JP2008075533A - Control device and control method for cylinder direct injection type spark ignition internal combustion engine - Google Patents

Control device and control method for cylinder direct injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2008075533A
JP2008075533A JP2006255252A JP2006255252A JP2008075533A JP 2008075533 A JP2008075533 A JP 2008075533A JP 2006255252 A JP2006255252 A JP 2006255252A JP 2006255252 A JP2006255252 A JP 2006255252A JP 2008075533 A JP2008075533 A JP 2008075533A
Authority
JP
Japan
Prior art keywords
fuel
ignition
combustion
ignition timing
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006255252A
Other languages
Japanese (ja)
Inventor
Masatoshi Hidaka
匡聡 日高
Akikazu Sakai
亮和 酒井
Taizo Horigome
泰三 堀込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006255252A priority Critical patent/JP2008075533A/en
Publication of JP2008075533A publication Critical patent/JP2008075533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To materialize HC reduction by early stage activation of a catalyst and after burn by great retardation of ignition timing and to avoid deterioration of HC in ultra retard combustion in a stage where oil and water temperature is low. <P>SOLUTION: The ultra retard combustion in which ignition timing ADV is retarded to 10°-50° ATDC, first fuel injection I1 is performed in compression stroke, and second fuel injection I2 is performed in an expansion stroke at timing advanced from ignition timing ADV by 10°-20° CA is carried out in cold start of an internal combustion engine during which early stage temperature rise of a catalytic converter is demanded. Compact air fuel mixture lump is formed at a part of combustion chamber near a spark plug by the first injection, rich air fuel mixture lump is locally formed in a part near the spark plug inside thereof by the second injection, and ignition is done under these conditions. However, ultra retard combustion is inhibited when engine oil water temperature is lower than predetermined oil water temperature tolerance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時などにおける噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection type spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to control of injection timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。これに類似する技術が特許文献2にも記載されている。   In Patent Document 1, as a catalyst warm-up method for a direct injection spark ignition internal combustion engine, a period from an intake stroke to an ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than an activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed, for example, at 120 ° BTDC to 45 ° BTDC after the middle of the compression stroke. A similar technique is also described in Patent Document 2.

また、特許文献3は、本出願人が先に提案したものであって、高圧燃料噴射の噴霧エネルギによる筒内の乱れを利用することで、点火時期を圧縮上死点後までリタードした燃焼を安定的に得るようにした技術が記載されており、その一つの例として、1回目の燃料噴射を圧縮行程後期に行い、2回目の燃料噴射を膨張行程の点火の直前に行うことが開示されている。
特許第3325230号公報 特開2001−336467号公報 特開2005−214039号公報
Further, Patent Document 3 was previously proposed by the present applicant, and uses combustion in the cylinder due to the spray energy of high-pressure fuel injection to retard the ignition timing until after compression top dead center. As an example, it is disclosed that the first fuel injection is performed in the latter half of the compression stroke, and the second fuel injection is performed immediately before the ignition of the expansion stroke. ing.
Japanese Patent No. 3325230 JP 2001-336467 A Japanese Patent Laid-Open No. 2005-214039

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っているため、燃焼安定性が低く、特に、無負荷領域では、点火時期を圧縮上死点前(BTDC点火)としているので、点火時期のリタードによる排温上昇やHCの低減を十分に達成することができない。しかも、1回目の噴射を吸気行程中に行うと、燃焼室内のクエンチ領域やクレビスに燃料が入り込み、HCの発生源となる。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Therefore, combustion stability is low, and especially in the no-load region, the ignition timing is set to before compression top dead center (BTDC ignition), so that exhaust temperature rise and retarded HC can be sufficiently achieved by retarding the ignition timing. I can't. In addition, if the first injection is performed during the intake stroke, the fuel enters the quench region and the clevis in the combustion chamber and becomes a source of HC generation.

一方、特許文献2においては、1回目の燃料噴射を圧縮行程後期に行い、2回目の燃料噴射を膨張行程の点火の直前に行うが、2回目の燃料噴射による筒内の乱れに依存して燃焼が成立するので、高い燃圧が要求される。その結果、燃焼が相対的に(燃圧が低い場合に比べて)早くなり、排気温度の上昇さらにはこれに関連するHCの低減の点で、なお改善の余地があった。   On the other hand, in Patent Document 2, the first fuel injection is performed in the latter half of the compression stroke, and the second fuel injection is performed immediately before the ignition of the expansion stroke. However, depending on the in-cylinder turbulence due to the second fuel injection, Since combustion is established, a high fuel pressure is required. As a result, combustion is relatively fast (compared to the case where the fuel pressure is low), and there is still room for improvement in terms of an increase in exhaust temperature and a reduction in HC associated therewith.

この発明は、筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備え、所定の運転状態のとき、例えば触媒コンバータの冷機時のような排気(ガス)温度の昇温が必要な場合などに、点火時期を圧縮上死点後に設定した超リタード燃焼を行う筒内直接噴射式火花点火内燃機関において、超リタード燃焼時には、圧縮行程中に1回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部にリッチな混合気を形成するとともに、局部的にさらにリッチな混合気が点火時期に点火プラグに到達するように点火時期から所定期間先行したタイミングでかつ膨張行程中に2回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部に2段階の成層混合気を形成した状態で点火を行う。   The present invention includes a fuel injection valve that directly injects fuel into a cylinder and a spark plug, and in a predetermined operating state, for example, when the temperature of the exhaust (gas) temperature needs to be increased, such as when the catalytic converter is cold. In addition, in a direct injection spark ignition internal combustion engine that performs super retard combustion with the ignition timing set after compression top dead center, during super retard combustion, the first fuel injection is performed during the compression stroke, and combustion in the vicinity of the spark plug is performed. A rich air-fuel mixture is formed in a part of the chamber, and a second time during the expansion stroke at a timing preceding the ignition timing by a predetermined period so that the locally rich air-fuel mixture reaches the ignition plug at the ignition timing. Fuel injection is performed, and ignition is performed with a two-stage stratified mixture formed in a part of the combustion chamber near the spark plug.

すなわち、この発明では、燃料噴射の噴霧エネルギに依存せずに、比較的低い燃圧での2回の燃料噴射によって、燃焼室内にコンパクトな成層混合気を形成する。そして、特に、点火時期においては、2回目の燃料噴射の噴霧によって局部的にリッチな混合気塊が点火プラグ近傍に存在し、その周囲を囲んで、1回目の燃料噴射による理論空燃比よりはリッチでかつ点火プラグ付近よりは希薄な混合気塊が存在した状態となる。つまり、濃度が2段階に異なるコンパクトな成層混合気を形成し、この状態で点火を行う。なお、1回目の燃料噴射による混合気は、燃焼室全体には拡散しないようにすることが望ましい。   That is, in the present invention, a compact stratified mixture is formed in the combustion chamber by two fuel injections at a relatively low fuel pressure without depending on the spray energy of the fuel injection. In particular, at the ignition timing, a locally rich air-fuel mixture is present in the vicinity of the spark plug due to the spray of the second fuel injection, and surrounds the periphery of the spark plug rather than the stoichiometric air-fuel ratio by the first fuel injection. A rich and lean air-fuel mixture exists near the spark plug. That is, a compact stratified mixture having two different concentrations is formed, and ignition is performed in this state. It is desirable that the air-fuel mixture produced by the first fuel injection does not diffuse throughout the combustion chamber.

このような燃焼方式によれば、サイクル毎の微小な回転数の変化や微小な負荷の変化などに対し安定した燃焼が可能である。そして、2回の燃料噴射をいずれも筒内圧の高い場に比較的低い燃圧で噴射するので、噴霧がコンパクトとなって、クエンチ領域やクレビスに入りにくく、従って、HCの発生が抑制される。また、比較的低い燃圧の利用が可能となることから、燃焼速度を抑制でき、排気温度の上昇やHCの低減の上で有利となる。   According to such a combustion method, stable combustion is possible with respect to a minute change in rotational speed or a minute load change for each cycle. Since both fuel injections are performed at a relatively low fuel pressure in a place where the in-cylinder pressure is high, the spray becomes compact and hardly enters the quench region or the clevis, thus suppressing the generation of HC. In addition, since a relatively low fuel pressure can be used, the combustion speed can be suppressed, which is advantageous in increasing the exhaust temperature and reducing HC.

ここで、上記の超リタード燃焼では、圧縮上死点近傍の筒内が比較的狭い状態で燃料噴射を行うため、内燃機関の冷間始動直後のように機関油水温(機関温度)が低い状態では、燃料の気化不足に伴い壁流が増加して、逆に未燃HCの生成量が増加する傾向がある。しかも、このような冷間始動直後は、排気系温度も低いことから、排気通路内でのHCの酸化が十分に促進されず、筒内で生じた未燃HCがそのまま外部へ排出され易くなる。   Here, in the above-described super retard combustion, fuel injection is performed in a state where the cylinder in the vicinity of the compression top dead center is relatively narrow, so that the engine oil water temperature (engine temperature) is low just after a cold start of the internal combustion engine. Then, the wall flow increases due to insufficient vaporization of the fuel, and conversely, the amount of unburned HC generated tends to increase. Moreover, immediately after such a cold start, the exhaust system temperature is also low, so that oxidation of HC in the exhaust passage is not sufficiently promoted, and unburned HC generated in the cylinder is easily discharged to the outside as it is. .

そこで本発明では、内燃機関の冷間始動直後の所定期間のように、機関水温や機関油温等の機関温度(以下、機関油水温とも呼ぶ)が所定の許可温度(以下、許可油水温とも呼ぶ)未満の場合、上記超リタード燃焼を禁止する。この所定期間とは、筒内温度(燃焼室壁温度)が所定の温度に達するまでの期間、あるいは排気系の温度が所定の温度に達するまでの期間、に相当するものであり、これらの温度の検出もしくは推定、あるいは単に所定時間の経過、などに基づいて定められる。   Therefore, in the present invention, the engine temperature such as engine water temperature or engine oil temperature (hereinafter also referred to as engine oil water temperature) is set to a predetermined permitted temperature (hereinafter also referred to as permitted oil water temperature) as in a predetermined period immediately after the cold start of the internal combustion engine. The above-mentioned super retard combustion is prohibited. This predetermined period corresponds to a period until the in-cylinder temperature (combustion chamber wall temperature) reaches a predetermined temperature, or a period until the exhaust system temperature reaches a predetermined temperature. It is determined based on the detection or estimation of this, or simply the passage of a predetermined time.

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性が向上し、例えば冷間始動の際に、排気温度の上昇により触媒の早期活性化およびHC低減を達成することができる。そして、冷間始動直後の僅かな期間のように機関温度が所定の許可温度に達していないときには、この超リタード燃焼を禁止することで、筒内での燃料噴霧の気化が不十分となることによるHCの過渡的な増加を回避することができる。   According to the present invention, the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center is improved. For example, at the time of cold start, early activation of the catalyst and reduction of HC are achieved by increasing the exhaust temperature. can do. When the engine temperature has not reached the predetermined allowable temperature, such as during a short period immediately after the cold start, the super-retard combustion is prohibited, and the vaporization of the fuel spray in the cylinder becomes insufficient. A transient increase in HC due to can be avoided.

以下、この発明の一実施例を図面に基づいて詳細に説明する。図1は、この発明の一実施例に係る筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing a system configuration of a direct injection type spark ignition internal combustion engine according to an embodiment of the present invention. An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関温度としての機関油温や機関水温である機関油水温を検出する手段として、機関冷却水温を検出する水温センサ21と、機関油温を検出する油温センサ24と、が設けられている。更に、クランク角を検出するクランク角センサ22と、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23と、が設けられている。   The internal combustion engine 1 includes a water temperature sensor 21 for detecting the engine cooling water temperature and an oil temperature sensor 24 for detecting the engine oil temperature as means for detecting the engine oil temperature as the engine temperature and the engine oil water temperature. , Is provided. Furthermore, a crank angle sensor 22 that detects the crank angle and an accelerator opening sensor 23 that detects the amount of depression of the accelerator pedal by the driver are provided.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled.

暖機完了後においては、通常の成層燃焼運転ないしは均質燃焼運転等の通常制御が行われる。例えば、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、例えば空燃比をリーンとした成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。   After the warm-up is completed, normal control such as normal stratified combustion operation or homogeneous combustion operation is performed. For example, in a predetermined region on the low speed and low load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed at a time before the compression top dead center. The fuel spray is collected in a layered manner in the vicinity of the spark plug 14, thereby realizing, for example, stratified combustion with a lean air-fuel ratio. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder.

本実施例では、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。図2は、超リタード燃焼の際の燃料噴射時期および点火時期の一実施例を示しており、点火時期ADVは、排気温度を十分に高く得るために、10°〜50°ATDCに設定される。つまり、期間Bは、10°〜50°CAである。また、圧縮行程中に1回目の燃料噴射I1を行い、かつ膨張行程中に2回目の燃料噴射I2を行う。1回目の燃料噴射I1は、点火プラグ14近傍の燃焼室3の一部に拡がったリッチな混合気を形成するためのものであり、その燃料噴射時期(詳しくは燃料噴射開始時期)から点火時期ADVまでの期間Cが、例えば50°〜140°CAに設定される。つまり、この1回目の燃料噴射I1による燃料噴霧が、燃焼室3内にある程度拡散するものの、過度に拡散しないように、その燃料噴射時期が設定される。期間Cが過度に長いと、燃料噴霧が拡散し過ぎ、クエンチ領域やクレビス内に燃料成分が入ってしまう。   In this embodiment, the super retard combustion is performed so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. This super retard combustion will be described below. The fuel injection timing and ignition timing will be described with reference to FIG. FIG. 2 shows an example of the fuel injection timing and ignition timing during super retard combustion, and the ignition timing ADV is set to 10 ° to 50 ° ATDC in order to obtain a sufficiently high exhaust temperature. . That is, the period B is 10 ° to 50 ° CA. Further, the first fuel injection I1 is performed during the compression stroke, and the second fuel injection I2 is performed during the expansion stroke. The first fuel injection I1 is for forming a rich air-fuel mixture that spreads in a part of the combustion chamber 3 in the vicinity of the spark plug 14, and from the fuel injection timing (specifically, the fuel injection start timing) to the ignition timing. The period C until ADV is set to 50 ° to 140 ° CA, for example. In other words, the fuel injection timing is set so that the fuel spray by the first fuel injection I1 diffuses in the combustion chamber 3 to some extent but does not diffuse excessively. When the period C is excessively long, the fuel spray is excessively diffused, and the fuel component enters the quench region or the clevis.

そして、膨張行程中の2回目の燃料噴射I2は、局部的にさらにリッチな混合気塊が点火時期ADVにおいてちょうど点火プラグ14に到達するように、点火時期ADVから所定期間Aだけ先行したタイミングに行われる。この燃料噴射時期(詳しくは燃料噴射開始時期)から点火時期ADVまでの期間Aは、基本的に燃料噴射弁15から点火プラグ14までの距離に相関するが、例えば、10°〜20°CAである。なお、このとき、空燃比(2回の噴射による燃焼室全体の平均的空燃比)は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。これにより、HCの後燃えに必要十分な量の酸素が確保される。   Then, the second fuel injection I2 during the expansion stroke is performed at a timing preceding the ignition timing ADV by a predetermined period A so that a locally richer air-fuel mixture reaches the ignition plug 14 at the ignition timing ADV. Done. The period A from the fuel injection timing (specifically, the fuel injection start timing) to the ignition timing ADV basically correlates with the distance from the fuel injection valve 15 to the spark plug 14, for example, 10 ° to 20 ° CA. is there. At this time, the air-fuel ratio (the average air-fuel ratio of the entire combustion chamber by two injections) is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17). Thereby, a sufficient amount of oxygen necessary for afterburning of HC is secured.

また、燃料噴霧のエネルギによる乱れに依存せずに燃焼を行うので、燃圧としては、後述するように燃焼が成立する範囲内で、比較的低い燃圧が用いられる。   Further, since combustion is performed without depending on the disturbance due to the energy of the fuel spray, a relatively low fuel pressure is used as the fuel pressure within a range where combustion is established as will be described later.

上記のように燃料噴射を行うことにより、点火時期ADVにおいては、図3に示すように、点火プラグ14を囲む2段階の濃度を有するコンパクトな成層混合気が形成される。つまり、1回目の燃料噴射I1によって、理論空燃比よりもリッチな第1の混合気塊が符号31で示すように点火プラグ14近傍の燃焼室3の一部に形成され、その内側に、2回目の燃料噴射I2による、さらにリッチな第2の混合気塊が符号32に示すように点火プラグ14近傍に局部的に形成される。2回の燃料噴射は、いずれも上死点近傍の筒内圧が高い場に向かって行われ、かつ燃圧も比較的低いので、いずれの噴霧もコンパクトなものとなり、第1の混合気塊31の外側は、基本的に燃料が拡散していない新気の層となる。そして、このように成層化した状態で点火プラグ14により第2の混合気塊32に点火が行われ、比較的に緩慢に燃焼が行われる。   By performing the fuel injection as described above, at the ignition timing ADV, as shown in FIG. 3, a compact stratified air-fuel mixture having a two-stage concentration surrounding the spark plug 14 is formed. That is, by the first fuel injection I1, a first air-fuel mixture richer than the stoichiometric air-fuel ratio is formed in a part of the combustion chamber 3 in the vicinity of the spark plug 14 as indicated by reference numeral 31, and 2 A richer second air-fuel mixture resulting from the second fuel injection I2 is locally formed in the vicinity of the spark plug 14 as indicated by reference numeral 32. Both fuel injections are performed toward a field where the in-cylinder pressure in the vicinity of the top dead center is high and the fuel pressure is relatively low. The outside is basically a fresh air layer where fuel is not diffused. Then, in this state of stratification, the second air-fuel mixture 32 is ignited by the spark plug 14 and combustion is performed relatively slowly.

この実施例の方式のリタード燃焼では、1回目の燃料噴射I1の噴射時期は、燃焼安定性つまり失火率やトルク変動に殆ど影響せず、また2回目の燃料噴射I2の噴射時期の変動が失火率やトルク変動に与える影響も小さい。   In the retarded combustion of the system of this embodiment, the injection timing of the first fuel injection I1 hardly affects the combustion stability, that is, the misfire rate and torque fluctuation, and the fluctuation of the injection timing of the second fuel injection I2 is misfired. The effect on the rate and torque fluctuation is small.

図4は、膨張行程噴射つまり2回目の燃料噴射I2の噴射時期が最適噴射時期から変化した場合の失火率およびトルク変動の変化を示しており、実施例の特性では、噴射時期が多少変化しても、失火率やトルク変動が急激に悪化しない。これに対し、膨張行程中に1回に全量を噴射する比較例の特性では、その噴射時期が最適噴射時期から僅かでも変化すると、失火率やトルク変動が急激に悪化してしまう。従って、本実施例のものでは、サイクル毎の微小な回転数の変化や微小な負荷の変化などにより2回目の燃料噴射I2の噴射時期の最適値が変化しても、失火率やトルク変動が増大することがなく、安定した燃焼が得られる。つまりサイクル変化に対するロバスト性が高いものとなる。また、本実施例では、混合気がコンパクトとなり、クエンチ領域やクレビスに燃料成分が入り込まないので、これらの箇所から発生するHCが低減する。   FIG. 4 shows the change in misfire rate and torque fluctuation when the expansion stroke injection, that is, the injection timing of the second fuel injection I2 is changed from the optimal injection timing. In the characteristics of the embodiment, the injection timing slightly changes. However, the misfire rate and torque fluctuation do not deteriorate rapidly. On the other hand, in the characteristics of the comparative example in which the entire amount is injected at a time during the expansion stroke, if the injection timing changes even slightly from the optimal injection timing, the misfire rate and torque fluctuation are rapidly deteriorated. Therefore, in the present embodiment, even if the optimum value of the injection timing of the second fuel injection I2 changes due to a minute change in the rotational speed or a minute load for each cycle, the misfire rate and the torque fluctuation are not detected. Without increasing, stable combustion can be obtained. In other words, the robustness against cycle changes is high. Further, in this embodiment, the air-fuel mixture becomes compact and the fuel component does not enter the quench region or the clevis, so that HC generated from these locations is reduced.

さらに、図5の(a)に示すように、本実施例の燃焼方式では、燃圧を低くしても燃焼の悪化(例えばトルク変動)が少なく、他方、燃圧を低くすることで、(b)に示すように、排気温度がより高く得られ、かつこれに伴って、(c)に示すように、HC排出量が低減する。これは、燃圧を低くすることで、燃焼が遅くなり、より遅くまで燃焼が行われるためである。従って、本発明では、燃焼が成立する範囲内で、燃圧を低くすることが望ましい。これにより、排気温度がより高く得られ、かつHCがより低減する。   Further, as shown in FIG. 5 (a), in the combustion system of this embodiment, even if the fuel pressure is lowered, the deterioration of combustion (for example, torque fluctuation) is small, and on the other hand, by reducing the fuel pressure, (b) As shown in (c), the exhaust gas temperature is obtained higher, and accordingly, as shown in (c), the HC emission amount is reduced. This is because by lowering the fuel pressure, the combustion becomes slower and the combustion is performed later. Therefore, in the present invention, it is desirable to reduce the fuel pressure within a range where combustion is established. As a result, the exhaust temperature can be increased and HC can be further reduced.

図6及び図7は、機関始動直後における触媒温度(排気温度)と、機関油水温と、HC排出量E.O.HCと、の変化の様子を示す特性図である。上記の超リタード燃焼では、圧縮上死点付近の比較的筒内が狭い状態で燃料噴射が行われるとともに、圧縮上死点後に燃料噴射を行うため、燃料噴射から点火までの期間ひいては燃料気化時間が短くなることから、冷間始動直後の所定期間Δα(例えば数秒ないし数十秒程度の間)のように、油水温が所定の許可油水温sTengに達しておらず、筒内温度(換言すれば燃焼室壁温度)が非常に低いときには、燃料の気化不足に伴い、壁面に付着する燃料が増加し、逆に未燃HCの生成量が増加する傾向がある。しかも、このような冷間始動直後は、排気系温度も低いことから、排気通路内でのHCの酸化が十分に促進されず、筒内で生じた未燃HCがそのまま外部へ排出され易くなる。   6 and 7 show the catalyst temperature (exhaust temperature), engine oil water temperature, HC emission amount E.E. O. It is a characteristic view which shows the mode of a change with HC. In the above-described super retard combustion, fuel injection is performed in a state where the cylinder in the vicinity of the compression top dead center is relatively narrow, and fuel injection is performed after the compression top dead center, so the period from fuel injection to ignition and hence the fuel vaporization time. Therefore, the oil water temperature does not reach the predetermined permitted oil water temperature sTeng during a predetermined period Δα (for example, between several seconds to several tens of seconds) immediately after the cold start, and the in-cylinder temperature (in other words, For example, when the temperature of the combustion chamber wall is very low, the amount of fuel adhering to the wall increases due to insufficient vaporization of the fuel, and the amount of unburned HC produced tends to increase. Moreover, immediately after such a cold start, the exhaust system temperature is also low, so that oxidation of HC in the exhaust passage is not sufficiently promoted, and unburned HC generated in the cylinder is easily discharged to the outside as it is. .

そこで、本実施例では、図6(A)に示すように、始動直後の所定の期間Δα、具体的には油水温が所定の許可油水温sTengに達するまでの間、この超リタード燃焼を禁止し、例えば、圧縮行程中に燃料を噴射するとともに、この燃料噴射後の圧縮上死点前に点火を行う、いわゆる圧縮行程噴射のBTDC点火とする。これによって、図6(B)に示すように機関始動直後より超リタード燃焼を開始する参考例に比して、未燃HCの排出量E.O.HCを大幅に低減することができる。   Therefore, in this embodiment, as shown in FIG. 6 (A), this super retard combustion is prohibited until a predetermined period Δα immediately after the start, specifically, until the oil water temperature reaches a predetermined permitted oil water temperature sTeng. For example, BTDC ignition of so-called compression stroke injection is performed in which fuel is injected during the compression stroke and ignition is performed before the compression top dead center after the fuel injection. As a result, as shown in FIG. 6 (B), the unburned HC emission amount E.E. is compared with the reference example in which the super retard combustion is started immediately after the engine is started. O. HC can be greatly reduced.

つまり本実施例では、冷間始動直後のように、触媒温度(あるいは排気温度)が所定の触媒活性温度sTcatに達しておらず、排気温度の昇温が要求される状況で、かつ、機関油水温が所定の許可油水温sTeng以上の場合に、上記超リタード燃焼が行われる。従って、例えば図7に示すように、機関油水温が許可油水温sTengに達する前に触媒温度が触媒活性温度sTcatに達すると、超リタード燃焼が行われない。   In other words, in this embodiment, the catalyst temperature (or exhaust temperature) does not reach the predetermined catalyst activation temperature sTcat just after the cold start, and the exhaust oil temperature is required to be raised. The super retard combustion is performed when the water temperature is equal to or higher than a predetermined permitted oil water temperature sTeng. Therefore, for example, as shown in FIG. 7, when the catalyst temperature reaches the catalyst activation temperature sTcat before the engine oil water temperature reaches the permitted oil water temperature sTeng, super retard combustion is not performed.

図8は、このような本実施例の機関始動時の制御の流れを簡略的に示すフローチャートであり、本ルーチンは上記コントロールユニット25により機関始動直後から繰り返し実行される。ステップS1では、排気温度センサ13により検出される排気温度を読み込む。あるいは、適宜なセンサにより触媒温度を直接的に検出して読み込むようにしても良い。ステップS2では、この排気温度に基づいて触媒コンバータ10が未活性であるかを判定する。具体的には、排気温度(あるいは触媒温度)が上記の触媒活性温度sTcat未満であるかを判定する。触媒活性温度sTcat以上であると判定されると、ステップS3へ進み、上述した暖機完了後の通常制御が行われる。   FIG. 8 is a flowchart schematically showing the flow of control at the time of starting the engine of this embodiment, and this routine is repeatedly executed by the control unit 25 immediately after the engine is started. In step S1, the exhaust temperature detected by the exhaust temperature sensor 13 is read. Alternatively, the catalyst temperature may be directly detected and read by an appropriate sensor. In step S2, it is determined whether the catalytic converter 10 is inactive based on the exhaust temperature. Specifically, it is determined whether the exhaust gas temperature (or catalyst temperature) is lower than the catalyst activation temperature sTcat. If it is determined that the temperature is equal to or higher than the catalyst activation temperature sTcat, the process proceeds to step S3, and the normal control after the completion of warm-up described above is performed.

触媒未活性であると判定されると、ステップS4へ進み、機関油水温を読み込む。この機関油水温は、水温センサ21により検出される機関冷却水温と油温センサ24により検出される機関油温のいずれか一方を用いても良く、あるいは両者の平均値等を用いても良い。   If it is determined that the catalyst is inactive, the process proceeds to step S4, and the engine oil water temperature is read. As the engine oil water temperature, either the engine cooling water temperature detected by the water temperature sensor 21 or the engine oil temperature detected by the oil temperature sensor 24 may be used, or an average value of the both may be used.

ステップS5では、機関油水温が上記の許可油水温sTeng以上であるかを判定する。機関油水温が許可油水温sTeng以上であれば、超リタード燃焼を行い(ステップS6)、機関油水温が許可油水温sTeng未満であれば、超リタード燃焼を禁止して、例えば上述した圧縮行程噴射のBTDC点火を行う(ステップS7)。   In step S5, it is determined whether the engine oil water temperature is equal to or higher than the permitted oil water temperature sTeng. If the engine oil water temperature is equal to or higher than the permitted oil water temperature sTeng, super retard combustion is performed (step S6). BTDC ignition is performed (step S7).

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、ステップS7の燃焼形態としては、一般的な均質燃焼、一般的な成層燃焼、あるいは吸気行程噴射と圧縮行程噴射とを行うBTDC点火、などのいずれであってもよい。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, the combustion form of step S7 may be any of general homogeneous combustion, general stratified combustion, or BTDC ignition that performs intake stroke injection and compression stroke injection.

本発明の一実施例に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on one Example of this invention. 本実施例の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of a present Example. 燃焼室内に形成される成層混合気の状態を示す説明図。Explanatory drawing which shows the state of the stratified mixture formed in a combustion chamber. 膨張行程噴射の噴射時期と(a)トルク変動および(b)失火率との関係を示す特性図。The characteristic view which shows the relationship between the injection timing of expansion stroke injection, (a) torque fluctuation, and (b) misfire rate. 燃圧と、(a)トルク変動、(b)排気温度、(c)HC排出量、との関係を示す特性図。The characteristic view which shows the relationship between a fuel pressure, (a) torque fluctuation, (b) exhaust temperature, (c) HC discharge | emission amount. 本実施例(A)及び参考例(B)における、機関始動時の触媒温度と油水温度とHC排出量との変化の様子を示す特性図。The characteristic view which shows the mode of the change of the catalyst temperature at the time of engine starting, oil-water temperature, and HC discharge | emission amount in a present Example (A) and a reference example (B). 本実施例に係る機関始動時に超リタード燃焼が行われない場合の触媒温度と油水温度との関係を示す特性図。The characteristic view which shows the relationship between the catalyst temperature and oil-water temperature in case super retard combustion is not performed at the time of the engine start which concerns on a present Example. 本実施例に係る機関始動時の制御の流れを示すフローチャート。The flowchart which shows the flow of control at the time of the engine starting which concerns on a present Example.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
14…点火プラグ
15…燃料噴射弁
25…コントロールユニット
3 ... Combustion chamber 10 ... Catalytic converter 14 ... Spark plug 15 ... Fuel injection valve 25 ... Control unit

Claims (6)

筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備え、所定の運転状態のときに、点火時期を圧縮上死点後に設定した超リタード燃焼を行う筒内直接噴射式火花点火内燃機関において、
超リタード燃焼時には、圧縮行程中に1回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部にリッチな混合気を形成するとともに、局部的にさらにリッチな混合気が点火時期に点火プラグに到達するように点火時期から所定期間先行したタイミングでかつ膨張行程中に2回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部に2段階の成層混合気を形成した状態で点火を行い、
かつ、機関温度が所定の許可温度未満の場合、上記超リタード燃焼を禁止することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。
An in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and an ignition plug, and performs super retard combustion with ignition timing set after compression top dead center in a predetermined operating state ,
During super retard combustion, the first fuel injection is performed during the compression stroke to form a rich air-fuel mixture in a part of the combustion chamber near the spark plug, and a locally richer air-fuel mixture is sparked at the ignition timing. The fuel is injected for the second time during the expansion stroke at a timing that precedes the ignition timing so as to reach the ignition timing, and ignition is performed with a two-stage stratified mixture formed in a part of the combustion chamber near the spark plug. Done
In addition, when the engine temperature is lower than a predetermined allowable temperature, the super retard combustion is prohibited.
排気温度の昇温が要求されており、かつ、機関温度が所定の許可温度以上の場合に、上記超リタード燃焼を行うことを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark-ignition internal combustion engine according to claim 1, wherein when the exhaust gas temperature is required to be raised and the engine temperature is equal to or higher than a predetermined allowable temperature, the super retard combustion is performed. Engine control device. 超リタード燃焼における点火時期は、圧縮上死点後10°〜50°CAであることを特徴とする請求項1又は2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   3. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 10 ° to 50 ° CA after compression top dead center. 2回目の燃料噴射の噴射開始時期から点火時期までの期間が10°〜20°CAであることを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 3, wherein a period from an injection start timing of the second fuel injection to an ignition timing is 10 ° to 20 ° CA. Control device. 1回目の燃料噴射の噴射開始時期から点火時期までの期間が50°〜140°CAであることを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 4, wherein a period from an injection start timing of the first fuel injection to an ignition timing is 50 ° to 140 ° CA. Control device. 筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備え、所定の運転状態のときに、点火時期を圧縮上死点後に設定した超リタード燃焼を行う筒内直接噴射式火花点火内燃機関において、
超リタード燃焼時には、圧縮行程中に1回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部にリッチな混合気を形成するとともに、局部的にさらにリッチな混合気が点火時期に点火プラグに到達するように点火時期から所定期間先行したタイミングでかつ膨張行程中に2回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部に2段階の成層混合気を形成した状態で点火を行い、
かつ、機関始動直後の所定期間内は上記超リタード燃焼を禁止することを特徴とする筒内直接噴射式火花点火内燃機関の制御方法。
An in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and an ignition plug, and performs super retard combustion with ignition timing set after compression top dead center in a predetermined operating state ,
During super retard combustion, the first fuel injection is performed during the compression stroke to form a rich air-fuel mixture in a part of the combustion chamber near the spark plug, and a locally richer air-fuel mixture is sparked at the ignition timing. The fuel is injected for the second time during the expansion stroke at a timing that precedes the ignition timing so as to reach the ignition timing, and ignition is performed with a two-stage stratified mixture formed in a part of the combustion chamber near the spark plug. Done
In addition, the control method for a direct injection spark ignition internal combustion engine, wherein the super retard combustion is prohibited within a predetermined period immediately after the engine is started.
JP2006255252A 2006-09-21 2006-09-21 Control device and control method for cylinder direct injection type spark ignition internal combustion engine Pending JP2008075533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255252A JP2008075533A (en) 2006-09-21 2006-09-21 Control device and control method for cylinder direct injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255252A JP2008075533A (en) 2006-09-21 2006-09-21 Control device and control method for cylinder direct injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008075533A true JP2008075533A (en) 2008-04-03

Family

ID=39347865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255252A Pending JP2008075533A (en) 2006-09-21 2006-09-21 Control device and control method for cylinder direct injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008075533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069281A (en) * 2009-09-25 2011-04-07 Honda Motor Co Ltd Control device for internal combustion engine
JP2015145636A (en) * 2014-02-03 2015-08-13 マツダ株式会社 Direct injection gasoline engine control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069281A (en) * 2009-09-25 2011-04-07 Honda Motor Co Ltd Control device for internal combustion engine
JP2015145636A (en) * 2014-02-03 2015-08-13 マツダ株式会社 Direct injection gasoline engine control device

Similar Documents

Publication Publication Date Title
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JP2006336477A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2008190511A (en) Exhaust gas reduction device for direct injection gasoline engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2013007314A (en) Control device for cylinder-injection-type internal combustion engine
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007321696A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2001073913A (en) Control device of direct injection spark ignition internal combustion engine
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2005214039A (en) Control device for direct spark ignition type internal combustion engine
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller