JP4577091B2 - In-cylinder direct injection spark ignition internal combustion engine controller - Google Patents

In-cylinder direct injection spark ignition internal combustion engine controller Download PDF

Info

Publication number
JP4577091B2
JP4577091B2 JP2005158509A JP2005158509A JP4577091B2 JP 4577091 B2 JP4577091 B2 JP 4577091B2 JP 2005158509 A JP2005158509 A JP 2005158509A JP 2005158509 A JP2005158509 A JP 2005158509A JP 4577091 B2 JP4577091 B2 JP 4577091B2
Authority
JP
Japan
Prior art keywords
temperature
internal combustion
combustion engine
super retard
direct injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005158509A
Other languages
Japanese (ja)
Other versions
JP2006336475A (en
Inventor
智之 武田
彰 中島
慎一 岡本
智之 茂藤
仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005158509A priority Critical patent/JP4577091B2/en
Priority to CN 200610084544 priority patent/CN1873202B/en
Priority to EP06011018A priority patent/EP1728996A1/en
Priority to US11/443,179 priority patent/US7958720B2/en
Publication of JP2006336475A publication Critical patent/JP2006336475A/en
Application granted granted Critical
Publication of JP4577091B2 publication Critical patent/JP4577091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時などにおける噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection type spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to control of injection timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。
特許第3325230号公報
In Patent Document 1, as a catalyst warm-up method for a direct injection spark ignition internal combustion engine, a period from an intake stroke to an ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than an activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed after the middle of the compression stroke, for example, at 120 ° BTDC to 45 ° BTDC.
Japanese Patent No. 3325230

内燃機関の冷機時における触媒の早期活性化および後燃えによるHC低減のためには、点火時期の遅角が有効であり、より大きな効果を得るためには、圧縮上死点以降の点火(ATDC点火)が望ましい。ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。   For early activation of the catalyst when the internal combustion engine is cold and HC reduction due to afterburning, retarding the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC) Ignition) is desirable. In order to perform stable combustion by ATDC ignition, it is necessary to shorten the combustion period. For this reason, it is necessary to increase the combustion speed (flame propagation speed) by strengthening the turbulence in the cylinder.

このような乱れの強化のために、筒内に高圧で噴射される燃料噴霧のエネルギにより筒内に乱れを生成することが考えられる。   In order to strengthen such disturbance, it is conceivable that the disturbance is generated in the cylinder by the energy of the fuel spray injected at a high pressure in the cylinder.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っている。このように最後の燃料噴射が圧縮上死点よりも前では、その噴霧により筒内に乱れを生成しても、圧縮上死点以降はその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Yes. As described above, before the last fuel injection is before the compression top dead center, even if the spray generates turbulence in the cylinder, the turbulence is attenuated after the compression top dead center, and the flame propagation in ATDC ignition Does not contribute to speed increase.

例えば、図は、吸気ポート内に設けたガス流動制御弁(例えばタンブル制御弁)を作動させた場合とこのようなガス流動制御弁を具備しない場合とについて、筒内の乱れの大きさを示したものであるが、ガス流動制御弁を作動させることで吸気行程中に生成した乱れ(符号Aの部分)は、圧縮行程の進行とともに減衰し、圧縮行程後期のタンブル流の崩壊に伴い一時的に乱れが大きくなる(符号Bの部分)ものの、圧縮上死点以降は符号Cで示すように急速に減衰してしまい、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。燃料噴霧による乱れについても同様であり、圧縮上死点より前の燃料噴射により乱れが生成されたとしても、圧縮上死点以降の点火燃焼には寄与しない。 For example, FIG. 9 shows the magnitude of turbulence in a cylinder when a gas flow control valve (for example, a tumble control valve) provided in an intake port is operated and when such a gas flow control valve is not provided. As shown, the turbulence (part A) generated during the intake stroke by operating the gas flow control valve attenuates with the progress of the compression stroke, and is temporarily accompanied by the collapse of the tumble flow in the latter half of the compression stroke. Although the turbulence increases (the portion indicated by reference symbol B), after the compression top dead center, it rapidly attenuates as indicated by reference symbol C, and combustion improvement (improving flame propagation) using the turbulence cannot be expected so much. The same applies to turbulence caused by fuel spray, and even if turbulence is generated by fuel injection before compression top dead center, it does not contribute to ignition combustion after compression top dead center.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域では点火時期を圧縮上死点前(BTDC点火)としている。   Therefore, ATDC ignition is more advantageous for exhaust temperature rise and HC reduction, but combustion stability is not established. Therefore, in Patent Document 1, the ignition timing is set to before compression top dead center (BTDC ignition) in the no-load region. Yes.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減などのためのATDC点火での燃焼安定性を改善することを目的としている。   The present invention aims to improve the combustion stability in ATDC ignition for early activation of the catalyst, reduction of HC, and the like based on such a situation.

本発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のとき、例えば触媒コンバータの冷機時のような排気ガス温度の昇温が必要な場合などに、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行うことを特徴としている。なお、NOxを吸着するNOxトラップ触媒においては、硫黄成分(SOx)が触媒に付着することによりNOx吸着性能が低下するので、触媒を強制的に高温化してSOxを放出するSOx放出処理(硫黄被毒解除)を行う必要があるが、このSOx放出処理の際の排気ガス温度の昇温を、上記の超リタード燃焼を利用して行うことも可能である。そして、本発明では、この超リタード燃焼での運転中に負荷が上昇したときに該超リタード燃焼を解除するようにしている。   The present invention provides a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and that includes an ignition plug. When the exhaust gas temperature needs to be raised, such as when the engine is cold, the ignition timing is set after the compression top dead center, and super retard combustion is performed to inject fuel before the ignition timing and after the compression top dead center. It is characterized by that. Note that in a NOx trap catalyst that adsorbs NOx, the sulfur component (SOx) adheres to the catalyst, so that the NOx adsorption performance deteriorates. Therefore, the SOx release treatment (sulfur coating) that forcibly raises the temperature of the catalyst and releases SOx. However, it is also possible to raise the temperature of the exhaust gas during the SOx release process using the above-mentioned super retard combustion. In the present invention, when the load increases during the operation in the super retard combustion, the super retard combustion is canceled.

すなわち、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、圧縮上死点以降の膨張行程中になされる燃料噴射によって、筒内の乱れを生成・強化することができ、ATDC点火での火炎伝播が促進される。従って、点火時期を圧縮上死点後とした超リタード燃焼が安定的に成立する。   In other words, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but the in-cylinder turbulence is generated and strengthened by the fuel injection performed during the expansion stroke after the compression top dead center. Flame propagation with ATDC ignition is facilitated. Therefore, super retard combustion with the ignition timing after the compression top dead center is established stably.

ここで、上記のように点火時期を大幅に遅角させた超リタード燃焼においては、特許文献1などの従来の技術に比べて、排気温度が非常に高くなるため、車両の発進あるいは補機負荷の変動などによって負荷が多少増加したときに、触媒コンバータの温度が過度に高くなり、熱的損傷ないし劣化を生じる懸念がある。特に、触媒温度が活性温度に達して超リタード燃焼を解除したとしても、触媒コンバータ上流側の排気系部品の熱容量や触媒自体の反応熱等によって触媒コンバータの内部温度は上昇し続け、触媒劣化温度にまでオーバシュートしてしまう虞がある。   Here, in the super retard combustion in which the ignition timing is greatly retarded as described above, the exhaust temperature becomes very high as compared with the conventional technique such as Patent Document 1, so that the vehicle starts or the auxiliary load There is a concern that when the load is slightly increased due to fluctuations in the temperature, the temperature of the catalytic converter becomes excessively high, causing thermal damage or deterioration. In particular, even if the catalyst temperature reaches the activation temperature and cancels the super retard combustion, the internal temperature of the catalytic converter continues to increase due to the heat capacity of the exhaust system components upstream of the catalytic converter, the reaction heat of the catalyst itself, etc. There is a risk of overshooting.

そこで、本発明では、超リタード燃焼での運転中に負荷が上昇したときに、該超リタード燃焼を解除するようにしている。   Therefore, in the present invention, when the load increases during the operation in the super retard combustion, the super retard combustion is canceled.

上記の負荷変化は、例えば、アクセル開度変化に基づいて検出することができる。あるいは、補機作動状態に基づいて検出することができる。あるいは、アイドル状態から非アイドル状態へ移行したときに超リタード燃焼を解除するようにしてもよい。   The load change can be detected based on, for example, accelerator opening change. Or it can detect based on an auxiliary machine operating state. Alternatively, the super retard combustion may be canceled when the idle state shifts to the non-idle state.

超リタード燃焼の解除後、負荷が低下したときには、超リタード燃焼を再開するようにしてもよい。   When the load decreases after canceling the super retard combustion, the super retard combustion may be resumed.

また本発明では、上記触媒コンバータの出口側における触媒出口温度が触媒の活性開始温度に達するまでは、上記超リタード燃焼を禁止する。すなわち、超リタード燃焼においては、排気温度が非常に高くなるため、仮に、触媒コンバータが完全な冷機状態(外気温に近い状態)にあるときに、機関の始動後直ちに超リタード燃焼に移行したとすると、触媒コンバータ内部の温度勾配が非常に急なものとなる。つまり、モノリス型セラミックス触媒担体などの上流側部分のみが急激に高温となり、熱歪が大きくなる懸念が生じる。従って、内燃機関の始動後、触媒コンバータが触媒の活性開始温度に達した状態から超リタード燃焼を開始することで、触媒コンバータの熱的損傷をより確実に回避できる。 In the present invention, the super retard combustion is prohibited until the catalyst outlet temperature on the outlet side of the catalytic converter reaches the activation start temperature of the catalyst. In other words, in the super retard combustion, the exhaust temperature becomes very high. Therefore, if the catalytic converter is in a completely cold state (a state close to the outside air temperature), it is assumed that the engine has shifted to the super retard combustion immediately after the engine is started. Then, the temperature gradient inside the catalytic converter becomes very steep. That is, there is a concern that only the upstream portion such as the monolithic ceramic catalyst carrier rapidly becomes high in temperature and the thermal strain increases. Therefore, after the internal combustion engine is started, thermal damage to the catalytic converter can be avoided more reliably by starting super retard combustion from a state in which the catalytic converter has reached the activation start temperature of the catalyst.

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性を十分に確保することができ、例えば冷間始動の際に、触媒の早期活性化および後燃えによるHC低減を達成することができる。そして、超リタード燃焼での運転中に車両の発進などにより負荷が上昇したときには、超リタード燃焼が解除されるので、触媒温度が過度に高くなって触媒の劣化を招いたり触媒担体が破損したりすることを回避することができる。   According to the present invention, it is possible to sufficiently ensure the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center. For example, at the time of cold start, the catalyst is activated early and the HC due to the afterburning. Reduction can be achieved. When the load increases due to the start of the vehicle or the like during operation in super retard combustion, the super retard combustion is canceled, so that the catalyst temperature becomes excessively high, causing catalyst deterioration or catalyst support damage. Can be avoided.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。さらに、本実施例では、触媒コンバータ10の温度状態を検出するために、該触媒コンバータ10のモノリス型セラミックス触媒担体の長手方向中央部に配置された触媒温度センサ31と、触媒コンバータ10の出口部に配置された触媒出口温度センサ32と、を備えている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10. Further, in the present embodiment, in order to detect the temperature state of the catalytic converter 10, a catalyst temperature sensor 31 disposed at the center in the longitudinal direction of the monolithic ceramic catalyst carrier of the catalytic converter 10 and an outlet portion of the catalytic converter 10 And a catalyst outlet temperature sensor 32.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。なお、暖機完了後においては、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、空燃比を30〜40程度とした極リーンの成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。この均質燃焼運転としては、運転条件に応じて、空燃比を理論空燃比とした均質ストイキ燃焼と、空燃比を20〜30程度のリーンとした均質リーン燃焼と、がある。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled. After the warm-up is completed, in a predetermined region on the low-speed and low-load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed before the compression top dead center. Done. The fuel spray is collected in the vicinity of the spark plug 14, thereby achieving extremely lean stratified combustion with an air-fuel ratio of about 30 to 40. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder. As the homogeneous combustion operation, there are homogeneous stoichiometric combustion in which the air-fuel ratio is the stoichiometric air-fuel ratio and homogeneous lean combustion in which the air-fuel ratio is lean about 20 to 30 depending on the operating conditions.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の3つの実施例を示しており、実施例1では、点火時期を15°〜30°ATDC(例えば20°ATDC)とし、燃料噴射時期(詳しくは燃料噴射開始時期)を、圧縮上死点以降でかつ点火時期前に設定する。なお、このとき、空燃比は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。   FIG. 2 shows three examples of super retard combustion. In Example 1, the ignition timing is set to 15 ° to 30 ° ATDC (for example, 20 ° ATDC), and the fuel injection timing (specifically, the fuel injection start timing) is shown. Is set after the compression top dead center and before the ignition timing. At this time, the air-fuel ratio is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17).

すなわち、触媒暖機促進ならびにHC低減のためには、点火時期遅角が有効であり、上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。前述したように、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、本発明では、圧縮上死点以降の膨張行程中になされる高圧の燃料噴射によって、ガス流動が生じ、これにより筒内の乱れを生成・強化することができる。従って、ATDC点火での火炎伝播が促進され、安定した燃焼が可能となる。   That is, in order to promote catalyst warm-up and reduce HC, ignition timing retardation is effective, and ignition after top dead center (ATDC ignition) is desirable, but in order to perform stable combustion with ATDC ignition, It is necessary to shorten the combustion period, and for this purpose, flame propagation due to turbulence must be promoted. As described above, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but in the present invention, by the high pressure fuel injection performed during the expansion stroke after the compression top dead center. The gas flow is generated, and thereby the turbulence in the cylinder can be generated and strengthened. Therefore, flame propagation by ATDC ignition is promoted and stable combustion is possible.

図2の実施例2は、燃料噴射を2回に分割した例であり、1回目の燃料噴射を吸気行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う。なお、点火時期および空燃比(2回の噴射を合わせた空燃比)は実施例1と同様である。   The second embodiment in FIG. 2 is an example in which the fuel injection is divided into two, and the first fuel injection is performed during the intake stroke, and the second fuel injection is performed after the compression top dead center. The ignition timing and the air-fuel ratio (the air-fuel ratio obtained by combining the two injections) are the same as those in the first embodiment.

このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、吸気行程中に燃料噴射(吸気行程噴射)を行うと、吸気行程噴射の燃料噴霧による乱れは圧縮行程後半で減衰してしまい、圧縮上死点後におけるガス流動強化には殆ど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇には有効である。   Thus, if fuel injection (intake stroke injection) is performed during the intake stroke prior to fuel injection after compression top dead center (expansion stroke injection), the disturbance due to fuel spray in the intake stroke injection is attenuated in the latter half of the compression stroke. However, since the injected fuel is diffused throughout the combustion chamber and contributes to the promotion of HC afterburning by ATDC ignition, the HC reduction and It is effective for raising the exhaust temperature.

また、図2の実施例3は、燃料噴射を2回に分割し、1回目の燃料噴射を圧縮行程にて行い、2回目の燃料噴射を圧縮上死点以降に行う。このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、圧縮行程中に燃料噴射(圧縮行程噴射)を行うと、実施例2の吸気行程噴射に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなるため、この1回目の燃料噴射による乱れが残り、圧縮上死点以降に2回目の燃料噴射を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、圧縮上死点付近における更なるガス流動強化が図れる。   In the third embodiment of FIG. 2, the fuel injection is divided into two, the first fuel injection is performed in the compression stroke, and the second fuel injection is performed after the compression top dead center. As described above, when the fuel injection (compression stroke injection) is performed during the compression stroke prior to the fuel injection after the compression top dead center (expansion stroke injection), the compression stroke injection is compared with the intake stroke injection of the second embodiment. However, since the disturbance of the turbulence due to the fuel spray is delayed, the turbulence due to the first fuel injection remains, and the second fuel injection is performed after the compression top dead center, which is generated by the first fuel injection. The turbulence can be strengthened to promote the turbulence, and the gas flow can be further strengthened near the compression top dead center.

この実施例3の場合に、1回目の圧縮行程噴射は、圧縮行程前半でもよいが、圧縮行程後半(90°BTDC以降)に設定すると、上死点付近での乱れをより高めることができる。特に、この1回目の圧縮行程噴射を、45°BTDC以降、より望ましくは20°BTDC以降とすると、圧縮上死点以降のガス流動をより強化することができる。   In the case of Example 3, the first compression stroke injection may be in the first half of the compression stroke, but if it is set in the second half of the compression stroke (after 90 ° BTDC), the disturbance near the top dead center can be further increased. In particular, if the first compression stroke injection is 45 ° BTDC or later, more desirably 20 ° BTDC or later, the gas flow after compression top dead center can be further enhanced.

このように、実施例1〜3の超リタード燃焼によれば、点火の直前に燃料噴霧により筒内の乱れを生成・強化することができ、火炎伝播を促進して、安定した燃焼を行わせることができる。特に、点火時期を15°〜30°ATDCまで遅角させることにより、触媒の早期活性化およびHC低減のための十分な後燃え効果を得ることができる。換言すれば、このように点火時期を大きく遅らせても、その直前まで燃料噴射を遅らせて、乱れの生成時期も遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。   As described above, according to the super retarded combustion of the first to third embodiments, the turbulence in the cylinder can be generated and strengthened by the fuel spray immediately before the ignition, and the flame propagation is promoted to perform stable combustion. be able to. In particular, by retarding the ignition timing from 15 ° to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is greatly delayed in this way, the fuel injection is delayed until just before that, and the generation time of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.

ここで、上記の超リタード燃焼においては、排気ガス温度が非常に高く得られることから、触媒コンバータ10が上流側から急速に加熱され、触媒コンバータ10の熱歪や過度の温度上昇の懸念がある。そのため、本実施例では、図3のような処理により、触媒コンバータ10の温度状態を監視しつつ運転モードの切換が行われる。   Here, in the above-described super retard combustion, the exhaust gas temperature can be obtained extremely high, so the catalytic converter 10 is rapidly heated from the upstream side, and there is a concern of thermal distortion of the catalytic converter 10 or excessive temperature rise. . Therefore, in this embodiment, the operation mode is switched while monitoring the temperature state of the catalytic converter 10 by the processing as shown in FIG.

先ず、ステップ1では、触媒出口温度センサ32により検出される触媒コンバータ10の出口温度TCを、所定の第1基準温度T1と比較し、第1基準温度T1よりも低ければ、ステップ2へ進んで、冷機時の通常制御を行う。上記第1基準温度T1は、触媒の活性開始温度にほぼ相当し、例えば、150℃〜200℃程度に設定される。また冷機時の通常制御は、超リタード燃焼のような極端な排気温度上昇ではなくある程度の排気温度上昇を行うためのものであり、例えば、吸気行程中に燃料噴射を行うとともに、圧縮上死点前のMBT点よりも遅れた時期に点火を行う。あるいは、吸気行程噴射に加えて、あるいはこれに代えて、圧縮行程噴射を行うようにしてもよい。機関始動時に触媒コンバータ10が完全な冷機状態にあった場合、この冷機時の通常制御によって、触媒コンバータ10の温度が徐々に上昇することになる。   First, in step 1, the outlet temperature TC of the catalytic converter 10 detected by the catalyst outlet temperature sensor 32 is compared with a predetermined first reference temperature T1, and if it is lower than the first reference temperature T1, the process proceeds to step 2. Perform normal control when cold. The first reference temperature T1 substantially corresponds to the activation start temperature of the catalyst, and is set to about 150 ° C. to 200 ° C., for example. Also, the normal control when the engine is cold is not for an extreme exhaust temperature increase such as super retard combustion, but for a certain amount of exhaust temperature increase.For example, while performing fuel injection during the intake stroke, compression top dead center Ignition is performed at a time later than the previous MBT point. Alternatively, in addition to or instead of the intake stroke injection, the compression stroke injection may be performed. When the catalytic converter 10 is in a completely cold state when the engine is started, the temperature of the catalytic converter 10 is gradually increased by the normal control during the cold state.

出口温度TCが第1基準温度T1以上であれば、ステップ3で触媒温度センサ31により検出される触媒温度TBが第2基準温度T2未満であるか判定する。第2基準温度T2は、触媒の完全活性にほぼ相当する温度(より詳しくは完全活性温度よりもやや低い温度)であり、例えば250℃〜300℃程度に設定される。冷機状態からの始動であれば、出口温度TCが第1基準温度T1に達したときに、通常、触媒温度TBは第2基準温度T2未満であり、従って、ステップ4へ進んで、前述した超リタード燃焼を実行する。これにより、排気ガス温度は急激に上昇し、触媒コンバータ10が速やかに昇温する。この超リタード燃焼は、基本的にステップ6で、触媒温度TBが第2基準温度T2以上となるまで継続される。触媒温度TBが第2基準温度T2以上となれば、ステップ7へ進み、暖機後の通常制御、つまり前述した暖機後の均質燃焼運転もしくは成層燃焼運転が実行される。   If the outlet temperature TC is equal to or higher than the first reference temperature T1, it is determined in step 3 whether the catalyst temperature TB detected by the catalyst temperature sensor 31 is lower than the second reference temperature T2. The second reference temperature T2 is a temperature substantially corresponding to the complete activity of the catalyst (more specifically, a temperature slightly lower than the complete activation temperature), and is set to about 250 ° C. to 300 ° C., for example. If starting from the cold state, when the outlet temperature TC reaches the first reference temperature T1, the catalyst temperature TB is usually lower than the second reference temperature T2. Perform retarded combustion. As a result, the exhaust gas temperature rises rapidly, and the catalytic converter 10 quickly rises in temperature. This super retard combustion is basically continued in step 6 until the catalyst temperature TB becomes equal to or higher than the second reference temperature T2. If the catalyst temperature TB is equal to or higher than the second reference temperature T2, the routine proceeds to step 7, where the normal control after warm-up, that is, the above-described homogeneous combustion operation or stratified combustion operation after warm-up is executed.

また、超リタード燃焼の実行中は、ステップ5において、電子制御スロットル弁7のスロットル開度Thが所定の上限値Th1を越えていないか繰り返し判定し、上限値Th1を越えた場合には、触媒温度TBが第2基準温度T2に達するのを待たずに、ステップ7へ進んで直ちに超リタード燃焼を解除する。なお、このように超リタード燃焼を解除したときに、暖機後の通常制御(ステップ7)へ移行するのではなく、上述した冷機時の通常制御を、例えば触媒温度TBが第2基準温度T2以上となるまで行うようにしてもよい。   During super retard combustion, it is repeatedly determined in step 5 whether the throttle opening Th of the electronically controlled throttle valve 7 exceeds a predetermined upper limit value Th1, and if the upper limit value Th1 is exceeded, the catalyst Without waiting for the temperature TB to reach the second reference temperature T2, the routine proceeds to step 7 where the super retard combustion is immediately canceled. When the super retard combustion is canceled in this way, the normal control after the warming-up (step 7) is not performed, but the normal control during the cold-cooling described above is performed, for example, the catalyst temperature TB is the second reference temperature T2. You may make it carry out until it becomes the above.

このように、本実施例では、出口温度TCが第1基準温度T1に達するまでは超リタード燃焼が禁止されることになり、超リタード燃焼により触媒完全活性までの所要時間を短縮しつつ触媒コンバータ10の熱的劣化を回避している。   As described above, in this embodiment, the super retard combustion is prohibited until the outlet temperature TC reaches the first reference temperature T1, and the catalytic converter reduces the time required until the catalyst is fully activated by the super retard combustion. 10 thermal degradation is avoided.

図4および図5は、触媒コンバータ10を含め内燃機関が完全に冷機状態にある状態から始動した場合の触媒コンバータ10の温度変化を、排気温度が非常に高い場合(図4)と比較的排気温度が低い場合(図5)とについて示したものである。具体的には、図6に測温点を示すように、触媒コンバータ10の入口部(A点)の温度TAと、モノリス触媒担体の上流端付近(B1点)の温度TB1と、モノリス触媒担体の下流端付近(B2点)の温度TB2と、触媒コンバータ10の出口部(C点)の温度TCと、の4箇所の温度変化を示している。   FIGS. 4 and 5 show the temperature change of the catalytic converter 10 when the internal combustion engine including the catalytic converter 10 is completely cooled. When the exhaust temperature is very high (FIG. 4), the exhaust gas is relatively exhausted. This shows the case where the temperature is low (FIG. 5). Specifically, as shown in FIG. 6, the temperature TA at the inlet portion (point A) of the catalytic converter 10, the temperature TB1 near the upstream end (point B1) of the monolith catalyst carrier, and the monolith catalyst carrier. 4 shows temperature changes at four locations, a temperature TB2 in the vicinity of the downstream end (point B2) and a temperature TC at the outlet portion (point C) of the catalytic converter 10.

始動直後から超リタード燃焼として高い排気温度を与えた場合には、図4に示すように、触媒担体上流端温度TB1が入口部温度TAとともに急激に上昇するため、触媒担体の前後の温度差ΔTが非常に大きくなる。つまり、熱歪が大きく発生する。   When a high exhaust temperature is applied as super retard combustion immediately after start-up, as shown in FIG. 4, the catalyst carrier upstream end temperature TB1 rises rapidly with the inlet temperature TA, so the temperature difference ΔT before and after the catalyst carrier Becomes very large. That is, a large thermal distortion occurs.

これに対し、排気温度が比較的低い場合には、図5に示すように、触媒担体の前後の温度差ΔTは、十分に小さくなる。そして、出口温度TCが所定の第1基準温度T1に達した時点で超リタード燃焼に切り換えれば、図5に破線で示すように、各部の温度が急激に上昇するため、最終的な目標である触媒完全活性に至るまでの所要時間は、図4の場合と大差がないものとなる。なお、超リタード燃焼に切り換えた段階では、触媒担体の内部で反応熱が生じ始めているので、それ以後も、大きな温度差ΔTが生じることはない。   On the other hand, when the exhaust temperature is relatively low, as shown in FIG. 5, the temperature difference ΔT before and after the catalyst carrier is sufficiently small. When the outlet temperature TC reaches the predetermined first reference temperature T1, when switching to super retarded combustion, as shown by the broken lines in FIG. The time required to reach a certain catalyst complete activity is not much different from the case of FIG. Note that, at the stage of switching to super retarded combustion, reaction heat begins to be generated inside the catalyst carrier, so that a large temperature difference ΔT does not occur thereafter.

また、超リタード燃焼の途中でスロットル開度Thが増加して燃料噴射量が増えると、図示はしないが、入口部温度TA(換言すれば排気温度)が過度に高くなり、これに伴い触媒担体上流端温度TB1がさらに上昇するので、触媒担体の前後温度差ΔTつまり熱歪が大となる。しかも、触媒温度TBが第2基準温度T2に達して超リタード燃焼を停止した後も触媒コンバータ10上流側の排気系部品の熱容量や触媒自体の反応熱等によって触媒コンバータ10の内部温度は上昇し続け、触媒劣化温度にまでオーバシュートしてしまう虞がある。これに対し、上記実施例では、スロットル開度Thが所定の上限値Th1を越えた時点で直ちに超リタード燃焼を中止するので、上記のような過度の温度上昇や熱歪を回避することができる。   In addition, when the throttle opening Th increases during the super retard combustion and the fuel injection amount increases, the inlet temperature TA (in other words, the exhaust gas temperature) becomes excessively high (not shown), and accordingly, the catalyst carrier Since the upstream end temperature TB1 further increases, the temperature difference ΔT of the catalyst carrier, that is, the thermal strain becomes large. Moreover, even after the catalyst temperature TB reaches the second reference temperature T2 and the super retard combustion is stopped, the internal temperature of the catalytic converter 10 rises due to the heat capacity of the exhaust system components upstream of the catalytic converter 10 and the reaction heat of the catalyst itself. There is a risk of overshooting to the catalyst deterioration temperature. On the other hand, in the above embodiment, the super retard combustion is stopped immediately when the throttle opening degree Th exceeds the predetermined upper limit value Th1, so that the excessive temperature rise and thermal distortion as described above can be avoided. .

なお、スロットル開度Thが大となって超リタード燃焼を中止した後、触媒温度TBが第2基準温度T2に達する前に、スロットル開度Thが所定開度Th1以下となれば、超リタード燃焼が再開される。   If the throttle opening Th becomes equal to or lower than the predetermined opening Th1 before the catalyst temperature TB reaches the second reference temperature T2 after the throttle opening Th becomes large and the super retard combustion is stopped, the super retard combustion is performed. Is resumed.

図7および図8は、上記の図3のフローチャートの変形例を示している。図7の例では、超リタード燃焼の実行中に、ステップ5Aにおいて、空調装置用コンプレッサ等の所定の補機負荷がONとなったか否かを繰り返し判定し、補機負荷がONとなった場合には、触媒温度TBが第2基準温度T2に達するのを待たずに、直ちに超リタード燃焼を解除するようにしている。なお、複数の補機の負荷の総和が所定レベルに達したときに超リタード燃焼を解除するようにしてもよい。   7 and 8 show a modification of the flowchart of FIG. In the example of FIG. 7, during the execution of super retard combustion, in step 5A, it is repeatedly determined whether or not a predetermined auxiliary load such as an air conditioner compressor has been turned ON, and the auxiliary load is turned ON. In this case, the super retard combustion is immediately canceled without waiting for the catalyst temperature TB to reach the second reference temperature T2. The super retard combustion may be canceled when the sum of the loads of the plurality of auxiliary machines reaches a predetermined level.

また、図8の例では、超リタード燃焼の実行中に、ステップ5Bにおいて、アクセルペダル踏み込み量ないしは電子制御スロットル弁7の開度が0であることを示すアイドルスイッチ信号がONであるか否かを繰り返し判定し、アイドルスイッチ信号がOFFとなった場合には、触媒温度TBが第2基準温度T2に達するのを待たずに、直ちに超リタード燃焼を解除するようにしている。なお、このアイドルスイッチ信号は、必ずしも物理的なスイッチでなくともよく、例えばアクセル開度センサ23の検出信号から生成される。従って、車両の発進などでアイドル状態から非アイドル状態へ移行すると、超リタード燃焼は中止される。   In the example of FIG. 8, whether or not the idle switch signal indicating that the accelerator pedal depression amount or the opening degree of the electronically controlled throttle valve 7 is 0 is ON in step 5B during the execution of the super retard combustion. When the idle switch signal is turned OFF, the super retard combustion is immediately canceled without waiting for the catalyst temperature TB to reach the second reference temperature T2. The idle switch signal is not necessarily a physical switch, and is generated from a detection signal of the accelerator opening sensor 23, for example. Accordingly, when the vehicle shifts from the idle state to the non-idle state due to the start of the vehicle or the like, the super retard combustion is stopped.

また、本発明の超リタード燃焼は、排気系の触媒コンバータ10としてNOxトラップ触媒を用いた場合の硫黄被毒解除のためにも利用することができる。NOxトラップ触媒は、流入する排気の排気空燃比がリーンであるときにNOxを吸着し、流入する排気の排気空燃比がリッチであると、吸着していたNOxを放出して触媒作用により浄化処理するものであるが、燃料中の硫黄成分(SOx)が触媒に結合するとNOx吸着性能が低下する。そのため、適当な時期に、触媒を強制的に高温化してSOxを放出除去する処理(いわゆる硫黄被毒解除)が必要である。本発明の超リタード燃焼は、非常に高い排気温度を得られるので、このNOxトラップ触媒の硫黄被毒解除処理に適したものとなる。   The super retarded combustion of the present invention can also be used for releasing sulfur poisoning when a NOx trap catalyst is used as the exhaust system catalytic converter 10. The NOx trap catalyst adsorbs NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is lean, and releases the adsorbed NOx when the exhaust air-fuel ratio of the inflowing exhaust gas is rich, and purifies by catalytic action. However, when the sulfur component (SOx) in the fuel is bound to the catalyst, the NOx adsorption performance is lowered. For this reason, it is necessary to perform a process (so-called sulfur poisoning release) for forcibly raising the temperature of the catalyst and releasing SOx at an appropriate time. The super retarded combustion according to the present invention can obtain a very high exhaust temperature, and therefore is suitable for the sulfur poisoning release processing of this NOx trap catalyst.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on this invention. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 始動時のモード切換の処理を示すフローチャート。The flowchart which shows the mode switching process at the time of a start. 排気温度が高い場合の触媒コンバータ各部の温度変化を示すタイムチャート。The time chart which shows the temperature change of each part of a catalytic converter when exhaust gas temperature is high. 排気温度が低い場合の触媒コンバータ各部の温度変化を示すタイムチャート。The time chart which shows the temperature change of each part of a catalytic converter when exhaust gas temperature is low. 図4および図5の測温点を示す説明図。Explanatory drawing which shows the temperature measuring point of FIG. 4 and FIG. 負荷変化の検出の変形例を示すフローチャート。The flowchart which shows the modification of a detection of load change. 負荷変化の検出の変形例を示すフローチャート。The flowchart which shows the modification of a detection of load change. 来技術における筒内の乱れの変化を示す説明図。Explanatory view showing a change in turbulence in the cylinder in accordance coming technology.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
13…排気温度センサ
14…点火プラグ
15…燃料噴射弁
25…コントロールユニット
31…触媒温度センサ
32…触媒出口温度センサ
DESCRIPTION OF SYMBOLS 3 ... Combustion chamber 10 ... Catalytic converter 13 ... Exhaust temperature sensor 14 ... Spark plug 15 ... Fuel injection valve 25 ... Control unit 31 ... Catalyst temperature sensor 32 ... Catalyst outlet temperature sensor

Claims (9)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、
機関の冷間始動時に、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行うように構成するとともに、
排気系に設けられた触媒コンバータの出口側における触媒出口温度が触媒の活性開始温度に達するまでは上記超リタード燃焼を禁止し、該触媒出口温度が上記活性開始温度となってから上記超リタード燃焼を開始する一方、
この超リタード燃焼での運転中に負荷が上昇したときに該超リタード燃焼を解除することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。
In a control device for a direct injection type spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and that includes an ignition plug,
At the time of cold start of the engine, the ignition timing is set after the compression top dead center, and the super retard combustion is performed so that fuel is injected before the ignition timing and after the compression top dead center.
The super retard combustion is prohibited until the catalyst outlet temperature on the outlet side of the catalytic converter provided in the exhaust system reaches the activation start temperature of the catalyst, and the super retard combustion is performed after the catalyst exit temperature reaches the activation start temperature. While starting
A control apparatus for an in-cylinder direct injection spark ignition internal combustion engine, wherein the super retard combustion is canceled when a load increases during operation in the super retard combustion.
上記触媒コンバータの触媒担体の温度が、上記設定温度よりも高い第2の設定温度に達したときに上記超リタード燃焼を終了することを特徴とする請求項に記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection spark according to claim 1 , wherein the super retard combustion is terminated when the temperature of the catalyst carrier of the catalytic converter reaches a second set temperature higher than the set temperature. Control device for an ignition internal combustion engine. 超リタード燃焼の解除後、負荷が低下したときに超リタード燃焼を再開することを特徴とする請求項1または2に記載の筒内直接噴射式火花点火内燃機関の制御装置。 3. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1 or 2 , wherein after the cancellation of the super retard combustion, the super retard combustion is resumed when the load decreases. 上記の負荷変化をアクセル開度変化に基づいて検出することを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The control device for a direct injection type spark ignition internal combustion engine according to any one of claims 1 to 3 , wherein the load change is detected based on an accelerator opening change. 上記の負荷変化を補機作動状態に基づいて検出することを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The control apparatus for a direct injection type spark ignition internal combustion engine according to any one of claims 1 to 3 , wherein the load change is detected based on an operating state of an auxiliary machine. アイドル状態から非アイドル状態へ移行したときに超リタード燃焼を解除することを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The control apparatus for a direct injection spark ignition internal combustion engine according to any one of claims 1 to 5 , wherein the super retard combustion is canceled when the idle state is shifted to the non-idle state. 超リタード燃焼における点火時期は、圧縮上死点後15°〜30°CAであることを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection spark ignition internal combustion engine control device according to any one of claims 1 to 6 , wherein the ignition timing in the super retard combustion is 15 ° to 30 ° CA after compression top dead center. 超リタード燃焼においては、圧縮上死点後の燃料噴射に先だって、吸気行程中もしくは圧縮行程中に、さらに燃料噴射を行うことを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection according to any one of claims 1 to 7 , wherein in super retard combustion, fuel injection is further performed during an intake stroke or a compression stroke prior to fuel injection after compression top dead center. A control device for an injection spark ignition internal combustion engine. 超リタード燃焼における空燃比は、理論空燃比もしくは若干リーンであることを特徴とする請求項1〜のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。 The control device for a direct injection spark ignition internal combustion engine according to any one of claims 1 to 8 , wherein the air-fuel ratio in super retarded combustion is a stoichiometric air-fuel ratio or slightly lean.
JP2005158509A 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4577091B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005158509A JP4577091B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller
CN 200610084544 CN1873202B (en) 2005-05-31 2006-05-25 Combustion control apparatus for direct-injection spark-ignition internal combustion engine
EP06011018A EP1728996A1 (en) 2005-05-31 2006-05-29 Combustion control method and apparatus for a direct injection spark ignition internal combustion engine
US11/443,179 US7958720B2 (en) 2005-05-31 2006-05-31 Combustion control apparatus for direct-injection spark-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158509A JP4577091B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2006336475A JP2006336475A (en) 2006-12-14
JP4577091B2 true JP4577091B2 (en) 2010-11-10

Family

ID=37557250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158509A Expired - Fee Related JP4577091B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4577091B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303337A (en) * 1995-05-09 1996-11-19 Mitsubishi Motors Corp Engine ignition time controller
JPH10153138A (en) * 1996-11-21 1998-06-09 Mitsubishi Motors Corp Inner-cylinder injection type internal combustion engine
JPH11107838A (en) * 1997-08-06 1999-04-20 Mazda Motor Corp Controller for engine
JPH11343832A (en) * 1998-06-01 1999-12-14 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2002235647A (en) * 2001-02-09 2002-08-23 Mitsubishi Motors Corp Cylinder injection type internal combustion engine
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
WO2004072461A1 (en) * 2003-02-12 2004-08-26 Daimlerchrysler Ag Method for operating an internal combustion engine with direct fuel injection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303337A (en) * 1995-05-09 1996-11-19 Mitsubishi Motors Corp Engine ignition time controller
JPH10153138A (en) * 1996-11-21 1998-06-09 Mitsubishi Motors Corp Inner-cylinder injection type internal combustion engine
JPH11107838A (en) * 1997-08-06 1999-04-20 Mazda Motor Corp Controller for engine
JPH11343832A (en) * 1998-06-01 1999-12-14 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2002235647A (en) * 2001-02-09 2002-08-23 Mitsubishi Motors Corp Cylinder injection type internal combustion engine
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
WO2004072461A1 (en) * 2003-02-12 2004-08-26 Daimlerchrysler Ag Method for operating an internal combustion engine with direct fuel injection

Also Published As

Publication number Publication date
JP2006336475A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US7958720B2 (en) Combustion control apparatus for direct-injection spark-ignition internal combustion engine
US7159566B2 (en) Control method and apparatus for direct injection spark ignited internal combustion engine
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007321696A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007002795A (en) Controller for direct injection spark controller for cylinder direct injection type spark ignition internal combustion engine
JP4577091B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4544036B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006336473A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525468B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP4729920B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees