JP2006144609A - Control device for cylinder direct injection spark ignition engine - Google Patents

Control device for cylinder direct injection spark ignition engine Download PDF

Info

Publication number
JP2006144609A
JP2006144609A JP2004333996A JP2004333996A JP2006144609A JP 2006144609 A JP2006144609 A JP 2006144609A JP 2004333996 A JP2004333996 A JP 2004333996A JP 2004333996 A JP2004333996 A JP 2004333996A JP 2006144609 A JP2006144609 A JP 2006144609A
Authority
JP
Japan
Prior art keywords
injection
fuel
ignition timing
dead center
top dead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004333996A
Other languages
Japanese (ja)
Inventor
Masayuki Tomita
全幸 富田
Taro Sakai
太朗 酒井
Akira Nakajima
彰 中島
Tomoyuki Takeda
智之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004333996A priority Critical patent/JP2006144609A/en
Publication of JP2006144609A publication Critical patent/JP2006144609A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To avoid smoke caused by delay of completion of injection while activating a catalyst early and reducing HC caused by after-burning, by significantly retarding ignition timing. <P>SOLUTION: In the cold-start of an internal combustion engine requiring quick temperature rise of a catalytic converter, the ignition timing is set after a compression top dead center, and a very retarded combustion accompanying expansion stroke injection in which fuel start timing is before the ignition timing and after a compression top dead center is performed. Since high-pressure fuel injection immediately before the ignition timing intensifies disturbance in a cylinder to promote flame propagation, resulting in stable combustion. If a fuel injection period (crank angle) is elongated for some reason and an injection completion timing is delayed from a smoke tolerance after the ignition timing, the fuel injection is forcibly stopped before the end of the injection period. Therefore, degradation in smoke is prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時における噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct-injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, injection at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to the control of timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。
特許第3325230号公報
In Patent Document 1, as a catalyst warm-up method for a direct injection spark ignition internal combustion engine, a period from an intake stroke to an ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than an activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed, for example, at 120 ° BTDC to 45 ° BTDC after the middle of the compression stroke.
Japanese Patent No. 3325230

内燃機関の冷機時における触媒の早期活性化および後燃えによるHC低減のためには、点火時期の遅角が有効であり、より大きな効果を得るためには、圧縮上死点以降の点火(ATDC点火)が望ましい。ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。   For early activation of the catalyst when the internal combustion engine is cold and HC reduction due to afterburning, retarding the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC) Ignition) is desirable. In order to perform stable combustion by ATDC ignition, it is necessary to shorten the combustion period. For this reason, it is necessary to increase the combustion speed (flame propagation speed) by strengthening the turbulence in the cylinder.

このような乱れの強化のために、筒内に高圧で噴射される燃料噴霧のエネルギにより筒内に乱れを生成することが考えられる。   In order to strengthen such disturbance, it is conceivable that the disturbance is generated in the cylinder by the energy of the fuel spray injected at a high pressure in the cylinder.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っている。このように最後の燃料噴射が圧縮上死点よりも前では、その噴霧により筒内に乱れを生成しても、圧縮上死点以降はその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Yes. As described above, before the last fuel injection is before the compression top dead center, even if the spray generates turbulence in the cylinder, the turbulence is attenuated after the compression top dead center, and the flame propagation in ATDC ignition Does not contribute to speed increase.

例えば、図5は、吸気ポート内に設けたガス流動制御弁(例えばタンブル制御弁)を作動させた場合とこのようなガス流動制御弁を具備しない場合とについて、筒内の乱れの大きさを示したものであるが、ガス流動制御弁を作動させることで吸気行程中に生成した乱れ(符号Aの部分)は、圧縮行程の進行とともに減衰し、圧縮行程後期のタンブル流の崩壊に伴い一時的に乱れが大きくなる(符号Bの部分)ものの、圧縮上死点以降は符号Cで示すように急速に減衰してしまい、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。燃料噴霧による乱れについても同様であり、圧縮上死点より前の燃料噴射により乱れが生成されたとしても、圧縮上死点以降の点火燃焼には寄与しない。   For example, FIG. 5 shows the magnitude of turbulence in a cylinder when a gas flow control valve (for example, a tumble control valve) provided in an intake port is operated and when such a gas flow control valve is not provided. As shown, the turbulence (part A) generated during the intake stroke by operating the gas flow control valve attenuates with the progress of the compression stroke, and is temporarily accompanied by the collapse of the tumble flow in the latter half of the compression stroke. Although the turbulence increases (the portion indicated by reference symbol B), after the compression top dead center, as shown by the reference symbol C, it rapidly attenuates, and combustion improvement (improving flame propagation) using the turbulence cannot be expected so much. The same applies to turbulence caused by fuel spray, and even if turbulence is generated by fuel injection before compression top dead center, it does not contribute to ignition combustion after compression top dead center.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域では点火時期を圧縮上死点前(BTDC点火)としている。   For this reason, ATDC ignition is more advantageous for increasing exhaust temperature and reducing HC, but combustion stability is not established. Therefore, in Patent Document 1, the ignition timing is set to before compression top dead center (BTDC ignition) in the no-load region. Yes.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減のためのATDC点火での燃焼安定性を改善することを目的としている。   The present invention aims to improve combustion stability in ATDC ignition for early activation of the catalyst and HC reduction based on such a situation.

この発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料噴射開始時期を設定した膨張行程噴射を伴う超リタード燃焼を行うようにしたものである。そして、さらに、この膨張行程噴射の燃料噴射終了時期が点火時期後の所定の許容範囲よりも遅れる場合には、この膨張行程噴射を噴射期間の途中で強制的に終了することを特徴としている。   The present invention requires an early temperature rise of an exhaust system catalytic converter in a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into the cylinder and includes an ignition plug. When the internal combustion engine is cold started, the ignition timing is set after the compression top dead center, and the super retard combustion is performed with the expansion stroke injection in which the fuel injection start timing is set before the ignition timing and after the compression top dead center. It is what I did. Further, when the fuel injection end timing of the expansion stroke injection is delayed from a predetermined allowable range after the ignition timing, the expansion stroke injection is forcibly ended in the middle of the injection period.

すなわち、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、圧縮上死点以降の膨張行程中になされる燃料噴射つまり膨張行程噴射によって、筒内の乱れを生成・強化することができ、ATDC点火での火炎伝播が促進される。従って、点火時期を圧縮上死点後とした超リタード燃焼が安定的に成立する。   That is, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but the in-cylinder turbulence is caused by the fuel injection, that is, the expansion stroke injection performed during the expansion stroke after the compression top dead center. Can be generated and strengthened, and flame propagation in ATDC ignition is promoted. Therefore, super retard combustion with the ignition timing after the compression top dead center is established stably.

ここで、上記の超リタード燃焼では、点火時期に近い圧縮上死点後に燃料噴射を行うため、機関回転数が上昇したり燃圧が低下したりしてクランク角での噴射期間が相対的に長くなると、燃料噴射終了時期が点火時期よりも遅れてしまうことが生じうる。このような場合、既に燃焼が開始しているところに燃料が噴射されることになるため、遅れて噴射された燃料が酸素と十分に混合しないまま高温に晒され、スモークが悪化しやすい。なお、このように圧縮上死点後に設定される点火時期よりもさらに遅れて供給される燃料は、排温上昇には寄与するものの、内燃機関のトルク発生には殆ど寄与しない。   Here, in the above-described super retard combustion, since fuel injection is performed after compression top dead center close to the ignition timing, the engine speed increases or the fuel pressure decreases, and the injection period at the crank angle is relatively long. Then, the fuel injection end timing may be delayed from the ignition timing. In such a case, since the fuel is injected at the point where combustion has already started, the fuel injected late is exposed to a high temperature without being sufficiently mixed with oxygen, and smoke is likely to deteriorate. Note that fuel supplied later than the ignition timing set after compression top dead center contributes to an increase in exhaust temperature, but hardly contributes to torque generation of the internal combustion engine.

そこで、本発明では、膨張行程噴射の燃料噴射終了時期が点火時期後の所定の許容範囲よりも遅れる場合には、この膨張行程噴射を噴射期間の途中で強制的に終了する。これにより、スモークの悪化が回避される。   Therefore, in the present invention, when the fuel injection end timing of the expansion stroke injection is delayed from a predetermined allowable range after the ignition timing, the expansion stroke injection is forcibly ended in the middle of the injection period. Thereby, the deterioration of smoke is avoided.

本発明の一つの態様では、超リタード燃焼の際に、上記の膨張行程噴射に先だって、吸気行程中もしくは圧縮行程中に、さらに燃料噴射を行うが、この吸入行程噴射もしくは圧縮行程噴射は、噴射期間の途中で強制的に終了することはない。   In one aspect of the present invention, during the super retard combustion, fuel injection is further performed during the intake stroke or the compression stroke prior to the expansion stroke injection, and the intake stroke injection or the compression stroke injection is performed as an injection. There is no forcible termination in the middle of the period.

この発明によれば、膨張行程噴射により点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性を十分に確保することができ、冷間始動の際に、触媒の早期活性化および後燃えによるHC低減を達成することができる。そして、何らかの原因で燃料噴射終了時期が点火時期よりも大きく遅れるような場合には、この膨張行程噴射が噴射期間の途中で強制的に終了するので、スモークの悪化が回避される。   According to the present invention, it is possible to sufficiently ensure the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center by the expansion stroke injection. HC reduction by burning can be achieved. If the fuel injection end timing is greatly delayed from the ignition timing for some reason, the expansion stroke injection is forcibly ended in the middle of the injection period, so that the deterioration of smoke is avoided.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。なお、暖機完了後においては、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、空燃比を30〜40程度とした極リーンの成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。この均質燃焼運転としては、運転条件に応じて、空燃比を理論空燃比とした均質ストイキ燃焼と、空燃比を20〜30程度のリーンとした均質リーン燃焼と、がある。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled. After the warm-up is completed, in a predetermined region on the low-speed and low-load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed before the compression top dead center. Done. The fuel spray is collected in the vicinity of the spark plug 14, thereby achieving extremely lean stratified combustion with an air-fuel ratio of about 30 to 40. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder. As the homogeneous combustion operation, there are homogeneous stoichiometric combustion in which the air-fuel ratio is the stoichiometric air-fuel ratio and homogeneous lean combustion in which the air-fuel ratio is lean about 20 to 30 depending on the operating conditions.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の3つの実施例を示しており、実施例1では、点火時期を15°〜30°ATDC(例えば20°ATDC)とし、燃料噴射時期(詳しくは燃料噴射開始時期)を、圧縮上死点以降でかつ点火時期前に設定する。なお、このとき、空燃比は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。   FIG. 2 shows three examples of super retard combustion. In Example 1, the ignition timing is set to 15 ° to 30 ° ATDC (for example, 20 ° ATDC), and the fuel injection timing (specifically, the fuel injection start timing) is shown. Is set after the compression top dead center and before the ignition timing. At this time, the air-fuel ratio is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17).

すなわち、触媒暖機促進ならびにHC低減のためには、点火時期遅角が有効であり、上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。前述したように、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、本発明では、圧縮上死点以降の膨張行程中になされる高圧の燃料噴射によって、ガス流動が生じ、これにより筒内の乱れを生成・強化することができる。従って、ATDC点火での火炎伝播が促進され、安定した燃焼が可能となる。   That is, in order to promote catalyst warm-up and reduce HC, ignition timing retardation is effective, and ignition after top dead center (ATDC ignition) is desirable, but in order to perform stable combustion with ATDC ignition, It is necessary to shorten the combustion period, and for this purpose, flame propagation due to turbulence must be promoted. As described above, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but in the present invention, by the high pressure fuel injection performed during the expansion stroke after the compression top dead center. The gas flow is generated, and thereby the turbulence in the cylinder can be generated and strengthened. Therefore, flame propagation by ATDC ignition is promoted and stable combustion is possible.

図2の実施例2は、燃料噴射を2回に分割した例であり、1回目の燃料噴射を吸気行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う。なお、点火時期および空燃比(2回の噴射を合わせた空燃比)は実施例1と同様である。   The second embodiment in FIG. 2 is an example in which the fuel injection is divided into two, and the first fuel injection is performed during the intake stroke, and the second fuel injection is performed after the compression top dead center. The ignition timing and the air-fuel ratio (the air-fuel ratio obtained by combining the two injections) are the same as those in the first embodiment.

このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、吸気行程中に燃料噴射(吸気行程噴射)を行うと、吸気行程噴射の燃料噴霧による乱れは圧縮行程後半で減衰してしまい、圧縮上死点後におけるガス流動強化には殆ど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇には有効である。   As described above, when fuel injection (intake stroke injection) is performed during the intake stroke prior to fuel injection after the compression top dead center (expansion stroke injection), disturbance due to fuel spray in the intake stroke injection is attenuated in the latter half of the compression stroke. However, since the injected fuel is diffused throughout the combustion chamber and contributes to the promotion of HC afterburning by ATDC ignition, the HC reduction and It is effective for raising the exhaust temperature.

また、図2の実施例3は、燃料噴射を2回に分割し、1回目の燃料噴射を圧縮行程にて行い、2回目の燃料噴射を圧縮上死点以降に行う。このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、圧縮行程中に燃料噴射(圧縮行程噴射)を行うと、実施例2の吸気行程噴射に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなるため、この1回目の燃料噴射による乱れが残り、圧縮上死点以降に2回目の燃料噴射を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、圧縮上死点付近における更なるガス流動強化が図れる。   In the third embodiment of FIG. 2, the fuel injection is divided into two, the first fuel injection is performed in the compression stroke, and the second fuel injection is performed after the compression top dead center. As described above, when the fuel injection (compression stroke injection) is performed during the compression stroke prior to the fuel injection after the compression top dead center (expansion stroke injection), the compression stroke injection is compared with the intake stroke injection of the second embodiment. However, since the disturbance of the turbulence due to the fuel spray is delayed, the turbulence due to the first fuel injection remains, and the second fuel injection is performed after the compression top dead center, which is generated by the first fuel injection. The turbulence can be strengthened to promote the turbulence, and the gas flow can be further strengthened near the compression top dead center.

この実施例3の場合に、1回目の圧縮行程噴射は、圧縮行程前半でもよいが、圧縮行程後半(90°BTDC以降)に設定すると、上死点付近での乱れをより高めることができる。特に、この1回目の圧縮行程噴射を、45°BTDC以降、より望ましくは20°BTDC以降とすると、圧縮上死点以降のガス流動をより強化することができる。   In the case of Example 3, the first compression stroke injection may be in the first half of the compression stroke, but if it is set in the second half of the compression stroke (after 90 ° BTDC), the disturbance near the top dead center can be further increased. In particular, if the first compression stroke injection is 45 ° BTDC or later, more desirably 20 ° BTDC or later, the gas flow after compression top dead center can be further enhanced.

このように、実施例1〜3の超リタード燃焼によれば、点火の直前に燃料噴霧により筒内の乱れを生成・強化することができ、火炎伝播を促進して、安定した燃焼を行わせることができる。特に、点火時期を15°〜30°ATDCまで遅角させることにより、触媒の早期活性化およびHC低減のための十分な後燃え効果を得ることができる。換言すれば、このように点火時期を大きく遅らせても、その直前まで燃料噴射を遅らせて、乱れの生成時期も遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。   As described above, according to the super retarded combustion of the first to third embodiments, the turbulence in the cylinder can be generated and strengthened by the fuel spray immediately before the ignition, and the flame propagation is promoted to perform stable combustion. be able to. In particular, by retarding the ignition timing from 15 ° to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is greatly delayed in this way, the fuel injection is delayed until just before that, and the generation time of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.

ところで、上記の超リタード燃焼では、膨張行程噴射として、点火の直前となる圧縮上死点後に燃料噴射を開始するため、何らかの原因(例えば機関回転数の上昇、燃圧の低下等)によりクランク角で示される燃料噴射期間が相対的に長くなったときに、燃料噴射終了時期が点火時期よりも遅くなることが生じうる。このような場合、既に燃焼が開始しているところに燃料が噴射されることになるため、遅れて噴射された燃料は酸素と十分に混合しないまま高温に晒されて、スモークの原因となる。図3は、例えば前述した実施例2のように吸入行程噴射と膨張行程噴射とを行う場合において、膨張行程噴射の噴射終了時期とスモークとの関係を示したものであり、図示するように、点火時期の直前で燃料噴射が終了するときが最もスモークが少なく、点火時期後のある許容範囲よりもさらに噴射終了時期が遅くなると、スモークは急激に悪化する。つまり、図に示すように点火時期を含む所定のスモーク許容範囲内に噴射終了時期があることが望ましい。   By the way, in the above-mentioned super retard combustion, since the fuel injection is started after the compression top dead center just before the ignition as the expansion stroke injection, the crank angle is increased by the crank angle due to some cause (for example, increase in engine speed, decrease in fuel pressure, etc.). When the indicated fuel injection period becomes relatively long, the fuel injection end timing may be later than the ignition timing. In such a case, the fuel is injected at the point where combustion has already started. Therefore, the fuel injected late is exposed to a high temperature without being sufficiently mixed with oxygen, causing smoke. FIG. 3 shows, for example, the relationship between the injection end timing of the expansion stroke injection and the smoke when performing the intake stroke injection and the expansion stroke injection as in Example 2 described above. The smoke is the least when the fuel injection ends just before the ignition timing, and if the injection end timing becomes later than a certain allowable range after the ignition timing, the smoke deteriorates rapidly. That is, as shown in the figure, it is desirable that the injection end timing is within a predetermined smoke allowable range including the ignition timing.

従って、本実施例では、膨張行程噴射について、その燃料噴射開始時期と必要な燃料噴射量とから燃料噴射終了時期を求め、この本来の燃料噴射終了時期が、点火時期を含む上記のスモーク許容範囲よりも遅れ側とならないか判定する。そして、もし本来の燃料噴射終了時期が上記のスモーク許容範囲よりも遅れ側となる場合には、スモーク許容範囲内となるように、膨張行程噴射を、噴射期間の途中で強制的に終了する。換言すれば、何らかの原因で燃料噴射期間(クランク角)が長くなる場合でも、必ず、図3のスモーク許容範囲の最遅角位置で燃料噴射が終了する。これにより、スモークの悪化が回避される。   Therefore, in the present embodiment, for the expansion stroke injection, the fuel injection end timing is obtained from the fuel injection start timing and the required fuel injection amount, and the original fuel injection end timing is the above smoke allowable range including the ignition timing. It is judged whether it becomes the late side. If the original fuel injection end timing is behind the smoke allowable range, the expansion stroke injection is forcibly ended in the middle of the injection period so as to be within the smoke allowable range. In other words, even if the fuel injection period (crank angle) becomes longer for some reason, the fuel injection always ends at the most retarded angle position within the smoke allowable range in FIG. Thereby, the deterioration of smoke is avoided.

因みに、超リタード燃焼の安定性については、膨張行程噴射の噴射終了時期と燃焼安定性との関係を図4に示すように、やはり点火時期後のある許容範囲よりもさらに噴射終了時期が遅くなると燃焼安定性が悪化するものの、その燃焼安定性の許容範囲は、スモーク許容範囲よりも遙かに広い。従って、燃料噴射終了時期がスモーク許容範囲よりも遅れ側とならないように制御すれば、燃焼安定性の悪化は生じない。   Incidentally, with respect to the stability of the super retard combustion, as shown in FIG. 4, the relationship between the injection end timing of the expansion stroke injection and the combustion stability is such that the injection end timing is later than a certain allowable range after the ignition timing. Although the combustion stability deteriorates, the allowable range of the combustion stability is far wider than the smoke allowable range. Therefore, if the fuel injection end timing is controlled so as not to be behind the smoke allowable range, the combustion stability does not deteriorate.

また、上記のように圧縮上死点後の点火時期よりもさらに遅れて供給される燃料は、排温上昇には寄与するものの、内燃機関のトルク発生には殆ど寄与しないため、上記のように膨張行程噴射を噴射期間の途中で強制的に終了しても、内燃機関のトルク変動は非常に小さい。   In addition, as described above, the fuel supplied later than the ignition timing after the compression top dead center contributes to the increase in exhaust temperature, but hardly contributes to the torque generation of the internal combustion engine. Even if the expansion stroke injection is forcibly terminated in the middle of the injection period, the torque fluctuation of the internal combustion engine is very small.

なお、前述した実施例2あるいは実施例3のように、膨張行程噴射に先だって吸入行程噴射もしくは圧縮行程噴射を行う場合には、当然のことながら、吸入行程噴射や圧縮行程噴射は途中で強制的に終了することはなく、常に目標とする噴射量が噴射される。   When the suction stroke injection or the compression stroke injection is performed prior to the expansion stroke injection as in the second embodiment or the third embodiment, naturally, the suction stroke injection or the compression stroke injection is forced on the way. The target injection amount is always injected.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on this invention. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 膨張行程噴射の噴射終了時期とスモークとの関係を示す特性図。The characteristic view which shows the relationship between the injection completion time of expansion stroke injection, and smoke. 膨張行程噴射の噴射終了時期と燃焼安定性との関係を示す特性図。The characteristic view which shows the relationship between the injection completion time of expansion stroke injection, and combustion stability. 従来技術における筒内の乱れの変化を示す説明図。Explanatory drawing which shows the change of the disturbance in a cylinder in a prior art.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
14…点火プラグ
15…燃料噴射弁
25…コントロールユニット
3 ... Combustion chamber 10 ... Catalytic converter 14 ... Spark plug 15 ... Fuel injection valve 25 ... Control unit

Claims (4)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料噴射開始時期を設定した膨張行程噴射を伴う超リタード燃焼を行う一方、この膨張行程噴射の燃料噴射終了時期が点火時期後の所定の許容範囲よりも遅れる場合に、この膨張行程噴射を噴射期間の途中で強制的に終了することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。   An internal combustion engine that is provided with a fuel injection valve that directly injects fuel into a cylinder and that is provided with an ignition plug, and that requires an early temperature rise of a catalytic converter in an exhaust system in a control device for an in-cylinder direct injection spark ignition internal combustion engine During the cold start, the ignition timing is set after the compression top dead center, and the super retard combustion is performed with the expansion stroke injection in which the fuel injection start timing is set before the ignition timing and after the compression top dead center. In-cylinder direct injection spark ignition internal combustion engine characterized in that, when the fuel injection end timing of the stroke injection is delayed from a predetermined allowable range after the ignition timing, the expansion stroke injection is forcibly ended in the middle of the injection period. Engine control device. 超リタード燃焼においては、圧縮上死点後の膨張行程噴射に先だって、吸気行程中もしくは圧縮行程中に、さらに燃料噴射を行うことを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. In-cylinder direct injection spark ignition according to claim 1, wherein in super retard combustion, fuel injection is further performed during an intake stroke or a compression stroke prior to an expansion stroke injection after compression top dead center. Control device for internal combustion engine. 超リタード燃焼における点火時期は、圧縮上死点後15°〜30°CAであることを特徴とする請求項1または2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   3. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 15 ° to 30 ° CA after compression top dead center. 上記の許容範囲は、スモーク限界によって定められていることを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。
The in-cylinder direct injection spark ignition internal combustion engine control device according to any one of claims 1 to 3, wherein the permissible range is determined by a smoke limit.
JP2004333996A 2004-11-18 2004-11-18 Control device for cylinder direct injection spark ignition engine Pending JP2006144609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333996A JP2006144609A (en) 2004-11-18 2004-11-18 Control device for cylinder direct injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333996A JP2006144609A (en) 2004-11-18 2004-11-18 Control device for cylinder direct injection spark ignition engine

Publications (1)

Publication Number Publication Date
JP2006144609A true JP2006144609A (en) 2006-06-08

Family

ID=36624602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333996A Pending JP2006144609A (en) 2004-11-18 2004-11-18 Control device for cylinder direct injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP2006144609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274780A (en) * 2007-04-26 2008-11-13 Toyota Motor Corp Control device of internal combustion engine
JP2018112107A (en) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274780A (en) * 2007-04-26 2008-11-13 Toyota Motor Corp Control device of internal combustion engine
US7950369B2 (en) 2007-04-26 2011-05-31 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controlling apparatus
CN101668943B (en) * 2007-04-26 2011-06-15 丰田自动车株式会社 Internal combustion engine controlling apparatus
EP2138713A4 (en) * 2007-04-26 2017-08-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controlling apparatus
JP2018112107A (en) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 Control device for internal combustion engine
US10202928B2 (en) 2017-01-11 2019-02-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
US7938098B2 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007002795A (en) Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006144609A (en) Control device for cylinder direct injection spark ignition engine
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2005214039A (en) Control device for direct spark ignition type internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811