JP2004036461A - Cylinder injection type spark ignition internal combustion engine - Google Patents

Cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2004036461A
JP2004036461A JP2002193728A JP2002193728A JP2004036461A JP 2004036461 A JP2004036461 A JP 2004036461A JP 2002193728 A JP2002193728 A JP 2002193728A JP 2002193728 A JP2002193728 A JP 2002193728A JP 2004036461 A JP2004036461 A JP 2004036461A
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
dead center
top dead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002193728A
Other languages
Japanese (ja)
Other versions
JP4062990B2 (en
Inventor
Yukihiro Sonoda
園田 幸弘
Shigeki Miyashita
宮下 茂樹
Taku Kadooka
角岡 卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002193728A priority Critical patent/JP4062990B2/en
Publication of JP2004036461A publication Critical patent/JP2004036461A/en
Application granted granted Critical
Publication of JP4062990B2 publication Critical patent/JP4062990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder injection type spark ignition internal combustion engine capable of sufficiently increasing the temperature of exhaust gas without requiring complicated fuel injection control. <P>SOLUTION: The cylinder injection type spark ignition internal combustion engine comprises a fuel injection valve 7 for injecting a fuel in the form of developing penetrating force stronger than that of conical fuel spray and an ignition plug 6. The fuel is injected in a compression stroke by the fuel injection valve to form a combustible mixture near the ignition plug for stratified charge combustion. When the temperature of exhaust gas is increased, the fuel is injected near the top dead center of compression by the fuel injection valve and the ignition timing of the ignition plug is set at the middle of an expansion stroke. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、筒内噴射式火花点火内燃機関に関する。
【0002】
【従来の技術】
気筒内へ直接的に燃料を噴射することにより、点火時点において点火プラグ近傍だけに着火性の良好な混合気(以下、可燃混合気)を形成し、気筒内全体としては希薄な混合気の燃焼を可能にする成層燃焼が公知である。このような成層燃焼を実施する筒内噴射式火花点火内燃機関において、一般的な内燃機関と同様に、排気ガス中のHC、CO、及び、NOを浄化するために、機関排気系には触媒装置が配置されており、機関始動直後からこれら成分を浄化可能とするために触媒装置を早期に暖機することが望まれている。
【0003】
特開平10−153138号公報に開示されている筒内噴射式火花点火内燃機関では、機関始動時において排気ガス温度を高めて触媒装置を早期暖機するために、点火プラグ近傍に可燃混合気を形成するための圧縮行程での主燃料噴射に加えて排気行程でも気筒内へ燃料を噴射するようにすると共に、点火時期を遅角することが提案されている。こうして、点火時期の遅角により燃焼を遅らせて排気行程まで燃焼を持続させ、排気行程噴射の燃料を排気行程においてさらに燃焼させることが意図されている。
【0004】
この従来技術において、燃料噴射弁は、燃料を円錐状に噴射する一般的なものであり、噴霧燃料の貫徹力は比較的弱い。それにより、機関始動時の主燃料噴射において燃料噴射時期を遅くすると、非常に高い筒内圧力に対して貫徹力の弱い燃料が噴射されることとなり、飛行中に微粒化した燃料はさらに貫徹力が弱められて分散し易く、点火プラグ近傍に可燃混合気を形成することができない。
【0005】
こうして、主燃料噴射時期は、遅くとも筒内圧力が非常に高まる以前の圧縮行程中期としなければならず、圧縮行程末期には点火プラグ近傍に可燃混合気が形成されることとなる。この可燃混合気を確実に着火燃焼させるためには、可燃混合気が時間的に分散する以前に点火しなければならず、点火時期を大幅に遅角することはできない。それにより、遅くとも膨張行程初期には点火を実施しなければならない。
【0006】
この点火時期遅角によって、排気行程初期までは、辛うじて燃焼を持続させることはでき、排気行程初期に燃料をさらに噴射すれば、燃焼をさらに持続させて排気ガス温度を高めることができ、触媒装置の早期暖機を実現することができる。
【0007】
【発明が解決しようとする課題】
こうして、前述の従来技術では、排気ガス温度を高めるために、排気行程初期の燃料噴射が必須であり、このような1サイクル二回の燃料噴射は燃料噴射制御を複雑なものとする。
【0008】
従って、本発明の目的は、燃料噴射制御を複雑化させることなく、排気ガス温度を十分に高めることができる筒内噴射式火花点火内燃機関を提供することである。
【0009】
【課題を解決するための手段】
本発明による請求項1に記載の筒内噴射式火花点火内燃機関は、円錐形状の燃料噴霧より強い貫徹力を有する形状に燃料を噴射する燃料噴射弁と、点火プラグとを具備し、前記燃料噴射弁により圧縮行程で燃料を噴射し、前記点火プラグ近傍に可燃混合気を形成して成層燃焼を実施する筒内噴射式火花点火内燃機関において、排気ガス温度を高める時には、前記燃料噴射弁により圧縮上死点近傍で燃料を噴射し、前記点火プラグによる点火時期を膨張行程中期とすることを特徴とする。
【0010】
また、本発明による請求項2に記載の筒内噴射式火花点火内燃機関は、請求項1に記載の筒内噴射式火花点火内燃機関において、前記膨張行程中期とは圧縮上死点後20°から50°までのクランク角度範囲であることを特徴とする。
【0011】
また、本発明による請求項3に記載の筒内噴射式火花点火内燃機関は、請求項1又は2に記載の筒内噴射式火花点火内燃機関において、前記排気ガス温度を高める時は機関始動時であることを特徴とする。
【0012】
また、本発明による請求項4に記載の筒内噴射式火花点火内燃機関は、請求項1又は2に記載の筒内噴射式火花点火内燃機関において、機関排気系にはNO吸蔵還元触媒装置が配置され、前記排気ガス温度を高める時は前記NO吸蔵還元触媒装置からSOを放出させる時であることを特徴とする。
【0013】
また、本発明による請求項5に記載の筒内噴射式火花点火内燃機関は、請求項1から4のいずれか一項に記載の筒内噴射式火花点火内燃機関において、前記圧縮上死点近傍とは、圧縮上死点前30°から圧縮上死点までのクランク角度範囲であることを特徴とする。
【0014】
また、本発明による請求項6に記載の筒内噴射式火花点火内燃機関は、請求項1から4のいずれか一項に記載の筒内噴射式火花点火内燃機関において、前記圧縮上死点近傍とは、圧縮上死点から圧縮上死点後30°までのクランク角度範囲であることを特徴とする。
【0015】
また、本発明による請求項7に記載の筒内噴射式火花点火内燃機関は、請求項1から6のいずれか一項に記載の筒内噴射式火花点火内燃機関において、前記燃料噴射弁は、厚さの薄い扇形状に燃料を噴射するためのスリット状の噴孔を有することを特徴とする。
【0016】
【発明の実施の形態】
図1は本発明による筒内噴射式火花点火内燃機関を示す概略縦断面図であり、図2は図1におけるピストンの平面図である。これらの図において、1は吸気ポート、2は排気ポートである。吸気ポート1は吸気弁3を介して、排気ポート2は排気弁4を介して、それぞれ気筒内へ通じている。5はピストンであり、凹状のキャビティ8がピストン頂面に形成されている。6は気筒上部中心近傍に配置された点火プラグである。7は気筒上部周囲の吸気ポート側に配置された燃料噴射弁である。
【0017】
燃料噴射弁7は、スリット状の噴孔を有し、比較的厚さの薄い略扇形状噴霧10として燃料を噴射するものである。成層燃焼を実施するためには、図1及び2に示すように、圧縮行程後半において燃料をピストン5頂面に形成されたキャビティ8内へ噴射する。こうしてキャビティ8内へ噴射された斜線で示す液状燃料10は、飛行中に気筒内の吸気との摩擦によって微粒化されてキャビティ8内へ侵入し、キャビティ8の底壁8aに沿って進行してキャビティ8の燃料噴射弁に対向する対向側壁8bによって点火プラグ6近傍に導かれるまでには気化し、点火時点においては、ドットで示すように点火プラグ6近傍だけに可燃混合気を形成する。この可燃混合気を着火燃焼させることにより、成層燃焼として気筒内全体としてはリーンな混合気が燃焼可能となる。
【0018】
厚さの薄い扇状の燃料噴霧は、キャビティ8の底壁8aに沿って進行する際に幅方向に拡がるために、キャビティ8の底壁8aの広範囲部分から良好に熱を吸収することができる。キャビティ8の底壁8a上を幅方向に拡がった燃料において、燃料中央部は、キャビティ8の対向側壁8bによって上方向に向かう速度成分が付与されて点火プラグ6近傍へ向かい、燃料両側部は、ピストン平面視において円弧状とされたキャビティ8の対向側壁8bに対してそれぞれ鋭角に衝突して、上方向へ向かう速度成分が付与されると共に中央方向へ向かう速度成分も付与され、点火プラグ6近傍へ向かう。
【0019】
こうして、厚さの薄い扇状の燃料噴霧は、従来の円錐状の燃料噴霧に比較して、点火プラグ6近傍に気化程度の良好な一塊の可燃混合気を形成することができる。それにより、成層燃焼時の燃料噴射量を増加させることが可能となり、燃料消費率の低い成層燃焼を高負荷側へ拡大することができる。必要燃料量が多量となる機関高負荷時には、吸気行程で燃料を噴射して均質混合気を気筒内に形成し、均質燃焼を実施するようにしても良い。
【0020】
成層燃焼は、希薄燃焼であるために、排気ガス中には比較的多くのNOが含まれ、このNOを浄化するために、本筒内噴射式火花点火内燃機関の排気系にはNO吸蔵還元触媒装置(図示せず)が配置されている。このNO吸蔵還元触媒装置は、排気ガス中の酸素濃度が高い時に排気ガス中のNOを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOを放出するものであり、この際に、排気ガス中にHC又はCO等の還元成分が含まれていれば、この還元成分により放出されたNOは還元浄化される。こうして、NOを大気放出以前に浄化することができる。
【0021】
本筒内噴射式火花点火内燃機関は、前述したように、リーン空燃比の成層燃焼だけでなく、理論空燃比又はリッチ空燃比での均質燃焼も実施することがあり、この時の排気ガス中に含まれるHC及びCO等を浄化することが必要である。NO吸蔵還元触媒装置も、一般的には白金等の酸化触媒を有するために、排気ガス中のHC及びCOを浄化することができる。しかしながら、三元触媒装置をNO吸蔵還元触媒装置とは別に排気系に設けることが好ましい。
【0022】
本筒内噴射式火花点火内燃機関を含めて一般的な内燃機関において、機関始動直後から排気ガス中のHC、CO、及びNOを浄化することが望まれており、そのためには、機関始動直後においてNO吸蔵還元触媒装置及び三元触媒装置等の触媒装置を昇温して担持させた触媒を活性化することが必要である。触媒装置を特別な機構を使用せずに簡単に昇温するためには、点火時期を遅角して排気ガス温度を高めれば良いが、大幅に点火時期を遅角して排気ガス温度をかなり高めない限り、触媒装置を早期に暖機することはできない。
【0023】
図3及び図4は、本筒内噴射式火花点火内燃機関の燃料噴射弁7により噴射される扇形状噴霧(丸プロット)及び一般的な燃料噴射弁により噴射される円錐形状噴霧(四角プロット)おける経過時間に対する噴霧先端到達距離を示すグラフであり、図3は筒内圧が0.1MPa(絶対圧)の場合であり、図4は筒内圧が0.5MPa(絶対圧)の場合である。これらの図に示すように、扇形状噴霧は、円錐状噴霧に比較して、かなり大きな貫徹力を有している。
【0024】
本実施形態において、機関始動時には点火時期を遅角した成層燃焼を実施するようになっており、但し、燃料噴射時期は圧縮上死点近傍とし、点火時期は膨張行程中期としている。点火時期を膨張行程中期まで遅角すれば、燃焼を排気行程中期程度までは持続させることができ、排気ガス温度を十分に高めて触媒装置の早期暖機が可能となる。この機関始動時における成層燃焼は、通常時の成層燃焼に比較して、ピストン温度が低く、キャビティ8内への燃料付着量が増大するために、気筒内へ供給された吸気量に対して空燃比がストイキ又は僅かにリーンとなるように燃料噴射量が増大される。
【0025】
図5は、本実施形態における機関始動時の燃料噴射時期及び点火時期を示している。具体的には、燃料噴射は、クランク角度範囲INJ内、すなわち、圧縮上死点前30°から圧縮上死点(0°)までのクランク角度範囲内で開始及び終了され、点火は、クランク角度範囲IGN内、すなわち、圧縮上死点後20°から50°までのクランク角度範囲内で実施されるようになっている。
【0026】
燃料噴射弁から気筒内へ噴射される燃料は、飛行中において気筒内の吸気との摩擦により微粒化され、筒内圧が高く吸気密度が大きいほどこの微粒化が促進される。また、噴射燃料の貫徹力が強いほど吸気との摩擦力が大きくなって微粒化は促進される。一般的な円錐形状噴霧は前述したように貫徹力が弱く、圧縮上死点近傍で噴射されると、貫徹力によってはそれほど微粒化は促進されないが、高い筒内圧によって微粒化が促進され、こうして微粒化された燃料は、高い筒内圧によって貫徹力がさらに弱められ、分散してしまう。それにより、円錐形状噴霧を圧縮上死点近傍で噴射したのでは、点火プラグ近傍に可燃混合気を形成することはできない。
【0027】
本実施形態において、燃料噴射弁7は、スリット状の噴孔を有し、厚さの薄い扇形状に燃料を噴射するものであり、こうして噴射される扇形状噴霧は、前述したように、円錐形状噴霧に比較して高い貫徹力を有している。それにより、圧縮上死点近傍で噴射されて微粒化された燃料の貫徹力が高い筒内圧により弱められても、微粒化燃料は、依然として強い貫徹力を有し分散するようなことはない。それにより、微粒化燃料は、意図するように、ピストン頂面に形成されたキャビティ8内へ侵入し、前述したように、自身貫徹力によってキャビティ8を介して点火プラグ6近傍に達し、点火プラグ6近傍に可燃混合気を形成することができる。ここで形成される可燃混合気は、通常の成層燃焼時の可燃混合気に比較して、確実な着火性を確保するために、前述したように燃料噴射量が増大させられてリッチ側とされている。
【0028】
こうして、本実施形態では、圧縮上死点近傍での燃料噴射が可能であるために、その直後に形成される可燃混合気が時間的に分散するまでは点火時期を遅角することができ、膨張行程中期への点火時期の遅角が可能となる。また、機関始動時には、筒内温度が低く、ピストン5のキャビティ8内を進行する燃料は、キャビティ8の底壁8a及び対向側壁8bから十分な熱が与えられない。それにより、もし、通常時の成層燃焼のように、圧縮上死点近傍以前の筒内圧がそれほど高くない時に燃料噴射されると、筒内圧によって飛行中に十分に微粒化が促進されないために、噴射燃料は、大きな塊の液状燃料としてキャビティ8内に侵入し、その多くがキャビティ8内に付着したままとなり易い。それにより、未燃燃料の排出量が増大してしまう。
【0029】
本実施形態では、機関始動時において、圧縮上死点近傍で燃料を噴射するために、前述したように、キャビティ8から十分な熱が与えられなくても、噴射燃料はキャビティ8内へ到達する以前の飛行中に十分に微粒化されるために、キャビティ8内で気化し易く、キャビティ8への付着燃料が減少するために、未燃燃料の排出量を低減することができる。
【0030】
図5には、本発明による筒内噴射式火花点火内燃機関のもう一つの実施形態における機関始動時の燃料噴射時期及び点火時期を示している。具体的には、燃料噴射は、圧縮上死点近傍のクランク角度範囲INJ’内、すなわち、圧縮上死点前(0°)から圧縮上死点後30°までのクランク角度範囲内で開始及び終了され、点火は、前述同様に、クランク角度範囲IGN内、すなわち、圧縮上死点後20°から50°までのクランク角度範囲内で実施されるようになっている。
【0031】
このクランク角度範囲INJ’内において燃料が噴射されると、前述同様に筒内圧が高く、それにより燃料は微粒化されるが、分散するまでは貫徹力が弱まることはなく、点火プラグ6近傍には、膨張行程中期に遅角された点火時期に対して確実に着火燃焼可能な可燃混合気を形成することができる。
【0032】
ところで、吸気行程において気筒内に吸入された吸気が気筒内を縦方向に旋回する旋回流を発生させることがある。この旋回流は圧縮行程において減衰し、圧縮上死点においてはピストンにより完全に押し潰されて消滅する。しかしながら、圧縮行程末期においては完全に消滅せずに、点火プラグ近傍に形成された可燃混合気を僅かに分散させる。本実施形態では、前述の実施形態のように、旋回流が存在する圧縮行程ではなく、旋回流が完全に消滅した膨張行程で燃料を噴射するようになっているために、旋回流によって点火プラグ近傍に形成された可燃混合気が僅かでも分散させられることはなく、良好な成層燃焼を実現することができる。
【0033】
また、前述したNO吸蔵還元触媒装置は、排気ガス中のSOをNOと同様なメカニズムにより吸収する。吸収されたSOは、NOのように、雰囲気中の酸素濃度を低下させただけでは放出されず、NO吸蔵還元触媒装置におけるSO吸収量は徐々に増加する。こうしてSO吸収量が増加すると、その分、NOを吸収することができなくなるために、SO吸収量がある程度となった時には、SOを放出させなければならない。SOを放出させるには、雰囲気中の酸素濃度を低下させると共に、NO吸蔵還元触媒装置を加熱することが必要である。この加熱にも、前述したように、燃料噴射時期を圧縮上死点近傍とし点火時期を膨張行程中期として排気ガス温度を高めることは有効である。
【0034】
これまで説明した実施形態において、噴射燃料を点火プラグ近傍に導くためにピストン頂面のキャビティを使用したが、これは本発明を限定するものではなく、噴射燃料を点火プラグ近傍に導くためのキャビティはシリンダヘッドに設けられていても良く、また、燃料噴射弁から噴射された燃料がキャビティを使用せずに直接的に点火プラグ近傍に向かって気筒内を飛行し、点火プラグ近傍に可燃混合気を形成する筒内噴射式火花点火内燃機関にも、本発明は適用可能である。また、本発明は、同じ燃料噴射圧力で円錐形状の燃料噴霧より強い貫徹力を有する形状に燃料を噴射する燃料噴射弁を使用して成層燃焼を実現する筒内噴射式火花点火内燃機関に適用可能であり、燃料噴射弁は、スリット噴孔を有し扇形状に燃料を噴射するものに限定されることはなく、例えば、柱状等に燃料を噴射するものでも良い。
【0035】
【発明の効果】
このように、本発明による筒内噴射式火花点火内燃機関は、円錐形状の燃料噴霧より強い貫徹力を有する形状に燃料を噴射する燃料噴射弁と、点火プラグとを具備し、燃料噴射弁により圧縮行程で燃料を噴射し、点火プラグ近傍に可燃混合気を形成して成層燃焼を実施する筒内噴射式火花点火内燃機関において、排気ガス温度を高める時には、燃料噴射弁により圧縮上死点近傍で燃料を噴射し、点火プラグによる点火時期を膨張行程中期とするようになっている。強い貫徹力を有する燃料噴霧は、圧縮上死点近傍の高い筒内圧に対して、十分に微粒化されても比較的強い貫徹力を維持し、点火プラグ近傍に確実に可燃混合気を形成することがでる。こうして、圧縮上死点近傍の燃料噴射の後において点火プラグ近傍に可燃混合気を形成することができるために、点火時期を膨張行程中期まで遅角しても可燃混合気が時間的に分散する以前にこれを確実に着火燃焼させることができる。それにより、燃焼を排気行程中期程度まで持続させることが可能となり、1サイクル一回の燃料噴射でも排気ガス温度を十分に高めることができる。
【図面の簡単な説明】
【図1】本発明による筒内噴射式火花点火内燃機関を示す概略縦断面図である。
【図2】図1のピストンの平面図である。
【図3】筒内圧が0.1MPaの場合の扇形状噴霧及び円錐形状噴霧における経過時間に対する噴霧先端到達距離を示すグラフである。
【図4】筒内圧が0.5MPaの場合の扇形状噴霧及び円錐形状噴霧における経過時間に対する噴霧先端到達距離を示すグラフである。
【図5】本発明による筒内噴射式火花点火内燃機関の機関始動時における燃料噴射時期範囲及び点火時期範囲を示す図である。
【符号の説明】
5…ピストン
6…点火プラグ
7…燃料噴射弁
8…キャビティ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a direct injection spark ignition internal combustion engine.
[0002]
[Prior art]
By injecting fuel directly into the cylinder, an ignitable mixture (hereinafter, flammable mixture) is formed only in the vicinity of the ignition plug at the time of ignition, and combustion of the lean mixture as a whole in the cylinder Stratified combustion that allows for is known. In such stratified charge combustion cylinder injection type spark ignition internal combustion engine implementing, as with typical internal combustion engine, HC in the exhaust gas, CO, and, in order to purify NO X, in the exhaust system A catalyst device is provided, and it is desired that the catalyst device be quickly warmed up so that these components can be purified immediately after the start of the engine.
[0003]
In the direct injection type spark ignition internal combustion engine disclosed in Japanese Patent Application Laid-Open No. H10-153138, a combustible air-fuel mixture is provided near an ignition plug in order to increase the temperature of the exhaust gas at the time of engine start and to quickly warm up the catalyst device. It has been proposed to inject fuel into the cylinder in the exhaust stroke in addition to the main fuel injection in the compression stroke for forming the fuel, and to retard the ignition timing. In this way, it is intended to delay the combustion by retarding the ignition timing to maintain the combustion until the exhaust stroke, and to further burn the fuel in the exhaust stroke injection in the exhaust stroke.
[0004]
In this prior art, the fuel injection valve is a general one that injects fuel in a conical shape, and the penetration force of the spray fuel is relatively weak. As a result, if the fuel injection timing is delayed in the main fuel injection at the time of engine startup, fuel with a low penetration force will be injected against an extremely high in-cylinder pressure, and the fuel atomized during flight will have a further penetration force. Are weakened and easily dispersed, and a combustible mixture cannot be formed near the ignition plug.
[0005]
Thus, the main fuel injection timing must be at the latest in the middle stage of the compression stroke before the in-cylinder pressure becomes extremely high. At the end of the compression stroke, a combustible mixture is formed near the ignition plug. In order to ensure that the combustible mixture is ignited and burned, it must be ignited before the combustible mixture is temporally dispersed, and the ignition timing cannot be greatly retarded. As a result, ignition must be carried out at the beginning of the expansion stroke at the latest.
[0006]
Due to this ignition timing retard, combustion can be barely sustained until the early stage of the exhaust stroke, and if the fuel is further injected at the beginning of the exhaust stroke, the combustion can be further sustained and the exhaust gas temperature can be raised, and the catalytic device Early warm-up can be realized.
[0007]
[Problems to be solved by the invention]
Thus, in the above-described prior art, in order to increase the temperature of the exhaust gas, the fuel injection at the early stage of the exhaust stroke is indispensable, and such fuel injection twice in one cycle complicates the fuel injection control.
[0008]
Accordingly, an object of the present invention is to provide an in-cylinder injection spark ignition internal combustion engine capable of sufficiently increasing exhaust gas temperature without complicating fuel injection control.
[0009]
[Means for Solving the Problems]
An in-cylinder injection spark ignition internal combustion engine according to claim 1, comprising a fuel injection valve for injecting fuel into a shape having a stronger penetration force than conical fuel spray, and a spark plug, In a cylinder injection type spark ignition internal combustion engine that injects fuel in a compression stroke by an injection valve and forms a combustible mixture near the ignition plug to perform stratified combustion, when the exhaust gas temperature is increased, the fuel injection valve Fuel is injected near the compression top dead center, and the ignition timing of the ignition plug is set to the middle stage of the expansion stroke.
[0010]
According to a second aspect of the present invention, there is provided the in-cylinder injection spark ignition internal combustion engine according to the first aspect, wherein the middle stage of the expansion stroke is 20 ° after the compression top dead center. It is characterized in that the crank angle is in the range from to 50 °.
[0011]
According to a third aspect of the present invention, there is provided an in-cylinder injection spark ignition internal combustion engine according to the first or second aspect, wherein the exhaust gas temperature is increased when the engine is started. It is characterized by being.
[0012]
According to a fourth aspect of the present invention, there is provided an in-cylinder injection spark ignition internal combustion engine according to the first or second aspect, wherein the NO X storage reduction catalyst device is provided in the engine exhaust system. The time when the exhaust gas temperature is increased is when SO X is released from the NO X storage reduction catalyst device.
[0013]
A cylinder injection type spark ignition internal combustion engine according to claim 5 according to the present invention is the cylinder injection type spark ignition internal combustion engine according to any one of claims 1 to 4, wherein the compression top dead center is near the compression top dead center. Is characterized by a crank angle range from 30 ° before compression top dead center to compression top dead center.
[0014]
A cylinder injection type spark ignition internal combustion engine according to claim 6 of the present invention is the cylinder injection type spark ignition internal combustion engine according to any one of claims 1 to 4, wherein the compression top dead center is near the compression top dead center. Is characterized by a crank angle range from the compression top dead center to 30 ° after the compression top dead center.
[0015]
In addition, a direct injection type spark ignition internal combustion engine according to claim 7 according to the present invention is the direct injection type spark ignition internal combustion engine according to any one of claims 1 to 6, wherein the fuel injection valve comprises: It has a slit-shaped injection hole for injecting fuel in a thin fan shape.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic longitudinal sectional view showing a direct injection type spark ignition internal combustion engine according to the present invention, and FIG. 2 is a plan view of a piston in FIG. In these figures, 1 is an intake port, and 2 is an exhaust port. The intake port 1 communicates with the cylinder via an intake valve 3, and the exhaust port 2 communicates with the cylinder via an exhaust valve 4. Reference numeral 5 denotes a piston, and a concave cavity 8 is formed on the top surface of the piston. Reference numeral 6 denotes a spark plug arranged near the upper center of the cylinder. Reference numeral 7 denotes a fuel injection valve arranged on the intake port side around the upper part of the cylinder.
[0017]
The fuel injection valve 7 has a slit-shaped injection hole, and injects fuel as a substantially fan-shaped spray 10 having a relatively small thickness. In order to carry out stratified combustion, as shown in FIGS. 1 and 2, fuel is injected into a cavity 8 formed on the top surface of the piston 5 in the latter half of the compression stroke. The liquid fuel 10 indicated by the oblique lines injected into the cavity 8 in this manner is atomized by friction with the intake air in the cylinder during the flight, enters the cavity 8, and advances along the bottom wall 8a of the cavity 8. It is vaporized before being guided to the vicinity of the ignition plug 6 by the opposed side wall 8b facing the fuel injection valve of the cavity 8, and at the time of ignition, a combustible mixture is formed only near the ignition plug 6 as shown by a dot. By igniting and burning this combustible air-fuel mixture, lean air-fuel mixture can be burned as a whole in the cylinder as stratified combustion.
[0018]
The fan-shaped fuel spray having a small thickness spreads in the width direction when traveling along the bottom wall 8a of the cavity 8, so that heat can be favorably absorbed from a wide range of the bottom wall 8a of the cavity 8. In the fuel spread in the width direction on the bottom wall 8 a of the cavity 8, the central portion of the fuel is imparted with an upward velocity component by the opposing side wall 8 b of the cavity 8 and moves toward the vicinity of the ignition plug 6. The piston 8 collides at an acute angle with the opposed side wall 8b of the cavity 8 which is formed in an arc shape in a plan view of the piston, so that an upward velocity component and a velocity component toward the center are also imparted, and the vicinity of the ignition plug 6 Head to.
[0019]
In this manner, the fan-shaped fuel spray having a small thickness can form a lump of combustible mixture having a good degree of vaporization in the vicinity of the ignition plug 6 as compared with the conventional conical fuel spray. This makes it possible to increase the fuel injection amount during stratified combustion, and to expand stratified combustion with a low fuel consumption rate to a higher load side. At high engine load when the required fuel amount is large, fuel may be injected during the intake stroke to form a homogeneous mixture in the cylinder, and homogeneous combustion may be performed.
[0020]
Since the stratified combustion is a lean burn, a relatively large amount of NO X is contained in the exhaust gas. In order to purify the NO X , the exhaust system of the in-cylinder injection spark ignition internal combustion engine has a NO. An X storage reduction catalyst device (not shown) is provided. This the NO X storage reduction catalyst device absorbs NO X in the exhaust gas when a high concentration of oxygen in the exhaust gas, which is oxygen concentration in the exhaust gas to release NO X absorbed to decrease, this time If the exhaust gas contains a reducing component such as HC or CO, the NO X released by the reducing component is reduced and purified. Thus, NO X can be purified before it is released to the atmosphere.
[0021]
As described above, the in-cylinder injection spark ignition internal combustion engine may perform not only stratified combustion at a lean air-fuel ratio but also homogeneous combustion at a stoichiometric air-fuel ratio or a rich air-fuel ratio. It is necessary to purify HC, CO, and the like contained in water. Since the NO X storage reduction catalyst device also generally has an oxidation catalyst such as platinum, it can purify HC and CO in exhaust gas. However, it is preferable to provide the three-way catalyst device in the exhaust system separately from the NO X storage reduction catalyst device.
[0022]
In the direct injection spark ignition internal combustion engine common internal combustion engine including, HC in the exhaust gas immediately after the engine starting, CO, and which it is desired to purify NO X, in order that the engine start it is necessary to activate the catalyst supported by elevating the temperature of the NO X storage reduction catalyst device and a catalyst device such as a three-way catalytic converter immediately after. In order to easily raise the temperature of the catalyst device without using a special mechanism, it is necessary to retard the ignition timing and raise the exhaust gas temperature, but significantly retard the ignition timing and considerably reduce the exhaust gas temperature. Unless raised, the catalyst device cannot be warmed up early.
[0023]
FIGS. 3 and 4 show a fan-shaped spray (circle plot) and a conical spray (square plot) injected by a fuel injection valve 7 of a direct injection type spark ignition internal combustion engine. FIG. 3 is a graph showing the spray tip reaching distance with respect to the elapsed time in the case where the in-cylinder pressure is 0.1 MPa (absolute pressure), and FIG. 4 is a case where the in-cylinder pressure is 0.5 MPa (absolute pressure). As shown in these figures, the fan-shaped spray has a considerably larger penetration force than the conical spray.
[0024]
In the present embodiment, stratified charge combustion is performed at a retarded ignition timing when the engine is started, provided that the fuel injection timing is near the compression top dead center and the ignition timing is in the middle of the expansion stroke. If the ignition timing is retarded until the middle stage of the expansion stroke, the combustion can be continued up to the middle stage of the exhaust stroke, and the exhaust gas temperature can be sufficiently increased and the catalyst device can be quickly warmed up. In the stratified combustion at the time of engine start, the piston temperature is lower than in the normal stratified combustion, and the amount of fuel adhering to the cavity 8 increases. The fuel injection amount is increased so that the fuel ratio becomes stoichiometric or slightly lean.
[0025]
FIG. 5 shows the fuel injection timing and the ignition timing at the time of starting the engine in the present embodiment. Specifically, fuel injection is started and ended within the crank angle range INJ, that is, within the crank angle range from 30 ° before compression top dead center to compression top dead center (0 °), and ignition is performed at the crank angle range INJ. The operation is performed within a range IGN, that is, a crank angle range from 20 ° to 50 ° after the compression top dead center.
[0026]
The fuel injected into the cylinder from the fuel injection valve is atomized by friction with the intake air in the cylinder during flight, and the atomization is promoted as the in-cylinder pressure is increased and the intake density is increased. Further, as the penetrating force of the injected fuel increases, the frictional force with the intake air increases, and the atomization is promoted. As described above, the general conical spray has a weak penetration force, and when injected near the compression top dead center, atomization is not so much promoted by the penetration force, but atomization is promoted by high in-cylinder pressure, and The atomized fuel is further reduced in penetration force by the high in-cylinder pressure and dispersed. Thus, if the conical spray is injected near the compression top dead center, a combustible mixture cannot be formed near the ignition plug.
[0027]
In the present embodiment, the fuel injection valve 7 has a slit-shaped injection hole, and injects fuel in a thin fan shape. As described above, the fan-shaped spray thus injected is conical. It has a higher penetration force than shape spraying. Thus, even if the penetration force of the fuel injected and atomized near the compression top dead center is weakened by the high in-cylinder pressure, the atomized fuel still has a strong penetration force and does not disperse. As a result, the atomized fuel enters the cavity 8 formed on the top surface of the piston as intended, and reaches the vicinity of the spark plug 6 through the cavity 8 by its own penetrating force as described above. A flammable mixture can be formed in the vicinity of 6. The combustible air-fuel mixture formed here is increased in fuel injection amount as described above in order to ensure reliable ignitability as compared with the combustible air-fuel mixture during normal stratified combustion, and is made rich. ing.
[0028]
Thus, in this embodiment, since fuel injection near the compression top dead center is possible, the ignition timing can be retarded until the combustible mixture formed immediately thereafter is temporally dispersed, It is possible to retard the ignition timing to the middle stage of the expansion stroke. Further, when the engine is started, the temperature in the cylinder is low, and sufficient fuel is not supplied from the bottom wall 8a and the opposed side wall 8b of the fuel in the cavity 8 of the piston 5 from the bottom wall 8a. Therefore, if fuel injection is performed when the in-cylinder pressure before the vicinity of compression top dead center is not so high, as in normal stratified combustion, atomization is not sufficiently promoted during flight by the in-cylinder pressure. The injected fuel enters the cavity 8 as a large lump of liquid fuel, and most of the fuel easily remains attached to the cavity 8. As a result, the amount of unburned fuel emission increases.
[0029]
In the present embodiment, when the engine is started, the fuel is injected near the compression top dead center. Therefore, as described above, even if sufficient heat is not supplied from the cavity 8, the injected fuel reaches the inside of the cavity 8. Since the particles are sufficiently atomized during the previous flight, they are easily vaporized in the cavity 8, and the amount of fuel adhering to the cavity 8 is reduced, so that the amount of unburned fuel discharged can be reduced.
[0030]
FIG. 5 shows a fuel injection timing and an ignition timing at the time of starting the engine in another embodiment of the direct injection type spark ignition internal combustion engine according to the present invention. Specifically, the fuel injection is started and started within the crank angle range INJ ′ near the compression top dead center, that is, within the crank angle range from before compression top dead center (0 °) to after compression top dead center 30 °. The ignition is terminated and the ignition is performed within the crank angle range IGN, that is, within the crank angle range from 20 ° to 50 ° after the compression top dead center, as described above.
[0031]
When the fuel is injected within this crank angle range INJ ', the in-cylinder pressure is high as described above, whereby the fuel is atomized. However, the penetration force does not weaken until the fuel is dispersed, and the fuel is in the vicinity of the ignition plug 6. Can reliably form a combustible mixture that can be ignited and burned with respect to the ignition timing retarded in the middle stage of the expansion stroke.
[0032]
Incidentally, there is a case where the intake air sucked into the cylinder during the intake stroke generates a swirling flow that swirls in the cylinder in the vertical direction. This swirling flow attenuates during the compression stroke, and is completely crushed by the piston at the compression top dead center and disappears. However, at the end of the compression stroke, the combustible mixture formed near the ignition plug is slightly dispersed without completely disappearing. In the present embodiment, the fuel is injected not in the compression stroke in which the swirl flow exists but in the expansion stroke in which the swirl flow has completely disappeared as in the above-described embodiment. Even if the combustible air-fuel mixture formed in the vicinity is slightly dispersed, good stratified combustion can be realized.
[0033]
Further, the above-described NO X storage reduction catalyst device absorbs SO X in the exhaust gas by the same mechanism as NO X. The absorbed SO X is not released only by lowering the oxygen concentration in the atmosphere like NO X , and the SO X absorption amount in the NO X storage reduction catalyst gradually increases. When the SO X absorption amount increases in this manner, NO X cannot be absorbed correspondingly, and therefore, when the SO X absorption amount reaches a certain level, SO X must be released. In order to release SO X , it is necessary to lower the oxygen concentration in the atmosphere and to heat the NO X storage reduction catalyst device. As described above, it is effective to increase the exhaust gas temperature by setting the fuel injection timing near the compression top dead center and setting the ignition timing to the middle stage of the expansion stroke.
[0034]
In the embodiments described so far, the cavity on the top surface of the piston is used to guide the injected fuel to the vicinity of the ignition plug. However, this is not a limitation of the present invention, and the cavity for guiding the injected fuel to the vicinity of the ignition plug is used. May be provided in the cylinder head, and the fuel injected from the fuel injector flies directly in the cylinder toward the vicinity of the spark plug without using the cavity, and the combustible air-fuel mixture The present invention is also applicable to a direct injection type spark ignition internal combustion engine that forms the following. Further, the present invention is applied to a direct injection type spark ignition internal combustion engine that realizes stratified combustion using a fuel injection valve that injects fuel into a shape having a stronger penetration force than a conical fuel spray at the same fuel injection pressure. The fuel injection valve is not limited to a fuel injection valve having a slit injection hole and injecting fuel in a fan shape, and may be, for example, a fuel injection valve having a columnar shape or the like.
[0035]
【The invention's effect】
As described above, the in-cylinder injection spark ignition internal combustion engine according to the present invention includes the fuel injection valve that injects the fuel into a shape having a stronger penetration force than the conical fuel spray, and the ignition plug. In a cylinder-injection spark ignition internal combustion engine that injects fuel in the compression stroke and forms a combustible mixture near the spark plug to perform stratified combustion, when the exhaust gas temperature is increased, the fuel injection valve closes the compression top dead center. To inject the fuel, and set the ignition timing by the spark plug to the middle stage of the expansion stroke. The fuel spray having a strong penetration force maintains a relatively strong penetration force even when sufficiently atomized against a high in-cylinder pressure near the compression top dead center, and reliably forms a combustible mixture near the ignition plug. I can do it. In this way, since the combustible mixture can be formed near the ignition plug after the fuel injection near the compression top dead center, the combustible mixture is temporally dispersed even if the ignition timing is retarded to the middle stage of the expansion stroke. This can be reliably ignited and burned before. As a result, combustion can be continued up to about the middle stage of the exhaust stroke, and the exhaust gas temperature can be sufficiently increased even with one fuel injection per cycle.
[Brief description of the drawings]
FIG. 1 is a schematic vertical sectional view showing a direct injection type spark ignition internal combustion engine according to the present invention.
FIG. 2 is a plan view of the piston of FIG. 1;
FIG. 3 is a graph showing a spray tip reaching distance with respect to an elapsed time in a fan-shaped spray and a cone-shaped spray when an in-cylinder pressure is 0.1 MPa.
FIG. 4 is a graph showing a spray tip reaching distance with respect to an elapsed time in a fan-shaped spray and a cone-shaped spray when an in-cylinder pressure is 0.5 MPa.
FIG. 5 is a diagram showing a fuel injection timing range and an ignition timing range at the time of engine start of the direct injection type spark ignition internal combustion engine according to the present invention.
[Explanation of symbols]
5 Piston 6 Spark plug 7 Fuel injection valve 8 Cavity

Claims (7)

円錐形状の燃料噴霧より強い貫徹力を有する形状に燃料を噴射する燃料噴射弁と、点火プラグとを具備し、前記燃料噴射弁により圧縮行程で燃料を噴射し、前記点火プラグ近傍に可燃混合気を形成して成層燃焼を実施する筒内噴射式火花点火内燃機関において、排気ガス温度を高める時には、前記燃料噴射弁により圧縮上死点近傍で燃料を噴射し、前記点火プラグによる点火時期を膨張行程中期とすることを特徴とする筒内噴射式火花点火内燃機関。A fuel injection valve for injecting fuel into a shape having a stronger penetration force than the conical fuel spray; and an ignition plug. The fuel injection valve injects fuel in a compression stroke, and a combustible mixture near the ignition plug is provided. When the exhaust gas temperature is increased in a direct injection type spark ignition internal combustion engine that performs stratified combustion by forming a fuel injection valve, fuel is injected near the compression top dead center by the fuel injection valve and the ignition timing by the ignition plug is expanded. An in-cylinder injection spark ignition internal combustion engine having a middle stroke. 前記膨張行程中期とは圧縮上死点後20°から50°までのクランク角度範囲であることを特徴とする請求項1に記載の筒内噴射式火花点火内燃機関。The in-cylinder injection spark ignition internal combustion engine according to claim 1, wherein the middle stage of the expansion stroke is a crank angle range from 20 to 50 after compression top dead center. 前記排気ガス温度を高める時は機関始動時であることを特徴とする請求項1又は2に記載の筒内噴射式火花点火内燃機関。The in-cylinder injection spark ignition internal combustion engine according to claim 1 or 2, wherein the temperature of the exhaust gas is increased when the engine is started. 機関排気系にはNO吸蔵還元触媒装置が配置され、前記排気ガス温度を高める時は前記NO吸蔵還元触媒装置からSOを放出させる時であることを特徴とする請求項1又は2に記載の筒内噴射式火花点火内燃機関。The engine exhaust system is arranged the NO X storage reduction catalyst device, to claim 1 or 2, characterized in when to increase the exhaust gas temperature is when releasing the SO X from the the NO X storage reduction catalyst device An in-cylinder injection spark ignition internal combustion engine according to claim 1. 前記圧縮上死点近傍とは、圧縮上死点前30°から圧縮上死点までのクランク角度範囲であることを特徴とする請求項1から4のいずれか一項に記載の筒内噴射式火花点火内燃機関。The in-cylinder injection type according to any one of claims 1 to 4, wherein the vicinity of the compression top dead center is a crank angle range from 30 ° before the compression top dead center to the compression top dead center. Spark ignition internal combustion engine. 前記圧縮上死点近傍とは、圧縮上死点から圧縮上死点後30°までのクランク角度範囲であることを特徴とする請求項1から4のいずれか一項に記載の筒内噴射式火花点火内燃機関。The in-cylinder injection type according to any one of claims 1 to 4, wherein the vicinity of the compression top dead center is a crank angle range from the compression top dead center to 30 ° after the compression top dead center. Spark ignition internal combustion engine. 前記燃料噴射弁は、厚さの薄い扇形状に燃料を噴射するためのスリット状の噴孔を有することを特徴とする請求項1から6のいずれか一項に記載の筒内噴射式火花点火内燃機関。The in-cylinder injection spark ignition according to any one of claims 1 to 6, wherein the fuel injection valve has a slit-shaped injection hole for injecting fuel in a fan shape having a small thickness. Internal combustion engine.
JP2002193728A 2002-07-02 2002-07-02 In-cylinder injection spark ignition internal combustion engine Expired - Fee Related JP4062990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193728A JP4062990B2 (en) 2002-07-02 2002-07-02 In-cylinder injection spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002193728A JP4062990B2 (en) 2002-07-02 2002-07-02 In-cylinder injection spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004036461A true JP2004036461A (en) 2004-02-05
JP4062990B2 JP4062990B2 (en) 2008-03-19

Family

ID=31702623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193728A Expired - Fee Related JP4062990B2 (en) 2002-07-02 2002-07-02 In-cylinder injection spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4062990B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046127A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006112365A (en) * 2004-10-18 2006-04-27 Nissan Motor Co Ltd Control device of cylinder direct injection type spark ignition internal combustion engine
US7051701B2 (en) 2004-01-28 2006-05-30 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device
JP2006169968A (en) * 2004-12-13 2006-06-29 Nissan Motor Co Ltd Control system for spark-ignition internal combustion engine of direct injection type
JP2006177273A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Controller for cylinder direct injection type spark ignition internal combustion engine
US7096853B2 (en) 2004-01-28 2006-08-29 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device
US7104249B2 (en) 2004-01-28 2006-09-12 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device
JP2006250006A (en) * 2005-03-10 2006-09-21 Nissan Motor Co Ltd Controller of cylinder direct injection type spark ignition internal combustion engine
JP2006250050A (en) * 2005-03-11 2006-09-21 Nissan Motor Co Ltd Controller of cylinder direct injection type spark ignition internal combustion engine
JP2006257921A (en) * 2005-03-16 2006-09-28 Nissan Motor Co Ltd Control device and control method of cylinder direct injection type spark ignition internal combustion engine
JP2006266119A (en) * 2005-03-23 2006-10-05 Nissan Motor Co Ltd Control device for in-cylinder direct injection type spark ignition internal combustion engine
JP2006307703A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Cylinder injection internal combustion engine
US7134421B2 (en) 2004-07-26 2006-11-14 Nissna Motor Co., Ltd. Direct fuel injection spark ignition internal combustion engine
JP2006336473A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006336476A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006336474A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Control device of cylinder direct injection type spark ignition internal combustion engine
JP2006336475A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Control device of cylinder direct injection type spark ignition internal combustion engine
JP2006348843A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Cylinder direct injection type spark ignition internal combustion engine
US7159566B2 (en) 2004-09-30 2007-01-09 Nissan Motor Co., Ltd. Control method and apparatus for direct injection spark ignited internal combustion engine
JP2007002796A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP2007002795A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP2007002794A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for cylinder direct injection type spark ignition internal combustion engine
JP2007009864A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007009865A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Cylinder direct injection type spark ignition internal combustion engine
JP2007032379A (en) * 2005-07-26 2007-02-08 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007032378A (en) * 2005-07-26 2007-02-08 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007032377A (en) * 2005-07-26 2007-02-08 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
US7194999B2 (en) 2004-07-26 2007-03-27 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine
JP2007107436A (en) * 2005-10-12 2007-04-26 Hitachi Ltd Cylinder direct injection engine, its control device, and injector
JP2007198325A (en) * 2006-01-30 2007-08-09 Nissan Motor Co Ltd Control device of cylinder direct-injection type spark ignition internal combustion engine
JP2007198323A (en) * 2006-01-30 2007-08-09 Nissan Motor Co Ltd Control device for cylinder direct injection spark ignition internal combustion engine
JP2007291959A (en) * 2006-04-25 2007-11-08 Honda Motor Co Ltd Control device of internal combustion engine
US7350504B2 (en) 2005-05-31 2008-04-01 Nissan Motor Co., Ltd. Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine
JP2009114993A (en) * 2007-11-07 2009-05-28 Nissan Motor Co Ltd Control device for cylinder direct fuel injection type engine
JP2009257336A (en) * 2009-08-03 2009-11-05 Hitachi Ltd Control device for cylinder injection type engine
US7958720B2 (en) 2005-05-31 2011-06-14 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine
JP2018003750A (en) * 2016-07-05 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104249B2 (en) 2004-01-28 2006-09-12 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device
US7051701B2 (en) 2004-01-28 2006-05-30 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device
US7096853B2 (en) 2004-01-28 2006-08-29 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device
US7194999B2 (en) 2004-07-26 2007-03-27 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine
US7134421B2 (en) 2004-07-26 2006-11-14 Nissna Motor Co., Ltd. Direct fuel injection spark ignition internal combustion engine
JP2006046127A (en) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
US7159566B2 (en) 2004-09-30 2007-01-09 Nissan Motor Co., Ltd. Control method and apparatus for direct injection spark ignited internal combustion engine
JP2006112365A (en) * 2004-10-18 2006-04-27 Nissan Motor Co Ltd Control device of cylinder direct injection type spark ignition internal combustion engine
JP2006169968A (en) * 2004-12-13 2006-06-29 Nissan Motor Co Ltd Control system for spark-ignition internal combustion engine of direct injection type
JP4729920B2 (en) * 2004-12-24 2011-07-20 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177273A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Controller for cylinder direct injection type spark ignition internal combustion engine
JP2006250006A (en) * 2005-03-10 2006-09-21 Nissan Motor Co Ltd Controller of cylinder direct injection type spark ignition internal combustion engine
JP2006250050A (en) * 2005-03-11 2006-09-21 Nissan Motor Co Ltd Controller of cylinder direct injection type spark ignition internal combustion engine
JP2006257921A (en) * 2005-03-16 2006-09-28 Nissan Motor Co Ltd Control device and control method of cylinder direct injection type spark ignition internal combustion engine
JP4492399B2 (en) * 2005-03-16 2010-06-30 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2006266119A (en) * 2005-03-23 2006-10-05 Nissan Motor Co Ltd Control device for in-cylinder direct injection type spark ignition internal combustion engine
JP4501743B2 (en) * 2005-03-23 2010-07-14 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP2006307703A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Cylinder injection internal combustion engine
JP4548204B2 (en) * 2005-04-27 2010-09-22 日産自動車株式会社 In-cylinder injection internal combustion engine
JP2006336474A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Control device of cylinder direct injection type spark ignition internal combustion engine
JP4577091B2 (en) * 2005-05-31 2010-11-10 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP4525468B2 (en) * 2005-05-31 2010-08-18 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP2006336473A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006336476A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006336475A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Control device of cylinder direct injection type spark ignition internal combustion engine
US7958720B2 (en) 2005-05-31 2011-06-14 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine
JP4544036B2 (en) * 2005-05-31 2010-09-15 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
US7350504B2 (en) 2005-05-31 2008-04-01 Nissan Motor Co., Ltd. Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine
JP4525479B2 (en) * 2005-06-16 2010-08-18 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP2006348843A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Cylinder direct injection type spark ignition internal combustion engine
JP2007002796A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP4581867B2 (en) * 2005-06-27 2010-11-17 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP4609200B2 (en) * 2005-06-27 2011-01-12 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP2007002795A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP2007002794A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for cylinder direct injection type spark ignition internal combustion engine
JP4650126B2 (en) * 2005-07-04 2011-03-16 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine
JP2007009865A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Cylinder direct injection type spark ignition internal combustion engine
JP2007009864A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP4525494B2 (en) * 2005-07-04 2010-08-18 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP4539476B2 (en) * 2005-07-26 2010-09-08 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP4525509B2 (en) * 2005-07-26 2010-08-18 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP4529832B2 (en) * 2005-07-26 2010-08-25 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP2007032379A (en) * 2005-07-26 2007-02-08 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007032378A (en) * 2005-07-26 2007-02-08 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007032377A (en) * 2005-07-26 2007-02-08 Nissan Motor Co Ltd Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007107436A (en) * 2005-10-12 2007-04-26 Hitachi Ltd Cylinder direct injection engine, its control device, and injector
JP4542018B2 (en) * 2005-10-12 2010-09-08 日立オートモティブシステムズ株式会社 Engine fuel injection control method and engine having an injector used therefor
JP2007198323A (en) * 2006-01-30 2007-08-09 Nissan Motor Co Ltd Control device for cylinder direct injection spark ignition internal combustion engine
JP2007198325A (en) * 2006-01-30 2007-08-09 Nissan Motor Co Ltd Control device of cylinder direct-injection type spark ignition internal combustion engine
JP4631725B2 (en) * 2006-01-30 2011-02-16 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP4631724B2 (en) * 2006-01-30 2011-02-16 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP2007291959A (en) * 2006-04-25 2007-11-08 Honda Motor Co Ltd Control device of internal combustion engine
JP2009114993A (en) * 2007-11-07 2009-05-28 Nissan Motor Co Ltd Control device for cylinder direct fuel injection type engine
JP2009257336A (en) * 2009-08-03 2009-11-05 Hitachi Ltd Control device for cylinder injection type engine
JP2018003750A (en) * 2016-07-05 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine
US10119517B2 (en) 2016-07-05 2018-11-06 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
JP4062990B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4062990B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4032690B2 (en) In-cylinder injection gasoline engine
JP2002188447A (en) Internal combustion engine of direct in cylinder fuel injection
JP2006307659A (en) Control device of cylinder direct injection internal combustion engine
JPS62191622A (en) Spark ignition engine injecting fuel directly into cylinder
JPH1182139A (en) Fuel injection control device for internal combustion engine
JP4329860B2 (en) In-cylinder injection spark ignition internal combustion engine
EP0205000B1 (en) Combustion chamber for an internal-combustion engine
KR100579065B1 (en) In-cylinder injection type internal combustion engine and ignition control method thereof
JP2008157197A (en) Cylinder injection type spark ignition internal combustion engine
JP2008025399A (en) Controller of cylinder direct injection spark-ignition internal combustion engine
JP2007231913A (en) Fuel injection device for internal combustion engine
JP2005351200A (en) Direct-injection spark-ignition internal combustion engine
JP2004028024A (en) Fuel injection control device for cylinder injection type spark ignition internal combustion engine
JP4609227B2 (en) Internal combustion engine
JP2001214744A (en) Cylinder injection type spark ignition internal combustion engine
JP2002097960A (en) Combustion method for internal combustion engine
JPH11210472A (en) Structure of combustion chamber in cylinder injection type spark ignition engine
JP4026197B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP6477848B1 (en) Premixed compression ignition engine
JPH0768903B2 (en) Combustion chamber of direct injection diesel engine
JPH1182029A (en) Stratified charge combustion of internal combustion engine
JP2018172980A (en) Premixing compression ignition type engine
JP2521900B2 (en) Spark ignition internal combustion engine
JP3976153B2 (en) Direct injection spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees