JP2006348843A - Cylinder direct injection type spark ignition internal combustion engine - Google Patents

Cylinder direct injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2006348843A
JP2006348843A JP2005175841A JP2005175841A JP2006348843A JP 2006348843 A JP2006348843 A JP 2006348843A JP 2005175841 A JP2005175841 A JP 2005175841A JP 2005175841 A JP2005175841 A JP 2005175841A JP 2006348843 A JP2006348843 A JP 2006348843A
Authority
JP
Japan
Prior art keywords
fuel
combustion
internal combustion
combustion engine
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005175841A
Other languages
Japanese (ja)
Other versions
JP4525479B2 (en
Inventor
Tomoyuki Moto
智之 茂藤
Masayuki Tomita
全幸 富田
Akira Nakajima
彰 中島
Tomoyuki Takeda
智之 武田
Taizo Horigome
泰三 堀込
Mitsuyasu Akagi
三泰 赤木
Hitoshi Ishii
仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005175841A priority Critical patent/JP4525479B2/en
Priority to EP06011017A priority patent/EP1728995A3/en
Priority to US11/443,178 priority patent/US7350504B2/en
Priority to CN 200610087674 priority patent/CN1880745B/en
Publication of JP2006348843A publication Critical patent/JP2006348843A/en
Application granted granted Critical
Publication of JP4525479B2 publication Critical patent/JP4525479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To actualize a reduction of HC due to early activation of a catalyst and after-burn by greatly delaying an ignition timing while avoiding the instability of combustion in a high speed region. <P>SOLUTION: At cold start of an internal combustion engine which requires the early temperature rise of a catalyst converter, the ignition timing is set to be after a compression top dead center and super retard combustion is performed to inject fuel before the ignition timing but after the compression top dead center. Disturbance in a cylinder is improved by high pressure fuel injection right before the ignition timing and flame propagation is accelerated, therefore actualizing stable combustion. A pressure regulator controls fuel pressure to be higher as an engine speed is higher. Although an actual cycle time is shorter as the engine speed is higher, the fuel pressure is made higher to activate disturbance due to spraying energy and quicken the combustion, thus avoiding the instability of the combustion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時などにおける噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection type spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to control of injection timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。
特許第3325230号公報
In Patent Document 1, as a catalyst warm-up method for a direct injection spark ignition internal combustion engine, a period from an intake stroke to an ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than an activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed, for example, at 120 ° BTDC to 45 ° BTDC after the middle of the compression stroke.
Japanese Patent No. 3325230

内燃機関の冷機時における触媒の早期活性化および後燃えによるHC低減のためには、点火時期の遅角が有効であり、より大きな効果を得るためには、圧縮上死点以降の点火(ATDC点火)が望ましい。ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。   For early activation of the catalyst when the internal combustion engine is cold and HC reduction due to afterburning, retarding the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC) Ignition) is desirable. In order to perform stable combustion by ATDC ignition, it is necessary to shorten the combustion period. For this reason, it is necessary to increase the combustion speed (flame propagation speed) by strengthening the turbulence in the cylinder.

このような乱れの強化のために、筒内に高圧で噴射される燃料噴霧のエネルギにより筒内に乱れを生成することが考えられる。   In order to strengthen such disturbance, it is conceivable that the disturbance is generated in the cylinder by the energy of the fuel spray injected at a high pressure in the cylinder.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っている。このように最後の燃料噴射が圧縮上死点よりも前では、その噴霧により筒内に乱れを生成しても、圧縮上死点以降はその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Yes. As described above, before the last fuel injection is before the compression top dead center, even if the spray generates turbulence in the cylinder, the turbulence is attenuated after the compression top dead center, and the flame propagation in ATDC ignition Does not contribute to speed increase.

例えば、図5は、吸気ポート内に設けたガス流動制御弁(例えばタンブル制御弁)を作動させた場合とこのようなガス流動制御弁を具備しない場合とについて、筒内の乱れの大きさを示したものであるが、ガス流動制御弁を作動させることで吸気行程中に生成した乱れ(符号Aの部分)は、圧縮行程の進行とともに減衰し、圧縮行程後期のタンブル流の崩壊に伴い一時的に乱れが大きくなる(符号Bの部分)ものの、圧縮上死点以降は符号Cで示すように急速に減衰してしまい、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。燃料噴霧による乱れについても同様であり、圧縮上死点より前の燃料噴射により乱れが生成されたとしても、圧縮上死点以降の点火燃焼には寄与しない。   For example, FIG. 5 shows the magnitude of turbulence in a cylinder when a gas flow control valve (for example, a tumble control valve) provided in an intake port is operated and when such a gas flow control valve is not provided. As shown, the turbulence (part A) generated during the intake stroke by operating the gas flow control valve attenuates with the progress of the compression stroke, and is temporarily accompanied by the collapse of the tumble flow in the latter half of the compression stroke. Although the turbulence increases (the portion indicated by reference symbol B), after the compression top dead center, as shown by the reference symbol C, it rapidly attenuates, and combustion improvement (improving flame propagation) using the turbulence cannot be expected so much. The same applies to turbulence caused by fuel spray, and even if turbulence is generated by fuel injection before compression top dead center, it does not contribute to ignition combustion after compression top dead center.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域では点火時期を圧縮上死点前(BTDC点火)としている。   For this reason, ATDC ignition is more advantageous for increasing exhaust temperature and reducing HC, but combustion stability is not established. Therefore, in Patent Document 1, the ignition timing is set to before compression top dead center (BTDC ignition) in the no-load region. Yes.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減などのためのATDC点火での燃焼安定性を改善することを目的としている。   The present invention aims to improve the combustion stability in ATDC ignition for early activation of the catalyst, reduction of HC, and the like based on such a situation.

この発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のとき、例えば触媒コンバータの冷機時のような排気ガス温度の昇温が必要な場合などに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行うことを特徴としている。なお、NOxを吸着するNOxトラップ触媒においては、硫黄成分(SOx)が触媒に付着することによりNOx吸着性能が低下するので、触媒を強制的に高温化してSOxを放出するSOx放出処理(硫黄被毒解除)を行う必要があるが、このSOx放出処理の際の排気ガス温度の昇温を、上記の超リタード燃焼を利用して行うことも可能である。そして、本発明では、特に、この超リタード燃焼における燃圧を、機関回転数が高いほど高燃圧となるように制御する。   The present invention provides a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and includes an ignition plug. When the exhaust gas temperature needs to be raised, such as when the engine is cold, the ignition timing is set after the compression top dead center, and super retard combustion is performed to inject fuel before the ignition timing and after the compression top dead center. It is characterized by that. In the NOx trap catalyst that adsorbs NOx, the sulfur component (SOx) adheres to the catalyst, so that the NOx adsorption performance deteriorates. However, it is also possible to raise the temperature of the exhaust gas during the SOx release process using the above-mentioned super retard combustion. In the present invention, in particular, the fuel pressure in the super retard combustion is controlled such that the higher the engine speed, the higher the fuel pressure.

上記の超リタード燃焼における燃圧は、機関回転数の二乗に比例して高くすることが望ましい。   It is desirable that the fuel pressure in the super retard combustion is increased in proportion to the square of the engine speed.

また上記の点火時期前でかつ圧縮上死点後となる燃料噴射時期が遅角側となるほど上記燃圧を高く補正することが望ましい。   It is desirable that the fuel pressure is corrected to be higher as the fuel injection timing before the ignition timing and after the compression top dead center is retarded.

すなわち、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、圧縮上死点以降の膨張行程中になされる燃料噴射によって、筒内の乱れを生成・強化することができ、ATDC点火での火炎伝播が促進される。従って、点火時期を圧縮上死点後とした超リタード燃焼が安定的に成立する。   In other words, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but the in-cylinder turbulence is generated and strengthened by the fuel injection performed during the expansion stroke after the compression top dead center. Flame propagation with ATDC ignition is facilitated. Therefore, super retard combustion with the ignition timing after the compression top dead center is established stably.

ここで機関回転数が高いほどサイクルに対する実時間が短くなり、安定した燃焼を行うためには、燃焼をより早める必要がある。本発明では、機関回転数が高いほど燃圧が高く与えられ、燃料噴霧により生成される筒内のガス流動が、より強いものとなって、燃焼が活発化し、燃焼速度が向上する。従って、機関高速域においても、安定した燃焼を確保できる。   Here, the higher the engine speed, the shorter the actual time for the cycle. In order to perform stable combustion, it is necessary to accelerate the combustion. In the present invention, the higher the engine speed, the higher the fuel pressure, the stronger the gas flow in the cylinder generated by the fuel spray, the more active the combustion, and the higher the combustion speed. Therefore, stable combustion can be ensured even in the engine high speed region.

燃料噴霧の流速は、燃圧の平方根に比例する。従って、機関回転数の二乗に比例した燃圧とすれば、機関回転数に比例した流動場を燃料噴霧によって生成でき、機関回転数に拘わらず燃焼期間を略同等のものとすることができる。   The fuel spray flow rate is proportional to the square root of the fuel pressure. Therefore, if the fuel pressure is proportional to the square of the engine speed, a flow field proportional to the engine speed can be generated by fuel spray, and the combustion period can be made substantially equal regardless of the engine speed.

さらに、上記の超リタード燃焼においては、点火時期前でかつ圧縮上死点後となる燃料噴射時期を遅らせるほど排気ガス温度が上昇し、かつHCの後燃えによる低減の上で有利となるが、燃料噴射時期を遅らせるほど逆に燃焼が不安定化する傾向となる。これに対し、燃料噴射時期の遅角に応じて燃圧を高く補正すれば、ガス流動が強化され、燃焼速度が速くなるので、燃焼の不安定化を回避できる。   Further, in the above-mentioned super retard combustion, the exhaust gas temperature rises as the fuel injection timing before the ignition timing and after the compression top dead center is delayed, and it is advantageous for reduction by HC afterburning, As the fuel injection timing is delayed, the combustion tends to become unstable. On the other hand, if the fuel pressure is corrected to be higher according to the delay of the fuel injection timing, the gas flow is strengthened and the combustion speed is increased, so that instability of combustion can be avoided.

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性を十分に確保することができ、例えば冷間始動の際に、触媒の早期活性化および後燃えによるHC低減を達成することができる。特に、機関回転数が高くなっても燃圧が高く与えられることで、燃焼の悪化を来すことがない。   According to the present invention, it is possible to sufficiently ensure the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center. For example, at the time of cold start, the catalyst is activated early and the HC due to the afterburning. Reduction can be achieved. In particular, even if the engine speed increases, the fuel pressure is given high, so that the combustion does not deteriorate.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。ここで、上記プレッシャレギュレータ17は、燃圧可変手段として、燃料噴射弁15に供給される燃料の燃圧を、比較的広い範囲で変化させることができる構成となっている。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16. Here, the pressure regulator 17 is configured to change the fuel pressure of the fuel supplied to the fuel injection valve 15 within a relatively wide range as the fuel pressure varying means.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、燃圧、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、プレッシャレギュレータ17の燃圧、点火プラグ14の点火時期、等を制御する。なお、暖機完了後においては、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、空燃比を30〜40程度とした極リーンの成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。この均質燃焼運転としては、運転条件に応じて、空燃比を理論空燃比とした均質ストイキ燃焼と、空燃比を20〜30程度のリーンとした均質リーン燃焼と、がある。   The fuel injection amount, injection timing, fuel pressure, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the fuel pressure of the pressure regulator 17, the ignition timing of the spark plug 14, and the like are controlled. After the warm-up is completed, in a predetermined region on the low-speed and low-load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed before the compression top dead center. Done. The fuel spray is collected in the vicinity of the spark plug 14, thereby achieving extremely lean stratified combustion with an air-fuel ratio of about 30 to 40. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder. As the homogeneous combustion operation, there are homogeneous stoichiometric combustion in which the air-fuel ratio is the stoichiometric air-fuel ratio and homogeneous lean combustion in which the air-fuel ratio is lean about 20 to 30 depending on the operating conditions.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の3つの実施例を示しており、実施例1では、点火時期を15°〜30°ATDC(例えば20°ATDC)とし、燃料噴射時期(詳しくは燃料噴射開始時期)を、圧縮上死点以降でかつ点火時期前に設定する。なお、このとき、空燃比は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。   FIG. 2 shows three examples of super retard combustion. In Example 1, the ignition timing is set to 15 ° to 30 ° ATDC (for example, 20 ° ATDC), and the fuel injection timing (specifically, the fuel injection start timing) is shown. Is set after the compression top dead center and before the ignition timing. At this time, the air-fuel ratio is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17).

すなわち、触媒暖機促進ならびにHC低減のためには、点火時期遅角が有効であり、上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。前述したように、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、本発明では、圧縮上死点以降の膨張行程中になされる高圧の燃料噴射によって、ガス流動が生じ、これにより筒内の乱れを生成・強化することができる。従って、ATDC点火での火炎伝播が促進され、安定した燃焼が可能となる。   That is, in order to promote catalyst warm-up and reduce HC, ignition timing retardation is effective, and ignition after top dead center (ATDC ignition) is desirable, but in order to perform stable combustion with ATDC ignition, It is necessary to shorten the combustion period, and for this purpose, flame propagation due to turbulence must be promoted. As described above, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but in the present invention, by the high pressure fuel injection performed during the expansion stroke after the compression top dead center. The gas flow is generated, and thereby the turbulence in the cylinder can be generated and strengthened. Therefore, flame propagation by ATDC ignition is promoted and stable combustion is possible.

図2の実施例2は、燃料噴射を2回に分割した例であり、1回目の燃料噴射を吸気行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う。なお、点火時期および空燃比(2回の噴射を合わせた空燃比)は実施例1と同様である。   The second embodiment in FIG. 2 is an example in which the fuel injection is divided into two, and the first fuel injection is performed during the intake stroke, and the second fuel injection is performed after the compression top dead center. The ignition timing and the air-fuel ratio (the air-fuel ratio obtained by combining the two injections) are the same as those in the first embodiment.

このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、吸気行程中に燃料噴射(吸気行程噴射)を行うと、吸気行程噴射の燃料噴霧による乱れは圧縮行程後半で減衰してしまい、圧縮上死点後におけるガス流動強化には殆ど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇には有効である。   As described above, when fuel injection (intake stroke injection) is performed during the intake stroke prior to fuel injection after the compression top dead center (expansion stroke injection), disturbance due to fuel spray in the intake stroke injection is attenuated in the latter half of the compression stroke. However, since the injected fuel is diffused throughout the combustion chamber and contributes to the promotion of HC afterburning by ATDC ignition, the HC reduction and It is effective for raising the exhaust temperature.

また、図2の実施例3は、燃料噴射を2回に分割し、1回目の燃料噴射を圧縮行程にて行い、2回目の燃料噴射を圧縮上死点以降に行う。このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、圧縮行程中に燃料噴射(圧縮行程噴射)を行うと、実施例2の吸気行程噴射に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなるため、この1回目の燃料噴射による乱れが残り、圧縮上死点以降に2回目の燃料噴射を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、圧縮上死点付近における更なるガス流動強化が図れる。   In the third embodiment of FIG. 2, the fuel injection is divided into two, the first fuel injection is performed in the compression stroke, and the second fuel injection is performed after the compression top dead center. As described above, when the fuel injection (compression stroke injection) is performed during the compression stroke prior to the fuel injection after the compression top dead center (expansion stroke injection), the compression stroke injection is compared with the intake stroke injection of the second embodiment. However, since the disturbance of the turbulence due to the fuel spray is delayed, the turbulence due to the first fuel injection remains, and the second fuel injection is performed after the compression top dead center, which is generated by the first fuel injection. The turbulence can be strengthened to promote the turbulence, and the gas flow can be further strengthened near the compression top dead center.

この実施例3の場合に、1回目の圧縮行程噴射は、圧縮行程前半でもよいが、圧縮行程後半(90°BTDC以降)に設定すると、上死点付近での乱れをより高めることができる。特に、この1回目の圧縮行程噴射を、45°BTDC以降、より望ましくは20°BTDC以降とすると、圧縮上死点以降のガス流動をより強化することができる。   In the case of Example 3, the first compression stroke injection may be in the first half of the compression stroke, but if it is set in the second half of the compression stroke (after 90 ° BTDC), the disturbance near the top dead center can be further increased. In particular, if the first compression stroke injection is 45 ° BTDC or later, more desirably 20 ° BTDC or later, the gas flow after compression top dead center can be further enhanced.

このように、実施例1〜3の超リタード燃焼によれば、点火の直前に燃料噴霧により筒内の乱れを生成・強化することができ、火炎伝播を促進して、安定した燃焼を行わせることができる。特に、点火時期を15°〜30°ATDCまで遅角させることにより、触媒の早期活性化およびHC低減のための十分な後燃え効果を得ることができる。換言すれば、このように点火時期を大きく遅らせても、その直前まで燃料噴射を遅らせて、乱れの生成時期も遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。   As described above, according to the super retarded combustion of the first to third embodiments, the turbulence in the cylinder can be generated and strengthened by the fuel spray immediately before the ignition, and the flame propagation is promoted to perform stable combustion. be able to. In particular, by retarding the ignition timing from 15 ° to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is greatly delayed in this way, the fuel injection is delayed until just before that, and the generation time of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.

一方、上記の超リタード燃焼の際の燃圧は、機関回転数の変化に対し、高速側ほど高燃圧となるように制御される。より具体的には、機関回転数の二乗に比例して燃圧が高くなる。前述したように、高速域において安定した燃焼を行うためには、低速域よりも燃焼を早める必要があるが、燃圧を低速域よりも高めることで、燃料噴霧のエネルギにより生成される筒内の微小な乱れつまり微小なガス流動がより活発化し、燃焼速度が高くなる。従って、機関回転数による影響が相殺され、高速域においても安定した燃焼を確保できる。   On the other hand, the fuel pressure at the time of the above-mentioned super retard combustion is controlled so that the higher the high speed side, the higher the fuel pressure with respect to the change in engine speed. More specifically, the fuel pressure increases in proportion to the square of the engine speed. As described above, in order to perform stable combustion in the high speed region, it is necessary to accelerate the combustion faster than the low speed region, but by increasing the fuel pressure from the low speed region, the in-cylinder generated by the energy of the fuel spray Minute turbulence, that is, minute gas flow becomes more active, and the combustion speed increases. Therefore, the influence of the engine speed is offset and stable combustion can be ensured even in the high speed range.

図3は、燃圧が低い場合(破線)と燃圧が高い場合(実線)との機関回転数変化に対する燃焼安定度の変化の一例を示しており、図示するように、高速側では高燃圧の方が燃焼安定度が良好となり、低速側では逆に低燃圧の方が燃焼安定度が良好となる。従って、図中に矢印で示すように機関回転数の上昇に伴って燃圧を高くすることで、高速域での燃焼の不安定化を回避できる。   FIG. 3 shows an example of a change in combustion stability with respect to a change in engine speed when the fuel pressure is low (dashed line) and when the fuel pressure is high (solid line). As shown in FIG. However, the combustion stability is good, and on the low speed side, the combustion stability is better at low fuel pressure. Therefore, the instability of combustion in the high speed region can be avoided by increasing the fuel pressure as the engine speed increases as indicated by the arrows in the figure.

また、前述したように、超リタード燃焼における圧縮上死点後の燃料噴射(膨張行程噴射)の噴射時期を遅らせるほど排気ガス温度が上昇し、かつHCの後燃えによる低減が図れるが、図4に示すように、膨張行程噴射の噴射時期を遅らせるほど燃焼が不安定化する傾向となる。但し、燃圧が低い場合(破線)と燃圧が高い場合(実線)とを比較すると、高燃圧の方がガス流動が強化されるため、噴射時期の遅角に伴う燃焼の不安定化が小さい。従って、図中に矢印で示すように、燃料噴射時期の遅角に伴って燃圧を高く補正すれば、噴射時期をより遅角側としても、燃焼の不安定化を回避できる。   Further, as described above, the exhaust gas temperature rises as the injection timing of the fuel injection (expansion stroke injection) after the compression top dead center in the super retard combustion is delayed, and can be reduced by HC afterburning. As shown in FIG. 2, the combustion tends to become unstable as the injection timing of the expansion stroke injection is delayed. However, when comparing the case where the fuel pressure is low (broken line) and the case where the fuel pressure is high (solid line), the gas flow is strengthened at the high fuel pressure, so that the instability of combustion due to the retard of the injection timing is small. Therefore, as indicated by an arrow in the figure, if the fuel pressure is corrected to be higher with the delay of the fuel injection timing, instability of combustion can be avoided even when the injection timing is set to the more retarded side.

なお、本発明の超リタード燃焼は、排気系の触媒コンバータ10としてNOxトラップ触媒を用いた場合の硫黄被毒解除のためにも利用することができる。NOxトラップ触媒は、流入する排気の排気空燃比がリーンであるときにNOxを吸着し、流入する排気の排気空燃比がリッチであると、吸着していたNOxを放出して触媒作用により浄化処理するものであるが、燃料中の硫黄成分(SOx)が触媒に結合するとNOx吸着性能が低下する。そのため、適当な時期に、触媒を強制的に高温化してSOxを放出除去する処理(いわゆる硫黄被毒解除)が必要である。本発明の超リタード燃焼は、非常に高い排気温度を得られるので、このNOxトラップ触媒の硫黄被毒解除処理に適したものとなる。   The super retarded combustion of the present invention can also be used for releasing sulfur poisoning when a NOx trap catalyst is used as the exhaust system catalytic converter 10. The NOx trap catalyst adsorbs NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is lean, and releases the adsorbed NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is rich, and purifies by catalytic action. However, when the sulfur component (SOx) in the fuel is bound to the catalyst, the NOx adsorption performance is lowered. For this reason, it is necessary to perform a process (so-called sulfur poisoning release) for forcibly raising the temperature of the catalyst and releasing SOx at an appropriate time. The super retarded combustion according to the present invention can obtain a very high exhaust temperature, and therefore is suitable for the sulfur poisoning release processing of this NOx trap catalyst.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on this invention. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 機関回転数と燃焼安定度との関係を示す特性図。The characteristic view which shows the relationship between an engine speed and combustion stability. 燃料噴射時期と燃焼安定度との関係を示す特性図。The characteristic view which shows the relationship between fuel-injection time and combustion stability. 従来技術における筒内の乱れの変化を示す説明図。Explanatory drawing which shows the change of the disturbance in a cylinder in a prior art.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
14…点火プラグ
15…燃料噴射弁
17…プレッシャレギュレータ
25…コントロールユニット
3 ... Combustion chamber 10 ... Catalytic converter 14 ... Spark plug 15 ... Fuel injection valve 17 ... Pressure regulator 25 ... Control unit

Claims (7)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のときに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行う一方、この超リタード燃焼における燃圧を、機関回転数が高いほど高燃圧となるように制御することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。   In a direct injection type spark ignition internal combustion engine control device having a fuel injection valve for directly injecting fuel into a cylinder and having an ignition plug, the ignition timing is compression top dead center in a predetermined operating state. Set later, and perform super retard combustion that injects fuel before this ignition timing and after compression top dead center, while controlling the fuel pressure in this super retard combustion so that the higher the engine speed, the higher the fuel pressure An in-cylinder direct injection spark ignition internal combustion engine control device. 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記超リタード燃焼を実行することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   The control apparatus for an in-cylinder direct injection spark-ignition internal combustion engine according to claim 1, wherein the super retard combustion is executed when a temperature increase of the exhaust gas is required as a predetermined operation state. 排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、上記の排気ガス温度の昇温が要求されることを特徴とする請求項2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark according to claim 2, wherein the temperature of the exhaust gas is required to be raised during a cold start of the internal combustion engine that requires an early temperature increase of the exhaust system catalytic converter. Control device for an ignition internal combustion engine. 排気系の触媒コンバータのSOx放出処理を行うときに、上記の排気ガス温度の昇温が要求されることを特徴とする請求項2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   3. The control device for a direct injection type spark ignition internal combustion engine according to claim 2, wherein the exhaust gas temperature is required to be raised when performing SOx release processing of the exhaust system catalytic converter. 超リタード燃焼における点火時期は、圧縮上死点後15°〜30°CAであることを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   5. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 15 ° to 30 ° CA after compression top dead center. 上記燃圧は、機関回転数の二乗に比例して高くなることを特徴とする請求項1〜5のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   6. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the fuel pressure increases in proportion to the square of the engine speed. 上記の点火時期前でかつ圧縮上死点後となる燃料噴射時期が遅角側となるほど上記燃圧が高く補正されることを特徴とする請求項1〜6のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。
The in-cylinder direct injection according to any one of claims 1 to 6, wherein the fuel pressure is corrected to be higher as the fuel injection timing before the ignition timing and after the compression top dead center is retarded. Type spark ignition internal combustion engine control device.
JP2005175841A 2005-05-31 2005-06-16 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4525479B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005175841A JP4525479B2 (en) 2005-06-16 2005-06-16 In-cylinder direct injection spark ignition internal combustion engine controller
EP06011017A EP1728995A3 (en) 2005-05-31 2006-05-29 Combustion control method and apparatus for a direct injection spark ignition internal combustion engine
US11/443,178 US7350504B2 (en) 2005-05-31 2006-05-31 Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine
CN 200610087674 CN1880745B (en) 2005-05-31 2006-05-31 Control apparatus and method for inner cylinder direct injection spark ignited internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175841A JP4525479B2 (en) 2005-06-16 2005-06-16 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2006348843A true JP2006348843A (en) 2006-12-28
JP4525479B2 JP4525479B2 (en) 2010-08-18

Family

ID=37644949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175841A Expired - Fee Related JP4525479B2 (en) 2005-05-31 2005-06-16 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4525479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215267A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp Control device for cylinder injection type spark ignition internal combustion engine
JP2010209728A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Control device for cylinder direct injection type engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486351A (en) * 1990-07-26 1992-03-18 Nippon Carbureter Co Ltd Fuel injection method of engine
JPH07174038A (en) * 1991-08-14 1995-07-11 Honda Motor Co Ltd Fuel injection controller of internal combustion engine
JPH1150897A (en) * 1997-07-31 1999-02-23 Toyota Motor Corp Fuel injection device
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2004225629A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486351A (en) * 1990-07-26 1992-03-18 Nippon Carbureter Co Ltd Fuel injection method of engine
JPH07174038A (en) * 1991-08-14 1995-07-11 Honda Motor Co Ltd Fuel injection controller of internal combustion engine
JPH1150897A (en) * 1997-07-31 1999-02-23 Toyota Motor Corp Fuel injection device
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2004225629A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215267A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp Control device for cylinder injection type spark ignition internal combustion engine
JP2010209728A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Control device for cylinder direct injection type engine

Also Published As

Publication number Publication date
JP4525479B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
US7938098B2 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP4650126B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007002795A (en) Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006336473A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006144609A (en) Control device for cylinder direct injection spark ignition engine
JP2005214039A (en) Control device for direct spark ignition type internal combustion engine
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525468B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees