JP4333548B2 - In-cylinder direct injection spark ignition internal combustion engine controller - Google Patents

In-cylinder direct injection spark ignition internal combustion engine controller Download PDF

Info

Publication number
JP4333548B2
JP4333548B2 JP2004302341A JP2004302341A JP4333548B2 JP 4333548 B2 JP4333548 B2 JP 4333548B2 JP 2004302341 A JP2004302341 A JP 2004302341A JP 2004302341 A JP2004302341 A JP 2004302341A JP 4333548 B2 JP4333548 B2 JP 4333548B2
Authority
JP
Japan
Prior art keywords
combustion
fuel
temperature
dead center
top dead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004302341A
Other languages
Japanese (ja)
Other versions
JP2006112365A (en
Inventor
彰 中島
全幸 富田
孝雄 米谷
智之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004302341A priority Critical patent/JP4333548B2/en
Priority to EP05021307A priority patent/EP1643107B1/en
Priority to US11/238,159 priority patent/US7159566B2/en
Priority to DE602005024349T priority patent/DE602005024349D1/en
Publication of JP2006112365A publication Critical patent/JP2006112365A/en
Application granted granted Critical
Publication of JP4333548B2 publication Critical patent/JP4333548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時における噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct-injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, injection at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to the control of timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。
特許第3325230号公報
In Patent Document 1, as a catalyst warm-up method for a direct injection spark-ignition internal combustion engine, a period from the intake stroke to the ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than the activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed, for example, at 120 ° BTDC to 45 ° BTDC after the middle of the compression stroke.
Japanese Patent No. 3325230

内燃機関の冷機時における触媒の早期活性化および後燃えによるHC低減のためには、点火時期の遅角が有効であり、より大きな効果を得るためには、圧縮上死点以降の点火(ATDC点火)が望ましい。ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。   For early activation of the catalyst when the internal combustion engine is cold and HC reduction due to afterburning, retarding the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC) Ignition) is desirable. In order to perform stable combustion by ATDC ignition, it is necessary to shorten the combustion period. For this reason, it is necessary to increase the combustion speed (flame propagation speed) by strengthening the turbulence in the cylinder.

このような乱れの強化のために、筒内に高圧で噴射される燃料噴霧のエネルギにより筒内に乱れを生成することが考えられる。   In order to strengthen such disturbance, it is conceivable that the disturbance is generated in the cylinder by the energy of the fuel spray injected at a high pressure in the cylinder.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っている。このように最後の燃料噴射が圧縮上死点よりも前では、その噴霧により筒内に乱れを生成しても、圧縮上死点以降はその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Yes. As described above, before the last fuel injection is before the compression top dead center, even if the spray generates turbulence in the cylinder, the turbulence is attenuated after the compression top dead center, and the flame propagation in ATDC ignition Does not contribute to speed increase.

例えば、図11は、吸気ポート内に設けたガス流動制御弁(例えばタンブル制御弁)を作動させた場合とこのようなガス流動制御弁を具備しない場合とについて、筒内の乱れの大きさを示したものであるが、ガス流動制御弁を作動させることで吸気行程中に生成した乱れ(符号Aの部分)は、圧縮行程の進行とともに減衰し、圧縮行程後期のタンブル流の崩壊に伴い一時的に乱れが大きくなる(符号Bの部分)ものの、圧縮上死点以降は符号Cで示すように急速に減衰してしまい、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。燃料噴霧による乱れについても同様であり、圧縮上死点より前の燃料噴射により乱れが生成されたとしても、圧縮上死点以降の点火燃焼には寄与しない。   For example, FIG. 11 shows the magnitude of turbulence in a cylinder when a gas flow control valve (for example, a tumble control valve) provided in an intake port is operated and when such a gas flow control valve is not provided. As shown, the turbulence (part A) generated during the intake stroke by operating the gas flow control valve is attenuated as the compression stroke progresses, and is temporarily accompanied by the collapse of the tumble flow in the latter half of the compression stroke. Although the turbulence increases (the portion indicated by reference symbol B), after the compression top dead center, as shown by the reference symbol C, it rapidly attenuates, and combustion improvement (improving flame propagation) using the turbulence cannot be expected so much. The same applies to turbulence caused by fuel spray, and even if turbulence is generated by fuel injection before compression top dead center, it does not contribute to ignition combustion after compression top dead center.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域では点火時期を圧縮上死点前(BTDC点火)としている。   For this reason, ATDC ignition is more advantageous for increasing exhaust temperature and reducing HC, but combustion stability is not established. Therefore, in Patent Document 1, the ignition timing is set to before compression top dead center (BTDC ignition) in the no-load region. Yes.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減のためのATDC点火での燃焼安定性を改善することを目的としている。   The present invention aims to improve combustion stability in ATDC ignition for early activation of the catalyst and HC reduction based on such a situation.

この発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行うようにしたものである。そして、さらに、冷間始動直後に、超リタード燃焼の実行に先だって昇温フェーズを実行する。この昇温フェーズは、圧縮行程中に燃料を噴射し、点火時期が超リタード燃焼のときよりも進角側でかつ圧縮上死点後に設定されるとともに、燃料噴射開始時期から点火時期までの間隔が、超リタード燃焼よりも大きく設定されているものであって、超リタード燃焼によるHC排出量が上記昇温フェーズによるHC排出量より大となる冷間始動直後の所定の期間は、上記超リタード燃焼を禁止して昇温フェーズとする。 The present invention requires an early temperature rise of an exhaust system catalytic converter in a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into the cylinder and includes an ignition plug. When the internal combustion engine is cold-started, the ignition timing is set after the compression top dead center, and super retard combustion is performed in which fuel is injected before the ignition timing and after the compression top dead center. Further, immediately after the cold start, the temperature raising phase is executed prior to the execution of the super retard combustion . The heating phase, the fuel is injected during the compression stroke, the interval between the ignition timing is set after the advance side and the compression top dead center than when the super-retard combustion Rutotomoni, the fuel injection start timing to the ignition timing However, it is set to be larger than the super retard combustion, and a predetermined period immediately after the cold start in which the HC emission amount by the super retard combustion becomes larger than the HC emission amount by the temperature raising phase is the super retard combustion. Combustion is prohibited and the temperature is raised .

すなわち、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、圧縮上死点以降の膨張行程中になされる燃料噴射によって、筒内の乱れを生成・強化することができ、ATDC点火での火炎伝播が促進される。従って、点火時期を圧縮上死点後とした超リタード燃焼が安定的に成立する。   In other words, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but the in-cylinder turbulence is generated and strengthened by the fuel injection performed during the expansion stroke after the compression top dead center. Flame propagation with ATDC ignition is facilitated. Therefore, super retard combustion with the ignition timing after the compression top dead center is established stably.

ここで、上記の超リタード燃焼では、燃焼効率が低くなることに伴うガスボリュームの増加(つまり同じトルクを得るために必要な吸気量の増加)によって、未燃HCの生成量そのものは増加する傾向がある。そして、冷間始動直後は、排気系温度が低いことから、排気通路内でのHCの酸化が十分に促進されず、筒内で生じた未燃HCがそのまま外部へ排出され易くなる。つまり、冷間始動直後から超リタード燃焼とすると、排気系から外部へ排出されるHCが一時的に増加する。   Here, in the above-described super retard combustion, the amount of unburned HC generated tends to increase due to an increase in gas volume accompanying an increase in combustion efficiency (that is, an increase in intake air amount necessary to obtain the same torque). There is. Since the exhaust system temperature is low immediately after the cold start, oxidation of HC in the exhaust passage is not sufficiently promoted, and unburned HC generated in the cylinder is easily discharged to the outside as it is. That is, if the super retard combustion is performed immediately after the cold start, HC discharged from the exhaust system to the outside temporarily increases.

そこで、本発明では、始動直後のごく短い期間内は、昇温フェーズとして、点火時期を、同じ圧縮上死点後であっても超リタード燃焼のときよりもやや進角側に設定し、かつ圧縮行程噴射とする。つまり、この昇温フェーズを経てから超リタード燃焼へと移行する。この昇温フェーズは、超リタード燃焼よりも排気温度が多少低いものの、点火時期を進角側とすることで超リタード燃焼よりも燃焼効率が高く、ガスボリュームが相対的に少なくなるので、未燃HC生成量が総量として少なくなる。また燃料噴射開始時期から点火時期までの間隔つまり燃料の気化時間が長くなる。そのため、排気系温度が低い段階での一時的なHC排出量の増加を抑制しつつ排気系温度を上昇させることができる。 Therefore, in the present invention, within a very short period immediately after start-up, as the temperature rising phase, the ignition timing is set to a slightly advanced angle than in the case of super retard combustion even after the same compression top dead center , and The compression stroke injection is used. That is, after this temperature rising phase, the shift to super retarded combustion is made. In this heating phase, although the exhaust temperature is slightly lower than in the super retard combustion, the combustion efficiency is higher than in the super retard combustion by setting the ignition timing to the advanced side, and the gas volume becomes relatively small. The total amount of HC is reduced. Further, the interval from the fuel injection start timing to the ignition timing, that is, the fuel vaporization time becomes longer. Therefore, the exhaust system temperature can be raised while suppressing a temporary increase in the amount of HC emission when the exhaust system temperature is low.

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性を十分に確保することができ、冷間始動の際に、触媒の早期活性化および後燃えによるHC低減を達成することができる。そして、冷間始動直後の僅かな期間は、点火時期をやや進角側とした昇温フェーズを実行することで、HC排出量の過渡的な増加を回避することができる。   According to the present invention, it is possible to sufficiently ensure the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center, and at the time of cold start, early activation of the catalyst and reduction of HC due to afterburning. Can be achieved. Then, during a short period immediately after the cold start, a transient increase in the HC emission amount can be avoided by executing the temperature rising phase with the ignition timing slightly advanced.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。なお、暖機完了後においては、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、空燃比を30〜40程度とした極リーンの成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。この均質燃焼運転としては、運転条件に応じて、空燃比を理論空燃比とした均質ストイキ燃焼と、空燃比を20〜30程度のリーンとした均質リーン燃焼と、がある。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled. After the warm-up is completed, in a predetermined region on the low-speed and low-load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed before the compression top dead center. Done. The fuel spray is collected in the vicinity of the spark plug 14, thereby achieving extremely lean stratified combustion with an air-fuel ratio of about 30 to 40. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder. As the homogeneous combustion operation, there are homogeneous stoichiometric combustion in which the air-fuel ratio is the stoichiometric air-fuel ratio and homogeneous lean combustion in which the air-fuel ratio is lean about 20 to 30 depending on the operating conditions.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の3つの実施例を示しており、実施例1では、点火時期を15°〜30°ATDC(例えば20°ATDC)とし、燃料噴射時期(詳しくは燃料噴射開始時期)を、圧縮上死点以降でかつ点火時期前に設定する。なお、このとき、空燃比は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。   FIG. 2 shows three examples of super retard combustion. In Example 1, the ignition timing is set to 15 ° to 30 ° ATDC (for example, 20 ° ATDC), and the fuel injection timing (specifically, the fuel injection start timing) is shown. Is set after the compression top dead center and before the ignition timing. At this time, the air-fuel ratio is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17).

すなわち、触媒暖機促進ならびにHC低減のためには、点火時期遅角が有効であり、上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。前述したように、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、本発明では、圧縮上死点以降の膨張行程中になされる高圧の燃料噴射によって、ガス流動が生じ、これにより筒内の乱れを生成・強化することができる。従って、ATDC点火での火炎伝播が促進され、安定した燃焼が可能となる。   That is, in order to promote catalyst warm-up and reduce HC, ignition timing retardation is effective, and ignition after top dead center (ATDC ignition) is desirable, but in order to perform stable combustion with ATDC ignition, It is necessary to shorten the combustion period, and for this purpose, flame propagation due to turbulence must be promoted. As described above, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but in the present invention, by the high pressure fuel injection performed during the expansion stroke after the compression top dead center. The gas flow is generated, and thereby the turbulence in the cylinder can be generated and strengthened. Therefore, flame propagation by ATDC ignition is promoted and stable combustion is possible.

図2の実施例2は、燃料噴射を2回に分割した例であり、1回目の燃料噴射を吸気行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う。なお、点火時期および空燃比(2回の噴射を合わせた空燃比)は実施例1と同様である。   The second embodiment in FIG. 2 is an example in which the fuel injection is divided into two, and the first fuel injection is performed during the intake stroke, and the second fuel injection is performed after the compression top dead center. The ignition timing and the air-fuel ratio (the air-fuel ratio obtained by combining the two injections) are the same as those in the first embodiment.

このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、吸気行程中に燃料噴射(吸気行程噴射)を行うと、吸気行程噴射の燃料噴霧による乱れは圧縮行程後半で減衰してしまい、圧縮上死点後におけるガス流動強化には殆ど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇には有効である。   As described above, when fuel injection (intake stroke injection) is performed during the intake stroke prior to fuel injection after the compression top dead center (expansion stroke injection), disturbance due to fuel spray in the intake stroke injection is attenuated in the latter half of the compression stroke. However, since the injected fuel is diffused throughout the combustion chamber and contributes to the promotion of HC afterburning by ATDC ignition, the HC reduction and It is effective for raising the exhaust temperature.

また、図2の実施例3は、燃料噴射を2回に分割し、1回目の燃料噴射を圧縮行程にて行い、2回目の燃料噴射を圧縮上死点以降に行う。このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、圧縮行程中に燃料噴射(圧縮行程噴射)を行うと、実施例2の吸気行程噴射に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなるため、この1回目の燃料噴射による乱れが残り、圧縮上死点以降に2回目の燃料噴射を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、圧縮上死点付近における更なるガス流動強化が図れる。   In the third embodiment of FIG. 2, the fuel injection is divided into two, the first fuel injection is performed in the compression stroke, and the second fuel injection is performed after the compression top dead center. As described above, when the fuel injection (compression stroke injection) is performed during the compression stroke prior to the fuel injection after the compression top dead center (expansion stroke injection), the compression stroke injection is compared with the intake stroke injection of the second embodiment. However, since the disturbance of the turbulence due to the fuel spray is delayed, the turbulence due to the first fuel injection remains, and the second fuel injection is performed after the compression top dead center, which is generated by the first fuel injection. The turbulence can be strengthened to promote the turbulence, and the gas flow can be further strengthened near the compression top dead center.

この実施例3の場合に、1回目の圧縮行程噴射は、圧縮行程前半でもよいが、圧縮行程後半(90°BTDC以降)に設定すると、上死点付近での乱れをより高めることができる。特に、この1回目の圧縮行程噴射を、45°BTDC以降、より望ましくは20°BTDC以降とすると、圧縮上死点以降のガス流動をより強化することができる。   In the case of Example 3, the first compression stroke injection may be in the first half of the compression stroke, but if it is set in the second half of the compression stroke (after 90 ° BTDC), the disturbance near the top dead center can be further increased. In particular, if the first compression stroke injection is 45 ° BTDC or later, more desirably 20 ° BTDC or later, the gas flow after compression top dead center can be further enhanced.

このように、実施例1〜3の超リタード燃焼によれば、点火の直前に燃料噴霧により筒内の乱れを生成・強化することができ、火炎伝播を促進して、安定した燃焼を行わせることができる。特に、点火時期を15°〜30°ATDCまで遅角させることにより、触媒の早期活性化およびHC低減のための十分な後燃え効果を得ることができる。換言すれば、このように点火時期を大きく遅らせても、その直前まで燃料噴射を遅らせて、乱れの生成時期も遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。   As described above, according to the super retarded combustion of the first to third embodiments, the turbulence in the cylinder can be generated and strengthened by the fuel spray immediately before the ignition, and the flame propagation is promoted to perform stable combustion. be able to. In particular, by retarding the ignition timing from 15 ° to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is greatly delayed in this way, the fuel injection is delayed until just before that, and the generation time of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.

ところで、上記の超リタード燃焼では、圧縮上死点後に燃料噴射を行うため、燃焼効率が低下し、同じトルクを得るために必要な吸気量が増加するので、そのガスボリュームの増加によって、未燃HCの生成量そのものは逆に増加する傾向となる。しかも、圧縮上死点後に燃料噴射を行う超リタード燃焼では、燃料噴射から点火までの期間ひいては燃料気化時間が短くなるため、筒内温度が非常に低い冷間始動直後は、燃料の気化不足に起因して未燃HCの増加が生じることがある。そして、冷間始動直後は、排気系温度が低いことから、排気通路内でのHCの酸化が十分に促進されず、筒内で生じた未燃HCがそのまま外部へ排出され易くなる。   By the way, in the above-mentioned super retard combustion, since fuel injection is performed after compression top dead center, the combustion efficiency is reduced, and the intake amount necessary to obtain the same torque is increased. On the contrary, the amount of HC produced tends to increase. In addition, in super retard combustion in which fuel injection is performed after compression top dead center, the time from fuel injection to ignition and thus the fuel vaporization time is shortened, so that fuel vaporization is insufficient immediately after a cold start with a very low in-cylinder temperature. As a result, an increase in unburned HC may occur. Since the exhaust system temperature is low immediately after the cold start, oxidation of HC in the exhaust passage is not sufficiently promoted, and unburned HC generated in the cylinder is easily discharged to the outside as it is.

図3は、このような冷間始動直後のHC生成量および排温の特性を示したものであり、図4の(A)に示す超リタード燃焼(これは前述した実施例1と同様である)を冷間始動とともに直ちに開始した場合の特性を破線Aで示している。図示するように、超リタード燃焼では、筒内温度が非常に低い冷間始動直後の間は、ガスボリュームの増加や気化不足に起因してHC生成量が大となり、その後、筒内温度がある程度暖まると、HC生成量は、非常に小さくなる。   FIG. 3 shows the characteristics of the HC generation amount and exhaust temperature immediately after such cold start, and the super retard combustion shown in FIG. 4A (this is the same as that of the first embodiment described above). ) Is indicated by a broken line A when it is started immediately after a cold start. As shown in the figure, in the super retard combustion, immediately after the cold start with a very low in-cylinder temperature, the amount of HC generated becomes large due to an increase in gas volume or insufficient vaporization, and then the in-cylinder temperature reaches a certain level. When warmed, the amount of HC produced becomes very small.

そこで、本発明では、始動直後の所定の期間内(例えばHC生成量が大である図3のt1までの間)は、ガスボリュームの増加を抑制した昇温フェーズの設定とし、この昇温フェーズを経てから、超リタード燃焼に移行する。   Therefore, in the present invention, during a predetermined period immediately after start-up (for example, until t1 in FIG. 3 where the amount of HC generation is large), the temperature rising phase is set so as to suppress the increase in gas volume. After that, it shifts to super retard combustion.

図4の(B)は、(A)の超リタード燃焼に先だって実行される昇温フェーズの設定の一例を示したものであり、ここでは、圧縮上死点前に燃料噴射を行い、かつ圧縮上死点後に点火を行う。但し、この点火時期は、(A)に示す超リタード燃焼のときの点火時期よりも進角側に設定する。換言すれば、超リタード燃焼のときの点火時期は、燃焼が成立し得る限界まで遅角側に設定してあり、これに対し、昇温フェーズにおける点火時期は、圧縮上死点後ではあるものの、相対的に燃焼効率が高くなるように、燃焼限界まで遅角させずに、より進角側に設定してある。これにより、例えば同じアイドル回転数を保つために要求される吸気量(より厳密には吸気量および燃料量)が超リタード燃焼のときよりも相対的に少なくなり、ガスボリュームの増加が抑制される。従って、排気温度が低い初期におけるHC生成量の総量が少なくなる。また、昇温フェーズにおける燃料噴射開始時期から点火時期までの間隔T2は、超リタード燃焼における間隔T1よりも相対的に大きい。これにより、昇温フェーズでは、燃料の気化時間が長くなり、冷間状態でのHC生成が抑制される。   FIG. 4B shows an example of setting of the temperature rising phase executed prior to the super retarded combustion of FIG. 4A. Here, fuel injection is performed before compression top dead center, and compression is performed. Ignition after top dead center. However, this ignition timing is set to an advance side with respect to the ignition timing at the time of super retard combustion shown in (A). In other words, the ignition timing at the time of super retard combustion is set to the retard side to the limit at which combustion can be established, whereas the ignition timing in the temperature rising phase is after the compression top dead center. In order to relatively increase the combustion efficiency, the angle is set to the more advanced side without delaying to the combustion limit. As a result, for example, the intake air amount (more strictly speaking, the intake air amount and the fuel amount) required to maintain the same idle speed becomes relatively smaller than that in the super retard combustion, and the increase in gas volume is suppressed. . Therefore, the total amount of HC generation at the initial stage when the exhaust gas temperature is low is reduced. Further, the interval T2 from the fuel injection start timing to the ignition timing in the temperature raising phase is relatively larger than the interval T1 in the super retard combustion. Thereby, in the temperature rising phase, the fuel vaporization time becomes longer, and the generation of HC in the cold state is suppressed.

図3の実線Bは、始動からt1まで上記の昇温フェーズを実行し、t1の時点で超リタード燃焼へ移行した場合のHC生成量および排温の特性を示したものである。図示するように、冷間始動直後はガスボリュームが少ない昇温フェーズとすることで、一時的なHCの増加を回避できる。また、排気温度の特性に着目すると、当初から超リタード燃焼とした破線Aに比べて実線Bは初期の温度上昇が緩慢となるが、昇温フェーズにおいてもATDC点火により排気温度は比較的高く、しかもt1の時点で超リタード燃焼に切り換えた後、超リタード燃焼により速やかに温度上昇するので、最終的な目標である触媒が活性化するまでの所要時間は、当初から超リタード燃焼とした場合と殆ど大差のないものとなる。因みに、昇温フェーズとするt1までの期間は、例えば、数秒ないし数十秒程度である。なお、図3から明らかなように、昇温フェーズを実行する期間t1は、基本的には、当初から超リタード燃焼とした場合の特性Aよりも昇温フェーズの特性Bの方がHC排出量が相対的に少ない期間に、一致することが望ましい。   A solid line B in FIG. 3 shows the characteristics of the HC generation amount and the exhaust temperature when the above temperature rising phase is executed from the start to t1 and the shift to the super retarded combustion is performed at the time t1. As shown in the figure, a temporary increase in HC can be avoided by setting the temperature rising phase with a small gas volume immediately after the cold start. Further, focusing on the characteristics of the exhaust temperature, the solid line B has a slow initial temperature rise compared to the broken line A, which has been super retarded from the beginning, but the exhaust temperature is relatively high due to ATDC ignition in the temperature rising phase, Moreover, after switching to the super retard combustion at the time point t1, the temperature rapidly rises due to the super retard combustion, so the time required for the activation of the final target catalyst is the case of the super retard combustion from the beginning. There will be almost no difference. Incidentally, the period up to t1 as the temperature rising phase is, for example, about several seconds to several tens of seconds. As is apparent from FIG. 3, the period t1 during which the temperature raising phase is executed is basically HC emission amount in the characteristic B in the temperature raising phase rather than the characteristic A in the case of super retard combustion from the beginning. It is desirable that the values coincide with each other in a relatively small period.

図5は、昇温フェーズの異なる設定例を示しており、この例では、燃料噴射を2回に分割し、それぞれを圧縮行程中に噴射している。そして、2回目の燃料噴射の開始時期から点火時期までの間隔T3は、超リタード燃焼における間隔T1よりも相対的に大きい。点火時期は、図4(B)の例と同様に、圧縮上死点後でかつ超リタード燃焼のときの点火時期よりも進角側に設定してある。   FIG. 5 shows different setting examples of the temperature rising phase. In this example, the fuel injection is divided into two times, and each is injected during the compression stroke. The interval T3 from the start timing of the second fuel injection to the ignition timing is relatively larger than the interval T1 in the super retard combustion. As in the example of FIG. 4B, the ignition timing is set to an advance side after the compression top dead center and with respect to the ignition timing at the time of super retard combustion.

図6は、冷間始動時に実行される本発明の燃焼制御の処理を示すフローチャートであって、ステップ1で内燃機関1が始動したことを検出したら、ステップ2へ進んで、筒内温度の推定を行い、ステップ3で、推定した筒内温度が所定温度(燃料気化に必要な温度)に達したか否か判定する。筒内温度は、図7に示すように、始動後、ある時定数でもって徐々に上昇するものとして、始動時の水温、積算吸入空気量、機関回転数、負荷、等のパラメータを用いて推定することができる。さらに制御の簡易化のために、単純に始動からの経過時間でもって所定温度に達したか否かの判定を行うようにしてもよい。   FIG. 6 is a flowchart showing the combustion control process of the present invention executed at the cold start. When it is detected in step 1 that the internal combustion engine 1 is started, the process proceeds to step 2 to estimate the in-cylinder temperature. In step 3, it is determined whether or not the estimated in-cylinder temperature has reached a predetermined temperature (temperature necessary for fuel vaporization). As shown in FIG. 7, the in-cylinder temperature is assumed to gradually increase with a certain time constant after starting, and is estimated using parameters such as water temperature at startup, integrated intake air amount, engine speed, load, and the like. can do. Furthermore, in order to simplify the control, it may be determined whether or not the predetermined temperature has been reached simply by the elapsed time from the start.

ステップ3で所定温度に達していないと判定したら、所定温度に達するまでの間は、ステップ4へ進んで、前述した昇温フェーズを実行する。そして、所定温度に達したら、ステップ5へ進んで、超リタード燃焼とする。なお、超リタード燃焼としては、上述した実施例1のほか、実施例2、3のように分割噴射とすることもできる。また、ステップ4の昇温フェーズとしては、図4(B)もしくは図5の設定に限定されず、種々の設定が可能である。   If it is determined in step 3 that the predetermined temperature has not been reached, the process proceeds to step 4 until the predetermined temperature is reached, and the above-described temperature increase phase is executed. When the predetermined temperature is reached, the process proceeds to step 5 to perform super retard combustion. The super retarded combustion can be divided injection as in the second and third embodiments in addition to the above-described first embodiment. Further, the temperature raising phase in step 4 is not limited to the setting shown in FIG. 4B or FIG. 5, and various settings are possible.

次に、図8は、排気温度に基づいて、昇温フェーズの期間を定めた実施例を示している。つまり、排気系温度が低い冷間始動直後は、排気通路内でのHCの酸化が十分に促進されず、筒内で生じた未燃HCがそのまま外部へ排出され易くなるが、排気温度がある程度高くなれば、排気通路内で未燃HCが酸化される。このフローチャートは、図6の実施例と類似したものであり、ステップ1で内燃機関1が始動したことを検出したら、ステップ2へ進んで、排気温度センサ13により検出した排気温度の読み込みを行い、ステップ3で、検出した排気温度が所定温度(HCの酸化に必要な温度)に達したか否か判定する。排気温度は、図9に示すように、始動後、ある時定数でもって徐々に上昇するので、排気温度センサ13による直接的な検出に代えて、始動時の水温、積算吸入空気量、機関回転数、負荷、等のパラメータを用いて推定することもできる。さらに制御の簡易化のために、単純に始動からの経過時間でもって所定温度に達したか否かの判定を行うようにしてもよい。   Next, FIG. 8 shows an embodiment in which the period of the temperature raising phase is determined based on the exhaust gas temperature. That is, immediately after the cold start when the exhaust system temperature is low, the oxidation of HC in the exhaust passage is not sufficiently promoted, and unburned HC generated in the cylinder is easily discharged to the outside as it is, but the exhaust temperature is somewhat If it becomes high, unburned HC is oxidized in the exhaust passage. This flowchart is similar to the embodiment of FIG. 6. When it is detected in step 1 that the internal combustion engine 1 has been started, the process proceeds to step 2 where the exhaust temperature detected by the exhaust temperature sensor 13 is read. In step 3, it is determined whether or not the detected exhaust gas temperature has reached a predetermined temperature (temperature necessary for HC oxidation). As shown in FIG. 9, the exhaust temperature gradually rises with a certain time constant after the start, so that instead of direct detection by the exhaust temperature sensor 13, the water temperature at the start, the integrated intake air amount, the engine speed It can also be estimated using parameters such as number, load, etc. Furthermore, in order to simplify the control, it may be determined whether or not the predetermined temperature has been reached simply by the elapsed time from the start.

ステップ3で所定温度に達していないと判定したら、所定温度に達するまでの間は、ステップ4へ進んで、前述した昇温フェーズを実行する。そして、所定温度に達したら、ステップ5へ進んで、超リタード燃焼とする。   If it is determined in step 3 that the predetermined temperature has not been reached, the process proceeds to step 4 until the predetermined temperature is reached, and the above-described temperature increase phase is executed. When the predetermined temperature is reached, the process proceeds to step 5 to perform super retard combustion.

次に、図10は、筒内温度および排気温度の双方を考慮して、昇温フェーズの期間を定めた実施例を示している。なお、ここでは、筒内温度は、単純に始動からの経過時間でもって示されるものとし、排気温度は、排気温度センサ13によって直接に検出するようにしているが、それぞれを、上述した他のパラメータから推定することも可能である。ステップ1で内燃機関1が始動したことを検出したら、ステップ2へ進んで、始動からの経過時間を読み込み、かつステップ3で、排気温度センサ13により検出した排気温度を読み込む。次に、ステップ4で、始動からの経過時間が所定時間(燃料気化に必要な筒内温度に達しうる時間)に達したか否か判定し、かつ、ステップ5で、検出した排気温度が所定温度(HCの酸化に必要な温度)に達したか否か判定する。   Next, FIG. 10 shows an embodiment in which the period of the temperature raising phase is determined in consideration of both the in-cylinder temperature and the exhaust gas temperature. Here, it is assumed that the in-cylinder temperature is simply indicated by the elapsed time from the start, and the exhaust temperature is directly detected by the exhaust temperature sensor 13. It is also possible to estimate from parameters. If it is detected in step 1 that the internal combustion engine 1 has been started, the process proceeds to step 2 where the elapsed time since the start is read, and in step 3, the exhaust temperature detected by the exhaust temperature sensor 13 is read. Next, in step 4, it is determined whether or not the elapsed time from the start has reached a predetermined time (a time during which the in-cylinder temperature necessary for fuel vaporization can be reached), and in step 5, the detected exhaust temperature is determined to be It is determined whether or not the temperature (temperature necessary for HC oxidation) has been reached.

ステップ4もしくはステップ5で所定時間ないし所定温度に達していないと判定したら、ステップ6へ進んで、前述した昇温フェーズを実行する。そして、始動からの所定時間が経過し、かつ排気温度が所定温度に達したら、ステップ7へ進んで、超リタード燃焼とする。   If it is determined in step 4 or step 5 that the predetermined time or temperature has not been reached, the process proceeds to step 6 to execute the above-described temperature raising phase. Then, when a predetermined time from the start elapses and the exhaust gas temperature reaches the predetermined temperature, the routine proceeds to step 7 where super retard combustion is performed.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on this invention. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 本発明による冷間始動直後のHC生成量および排温の特性を示す特性図。The characteristic view which shows the characteristic of HC production | generation amount and exhaust temperature immediately after the cold start by this invention. 超リタード燃焼(A)と昇温フェーズ(B)の設定例を示す特性図。The characteristic view which shows the example of a setting of super retarded combustion (A) and a temperature rising phase (B). 昇温フェーズの異なる設定例を示す特性図。The characteristic view which shows the example of a setting from which a temperature rising phase differs. 本発明の燃焼制御の一実施例を示すフローチャート。The flowchart which shows one Example of the combustion control of this invention. 筒内温度の推定の説明図。Explanatory drawing of estimation of in-cylinder temperature. 本発明の燃焼制御の異なる実施例を示すフローチャート。The flowchart which shows the Example from which the combustion control of this invention differs. 排気温度の推定の説明図。Explanatory drawing of estimation of exhaust gas temperature. 本発明の燃焼制御のさらに異なる実施例を示すフローチャート。The flowchart which shows the further another Example of the combustion control of this invention. 従来技術における筒内の乱れの変化を示す説明図。Explanatory drawing which shows the change of the disturbance in a cylinder in a prior art.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
14…点火プラグ
15…燃料噴射弁
25…コントロールユニット
3 ... Combustion chamber 10 ... Catalytic converter 14 ... Spark plug 15 ... Fuel injection valve 25 ... Control unit

Claims (4)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備え排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行う筒内直接噴射式火花点火内燃機関の制御装置において、
冷間始動直後に、超リタード燃焼の実行に先だって昇温フェーズを実行し、この昇温フェーズは、圧縮行程中に燃料を噴射し、点火時期が超リタード燃焼のときよりも進角側でかつ圧縮上死点後に設定されるとともに、燃料噴射開始時期から点火時期までの間隔が、超リタード燃焼よりも大きく設定されており、
超リタード燃焼によるHC排出量が上記昇温フェーズによるHC排出量より大となる冷間始動直後の所定の期間は、上記超リタード燃焼を禁止して昇温フェーズとすることを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。
In addition to a fuel injection valve that directly injects fuel into the cylinder, an ignition plug is provided , and the ignition timing is set after compression top dead center at the time of cold start of an internal combustion engine that requires early temperature rise of the exhaust system catalytic converter In addition, in the control device for a direct injection type spark ignition internal combustion engine that performs super retard combustion that injects fuel before the ignition timing and after compression top dead center ,
Immediately after the cold start, the temperature rising phase is executed prior to the execution of the super retard combustion , and this temperature increasing phase injects fuel during the compression stroke, and the ignition timing is more advanced than that in the case of the super retard combustion. Rutotomoni is set after compression top dead center, distance from the fuel injection start timing to the ignition timing, it is set larger than the super-retard combustion,
An in-cylinder characterized in that the super retard combustion is prohibited and the temperature rising phase is set for a predetermined period immediately after the cold start in which the HC emission amount due to the super retard combustion is larger than the HC emission amount due to the temperature rising phase. Control device for a direct injection spark ignition internal combustion engine.
超リタード燃焼における点火時期は、圧縮上死点後15°〜30°CAであることを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 15 ° to 30 ° CA after compression top dead center. 超リタード燃焼においては、圧縮上死点後の燃料噴射に先だって、吸気行程中もしくは圧縮行程中に、さらに燃料噴射を行うことを特徴とする請求項1または2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark according to claim 1 or 2, wherein in super retard combustion, fuel injection is further performed during an intake stroke or a compression stroke prior to fuel injection after compression top dead center. Control device for an ignition internal combustion engine. 超リタード燃焼における空燃比は、理論空燃比もしくは若干リーンであることを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The control apparatus for a direct injection spark ignition internal combustion engine according to any one of claims 1 to 3, wherein the air-fuel ratio in super retarded combustion is a stoichiometric air-fuel ratio or slightly lean.
JP2004302341A 2004-09-30 2004-10-18 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4333548B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004302341A JP4333548B2 (en) 2004-10-18 2004-10-18 In-cylinder direct injection spark ignition internal combustion engine controller
EP05021307A EP1643107B1 (en) 2004-09-30 2005-09-29 Combustion control method and apparatus for a direct injection spark ignition internal combustion engine
US11/238,159 US7159566B2 (en) 2004-09-30 2005-09-29 Control method and apparatus for direct injection spark ignited internal combustion engine
DE602005024349T DE602005024349D1 (en) 2004-09-30 2005-09-29 Method and device for combustion control of a direct injection internal combustion engine with spark ignition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302341A JP4333548B2 (en) 2004-10-18 2004-10-18 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2006112365A JP2006112365A (en) 2006-04-27
JP4333548B2 true JP4333548B2 (en) 2009-09-16

Family

ID=36381088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302341A Expired - Fee Related JP4333548B2 (en) 2004-09-30 2004-10-18 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4333548B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232818B2 (en) 2006-11-29 2009-03-04 トヨタ自動車株式会社 Ignition control system for internal combustion engine
JP5217383B2 (en) * 2007-11-20 2013-06-19 トヨタ自動車株式会社 Powertrain control device
JP5983416B2 (en) * 2013-01-16 2016-08-31 マツダ株式会社 Catalyst early warm-up controller for spark ignition engine
JP6392536B2 (en) * 2014-04-10 2018-09-19 株式会社デンソー Control device for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141446A (en) * 1997-10-31 1999-05-25 Suzuki Motor Corp Control device of engine
JP2000054881A (en) * 1998-08-06 2000-02-22 Mazda Motor Corp Controller for cylinder injection type engine
JP2000120471A (en) * 1998-08-10 2000-04-25 Mazda Motor Corp Cylinder injection type engine control device
JP2002070624A (en) * 2000-08-25 2002-03-08 Toyota Motor Corp Combustion controller for cylinder injection type internal combustion engine
JP3963088B2 (en) * 2001-09-06 2007-08-22 マツダ株式会社 Control device for spark ignition direct injection engine
JP4062990B2 (en) * 2002-07-02 2008-03-19 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine
JP2004197674A (en) * 2002-12-19 2004-07-15 Mitsubishi Automob Eng Co Ltd Catalyst temperature rise device for cylinder injection internal combustion engine

Also Published As

Publication number Publication date
JP2006112365A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US7159566B2 (en) Control method and apparatus for direct injection spark ignited internal combustion engine
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006336473A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006144609A (en) Control device for cylinder direct injection spark ignition engine
JP2005214039A (en) Control device for direct spark ignition type internal combustion engine
JP4544036B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees