図4に示されるように、圧縮行程後
期に圧縮行程噴射のみが実行され、燃料噴射弁5から点
火栓6およびピストン62頂面の凹部63を指向して燃
料が噴射される。この噴射燃料は貫徹力が弱いため、噴
射燃料は点火栓6付近の領域Kに偏在する。この領域K
内の燃料分布は不均一であり、リッチな混合気層から空
気層まで変化するため、領域K内には最も燃焼し易い理
論空燃比付近の可燃混合気層が存在する。従って点火栓
6付近に着火の良好な可燃混合気層が存在すれば容易に
着火され、この着火火炎が不均一混合気層全体に伝播し
て燃焼が完了する。
In the load region lower than near the middle load (fuel injection amount Q M ), as shown in FIG. 4, only the compression stroke injection is executed in the latter stage of the compression stroke, and the fuel injection valve 5 to the spark plug 6 and the piston are discharged. The fuel is injected toward the concave portion 63 on the top surface 62. Since the penetrating force of this injected fuel is weak, the injected fuel is unevenly distributed in the region K near the spark plug 6. This area K
Since the fuel distribution in the inside is non-uniform and changes from the rich air-fuel mixture layer to the air layer, the combustible air-fuel mixture layer near the stoichiometric air-fuel ratio where combustion is most likely exists in the region K. Therefore, if a combustible air-fuel mixture layer with good ignition exists near the spark plug 6, it is easily ignited, and this ignition flame propagates to the entire heterogeneous air-fuel mixture layer to complete combustion.

【0021】ところが、圧縮行程燃料噴射量、点火時期
等やその他の要因、例えば吸気温、機関冷却水温、およ
びスワールの強さ等の値によっては、着火時において点
火栓周りに着火の良好な混合気を形成することができな
い場合があり、このため燃焼が不安定になるという問題
がある。そこで本実施例では、圧縮行程噴射のみが実行
される負荷領域では、圧縮行程燃料噴射量、点火時期、
水温、吸気温、EGR量、スワールの強さに基づいて、
着火時において点火栓周りに着火の良好な混合気が形成
されるように圧縮行程燃料噴射時期を決定するようにし
ている。
However, depending on the compression stroke fuel injection amount, the ignition timing, and other factors, such as the intake air temperature, the engine cooling water temperature, and the swirl strength, the ignition around the spark plug may be mixed well during ignition. In some cases, it may not be possible to form air, which causes the problem of unstable combustion. Therefore, in this embodiment, in the load region where only the compression stroke injection is executed, the compression stroke fuel injection amount, the ignition timing,
Based on water temperature, intake air temperature, EGR amount, swirl strength,
At the time of ignition, the compression stroke fuel injection timing is determined so that a mixture with good ignition is formed around the spark plug.

【0022】一方、燃料噴射量QM からQH に対応する
負荷領域においては、図7に示されるように、吸気行程
初期(図7(a))に吸気行程噴射が実行され、燃料噴射弁
5から点火栓6およびピストン62頂面の凹部63を指
向して燃料が噴射される。この噴射燃料は、広がり角が
大きく貫徹力の弱い噴霧状の燃料であり、噴射燃料の一
部はシリンダ室64内に浮遊し、他は凹部63に衝突す
る。これらの噴射燃料は、吸気ポートからシリンダ室6
4内に流入する吸入空気流によって生ずるシリンダ室6
4内の乱れTによってシリンダ室64内に拡散され、吸
気行程から圧縮行程に至る間に予混合気Pが形成される
(図7(b))。この予混合気Pの空燃比は、着火火炎が伝
播できる程度の空燃比である。尚、図7(b) の状態では
噴射燃料の中心軸線の延長がシリンダ壁に指向している
ため、噴射燃料の貫徹力が強い場合には噴霧の一部が直
接シリンダ壁に付着するおそれがある。本実施例では比
較的貫徹力の弱い噴射を行っているため特に問題はない
が、本発明の実施例ではこの期間を無噴射期間とするこ
とにより、燃料のシリンダ壁面への付着防止効果を高め
ている。続いて圧縮行程後期(図7(c))に圧縮行程噴射
が実行され、燃料噴射弁5から点火栓6近傍およびピス
トン62頂面の凹部63を指向して燃料が噴射される。
この噴射燃料は元々点火栓6に指向しているうえ貫徹力
が弱く、またシリンダ室64内の圧力が大きいため、噴
射燃料は点火栓6付近の領域Kに偏在する。この領域K
内の燃料分布も不均一であり、リッチな混合気層から空
気層まで変化するため、この領域K内には最も燃焼し易
い理論空燃比付近の可燃混合気層が存在する。従って点
火栓6付近に着火の良好な可燃混合気層が存在すれば容
易に着火され、不均一混合気領域Kを中心に燃焼が進行
する(図7(d))。この燃焼過程で体積膨張した燃焼ガス
Bの周辺から順次、予混合気Pに火炎が伝播し燃焼が完
了する。このように、中負荷および高負荷領域において
は、吸気行程初期において燃料を噴射することにより火
炎伝播用の混合気をシリンダ室64内全体に形成すると
共に、圧縮行程後期において燃料を噴射することにより
点火栓6近傍に比較的濃い混合気を形成して着火および
火炎核形成用の混合気を形成する。斯くして空気利用率
の高い燃焼が得られる。特に中負荷運転時においては、
従来の機関のように吸気行程、または圧縮行程前半に要
求噴射量の全量を噴射すると、噴射燃料はシリンダ室6
4内全体に拡散してしまうため、シリンダ室64内に形
成される混合気が過薄となり、着火および燃焼が困難に
なるという問題がある。また一方、中負荷運転時におい
て要求噴射量の全量を圧縮行程後期において噴射する
と、多量のスモークが発生したり、空気利用率を高める
ことができず十分な高出力を得ることができないという
問題がある。
On the other hand, in the load region corresponding to the fuel injection amounts Q M to Q H , as shown in FIG. 7, the intake stroke injection is executed at the beginning of the intake stroke (FIG. 7 (a)), and the fuel injection valve Fuel is injected from 5 toward the spark plug 6 and the concave portion 63 on the top surface of the piston 62. The injected fuel is a spray-like fuel having a large divergence angle and a weak penetration force. A part of the injected fuel floats in the cylinder chamber 64 and the other impinges on the recess 63. These injected fuel flows from the intake port to the cylinder chamber 6
Cylinder chamber 6 generated by the intake air flow flowing into 4
The turbulence T in 4 diffuses into the cylinder chamber 64 to form the premixed air P from the intake stroke to the compression stroke (FIG. 7 (b)). The air-fuel ratio of the premixed air P is such that the ignition flame can propagate. In addition, in the state of FIG. 7 (b), the extension of the central axis of the injected fuel is directed toward the cylinder wall. Therefore, when the penetrating force of the injected fuel is strong, a part of the spray may directly adhere to the cylinder wall. is there. In this embodiment, there is no particular problem because injection with relatively weak penetration is performed, but in the embodiment of the present invention, by making this period a non-injection period, the effect of preventing fuel from adhering to the cylinder wall surface is enhanced. ing. Subsequently, the compression stroke injection is executed in the latter half of the compression stroke (FIG. 7 (c)), and the fuel is injected from the fuel injection valve 5 toward the vicinity of the spark plug 6 and the recess 63 on the top surface of the piston 62.
The injected fuel is originally directed to the spark plug 6, the penetration force is weak, and the pressure in the cylinder chamber 64 is large. Therefore, the injected fuel is unevenly distributed in the region K near the spark plug 6. This area K
Since the fuel distribution inside is also non-uniform and changes from the rich air-fuel mixture layer to the air layer, the combustible air-fuel mixture layer near the stoichiometric air-fuel ratio where combustion is most likely to exist in this region K. Therefore, if a combustible air-fuel mixture layer with good ignition exists near the spark plug 6, it is easily ignited, and combustion proceeds around the heterogeneous air-fuel mixture region K (FIG. 7 (d)). In this combustion process, the flame propagates to the premixed gas P sequentially from the periphery of the combustion gas B whose volume has expanded, and the combustion is completed. As described above, in the medium load and high load regions, by injecting the fuel in the early stage of the intake stroke to form the air-fuel mixture for flame propagation in the entire cylinder chamber 64 and injecting the fuel in the latter stage of the compression stroke. A relatively rich air-fuel mixture is formed in the vicinity of the ignition plug 6 to form an air-fuel mixture for ignition and flame kernel formation. Thus, combustion with high air utilization is obtained. Especially during medium load operation,
When the entire required injection amount is injected in the intake stroke or the first half of the compression stroke as in the conventional engine, the injected fuel becomes the cylinder chamber 6
Since the air-fuel mixture is diffused into the entire cylinder 4, the air-fuel mixture formed in the cylinder chamber 64 becomes excessively thin, which makes ignition and combustion difficult. On the other hand, when the entire required injection amount is injected in the latter half of the compression stroke during medium load operation, a large amount of smoke is generated, and there is a problem that the air utilization ratio cannot be increased and a sufficiently high output cannot be obtained. is there.

【0023】そこで、前述のように中負荷運転時におい
ては吸気行程と圧縮行程とに分割噴射することにより、
良好な着火と、空気利用率の高い燃焼により高出力を得
ようとしている。また、中負荷付近においては、吸気行
程で噴射された燃料により形成される均質混合気は、着
火可能な空燃比により薄い火炎伝播可能な程度の空燃比
でよく、希薄燃焼により燃費を向上することができる。
Therefore, as described above, during the medium load operation, by performing the divided injection in the intake stroke and the compression stroke,
We are trying to obtain high output by favorable ignition and combustion with high air utilization rate. In addition, in the vicinity of medium load, the homogeneous mixture formed by the fuel injected in the intake stroke may have an air-fuel ratio such that a thin flame can be propagated due to an ignitable air-fuel ratio, and fuel consumption can be improved by lean combustion. You can

【0024】ところが、圧縮行程燃料噴射量、点火時
期、吸気行程燃料噴射量等やその他の要因、例えば吸気
温、機関冷却水温、およびスワールの強さ等の値如何に
よっては、着火時において点火栓周りに着火の良好な混
合気を形成することができない場合があり、このため燃
焼が不安定になるという問題がある。そこで本実施例で
は、吸気行程噴射および圧縮行程噴射が実行される負荷
領域では、吸気行程燃料噴射量、圧縮行程燃料噴射量、
点火時期、水温、吸気温、EGR量、スワールの強さに
基づいて、着火時において点火栓周りに着火の良好な混
合気が形成されるように圧縮行程燃料噴射時期を決定す
るようにしている。
However, depending on the compression stroke fuel injection amount, the ignition timing, the intake stroke fuel injection amount, and other factors, such as the intake air temperature, the engine cooling water temperature, and the swirl strength, the spark plug is ignited. In some cases, it is not possible to form an air-fuel mixture with good ignition around it, which causes a problem of unstable combustion. Therefore, in the present embodiment, in the load region where the intake stroke injection and the compression stroke injection are executed, the intake stroke fuel injection amount, the compression stroke fuel injection amount,
The compression stroke fuel injection timing is determined based on the ignition timing, the water temperature, the intake air temperature, the EGR amount, and the swirl strength so that a mixture with good ignition is formed around the spark plug during ignition. ..

【0025】図8には吸気行程および圧縮行程燃料噴射
量を計算するルーチンを示す。このルーチンは一定クラ
ンク角毎の割込みによって実行される。図8を参照する
と、まずステップ80において、要求燃料噴射量Qが、
機関回転数Ne およびQA/Ne に基づくマップ(図9
参照)から求められる。ここでQA/Ne は機関1回転
当たりの吸入空気量であり、機関負荷を表している。次
いでステップ81では、要求燃料噴射量Qに基づいて分
割率QRが計算される。ここで分割率QRは要求燃料噴
射量Qに対する吸気行程燃料噴射量QS の比である。
FIG. 8 shows a routine for calculating the intake stroke and the compression stroke fuel injection amount. This routine is executed by interruption every constant crank angle. Referring to FIG. 8, first, at step 80, the required fuel injection amount Q is
Map based on engine speed Ne and QA / Ne (Fig. 9
See)). Here, QA / Ne is the intake air amount per one revolution of the engine and represents the engine load. Next, at step 81, the division ratio QR is calculated based on the required fuel injection amount Q. Here, the division ratio QR is the ratio of the intake stroke fuel injection amount Q S to the required fuel injection amount Q.

【0026】要求燃料噴射量Qと分割率QRとのマップ
は図10に示すようである。図10は図5に対応してお
り、要求燃料噴射量QがQI からQM まではQRは0で
あり、従って、要求燃料噴射量Qの全量が圧縮行程にお
いて噴射される。QM からQ H までは、吸気行程および
圧縮行程噴射が実行され、負荷の増大に応じて吸気行程
燃料噴射量の比率が増大する。QH からQW まではQR
は1.0 となり、要求燃料噴射量Qの全量が吸気行程に
おいて噴射される。
Map of required fuel injection amount Q and division ratio QR
Is as shown in FIG. FIG. 10 corresponds to FIG.
And the required fuel injection amount Q is QITo QMUntil the QR is 0
Therefore, all of the required fuel injection amount Q is in the compression stroke.
Is jetted. QMTo Q HUp to the intake stroke and
The compression stroke injection is executed, and the intake stroke is increased as the load increases.
The ratio of fuel injection amount increases. QHTo QWUp to QR
Becomes 1.0, and all of the required fuel injection amount Q is in the intake stroke.
It is jetted at.

【0027】再び図8を参照すると、ステップ82では
次式に基づいて吸気行程燃料噴射量QS が計算される。 QS =Q・QR 次いでステップ83ではQから吸気行程燃料噴射量QS
を減算することによって圧縮行程燃料噴射量QC が計算
される。
Referring again to FIG. 8, at step 82, the intake stroke fuel injection amount Q S is calculated based on the following equation. Q S = Q · QR Next, at step 83, the intake stroke fuel injection amount Q S from Q
The compression stroke fuel injection amount Q C is calculated by subtracting

【0028】図11には点火時期SAを計算するための
ルーチンを示す。このルーチンは一定クランク角毎の割
込みによって実行される。図11を参照すると、まずス
テップ90において機関回転数Ne が読込まれ、次いで
ステップ91においてQA/Ne が読込まれる。ステッ
プ92において、基本点火時期SABが、機関回転数N
e およびQA/Ne に基づくマップ(図12参照)から
求められる。
FIG. 11 shows a routine for calculating the ignition timing SA. This routine is executed by interruption every constant crank angle. Referring to FIG. 11, first, at step 90, the engine speed Ne is read, and then at step 91, QA / Ne is read. In step 92, the basic ignition timing SAB is the engine speed N
It is obtained from a map based on e and QA / Ne (see FIG. 12).

【0029】ステップ93では、機関冷却水温THWに
基づくマップ(図13参照)から水温補正値STHWが
求められる。SA、SAB、およびSTHWは、図14
に示すように、圧縮上死点からの進角量で示され、これ
らの値が大きい程点火時期が進角せしめられる。図13
を参照すると、水温補正値STHWは、機関冷却水温T
HWの増大に応じて減少する(遅角せしめられる)。
In step 93, the water temperature correction value STHW is obtained from the map based on the engine cooling water temperature THW (see FIG. 13). SA, SAB, and STHW are shown in FIG.
As shown in, the compression angle is indicated by the advance amount from the compression top dead center, and the ignition timing is advanced as the value increases. FIG.
Referring to, the water temperature correction value STHW is the engine cooling water temperature T
Decreases with the increase of HW (delayed).

【0030】再び図11を参照すると、ステップ94で
基本点火時期SABに水温補正値THWを加算して点火
時期が求められる。図15には圧縮行程燃料噴射時期A
inj2を計算するためのルーチンを示す。このルーチンは
一定クランク角毎の割込みによって実行される。図15
を参照すると、まずステップ100で点火時期SAが読
込まれ、次いでステップ101で圧縮行程燃料噴射量Q
C が読込まれる。ステップ102で水温補正値ATHW
が機関冷却水温THWに基づくマップ(図16参照)か
ら求められる。水温補正値ATHWは圧縮上死点からの
進角量で示され、この値が大きい程圧縮行程燃料噴射時
期が進角せしめられる。これは、以下の補正値について
も同様である。
Referring again to FIG. 11, in step 94, the water temperature correction value THW is added to the basic ignition timing SAB to obtain the ignition timing. FIG. 15 shows the compression stroke fuel injection timing A
A routine for calculating inj 2 is shown. This routine is executed by interruption every constant crank angle. Figure 15
Referring to, first, at step 100, the ignition timing SA is read, then at step 101, the compression stroke fuel injection amount Q
C is read. Water temperature correction value ATHW in step 102
Is obtained from a map based on the engine cooling water temperature THW (see FIG. 16). The water temperature correction value ATHW is indicated by the advance amount from the compression top dead center, and the larger this value is, the more advanced the compression stroke fuel injection timing is. This also applies to the following correction values.

【0031】図16を参照すると、水温補正値ATHW
は機関冷却水温THWの増大に応じて減少する(進角量
が減少せしめられる)。これは、機関冷却水温THWが
高い程噴射された燃料の蒸発が早いために、着火時にお
いて点火栓周りに着火の良好な混合気が形成されるよう
に燃料噴射時期を遅らせるようにするためである。図1
5のステップ103で吸気温補正値ATHAが吸気温T
HAに基づくマップ(図17参照)から求められる。
Referring to FIG. 16, the water temperature correction value ATHW
Decreases as the engine cooling water temperature THW increases (the advance amount is decreased). This is because the higher the engine cooling water temperature THW, the faster the evaporation of the injected fuel, so that the fuel injection timing is delayed so that a mixture with good ignition is formed around the spark plug during ignition. is there. Figure 1
In step 103 of 5, the intake air temperature correction value ATHA is changed to the intake air temperature T.
It is obtained from the HA-based map (see FIG. 17).

【0032】図17を参照すると、吸気温補正値ATH
Aは吸気温THAの増大に応じて減少せしめられる。こ
れは、吸気温THAが高い程噴射された燃料の蒸発が早
いために、着火時において点火栓近傍に着火の良好な混
合気が形成されるように燃料噴射時期を遅らせるように
するためである。図15のステップ104でEGR補正
値AEGRがEGR制御弁24の開度に基づくマップ
(図18参照)から求められる。
Referring to FIG. 17, the intake air temperature correction value ATH
A is decreased as the intake air temperature THA increases. This is because the higher the intake air temperature THA is, the faster the evaporation of the injected fuel is, so that the fuel injection timing is delayed so that a mixture with good ignition is formed near the spark plug during ignition. .. In step 104 of FIG. 15, the EGR correction value AEGR is obtained from the map (see FIG. 18) based on the opening degree of the EGR control valve 24.

【0033】図18を参照すると、EGR補正値AEG
RはEGR制御弁開度の増大に応じて減少せしめられ
る。これは、EGR制御弁開度の増大に応じて排気ガス
の還流量が増大して気筒内の温度が上昇し、噴射された
燃料の蒸発が早くなるために、着火時において点火栓近
傍に良好な混合気が形成されるように燃料噴射時期を遅
らせるようにするためである。
Referring to FIG. 18, the EGR correction value AEG
R is decreased as the EGR control valve opening increases. This is because the amount of exhaust gas recirculation increases as the EGR control valve opening increases, the temperature in the cylinder rises, and the injected fuel evaporates faster, so that it is good near the spark plug during ignition. This is to delay the fuel injection timing so that a proper air-fuel mixture is formed.

【0034】図15のステップ105でスワール補正値
ASCVが吸気制御弁25の開度に基づくマップ(図1
9参照)から求められる。図19を参照すると、スワー
ル補正値ASCVは吸気制御弁開度の増大に応じて増大
せしめられる。これは、吸気制御弁開度の増大に応じて
スワールの強さが弱くなるために噴射された燃料の蒸発
が遅くなり、このため、着火時において点火栓近傍に着
火の良好な混合気を形成するように燃料噴射時期を進め
るようにするためである。
In step 105 of FIG. 15, the swirl correction value ASCV is a map based on the opening of the intake control valve 25 (see FIG. 1).
9)). Referring to FIG. 19, the swirl correction value ASCV is increased as the intake control valve opening is increased. This is because the swirl strength becomes weaker as the intake control valve opening increases, and the injected fuel evaporates more slowly.Therefore, when ignition occurs, a mixture with good ignition is formed near the spark plug. This is for advancing the fuel injection timing as described above.

【0035】図15のステップ106では、要求燃料噴
射量QがQM (図5参照)以上か否か判定される。Q<
M の場合、すなわち、圧縮行程噴射だけが実行される
場合には、ステップ107に進み、圧縮行程燃料噴射時
期Ainj2が次式から計算される。 Ainj2=AS+α・QC +ATHW+ATHA+AEGR+ASCV+β ここで、αは圧縮行程燃料噴射量QC をクランク角に換
算するための正の係数であり、βは圧縮行程において噴
射された燃料が気化して点火栓近傍に到達するまでのク
ランク角の基準値を示している。なお、Ainj2は圧縮上
死点TDCからの進角で示される(図14参照)。
In step 106 of FIG. 15, it is determined whether the required fuel injection amount Q is equal to or more than Q M (see FIG. 5). Q <
If Q M , that is, if only the compression stroke injection is executed, the routine proceeds to step 107, where the compression stroke fuel injection timing Ainj 2 is calculated from the following equation. Ainj 2 = AS + α · Q C + ATHW + ATHA + AEGR + ASCV + β where α is a positive coefficient for converting the compression stroke fuel injection amount Q C into the crank angle, and β is near the spark plug as the fuel injected in the compression stroke is vaporized. It shows the reference value of the crank angle until reaching. Ainj 2 is indicated by the advance angle from the compression top dead center TDC (see FIG. 14).

【0036】このように、圧縮行程噴射だけが実行され
る場合においては、圧縮行程燃料噴射時期Ainj2は、点
火時期SA、圧縮行程燃料噴射量QC ,β、およびその
他の補正値によって決定されるため、着火時において点
火栓近傍に着火の良好な混合気を形成することができ、
斯くして良好な着火を得ることができる。一方、ステッ
プ106においてQ≧QM と判定された場合、すなわ
ち、吸気行程および圧縮行程噴射が実行される場合に
は、ステップ108に進み、吸気行程噴射量補正値AQ
S が吸気行程燃料噴射量QS に基づくマップ(図20参
照)から求められる。
[0036] Thus, in the case where only the compression stroke injection is performed, the compression stroke fuel injection timing Ainj 2, the ignition timing SA, the compression stroke fuel injection amount Q C, beta, and is determined by the other correction value Therefore, at the time of ignition, it is possible to form a mixture with good ignition near the spark plug,
Thus, good ignition can be obtained. On the other hand, if it is determined in step 106 that Q ≧ Q M , that is, if the intake stroke and the compression stroke injection are executed, the routine proceeds to step 108, where the intake stroke injection amount correction value AQ
S is obtained from the map based on the intake stroke fuel injection amount Q S (see FIG. 20).

【0037】図20を参照すると、吸気行程噴射量補正
値AQS は吸気行程燃料噴射量の増大に応じて増大せし
められる。これは吸気行程燃料噴射量QS が多い程予混
合気がリッチとなるために、圧縮行程燃料噴射時期を進
角せしめて、着火時において点火栓近傍に着火の良好な
混合気を形成するためである。図15のステップ109
では、圧縮行程燃料噴射時期Ainj2が次式から計算され
る。
Referring to FIG. 20, the intake stroke injection amount correction value AQ S is increased as the intake stroke fuel injection amount is increased. This is because the pre-mixture becomes richer as the intake stroke fuel injection amount Q S is larger, so that the compression stroke fuel injection timing is advanced and a mixture with good ignition is formed near the spark plug during ignition. Is. Step 109 of FIG.
Then, the compression stroke fuel injection timing Ainj 2 is calculated from the following equation.

【0038】 Ainj2=SA+α・QC +ATHW+ATHA+AEGR+ASCV+β +AQS このように、吸気行程および圧縮行程噴射が実行される
場合においては、圧縮行程燃料噴射時期Ainj2は、点火
時期SA、圧縮行程燃料噴射量QC 、吸気行程燃料噴射
量QS ,β、およびその他の補正値によって決定される
ため、着火時において点火栓近傍に着火の良好な混合気
を形成することができ、斯くして良好な着火を得ること
ができる。
Ainj 2 = SA + α · Q C + ATHW + ATHA + AEGR + ASCV + β + AQ S In this way, when the intake stroke and the compression stroke injection are executed, the compression stroke fuel injection timing Ainj 2 is the ignition timing SA and the compression stroke fuel injection amount Q. Since it is determined by C , the intake stroke fuel injection amount Q S , β, and other correction values, it is possible to form an air-fuel mixture with good ignition in the vicinity of the spark plug at the time of ignition, thus achieving good ignition. Obtainable.

【0039】尚本実施例においては、図7(c)にて説
明したとおり、圧縮行程後期において貫徹力の弱い燃料
を点火栓6に指向して噴射することにより、点火栓6付
近にリッチな混合気層を形成するものであるが、濃混合
気の形成手法はこの方法に限定されるものではなく、例
えば、燃料をピストン頂面に設けられた凹部の内周側壁
面に一旦付着させ、付着した燃料を燃焼室内に生ぜしめ
られた旋回流によって蒸発せしめて燃料蒸気を点火栓近
傍に導く、いわゆる壁面蒸発燃焼方式にも適用され得
る。
In this embodiment, as described with reference to FIG. 7 (c), the fuel having a weak penetration force is injected toward the spark plug 6 in the latter stage of the compression stroke, so that the fuel is rich in the vicinity of the spark plug 6. Although the mixture layer is formed, the method of forming the rich mixture is not limited to this method.For example, fuel is once attached to the inner peripheral side wall surface of the recess provided on the piston top surface, It can also be applied to a so-called wall surface evaporation combustion method in which the adhered fuel is evaporated by the swirling flow generated in the combustion chamber and the fuel vapor is guided to the vicinity of the spark plug.

【0040】[0040]

【発明の効果】着火時において点火栓周りに着火の良好
な混合気を形成することができる。このため良好な着火
を得ることができる。
EFFECTS OF THE INVENTION At the time of ignition, it is possible to form a mixture with good ignition around the spark plug. Therefore, good ignition can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine according to an embodiment of the present invention.

【図2】電子制御ユニットのブロック線図である。FIG. 2 is a block diagram of an electronic control unit.

【図3】燃料噴射弁の縦断面図である。FIG. 3 is a vertical sectional view of a fuel injection valve.

【図4】図1の機関の縦断面図である。4 is a longitudinal sectional view of the engine of FIG.

【図5】圧縮行程噴射と吸気行程噴射の制御パターンの
一例を示す線図である。
FIG. 5 is a diagram showing an example of a control pattern for compression stroke injection and intake stroke injection.

【図6】燃料噴射時期を示す線図である。FIG. 6 is a diagram showing a fuel injection timing.

【図7】吸気行程および圧縮行程噴射を実行するときの
動作説明図である。
FIG. 7 is an operation explanatory diagram when executing intake stroke and compression stroke injection.

【図8】吸気行程および圧縮行程燃料噴射量を計算する
ためのフローチャートである。
FIG. 8 is a flowchart for calculating an intake stroke and a compression stroke fuel injection amount.

【図9】機関回転数Ne とQA/Ne とに基づく燃料噴
射量Qのマップである。
FIG. 9 is a map of the fuel injection amount Q based on the engine speed Ne and QA / Ne.

【図10】燃料噴射量Qに基づく分割率QRのマップで
ある。
FIG. 10 is a map of a division ratio QR based on a fuel injection amount Q.

【図11】点火時期SAを計算するためのフローチャー
トである。
FIG. 11 is a flowchart for calculating an ignition timing SA.

【図12】機関回転数Ne とQA/Ne とに基づく基本
点火時期SABのマップである。
FIG. 12 is a map of basic ignition timing SAB based on engine speed Ne and QA / Ne.

【図13】機関冷却水温THWと水温補正値STHWの
関係を示す線図である。
FIG. 13 is a diagram showing a relationship between an engine cooling water temperature THW and a water temperature correction value STHW.

【図14】点火時期SA、燃料噴射時期Ainj2等を示す
線図である。
FIG. 14 is a diagram showing an ignition timing SA, a fuel injection timing Ainj 2 and the like.

【図15】圧縮行程燃料噴射時期Ainj2を計算するため
のフローチャートである。
FIG. 15 is a flowchart for calculating a compression stroke fuel injection timing Ainj 2 .

【図16】機関冷却水温THWと水温補正値ATHWと
の関係を示す線図である。
FIG. 16 is a diagram showing a relationship between an engine cooling water temperature THW and a water temperature correction value ATHW.

【図17】吸気温THAと吸気温補正値ATHAとの関
係を示す線図である。
FIG. 17 is a diagram showing a relationship between intake air temperature THA and intake air temperature correction value ATHA.

【図18】EGR制御弁開度とEGR補正値AEGRと
の関係を示す線図である。
FIG. 18 is a diagram showing a relationship between an EGR control valve opening and an EGR correction value AEGR.

【図19】吸気制御弁開度とスワール補正値ASCVと
の関係を示す線図である。
FIG. 19 is a diagram showing a relationship between an intake control valve opening and a swirl correction value ASCV.

【図20】吸気行程燃料噴射量QS と吸気行程噴射量補
正値AQS との関係を示す線図である。
FIG. 20 is a diagram showing a relationship between an intake stroke fuel injection amount Q S and an intake stroke injection amount correction value AQ S.

【符号の説明】[Explanation of symbols]

5…燃料噴射弁 6…点火栓 5 ... Fuel injection valve 6 ... Spark plug

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/34 E 9039−3G 43/00 301 J 8109−3G B 8109−3G H 8109−3G Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location F02D 41/34 E 9039-3G 43/00 301 J 8109-3G B 8109-3G H 8109-3G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関気筒内に燃料を直接噴射せしめる燃
料噴射弁を設け、機関運転状態に応じて求められた要求
燃料噴射量の全量を圧縮行程において前記燃料噴射弁か
ら点火栓近傍に噴射せしめて該点火栓によって着火せし
めるようにした内燃機関において、圧縮行程における燃
料噴射時期を、圧縮行程における燃料噴射量および点火
時期に基づいて定めるようにした内燃機関。
1. A fuel injection valve for directly injecting fuel into an engine cylinder is provided, and all of the required fuel injection amount obtained according to the engine operating state is injected from the fuel injection valve to the vicinity of the spark plug in the compression stroke. In an internal combustion engine in which ignition is performed by the spark plug, a fuel injection timing in a compression stroke is determined based on a fuel injection amount and an ignition timing in the compression stroke.
【請求項2】 吸気行程において燃料を噴射して予混合
気を形成すると共に、圧縮行程において機関気筒内に燃
料を噴射して点火栓近傍に着火用混合気を形成せしめる
ようにした内燃機関において、圧縮行程における燃料噴
射時期を、圧縮行程における燃料噴射量と、点火時期
と、吸気行程における燃料噴射量とに基づいて定めるよ
うにした内燃機関。
2. An internal combustion engine configured to inject fuel in an intake stroke to form a premixed mixture and to inject fuel into an engine cylinder in a compression stroke to form an ignition mixture near an ignition plug. An internal combustion engine in which the fuel injection timing in the compression stroke is determined based on the fuel injection amount in the compression stroke, the ignition timing, and the fuel injection amount in the intake stroke.
JP27550091A 1991-10-23 1991-10-23 Internal combustion engine Pending JPH05113146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27550091A JPH05113146A (en) 1991-10-23 1991-10-23 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27550091A JPH05113146A (en) 1991-10-23 1991-10-23 Internal combustion engine

Publications (1)

Publication Number Publication Date
JPH05113146A true JPH05113146A (en) 1993-05-07

Family

ID=17556360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27550091A Pending JPH05113146A (en) 1991-10-23 1991-10-23 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPH05113146A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005856A1 (en) * 1996-08-05 1998-02-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for cylinder injection type spark-ignition internal combustion engines
US5937821A (en) * 1996-12-13 1999-08-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection type internal combustion engine
EP1167718A1 (en) * 1993-07-09 2002-01-02 Hitachi, Ltd. Control device and device for generating swirls in internal combustion engine
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9060904B2 (en) 2007-06-18 2015-06-23 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9072634B2 (en) 2007-06-18 2015-07-07 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US9375358B2 (en) 2012-12-10 2016-06-28 The Procter & Gamble Company Absorbent article with high absorbent material content
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9713557B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent article with high absorbent material content
US9713556B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US10071002B2 (en) 2013-06-14 2018-09-11 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10470948B2 (en) 2003-02-12 2019-11-12 The Procter & Gamble Company Thin and dry diaper
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US10632029B2 (en) 2015-11-16 2020-04-28 The Procter & Gamble Company Absorbent cores having material free areas
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US10842690B2 (en) 2016-04-29 2020-11-24 The Procter & Gamble Company Absorbent core with profiled distribution of absorbent material
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11123240B2 (en) 2016-04-29 2021-09-21 The Procter & Gamble Company Absorbent core with transversal folding lines
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
US11510829B2 (en) 2014-05-27 2022-11-29 The Procter & Gamble Company Absorbent core with absorbent material pattern
US11957551B2 (en) 2021-11-16 2024-04-16 The Procter & Gamble Company Absorbent articles with channels and signals

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167718A1 (en) * 1993-07-09 2002-01-02 Hitachi, Ltd. Control device and device for generating swirls in internal combustion engine
WO1998005856A1 (en) * 1996-08-05 1998-02-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for cylinder injection type spark-ignition internal combustion engines
US6101998A (en) * 1996-08-05 2000-08-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection spark-ignition internal combustion engine
US5937821A (en) * 1996-12-13 1999-08-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection type internal combustion engine
US11135096B2 (en) 2003-02-12 2021-10-05 The Procter & Gamble Company Comfortable diaper
US11234868B2 (en) 2003-02-12 2022-02-01 The Procter & Gamble Company Comfortable diaper
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US10660800B2 (en) 2003-02-12 2020-05-26 The Procter & Gamble Company Comfortable diaper
US11793682B2 (en) 2003-02-12 2023-10-24 The Procter & Gamble Company Thin and dry diaper
US10470948B2 (en) 2003-02-12 2019-11-12 The Procter & Gamble Company Thin and dry diaper
US9060904B2 (en) 2007-06-18 2015-06-23 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9072634B2 (en) 2007-06-18 2015-07-07 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US9241845B2 (en) 2007-06-18 2016-01-26 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US10004647B2 (en) 2009-12-02 2018-06-26 The Procter & Gamble Company Apparatus and method for transferring particulate material
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US11602467B2 (en) 2011-06-10 2023-03-14 The Procter & Gamble Company Absorbent structure for absorbent articles
US9649232B2 (en) 2011-06-10 2017-05-16 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10893987B2 (en) 2011-06-10 2021-01-19 The Procter & Gamble Company Disposable diapers with main channels and secondary channels
US11000422B2 (en) 2011-06-10 2021-05-11 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US11911250B2 (en) 2011-06-10 2024-02-27 The Procter & Gamble Company Absorbent structure for absorbent articles
US11110011B2 (en) 2011-06-10 2021-09-07 The Procter & Gamble Company Absorbent structure for absorbent articles
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9173784B2 (en) 2011-06-10 2015-11-03 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US10245188B2 (en) 2011-06-10 2019-04-02 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10813794B2 (en) 2011-06-10 2020-10-27 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US11135105B2 (en) 2011-06-10 2021-10-05 The Procter & Gamble Company Absorbent structure for absorbent articles
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US10449097B2 (en) 2012-11-13 2019-10-22 The Procter & Gamble Company Absorbent articles with channels and signals
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US9375358B2 (en) 2012-12-10 2016-06-28 The Procter & Gamble Company Absorbent article with high absorbent material content
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9713556B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US9713557B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent article with high absorbent material content
US10071002B2 (en) 2013-06-14 2018-09-11 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10765567B2 (en) 2013-08-27 2020-09-08 The Procter & Gamble Company Absorbent articles with channels
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US10335324B2 (en) 2013-08-27 2019-07-02 The Procter & Gamble Company Absorbent articles with channels
US11406544B2 (en) 2013-08-27 2022-08-09 The Procter & Gamble Company Absorbent articles with channels
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US11612523B2 (en) 2013-08-27 2023-03-28 The Procter & Gamble Company Absorbent articles with channels
US11759376B2 (en) 2013-08-27 2023-09-19 The Procter & Gamble Company Absorbent articles with channels
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US11944526B2 (en) 2013-09-19 2024-04-02 The Procter & Gamble Company Absorbent cores having material free areas
US10675187B2 (en) 2013-12-19 2020-06-09 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US11191679B2 (en) 2013-12-19 2021-12-07 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US10828206B2 (en) 2013-12-19 2020-11-10 Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11510829B2 (en) 2014-05-27 2022-11-29 The Procter & Gamble Company Absorbent core with absorbent material pattern
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US11918445B2 (en) 2015-05-12 2024-03-05 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US11497657B2 (en) 2015-05-29 2022-11-15 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10632029B2 (en) 2015-11-16 2020-04-28 The Procter & Gamble Company Absorbent cores having material free areas
US11123240B2 (en) 2016-04-29 2021-09-21 The Procter & Gamble Company Absorbent core with transversal folding lines
US10842690B2 (en) 2016-04-29 2020-11-24 The Procter & Gamble Company Absorbent core with profiled distribution of absorbent material
US11957551B2 (en) 2021-11-16 2024-04-16 The Procter & Gamble Company Absorbent articles with channels and signals

Similar Documents

Publication Publication Date Title
JPH05113146A (en) Internal combustion engine
JP2765305B2 (en) Internal combustion engine
JP2917617B2 (en) Internal combustion engine
US4955339A (en) Internal combustion engine
US5170759A (en) Fuel injection control device for an internal combustion engine
JP4424147B2 (en) Exhaust gas purification device for internal combustion engine
US5127378A (en) Control device for an internal combustion engine
US7412821B2 (en) Control apparatus for internal combustion engine
CN100570139C (en) The control apparatus that is used for internal-combustion engine
US20060207241A1 (en) Control apparatus for internal combustion engine
JPH02169834A (en) Inner-cylinder direct jet type spark ignition engine
JP2005538308A (en) Method of operating an internal combustion engine by direct fuel injection
JPH11236848A (en) Compression ignition type internal combustion engine
EP0445817A2 (en) A control device for an internal combustion engine
JP2007154853A (en) Control device of spark-ignition direct-injection internal combustion engine
JPH10176563A (en) Fuel injection controller for internal combustion engine of cylinder injection type
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JPH08193536A (en) Fuel injection controller of cylinder injection type internal combustion engine
JP2007032326A (en) Controller of internal combustion engine
JP2987925B2 (en) In-cylinder direct injection spark ignition engine
JP2009293526A (en) Cylinder injection type spark ignition internal combustion engine
JPH0633769A (en) Subsidiary chamber ignition internal combustion engine
JPH10131786A (en) Fuel injection device for direct injection type spark ignition engine
JP3196674B2 (en) In-cylinder injection spark ignition engine
JPS6045754A (en) Fuel supply unit of diesel engine