JP4539439B2 - In-cylinder direct injection spark ignition internal combustion engine controller - Google Patents

In-cylinder direct injection spark ignition internal combustion engine controller Download PDF

Info

Publication number
JP4539439B2
JP4539439B2 JP2005158512A JP2005158512A JP4539439B2 JP 4539439 B2 JP4539439 B2 JP 4539439B2 JP 2005158512 A JP2005158512 A JP 2005158512A JP 2005158512 A JP2005158512 A JP 2005158512A JP 4539439 B2 JP4539439 B2 JP 4539439B2
Authority
JP
Japan
Prior art keywords
injection
during
internal combustion
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005158512A
Other languages
Japanese (ja)
Other versions
JP2006336478A (en
Inventor
泰三 堀込
真 安永
彰 中島
智之 武田
克昭 内山
仁 石井
匡聡 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005158512A priority Critical patent/JP4539439B2/en
Publication of JP2006336478A publication Critical patent/JP2006336478A/en
Application granted granted Critical
Publication of JP4539439B2 publication Critical patent/JP4539439B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時などにおける噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection type spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to control of injection timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。
特許第3325230号公報
In Patent Document 1, as a catalyst warm-up method for a direct injection spark ignition internal combustion engine, a period from an intake stroke to an ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than an activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed after the middle of the compression stroke, for example, at 120 ° BTDC to 45 ° BTDC.
Japanese Patent No. 3325230

内燃機関の冷機時における触媒の早期活性化および後燃えによるHC低減のためには、点火時期の遅角が有効であり、より大きな効果を得るためには、圧縮上死点以降の点火(ATDC点火)が望ましい。ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。   For early activation of the catalyst when the internal combustion engine is cold and HC reduction due to afterburning, retarding the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC) Ignition) is desirable. In order to perform stable combustion by ATDC ignition, it is necessary to shorten the combustion period. For this reason, it is necessary to increase the combustion speed (flame propagation speed) by strengthening the turbulence in the cylinder.

このような乱れの強化のために、筒内に高圧で噴射される燃料噴霧のエネルギにより筒内に乱れを生成することが考えられる。   In order to strengthen such disturbance, it is conceivable that the disturbance is generated in the cylinder by the energy of the fuel spray injected at a high pressure in the cylinder.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っている。このように最後の燃料噴射が圧縮上死点よりも前では、その噴霧により筒内に乱れを生成しても、圧縮上死点以降はその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Yes. As described above, before the last fuel injection is before the compression top dead center, even if the spray generates turbulence in the cylinder, the turbulence is attenuated after the compression top dead center, and the flame propagation in ATDC ignition Does not contribute to speed increase.

例えば、図8は、吸気ポート内に設けたガス流動制御弁(例えばタンブル制御弁)を作動させた場合とこのようなガス流動制御弁を具備しない場合とについて、筒内の乱れの大きさを示したものであるが、ガス流動制御弁を作動させることで吸気行程中に生成した乱れ(符号Aの部分)は、圧縮行程の進行とともに減衰し、圧縮行程後期のタンブル流の崩壊に伴い一時的に乱れが大きくなる(符号Bの部分)ものの、圧縮上死点以降は符号Cで示すように急速に減衰してしまい、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。燃料噴霧による乱れについても同様であり、圧縮上死点より前の燃料噴射により乱れが生成されたとしても、圧縮上死点以降の点火燃焼には寄与しない。   For example, FIG. 8 shows the magnitude of turbulence in a cylinder when a gas flow control valve (for example, a tumble control valve) provided in an intake port is operated and when such a gas flow control valve is not provided. As shown, the turbulence (part A) generated during the intake stroke by operating the gas flow control valve is attenuated as the compression stroke progresses, and is temporarily accompanied by the collapse of the tumble flow in the latter half of the compression stroke. Although the turbulence increases (the portion indicated by reference symbol B), after the compression top dead center, as shown by the reference symbol C, it rapidly attenuates, and combustion improvement (improving flame propagation) using the turbulence cannot be expected so much. The same applies to turbulence caused by fuel spray, and even if turbulence is generated by fuel injection before compression top dead center, it does not contribute to ignition combustion after compression top dead center.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域では点火時期を圧縮上死点前(BTDC点火)としている。   Therefore, ATDC ignition is more advantageous for exhaust temperature rise and HC reduction, but combustion stability is not established. Therefore, in Patent Document 1, the ignition timing is set to before compression top dead center (BTDC ignition) in the no-load region. Yes.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減などのためのATDC点火での燃焼安定性を改善することを目的としている。   The present invention aims to improve the combustion stability in ATDC ignition for early activation of the catalyst, reduction of HC, and the like based on such a situation.

本発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のとき、例えば触媒コンバータの冷機時のような排気ガス温度の昇温が必要な場合などに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行うことを特徴としている。なお、NOxを吸着するNOxトラップ触媒においては、硫黄成分(SOx)が触媒に付着することによりNOx吸着性能が低下するので、触媒を強制的に高温化してSOxを放出するSOx放出処理(硫黄被毒解除)を行う必要があるが、このSOx放出処理の際の排気ガス温度の昇温を、上記の超リタード燃焼を利用して行うことも可能である。そして、本発明では、特に、この超リタード燃焼での運転中に負荷が所定の変化速度以上の速度で増加する過渡時に、一部の燃料を吸気行程中もしくは圧縮行程前半に噴射するようにしている。   The present invention provides a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and that includes an ignition plug. When the exhaust gas temperature needs to be raised, such as when the engine is cold, the ignition timing is set after the compression top dead center, and super retard combustion is performed to inject fuel before the ignition timing and after the compression top dead center. It is characterized by that. Note that in a NOx trap catalyst that adsorbs NOx, the sulfur component (SOx) adheres to the catalyst, so that the NOx adsorption performance deteriorates. Therefore, the SOx release treatment (sulfur coating) that forcibly raises the temperature of the catalyst and releases SOx. However, it is also possible to raise the temperature of the exhaust gas during the SOx release process using the above-mentioned super retard combustion. In the present invention, in particular, a part of fuel is injected during the intake stroke or the first half of the compression stroke at the time of a transient in which the load increases at a speed higher than a predetermined change speed during the operation in the super retard combustion. Yes.

すなわち、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、圧縮上死点以降の膨張行程中になされる燃料噴射によって、筒内の乱れを生成・強化することができ、ATDC点火での火炎伝播が促進される。従って、点火時期を圧縮上死点後とした超リタード燃焼が安定的に成立する。   In other words, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but the in-cylinder turbulence is generated and strengthened by the fuel injection performed during the expansion stroke after the compression top dead center. Flame propagation with ATDC ignition is facilitated. Therefore, super retard combustion with the ignition timing after the compression top dead center is established stably.

ここで、上記のような超リタード燃焼においては、アクセル開度の急増や補機負荷の入力等により負荷が急激に増加したときに、上記のような膨張行程中の燃料噴射の噴射量を増加しても、トルクの立ち上がりは比較的遅く、トルク応答性の点では好ましくない。また、膨張行程噴射の燃料噴射量があるレベル以上になると、過濃な混合気の塊が生じ、スモークの悪化の要因となる。   Here, in the super retard combustion as described above, the fuel injection amount during the expansion stroke as described above is increased when the load suddenly increases due to a sudden increase in the accelerator opening or the input of the auxiliary load. Even so, the rise of torque is relatively slow, which is not preferable in terms of torque response. Further, when the fuel injection amount of the expansion stroke injection exceeds a certain level, an excessively rich air-fuel mixture lump is generated, which causes a deterioration of smoke.

そこで、本発明では、超リタード燃焼での運転中に負荷が所定の変化速度以上の速度で増加する過渡時に、一部の燃料を吸気行程中もしくは圧縮行程前半に噴射する。   Therefore, in the present invention, during a transient operation in which the load increases at a speed equal to or higher than a predetermined change speed during operation in super retard combustion, a part of the fuel is injected during the intake stroke or the first half of the compression stroke.

例えば、上記超リタード燃焼が膨張行程中の1回の燃料噴射のみによって実現される場合には、上記の過渡時に、吸気行程中もしくは圧縮行程前半の燃料噴射を追加する。   For example, when the super retard combustion is realized by only one fuel injection during the expansion stroke, the fuel injection during the intake stroke or the first half of the compression stroke is added during the transition.

このように吸気行程中もしくは圧縮行程前半に噴射された燃料のエネルギは、膨張行程中の燃料噴射に比較してより高い効率でトルクに変換される。従って、過渡時のトルク応答性が向上する。そして、吸気行程中もしくは圧縮行程前半に噴射された燃料は、膨張行程噴射の噴射時期前に筒内に拡散し、ここに膨張行程噴射による燃料が噴射されるので、過濃な混合気の塊ひいてはスモークの発生が抑制される。   Thus, the energy of the fuel injected during the intake stroke or the first half of the compression stroke is converted into torque with higher efficiency than the fuel injection during the expansion stroke. Accordingly, the torque response during the transition is improved. The fuel injected during the intake stroke or the first half of the compression stroke is diffused into the cylinder before the injection timing of the expansion stroke injection, and the fuel from the expansion stroke injection is injected into the cylinder. As a result, the generation of smoke is suppressed.

本発明の一つの態様では、上記超リタード燃焼が、膨張行程中の主噴射に先だって吸気行程中もしくは圧縮行程前半に行われる早期噴射を含む場合があり、この場合には、上記の過渡時に、この早期噴射の噴射量を増加する。   In one aspect of the present invention, the super retard combustion may include an early injection that is performed during the intake stroke or the first half of the compression stroke prior to the main injection during the expansion stroke, and in this case, The injection amount of this early injection is increased.

また本発明の一つの態様では、上記超リタード燃焼が、膨張行程中の主噴射に先だって圧縮行程後半に行われる早期噴射を含む場合があり、この場合には、上記の過渡時に、この早期噴射を圧縮行程前半に行うとともに、その噴射量を増加する。   Further, in one aspect of the present invention, the super retard combustion may include an early injection performed in the latter half of the compression stroke prior to the main injection during the expansion stroke. In this case, the early injection is performed during the transient. Is performed in the first half of the compression stroke and the injection amount is increased.

望ましくは、上記の過渡時に、同時に点火時期を進角補正する。これにより、負荷上昇に伴う燃焼悪化を回避するとともに、トルク応答性がより向上する。   Desirably, the ignition timing is advanced at the same time during the transition. Thereby, while avoiding the deterioration of combustion accompanying a load increase, torque response is further improved.

また望ましくは、負荷の増加速度が大きいほど吸気行程中もしくは圧縮行程前半の燃料噴射の噴射量を大とする。   Desirably, the amount of fuel injection during the intake stroke or the first half of the compression stroke is increased as the increase rate of the load increases.

なお、負荷の増加に伴い、負荷に見合う総燃料噴射量自体が増加することになるが、膨張行程噴射の噴射量は、吸気行程中もしくは圧縮行程中の噴射量の増加あるいは噴射の追加を行う間、総燃料噴射量の増加に伴って増加させてもよく、あるいは変化させずに一定に維持するようにしてもよく、あるいは吸気行程噴射もしくは圧縮行程噴射の噴射量を考慮して逆に減少させるようにしてもよい。   As the load increases, the total fuel injection amount corresponding to the load itself increases, but the injection amount of the expansion stroke injection increases the injection amount during the intake stroke or the compression stroke or adds the injection. In the meantime, it may be increased as the total fuel injection amount increases, or may be kept constant without changing, or conversely decreased in consideration of the injection amount of the intake stroke injection or the compression stroke injection. You may make it make it.

また、吸気行程噴射もしくは圧縮行程噴射の追加や噴射量の増加は、過渡の初期に行えばよく、過渡変化後、時間経過に伴って吸気行程中もしくは圧縮行程前半の燃料噴射の噴射量を徐々に減少させるようにしてもよい。なお、この減少に伴って、膨張行程噴射の噴射量は徐々に増加させることになる。   Further, the addition of the intake stroke injection or the compression stroke injection or the increase of the injection amount may be performed at the early stage of the transient, and after the transient change, the injection amount of the fuel injection during the intake stroke or the first half of the compression stroke is gradually increased with time. You may make it reduce to. With this decrease, the amount of expansion stroke injection is gradually increased.

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性を十分に確保することができ、例えば冷間始動の際に、触媒の早期活性化および後燃えによるHC低減を達成することができる。そして、負荷が急激に増加したときに、燃料の一部を吸気行程中もしくは圧縮行程前半に噴射することにより、トルク応答性を高めることができ、かつスモークの悪化を回避できる。   According to the present invention, it is possible to sufficiently ensure the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center. For example, at the time of cold start, the catalyst is activated early and the HC due to the afterburning. Reduction can be achieved. When the load increases rapidly, a part of the fuel is injected during the intake stroke or the first half of the compression stroke, whereby the torque response can be improved and the deterioration of smoke can be avoided.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。なお、暖機完了後においては、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、空燃比を30〜40程度とした極リーンの成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。この均質燃焼運転としては、運転条件に応じて、空燃比を理論空燃比とした均質ストイキ燃焼と、空燃比を20〜30程度のリーンとした均質リーン燃焼と、がある。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled. After the warm-up is completed, in a predetermined region on the low-speed and low-load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed before the compression top dead center. Done. The fuel spray is collected in the vicinity of the spark plug 14, thereby achieving extremely lean stratified combustion with an air-fuel ratio of about 30 to 40. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder. As the homogeneous combustion operation, there are homogeneous stoichiometric combustion in which the air-fuel ratio is the stoichiometric air-fuel ratio and homogeneous lean combustion in which the air-fuel ratio is lean about 20 to 30 depending on the operating conditions.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の第1実施例を示しており、この実施例では、同図の(a)に示すように、点火時期を15°〜30°ATDC(例えば20°ATDC)とし、燃料噴射時期(詳しくは燃料噴射開始時期)を、圧縮上死点以降でかつ点火時期前に設定する。なお、このとき、空燃比は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。   FIG. 2 shows a first embodiment of super retard combustion. In this embodiment, as shown in FIG. 2A, the ignition timing is 15 ° to 30 ° ATDC (for example, 20 ° ATDC), The fuel injection timing (specifically, the fuel injection start timing) is set after the compression top dead center and before the ignition timing. At this time, the air-fuel ratio is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17).

すなわち、触媒暖機促進ならびにHC低減のためには、点火時期遅角が有効であり、上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。前述したように、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、本発明では、圧縮上死点以降の膨張行程中になされる高圧の燃料噴射によって、ガス流動が生じ、これにより筒内の乱れを生成・強化することができる。従って、ATDC点火での火炎伝播が促進され、安定した燃焼が可能となる。   That is, in order to promote catalyst warm-up and reduce HC, ignition timing retardation is effective, and ignition after top dead center (ATDC ignition) is desirable, but in order to perform stable combustion with ATDC ignition, It is necessary to shorten the combustion period, and for this purpose, flame propagation due to turbulence must be promoted. As described above, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but in the present invention, by the high pressure fuel injection performed during the expansion stroke after the compression top dead center. The gas flow is generated, and thereby the turbulence in the cylinder can be generated and strengthened. Therefore, flame propagation by ATDC ignition is promoted and stable combustion is possible.

特に、点火時期を15°〜30°ATDCまで遅角させることにより、触媒の早期活性化およびHC低減のための十分な後燃え効果を得ることができる。換言すれば、このように点火時期を大きく遅らせても、その直前まで燃料噴射を遅らせて、乱れの生成時期も遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。   In particular, by retarding the ignition timing from 15 ° to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is greatly delayed in this way, the fuel injection is delayed until just before that, and the generation time of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.

ここで、負荷が急激に増加した場合、詳しくは負荷が所定の変化速度以上の速度で増加する過渡時には、図2の(b)に示すように、膨張行程中の主噴射I1に先だって、吸気行程中に、燃料の一部が早期噴射I2として噴射される。この早期噴射I2の噴射量は、負荷の増加速度によって変化し、図5に示すように、負荷増加速度、例えばスロットル弁開度TVOの変化速度ΔTVOが大きいほど早期噴射I2の噴射量が大きく与えられる。なお、変化速度ΔTVOが小さい領域では、燃料噴射弁15の応答性や制御精度等の点で定まる所定の最小噴射時間に制限され、それ以上、早期噴射I2の噴射量が少なくなることはない。   Here, when the load suddenly increases, specifically, during a transient in which the load increases at a speed equal to or higher than a predetermined change speed, as shown in FIG. 2 (b), the intake air precedes the main injection I1 during the expansion stroke. During the stroke, part of the fuel is injected as early injection I2. The injection amount of the early injection I2 varies depending on the load increasing speed. As shown in FIG. 5, the larger the load increasing speed, for example, the change rate ΔTVO of the throttle valve opening TVO, the greater the injection amount of the early injection I2. It is done. In the region where the change rate ΔTVO is small, the fuel injection valve 15 is limited to a predetermined minimum injection time determined in terms of responsiveness, control accuracy, and the like, and the injection amount of the early injection I2 does not decrease any further.

また、この早期噴射I2を行っているときの主噴射I1の噴射量は、必要なトルクに見合った総燃料噴射量から早期噴射I2の噴射量を差し引いたものとなる。   Further, the injection amount of the main injection I1 when performing the early injection I2 is obtained by subtracting the injection amount of the early injection I2 from the total fuel injection amount commensurate with the required torque.

負荷の急増の一つとして、オン・オフ的に加わる補機負荷に対処する場合には、早期噴射I2の噴射量を、補機毎に定めた一定値として与えるようにしてもよい。つまり、ある補機がオンとなったときに、その切換直後の僅かな間、所定量の早期噴射I2が行われる。   As one of the sudden increases in load, when dealing with an auxiliary load applied on and off, the injection amount of the early injection I2 may be given as a constant value determined for each auxiliary device. That is, when a certain auxiliary machine is turned on, a predetermined amount of early injection I2 is performed for a short time immediately after the switching.

また、点火時期は、燃焼悪化を回避するために、負荷上昇に伴って進角補正される。最終的な内燃機関のトルクは、点火時期の補正によって応答性よく微調整することが可能である。   In addition, the ignition timing is advanced with a load increase in order to avoid deterioration of combustion. The final torque of the internal combustion engine can be finely adjusted with good responsiveness by correcting the ignition timing.

このように、負荷が急激に増加したときに、点火時期を進角補正するとともに、吸気行程中に早期噴射I2を追加的に行うことで、過渡時のトルク応答性が向上する。そして、早期噴射I2による燃料は、膨張行程中の主噴射I1の噴射時期前に筒内に拡散し、ここに主噴射I1による燃料が噴射されるので、過濃な混合気の塊ひいてはスモークの発生が抑制される。   As described above, when the load increases rapidly, the ignition timing is corrected to advance, and the early injection I2 is additionally performed during the intake stroke, so that the torque responsiveness at the time of transition is improved. Then, the fuel from the early injection I2 diffuses into the cylinder before the injection timing of the main injection I1 during the expansion stroke, and the fuel from the main injection I1 is injected here, so that the rich air-fuel mixture lump and the smoke Occurrence is suppressed.

なお、図6は冷機時の運転モードを示しているが、この図6に示すように、冷機時であっても、高負荷域および高速域においては、超リタード燃焼は解除され、通常の成層燃焼運転ないしは均質燃焼運転が行われる。   FIG. 6 shows the operation mode during cold operation. As shown in FIG. 6, even during cold operation, the super retard combustion is canceled in the high load region and the high speed region, and normal stratification is performed. A combustion operation or a homogeneous combustion operation is performed.

図7は、この実施例の制御の概略を示すフローチャートであって、まずステップ1で、超リタード燃焼の禁止条件が成立しているか否かの判定を行う。例えば、冷却水温が80℃を越えている場合や、図7に示す高負荷域あるいは高速域では、超リタード燃焼が禁止されるので、ステップ2へ進み、通常モードとして通常の成層燃焼運転ないしは均質燃焼運転を行う。超リタード燃焼が禁止されていない場合は、ステップ3へ進み、負荷の急増後、所定期間内であるか否か判定する。ここでNOであれば、ステップ4へ進み、超リタード燃焼、特に膨張行程中の主噴射I1のみによる運転を行う。   FIG. 7 is a flowchart showing an outline of the control of this embodiment. First, in step 1, it is determined whether or not a prohibition condition for super retard combustion is satisfied. For example, when the cooling water temperature exceeds 80 ° C., or in the high load region or high speed region shown in FIG. 7, super retard combustion is prohibited, so the process proceeds to step 2 and the normal stratified combustion operation or homogeneous is performed as the normal mode. Perform combustion operation. If the super retard combustion is not prohibited, the process proceeds to step 3 to determine whether or not it is within a predetermined period after the load increases rapidly. If “NO” here, the process proceeds to a step 4 to perform the operation only by the super retard combustion, particularly the main injection I1 during the expansion stroke.

一方、ステップ3でYESであれば、ステップ5へ進み、早期噴射I2と主噴射I1とによる運転を行う。具体的には、初回は、スロットル弁開度TVOの変化速度ΔTVO等に基づいて、早期噴射I2の噴射量を決定し、この早期噴射I2の噴射量を考慮して、主噴射I1の噴射量を決定する。そして、吸気行程中に早期噴射I2を行い、圧縮上死点後の膨張行程中に主噴射I1を行う。2回目以降は、早期噴射I2の噴射量を初期値から徐々に減少させ、これに対応して主噴射I1の噴射量を徐々に増加させ、同様に、所定の時期にそれぞれの噴射を行う。   On the other hand, if “YES” in the step 3, the process proceeds to a step 5, and the operation by the early injection I2 and the main injection I1 is performed. Specifically, at the first time, the injection amount of the early injection I2 is determined on the basis of the change rate ΔTVO of the throttle valve opening TVO, and the injection amount of the main injection I1 is considered in consideration of the injection amount of the early injection I2. To decide. Then, early injection I2 is performed during the intake stroke, and main injection I1 is performed during the expansion stroke after compression top dead center. From the second time onward, the injection amount of the early injection I2 is gradually decreased from the initial value, and the injection amount of the main injection I1 is gradually increased correspondingly, and each injection is similarly performed at a predetermined timing.

次に、図3は、超リタード燃焼の第2実施例を示している。これは、同図(a)に示すように、定常時の超リタード燃焼における燃料噴射を2回に分割した例であり、1回目の燃料噴射を吸気行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う。なお、点火時期および空燃比(2回の噴射を合わせた空燃比)は第1実施例と同様である。   Next, FIG. 3 shows a second embodiment of super retard combustion. This is an example in which the fuel injection in the super retard combustion at normal time is divided into two as shown in FIG. 5A, and the first fuel injection is performed during the intake stroke, and the second fuel injection is performed. Perform after compression top dead center. The ignition timing and the air-fuel ratio (the air-fuel ratio obtained by combining two injections) are the same as those in the first embodiment.

このように、圧縮上死点後の膨張行程中の燃料噴射(主噴射I1)に先立ち、吸気行程中に燃料噴射(早期噴射I2)を行うと、早期噴射I2の燃料噴霧による乱れは圧縮行程後半で減衰してしまい、圧縮上死点後におけるガス流動強化には殆ど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇には有効である。   Thus, if fuel injection (early injection I2) is performed during the intake stroke prior to fuel injection (main injection I1) during the expansion stroke after compression top dead center, the disturbance due to fuel spray in the early injection I2 is compressed. It attenuates in the second half and has little effect on gas flow enhancement after compression top dead center, but the injected fuel diffuses throughout the combustion chamber and contributes to the promotion of HC afterburning by ATDC ignition. It is effective for reducing HC and raising exhaust temperature.

そして、この第2実施例の場合、負荷が所定の変化速度以上の速度で増加する過渡時には、図3の(b)に示すように、膨張行程中の主噴射I1の噴射量は基本的に変化させずに、吸気行程中の早期噴射I2の噴射量を増加する。点火時期は、燃焼悪化を回避するために、同様に、負荷上昇に伴って進角補正される。なお、第1実施例と同様に、早期噴射I2の噴射量の増加量を、負荷の増加速度によって変化させるようにしてもよい。   In the case of the second embodiment, at the time of transition in which the load increases at a speed greater than or equal to a predetermined change speed, the injection amount of the main injection I1 during the expansion stroke is basically as shown in FIG. Without changing, the injection amount of the early injection I2 during the intake stroke is increased. Similarly, the ignition timing is advanced with a load increase in order to avoid deterioration of combustion. Note that, similarly to the first embodiment, the increase amount of the injection amount of the early injection I2 may be changed according to the increase rate of the load.

次に、図4は、超リタード燃焼の第3実施例を示している。これは、同図(a)に示すように、第2実施例と同じく定常時の超リタード燃焼における燃料噴射を2回に分割した例であり、1回目の燃料噴射を圧縮行程後半にて行い、2回目の燃料噴射を圧縮上死点以降の膨張行程中に行う。なお、点火時期および空燃比(2回の噴射を合わせた空燃比)は第1,第2実施例と同様である。このように、圧縮上死点後の膨張行程中の燃料噴射(主噴射I1)に先立ち、圧縮行程後半に燃料噴射(早期噴射I2)を行うと、第2実施例の吸気行程噴射(早期噴射I2)に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなるため、この1回目の燃料噴射(早期噴射I2)による乱れが残り、圧縮上死点以降に2回目の燃料噴射(主噴射I1)を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、圧縮上死点付近における更なるガス流動強化が図れる。   Next, FIG. 4 shows a third embodiment of super retard combustion. This is an example in which the fuel injection in the super retard combustion at the steady state is divided into two as in the second embodiment, as shown in FIG. 5A, and the first fuel injection is performed in the latter half of the compression stroke. The second fuel injection is performed during the expansion stroke after the compression top dead center. The ignition timing and the air-fuel ratio (the air-fuel ratio obtained by combining the two injections) are the same as those in the first and second embodiments. Thus, when fuel injection (early injection I2) is performed in the latter half of the compression stroke prior to fuel injection during the expansion stroke after compression top dead center (main injection I1), the intake stroke injection (early injection) of the second embodiment is performed. Compared with I2), the compression stroke injection has a slower decay of disturbance due to the fuel spray, so the disturbance due to the first fuel injection (early injection I2) remains, and the second injection after compression top dead center. By performing the fuel injection (main injection I1), the turbulence can be strengthened so as to promote the turbulence generated by the first fuel injection, and further gas flow reinforcement near the compression top dead center can be achieved.

この第3実施例の場合に、早期噴射I2は、圧縮行程後半(90°BTDC以降)とすることで上死点付近での乱れを高めることができ、特に、45°BTDC以降、より望ましくは20°BTDC以降とすると、圧縮上死点以降のガス流動をより強化することができる。   In the case of the third embodiment, the early injection I2 can increase the disturbance near the top dead center by setting the latter half of the compression stroke (after 90 ° BTDC), and more preferably after 45 ° BTDC. If 20 ° BTDC or later, the gas flow after compression top dead center can be further strengthened.

そして、この第3実施例の場合、負荷が所定の変化速度以上の速度で増加する過渡時には、図4の(b)に示すように、膨張行程中の主噴射I1の噴射量は基本的に変化させずに、圧縮行程中の早期噴射I2の噴射量を増加する。そして、同時に、この早期噴射I2の噴射時期を、圧縮行程前半に早める。あるいは、図4の(c)に示すように、早期噴射I2の噴射時期を吸気行程中にまで早める。点火時期は、燃焼悪化を回避するために、第1,第2実施例と同様に、負荷上昇に伴って進角補正される。なお、第1実施例と同様に、早期噴射I2の噴射量の増加量を、負荷の増加速度によって変化させるようにしてもよい。   In the case of the third embodiment, at the time of transition in which the load increases at a speed greater than or equal to a predetermined change speed, the injection amount of the main injection I1 during the expansion stroke is basically as shown in FIG. 4B. Without changing, the injection amount of the early injection I2 during the compression stroke is increased. At the same time, the injection timing of this early injection I2 is advanced to the first half of the compression stroke. Alternatively, as shown in FIG. 4 (c), the injection timing of the early injection I2 is advanced to the intake stroke. As in the first and second embodiments, the ignition timing is corrected to advance with increasing load in order to avoid deterioration of combustion. Note that, similarly to the first embodiment, the increase amount of the injection amount of the early injection I2 may be changed according to the increase rate of the load.

また、本発明の超リタード燃焼は、排気系の触媒コンバータ10としてNOxトラップ触媒を用いた場合の硫黄被毒解除のためにも利用することができる。NOxトラップ触媒は、流入する排気の排気空燃比がリーンであるときにNOxを吸着し、流入する排気の排気空燃比がリッチであると、吸着していたNOxを放出して触媒作用により浄化処理するものであるが、燃料中の硫黄成分(SOx)が触媒に結合するとNOx吸着性能が低下する。そのため、適当な時期に、触媒を強制的に高温化してSOxを放出除去する処理(いわゆる硫黄被毒解除)が必要である。本発明の超リタード燃焼は、非常に高い排気温度を得られるので、このNOxトラップ触媒の硫黄被毒解除処理に適したものとなる。   The super retarded combustion of the present invention can also be used for releasing sulfur poisoning when a NOx trap catalyst is used as the exhaust system catalytic converter 10. The NOx trap catalyst adsorbs NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is lean, and releases the adsorbed NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is rich, and purifies by catalytic action. However, when the sulfur component (SOx) in the fuel is bound to the catalyst, the NOx adsorption performance is lowered. For this reason, it is necessary to perform a process (so-called sulfur poisoning release) for forcibly raising the temperature of the catalyst and releasing SOx at an appropriate time. The super retarded combustion according to the present invention can obtain a very high exhaust temperature, and therefore is suitable for the sulfur poisoning release processing of this NOx trap catalyst.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on this invention. 第1実施例の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of 1st Example. 第2実施例の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of 2nd Example. 第3実施例の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of 3rd Example. 早期噴射I2の噴射量とスロットル弁開度TVOの変化速度ΔTVOとの関係を示す特性図。The characteristic view which shows the relationship between the injection quantity of the early injection I2, and the change speed (DELTA) TVO of the throttle valve opening degree TVO. 機関運転条件に対する冷機時の運転モードを示す特性図。The characteristic view which shows the operation mode at the time of the cold machine with respect to engine operation conditions. 制御の概略を示すフローチャート。The flowchart which shows the outline of control. 従来技術における筒内の乱れの変化を示す説明図。Explanatory drawing which shows the change of the disturbance in a cylinder in a prior art.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
14…点火プラグ
15…燃料噴射弁
25…コントロールユニット
3 ... Combustion chamber 10 ... Catalytic converter 14 ... Spark plug 15 ... Fuel injection valve 25 ... Control unit

Claims (13)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、排気ガス温度の昇温が要求されたときに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行う一方、この超リタード燃焼での運転中に負荷が所定の変化速度以上の速度で増加する過渡時に、一部の燃料を吸気行程中もしくは圧縮行程前半に噴射し、この吸気行程中もしくは圧縮行程前半の燃料噴射の噴射量は、過渡変化後、時間経過に伴って徐々に減少することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。 In a control device for a direct injection spark ignition internal combustion engine having a fuel injection valve for directly injecting fuel into a cylinder and having an ignition plug, when the exhaust gas temperature is required to rise , the ignition timing Is set after the compression top dead center, and super retard combustion is performed before the ignition timing and after the compression top dead center is performed, while the speed of the load exceeds a predetermined change rate during the operation in the super retard combustion. During a transient increase, a part of the fuel is injected during the intake stroke or the first half of the compression stroke, and the fuel injection amount during the intake stroke or the first half of the compression stroke gradually decreases with time after the transient change. A control device for an in-cylinder direct injection spark ignition internal combustion engine. 筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のときに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行う一方、この超リタード燃焼での運転中に負荷が所定の変化速度以上の速度で増加する過渡時に、一部の燃料を吸気行程中もしくは圧縮行程前半に噴射する筒内直接噴射式火花点火内燃機関の制御装置であって、
上記超リタード燃焼が膨張行程中の1回の燃料噴射によって行われ、上記の過渡時には、吸気行程中もしくは圧縮行程前半の燃料噴射を追加することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。
In a direct injection type spark ignition internal combustion engine control device having a fuel injection valve for directly injecting fuel into a cylinder and having an ignition plug, the ignition timing is compression top dead center in a predetermined operating state. At a later time, during the transition in which the load increases at a speed higher than a predetermined change speed during the operation in the super retard combustion, the super retard combustion is performed before the ignition timing and after the compression top dead center. A control device for a direct injection type spark ignition internal combustion engine that injects a part of fuel during an intake stroke or in the first half of a compression stroke,
Said super-retard combustion is performed by a single fuel injection during the expansion stroke, when the above-mentioned transition, directly into the cylinder you characterized by adding the fuel injection in the first half during or compression stroke the intake stroke injection spark ignition internal combustion Engine control device.
上記超リタード燃焼が、膨張行程中の主噴射に先だって吸気行程中もしくは圧縮行程前半に行われる早期噴射を含み、上記の過渡時には、この早期噴射の噴射量を増加することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   The super retard combustion includes an early injection that is performed during the intake stroke or the first half of the compression stroke prior to the main injection during the expansion stroke, and the injection amount of the early injection is increased during the transition. The control apparatus for a direct injection type spark ignition internal combustion engine according to claim 1. 筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のときに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行う一方、この超リタード燃焼での運転中に負荷が所定の変化速度以上の速度で増加する過渡時に、一部の燃料を吸気行程中もしくは圧縮行程前半に噴射する筒内直接噴射式火花点火内燃機関の制御装置であって、
上記超リタード燃焼が、膨張行程中の主噴射に先だって圧縮行程後半に行われる早期噴射を含み、上記の過渡時には、この早期噴射を圧縮行程前半に行うとともに、その噴射量を増加することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。
In a direct injection type spark ignition internal combustion engine control device having a fuel injection valve for directly injecting fuel into a cylinder and having an ignition plug, the ignition timing is compression top dead center in a predetermined operating state. At a later time, during the transition in which the load increases at a speed equal to or higher than the predetermined change speed during the operation in the super retard combustion, the super retard combustion is performed before the ignition timing and after the compression top dead center. A control device for a direct injection type spark ignition internal combustion engine that injects a part of fuel during an intake stroke or in the first half of a compression stroke,
The super retard combustion includes early injection performed in the latter half of the compression stroke prior to the main injection during the expansion stroke, and during the transition, the early injection is performed in the first half of the compression stroke and the injection amount is increased. control device to that cylinder direct injection spark ignition internal combustion engine and.
超リタード燃焼における点火時期は、圧縮上死点後15°〜30°CAであることを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   5. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 15 ° to 30 ° CA after compression top dead center. 上記の過渡時に、同時に点火時期を進角補正することを特徴とする請求項1〜5のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   6. The control device for a direct injection type spark ignition internal combustion engine according to claim 1, wherein the ignition timing is advanced at the same time during the transition. 負荷の増加速度が大きいほど吸気行程中もしくは圧縮行程前半の燃料噴射の噴射量を大とすることを特徴とする請求項1〜6のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 6, wherein the amount of fuel injection during the intake stroke or the first half of the compression stroke is increased as the load increase rate is increased. Control device. 過渡変化後、時間経過に伴って吸気行程中もしくは圧縮行程前半の燃料噴射の噴射量を徐々に減少させることを特徴とする請求項2または4に記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection spark ignition internal combustion engine according to claim 2 or 4 , wherein after the transient change, the injection amount of the fuel injection during the intake stroke or the first half of the compression stroke is gradually decreased with time. Control device. 過渡時として、補機負荷の入力時に上記の燃料噴射の態様の変更を行うことを特徴とする請求項1〜8のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 9. The control apparatus for a direct injection type spark ignition internal combustion engine according to claim 1 , wherein the fuel injection mode is changed at the time of input of an auxiliary machine load as a transition time. 超リタード燃焼における空燃比は、理論空燃比もしくは若干リーンであることを特徴とする請求項1〜9のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The control apparatus for a direct injection spark ignition internal combustion engine according to any one of claims 1 to 9, wherein the air-fuel ratio in super retarded combustion is a stoichiometric air-fuel ratio or slightly lean. 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記超リタード燃焼を実行することを特徴とする請求項2または4に記載の筒内直接噴射式火花点火内燃機関の制御装置。 5. The control of a direct injection spark ignition internal combustion engine according to claim 2 or 4 , wherein the super retard combustion is executed when the exhaust gas temperature needs to be raised as a predetermined operation state. apparatus. 排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、上記の排気ガス温度の昇温が要求されることを特徴とする請求項1または11に記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection according to claim 1 or 11, wherein the temperature of the exhaust gas is required to be raised during a cold start of an internal combustion engine that requires an early temperature rise of an exhaust system catalytic converter. Type spark ignition internal combustion engine control device. 排気系の触媒コンバータのSOx放出処理を行うときに、上記の排気ガス温度の昇温が要求されることを特徴とする請求項1または11に記載の筒内直接噴射式火花点火内燃機関の制御装置。 The control of an in-cylinder direct injection spark-ignition internal combustion engine according to claim 1 or 11, characterized in that a temperature increase of the exhaust gas is required when performing SOx release processing of an exhaust system catalytic converter. apparatus.
JP2005158512A 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4539439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158512A JP4539439B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158512A JP4539439B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2006336478A JP2006336478A (en) 2006-12-14
JP4539439B2 true JP4539439B2 (en) 2010-09-08

Family

ID=37557252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158512A Expired - Fee Related JP4539439B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4539439B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE486205T1 (en) * 2006-12-28 2010-11-15 Bosch Gmbh Robert METHOD FOR HEATING A CATALYST ARRANGED IN AN EXHAUST SECTION OF A COMBUSTION PROCESS AND DEVICE FOR IMPLEMENTING THE METHOD
DE102008030869B4 (en) * 2008-06-30 2010-07-01 Continental Automotive Gmbh Method and device for starting an internal combustion engine
US8347852B2 (en) * 2011-08-03 2013-01-08 Ford Global Technologies, Llc Method and system for pre-ignition control
JP6893159B2 (en) * 2017-10-24 2021-06-23 日立Astemo株式会社 Fuel control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072461A1 (en) * 2003-02-12 2004-08-26 Daimlerchrysler Ag Method for operating an internal combustion engine with direct fuel injection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072461A1 (en) * 2003-02-12 2004-08-26 Daimlerchrysler Ag Method for operating an internal combustion engine with direct fuel injection

Also Published As

Publication number Publication date
JP2006336478A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
US7938098B2 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007002795A (en) Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525468B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006336473A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP2006144609A (en) Control device for cylinder direct injection spark ignition engine
JP4577091B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006266119A (en) Control device for in-cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees