JP2009293526A - Cylinder injection type spark ignition internal combustion engine - Google Patents

Cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2009293526A
JP2009293526A JP2008148309A JP2008148309A JP2009293526A JP 2009293526 A JP2009293526 A JP 2009293526A JP 2008148309 A JP2008148309 A JP 2008148309A JP 2008148309 A JP2008148309 A JP 2008148309A JP 2009293526 A JP2009293526 A JP 2009293526A
Authority
JP
Japan
Prior art keywords
fuel
intake
intake passage
combustion chamber
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008148309A
Other languages
Japanese (ja)
Inventor
Fumiaki Hattori
文昭 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008148309A priority Critical patent/JP2009293526A/en
Publication of JP2009293526A publication Critical patent/JP2009293526A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder injection type spark ignition internal combustion engine can form an air-fuel mixture appropriate for homogenous combustion. <P>SOLUTION: The cylinder ignition type spark ignition internal combustion engine includes a fuel injection valve 18 for injecting fuel in a fuel chamber 5. After starting a compression stroke, an intake valve 6 is closed after gas in the combustion chamber 5 starts to reversely flow into an intake passage 7. The fuel injection timing is set during a compression stroke and when the intake valve 6 is opened, and injected fuel spray 30 is made to flow into the intake passage 7 along with the gas reversely flowing toward the intake passage 7 from the combustion chamber 5. The fuel spray 30 that flows into the intake passage 7 is introduced into the combustion chamber 5 along with intake air during the next intake stroke. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は筒内噴射式火花点火内燃機関に関する。   The present invention relates to a direct injection spark ignition internal combustion engine.

燃焼室内に燃料を噴射する燃料噴射弁を備えた均質燃焼を行う筒内噴射式火花点火内燃機関において、噴射すべき燃料を、早期噴射燃料と後期噴射燃料とに分割して吸気行程中に噴射する筒内噴射式火花点火内燃機関が公知である(特許文献1参照)。この内燃機関では、ピストンの下降に伴う吸気の流動により、早期噴射燃料の気化を促進し、さらに後期噴射燃料がシリンダ壁面に付着して燃料の均質化が阻害されるのを回避すると共に、点火までの時間を長く確保して燃料の気化を促進するという効果を奏する。   In a cylinder-injection spark-ignition internal combustion engine that performs homogeneous combustion with a fuel injection valve that injects fuel into the combustion chamber, the fuel to be injected is divided into early injection fuel and late injection fuel and injected during the intake stroke An in-cylinder injection spark ignition internal combustion engine is known (see Patent Document 1). In this internal combustion engine, the flow of the intake air accompanying the lowering of the piston promotes the vaporization of the early injection fuel, and further prevents the late injection fuel from adhering to the cylinder wall surface to obstruct the homogenization of the fuel and There is an effect that fuel vaporization is promoted by ensuring a long time until the fuel is vaporized.

特開平11−218051号公報Japanese Patent Laid-Open No. 11-218051

しかしながら、上記のような吸気行程において燃焼室内に燃料を噴射する筒内噴射式火花点火内燃機関であっても、吸気通路に燃料を噴射するタイプの内燃機関に比べると、燃料噴射後点火までの時間が短いため、燃料が十分に気化せず、吸気と混合しない場合がある。そのため、均質燃焼に最適な燃焼室内に均一な混合気が得られず、良好な燃焼が得られないため、燃焼変動やPM(粒子状物質)の増加といった問題が生じる。この問題は、圧縮行程開始後、燃焼室内のガスが吸気弁を介して吸気通路内に逆流し始めた後に吸気弁を閉弁する筒内噴射式火花点火内燃機関においても同様に生じる問題である。   However, even in a cylinder-injection spark ignition internal combustion engine that injects fuel into the combustion chamber in the intake stroke as described above, compared to an internal combustion engine of a type that injects fuel into the intake passage, the time until ignition after fuel injection is reached. Due to the short time, the fuel may not vaporize sufficiently and may not mix with the intake air. For this reason, a uniform air-fuel mixture cannot be obtained in the combustion chamber that is optimal for homogeneous combustion, and satisfactory combustion cannot be obtained. This problem also occurs in a cylinder injection spark ignition internal combustion engine that closes the intake valve after the gas in the combustion chamber starts flowing back into the intake passage via the intake valve after the compression stroke starts. .

そこで本発明は、圧縮行程開始後、燃焼室内のガスが吸気弁を介して吸気通路内に逆流し始めた後に吸気弁を閉弁する筒内噴射式火花点火内燃機関において、均質燃焼に適した混合気を形成することを目的とする。   Therefore, the present invention is suitable for homogeneous combustion in a direct injection spark ignition internal combustion engine that closes the intake valve after the gas in the combustion chamber starts to flow back into the intake passage via the intake valve after the compression stroke starts. The object is to form a mixture.

前記課題を解決するために請求項1に記載の発明によれば、燃焼室内に燃料を噴射する燃料噴射弁を具備し、圧縮行程開始後、燃焼室内のガスが吸気通路内に逆流し始めた後に吸気弁を閉弁する筒内噴射式火花点火内燃機関において、燃料噴射時期を圧縮行程中であって吸気弁の開弁中に設定し、噴射された燃料を燃焼室から吸気通路内に向かう逆流のガス流れと共に吸気通路内に流入させ、吸気通路内に流入した燃料が次回の吸気行程において吸気と共に燃焼室内に導入される筒内噴射式火花点火内燃機関が提供される。   In order to solve the above-described problem, according to the invention described in claim 1, the fuel injection valve for injecting fuel into the combustion chamber is provided, and after the compression stroke starts, the gas in the combustion chamber starts to flow backward into the intake passage. In a direct injection spark ignition internal combustion engine that closes the intake valve later, the fuel injection timing is set during the compression stroke and the intake valve is opened, and the injected fuel is directed from the combustion chamber into the intake passage. A direct injection spark ignition internal combustion engine is provided in which fuel flows into the intake passage along with a reverse gas flow, and the fuel that flows into the intake passage is introduced into the combustion chamber along with the intake air in the next intake stroke.

即ち、請求項1に記載の発明では、燃料が、一旦、燃焼室内に噴射されると同時に気化し始め、更に吸気通路内流入後も気化が進行する共に吸気通路内に存在する吸気との混合が行われるため、次のサイクルにおける吸気行程において燃焼室内に良好な混合気が形成されるという効果を奏する。   That is, according to the first aspect of the present invention, the fuel is once injected into the combustion chamber and starts to vaporize at the same time. Further, the vaporization progresses after flowing into the intake passage and mixing with the intake air existing in the intake passage. Therefore, there is an effect that a good air-fuel mixture is formed in the combustion chamber in the intake stroke in the next cycle.

また、請求項2に記載の発明によれば請求項1に記載の発明において、前記燃料噴射が、噴射すべき燃料を分割して複数回に亘って行われる筒内噴射式火花点火内燃機関が提供される。   According to a second aspect of the present invention, there is provided a direct injection spark ignition internal combustion engine according to the first aspect, wherein the fuel injection is performed a plurality of times by dividing the fuel to be injected. Provided.

即ち、請求項2に記載の発明では、噴射すべき燃料を分割して複数回に亘って噴射することによって、噴射された燃料噴霧の貫徹力(ペネトレーション)を小さくし、噴射された燃料噴霧が、燃焼室から吸気弁に向かうガス流れによって吸気通路内により流入しやすくなるという効果を奏する。   That is, in the invention described in claim 2, the fuel to be injected is divided and injected a plurality of times to reduce the penetration force of the injected fuel spray, and the injected fuel spray is There is an effect that the gas flow from the combustion chamber toward the intake valve is more likely to flow into the intake passage.

各請求項に記載の発明によれば、均質燃焼に適した混合気を形成することができるという共通の効果を奏する。   According to the invention described in each claim, there is a common effect that an air-fuel mixture suitable for homogeneous combustion can be formed.

図1を参照しながら本発明による筒内噴射式火花点火内燃機関について説明する。図1において、1は例えば四つの気筒を備えた機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は吸気弁、7は吸気通路、8は排気弁、9は排気通路、10は点火栓をそれぞれ示す。吸気通路7は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介してエアクリーナ14に連結される。吸気ダクト13内には吸入空気流量を検出するためのエアフローメータ15と、ステップモータ16により駆動されるスロットル弁17とが配置される。また、燃焼室5内には燃焼室5内に燃料を噴射する電気制御式の燃料噴射弁18が配置される。   A cylinder injection spark ignition internal combustion engine according to the present invention will be described with reference to FIG. In FIG. 1, 1 is an engine body having four cylinders, for example, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an intake valve, 7 is an intake passage, 8 is an exhaust valve, Reference numeral 9 denotes an exhaust passage, and 10 denotes a spark plug. The intake passage 7 is connected to a surge tank 12 via a corresponding intake branch pipe 11, and the surge tank 12 is connected to an air cleaner 14 via an intake duct 13. An air flow meter 15 for detecting the intake air flow rate and a throttle valve 17 driven by a step motor 16 are arranged in the intake duct 13. Further, an electrically controlled fuel injection valve 18 for injecting fuel into the combustion chamber 5 is disposed in the combustion chamber 5.

更に、吸気弁6及び排気弁8には、それらの開弁動作を変更する可変動弁機構19,20がそれぞれ設けられる。ここで、開弁動作は例えばリフト量、開弁期間(作用角)及び開弁開始時期のうち一つ又は複数によって定められ、本実施形態の機構は公知のいずれの機構も使用可能であるため詳述はしない。   Furthermore, the intake valve 6 and the exhaust valve 8 are respectively provided with variable valve mechanisms 19 and 20 that change their valve opening operations. Here, the valve opening operation is determined, for example, by one or more of the lift amount, the valve opening period (working angle), and the valve opening start timing, and any known mechanism can be used as the mechanism of this embodiment. It will not be described in detail.

一方、排気通路9は排気枝管21を介して小容量の三元触媒22に連結され、三元触媒22上流排気通路には空燃比を検出するための空燃比センサ23が取り付けられる。機関本体1には機関冷却水温を検出するための水温センサ24が取り付けられる。   On the other hand, the exhaust passage 9 is connected to a small capacity three-way catalyst 22 via an exhaust branch pipe 21, and an air-fuel ratio sensor 23 for detecting the air-fuel ratio is attached to the exhaust passage upstream of the three-way catalyst 22. A water temperature sensor 24 for detecting the engine cooling water temperature is attached to the engine body 1.

電子制御ユニット(ECU)40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。アクセルペダル49にはアクセルペダル49の踏み込み量を検出するための負荷センサ50が接続される。ここで、アクセルペダル49の踏み込み量は要求負荷を表している。   The electronic control unit (ECU) 40 is a digital computer and includes a ROM (read only memory) 42, a RAM (random access memory) 43, a CPU (microprocessor) 44, an input port 45, An output port 46 is provided. The accelerator pedal 49 is connected to a load sensor 50 for detecting the depression amount of the accelerator pedal 49. Here, the depression amount of the accelerator pedal 49 represents a required load.

エアフローメータ15、空燃比センサ23、水温センサ24、及び負荷センサ50の出力信号はそれぞれ対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ51が接続される。CPU44ではクランク角センサ51の出力パルスに基づいて機関回転数が算出される。   Output signals from the air flow meter 15, the air-fuel ratio sensor 23, the water temperature sensor 24, and the load sensor 50 are input to the input port 45 via the corresponding AD converters 47. Further, the input port 45 is connected to a crank angle sensor 51 that generates an output pulse every time the crankshaft rotates, for example, 30 °. The CPU 44 calculates the engine speed based on the output pulse of the crank angle sensor 51.

一方、出力ポート46は対応する駆動回路48を介して点火栓10、ステップモータ16、燃料噴射弁18、及び可変動弁機構19,20にそれぞれ接続され、これらは電子制御ユニット40からの出力信号に基づいて制御される。   On the other hand, the output port 46 is connected to the spark plug 10, the step motor 16, the fuel injection valve 18, and the variable valve mechanisms 19 and 20 through corresponding drive circuits 48, which are output signals from the electronic control unit 40. Controlled based on

三元触媒22は、酸素吸蔵能力を有しており、これにより三元触媒22に流入する排気ガスの空燃比がリーンであるときには排気ガス中の酸素を吸蔵すると共に、三元触媒22に流入する排気ガスの空燃比がリッチであるときには吸蔵している酸素を放出することにより排気ガス中に含まれるHC、COを酸化・浄化する。   The three-way catalyst 22 has an oxygen storage capacity, so that when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 22 is lean, it stores oxygen in the exhaust gas and flows into the three-way catalyst 22. When the air-fuel ratio of the exhaust gas is rich, the stored oxygen is released to oxidize and purify HC and CO contained in the exhaust gas.

本発明による筒内噴射式火花点火内燃機関は、圧縮行程開始後、燃焼室5内のガスが吸気弁6を介して吸気通路7内に逆流し始めた後に吸気弁6を閉弁する運転状態を有する。この運転状態が行われるのは、例えば、冷間始動時、(均質)リーン燃焼時、ミラーサイクル時等である。   The in-cylinder spark-ignition internal combustion engine according to the present invention is in an operating state in which after the compression stroke starts, the gas in the combustion chamber 5 starts to flow backward into the intake passage 7 via the intake valve 6 and then closes the intake valve 6. Have This operating state is performed, for example, during cold start, (homogeneous) lean combustion, mirror cycle, and the like.

次に、図2を参照しながら、本発明による燃料噴射時期に噴射された燃料噴霧30の動きについて説明する。図2は、圧縮行程中であって吸気弁6が開弁中の燃料噴射を示す筒内噴射式火花点火内燃機関の概略縦断面図である。なお、燃料噴霧30’は、吸気弁6が閉弁された圧縮行程中に噴射された燃料を示す。この燃料噴射では、吸気通路7内に逆流するガス流れが発生していないため、貫徹力(ペネトレーション)によって直進することとなる。   Next, the movement of the fuel spray 30 injected at the fuel injection timing according to the present invention will be described with reference to FIG. FIG. 2 is a schematic longitudinal sectional view of a direct injection spark ignition internal combustion engine showing fuel injection during the compression stroke and when the intake valve 6 is open. The fuel spray 30 ′ indicates fuel injected during the compression stroke in which the intake valve 6 is closed. In this fuel injection, no backflow gas flow is generated in the intake passage 7, so that the fuel travels straight due to penetration force (penetration).

まず、圧縮行程中であって吸気弁6の開弁中は、ピストン4が圧縮下死点から上昇し燃焼室5内のガスを押し上げているため、ガスは吸気弁6を介して吸気通路7内に逆流している状態にある。そのため、このタイミングで燃料を噴射すると、噴射された燃料噴霧30は、逆流するガス流れと共に吸気通路7内へ流入する。   First, during the compression stroke and when the intake valve 6 is open, the piston 4 rises from the compression bottom dead center and pushes up the gas in the combustion chamber 5, so that the gas passes through the intake valve 6 and the intake passage 7. It is in a state of flowing backward. Therefore, when fuel is injected at this timing, the injected fuel spray 30 flows into the intake passage 7 together with the backflowing gas flow.

より正確に言うと、圧縮行程開始直後は、吸気弁6が開弁中であっても、ガスの慣性力のためすぐに逆流は発生せず、所定時間経過後に逆流が発生する。そのため、より確実に、より多くの燃料噴霧30を吸気通路7内に流入させるためには、逆流が発生してから燃料噴射を行うことが望ましい。   More precisely, immediately after the start of the compression stroke, even if the intake valve 6 is open, a backflow does not occur immediately because of the inertial force of the gas, and a backflow occurs after a predetermined time. Therefore, in order to flow more fuel spray 30 into the intake passage 7 more reliably, it is desirable to perform fuel injection after the backflow has occurred.

上述のように吸気通路7内に流入した燃料噴霧30は、次の機関サイクルにおける吸気行程において、再び燃焼室5内に導入され、燃焼される。ここで、燃料噴霧30は、燃焼室5内に噴射されてから再び燃焼室5内に導入されるまでの間、十分に気化して吸気との混合が行われる。即ち、噴射された燃料噴霧30は、噴射直後から燃焼室5内で気化し始める。通常の機関運転によれば、噴射された燃料噴霧30は、そのまま燃焼室内で吸気と混合し、圧縮され点火、燃焼する。しかし、本発明によれば、噴射された燃料噴霧30は、吸気通路7内に流入し、その中で更に気化が進行すると共に吸気通路7内に存在する吸気との混合が行われる。   As described above, the fuel spray 30 flowing into the intake passage 7 is again introduced into the combustion chamber 5 and combusted in the intake stroke in the next engine cycle. Here, the fuel spray 30 is sufficiently vaporized and mixed with the intake air until it is injected into the combustion chamber 5 and again introduced into the combustion chamber 5. That is, the injected fuel spray 30 starts to vaporize in the combustion chamber 5 immediately after injection. According to normal engine operation, the injected fuel spray 30 is directly mixed with intake air in the combustion chamber, compressed, ignited, and burned. However, according to the present invention, the injected fuel spray 30 flows into the intake passage 7, where further vaporization proceeds and mixing with the intake air present in the intake passage 7 is performed.

従って、本発明によれば、従来の筒内噴射式火花点火内燃機関に比べて、燃料を気化・混合させるための時間が多く確保できるため、再び燃焼室5内に導入されたあと、燃焼室5内でより良好な混合気を形成する。これは、燃料を最初に燃焼室5内に噴射し気化させた後、吸気通路7内に流入させる分だけ、最初から吸気通路に燃料を噴射するタイプの内燃機関よりも、更に良好な混合気を得ることが可能となる。以上より、次のサイクルにおいて良好な燃焼が行われ、燃焼変動やPMの増加といった上述の問題が解消される。   Therefore, according to the present invention, it is possible to secure more time for vaporizing and mixing the fuel as compared to the conventional in-cylinder spark ignition internal combustion engine. A better mixture is formed within 5. This is because the fuel mixture is better than the internal combustion engine of the type in which the fuel is first injected into the combustion chamber 5 and vaporized and then injected into the intake passage 7 so as to inject the fuel into the intake passage from the beginning. Can be obtained. As described above, good combustion is performed in the next cycle, and the above-described problems such as combustion fluctuation and increase in PM are solved.

次に、噴射された燃料をより効率的に吸気通路7内に流入させるための方法について説明する。前述のように、燃料は、噴射されるとその貫徹力によって直進する傾向にある。そして、その貫徹力が大きいほどガス流れの影響を受けにくくなるため、ガスの逆流と共に吸気通路7内に流入する燃料量は減ってしまう。一方、貫徹力が小さいとガス流れの影響をより受けやすくなり、ガスの逆流と共に吸気通路7内に流入する燃料量を増やすことができる。燃料の気化や混合の観点で言えば、上述のように、一旦吸気通路7内に流入させた方が望ましく、そのため、貫徹力は小さい方が望ましい。   Next, a method for causing the injected fuel to flow into the intake passage 7 more efficiently will be described. As described above, when fuel is injected, it tends to go straight due to its penetration force. As the penetration force is increased, the influence of the gas flow is less likely to occur, so that the amount of fuel flowing into the intake passage 7 is reduced along with the backflow of gas. On the other hand, when the penetrating force is small, the gas flow is more easily affected, and the amount of fuel flowing into the intake passage 7 can be increased together with the backflow of gas. From the viewpoint of fuel vaporization and mixing, as described above, it is preferable that the fuel once flows into the intake passage 7, and therefore, it is desirable that the penetration force is small.

ところで、一般に、燃料噴霧30の飛行速度が大きい方が、貫徹力が大きいと考えられるが、燃料噴射弁18から噴射された燃料の初速は、通常、噴射すべき燃料量や運転状態によらず略一定である。そこで本発明による実施形態では、燃料噴霧30の飛行速度を遅くするため、噴射すべき燃料を一度に噴射するのではなく、複数回に分割して噴射するようにしている。   By the way, in general, it is considered that the greater the flight speed of the fuel spray 30, the greater the penetration force. However, the initial speed of the fuel injected from the fuel injection valve 18 is usually independent of the amount of fuel to be injected and the operating state. It is almost constant. Therefore, in the embodiment according to the present invention, in order to slow down the flight speed of the fuel spray 30, the fuel to be injected is not injected at a time, but is divided into a plurality of times and injected.

噴射された燃料噴霧30は、燃焼室5内のガスと衝突することによって徐々にその飛行速度を落とす。ところが、図2に示すように噴射すべき燃料を一度に噴射してしまうと、最初に噴射された燃料のみ燃焼室5内のガスと衝突し、一連の後続の燃料噴霧は先頭の燃料噴霧によって燃焼室5内のガスが除かれた空間を追従することになる。そのため、燃料噴霧全体としてはガスの抵抗が少なくなり、飛行速度が落ちにくい。従って、高い貫徹力を有することとなり、吸気通路7内に流入しにくくなる。   The injected fuel spray 30 gradually decreases its flight speed by colliding with the gas in the combustion chamber 5. However, if the fuel to be injected is injected at a time as shown in FIG. 2, only the first injected fuel collides with the gas in the combustion chamber 5, and a series of subsequent fuel sprays are caused by the first fuel spray. It follows the space in the combustion chamber 5 from which the gas is removed. Therefore, as a whole fuel spray, the resistance of gas is reduced and the flight speed is difficult to decrease. Therefore, it has a high penetrating force and is difficult to flow into the intake passage 7.

一方、図3に示す実施形態では、噴射すべき燃料を分割して噴射すると、分割された個々の燃料噴霧30に対するガスの抵抗が、上述の一度に噴射した場合に比べて相対的に大きくなる。そのため、燃料噴霧30の飛行速度が落ちやすく、従って、貫徹力が小さくなる。そこで、本実施形態では、噴射すべき燃料を分割して噴射することによって、貫徹力を落とし、吸気通路7内に流入しやすくするようにしている。   On the other hand, in the embodiment shown in FIG. 3, when the fuel to be injected is divided and injected, the resistance of the gas to the divided fuel sprays 30 is relatively larger than that in the case where the fuel is injected all at once. . Therefore, the flight speed of the fuel spray 30 is likely to decrease, and therefore the penetration force is reduced. Therefore, in the present embodiment, the fuel to be injected is divided and injected, thereby reducing the penetration force and facilitating the flow into the intake passage 7.

図4は燃料噴射の分割回数Nのマップを示す図である。本実施形態では、分割回数Nは、分割された各燃料噴射の間隔(インターバル)を一定とした場合に、機関負荷を表す噴射燃料量Q及び機関回転数Neの関数として予め実験又は計算によって求められ、図4に示されるようなマップの形で予めROM42内に記憶されている。なお、本実施形態においては、各燃料噴射のインターバルを一定としたが、一定でなくてもよい。例えば、或る機関サイクル内での各燃料噴射のインターバルが一定であれば、異なる機関サイクル間のインターバルが一定である必要はない。   FIG. 4 is a diagram showing a map of the division number N of fuel injection. In the present embodiment, the division number N is obtained in advance by experiment or calculation as a function of the injected fuel amount Q representing the engine load and the engine speed Ne when the interval between the divided fuel injections is constant. 4 and stored in advance in the ROM 42 in the form of a map as shown in FIG. In this embodiment, the interval of each fuel injection is fixed, but it may not be fixed. For example, if the intervals between fuel injections within a certain engine cycle are constant, the intervals between different engine cycles need not be constant.

図5及び図6は吸気弁6の開弁期間と燃料噴射時期との関係を示す図である。横軸はクランク角であり、圧縮下死点(BDC)前から圧縮上死点(TDC)後の間を示している。吸気弁6の閉弁時期は、圧縮行程開始後から、ピストン4が圧縮下死点(BDC)から上昇し燃焼室5内のガスが吸気弁6を介して吸気通路7内に逆流し始めた後までの間に設定される。   5 and 6 are diagrams showing the relationship between the valve opening period of the intake valve 6 and the fuel injection timing. The abscissa represents the crank angle, and shows the period before the compression bottom dead center (BDC) and after the compression top dead center (TDC). As for the closing timing of the intake valve 6, after the compression stroke started, the piston 4 rose from the compression bottom dead center (BDC), and the gas in the combustion chamber 5 began to flow back into the intake passage 7 via the intake valve 6. Set until later.

図5に示される実施形態においては、燃料噴射は、圧縮下死点(BDC)から開始され、噴射燃料量Q及び機関回転数Neから図4によって決定された分割回数に従って、噴射すべき燃料が分割され、噴射される。   In the embodiment shown in FIG. 5, the fuel injection is started from the compression bottom dead center (BDC), and the fuel to be injected is determined according to the number of divisions determined from FIG. 4 from the injected fuel amount Q and the engine speed Ne. Divided and injected.

図6に示される実施形態においては、燃料噴射は、逆流の開始に合わせて開始される。それによって、上述のように、より効率的に燃料噴霧を吸気通路7内に流入させることができるようになる。   In the embodiment shown in FIG. 6, fuel injection is initiated in time with the onset of backflow. Thereby, as described above, the fuel spray can flow into the intake passage 7 more efficiently.

図7は、本発明による燃料噴射制御操作を示すフローチャートである。この操作は電子制御ユニット(ECU)40によって予め定められた所定時間毎の割り込みによって実行されるルーチンとして行われる。   FIG. 7 is a flowchart showing a fuel injection control operation according to the present invention. This operation is performed as a routine executed by interruption every predetermined time predetermined by an electronic control unit (ECU) 40.

まず、ステップ101において、機関冷却水温や空燃比といった機関運転状態を示す各種パラメータが検出され、ステップ102へと進む。次いで、ステップ102では、検出された各種パラメータに基づいて、現在の機関運転状態が、圧縮行程開始後、燃焼室5内のガスが吸気弁6を介して吸気通路7内に逆流し始めた後に吸気弁6を閉弁する運転状態であるか否か、即ち、吸気通路7内へのガスの逆流が発生する運転状態であるか否かが判定される。この条件を満たす場合とは、例えば、検出された機関冷却水温が所定温度以下である場合や、空燃比が所定空燃比以上のリーン領域にある場合や、ミラーサイクル領域である場合等である。   First, in step 101, various parameters indicating the engine operating state such as the engine coolant temperature and the air-fuel ratio are detected, and the process proceeds to step 102. Next, in step 102, based on the detected various parameters, the current engine operating state is that after the compression stroke starts, the gas in the combustion chamber 5 starts to flow backward into the intake passage 7 via the intake valve 6. It is determined whether or not the operation state is such that the intake valve 6 is closed, that is, whether or not the operation state is such that backflow of gas into the intake passage 7 occurs. The case where this condition is satisfied includes, for example, a case where the detected engine coolant temperature is equal to or lower than a predetermined temperature, a case where the air-fuel ratio is in a lean region where the air-fuel ratio is equal to or higher than a predetermined air-fuel ratio, and a case where the air-fuel ratio is a mirror cycle region.

逆流発生条件が成立していない場合には、ステップ103へと進み、通常の燃料噴射条件を設定し、ステップ106へと進む。次いで、ステップ106では、本発明による燃料噴射制御を行わず、設定された燃料噴射条件に基づいて燃料噴射が実行され、ルーチンを終了する。   If the reverse flow generation condition is not satisfied, the routine proceeds to step 103, the normal fuel injection condition is set, and the routine proceeds to step. Next, in step 106, fuel injection control according to the present invention is not performed, fuel injection is executed based on the set fuel injection conditions, and the routine is terminated.

一方、ステップ102において、逆流発生条件が成立する場合には、ステップ104へと進む。次いで、ステップ104では、燃料噴射の開始時期、即ち、圧縮下死点(BDC)から噴射を開始するか又は逆流が開始してから噴射を開始するか等が読み込まれ、ステップ105へと進む。次いで、ステップ105では、図4に示すマップに基づいて、噴射すべき燃料の分割回数が読み込まれ、ステップ106へと進む。次いで、ステップ106では、ステップ104で読み込まれた燃料噴射の開始時期及びステップ105で読み込まれた分割回数に基づいて燃料噴射が実行され、ルーチンを終了する。   On the other hand, when the backflow generation condition is satisfied in step 102, the process proceeds to step 104. Next, in step 104, the fuel injection start timing, that is, whether the injection starts from the compression bottom dead center (BDC) or the injection starts after the backflow starts is read, and the process proceeds to step 105. Next, at step 105, the number of divisions of the fuel to be injected is read based on the map shown in FIG. Next, at step 106, fuel injection is executed based on the fuel injection start timing read at step 104 and the number of divisions read at step 105, and the routine is terminated.

本発明による筒内噴射式火花点火内燃機関の概略縦断面図である。1 is a schematic longitudinal sectional view of a direct injection spark ignition internal combustion engine according to the present invention. 吸気弁が開弁中の燃料噴射を示す筒内噴射式火花点火内燃機関の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylinder injection type spark ignition internal combustion engine which shows the fuel injection in which the intake valve is open. 別の実施形態による吸気弁が開弁中の燃料噴射を示す筒内噴射式火花点火内燃機関の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylinder injection type spark ignition internal combustion engine which shows the fuel injection in which the intake valve by another embodiment is valve opening. 燃料噴射の分割回数のマップを示す図である。It is a figure which shows the map of the frequency | count of division | segmentation of fuel injection. 吸気弁の開弁期間と燃料噴射時期との関係を示す図である。It is a figure which shows the relationship between the valve opening period of an intake valve, and fuel injection timing. 別の実施形態による吸気弁の開弁期間と燃料噴射時期との関係を示す図である。It is a figure which shows the relationship between the valve opening period of an intake valve and fuel injection timing by another embodiment. 燃料噴射制御操作を示すフローチャートである。It is a flowchart which shows fuel-injection control operation.

符号の説明Explanation of symbols

1 機関本体
4 ピストン
5 燃焼室
6 吸気弁
7 吸気通路
10 点火プラグ
18 燃料噴射弁
30 燃料噴霧
DESCRIPTION OF SYMBOLS 1 Engine body 4 Piston 5 Combustion chamber 6 Intake valve 7 Intake passage 10 Spark plug 18 Fuel injection valve 30 Fuel spray

Claims (2)

燃焼室内に燃料を噴射する燃料噴射弁を具備し、圧縮行程開始後、燃焼室内のガスが吸気通路内に逆流し始めた後に吸気弁を閉弁する筒内噴射式火花点火内燃機関において、燃料噴射時期を圧縮行程中であって吸気弁の開弁中に設定し、噴射された燃料を燃焼室から吸気通路内に向かう逆流のガス流れと共に吸気通路内に流入させ、吸気通路内に流入した燃料が次回の吸気行程において吸気と共に燃焼室内に導入される筒内噴射式火花点火内燃機関。   In a cylinder injection spark ignition internal combustion engine having a fuel injection valve for injecting fuel into a combustion chamber, and closing the intake valve after gas in the combustion chamber starts to flow backward into the intake passage after the start of the compression stroke, The injection timing is set during the compression stroke and the intake valve is opened, and the injected fuel flows into the intake passage along with the reverse gas flow from the combustion chamber into the intake passage, and then flows into the intake passage. An in-cylinder spark ignition internal combustion engine in which fuel is introduced into a combustion chamber together with intake air in the next intake stroke. 前記燃料噴射が、噴射すべき燃料を分割して複数回に亘って行われる請求項1に記載の筒内噴射式火花点火内燃機関。   The direct injection spark ignition internal combustion engine according to claim 1, wherein the fuel injection is performed a plurality of times by dividing the fuel to be injected.
JP2008148309A 2008-06-05 2008-06-05 Cylinder injection type spark ignition internal combustion engine Withdrawn JP2009293526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148309A JP2009293526A (en) 2008-06-05 2008-06-05 Cylinder injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148309A JP2009293526A (en) 2008-06-05 2008-06-05 Cylinder injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009293526A true JP2009293526A (en) 2009-12-17

Family

ID=41541908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148309A Withdrawn JP2009293526A (en) 2008-06-05 2008-06-05 Cylinder injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009293526A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113767A (en) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
US9249965B2 (en) 2011-01-14 2016-02-02 Koninklijke Philips N.V. Lighting device
KR101855783B1 (en) * 2016-11-08 2018-05-09 현대자동차 주식회사 Pre-mixing engine system and control method for the same
JP2020133591A (en) * 2019-02-26 2020-08-31 ダイハツ工業株式会社 Control device of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249965B2 (en) 2011-01-14 2016-02-02 Koninklijke Philips N.V. Lighting device
JP2015113767A (en) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
KR101855783B1 (en) * 2016-11-08 2018-05-09 현대자동차 주식회사 Pre-mixing engine system and control method for the same
JP2020133591A (en) * 2019-02-26 2020-08-31 ダイハツ工業株式会社 Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
US7747379B2 (en) Control device of direct injection internal combustion engine
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JP4277883B2 (en) In-cylinder injection spark ignition internal combustion engine
EP2511505A2 (en) Combustion control device
JP4479822B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2006291939A (en) Controller of engine
JP2009293526A (en) Cylinder injection type spark ignition internal combustion engine
JP2007177731A (en) Cylinder injection type internal combustion engine and fuel injection method
WO2016021452A1 (en) Control device for cylinder fuel injection type internal combustion engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
US20050005900A1 (en) Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
US7047945B2 (en) Start-up control of in-cylinder fuel injection internal combustion engine
JP2006291940A (en) Controller of engine
JP2007239638A (en) Fuel injection control device for internal combustion engine
JP2006112329A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
EP2415995A1 (en) Control device for internal combustion engine
JP2010265814A (en) Control device of internal combustion engine
JP4816151B2 (en) Combustion control device for internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2012219633A (en) Device and method for controlling start of internal combustion engine
JP2007285240A (en) Control device for internal combustion engine
JP2015004343A (en) Control device of direct injection engine
JP6597763B2 (en) Engine control device
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906