JP2007198325A - Control device of cylinder direct-injection type spark ignition internal combustion engine - Google Patents

Control device of cylinder direct-injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2007198325A
JP2007198325A JP2006019939A JP2006019939A JP2007198325A JP 2007198325 A JP2007198325 A JP 2007198325A JP 2006019939 A JP2006019939 A JP 2006019939A JP 2006019939 A JP2006019939 A JP 2006019939A JP 2007198325 A JP2007198325 A JP 2007198325A
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
injection
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006019939A
Other languages
Japanese (ja)
Other versions
JP4631725B2 (en
Inventor
Akikazu Sakai
亮和 酒井
Hitoshi Ishii
仁 石井
Taizo Horigome
泰三 堀込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006019939A priority Critical patent/JP4631725B2/en
Publication of JP2007198325A publication Critical patent/JP2007198325A/en
Application granted granted Critical
Publication of JP4631725B2 publication Critical patent/JP4631725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a reduction in HC by quick activation of a catalyst and post-combustion by largely retarding an ignition timing. <P>SOLUTION: When an internal combustion engine for which the early increase in the temperature of a catalytic converter is requested is started in a cool state, the ignition timing ADV is retarded to approximately 10 to 50° ATDC, a first fuel injection I1 is performed during the compression stroke, and a second fuel injection I2 is performed at the time 10 to 20° CA before the ignition timing ADV during the expansion stroke. A compact air-fuel mixture lump is formed near an ignition plug by the first spray, and a richer air-fuel mixture lump is locally formed on the inside thereof near the ignition plug by the second spray and ignited. Robustness against variations for each cycle is increased and the occurrence of HC in a quench area and a clevis is reduced. A fuel pressure is variably controlled so that a variation in penetration due to a variation in the pressure inside a cylinder by a load can be compensated for. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時などにおける噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection type spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to control of injection timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。   In Patent Document 1, as a catalyst warm-up method for a direct injection spark-ignition internal combustion engine, a period from the intake stroke to the ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than the activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed, for example, at 120 ° BTDC to 45 ° BTDC after the middle of the compression stroke.

また、特許文献2は、本出願人が先に提案したものであって、高圧燃料噴射の噴霧エネルギによる筒内の乱れを利用することで、点火時期を圧縮上死点後までリタードした燃焼を安定的に得るようにした技術が記載されており、その一つの例として、1回目の燃料噴射を圧縮行程後期に行い、2回目の燃料噴射を膨張行程の点火の直前に行うことが開示されている。
特許第3325230号公報 特開2005−214039号公報
Further, Patent Document 2 was previously proposed by the present applicant. By utilizing the in-cylinder turbulence caused by the spray energy of high-pressure fuel injection, the combustion in which the ignition timing is retarded until after compression top dead center is performed. As an example, it is disclosed that the first fuel injection is performed in the latter half of the compression stroke, and the second fuel injection is performed immediately before the ignition of the expansion stroke. ing.
Japanese Patent No. 3325230 Japanese Patent Laid-Open No. 2005-214039

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っているため、燃焼安定性が低く、特に、無負荷領域では、点火時期を圧縮上死点前(BTDC点火)としている。従って、点火時期のリタードによる排温上昇やHCの低減を十分に達成することができない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Therefore, the combustion stability is low. In particular, in the no-load region, the ignition timing is set to before compression top dead center (BTDC ignition). Therefore, the exhaust temperature rise and the HC reduction due to the ignition timing retard cannot be sufficiently achieved.

しかも、1回目の噴射を吸気行程中に行うと、燃焼室内のクエンチ領域やクレビスに燃料が入り込み、HCの発生源となる。   In addition, if the first injection is performed during the intake stroke, the fuel enters the quench region and the clevis in the combustion chamber and becomes a source of HC generation.

一方、特許文献2においては、1回目の燃料噴射を圧縮行程後期に行い、2回目の燃料噴射を膨張行程の点火の直前に行うが、2回目の燃料噴射による筒内の乱れに依存して燃焼が成立するので、高い燃圧が要求される。その結果、燃焼が相対的(燃圧が低い場合に比べて)に早くなり、排気温度の上昇さらにはこれに関連するHCの低減の点で、なお改善の余地があった。   On the other hand, in Patent Document 2, the first fuel injection is performed in the latter half of the compression stroke, and the second fuel injection is performed immediately before the ignition of the expansion stroke. However, depending on the in-cylinder turbulence due to the second fuel injection, Since combustion is established, a high fuel pressure is required. As a result, combustion is relatively fast (compared to the case where the fuel pressure is low), and there is still room for improvement in terms of an increase in exhaust temperature and a reduction in HC associated therewith.

この発明は、筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備えるとともに、上記燃料噴射弁へ供給される燃圧を可変制御する燃圧可変手段を備え、所定の運転状態のときに、点火時期を圧縮上死点後に設定した超リタード燃焼を行う筒内直接噴射式火花点火内燃機関において、
超リタード燃焼時には、圧縮行程中に1回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部にリッチな混合気を形成するとともに、
局部的にさらにリッチな混合気が点火時期に点火プラグに到達するように点火時期から所定期間先行したタイミングでかつ膨張行程中に2回目の燃料噴射を行い、
点火プラグ近傍の燃焼室の一部に2段階の成層混合気を形成した状態で点火するように構成するとともに、
筒内圧変化によるペネトレーション変化を補償するように上記燃圧を制御することを特徴としている。
The present invention includes a fuel injection valve that directly injects fuel into a cylinder and an ignition plug, and also includes fuel pressure variable means that variably controls the fuel pressure supplied to the fuel injection valve, and ignites the fuel in a predetermined operating state. In a cylinder direct injection spark ignition internal combustion engine that performs super retard combustion with the timing set after compression top dead center,
During super retard combustion, the first fuel injection is performed during the compression stroke to form a rich air-fuel mixture in a part of the combustion chamber near the spark plug,
A second fuel injection is performed during the expansion stroke at a timing preceding the ignition timing by a predetermined period so that a locally richer air-fuel mixture reaches the ignition plug at the ignition timing,
While igniting in a state where a two-stage stratified mixture is formed in a part of the combustion chamber near the spark plug,
The fuel pressure is controlled so as to compensate for a change in penetration due to a change in in-cylinder pressure.

すなわち、この発明では、燃料噴射の噴霧エネルギに依存せずに、比較的低い燃圧での2回の燃料噴射によって、燃焼室内にコンパクトな成層混合気を形成する。そして、特に、点火時期においては、2回目の燃料噴射の噴霧によって局部的にリッチな混合気塊が点火プラグ近傍に存在し、その周囲を囲んで、1回目の燃料噴射による理論空燃比よりはリッチでかつ点火プラグ付近よりは希薄な混合気塊が存在した状態となる。つまり、濃度が2段階に異なるコンパクトな成層混合気を形成し、この状態で点火を行う。なお、1回目の燃料噴射による混合気は、燃焼室全体には拡散しないようにすることが望ましい。   That is, in the present invention, a compact stratified mixture is formed in the combustion chamber by two fuel injections at a relatively low fuel pressure without depending on the spray energy of the fuel injection. In particular, at the ignition timing, a locally rich air-fuel mixture is present in the vicinity of the spark plug due to the spray of the second fuel injection, and surrounds the periphery of the spark plug rather than the stoichiometric air-fuel ratio by the first fuel injection. A rich and lean air-fuel mixture exists near the spark plug. That is, a compact stratified mixture having two different concentrations is formed, and ignition is performed in this state. It is desirable that the air-fuel mixture produced by the first fuel injection does not diffuse throughout the combustion chamber.

このような燃焼方式によれば、サイクル毎の微小な回転数の変化や微小な負荷の変化などに対し安定した燃焼が可能である。そして、2回の燃料噴射をいずれも筒内圧の高い場に比較的低い燃圧で噴射するので、噴霧がコンパクトとなって、クエンチ領域やクレビスに入りにくく、従って、HCの発生が抑制される。また、比較的低い燃圧の利用が可能となることから、燃焼速度を抑制でき、排気温度の上昇やHCの低減の上で有利となる。   According to such a combustion method, stable combustion is possible with respect to a minute change in rotational speed or a minute load change for each cycle. Since both fuel injections are performed at a relatively low fuel pressure in a place where the in-cylinder pressure is high, the spray becomes compact and hardly enters the quench region or the clevis, thus suppressing the generation of HC. In addition, since a relatively low fuel pressure can be used, the combustion speed can be suppressed, which is advantageous in increasing the exhaust temperature and reducing HC.

一方、内燃機関の負荷や外気圧等によって上死点付近での筒内圧が変化すると、噴射された燃料噴霧のペネトレーション(貫徹力)つまり噴霧到達距離が変化する。例えば負荷が上昇すると、空気量の増加に伴い筒内圧が高くなるため、ペネトレーションが小さくなる。そのため、特に2回目の燃料噴射の噴霧が所期のタイミングで点火プラグ近傍に正しく到達しなくなる。また逆に、負荷ひいては筒内圧が低く、ペネトレーションが所期のものよりも大となると、噴霧が過度に拡散し、コンパクトな成層混合気とならずに例えばクエンチ領域やクレビスに入り込んでしまう。そこで、本発明では、このような筒内圧変化によるペネトレーション変化を補償するように、燃圧が制御される。   On the other hand, when the in-cylinder pressure near the top dead center changes due to the load of the internal combustion engine, the external air pressure, etc., the penetration (penetration force) of the injected fuel spray, that is, the spray reach distance changes. For example, when the load increases, the cylinder pressure increases as the amount of air increases, so that the penetration decreases. Therefore, in particular, the spray of the second fuel injection does not reach the vicinity of the spark plug correctly at the expected timing. Conversely, if the load and thus the in-cylinder pressure is low and the penetration is higher than the intended one, the spray diffuses excessively and enters the quench region or clevis, for example, without forming a compact stratified mixture. Therefore, in the present invention, the fuel pressure is controlled so as to compensate for such a change in penetration due to a change in the in-cylinder pressure.

例えば、超リタード燃焼時に、負荷が大きいほど燃圧が高く制御され、同じく、外気圧が高いほど燃圧が高く制御される。あるいは、実圧縮比を変更する可変動弁機構もしくは可変圧縮比機構を備えているような場合には、実圧縮比の変更に伴って上死点付近での筒内圧が変化するので、実圧縮比が高いほど燃圧が高く制御される。これにより、筒内圧の変化に影響されずに適正な成層混合気が形成され、安定した燃焼が確保される。   For example, during super retard combustion, the fuel pressure is controlled to be higher as the load is larger, and similarly, the fuel pressure is controlled to be higher as the external pressure is higher. Alternatively, when a variable valve mechanism or variable compression ratio mechanism that changes the actual compression ratio is provided, the cylinder pressure near the top dead center changes with the change of the actual compression ratio. The higher the ratio, the higher the fuel pressure is controlled. As a result, an appropriate stratified mixture is formed without being affected by the change in the in-cylinder pressure, and stable combustion is ensured.

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性が向上し、例えば冷間始動の際に、排気温度の上昇により触媒の早期活性化およびHC低減を達成することができる。しかも、負荷や実圧縮比等の変化に伴う筒内圧変化に影響されずに安定した燃焼が可能となる。   According to the present invention, the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center is improved. For example, at the time of cold start, early activation of the catalyst and reduction of HC are achieved by increasing the exhaust temperature. can do. In addition, stable combustion is possible without being affected by changes in in-cylinder pressure accompanying changes in load, actual compression ratio, and the like.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。ここで、上記プレッシャレギュレータ17は、燃圧可変手段として、燃料噴射弁15に供給される燃料の燃圧を、比較的広い範囲で変化させることができる構成となっている。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16. Here, the pressure regulator 17 is configured to change the fuel pressure of the fuel supplied to the fuel injection valve 15 within a relatively wide range as the fuel pressure varying means.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、燃圧、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、プレッシャレギュレータ17による燃圧、等を制御する。   The fuel injection amount, injection timing, fuel pressure, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines whether to use a combustion method, that is, homogeneous combustion or stratified combustion, according to the engine operating conditions detected by these input signals, and in response to this, opens the electronic control throttle valve 7. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, the fuel pressure by the pressure regulator 17, and the like are controlled.

暖機完了後においては、通常の成層燃焼運転ないしは均質燃焼運転が行われる。例えば、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、例えば空燃比をリーンとした成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。   After completion of warm-up, normal stratified combustion operation or homogeneous combustion operation is performed. For example, in a predetermined region on the low speed and low load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed at a time before the compression top dead center. The fuel spray is collected in a layered manner in the vicinity of the spark plug 14, thereby realizing, for example, stratified combustion with a lean air-fuel ratio. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の際の燃料噴射時期および点火時期の一実施例を示しており、点火時期ADVは、排気温度を十分に高く得るために、10°〜50°ATDCに設定される。つまり、期間Bは、10°〜50°CAである。また、圧縮行程中に1回目の燃料噴射I1を行い、かつ膨張行程中に2回目の燃料噴射I2を行う。1回目の燃料噴射I1は、点火プラグ14近傍の燃焼室3の一部に拡がったリッチな混合気を形成するためのものであり、その燃料噴射時期(詳しくは燃料噴射開始時期)から点火時期ADVまでの期間Cが、例えば50°〜140°CAに設定される。つまり、この1回目の燃料噴射I1による燃料噴霧が、燃焼室3内にある程度拡散するものの、過度に拡散しないように、その燃料噴射時期が設定される。期間Cが過度に長いと、燃料噴霧が拡散し過ぎ、クエンチ領域やクレビス内に燃料成分が入ってしまう。   FIG. 2 shows an example of the fuel injection timing and ignition timing during super retard combustion, and the ignition timing ADV is set to 10 ° to 50 ° ATDC in order to obtain a sufficiently high exhaust temperature. . That is, the period B is 10 ° to 50 ° CA. Further, the first fuel injection I1 is performed during the compression stroke, and the second fuel injection I2 is performed during the expansion stroke. The first fuel injection I1 is for forming a rich air-fuel mixture that spreads in a part of the combustion chamber 3 in the vicinity of the spark plug 14, and from the fuel injection timing (specifically, the fuel injection start timing) to the ignition timing. The period C until ADV is set to 50 ° to 140 ° CA, for example. In other words, the fuel injection timing is set so that the fuel spray by the first fuel injection I1 diffuses in the combustion chamber 3 to some extent but does not diffuse excessively. When the period C is excessively long, the fuel spray is excessively diffused, and the fuel component enters the quench region or the clevis.

そして、膨張行程中の2回目の燃料噴射I2は、局部的にさらにリッチな混合気塊が点火時期ADVにおいてちょうど点火プラグ14に到達するように、点火時期ADVから所定期間Aだけ先行したタイミングに行われる。この燃料噴射時期(詳しくは燃料噴射開始時期)から点火時期ADVまでの期間Aは、基本的に燃料噴射弁15から点火プラグ14までの距離に相関するが、例えば、10°〜20°CAである。   Then, the second fuel injection I2 during the expansion stroke is performed at a timing preceding the ignition timing ADV by a predetermined period A so that a locally richer air-fuel mixture reaches the ignition plug 14 at the ignition timing ADV. Done. The period A from the fuel injection timing (specifically, the fuel injection start timing) to the ignition timing ADV basically correlates with the distance from the fuel injection valve 15 to the spark plug 14, for example, 10 ° to 20 ° CA. is there.

なお、このとき、空燃比(2回の噴射による燃焼室全体の平均的空燃比)は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。これにより、HCの後燃えに必要な必要十分な量の酸素が確保される。   At this time, the air-fuel ratio (the average air-fuel ratio of the entire combustion chamber by two injections) is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17). Thereby, a necessary and sufficient amount of oxygen necessary for the afterburning of HC is ensured.

また、燃料噴霧のエネルギによる乱れに依存せずに燃焼を行うので、燃圧としては、後述するように燃焼が成立する範囲内で、比較的低い燃圧が用いられる。そして、この燃圧は、筒内圧変化によるペネトレーション変化を補償するように、負荷に応じて制御される。   Further, since combustion is performed without depending on the disturbance due to the energy of the fuel spray, a relatively low fuel pressure is used as the fuel pressure within a range where combustion is established as will be described later. The fuel pressure is controlled according to the load so as to compensate for the penetration change due to the in-cylinder pressure change.

上記のように燃料噴射を行うことにより、点火時期ADVにおいては、図3に示すように、点火プラグ14を囲む2段階の濃度を有するコンパクトな成層混合気が形成される。つまり、1回目の燃料噴射I1によって、理論空燃比よりもリッチな第1の混合気塊が符号31で示すように点火プラグ14近傍の燃焼室3の一部に形成され、その内側に、2回目の燃料噴射I2による、さらにリッチな第2の混合気塊が符号32に示すように点火プラグ14近傍に局部的に形成される。2回の燃料噴射は、いずれも上死点近傍の筒内圧が高い場に向かって行われ、かつ燃圧も比較的低いので、いずれの噴霧もコンパクトなものとなり、第1の混合気塊31の外側は、基本的に燃料が拡散していない新気の層となる。そして、このように成層化した状態で点火プラグ14により第2の混合気塊32に点火が行われ、比較的に緩慢に燃焼が行われる。   By performing the fuel injection as described above, at the ignition timing ADV, as shown in FIG. 3, a compact stratified air-fuel mixture having a two-stage concentration surrounding the spark plug 14 is formed. That is, by the first fuel injection I1, a first air-fuel mixture richer than the stoichiometric air-fuel ratio is formed in a part of the combustion chamber 3 in the vicinity of the spark plug 14 as indicated by reference numeral 31, and 2 A richer second air-fuel mixture resulting from the second fuel injection I2 is locally formed in the vicinity of the spark plug 14 as indicated by reference numeral 32. Both fuel injections are performed toward a field where the in-cylinder pressure in the vicinity of the top dead center is high and the fuel pressure is relatively low. The outside is basically a fresh air layer where fuel is not diffused. Then, in this state of stratification, the second air-fuel mixture 32 is ignited by the spark plug 14 and combustion is performed relatively slowly.

この本発明の方式のリタード燃焼では、1回目の燃料噴射I1の噴射時期は、燃焼安定性つまり失火率やトルク変動に殆ど影響せず、また2回目の燃料噴射I2の噴射時期の変動が失火率やトルク変動に与える影響も小さい。   In the retarded combustion according to the method of the present invention, the injection timing of the first fuel injection I1 hardly affects the combustion stability, that is, the misfire rate and torque fluctuation, and the fluctuation of the injection timing of the second fuel injection I2 is misfired. The effect on the rate and torque fluctuation is small.

図4は、膨張行程噴射つまり2回目の燃料噴射I2の噴射時期が最適噴射時期から変化した場合の失火率およびトルク変動の変化を示しており、実施例の特性では、噴射時期が多少変化しても、失火率やトルク変動が急激に悪化しない。これに対し、膨張行程中に1回に全量を噴射する参考例の特性では、その噴射時期が最適噴射時期から僅かでも変化すると、失火率やトルク変動が急激に悪化してしまう。   FIG. 4 shows the change in misfire rate and torque fluctuation when the expansion stroke injection, that is, the injection timing of the second fuel injection I2 is changed from the optimal injection timing. In the characteristics of the embodiment, the injection timing slightly changes. However, the misfire rate and torque fluctuation do not deteriorate rapidly. On the other hand, in the characteristics of the reference example in which the entire amount is injected at a time during the expansion stroke, if the injection timing changes even slightly from the optimal injection timing, the misfire rate and torque fluctuation are rapidly deteriorated.

従って、本発明のものでは、サイクル毎の微小な回転数の変化や微小な負荷の変化などにより2回目の燃料噴射I2の噴射時期の最適値が変化しても、失火率やトルク変動が増大することがなく、安定した燃焼が得られる。つまりサイクル変化に対するロバスト性が高いものとなる。   Therefore, in the present invention, even if the optimum value of the injection timing of the second fuel injection I2 changes due to a minute change in the rotational speed or a minute load for each cycle, the misfire rate and torque fluctuation increase. Stable combustion can be obtained. In other words, the robustness against cycle changes is high.

また、本発明では、混合気がコンパクトとなり、クエンチ領域やクレビスに燃料成分が入り込まないので、これらの箇所から発生するHCが低減する。   Further, in the present invention, the air-fuel mixture becomes compact and the fuel component does not enter the quench region or the clevis, so that HC generated from these portions is reduced.

さらに、図5の(a)に示すように、本発明の燃焼方式では、燃圧を低くしても燃焼の悪化(例えばトルク変動)が少なく、他方、燃圧を低くすることで、(b)に示すように、排気温度がより高く得られ、かつこれに伴って、(c)に示すように、HC排出量が低減する。これは、燃圧を低くすることで、燃焼が遅くなり、より遅くまで燃焼が行われるためである。従って、本発明では、燃焼が成立する範囲内で、燃圧を低くすることが望ましい。これにより、排気温度がより高く得られ、かつHCがより低減する。   Further, as shown in FIG. 5 (a), in the combustion method of the present invention, even if the fuel pressure is lowered, the deterioration of combustion (for example, torque fluctuation) is small, and on the other hand, by reducing the fuel pressure, As shown in the figure, the exhaust gas temperature is higher, and accordingly, as shown in (c), the HC emission amount is reduced. This is because by lowering the fuel pressure, the combustion becomes slower and the combustion is performed later. Therefore, in the present invention, it is desirable to reduce the fuel pressure within a range where combustion is established. As a result, the exhaust temperature can be increased and HC can be further reduced.

一方、燃料噴射弁15から噴射される噴霧の到達距離つまりペネトレーションは、図6に示すように、噴射時の筒内圧が高いほど減少する傾向にある。そして、前述したように、負荷が増加すると、空気量の増加に伴い筒内圧が相対的に高くなる。またペネトレーションは、燃圧に相関し、図7に示すように、燃圧が高いほどペネトレーションが大となる。そこで、この実施例では、図8に示すように、筒内圧つまり負荷が高いほど燃圧が高くなるように、負荷に応じて燃圧が可変制御される。これによって、負荷によるペネトレーションの変化と燃圧によるペネトレーションの変化とが互いに相殺され、筒内圧の変化の影響を排除することができる。つまり、所期の成層混合気がより安定的に確保され、安定した着火・燃焼が可能となる。   On the other hand, as shown in FIG. 6, the reach of the spray injected from the fuel injection valve 15, that is, the penetration, tends to decrease as the in-cylinder pressure at the time of injection increases. As described above, when the load increases, the in-cylinder pressure relatively increases as the air amount increases. Further, the penetration correlates with the fuel pressure, and the penetration increases as the fuel pressure increases as shown in FIG. Therefore, in this embodiment, as shown in FIG. 8, the fuel pressure is variably controlled in accordance with the load so that the fuel pressure increases as the in-cylinder pressure, that is, the load increases. As a result, the change in penetration due to the load and the change in penetration due to the fuel pressure cancel each other, and the influence of the change in in-cylinder pressure can be eliminated. That is, the desired stratified mixture can be secured more stably, and stable ignition / combustion becomes possible.

なお、筒内圧は、負荷のほか、外気圧や実圧縮比によっても影響を受ける。従って、例えば、外気圧を検出もしくは推定し、これに対応して燃圧を可変制御するようにしてもよい。あるいは、可変圧縮比機構を備えた内燃機関にあっては、可変制御される圧縮比に応じて燃圧を可変制御することが望ましい。また、例えば、吸気弁側に可変動弁機構を備えた内燃機関において、吸気弁閉時期を可変制御すると、実圧縮比ひいては筒内圧が変化するので、同様に、実圧縮比に応じて燃圧を可変制御することが望ましい。   The in-cylinder pressure is affected not only by the load but also by the external air pressure and the actual compression ratio. Therefore, for example, the external air pressure may be detected or estimated, and the fuel pressure may be variably controlled correspondingly. Alternatively, in an internal combustion engine equipped with a variable compression ratio mechanism, it is desirable to variably control the fuel pressure according to the compression ratio that is variably controlled. For example, in an internal combustion engine having a variable valve mechanism on the intake valve side, if the intake valve closing timing is variably controlled, the actual compression ratio and thus the in-cylinder pressure changes. Variable control is desirable.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 燃焼室内に形成される成層混合気の状態を示す説明図。Explanatory drawing which shows the state of the stratified mixture formed in a combustion chamber. 膨張行程噴射の噴射時期と(a)トルク変動および(b)失火率との関係を示す特性図。The characteristic view which shows the relationship between the injection timing of expansion stroke injection, (a) torque fluctuation, and (b) misfire rate. 燃圧と、(a)トルク変動、(b)排気温度、(c)HC排出量、との関係を示す特性図。The characteristic view which shows the relationship between a fuel pressure, (a) torque fluctuation, (b) exhaust temperature, (c) HC discharge | emission amount. 筒内圧とペネトレーションとの関係を示す特性図。The characteristic view which shows the relationship between a cylinder pressure and penetration. 燃圧とペネトレーションとの関係を示す特性図。The characteristic view which shows the relationship between a fuel pressure and penetration. 筒内圧(負荷)に対する燃圧の特性を示す特性図。The characteristic view which shows the characteristic of the fuel pressure with respect to in-cylinder pressure (load).

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
14…点火プラグ
15…燃料噴射弁
17…プレッシャレギュレータ
25…コントロールユニット
3 ... Combustion chamber 10 ... Catalytic converter 14 ... Spark plug 15 ... Fuel injection valve 17 ... Pressure regulator 25 ... Control unit

Claims (10)

筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備えるとともに、上記燃料噴射弁へ供給される燃圧を可変制御する燃圧可変手段を備え、所定の運転状態のときに、点火時期を圧縮上死点後に設定した超リタード燃焼を行う筒内直接噴射式火花点火内燃機関において、
超リタード燃焼時には、圧縮行程中に1回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部にリッチな混合気を形成するとともに、
局部的にさらにリッチな混合気が点火時期に点火プラグに到達するように点火時期から所定期間先行したタイミングでかつ膨張行程中に2回目の燃料噴射を行い、
点火プラグ近傍の燃焼室の一部に2段階の成層混合気を形成した状態で点火するように構成するとともに、
筒内圧変化によるペネトレーション変化を補償するように上記燃圧を制御することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。
A fuel injection valve for directly injecting fuel into the cylinder and an ignition plug are provided, and fuel pressure variable means for variably controlling the fuel pressure supplied to the fuel injection valve is provided, and the ignition timing is compressed in a predetermined operating state. In a direct injection spark ignition internal combustion engine that performs super retard combustion set after dead center,
During super retard combustion, the first fuel injection is performed during the compression stroke to form a rich air-fuel mixture in a part of the combustion chamber near the spark plug,
A second fuel injection is performed during the expansion stroke at a timing preceding the ignition timing by a predetermined period so that a locally richer air-fuel mixture reaches the ignition plug at the ignition timing,
While igniting in a state where a two-stage stratified mixture is formed in a part of the combustion chamber near the spark plug,
A control apparatus for a direct injection spark ignition internal combustion engine, wherein the fuel pressure is controlled to compensate for a change in penetration due to a change in in-cylinder pressure.
超リタード燃焼における点火時期は、圧縮上死点後10°〜50°CAであることを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. The control device for a direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 10 ° to 50 ° CA after compression top dead center. 2回目の燃料噴射の噴射開始時期から点火時期までの期間が10°〜20°CAであることを特徴とする請求項1または2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   3. The control device for a direct injection type spark ignition internal combustion engine according to claim 1, wherein a period from an injection start timing of the second fuel injection to an ignition timing is 10 ° to 20 ° CA. 4. 1回目の燃料噴射の噴射開始時期から点火時期までの期間が50°〜140°CAであることを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 3, wherein a period from an injection start timing to an ignition timing of the first fuel injection is 50 ° to 140 ° CA. Control device. 超リタード燃焼における空燃比は、理論空燃比もしくは若干リーンであることを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The control device for a direct injection spark ignition internal combustion engine according to any one of claims 1 to 4, wherein the air-fuel ratio in the super retard combustion is a stoichiometric air-fuel ratio or slightly lean. 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記超リタード燃焼を実行することを特徴とする請求項1〜5のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 5, wherein the super retard combustion is executed when a temperature increase of the exhaust gas is required as a predetermined operation state. Engine control device. 燃焼が成立する範囲内で低い燃圧を用いることを特徴とする請求項1〜6のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The control device for a direct injection type spark ignition internal combustion engine according to any one of claims 1 to 6, wherein a low fuel pressure is used within a range where combustion is established. 超リタード燃焼時に、負荷が大きいほど燃圧が高く制御されることを特徴とする請求項1〜7のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   8. The control device for a direct injection spark ignition internal combustion engine according to claim 1, wherein the fuel pressure is controlled to be higher as the load is larger during super retard combustion. 実圧縮比を変更する可変動弁機構もしくは可変圧縮比機構をさらに備え、超リタード燃焼時に、実圧縮比が高いほど燃圧が高く制御されることを特徴とする請求項1〜7のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The variable valve mechanism or the variable compression ratio mechanism for changing the actual compression ratio is further provided, and the fuel pressure is controlled to be higher as the actual compression ratio is higher during super retard combustion. A control apparatus for an in-cylinder direct injection type spark ignition internal combustion engine. 超リタード燃焼時に、外気圧が高いほど燃圧が高く制御されることを特徴とする請求項1〜7のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。
The control apparatus for a direct injection spark ignition internal combustion engine according to any one of claims 1 to 7, wherein the fuel pressure is controlled to be higher as the external pressure is higher during super retard combustion.
JP2006019939A 2006-01-30 2006-01-30 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4631725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019939A JP4631725B2 (en) 2006-01-30 2006-01-30 In-cylinder direct injection spark ignition internal combustion engine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019939A JP4631725B2 (en) 2006-01-30 2006-01-30 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2007198325A true JP2007198325A (en) 2007-08-09
JP4631725B2 JP4631725B2 (en) 2011-02-16

Family

ID=38453155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019939A Expired - Fee Related JP4631725B2 (en) 2006-01-30 2006-01-30 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4631725B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264183A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Direct injection spark-ignition internal combustion engine
WO2010103778A1 (en) * 2009-03-12 2010-09-16 川崎重工業株式会社 System and method for determining engine misfire
JP2012122408A (en) * 2010-12-08 2012-06-28 Mitsubishi Motors Corp Engine control device
JP2014051929A (en) * 2012-09-07 2014-03-20 Mazda Motor Corp Electric spark ignition type direct-injection engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173499A (en) * 1999-12-15 2001-06-26 Hitachi Ltd Fuel injection device and fuel injection method for cylinder injection type internal combustion engine
JP2004028027A (en) * 2002-06-27 2004-01-29 Hitachi Ltd Cylinder injection-type internal combustion engine and its combustion method
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2006144647A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Cylinder injection type engine and its control device
JP2007132286A (en) * 2005-11-11 2007-05-31 Hitachi Ltd Control device for direct injection gasoline engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173499A (en) * 1999-12-15 2001-06-26 Hitachi Ltd Fuel injection device and fuel injection method for cylinder injection type internal combustion engine
JP2004028027A (en) * 2002-06-27 2004-01-29 Hitachi Ltd Cylinder injection-type internal combustion engine and its combustion method
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2006144647A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Cylinder injection type engine and its control device
JP2007132286A (en) * 2005-11-11 2007-05-31 Hitachi Ltd Control device for direct injection gasoline engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264183A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Direct injection spark-ignition internal combustion engine
WO2010103778A1 (en) * 2009-03-12 2010-09-16 川崎重工業株式会社 System and method for determining engine misfire
JP2010209892A (en) * 2009-03-12 2010-09-24 Kawasaki Heavy Ind Ltd System and method for determining engine misfire
JP2012122408A (en) * 2010-12-08 2012-06-28 Mitsubishi Motors Corp Engine control device
JP2014051929A (en) * 2012-09-07 2014-03-20 Mazda Motor Corp Electric spark ignition type direct-injection engine

Also Published As

Publication number Publication date
JP4631725B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US6318074B1 (en) Control device for direct injection engine
US7185631B2 (en) Combustion control system and method for direct-injection spark-ignition internal combustion engine
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP3799898B2 (en) In-cylinder injection engine control device
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
US20070295305A1 (en) Control device and control method for spark-ignited internal-combustion engine
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JPH10212995A (en) Exhaust temperature raising device
JP2007321696A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007002795A (en) Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP2006336478A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP2007303428A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees