JP2005214039A - Control device for direct spark ignition type internal combustion engine - Google Patents

Control device for direct spark ignition type internal combustion engine Download PDF

Info

Publication number
JP2005214039A
JP2005214039A JP2004020083A JP2004020083A JP2005214039A JP 2005214039 A JP2005214039 A JP 2005214039A JP 2004020083 A JP2004020083 A JP 2004020083A JP 2004020083 A JP2004020083 A JP 2004020083A JP 2005214039 A JP2005214039 A JP 2005214039A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
injection
ignition
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020083A
Other languages
Japanese (ja)
Inventor
Masayuki Tomita
全幸 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004020083A priority Critical patent/JP2005214039A/en
Priority to US11/038,620 priority patent/US7096853B2/en
Priority to EP05001422A priority patent/EP1559896A3/en
Priority to CNB2005100063904A priority patent/CN100494663C/en
Publication of JP2005214039A publication Critical patent/JP2005214039A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/46

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve combustion stability (flame propagation promotion) by intensifying disturbance in a cylinder due to fuel atomization in ATDC ignition for early activation of a catalyst and HC reduction. <P>SOLUTION: When the warm-up of the catalyst is required, an ignition timing is set after a compression top dead center (TDC). Fuel injection is performed after the TDC but before the ignition timing (Embodiment 1). Otherwise, prior to the fuel injection after the TDC, fuel injection is performed during an intake or compression stroke (Embodiments, 2, 3). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、直噴火花点火式内燃機関の制御装置に関し、特に冷間始動直後など、排気通路に備えられる排気浄化用の触媒の暖機(活性化)が要求されている時の好適な制御装置に関する。   The present invention relates to a control device for a direct injection spark ignition internal combustion engine, and particularly suitable control when warming-up (activation) of an exhaust purification catalyst provided in an exhaust passage is required, such as immediately after a cold start. Relates to the device.

特許文献1には、排気浄化用の触媒が活性温度より低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射との少なくとも2回の分割噴射を行わせ、かつ、点火時期をMBTより所定量リタードさせると共に、エンジンの無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除くエンジンの低回転低負荷領域では点火時期を圧縮上死点以降までリタードさせることが記載されている。
特許第3325230号公報
In Patent Document 1, when the catalyst for exhaust purification is in an unwarmed state lower than the activation temperature, an air-fuel mixture having a partial air-fuel ratio concentration is introduced into the combustion chamber within the period from the intake stroke to the ignition timing. The fuel is injected before the late injection to be formed and the fuel is injected before the late injection, and the air-fuel mixture having a leaner air-fuel ratio than the stoichiometric air-fuel ratio is generated in the combustion chamber. And at least two split injections with the early injection to be performed, and the ignition timing is retarded by a predetermined amount from the MBT, and the ignition timing is set before the compression top dead center in the no-load region of the engine. It is described that the ignition timing is retarded until after the compression top dead center in the low rotation and low load region of the engine except the region.
Japanese Patent No. 3325230

エンジン冷機時の触媒の早期活性化及びHC低減のため、後燃えを促進するには、点火時期の遅角が有効であり、より大きな効果を得るために圧縮上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。そこで、高圧で噴射される燃料噴霧により、筒内に乱れを生成することが考えられる。   In order to accelerate the afterburning for early activation of the catalyst and reduction of HC when the engine is cold, the retard of the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC ignition) ) Is desirable, but in order to perform stable combustion with ATDC ignition, it is necessary to shorten the combustion period. For this purpose, the turbulence in the cylinder is strengthened and the combustion speed (flame propagation speed) is increased. is required. Therefore, it is conceivable that turbulence is generated in the cylinder by the fuel spray injected at a high pressure.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程の120〜45°BTDCにて行っており、最後の燃料噴射がTDCより前では、その噴霧により筒内に乱れを生成しても、TDC以降にはその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is mainly performed during the intake stroke, and the second fuel injection (late injection) is performed at 120 to 45 ° BTDC in the compression stroke. If the last fuel injection is before TDC, even if turbulence is generated in the cylinder by the spray, the turbulence attenuates after TDC, and does not contribute to the increase in flame propagation speed by ATDC ignition.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域ではBTDC点火としている。
本発明は、このような実状を踏まえて、触媒の早期活性化及びHC低減のためのATDC点火での燃焼安定性を改善することを目的とする。
For this reason, ATDC ignition is more advantageous for exhaust temperature rise and HC reduction, but since combustion stability is not established, in Patent Document 1, BTDC ignition is used in the no-load region.
The present invention has been made in view of such a situation, and an object thereof is to improve combustion stability in ATDC ignition for early activation of a catalyst and HC reduction.

このため、本発明は、触媒の暖機が要求される時に、点火時期を圧縮上死点以降に設定する一方、圧縮上死点以降で点火時期前に燃料を噴射する構成とする。   For this reason, the present invention is configured such that when the catalyst is required to be warmed up, the ignition timing is set after the compression top dead center, while the fuel is injected after the compression top dead center and before the ignition timing.

本発明によれば、ATDC側では吸気行程や圧縮行程で生成する乱れは減衰してしまうが、TDC以降の膨張行程での燃料噴射によって筒内の乱れを生成・強化することで、ATDC点火での火炎伝播促進を図ることができる。従って、触媒の早期活性化及びHC低減を得るためのATDC点火を実現するに際し、筒内の乱れを強化して、燃焼安定性を向上させることができる。   According to the present invention, on the ATDC side, turbulence generated in the intake stroke and compression stroke is attenuated, but by generating and strengthening in-cylinder turbulence by fuel injection in the expansion stroke after TDC, ATDC ignition is performed. The flame propagation can be promoted. Therefore, when realizing ATDC ignition for obtaining early activation of the catalyst and reduction of HC, the in-cylinder turbulence can be strengthened and the combustion stability can be improved.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すエンジン(直噴火花点火式内燃機関)のシステム図である。
エンジン1の吸気通路2には、吸入空気量を制御する電制スロットル弁3が設置されている。電制スロットル弁3は、エンジンコントロールユニット(以下ECUという)20からの信号により作動するステップモータ等により開度制御される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an engine (direct injection spark ignition type internal combustion engine) showing an embodiment of the present invention.
In the intake passage 2 of the engine 1, an electric throttle valve 3 for controlling the intake air amount is installed. The opening degree of the electric throttle valve 3 is controlled by a step motor or the like that is operated by a signal from an engine control unit (hereinafter referred to as ECU) 20.

エンジン1の燃焼室4には、点火プラグ5と共に、燃料噴射弁6が設置されている。
燃料噴射弁6は、ECU20からエンジン回転に同期して吸気行程又は圧縮行程にて出力される噴射パルス信号によりソレノイドに通電されて開弁し、所定圧力に調圧された燃料を噴射するようになっている。そして、噴射された燃料は、吸気行程噴射の場合は燃焼室4全体に拡散して均質な混合気を形成し、また圧縮行程噴射の場合は点火プラグ5周りに集中的に層状の混合気を形成し、ECU20からの点火信号に基づき、点火プラグ5により点火されて燃焼(均質燃焼又は成層燃焼)する。
A fuel injection valve 6 is installed in the combustion chamber 4 of the engine 1 together with a spark plug 5.
The fuel injection valve 6 is energized to the solenoid by an injection pulse signal output from the ECU 20 in the intake stroke or the compression stroke in synchronization with the engine rotation, so that the fuel adjusted to a predetermined pressure is injected. It has become. In the case of intake stroke injection, the injected fuel diffuses throughout the combustion chamber 4 to form a homogeneous mixture, and in the case of compression stroke injection, a stratified mixture is concentrated around the spark plug 5. Based on the ignition signal from the ECU 20, the ignition plug 5 is ignited and burned (homogeneous combustion or stratified combustion).

エンジン1の排気通路7には、排気浄化用の触媒8が設けられている。
ECU20には、アクセルペダルセンサ21により検出されるアクセル開度APO、クランク角センサ22により検出されるエンジン回転数Ne、熱線式エアフローメータ23により検出される吸入空気量Qa、スロットルセンサ24により検出されるスロットル開度TVO、水温センサ25により検出されるエンジン冷却水温度Twが入力されている。
An exhaust purification catalyst 8 is provided in the exhaust passage 7 of the engine 1.
The ECU 20 detects the accelerator opening APO detected by the accelerator pedal sensor 21, the engine speed Ne detected by the crank angle sensor 22, the intake air amount Qa detected by the hot-wire air flow meter 23, and the throttle sensor 24. The throttle opening TVO and the engine coolant temperature Tw detected by the water temperature sensor 25 are input.

ECU20は、これらの入力信号より検出されるエンジン運転条件に基づいて、燃焼方式(均質燃焼、成層燃焼)を設定し、これに合わせて、電制スロットル弁3の開度、燃料噴射弁6の燃料噴射時期及び燃料噴射量、点火プラグ5の点火時期を制御する。尚、通常運転条件(暖機完了後)において、成層燃焼は、A/F=30〜40程度の極リーンで行われる(成層リーン燃焼)。均質燃焼には、均質リーン燃焼(A/F=20〜30)と、均質ストイキ燃焼とがある。   The ECU 20 sets a combustion method (homogeneous combustion, stratified combustion) based on the engine operating conditions detected from these input signals, and according to this, the opening degree of the electric throttle valve 3 and the fuel injection valve 6 The fuel injection timing, the fuel injection amount, and the ignition timing of the spark plug 5 are controlled. Note that, under normal operating conditions (after completion of warm-up), stratified combustion is performed with extremely lean A / F = about 30 to 40 (stratified lean combustion). Homogeneous combustion includes homogeneous lean combustion (A / F = 20-30) and homogeneous stoichiometric combustion.

本発明は、冷間始動直後など、触媒8の暖機が要求されている時に、このための最適な燃焼制御を実現するものであり、これは、ECU20により、図2のフローチャートに従ってなされる。
図2の触媒暖機要求時制御のフローチャートについて説明する。
S1では、触媒8が活性化しているか否かを判定する。具体的には、触媒温度センサを有する場合は、これにより触媒温度を検出する。触媒温度センサを有しない場合は、冷却水温度Twより触媒温度を推定する。又は、始動時の冷却水温度と、始動後の吸入空気量の積算値とに基づいて、触媒温度を推定する。そして、検出又は推定された触媒温度が所定の活性温度以上か否かを判定する。
The present invention realizes optimal combustion control for this when the warm-up of the catalyst 8 is required, such as immediately after a cold start, and this is performed by the ECU 20 according to the flowchart of FIG.
A flow chart of the catalyst warm-up request control in FIG. 2 will be described.
In S1, it is determined whether or not the catalyst 8 is activated. Specifically, when a catalyst temperature sensor is provided, the catalyst temperature is detected by this. If the catalyst temperature sensor is not provided, the catalyst temperature is estimated from the cooling water temperature Tw. Alternatively, the catalyst temperature is estimated based on the cooling water temperature at the start and the integrated value of the intake air amount after the start. Then, it is determined whether or not the detected or estimated catalyst temperature is equal to or higher than a predetermined activation temperature.

触媒が活性化していない場合は、S2へ進む。
S2では、触媒暖機要求時制御として、点火時期を圧縮上死点(TDC)以降まで遅角する。具体的には、点火時期を、15〜30°ATDC(例えば20°ATDC)に設定し、ATDC点火を行う。また、燃料噴射時期を、圧縮上死点(TDC)以降で、点火時期前に設定し、TDC以降の膨張行程噴射(ATDC噴射)とする。尚、燃料噴射は、2回に分割して、2回目の燃料噴射をATDC噴射とし、これに先立つ1回目の燃料噴射として、吸気行程噴射又は圧縮行程噴射を行うようにしてもよい。燃料噴射の詳細については後述する。また、燃料噴射による燃焼室内の空燃比(燃料噴射を2回に分割する場合は、2回の燃料噴射による燃焼室内の空燃比)は、ストイキ〜若干リーン(A/F=16〜17)とする。
If the catalyst is not activated, the process proceeds to S2.
In S2, as the catalyst warm-up request control, the ignition timing is retarded until after the compression top dead center (TDC). Specifically, the ignition timing is set to 15 to 30 ° ATDC (for example, 20 ° ATDC), and ATDC ignition is performed. Further, the fuel injection timing is set after the compression top dead center (TDC) and before the ignition timing, and is set as the expansion stroke injection (ATDC injection) after the TDC. The fuel injection may be divided into two, and the second fuel injection may be ATDC injection, and the intake stroke injection or the compression stroke injection may be performed as the first fuel injection preceding this. Details of the fuel injection will be described later. Further, the air-fuel ratio in the combustion chamber by fuel injection (when fuel injection is divided into two times, the air-fuel ratio in the combustion chamber by two fuel injections) is stoichiometric to slightly lean (A / F = 16 to 17). To do.

S2の後は、S1へ戻る。触媒暖機要求時制御により、触媒8が活性化すると、S1からS3へ進んで、通常制御へ移行する。通常制御では、運転条件に応じ、前述した成層リーン燃焼、均質リーン燃焼、均質ストイキ燃焼などがなされる。
次に、触媒暖機要求時制御について詳細に説明する。
エンジン冷機時の触媒暖機促進及びHC低減のためには、点火時期遅角が有効であり、TDC以降の点火(ATDC点火)が望ましい。
After S2, the process returns to S1. When the catalyst 8 is activated by the catalyst warm-up request control, the process proceeds from S1 to S3 and shifts to normal control. In normal control, the above-described stratified lean combustion, homogeneous lean combustion, homogeneous stoichiometric combustion, and the like are performed according to operating conditions.
Next, the catalyst warm-up request control will be described in detail.
In order to promote catalyst warm-up and reduce HC when the engine is cold, ignition timing delay is effective, and ignition after TDC (ATDC ignition) is desirable.

ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。
火炎伝播促進のためには点火時期以降の乱れを強くする必要があるが、図3を参照し、例えば吸気ポート内に配置するガス流動制御弁(例えばタンブル制御弁)を作動させて、吸気行程にて生成した乱れ(図3A)は、圧縮行程の進行と共に減衰し、圧縮行程後期のピストンによるタンブル流の崩壊(図3B)により一時的に乱れが大きくなるのものの、TDC以降では減衰してしまい(図3C)、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。
In order to perform stable combustion with ATDC ignition, it is necessary to shorten the combustion period. For this purpose, flame propagation due to turbulence must be promoted.
In order to promote flame propagation, it is necessary to increase the turbulence after the ignition timing. However, referring to FIG. 3, for example, a gas flow control valve (for example, a tumble control valve) disposed in the intake port is operated to perform an intake stroke. The turbulence generated in Fig. 3A attenuates with the progress of the compression stroke, and the turbulence temporarily increases due to the collapse of the tumble flow by the piston in the latter half of the compression stroke (Fig. 3B), but attenuates after TDC. As a result (FIG. 3C), combustion improvement (improving flame propagation) using the turbulence cannot be expected so much.

そこで、本発明では、ATDC点火の場合に、TDC以降で点火時期前に燃料噴射(ATDC噴射)を行い、高圧燃料噴射による乱れを用いて、TDC以降のガス流動強化を図り、ATDC点火での燃焼改善(火炎伝播向上)を図る。
具体的には、図4の実施例1に示すように、TDC以降で、点火時期前の膨張行程にて燃料を噴射する。
Therefore, in the present invention, in the case of ATDC ignition, fuel injection (ATDC injection) is performed before the ignition timing after TDC, and the gas flow is strengthened after TDC by using turbulence caused by high-pressure fuel injection. To improve combustion (improving flame propagation).
Specifically, as shown in the first embodiment of FIG. 4, the fuel is injected after the TDC in the expansion stroke before the ignition timing.

また、図4の実施例2では、燃料噴射を2回に分割し、1回目の燃料噴射を吸気行程にて行い、2回目の燃料噴射をATDC噴射としている。このように、ATDC噴射(膨張行程噴射)に先立ち、吸気行程中に燃料噴射を行うと、吸気行程噴射では、その燃料噴霧による乱れが圧縮行程後半で減衰してしまい、ATDCにおけるガス流動強化にはほとんど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火による後燃えの促進に寄与するので、HC低減・排温上昇には有効である。   Further, in the second embodiment of FIG. 4, the fuel injection is divided into two times, the first fuel injection is performed in the intake stroke, and the second fuel injection is set as ATDC injection. Thus, if fuel injection is performed during the intake stroke prior to ATDC injection (expansion stroke injection), in the intake stroke injection, the turbulence due to the fuel spray is attenuated in the latter half of the compression stroke, and this enhances gas flow in the ATDC. Has little effect, but the injected fuel is diffused throughout the combustion chamber and contributes to the promotion of afterburning by ATDC ignition, which is effective in reducing HC and increasing exhaust temperature.

また、図4の実施例3では、燃料噴射を2回に分割し、1回目の燃料噴射を圧縮行程にて行い、2回目の燃料噴射をATDC噴射としている。このように、ATDC噴射(膨張行程噴射)に先立ち、圧縮行程中に燃料噴射を行うと、吸気行程噴射に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなる分、1回目の燃料噴射よる乱れが残り、TDC以降に2回目の燃料噴射を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、ATDCにおける更なるガス流動強化が図れる。   Further, in Example 3 of FIG. 4, the fuel injection is divided into two times, the first fuel injection is performed in the compression stroke, and the second fuel injection is set as ATDC injection. Thus, if fuel injection is performed during the compression stroke prior to ATDC injection (expansion stroke injection), the compression stroke injection is slower to attenuate the disturbance due to the fuel spray than the intake stroke injection. The turbulence caused by the first fuel injection remains, and by performing the second fuel injection after TDC, the turbulence can be strengthened to promote the turbulence generated by the first fuel injection, and further gas flow enhancement in ATDC I can plan.

この場合に、1回目の圧縮行程噴射は、圧縮行程前半でもよいが、圧縮行程後半(90°BTDC以降)に実施すると、より乱れを高めることができる。特に、ここでの1回目の圧縮行程噴射を45°BTDC以降、より望ましくは20°BTDC以降に実施すると、TDC以降のガス流動をより強化することができる。
本実施形態によれば、触媒の暖機が要求される時に、点火時期をATDCに設定する一方、TDC以降で点火時期前に燃料を噴射することにより、点火の直前に筒内の乱れを生成・強化することができ、触媒の早期活性化及びHC低減を得るためのATDC点火を実現するに際し、燃焼安定性向上(火炎伝播促進)を図ることができる。
In this case, the first compression stroke injection may be performed in the first half of the compression stroke, but if performed in the second half of the compression stroke (after 90 ° BTDC), the disturbance can be further increased. In particular, if the first compression stroke injection is performed after 45 ° BTDC, more preferably after 20 ° BTDC, the gas flow after TDC can be further strengthened.
According to this embodiment, when the catalyst needs to be warmed up, the ignition timing is set to ATDC, while fuel is injected before TIG and after TDC, thereby generating in-cylinder turbulence immediately before ignition. -It is possible to enhance the combustion stability (acceleration of flame propagation) when realizing ATDC ignition for obtaining early activation of the catalyst and reduction of HC.

また、本実施形態によれば、点火時期は、15〜30°ATDCに設定することにより、触媒の早期活性化及びHC低減のための十分な後燃え効果を得ることができる。言い換えれば、この位、点火時期を遅らせても、その直前まで燃料噴射を遅らせて、乱れの生成ポイントも遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。
また、本実施形態によれば、TDC以降の燃料噴射に先立ち、吸気行程中に燃料噴射を行うことにより、点火までに噴射燃料が燃焼室全体に拡散していて、ATDC点火による後燃えの促進に寄与するので、HC低減・排温上昇に効果的となる。
Further, according to this embodiment, by setting the ignition timing to 15 to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is delayed, the fuel injection is delayed until just before that, and the generation point of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.
Further, according to the present embodiment, fuel injection is performed during the intake stroke prior to fuel injection after TDC, so that the injected fuel is diffused throughout the combustion chamber by ignition, and afterburning is promoted by ATDC ignition. This contributes to reducing HC and increasing exhaust temperature.

また、本実施形態によれば、TDC以降の燃料噴射に先立ち、圧縮行程中に燃料噴射を行うことにより、1回目の燃料噴射による乱れ促進により、ATDCにおける更なるガス流動の強化が得られる。
また、本実施形態によれば、燃料噴射による燃焼室内の空燃比は、ストイキ〜若干リーン(A/F=16〜17)とすることにより、後燃えに必要な酸素を必要十分なものとして、後燃えを促進することができる。
In addition, according to the present embodiment, prior to fuel injection after TDC, fuel injection is performed during the compression stroke, whereby turbulence is promoted by the first fuel injection, thereby further enhancing gas flow in ATDC.
Further, according to the present embodiment, the air-fuel ratio in the combustion chamber by fuel injection is stoichiometric to slightly lean (A / F = 16 to 17), so that oxygen necessary for afterburning is necessary and sufficient. Afterburning can be promoted.

尚、ATDCにおける燃料噴射は点火時期前とするが、火炎伝播は時間と共に進行するので、火炎伝播に間に合えば、燃料噴射の終了が点火時期より遅くなってもよい。   Although fuel injection in the ATDC is performed before the ignition timing, flame propagation proceeds with time, so that the end of fuel injection may be later than the ignition timing in time for flame propagation.

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing an embodiment of the present invention 制御のフローチャートControl flow chart 吸気ポート内ガス流動制御弁を用いた場合の筒内乱れの説明図Explanatory drawing of in-cylinder turbulence when using a gas flow control valve in the intake port 燃料噴射時期の説明図Illustration of fuel injection timing

符号の説明Explanation of symbols

1 エンジン
2 吸気通路
3 電制スロットル弁
4 燃焼室
5 点火プラグ
6 燃料噴射弁
7 排気通路
8 触媒
20 ECU
21 アクセルペダルセンサ
22 クランク角センサ
23 エアフローメータ
24 スロットルセンサ
25 水温センサ
1 engine
2 Intake passage
3 Electric throttle valve
4 Combustion chamber
5 Spark plug
6 Fuel injection valve
7 Exhaust passage
8 Catalyst
20 ECU
21 Accelerator pedal sensor
22 Crank angle sensor
23 Air Flow Meter
24 Throttle sensor
25 Water temperature sensor

Claims (5)

排気通路に配置される排気浄化用の触媒の暖機が要求される時に、点火時期を圧縮上死点以降に設定する一方、圧縮上死点以降で点火時期前に燃料を噴射することを特徴とする直噴火花点火式内燃機関の制御装置。   When warming-up of an exhaust purification catalyst arranged in the exhaust passage is required, the ignition timing is set after the compression top dead center, while the fuel is injected after the compression top dead center and before the ignition timing. A direct-injection spark-ignition internal combustion engine control device. 点火時期は、圧縮上死点後15〜30°に設定することを特徴とする請求項1記載の直噴火花点火式内燃機関の制御装置。   2. The control device for a direct injection spark ignition type internal combustion engine according to claim 1, wherein the ignition timing is set to 15 to 30 [deg.] After compression top dead center. 圧縮上死点以降の燃料噴射に先立ち、吸気行程中に燃料噴射を行うことを特徴とする請求項1又は請求項2記載の直噴火花点火式内燃機関の制御装置。   3. The control device for a direct injection spark ignition type internal combustion engine according to claim 1, wherein fuel injection is performed during an intake stroke prior to fuel injection after compression top dead center. 圧縮上死点以降の燃料噴射に先立ち、圧縮行程中に燃料噴射を行うことを特徴とする請求項1又は請求項2記載の直噴火花点火式内燃機関の制御装置。   3. The control device for a direct injection spark ignition type internal combustion engine according to claim 1, wherein fuel injection is performed during a compression stroke prior to fuel injection after compression top dead center. 燃料噴射による燃焼室内の空燃比は、ストイキ〜若干リーンとすることを特徴とする請求項1〜請求項4のいずれか1つに記載の直噴火花点火式内燃機関の制御装置。   The control apparatus for a direct injection spark ignition type internal combustion engine according to any one of claims 1 to 4, wherein the air-fuel ratio in the combustion chamber by fuel injection is stoichiometric to slightly lean.
JP2004020083A 2004-01-28 2004-01-28 Control device for direct spark ignition type internal combustion engine Pending JP2005214039A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004020083A JP2005214039A (en) 2004-01-28 2004-01-28 Control device for direct spark ignition type internal combustion engine
US11/038,620 US7096853B2 (en) 2004-01-28 2005-01-21 Direct fuel injection/spark ignition engine control device
EP05001422A EP1559896A3 (en) 2004-01-28 2005-01-25 Direct fuel injection/spark ignition engine control device
CNB2005100063904A CN100494663C (en) 2004-01-28 2005-01-28 Direct fuel injection/spark ignition engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020083A JP2005214039A (en) 2004-01-28 2004-01-28 Control device for direct spark ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005214039A true JP2005214039A (en) 2005-08-11

Family

ID=34904109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020083A Pending JP2005214039A (en) 2004-01-28 2004-01-28 Control device for direct spark ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005214039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873380A2 (en) 2006-06-26 2008-01-02 Nissan Motor Co., Ltd. Control device and control method for spark-ignited internal-combustion engine
JP2008031991A (en) * 2006-06-26 2008-02-14 Nissan Motor Co Ltd Control device and control method for cylinder direct injection type spark ignition internal combustion engine
US7350504B2 (en) 2005-05-31 2008-04-01 Nissan Motor Co., Ltd. Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine
KR100921068B1 (en) 2007-12-12 2009-10-08 기아자동차주식회사 Reducing method of harmful pollutants in exhaust gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350504B2 (en) 2005-05-31 2008-04-01 Nissan Motor Co., Ltd. Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine
EP1873380A2 (en) 2006-06-26 2008-01-02 Nissan Motor Co., Ltd. Control device and control method for spark-ignited internal-combustion engine
JP2008031991A (en) * 2006-06-26 2008-02-14 Nissan Motor Co Ltd Control device and control method for cylinder direct injection type spark ignition internal combustion engine
US7832195B2 (en) 2006-06-26 2010-11-16 Nissan Motor Co., Ltd. Control device and control method for spark-ignited internal-combustion engine
EP1873380A3 (en) * 2006-06-26 2014-07-16 Nissan Motor Co., Ltd. Control device and control method for spark-ignited internal-combustion engine
KR100921068B1 (en) 2007-12-12 2009-10-08 기아자동차주식회사 Reducing method of harmful pollutants in exhaust gas

Similar Documents

Publication Publication Date Title
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JP2006336477A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4438378B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2004270603A (en) Internal combustion engine and controlling method of the engine
JP2007064187A (en) Knock suppression device for internal combustion engine
JP2006336478A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2005214039A (en) Control device for direct spark ignition type internal combustion engine
JP2007198325A (en) Control device of cylinder direct-injection type spark ignition internal combustion engine
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007032377A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JPH10212986A (en) In-cylinder injection type engine
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080909

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125