JP4385916B2 - In-cylinder direct injection spark ignition internal combustion engine controller - Google Patents

In-cylinder direct injection spark ignition internal combustion engine controller Download PDF

Info

Publication number
JP4385916B2
JP4385916B2 JP2004302339A JP2004302339A JP4385916B2 JP 4385916 B2 JP4385916 B2 JP 4385916B2 JP 2004302339 A JP2004302339 A JP 2004302339A JP 2004302339 A JP2004302339 A JP 2004302339A JP 4385916 B2 JP4385916 B2 JP 4385916B2
Authority
JP
Japan
Prior art keywords
injection
temperature
internal combustion
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004302339A
Other languages
Japanese (ja)
Other versions
JP2006112363A (en
Inventor
泰三 堀込
全幸 富田
仁 石井
太朗 酒井
彰 中島
智之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004302339A priority Critical patent/JP4385916B2/en
Publication of JP2006112363A publication Critical patent/JP2006112363A/en
Application granted granted Critical
Publication of JP4385916B2 publication Critical patent/JP4385916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時における噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct-injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, injection at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to the control of timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。
特許第3325230号公報
In Patent Document 1, as a catalyst warm-up method for a direct injection spark-ignition internal combustion engine, a period from the intake stroke to the ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than the activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed, for example, at 120 ° BTDC to 45 ° BTDC after the middle of the compression stroke.
Japanese Patent No. 3325230

内燃機関の冷機時における触媒の早期活性化および後燃えによるHC低減のためには、点火時期の遅角が有効であり、より大きな効果を得るためには、圧縮上死点以降の点火(ATDC点火)が望ましい。ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。   For early activation of the catalyst when the internal combustion engine is cold and HC reduction due to afterburning, retarding the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC) Ignition) is desirable. In order to perform stable combustion by ATDC ignition, it is necessary to shorten the combustion period. For this reason, it is necessary to increase the combustion speed (flame propagation speed) by strengthening the turbulence in the cylinder.

このような乱れの強化のために、筒内に高圧で噴射される燃料噴霧のエネルギにより筒内に乱れを生成することが考えられる。   In order to strengthen such disturbance, it is conceivable that the disturbance is generated in the cylinder by the energy of the fuel spray injected at a high pressure in the cylinder.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っている。このように最後の燃料噴射が圧縮上死点よりも前では、その噴霧により筒内に乱れを生成しても、圧縮上死点以降はその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Yes. As described above, before the last fuel injection is before the compression top dead center, even if the spray generates turbulence in the cylinder, the turbulence is attenuated after the compression top dead center, and the flame propagation in ATDC ignition Does not contribute to speed increase.

例えば、図7は、吸気ポート内に設けたガス流動制御弁(例えばタンブル制御弁)を作動させた場合とこのようなガス流動制御弁を具備しない場合とについて、筒内の乱れの大きさを示したものであるが、ガス流動制御弁を作動させることで吸気行程中に生成した乱れ(符号Aの部分)は、圧縮行程の進行とともに減衰し、圧縮行程後期のタンブル流の崩壊に伴い一時的に乱れが大きくなる(符号Bの部分)ものの、圧縮上死点以降は符号Cで示すように急速に減衰してしまい、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。燃料噴霧による乱れについても同様であり、圧縮上死点より前の燃料噴射により乱れが生成されたとしても、圧縮上死点以降の点火燃焼には寄与しない。   For example, FIG. 7 shows the magnitude of turbulence in a cylinder when a gas flow control valve (for example, a tumble control valve) provided in an intake port is operated and when such a gas flow control valve is not provided. As shown, the turbulence (part A) generated during the intake stroke by operating the gas flow control valve is attenuated as the compression stroke progresses, and is temporarily accompanied by the collapse of the tumble flow in the latter half of the compression stroke. Although the turbulence increases (the portion indicated by reference symbol B), after the compression top dead center, as shown by the reference symbol C, it rapidly attenuates, and combustion improvement (improving flame propagation) using the turbulence cannot be expected so much. The same applies to turbulence caused by fuel spray, and even if turbulence is generated by fuel injection before compression top dead center, it does not contribute to ignition combustion after compression top dead center.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域では点火時期を圧縮上死点前(BTDC点火)としている。   For this reason, ATDC ignition is more advantageous for increasing exhaust temperature and reducing HC, but combustion stability is not established. Therefore, in Patent Document 1, the ignition timing is set to before compression top dead center (BTDC ignition) in the no-load region. Yes.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減のためのATDC点火での燃焼安定性を改善することを目的としている。   The present invention aims to improve combustion stability in ATDC ignition for early activation of the catalyst and HC reduction based on such a situation.

この発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、超リタード燃焼として、点火時期を圧縮上死点後に設定するとともに、燃料噴射を2回に分割して、吸気行程中もしくは圧縮行程中に1回目の燃料噴射を行い、点火時期前でかつ圧縮上死点後の膨張行程中に2回目の燃料噴射を行うようにしたものである。そして、さらに、排気温度もしくは触媒温度が所定レベルに達したときに、2回目の噴射量少なくなるように1回目と2回目の噴射量の分割割合を変更することを特徴としている。 The present invention requires an early temperature rise of an exhaust system catalytic converter in a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into the cylinder and includes an ignition plug. At the time of cold start of the internal combustion engine, the ignition timing is set after compression top dead center as super retard combustion, and the fuel injection is divided into two times, and the first fuel injection during the intake stroke or the compression stroke The second fuel injection is performed before the ignition timing and during the expansion stroke after the compression top dead center. Further, when the exhaust temperature or the catalyst temperature reaches a predetermined level, the division ratio of the first and second injection amounts is changed so that the second injection amount is reduced.

すなわち、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、圧縮上死点以降の膨張行程中になされる2回目の燃料噴射(膨張行程噴射)によって、筒内の乱れを生成・強化することができ、ATDC点火での火炎伝播が促進される。従って、点火時期を圧縮上死点後とした超リタード燃焼が安定的に成立する。   That is, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but by the second fuel injection (expansion stroke injection) performed during the expansion stroke after the compression top dead center, In-cylinder turbulence can be generated and strengthened, and flame propagation in ATDC ignition is promoted. Therefore, super retard combustion with the ignition timing after the compression top dead center is established stably.

また、圧縮上死点後の2回目の燃料噴射(膨張行程噴射)に先立ち、吸気行程中もしくは圧縮行程中に1回目の燃料噴射を行うことにより、その噴射燃料が燃焼室全体に予め拡散し、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇に有効となる。   Also, prior to the second fuel injection (expansion stroke injection) after compression top dead center, the first fuel injection is performed during the intake stroke or the compression stroke, so that the injected fuel is diffused in advance throughout the combustion chamber. Since this contributes to the promotion of afterburning of HC by ATDC ignition, it is effective in reducing HC and increasing exhaust temperature.

ここで、上記の超リタード燃焼では、排気温度が非常に高く得られるので、排気管や触媒コンバータが急激に温度上昇し、局所的にその破損温度を越えてしまうような懸念が生じる。そこで、本発明では、排気温度もしくは触媒温度が所定レベルに達したときに、2回目の噴射量少なくなるように1回目と2回目の噴射量の分割割合を変更し、排気温度の過度の上昇を抑制する。 Here, in the above-mentioned super retard combustion, the exhaust temperature can be obtained very high, so that there is a concern that the exhaust pipe and the catalytic converter will rapidly rise in temperature and exceed the breakage temperature locally. Therefore, in the present invention, when the exhaust temperature or the catalyst temperature reaches a predetermined level, the division ratio of the first and second injection amounts is changed so that the second injection amount is reduced, and the exhaust temperature is excessively increased. Suppresses the rise.

この発明によれば、膨張行程噴射により点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性を十分に確保することができ、冷間始動の際に、触媒の早期活性化および後燃えによるHC低減を達成することができる。そして、排気温度もしくは触媒温度が所定レベルに達したときに2回目の噴射量を少なくすることで、排気系部品や触媒コンバータの過度の温度上昇による破損を確実に回避することができる。   According to the present invention, it is possible to sufficiently ensure the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center by the expansion stroke injection. HC reduction by burning can be achieved. Further, by reducing the second injection amount when the exhaust temperature or the catalyst temperature reaches a predetermined level, it is possible to reliably avoid the damage due to the excessive temperature rise of the exhaust system parts and the catalytic converter.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。なお、暖機完了後においては、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、空燃比を30〜40程度とした極リーンの成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。この均質燃焼運転としては、運転条件に応じて、空燃比を理論空燃比とした均質ストイキ燃焼と、空燃比を20〜30程度のリーンとした均質リーン燃焼と、がある。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled. After the warm-up is completed, in a predetermined region on the low-speed and low-load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed before the compression top dead center. Done. The fuel spray is collected in the vicinity of the spark plug 14, thereby achieving extremely lean stratified combustion with an air-fuel ratio of about 30 to 40. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder. As the homogeneous combustion operation, there are homogeneous stoichiometric combustion in which the air-fuel ratio is the stoichiometric air-fuel ratio and homogeneous lean combustion in which the air-fuel ratio is lean about 20 to 30 depending on the operating conditions.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の2つの実施例を示しており、実施例1では、点火時期を15°〜30°ATDC(例えば20°ATDC)とし、かつ、燃料噴射を2回に分割し、1回目の燃料噴射の噴射時期(詳しくは燃料噴射開始時期)を吸気行程中に設定し、2回目の燃料噴射の噴射時期(同じく燃料噴射開始時期)を、圧縮上死点以降でかつ点火時期前に設定する。なお、このとき、空燃比(2回の噴射を合わせた空燃比)は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。   FIG. 2 shows two examples of super retard combustion. In Example 1, the ignition timing is 15 ° to 30 ° ATDC (for example, 20 ° ATDC), and the fuel injection is divided into two times. The injection timing of the first fuel injection (specifically, the fuel injection start timing) is set during the intake stroke, and the injection timing of the second fuel injection (also the fuel injection start timing) is set after the compression top dead center and the ignition timing. Set before. At this time, the air-fuel ratio (the air-fuel ratio obtained by combining the two injections) is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17).

すなわち、触媒暖機促進ならびにHC低減のためには、点火時期遅角が有効であり、上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。前述したように、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、本発明では、圧縮上死点以降の膨張行程中になされる高圧の燃料噴射(2回目の噴射)によって、ガス流動が生じ、これにより筒内の乱れを生成・強化することができる。従って、ATDC点火での火炎伝播が促進され、安定した燃焼が可能となる。   That is, in order to promote catalyst warm-up and reduce HC, ignition timing retardation is effective, and ignition after top dead center (ATDC ignition) is desirable, but in order to perform stable combustion with ATDC ignition, It is necessary to shorten the combustion period, and for this purpose, flame propagation due to turbulence must be promoted. As described above, the turbulence generated in the intake stroke and the compression stroke is attenuated after the compression top dead center. However, in the present invention, the high-pressure fuel injection (during the expansion stroke after the compression top dead center) ( By the second injection), a gas flow is generated, whereby the turbulence in the cylinder can be generated and strengthened. Therefore, flame propagation by ATDC ignition is promoted and stable combustion is possible.

また、上記のように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、吸気行程中に燃料噴射(吸気行程噴射)を行うと、吸気行程噴射の燃料噴霧による乱れは圧縮行程後半で減衰してしまい、圧縮上死点後におけるガス流動強化には殆ど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇には有効である。   Further, as described above, when fuel injection (intake stroke injection) is performed during the intake stroke prior to fuel injection after compression top dead center (expansion stroke injection), disturbance due to fuel spray in the intake stroke injection is in the latter half of the compression stroke. Although it is attenuated at the compression top dead center, it hardly affects the gas flow enhancement, but the injected fuel diffuses throughout the combustion chamber and contributes to the promotion of HC afterburning by ATDC ignition. It is effective for HC reduction and exhaust temperature rise.

また、図2の実施例2は、1回目の燃料噴射を圧縮行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う。このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、圧縮行程中に燃料噴射(圧縮行程噴射)を行うと、実施例1の吸気行程噴射に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなるため、この1回目の燃料噴射による乱れが残り、圧縮上死点以降に2回目の燃料噴射を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、圧縮上死点付近における更なるガス流動強化が図れる。   In the second embodiment of FIG. 2, the first fuel injection is performed during the compression stroke, and the second fuel injection is performed after the compression top dead center. As described above, when the fuel injection (compression stroke injection) is performed during the compression stroke prior to the fuel injection after the compression top dead center (expansion stroke injection), compared with the intake stroke injection of the first embodiment, the compression stroke injection is performed. However, since the disturbance of the turbulence due to the fuel spray is delayed, the turbulence due to the first fuel injection remains, and the second fuel injection is performed after the compression top dead center, which is generated by the first fuel injection. The turbulence can be strengthened to promote the turbulence, and the gas flow can be further strengthened near the compression top dead center.

この実施例2の場合に、1回目の圧縮行程噴射は、圧縮行程前半でもよいが、圧縮行程後半(90°BTDC以降)に設定すると、上死点付近での乱れをより高めることができる。特に、この1回目の圧縮行程噴射を、45°BTDC以降、より望ましくは20°BTDC以降とすると、圧縮上死点以降のガス流動をより強化することができる。   In the case of Example 2, the first compression stroke injection may be in the first half of the compression stroke, but if it is set in the second half of the compression stroke (after 90 ° BTDC), the disturbance near the top dead center can be further increased. In particular, if the first compression stroke injection is 45 ° BTDC or later, more desirably 20 ° BTDC or later, the gas flow after compression top dead center can be further enhanced.

このように、実施例1,2の超リタード燃焼によれば、点火の直前に膨張行程噴射の燃料噴霧により筒内の乱れを生成・強化することができ、火炎伝播を促進して、安定した燃焼を行わせることができる。特に、点火時期を15°〜30°ATDCまで遅角させることにより、触媒の早期活性化およびHC低減のための十分な後燃え効果を得ることができる。換言すれば、このように点火時期を大きく遅らせても、その直前まで2回目の燃料噴射を遅らせて、乱れの生成時期も遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。   As described above, according to the super retard combustion of the first and second embodiments, the turbulence in the cylinder can be generated and strengthened by the fuel spray of the expansion stroke injection immediately before the ignition, and the flame propagation is promoted and stabilized. Combustion can be performed. In particular, by retarding the ignition timing from 15 ° to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is greatly delayed in this manner, the second fuel injection is delayed until just before that, and the generation time of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.

ところで、上記の超リタード燃焼では、排気温度が非常に高く得られるので、排気管や触媒コンバータが急激に温度上昇し、局所的にその破損温度を越えてしまうような懸念が生じる。そこで、本発明では、排気温度もしくは触媒温度が所定レベルに達したときに、2回目の噴射量を少なくし、排気温度の過度の上昇を抑制する。すなわち、上記の超リタード燃焼において、2回目の燃料噴射である膨張行程噴射の噴射量と排気温度とは、図3に示すような相関があり、膨張行程噴射の噴射量が多いほど、排気温度が高くなる。換言すれば、排気温度や触媒温度が過度に高くなりそうなときに、膨張行程噴射の噴射量を少なくすることで、排気温度を適切な温度範囲に制御することが可能である。   By the way, in the above super retarded combustion, the exhaust temperature can be obtained very high, so that there is a concern that the exhaust pipe and the catalytic converter rapidly increase in temperature and locally exceed the breakage temperature. Therefore, in the present invention, when the exhaust temperature or the catalyst temperature reaches a predetermined level, the second injection amount is reduced to suppress an excessive increase in the exhaust temperature. That is, in the above-described super retard combustion, the injection amount of the expansion stroke injection, which is the second fuel injection, and the exhaust temperature have a correlation as shown in FIG. 3, and the exhaust temperature increases as the injection amount of the expansion stroke injection increases. Becomes higher. In other words, when the exhaust temperature and the catalyst temperature are likely to become excessively high, the exhaust temperature can be controlled to an appropriate temperature range by reducing the injection amount of the expansion stroke injection.

図4は、排気温度センサ13により検出された排気温度が排気系破損温度に近い所定温度に達したときに、膨張行程噴射の噴射量を所定量まで少なく制御する一実施例を示している。上記の所定温度は、排気系破損温度に対し適宜な余裕を見込んで設定される。このように排気温度が所定温度に達したときに2回目の膨張行程噴射の噴射量を適宜なレベルまで減少させることで、太実線に示すように、排気温度のそれ以上の上昇を回避し、排気系破損温度直前の温度に維持することが可能である。   FIG. 4 shows an embodiment in which when the exhaust temperature detected by the exhaust temperature sensor 13 reaches a predetermined temperature close to the exhaust system breakage temperature, the expansion stroke injection amount is controlled to a predetermined amount. The predetermined temperature is set with an appropriate margin for the exhaust system breakage temperature. By reducing the injection amount of the second expansion stroke injection to an appropriate level when the exhaust temperature reaches the predetermined temperature in this way, as shown by the thick solid line, further increase in the exhaust temperature is avoided, It is possible to maintain the temperature just before the exhaust system breakage temperature.

従って、排気系部品や触媒コンバータ10の熱的損傷を確実に回避しつつ触媒コンバータ10の早期活性化を実現できる。ここで、排気温度は、始動後、ある時定数でもって徐々に上昇するので、排気温度センサ13による直接的な検出のほか、始動時の水温、積算吸入空気量、機関回転数、負荷、等のパラメータを用いて推定することもできる。さらに制御の簡易化のために、単純に始動からの経過時間でもって排気温度の代替とすることもできる。なお、膨張行程噴射の噴射量の減少は、1回目の燃料噴射(吸入行程噴射もしくは圧縮行程噴射)の噴射量と2回目の膨張行程噴射の噴射量との比つまり分割割合を変更することによって実現できる。 Therefore, early activation of the catalytic converter 10 can be realized while reliably avoiding thermal damage to the exhaust system parts and the catalytic converter 10. Here, since the exhaust temperature gradually rises with a certain time constant after the start, in addition to the direct detection by the exhaust temperature sensor 13, the water temperature at the start, the integrated intake air amount, the engine speed, the load, etc. It is also possible to estimate using these parameters. Furthermore, in order to simplify the control, the exhaust temperature can be simply replaced with the elapsed time from the start. Note that a decrease in the injection amount of the expansion stroke injection is to change the ratio clogging division ratio of the first injection quantity of fuel injection (intake stroke injection or compression stroke injection) and the injection amount of the second expansion stroke injection drunk can be realized.

次に、図5は、触媒コンバータ10の触媒温度が所定の触媒活性温度(より詳しくは触媒活性開始温度)に達したときに、膨張行程噴射の噴射量を所定量まで少なく制御する一実施例を示している。これにより、太実線で示すように、排気温度はそれ以上高くなることがなく、触媒温度の上昇がより緩やかなものとなる。なお、触媒温度は、触媒コンバータ10に図示せぬ触媒温度センサを付加して直接的に検出するようにしてもよく、あるいは、上述した排気温度と同様に、始動後、ある時定数でもって徐々に上昇するものとして、始動時の水温、積算吸入空気量、機関回転数、負荷、等のパラメータを用いて推定することもできる。さらに制御の簡易化のために、単純に始動からの経過時間でもって触媒温度の代替とすることもできる。   Next, FIG. 5 shows an embodiment in which when the catalyst temperature of the catalytic converter 10 reaches a predetermined catalyst activation temperature (more specifically, the catalyst activation start temperature), the expansion stroke injection amount is controlled to be reduced to a predetermined amount. Is shown. As a result, as indicated by the thick solid line, the exhaust temperature does not increase any more, and the catalyst temperature rises more slowly. The catalyst temperature may be detected directly by adding a catalyst temperature sensor (not shown) to the catalytic converter 10, or, like the exhaust temperature described above, gradually after a start with a certain time constant. Can be estimated using parameters such as the water temperature at start-up, the cumulative intake air amount, the engine speed, and the load. Furthermore, in order to simplify the control, the catalyst temperature can be simply replaced with the elapsed time from the start.

さらに、図6は、膨張行程噴射の噴射量を2段階に段階的に減少させる実施例を示している。この例では、先ず排気温度が排気系破損温度に近い所定温度に達したときに、膨張行程噴射の噴射量を第1の所定量まで少なくし、次に、触媒温度が触媒活性温度に達したときに、第2の所定量までさらに少なくする。これにより、排気温度および触媒温度は、太実線のように変化することになり、排気系部品の過度の昇温が回避されるとともに、触媒コンバータ10は触媒活性温度まで速やかに温度上昇した後に過度の温度上昇が抑制されるようになる。なお、第2の所定量を「0」とし、つまり触媒温度が触媒活性温度に達した段階で膨張行程噴射を停止するようにしてもよい。   Furthermore, FIG. 6 shows an embodiment in which the injection amount of the expansion stroke injection is reduced stepwise in two steps. In this example, when the exhaust temperature first reaches a predetermined temperature close to the exhaust system breakage temperature, the injection amount of the expansion stroke injection is reduced to the first predetermined amount, and then the catalyst temperature reaches the catalyst activation temperature. Sometimes it is further reduced to the second predetermined amount. As a result, the exhaust temperature and the catalyst temperature change as shown by thick solid lines, and an excessive temperature rise of the exhaust system parts is avoided, and the catalytic converter 10 is excessive after the temperature rises rapidly to the catalyst activation temperature. Temperature rise is suppressed. The second predetermined amount may be set to “0”, that is, the expansion stroke injection may be stopped when the catalyst temperature reaches the catalyst activation temperature.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on this invention. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 膨張行程噴射の噴射量と排気温度との関係を示す特性図。The characteristic view which shows the relationship between the injection quantity of expansion stroke injection, and exhaust temperature. 排気温度が所定温度に達したときに膨張行程噴射の噴射量を減少させる例を示す説明図。Explanatory drawing which shows the example which reduces the injection quantity of expansion stroke injection when exhaust temperature reaches predetermined temperature. 触媒温度が触媒活性温度に達したときに膨張行程噴射の噴射量を減少させる例を示す説明図。Explanatory drawing which shows the example which reduces the injection quantity of an expansion stroke injection, when a catalyst temperature reaches a catalyst activation temperature. 排気温度および触媒温度に基づき膨張行程噴射の噴射量を2段階に減少させる例を示す説明図。Explanatory drawing which shows the example which reduces the injection quantity of an expansion stroke injection in two steps based on exhaust gas temperature and catalyst temperature. 従来技術における筒内の乱れの変化を示す説明図。Explanatory drawing which shows the change of the disturbance in a cylinder in a prior art.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
13…排気温度センサ
14…点火プラグ
15…燃料噴射弁
25…コントロールユニット
DESCRIPTION OF SYMBOLS 3 ... Combustion chamber 10 ... Catalytic converter 13 ... Exhaust temperature sensor 14 ... Spark plug 15 ... Fuel injection valve 25 ... Control unit

Claims (7)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、超リタード燃焼として、点火時期を圧縮上死点後に設定するとともに、燃料噴射を2回に分割して、吸気行程中もしくは圧縮行程中に1回目の燃料噴射を行い、点火時期前でかつ圧縮上死点後の膨張行程中に2回目の燃料噴射を行う一方、排気温度もしくは触媒温度が所定レベルに達したときに、2回目の噴射量少なくなるように1回目と2回目の噴射量の分割割合を変更することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。 An internal combustion engine that is provided with a fuel injection valve that directly injects fuel into a cylinder and that is provided with an ignition plug, and that requires an early temperature rise of an exhaust system catalytic converter in a control device for a direct ignition spark ignition internal combustion engine At the time of cold start, the ignition timing is set after compression top dead center as super retard combustion, and the fuel injection is divided into two, and the first fuel injection is performed during the intake stroke or the compression stroke, and the ignition is performed. While the second fuel injection is performed before the timing and during the expansion stroke after the compression top dead center, when the exhaust temperature or the catalyst temperature reaches a predetermined level, the first injection is performed so that the second injection amount is reduced. A control device for an in-cylinder direct injection type spark ignition internal combustion engine, characterized in that the split ratio of the second injection amount is changed . 排気温度が排気系破損温度に近い所定温度に達したときに、2回目の噴射量を少なくすることを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. The control apparatus for a direct injection type spark ignition internal combustion engine according to claim 1, wherein when the exhaust temperature reaches a predetermined temperature close to an exhaust system breakage temperature, the second injection amount is reduced. 触媒温度が触媒活性温度に達したときに、2回目の噴射量を少なくすることを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   The direct injection spark ignition internal combustion engine control device according to claim 1, wherein when the catalyst temperature reaches the catalyst activation temperature, the second injection amount is reduced. 排気温度もしくは触媒温度に応じて、2回目の噴射量を段階的に少なくすることを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The control device for a direct injection type spark ignition internal combustion engine according to any one of claims 1 to 3, wherein the second injection amount is decreased stepwise in accordance with the exhaust gas temperature or the catalyst temperature. 排気温度もしくは触媒温度の代替として内燃機関の始動からの経過時間を用いることを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   5. The control apparatus for a direct injection type spark ignition internal combustion engine according to claim 1, wherein an elapsed time from the start of the internal combustion engine is used as an alternative to the exhaust gas temperature or the catalyst temperature. 超リタード燃焼における空燃比は、理論空燃比もしくは若干リーンであることを特徴とする請求項1〜5のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The control device for a direct injection spark ignition internal combustion engine according to any one of claims 1 to 5, wherein the air-fuel ratio in the super retard combustion is a stoichiometric air-fuel ratio or slightly lean. 超リタード燃焼における点火時期は、圧縮上死点後15°〜30°CAであることを特徴とする請求項1〜6のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   7. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 15 ° to 30 ° CA after compression top dead center.
JP2004302339A 2004-10-18 2004-10-18 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4385916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302339A JP4385916B2 (en) 2004-10-18 2004-10-18 In-cylinder direct injection spark ignition internal combustion engine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302339A JP4385916B2 (en) 2004-10-18 2004-10-18 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2006112363A JP2006112363A (en) 2006-04-27
JP4385916B2 true JP4385916B2 (en) 2009-12-16

Family

ID=36381086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302339A Expired - Fee Related JP4385916B2 (en) 2004-10-18 2004-10-18 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4385916B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195383B2 (en) * 2008-12-12 2013-05-08 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine
JP5986736B2 (en) * 2011-11-16 2016-09-06 三菱重工業株式会社 Exhaust gas purification system for internal combustion engine

Also Published As

Publication number Publication date
JP2006112363A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006144609A (en) Control device for cylinder direct injection spark ignition engine
JP2005214039A (en) Control device for direct spark ignition type internal combustion engine
JP2006336473A (en) Control device for cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Ref document number: 4385916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees