JP4609200B2 - In-cylinder direct injection spark ignition internal combustion engine controller - Google Patents

In-cylinder direct injection spark ignition internal combustion engine controller Download PDF

Info

Publication number
JP4609200B2
JP4609200B2 JP2005185911A JP2005185911A JP4609200B2 JP 4609200 B2 JP4609200 B2 JP 4609200B2 JP 2005185911 A JP2005185911 A JP 2005185911A JP 2005185911 A JP2005185911 A JP 2005185911A JP 4609200 B2 JP4609200 B2 JP 4609200B2
Authority
JP
Japan
Prior art keywords
fuel
injection
dead center
top dead
compression top
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005185911A
Other languages
Japanese (ja)
Other versions
JP2007002796A (en
Inventor
真 安永
智之 武田
彰 中島
泰三 堀込
大介 高木
克昭 内山
匡聡 日高
仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005185911A priority Critical patent/JP4609200B2/en
Priority to EP06011017A priority patent/EP1728995A3/en
Priority to US11/443,178 priority patent/US7350504B2/en
Priority to CN 200610087674 priority patent/CN1880745B/en
Publication of JP2007002796A publication Critical patent/JP2007002796A/en
Application granted granted Critical
Publication of JP4609200B2 publication Critical patent/JP4609200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/125
    • Y02T10/46

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時などにおける噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection type spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to control of injection timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。
特許第3325230号公報
In Patent Document 1, as a catalyst warm-up method for a direct injection spark-ignition internal combustion engine, a period from the intake stroke to the ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than the activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed after the middle of the compression stroke, for example, at 120 ° BTDC to 45 ° BTDC.
Japanese Patent No. 3325230

内燃機関の冷機時における触媒の早期活性化および後燃えによるHC低減のためには、点火時期の遅角が有効であり、より大きな効果を得るためには、圧縮上死点以降の点火(ATDC点火)が望ましい。ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。   For early activation of the catalyst when the internal combustion engine is cold and HC reduction due to afterburning, retarding the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC) Ignition) is desirable. In order to perform stable combustion by ATDC ignition, it is necessary to shorten the combustion period. For this reason, it is necessary to increase the combustion speed (flame propagation speed) by strengthening the turbulence in the cylinder.

このような乱れの強化のために、筒内に高圧で噴射される燃料噴霧のエネルギにより筒内に乱れを生成することが考えられる。   In order to strengthen such disturbance, it is conceivable that the disturbance is generated in the cylinder by the energy of the fuel spray injected at a high pressure in the cylinder.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っている。このように最後の燃料噴射が圧縮上死点よりも前では、その噴霧により筒内に乱れを生成しても、圧縮上死点以降はその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Yes. As described above, before the last fuel injection is before the compression top dead center, even if the spray generates turbulence in the cylinder, the turbulence is attenuated after the compression top dead center, and the flame propagation in ATDC ignition Does not contribute to speed increase.

例えば、図7は、吸気ポート内に設けたガス流動制御弁(例えばタンブル制御弁)を作動させた場合とこのようなガス流動制御弁を具備しない場合とについて、筒内の乱れの大きさを示したものであるが、ガス流動制御弁を作動させることで吸気行程中に生成した乱れ(符号Aの部分)は、圧縮行程の進行とともに減衰し、圧縮行程後期のタンブル流の崩壊に伴い一時的に乱れが大きくなる(符号Bの部分)ものの、圧縮上死点以降は符号Cで示すように急速に減衰してしまい、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。燃料噴霧による乱れについても同様であり、圧縮上死点より前の燃料噴射により乱れが生成されたとしても、圧縮上死点以降の点火燃焼には寄与しない。   For example, FIG. 7 shows the magnitude of turbulence in a cylinder when a gas flow control valve (for example, a tumble control valve) provided in an intake port is operated and when such a gas flow control valve is not provided. As shown, the turbulence (part A) generated during the intake stroke by operating the gas flow control valve attenuates with the progress of the compression stroke, and is temporarily accompanied by the collapse of the tumble flow in the latter half of the compression stroke. Although the turbulence increases (the portion indicated by reference symbol B), after the compression top dead center, as shown by the reference symbol C, it rapidly attenuates, and combustion improvement (improving flame propagation) using the turbulence cannot be expected so much. The same applies to turbulence caused by fuel spray, and even if turbulence is generated by fuel injection before compression top dead center, it does not contribute to ignition combustion after compression top dead center.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域では点火時期を圧縮上死点前(BTDC点火)としている。   For this reason, ATDC ignition is more advantageous for increasing exhaust temperature and reducing HC, but combustion stability is not established. Therefore, in Patent Document 1, the ignition timing is set to before compression top dead center (BTDC ignition) in the no-load region. Yes.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減などのためのATDC点火での燃焼安定性を改善することを目的としている。   The present invention aims to improve the combustion stability in ATDC ignition for early activation of the catalyst, reduction of HC, and the like based on such a situation.

本発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のとき、例えば触媒コンバータの冷機時のような排気ガス温度の昇温が必要な場合などに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行うことを特徴としている。なお、NOxを吸着するNOxトラップ触媒においては、硫黄成分(SOx)が触媒に付着することによりNOx吸着性能が低下するので、触媒を強制的に高温化してSOxを放出するSOx放出処理(硫黄被毒解除)を行う必要があるが、このSOx放出処理の際の排気ガス温度の昇温を、上記の超リタード燃焼を利用して行うことも可能である。そして、本発明では、特に、燃圧が低い始動直後の期間は、圧縮上死点後の燃料噴射量が0とならない範囲で減少するように、燃料の一部を圧縮行程後半に噴射する。 The present invention provides a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and that includes an ignition plug. When the exhaust gas temperature needs to be raised, such as when the engine is cold, the ignition timing is set after the compression top dead center, and super retard combustion is performed to inject fuel before the ignition timing and after the compression top dead center. It is characterized by that. Note that in a NOx trap catalyst that adsorbs NOx, the sulfur component (SOx) adheres to the catalyst, so that the NOx adsorption performance deteriorates. However, it is also possible to raise the temperature of the exhaust gas during the SOx release process using the above-mentioned super retard combustion. In the present invention, a part of the fuel is injected in the latter half of the compression stroke so that the fuel injection amount after the compression top dead center does not become zero particularly during the period immediately after the start when the fuel pressure is low.

すなわち、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、圧縮上死点以降の膨張行程中になされる燃料噴射によって、筒内の乱れを生成・強化することができ、ATDC点火での火炎伝播が促進される。従って、点火時期を圧縮上死点後とした超リタード燃焼が安定的に成立する。   In other words, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but the in-cylinder turbulence is generated and strengthened by the fuel injection performed during the expansion stroke after the compression top dead center. Flame propagation with ATDC ignition is facilitated. Therefore, super retard combustion with the ignition timing after the compression top dead center is established stably.

ここで、上記のように圧縮上死点後に燃料を噴射する超リタード燃焼においては、十分に燃圧が高くないと、噴霧の粒径が大きくなり、スモークやHCの悪化が生じる。上死点付近では、例えば筒内圧が1.5MPa以上となるので、2.0MPa以上の燃圧がないと、燃料を十分に微粒化できない。これに対し、機関始動時には、燃圧はクランキング開始とともに上昇し始め、機関回転数に伴って上昇するので、始動直後に、燃圧が不十分なまま超リタード燃焼によるスモークやHCが発生する懸念がある。   Here, in the super retard combustion in which fuel is injected after compression top dead center as described above, if the fuel pressure is not sufficiently high, the particle size of the spray becomes large, and smoke and HC deteriorate. In the vicinity of the top dead center, for example, the in-cylinder pressure becomes 1.5 MPa or more. Therefore, the fuel cannot be sufficiently atomized without a fuel pressure of 2.0 MPa or more. On the other hand, when the engine is started, the fuel pressure starts to increase with the start of cranking and increases with the engine speed. Therefore, immediately after starting, there is a concern that smoke and HC are generated due to super retard combustion with insufficient fuel pressure. is there.

そこで、本発明では、燃圧が低い始動直後の期間は、圧縮上死点後の燃料噴射量を減少させ、少なくとも燃料の一部を圧縮上死点前つまり吸気行程中もしくは圧縮行程中に噴射する。このように圧縮上死点後の噴射量を少なくすることで、燃圧が低いことによるスモークやHCの悪化が抑制される。   Therefore, in the present invention, during the period immediately after the start when the fuel pressure is low, the fuel injection amount after the compression top dead center is decreased, and at least a part of the fuel is injected before the compression top dead center, that is, during the intake stroke or the compression stroke. . By reducing the injection amount after compression top dead center in this way, smoke and HC deterioration due to low fuel pressure are suppressed.

この場合、燃圧が低いほど圧縮上死点後の噴射の割合が少なくなるように制御することが望ましく、圧縮上死点後の噴射が所定の最小噴射時間以下となる条件では、燃料の全量を吸気行程中もしくは圧縮行程中に噴射することが望ましい。   In this case, it is desirable to control so that the ratio of injection after compression top dead center decreases as the fuel pressure decreases. Under the condition that the injection after compression top dead center is less than the predetermined minimum injection time, the total amount of fuel is reduced. It is desirable to inject during the intake stroke or the compression stroke.

また燃圧が低いときの圧縮上死点後の噴射量の減少に伴って点火時期を進角補正することが望ましい。   It is also desirable to advance the ignition timing as the injection amount decreases after compression top dead center when the fuel pressure is low.

また、燃料噴霧の粒径は燃料温度にも大きく影響されるので、燃料温度に応じて、圧縮上死点後の噴射と圧縮上死点前の噴射との噴射量割合を補正することが望ましい。具体的には、燃料温度が低いほど燃料噴霧の粒径が大きくなるので、圧縮上死点後の噴射量を減少させる。   Further, since the particle size of the fuel spray is greatly influenced by the fuel temperature, it is desirable to correct the injection amount ratio between the injection after the compression top dead center and the injection before the compression top dead center according to the fuel temperature. . Specifically, since the particle size of the fuel spray increases as the fuel temperature decreases, the injection amount after compression top dead center is decreased.

なお、燃圧が十分に高い状態での超リタード燃焼の態様としては、燃料の全量を圧縮上死点後に噴射する態様のほか、燃料噴射を2回に分割し、1回目の噴射を圧縮上死点前に行うとともに2回目の噴射を圧縮上死点後に行う態様がある。前者の場合、燃圧が低いときには噴射を2回に分けて燃料の一部を圧縮上死点前に噴射することになり、後者の場合、燃圧が低いときには2回目の噴射量割合を減少させることになる。   In addition, as a mode of super retard combustion in a state where the fuel pressure is sufficiently high, in addition to a mode in which the entire amount of fuel is injected after the compression top dead center, the fuel injection is divided into two times, and the first injection is compression top dead There is a mode in which the second injection is performed after the compression top dead center while being performed before the point. In the former case, when the fuel pressure is low, the injection is divided into two times and a part of the fuel is injected before the compression top dead center. In the latter case, when the fuel pressure is low, the ratio of the second injection amount is decreased. become.

また、本発明の制御方法は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御方法であって、機関冷機状態での始動時に、燃圧が所定の圧力P2よりも低い始動初期の第1の段階では、燃料の全量を圧縮上死点前の吸気行程中もしくは圧縮行程中に噴射して圧縮上死点前に点火を行い、燃圧が所定の圧力P1(但しP1>P2)と上記P2との間の第2の段階では、燃料の一部を圧縮行程後半に噴射するとともに、残部の燃料を圧縮上死点後に噴射して、この噴射時期から遅れた圧縮上死点後に点火を行い、さらに燃圧が上記P1に到達した第3の段階では、第2の段階よりも圧縮上死点後の燃料噴射量の割合が大となった超リタード燃焼を行うことを特徴としている。 The control method of the present invention is a control method for a direct injection type spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and that includes an ignition plug, and in a cold engine state. In the first stage of the start-up when the fuel pressure is lower than the predetermined pressure P2, the entire amount of fuel is injected during the intake stroke before the compression top dead center or during the compression stroke and ignited before the compression top dead center. In a second stage between the fuel pressure of a predetermined pressure P1 (where P1> P2) and P2, a part of the fuel is injected in the latter half of the compression stroke , and the remaining fuel is injected after the compression top dead center. In the third stage where the fuel is injected and ignited after the compression top dead center delayed from the injection timing, and the fuel pressure reaches P1, the ratio of the fuel injection amount after the compression top dead center than in the second stage It is characterized by performing super retarded combustion that became large

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性を十分に確保することができ、例えば冷間始動の際に、触媒の早期活性化および後燃えによるHC低減を達成することができる。そして、燃圧が不十分となる始動直後は、燃料の一部を圧縮上死点前に噴射することにより、燃圧不足によるスモークやHCの悪化を回避することができる。   According to the present invention, it is possible to sufficiently ensure the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center. For example, at the time of cold start, the catalyst is activated early and the HC due to the afterburning. Reduction can be achieved. Immediately after startup when the fuel pressure becomes insufficient, a part of the fuel is injected before the compression top dead center, so that smoke and HC deterioration due to insufficient fuel pressure can be avoided.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor for detecting the fuel pressure, and reference numeral 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。なお、暖機完了後においては、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、空燃比を30〜40程度とした極リーンの成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。この均質燃焼運転としては、運転条件に応じて、空燃比を理論空燃比とした均質ストイキ燃焼と、空燃比を20〜30程度のリーンとした均質リーン燃焼と、がある。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines whether to use a combustion method, that is, homogeneous combustion or stratified combustion, according to the engine operating conditions detected by these input signals, and in response to this, opens the electronic control throttle valve 7. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled. After the warm-up is completed, in a predetermined region on the low-speed and low-load side, as normal stratified combustion operation, fuel injection is performed at an appropriate timing in the compression stroke, and ignition is performed at a timing before the compression top dead center. Done. The fuel spray is collected in the vicinity of the spark plug 14 in a layered manner, thereby realizing extremely lean stratified combustion with an air-fuel ratio of about 30 to 40. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder. As the homogeneous combustion operation, there are homogeneous stoichiometric combustion in which the air-fuel ratio is the stoichiometric air-fuel ratio and homogeneous lean combustion in which the air-fuel ratio is lean about 20 to 30 depending on the operating conditions.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の3つの実施例を示しており、実施例1では、点火時期を15°〜30°ATDC(例えば20°ATDC)とし、燃料噴射時期(詳しくは燃料噴射開始時期)を、圧縮上死点以降でかつ点火時期前に設定する。なお、このとき、空燃比は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。   FIG. 2 shows three examples of super retard combustion. In Example 1, the ignition timing is set to 15 ° to 30 ° ATDC (for example, 20 ° ATDC), and the fuel injection timing (specifically, the fuel injection start timing) is shown. Is set after the compression top dead center and before the ignition timing. At this time, the air-fuel ratio is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17).

すなわち、触媒暖機促進ならびにHC低減のためには、点火時期遅角が有効であり、上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。前述したように、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、本発明では、圧縮上死点以降の膨張行程中になされる高圧の燃料噴射によって、ガス流動が生じ、これにより筒内の乱れを生成・強化することができる。従って、ATDC点火での火炎伝播が促進され、安定した燃焼が可能となる。   That is, in order to promote catalyst warm-up and reduce HC, ignition timing retardation is effective, and ignition after top dead center (ATDC ignition) is desirable, but in order to perform stable combustion with ATDC ignition, It is necessary to shorten the combustion period, and for this purpose, flame propagation due to turbulence must be promoted. As described above, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but in the present invention, by the high pressure fuel injection performed during the expansion stroke after the compression top dead center. The gas flow is generated, and thereby the turbulence in the cylinder can be generated and strengthened. Therefore, flame propagation by ATDC ignition is promoted and stable combustion is possible.

図2の実施例2は、燃料噴射を2回に分割した例であり、1回目の燃料噴射を吸気行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う。なお、点火時期および空燃比(2回の噴射を合わせた空燃比)は実施例1と同様である。   The second embodiment in FIG. 2 is an example in which the fuel injection is divided into two, and the first fuel injection is performed during the intake stroke, and the second fuel injection is performed after the compression top dead center. The ignition timing and the air-fuel ratio (the air-fuel ratio obtained by combining the two injections) are the same as those in the first embodiment.

このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、吸気行程中に燃料噴射(吸気行程噴射)を行うと、吸気行程噴射の燃料噴霧による乱れは圧縮行程後半で減衰してしまい、圧縮上死点後におけるガス流動強化には殆ど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇には有効である。   Thus, if fuel injection (intake stroke injection) is performed during the intake stroke prior to fuel injection after compression top dead center (expansion stroke injection), the disturbance due to fuel spray in the intake stroke injection is attenuated in the latter half of the compression stroke. However, since the injected fuel is diffused throughout the combustion chamber and contributes to the promotion of HC afterburning by ATDC ignition, the HC reduction and It is effective for raising the exhaust temperature.

また、図2の実施例3は、燃料噴射を2回に分割し、1回目の燃料噴射を圧縮行程にて行い、2回目の燃料噴射を圧縮上死点以降に行う。このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、圧縮行程中に燃料噴射(圧縮行程噴射)を行うと、実施例2の吸気行程噴射に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなるため、この1回目の燃料噴射による乱れが残り、圧縮上死点以降に2回目の燃料噴射を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、圧縮上死点付近における更なるガス流動強化が図れる。   In the third embodiment of FIG. 2, the fuel injection is divided into two, the first fuel injection is performed in the compression stroke, and the second fuel injection is performed after the compression top dead center. As described above, when the fuel injection (compression stroke injection) is performed during the compression stroke prior to the fuel injection after the compression top dead center (expansion stroke injection), the compression stroke injection is compared with the intake stroke injection of the second embodiment. However, since the disturbance of the turbulence due to the fuel spray is delayed, the turbulence due to the first fuel injection remains, and the second fuel injection is performed after the compression top dead center, which is generated by the first fuel injection. The turbulence can be strengthened to promote the turbulence, and the gas flow can be further strengthened near the compression top dead center.

この実施例3の場合に、1回目の圧縮行程噴射は、圧縮行程前半でもよいが、圧縮行程後半(90°BTDC以降)に設定すると、上死点付近での乱れをより高めることができる。特に、この1回目の圧縮行程噴射を、45°BTDC以降、より望ましくは20°BTDC以降とすると、圧縮上死点以降のガス流動をより強化することができる。   In the case of Example 3, the first compression stroke injection may be in the first half of the compression stroke, but if it is set in the second half of the compression stroke (after 90 ° BTDC), the disturbance near the top dead center can be further increased. In particular, if the first compression stroke injection is 45 ° BTDC or later, more desirably 20 ° BTDC or later, the gas flow after compression top dead center can be further enhanced.

このように、実施例1〜3の超リタード燃焼によれば、点火の直前に燃料噴霧により筒内の乱れを生成・強化することができ、火炎伝播を促進して、安定した燃焼を行わせることができる。特に、点火時期を15°〜30°ATDCまで遅角させることにより、触媒の早期活性化およびHC低減のための十分な後燃え効果を得ることができる。換言すれば、このように点火時期を大きく遅らせても、その直前まで燃料噴射を遅らせて、乱れの生成時期も遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。   As described above, according to the super retarded combustion of the first to third embodiments, the turbulence in the cylinder can be generated and strengthened by the fuel spray immediately before the ignition, and the flame propagation is promoted to perform stable combustion. be able to. In particular, by retarding the ignition timing from 15 ° to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is greatly delayed in this way, the fuel injection is delayed until just before that, and the generation time of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.

次に、燃圧に関連した冷間始動時の制御について説明する。なお、ここでは、超リタード燃焼として、前述した図2の実施例3(燃料噴射を2回に分割し、1回目の燃料噴射を圧縮行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う)を例に説明するが、図2の実施例1あるいは実施例2であってもよい。冷機状態からの始動の場合、上述のような排気ガス温度の上昇のために、始動後、直ちに超リタード燃焼とすることが望ましいのであるが、始動直後(例えばクランキング開始から1〜2秒程度の間)は、燃圧が不十分であり、スモークやHCが悪化する。図4は、クランキング開始後の燃圧変化を示しており、これは、機関回転数の立ち上がりと相似しているが、クランキング開始後、例えばa点付近で初爆が発生し、さらに機関回転数が上昇するに伴って、燃圧が目標燃圧に到達する。また、図5は、圧縮上死点付近で燃料を噴射した場合の燃圧と燃料粒径との関係を示しており、図示するように、燃圧が低いほど、粒径が増大し、これに伴ってスモークやHCが悪化する。   Next, the control at the time of cold start related to the fuel pressure will be described. Here, as the super retard combustion, the third embodiment of FIG. 2 described above (the fuel injection is divided into two, the first fuel injection is performed during the compression stroke, and the second fuel injection is performed at the compression top dead center. 2) will be described as an example, but the embodiment 1 or the embodiment 2 in FIG. 2 may be used. When starting from a cold state, it is desirable to perform super retarded combustion immediately after starting to increase the exhaust gas temperature as described above, but immediately after starting (for example, about 1 to 2 seconds from the start of cranking). In the meantime, the fuel pressure is insufficient, and smoke and HC deteriorate. FIG. 4 shows the change in fuel pressure after cranking is started, which is similar to the rise in engine speed, but after cranking starts, for example, an initial explosion occurs near point a, and further engine rotation occurs. As the number increases, the fuel pressure reaches the target fuel pressure. FIG. 5 shows the relationship between the fuel pressure and the fuel particle size when fuel is injected near the compression top dead center. As shown, the lower the fuel pressure, the larger the particle size. Smoke and HC deteriorate.

そこで、この実施例では、燃圧が図4の所定の圧力P1(例えば圧縮上死点での筒内圧以上の2MPa程度に設定される)に達するまでは、図3の(b)に示すように、燃圧が十分であるときの超リタード燃焼(図3の(a))に比べて圧縮上死点後の膨張行程噴射I2の噴射量を少なくし、かつ圧縮上死点前の圧縮行程噴射I1を増加させた噴射を行う。また、このとき、膨張行程噴射I2の噴射量の減少に伴って、点火時期ADVを進角補正する。圧縮行程中に圧縮行程噴射I1として噴射された燃料は、膨張行程噴射I2の噴射時期前に筒内に拡散し、希薄混合気を形成するので、燃圧が多少低くても、スモークやHCの悪化が抑制される。   Therefore, in this embodiment, as shown in FIG. 3B, the fuel pressure reaches the predetermined pressure P1 in FIG. 4 (for example, set to about 2 MPa which is equal to or higher than the in-cylinder pressure at the compression top dead center). Compared with the super retard combustion when the fuel pressure is sufficient ((a) of FIG. 3), the injection amount of the expansion stroke injection I2 after the compression top dead center is reduced, and the compression stroke injection I1 before the compression top dead center The injection is increased. At this time, as the injection amount of the expansion stroke injection I2 decreases, the ignition timing ADV is advanced. The fuel injected as the compression stroke injection I1 during the compression stroke diffuses into the cylinder before the injection timing of the expansion stroke injection I2 and forms a lean air-fuel mixture, so that smoke and HC deteriorate even if the fuel pressure is somewhat low Is suppressed.

また、このとき、膨張行程噴射I2と圧縮行程噴射I1との割合は、燃圧に応じて異なる割合となり、燃圧が低いほど膨張行程噴射I2の割合が少なくなるように制御される。従って、燃圧が低い段階におけるスモークやHCの悪化が確実に回避される。   At this time, the ratio between the expansion stroke injection I2 and the compression stroke injection I1 is different depending on the fuel pressure, and the ratio is controlled so that the ratio of the expansion stroke injection I2 decreases as the fuel pressure decreases. Therefore, smoke and HC deterioration at the stage where the fuel pressure is low are surely avoided.

そして、燃圧が非常に低く、膨張行程噴射I2が所定の最小噴射時間以下となる条件では、図3の(c)に示すように、燃料の全量が圧縮行程中に噴射される。つまり、膨張行程噴射I2の割合が0となり、圧縮行程噴射I1が100%となる。具体的には、燃圧が図4の圧力P2より低い段階では、燃料の全量が圧縮行程中に噴射される。   Under the condition that the fuel pressure is very low and the expansion stroke injection I2 is equal to or shorter than the predetermined minimum injection time, the entire amount of fuel is injected during the compression stroke, as shown in FIG. That is, the ratio of the expansion stroke injection I2 is 0, and the compression stroke injection I1 is 100%. Specifically, when the fuel pressure is lower than the pressure P2 in FIG. 4, the entire amount of fuel is injected during the compression stroke.

従って、クランキング開始からの経時的な噴射の態様の変化としては、3段階に変化することになり、まず燃圧が非常に低い第1の段階の間、具体的にはクランキング開始から燃圧が圧力P2に達するまでは、図3(c)のように燃料の全量が圧縮行程中に噴射される。この噴射時期では圧縮上死点に比べて筒内圧が低く、かつ点火までの間に混合も促進されるので、燃圧が低くても確実に初爆を開始することができ、かつスモークやHCの悪化が回避される。次に、燃圧が図4のP2からP1の間にある第2の段階においては、図3(b)のように膨張行程噴射I2と圧縮行程噴射I1とに分割した形での噴射が行われる。この状態では、点火時期は圧縮上死点よりも遅角しているので、スモークやHCの悪化を抑制しつつ排気ガス温度の上昇作用が早期に開始される。そして、燃圧が図4の圧力P1に達した後の第3の段階では、図3(a)に示す本来の超リタード燃焼となり、排気ガス温度の上昇作用が最大限に得られる。   Therefore, the change in the mode of injection over time from the start of cranking changes in three stages. First, during the first stage where the fuel pressure is very low, specifically, the fuel pressure from the start of cranking Until the pressure P2 is reached, the entire amount of fuel is injected during the compression stroke as shown in FIG. At this injection timing, the in-cylinder pressure is lower than the compression top dead center, and mixing is also accelerated before ignition. Therefore, even if the fuel pressure is low, the initial explosion can be started reliably, and smoke and HC Deterioration is avoided. Next, in the second stage in which the fuel pressure is between P2 and P1 in FIG. 4, the injection is performed in the form divided into the expansion stroke injection I2 and the compression stroke injection I1 as shown in FIG. 3B. . In this state, since the ignition timing is retarded from the compression top dead center, the action of increasing the exhaust gas temperature is started early while suppressing the deterioration of smoke and HC. Then, in the third stage after the fuel pressure reaches the pressure P1 in FIG. 4, the original super retarded combustion shown in FIG. 3A is performed, and the effect of raising the exhaust gas temperature is obtained to the maximum.

なお、燃料噴霧の粒径は燃料温度によっても影響され、燃料温度が低いほど粒径が大となる。従って、燃料温度が低いほど膨張行程噴射I2の噴射量が減少するように、膨張行程噴射I2と圧縮行程噴射I1との噴射量割合を補正するようにしてもよい。   The particle size of the fuel spray is also influenced by the fuel temperature, and the particle size increases as the fuel temperature decreases. Therefore, the injection amount ratio between the expansion stroke injection I2 and the compression stroke injection I1 may be corrected so that the injection amount of the expansion stroke injection I2 decreases as the fuel temperature decreases.

図6は、上述した燃圧に基づく超リタード燃焼の切換処理の一例を示すフローチャートであって、まずステップ1で、吸気温や油水温などに基づく排温上昇要求の有無を判別し、排温上昇要求があればステップ2の超リタード制御へ移行する。排温上昇要求がなければ、ステップ7の通常噴射制御へ移行する。ここでは、燃料の全量を圧縮上死点前つまり圧縮行程中もしくは吸気行程中に噴射する。   FIG. 6 is a flowchart showing an example of the super retard combustion switching process based on the above-described fuel pressure. First, in step 1, it is determined whether or not there is an exhaust temperature increase request based on the intake air temperature, the oil water temperature, etc. If requested, the process proceeds to the super retard control in step 2. If there is no exhaust temperature increase request, the routine proceeds to step 7 for normal injection control. Here, the entire amount of fuel is injected before the compression top dead center, that is, during the compression stroke or the intake stroke.

ステップ3では、燃圧が所定値以下であるか判定し、所定値以下であれば、ステップ5で、前述したように、膨張行程噴射の噴射量を減少させるとともに圧縮行程中もしくは吸気行程中の噴射量を増やした状態で、2回に分割した燃料噴射を実行する。また燃圧が十分であればステップ4へ進み、燃料温度が所定値以下であるか判定し、所定値以下であれば、同じくステップ5へ進む。そして、燃料温度が十分に高ければ、ステップ2へ戻り、所定の超リタード燃焼を行う。なお、ステップ5では、詳しくは、燃圧や燃料温度に応じた形で、膨張行程噴射の噴射量と圧縮行程中もしくは吸気行程中の噴射の噴射量とが設定される。また、ステップ6では、膨張行程噴射の噴射量が所定の下限値以下でないか判定し、下限値以下であれば、ステップ7の通常噴射制御へ移行する。   In step 3, it is determined whether the fuel pressure is less than or equal to a predetermined value. If the fuel pressure is less than or equal to the predetermined value, in step 5, as described above, the injection amount of the expansion stroke injection is reduced and the injection during the compression stroke or the intake stroke The fuel injection divided into two times is executed with the amount increased. If the fuel pressure is sufficient, the process proceeds to step 4, and it is determined whether the fuel temperature is equal to or lower than a predetermined value. If the fuel temperature is sufficiently high, the process returns to step 2 to perform predetermined super retard combustion. In step 5, more specifically, the injection amount of the expansion stroke injection and the injection amount of the injection during the compression stroke or the intake stroke are set according to the fuel pressure and the fuel temperature. In step 6, it is determined whether the injection amount of the expansion stroke injection is not less than a predetermined lower limit value. If it is less than the lower limit value, the routine proceeds to normal injection control in step 7.

なお、本発明の超リタード燃焼は、排気系の触媒コンバータ10としてNOxトラップ触媒を用いた場合の硫黄被毒解除のためにも利用することができる。NOxトラップ触媒は、流入する排気の排気空燃比がリーンであるときにNOxを吸着し、流入する排気の排気空燃比がリッチであると、吸着していたNOxを放出して触媒作用により浄化処理するものであるが、燃料中の硫黄成分(SOx)が触媒に結合するとNOx吸着性能が低下する。そのため、適当な時期に、触媒を強制的に高温化してSOxを放出除去する処理(いわゆる硫黄被毒解除)が必要である。本発明の超リタード燃焼は、非常に高い排気温度を得られるので、このNOxトラップ触媒の硫黄被毒解除処理に適したものとなる。   The super retarded combustion of the present invention can also be used for releasing sulfur poisoning when a NOx trap catalyst is used as the exhaust system catalytic converter 10. The NOx trap catalyst adsorbs NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is lean, and releases the adsorbed NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is rich, and purifies by catalytic action. However, when the sulfur component (SOx) in the fuel is bound to the catalyst, the NOx adsorption performance is lowered. For this reason, it is necessary to perform a treatment (so-called sulfur poisoning release) for forcibly raising the temperature of the catalyst and releasing SOx at an appropriate time. The super retarded combustion according to the present invention can obtain a very high exhaust temperature, and therefore is suitable for the sulfur poisoning release processing of the NOx trap catalyst.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on this invention. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 燃圧に応じた燃料噴射時期および点火時期の一例を示す特性図。The characteristic view which shows an example of the fuel injection timing according to fuel pressure, and an ignition timing. 機関始動時の燃圧変化を示す特性図。The characteristic view which shows the fuel pressure change at the time of engine starting. 燃圧と燃料粒径との関係を示す特性図。The characteristic view which shows the relationship between a fuel pressure and a fuel particle size. 超リタード燃焼の切換制御の処理を示すフローチャート。The flowchart which shows the process of switching control of super retarded combustion. 従来技術における筒内の乱れの変化を示す説明図。Explanatory drawing which shows the change of the disturbance in a cylinder in a prior art.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
14…点火プラグ
15…燃料噴射弁
19…燃圧センサ
25…コントロールユニット
DESCRIPTION OF SYMBOLS 3 ... Combustion chamber 10 ... Catalytic converter 14 ... Spark plug 15 ... Fuel injection valve 19 ... Fuel pressure sensor 25 ... Control unit

Claims (8)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のときに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行う一方、燃圧が低い始動直後の期間は、圧縮上死点後の燃料噴射量が0とならない範囲で減少するように、燃料の一部を圧縮行程後半に噴射することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。 In a direct injection type spark ignition internal combustion engine control device having a fuel injection valve for directly injecting fuel into a cylinder and having an ignition plug, the ignition timing is compression top dead center in a predetermined operating state. While being set later, super retard combustion is performed in which fuel is injected before this ignition timing and after compression top dead center, while the fuel injection amount after compression top dead center does not become zero during the period immediately after the start when the fuel pressure is low A control device for an in-cylinder direct injection spark ignition internal combustion engine, characterized in that a part of the fuel is injected in the latter half of the compression stroke so as to decrease at the same time. 超リタード燃焼においては燃料の全量を圧縮上死点後に噴射し、燃圧が低いときには燃料の一部を圧縮行程後半に噴射することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。 2. In-cylinder direct injection spark ignition according to claim 1, wherein in super retard combustion, the entire amount of fuel is injected after compression top dead center, and when the fuel pressure is low, a part of the fuel is injected in the latter half of the compression stroke. Control device for internal combustion engine. 超リタード燃焼においては燃料噴射を2回に分割し、1回目の噴射を圧縮行程後半に行うとともに2回目の噴射を圧縮上死点後に行い、燃圧が低いときには2回目の噴射量割合を減少させることを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。 In super retard combustion, the fuel injection is divided into two times, the first injection is performed in the latter half of the compression stroke, the second injection is performed after the compression top dead center, and when the fuel pressure is low, the ratio of the second injection amount is decreased. 2. The control apparatus for a direct injection type spark ignition internal combustion engine according to claim 1, wherein: 圧縮上死点後の噴射が所定の最小噴射時間以下となる条件では、燃料の全量を圧縮上死点前に噴射することを特徴とする請求項に記載の筒内直接噴射式火花点火内燃機関の制御装置。 2. The direct injection spark ignition internal combustion engine according to claim 1 , wherein the entire amount of fuel is injected before the compression top dead center under the condition that the injection after the compression top dead center is equal to or shorter than a predetermined minimum injection time. Engine control device. 燃料温度に応じて、圧縮上死点後の噴射と圧縮上死点前の噴射との噴射量割合を補正することを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection type according to any one of claims 1 to 4 , wherein the injection amount ratio between the injection after the compression top dead center and the injection before the compression top dead center is corrected according to the fuel temperature. Control device for spark ignition internal combustion engine. 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記超リタード燃焼を実行することを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection spark-ignition internal combustion engine according to any one of claims 1 to 5 , wherein the super retard combustion is executed when a temperature increase of the exhaust gas is required as a predetermined operation state. Engine control device. 超リタード燃焼における点火時期は、圧縮上死点後15°〜30°CAであることを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection spark ignition internal combustion engine control device according to any one of claims 1 to 6 , wherein the ignition timing in the super retard combustion is 15 ° to 30 ° CA after compression top dead center. 筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御方法であって、機関冷機状態での始動時に、燃圧が所定の圧力P2よりも低い始動初期の第1の段階では、燃料の全量を圧縮上死点前の吸気行程中もしくは圧縮行程中に噴射して圧縮上死点前に点火を行い、燃圧が所定の圧力P1(但しP1>P2)と上記P2との間の第2の段階では、燃料の一部を圧縮行程後半に噴射するとともに、残部の燃料を圧縮上死点後に噴射して、この噴射時期から遅れた圧縮上死点後に点火を行い、さらに燃圧が上記P1に到達した第3の段階では、第2の段階よりも圧縮上死点後の燃料噴射量の割合が大となった超リタード燃焼を行うことを特徴とする筒内直接噴射式火花点火内燃機関の制御方法。 A control method for an in-cylinder direct injection spark ignition internal combustion engine having a fuel injection valve for directly injecting fuel into a cylinder and having an ignition plug, wherein the fuel pressure is a predetermined pressure when starting in an engine cold state In the first stage at the beginning of the start, which is lower than P2, the entire amount of fuel is injected during the intake stroke before the compression top dead center or during the compression stroke and ignited before the compression top dead center, and the fuel pressure is a predetermined pressure P1. (However, in the second stage between P1> P2) and P2, a part of the fuel is injected in the latter half of the compression stroke , and the remaining fuel is injected after the compression top dead center. In the third stage in which ignition is performed after the compression top dead center and the fuel pressure reaches P1, the super retarded combustion in which the ratio of the fuel injection amount after the compression top dead center is larger than that in the second stage. In-cylinder direct injection spark ignition internal combustion engine Control method.
JP2005185911A 2005-05-31 2005-06-27 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4609200B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005185911A JP4609200B2 (en) 2005-06-27 2005-06-27 In-cylinder direct injection spark ignition internal combustion engine controller
EP06011017A EP1728995A3 (en) 2005-05-31 2006-05-29 Combustion control method and apparatus for a direct injection spark ignition internal combustion engine
US11/443,178 US7350504B2 (en) 2005-05-31 2006-05-31 Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine
CN 200610087674 CN1880745B (en) 2005-05-31 2006-05-31 Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185911A JP4609200B2 (en) 2005-06-27 2005-06-27 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2007002796A JP2007002796A (en) 2007-01-11
JP4609200B2 true JP4609200B2 (en) 2011-01-12

Family

ID=37688636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185911A Expired - Fee Related JP4609200B2 (en) 2005-05-31 2005-06-27 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4609200B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176574A (en) * 1996-12-19 1998-06-30 Toyota Motor Corp Fuel injection controller for internal combustion engine
JP2001280185A (en) * 2000-03-31 2001-10-10 Toyota Motor Corp Start control device for internal combustion engine and vehicle having it
JP2001336439A (en) * 2000-05-24 2001-12-07 Fuji Heavy Ind Ltd Fuel injection control device for in-cylinder fuel injection engine
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
WO2004072461A1 (en) * 2003-02-12 2004-08-26 Daimlerchrysler Ag Method for operating an internal combustion engine with direct fuel injection
JP2006144647A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Cylinder injection type engine and its control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176574A (en) * 1996-12-19 1998-06-30 Toyota Motor Corp Fuel injection controller for internal combustion engine
JP2001280185A (en) * 2000-03-31 2001-10-10 Toyota Motor Corp Start control device for internal combustion engine and vehicle having it
JP2001336439A (en) * 2000-05-24 2001-12-07 Fuji Heavy Ind Ltd Fuel injection control device for in-cylinder fuel injection engine
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
WO2004072461A1 (en) * 2003-02-12 2004-08-26 Daimlerchrysler Ag Method for operating an internal combustion engine with direct fuel injection
JP2006144647A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Cylinder injection type engine and its control device

Also Published As

Publication number Publication date
JP2007002796A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US7350504B2 (en) Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007002795A (en) Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525468B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006336473A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP2006144609A (en) Control device for cylinder direct injection spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees