JP2006336476A - Control device for cylinder direct injection type spark ignition internal combustion engine - Google Patents

Control device for cylinder direct injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2006336476A
JP2006336476A JP2005158510A JP2005158510A JP2006336476A JP 2006336476 A JP2006336476 A JP 2006336476A JP 2005158510 A JP2005158510 A JP 2005158510A JP 2005158510 A JP2005158510 A JP 2005158510A JP 2006336476 A JP2006336476 A JP 2006336476A
Authority
JP
Japan
Prior art keywords
temperature
combustion engine
internal combustion
catalytic converter
spark ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005158510A
Other languages
Japanese (ja)
Other versions
JP4544036B2 (en
Inventor
Akira Nakajima
彰 中島
Masayuki Tomita
全幸 富田
Tomoyuki Takeda
智之 武田
Hitoshi Ishii
仁 石井
Taro Sakai
太朗 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005158510A priority Critical patent/JP4544036B2/en
Priority to CN 200610084544 priority patent/CN1873202B/en
Priority to EP06011018A priority patent/EP1728996A1/en
Priority to US11/443,179 priority patent/US7958720B2/en
Publication of JP2006336476A publication Critical patent/JP2006336476A/en
Application granted granted Critical
Publication of JP4544036B2 publication Critical patent/JP4544036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/46

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid thermal degradation of a catalyst due to an excessively high temperature while attaining early activation of the catalyst and HC reduction by after-burning with a considerable delay of ignition timing. <P>SOLUTION: At the cold start of an internal combustion engine which requires the early temperature rise of a catalytic converter, the ignition timing is set after the compression top dead center, and super retard combustion of injecting fuel before the ignition timing and after the compression top dead center is performed. Turbulence in a cylinder is improved by high pressure fuel injection immediately before the ignition timing, and flame propagation is accelerated to achieve stable combustion. In this super retard combustion, an exhaust temperature becomes very high, and if it continues to the complete active temperature of the catalyst, there is a problem of thermal degradation. A top dead center injection operation mode is thereby released in a predetermined stage before complete activity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時における噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct-injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, injection at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to the control of timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。
特許第3325230号公報
In Patent Document 1, as a catalyst warm-up method for a direct injection spark ignition internal combustion engine, a period from an intake stroke to an ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than an activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed, for example, at 120 ° BTDC to 45 ° BTDC after the middle of the compression stroke.
Japanese Patent No. 3325230

内燃機関の冷機時における触媒の早期活性化および後燃えによるHC低減のためには、点火時期の遅角が有効であり、より大きな効果を得るためには、圧縮上死点以降の点火(ATDC点火)が望ましい。ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのために、筒内の乱れを強化して、燃焼速度(火炎伝播速度)を上昇させることが必要である。   For early activation of the catalyst when the internal combustion engine is cold and HC reduction due to afterburning, retarding the ignition timing is effective. To obtain a greater effect, ignition after compression top dead center (ATDC) Ignition) is desirable. In order to perform stable combustion by ATDC ignition, it is necessary to shorten the combustion period. For this reason, it is necessary to increase the combustion speed (flame propagation speed) by strengthening the turbulence in the cylinder.

このような乱れの強化のために、筒内に高圧で噴射される燃料噴霧のエネルギにより筒内に乱れを生成することが考えられる。   In order to strengthen such disturbance, it is conceivable that the disturbance is generated in the cylinder by the energy of the fuel spray injected at a high pressure in the cylinder.

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っている。このように最後の燃料噴射が圧縮上死点よりも前では、その噴霧により筒内に乱れを生成しても、圧縮上死点以降はその乱れが減衰してしまい、ATDC点火での火炎伝播速度上昇には寄与しない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Yes. As described above, before the last fuel injection is before the compression top dead center, even if the spray generates turbulence in the cylinder, the turbulence is attenuated after the compression top dead center, and the flame propagation in ATDC ignition Does not contribute to speed increase.

例えば、図12は、吸気ポート内に設けたガス流動制御弁(例えばタンブル制御弁)を作動させた場合とこのようなガス流動制御弁を具備しない場合とについて、筒内の乱れの大きさを示したものであるが、ガス流動制御弁を作動させることで吸気行程中に生成した乱れ(符号Aの部分)は、圧縮行程の進行とともに減衰し、圧縮行程後期のタンブル流の崩壊に伴い一時的に乱れが大きくなる(符号Bの部分)ものの、圧縮上死点以降は符号Cで示すように急速に減衰してしまい、その乱れを用いた燃焼改善(火炎伝播向上)はあまり期待できない。燃料噴霧による乱れについても同様であり、圧縮上死点より前の燃料噴射により乱れが生成されたとしても、圧縮上死点以降の点火燃焼には寄与しない。   For example, FIG. 12 shows the magnitude of turbulence in a cylinder when a gas flow control valve (for example, a tumble control valve) provided in an intake port is operated and when such a gas flow control valve is not provided. As shown, the turbulence (part A) generated during the intake stroke by operating the gas flow control valve is attenuated as the compression stroke progresses, and is temporarily accompanied by the collapse of the tumble flow in the latter half of the compression stroke. Although the turbulence increases (the portion indicated by reference symbol B), after the compression top dead center, as shown by the reference symbol C, it rapidly attenuates, and combustion improvement (improving flame propagation) using the turbulence cannot be expected so much. The same applies to turbulence caused by fuel spray, and even if turbulence is generated by fuel injection before compression top dead center, it does not contribute to ignition combustion after compression top dead center.

このため、ATDC点火の方が排温上昇やHC低減に有利であるが、燃焼安定性が成立しないため、特許文献1では、無負荷領域では点火時期を圧縮上死点前(BTDC点火)としている。   For this reason, ATDC ignition is more advantageous for increasing exhaust temperature and reducing HC, but combustion stability is not established. Therefore, in Patent Document 1, the ignition timing is set to before compression top dead center (BTDC ignition) in the no-load region. Yes.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減のためのATDC点火での燃焼安定性を改善することを目的としている。   The present invention aims to improve combustion stability in ATDC ignition for early activation of the catalyst and HC reduction based on such a situation.

本発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行うことを特徴としている。そして、特に、上記の超リタード燃焼を、触媒が完全活性するまで継続するのではなく、触媒が完全活性する前に、触媒コンバータの温度状態の判定に基づいて解除するようにしている。   The present invention requires an early temperature rise of an exhaust system catalytic converter in a control device for a direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into the cylinder and includes an ignition plug. When the internal combustion engine is cold-started, the ignition timing is set after the compression top dead center, and super retard combustion is performed in which fuel is injected before the ignition timing and after the compression top dead center. In particular, the super retard combustion is not continued until the catalyst is fully activated, but is canceled based on the determination of the temperature state of the catalytic converter before the catalyst is fully activated.

すなわち、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、圧縮上死点以降の膨張行程中になされる燃料噴射によって、筒内の乱れを生成・強化することができ、ATDC点火での火炎伝播が促進される。従って、点火時期を圧縮上死点後とした超リタード燃焼が安定的に成立する。   In other words, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but the in-cylinder turbulence is generated and strengthened by the fuel injection performed during the expansion stroke after the compression top dead center. Flame propagation with ATDC ignition is facilitated. Therefore, super retard combustion with the ignition timing after the compression top dead center is established stably.

ここで、上記のように点火時期を大幅に遅角させた超リタード燃焼においては、例えばアイドル時にBTDC点火とする特許文献1などの従来の技術に比べて、排気温度が非常に高くなるため、触媒コンバータが温度上昇する過程で、触媒コンバータ内部の温度勾配が非常に急なものとなり易い。つまり、モノリス型セラミックス触媒担体などの上流側部分のみが急激に高温となり、熱歪が大きくなる懸念が生じる。また、排気温度が非常に高くなることから、触媒温度が活性温度に達したと判定して超リタード燃焼を停止しても、触媒コンバータ上流側の排気系部品の熱容量や触媒自体の反応熱等によって触媒コンバータの内部温度は上昇し続け、触媒コンバータの内部温度が触媒劣化温度にまでオーバシュートしてしまう虞がある。   Here, in the super retard combustion in which the ignition timing is significantly retarded as described above, for example, the exhaust temperature becomes very high as compared with the conventional technology such as Patent Document 1 in which BTDC ignition is performed at the time of idling. In the process in which the temperature of the catalytic converter rises, the temperature gradient inside the catalytic converter tends to become very steep. That is, there is a concern that only the upstream portion such as the monolithic ceramic catalyst carrier rapidly becomes high in temperature and the thermal strain increases. Also, since the exhaust temperature becomes very high, even if it is determined that the catalyst temperature has reached the activation temperature and the super retard combustion is stopped, the heat capacity of exhaust system parts upstream of the catalytic converter, the reaction heat of the catalyst itself, etc. As a result, the internal temperature of the catalytic converter continues to rise, and the internal temperature of the catalytic converter may overshoot to the catalyst deterioration temperature.

そこで、本発明では、超リタード燃焼を、触媒が完全活性するまで継続せずに、触媒が完全活性する前に、触媒コンバータの温度状態の判定に基づいて解除するようにしている。   Therefore, in the present invention, the super retard combustion is not continued until the catalyst is fully activated, and is canceled based on the determination of the temperature state of the catalytic converter before the catalyst is completely activated.

本発明の一つの態様では、触媒コンバータの入口温度と該入口温度の変化速度とから触媒コンバータの温度状態を判定する。例えば、上記入口温度の変化速度が大きいほど入口温度が低い段階で上記超リタード燃焼を解除する。   In one aspect of the present invention, the temperature state of the catalytic converter is determined from the inlet temperature of the catalytic converter and the rate of change of the inlet temperature. For example, the super retard combustion is canceled when the inlet temperature is lower as the change rate of the inlet temperature is higher.

また、本発明の一つの態様では、触媒コンバータの入口温度と内部温度とから触媒コンバータの温度状態を判定する。例えば、上記入口温度が高いほど内部温度が低い段階で上記超リタード燃焼を解除する。   In one aspect of the present invention, the temperature state of the catalytic converter is determined from the inlet temperature and the internal temperature of the catalytic converter. For example, the super retard combustion is canceled when the internal temperature is lower as the inlet temperature is higher.

このように、触媒コンバータの入口温度とその変化速度、あるいは、入口温度と内部温度、などから超リタード燃焼の解除のタイミングを判断することにより、内部温度の過度のオーバシュートや過大な熱勾配の発生を回避できる。   As described above, by judging the timing of canceling the super retard combustion from the inlet temperature of the catalytic converter and the rate of change thereof, or the inlet temperature and the internal temperature, the excessive overshoot of the internal temperature or the excessive thermal gradient is detected. Occurrence can be avoided.

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性を十分に確保することができ、冷間始動の際に、触媒の早期活性化および後燃えによるHC低減を達成することができる。そして、触媒コンバータが完全活性する前の適切なタイミングで超リタード燃焼が解除されるので、触媒温度の過度のオーバシュートによる熱的劣化や極端な温度勾配による触媒担体の破損等を回避することができる。   According to the present invention, it is possible to sufficiently ensure the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center, and at the time of cold start, early activation of the catalyst and reduction of HC due to afterburning. Can be achieved. And since super retard combustion is canceled at an appropriate timing before the catalytic converter is fully activated, it is possible to avoid thermal deterioration due to excessive overshooting of the catalyst temperature, damage to the catalyst carrier due to extreme temperature gradient, etc. it can.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられている。さらに、本実施例では、触媒コンバータ10の温度状態を判定するために、上流側の空燃比センサ11と並んで触媒コンバータ10の入口部に配置された触媒入口温度センサ13を備えている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. A catalyst converter 10 for purifying exhaust gas is disposed in the exhaust passage 5, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Furthermore, in this embodiment, in order to determine the temperature state of the catalytic converter 10, a catalyst inlet temperature sensor 13 disposed at the inlet portion of the catalytic converter 10 is provided along with the upstream air-fuel ratio sensor 11.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の吸気通路4側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the intake passage 4 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。なお、暖機完了後においては、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、空燃比を30〜40程度とした極リーンの成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。この均質燃焼運転としては、運転条件に応じて、空燃比を理論空燃比とした均質ストイキ燃焼と、空燃比を20〜30程度のリーンとした均質リーン燃焼と、がある。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled. After the warm-up is completed, in a predetermined region on the low-speed and low-load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed before the compression top dead center. Done. The fuel spray is collected in the vicinity of the spark plug 14, thereby achieving extremely lean stratified combustion with an air-fuel ratio of about 30 to 40. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder. As the homogeneous combustion operation, there are homogeneous stoichiometric combustion in which the air-fuel ratio is the stoichiometric air-fuel ratio and homogeneous lean combustion in which the air-fuel ratio is lean about 20 to 30 depending on the operating conditions.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の3つの実施例を示しており、実施例1では、点火時期を15°〜30°ATDC(例えば20°ATDC)とし、燃料噴射時期(詳しくは燃料噴射開始時期)を、圧縮上死点以降でかつ点火時期前に設定する。なお、このとき、空燃比は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。   FIG. 2 shows three examples of super retard combustion. In Example 1, the ignition timing is set to 15 ° to 30 ° ATDC (for example, 20 ° ATDC), and the fuel injection timing (specifically, the fuel injection start timing) is shown. Is set after the compression top dead center and before the ignition timing. At this time, the air-fuel ratio is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17).

すなわち、触媒暖機促進ならびにHC低減のためには、点火時期遅角が有効であり、上死点以降の点火(ATDC点火)が望ましいが、ATDC点火で安定した燃焼を行わせるためには、燃焼期間を短縮する必要があり、そのためには、乱れによる火炎伝播を促進しなければならない。前述したように、圧縮上死点以降では、吸気行程や圧縮行程で生成された乱れは減衰してしまうが、本発明では、圧縮上死点以降の膨張行程中になされる高圧の燃料噴射によって、ガス流動が生じ、これにより筒内の乱れを生成・強化することができる。従って、ATDC点火での火炎伝播が促進され、安定した燃焼が可能となる。   That is, in order to promote catalyst warm-up and reduce HC, ignition timing retardation is effective, and ignition after top dead center (ATDC ignition) is desirable, but in order to perform stable combustion with ATDC ignition, It is necessary to shorten the combustion period, and for this purpose, flame propagation due to turbulence must be promoted. As described above, after the compression top dead center, the turbulence generated in the intake stroke and the compression stroke is attenuated, but in the present invention, by the high pressure fuel injection performed during the expansion stroke after the compression top dead center. The gas flow is generated, and thereby the turbulence in the cylinder can be generated and strengthened. Therefore, flame propagation by ATDC ignition is promoted and stable combustion is possible.

図2の実施例2は、燃料噴射を2回に分割した例であり、1回目の燃料噴射を吸気行程中に行い、2回目の燃料噴射を圧縮上死点以降に行う。なお、点火時期および空燃比(2回の噴射を合わせた空燃比)は実施例1と同様である。   The second embodiment in FIG. 2 is an example in which the fuel injection is divided into two, and the first fuel injection is performed during the intake stroke, and the second fuel injection is performed after the compression top dead center. The ignition timing and the air-fuel ratio (the air-fuel ratio obtained by combining the two injections) are the same as those in the first embodiment.

このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、吸気行程中に燃料噴射(吸気行程噴射)を行うと、吸気行程噴射の燃料噴霧による乱れは圧縮行程後半で減衰してしまい、圧縮上死点後におけるガス流動強化には殆ど影響を与えないが、噴射燃料が燃焼室全体に拡散していて、ATDC点火によるHCの後燃えの促進に寄与するので、HC低減および排温上昇には有効である。   As described above, when fuel injection (intake stroke injection) is performed during the intake stroke prior to fuel injection after the compression top dead center (expansion stroke injection), disturbance due to fuel spray in the intake stroke injection is attenuated in the latter half of the compression stroke. However, since the injected fuel is diffused throughout the combustion chamber and contributes to the promotion of HC afterburning by ATDC ignition, the HC reduction and It is effective for raising the exhaust temperature.

また、図2の実施例3は、燃料噴射を2回に分割し、1回目の燃料噴射を圧縮行程にて行い、2回目の燃料噴射を圧縮上死点以降に行う。このように、圧縮上死点後の燃料噴射(膨張行程噴射)に先立ち、圧縮行程中に燃料噴射(圧縮行程噴射)を行うと、実施例2の吸気行程噴射に比べれば、圧縮行程噴射の方が、その燃料噴霧による乱れの減衰が遅くなるため、この1回目の燃料噴射による乱れが残り、圧縮上死点以降に2回目の燃料噴射を行うことで、1回目の燃料噴射で生成した乱れを助長するように乱れを強化でき、圧縮上死点付近における更なるガス流動強化が図れる。   In the third embodiment of FIG. 2, the fuel injection is divided into two, the first fuel injection is performed in the compression stroke, and the second fuel injection is performed after the compression top dead center. As described above, when the fuel injection (compression stroke injection) is performed during the compression stroke prior to the fuel injection after the compression top dead center (expansion stroke injection), the compression stroke injection is compared with the intake stroke injection of the second embodiment. However, since the disturbance of the turbulence due to the fuel spray is delayed, the turbulence due to the first fuel injection remains, and the second fuel injection is performed after the compression top dead center, which is generated by the first fuel injection. The turbulence can be strengthened to promote the turbulence, and the gas flow can be further strengthened near the compression top dead center.

この実施例3の場合に、1回目の圧縮行程噴射は、圧縮行程前半でもよいが、圧縮行程後半(90°BTDC以降)に設定すると、上死点付近での乱れをより高めることができる。特に、この1回目の圧縮行程噴射を、45°BTDC以降、より望ましくは20°BTDC以降とすると、圧縮上死点以降のガス流動をより強化することができる。   In the case of Example 3, the first compression stroke injection may be in the first half of the compression stroke, but if it is set in the second half of the compression stroke (after 90 ° BTDC), the disturbance near the top dead center can be further increased. In particular, if the first compression stroke injection is 45 ° BTDC or later, more desirably 20 ° BTDC or later, the gas flow after compression top dead center can be further enhanced.

このように、実施例1〜3の超リタード燃焼によれば、点火の直前に燃料噴霧により筒内の乱れを生成・強化することができ、火炎伝播を促進して、安定した燃焼を行わせることができる。特に、点火時期を15°〜30°ATDCまで遅角させることにより、触媒の早期活性化およびHC低減のための十分な後燃え効果を得ることができる。換言すれば、このように点火時期を大きく遅らせても、その直前まで燃料噴射を遅らせて、乱れの生成時期も遅らせることで、火炎伝播向上による燃焼改善を達成できるのである。   As described above, according to the super retarded combustion of the first to third embodiments, the turbulence in the cylinder can be generated and strengthened by the fuel spray immediately before the ignition, and the flame propagation is promoted to perform stable combustion. be able to. In particular, by retarding the ignition timing from 15 ° to 30 ° ATDC, a sufficient afterburning effect for early activation of the catalyst and reduction of HC can be obtained. In other words, even if the ignition timing is greatly delayed in this way, the fuel injection is delayed until just before that, and the generation time of the turbulence is also delayed, so that the combustion improvement by improving the flame propagation can be achieved.

ここで、上記の超リタード燃焼においては、排気ガス温度が非常に高く得られることから、触媒コンバータ10が上流側から急速に加熱され、触媒コンバータ10の熱歪や過度の温度上昇の懸念がある。そのため、本実施例では、図3のような処理により、触媒コンバータ10の温度状態を監視しつつ燃焼モードの切換が行われる。   Here, in the above-described super retard combustion, the exhaust gas temperature can be obtained extremely high, so the catalytic converter 10 is rapidly heated from the upstream side, and there is a concern of thermal distortion of the catalytic converter 10 or excessive temperature rise. . Therefore, in this embodiment, the combustion mode is switched while monitoring the temperature state of the catalytic converter 10 by the processing as shown in FIG.

先ず、ステップ1では、触媒入口温度センサ13により検出される触媒コンバータ10の入口温度Tを読み込むとともに、その変化速度つまり単位時間当たりの変化量dTを求める。次に、ステップ2で触媒が活性しているか否かを、例えば、機関始動時の冷却水温や始動時の触媒入口温度Tなどから判定する。暖機再始動のように既に触媒が活性状態にあれば、ステップ5へ進み、前述した通常の成層燃焼運転あるいは均質燃焼運転となる。   First, in step 1, the inlet temperature T of the catalytic converter 10 detected by the catalyst inlet temperature sensor 13 is read, and the rate of change, that is, the amount of change dT per unit time is obtained. Next, whether or not the catalyst is active in step 2 is determined from, for example, the cooling water temperature at the start of the engine or the catalyst inlet temperature T at the start. If the catalyst is already in an active state as in warm-up restart, the routine proceeds to step 5 and the above-described normal stratified combustion operation or homogeneous combustion operation is performed.

冷間始動のように触媒が未活性状態であれば、ステップ3へ進み、前述した超リタード燃焼を実行する。これにより、排気温度は急激に上昇する。   If the catalyst is in an inactive state as in the cold start, the process proceeds to step 3 to execute the super retard combustion described above. As a result, the exhaust temperature rises rapidly.

その後、ステップ4において、触媒入口温度Tとその変化速度dTとに基づいて、触媒コンバータ10の温度状態が触媒完全活性前の所定の段階に達したか否か判定する。具体的には、触媒入口温度Tと変化速度dTとから、図4に示すような特性の許可条件および禁止条件のいずれの領域にあるかを繰り返し判定し、許可条件にある間は、超リタード燃焼を継続する。そして、禁止条件の領域に入ったときに、ステップ4からステップ5へ進み、超リタード燃焼を解除して通常制御へ移行する。上記の禁止条件の領域は、超リタード燃焼の解除後も遅れて上昇する触媒温度が完全活性温度を越えて過度にオーバシュートすることがないように設定されており、特に、変化速度dTが大であるほど、触媒入口温度Tがより低い段階で超リタード燃焼が解除される。従って、触媒温度の過度のオーバシュートや極端な温度勾配による熱歪みが防止される。   Thereafter, in step 4, it is determined whether or not the temperature state of the catalytic converter 10 has reached a predetermined stage before the catalyst is fully activated, based on the catalyst inlet temperature T and its change rate dT. Specifically, from the catalyst inlet temperature T and the change rate dT, it is repeatedly determined whether the region is in the permission condition or the prohibition condition of the characteristic as shown in FIG. Continue burning. When the prohibited condition region is entered, the routine proceeds from step 4 to step 5, where the super retard combustion is canceled and the routine shifts to normal control. The region of the prohibition condition is set so that the catalyst temperature that rises later even after the release of the super retard combustion does not excessively overshoot beyond the complete activation temperature, and in particular, the change rate dT is large. The higher the catalyst inlet temperature T, the higher the super retarded combustion is released. Therefore, thermal distortion due to excessive overshoot of the catalyst temperature and extreme temperature gradient is prevented.

以下、触媒コンバータ10の温度変化について説明する。図5は、一例として、冷間始動後の触媒コンバータの入口温度(排気温度にほぼ等しい)および内部温度の変化を示し、破線は、始動後に通常の燃焼運転を継続した場合の特性を、実線は、始動後に超リタード燃焼を継続した場合の特性を示す。図示するように、超リタード燃焼では、排気温度(入口温度)が始動後に急激に上昇し、内部温度が触媒活性温度(完全活性温度)T1に達するまでの所要時間は大幅に短縮される。しかし、入口温度と内部温度との温度差(換言すれば触媒担体の温度勾配)に着目すると、内部温度が触媒活性温度T1に達したときの温度差ΔTとしては、実線で示す超リタード燃焼による急激な加熱の方が、破線で示す緩やかな加熱の場合よりも、大きくなる。つまり、超リタード燃焼により急激に昇温すると、一般に熱歪みが大となる傾向にある。   Hereinafter, the temperature change of the catalytic converter 10 will be described. FIG. 5 shows, as an example, changes in the inlet temperature (approximately equal to the exhaust gas temperature) and the internal temperature of the catalytic converter after the cold start, and the broken line shows the characteristics when the normal combustion operation is continued after the start. Indicates the characteristics when super retard combustion is continued after starting. As shown in the figure, in the super retard combustion, the exhaust temperature (inlet temperature) rises sharply after starting, and the time required for the internal temperature to reach the catalyst activation temperature (complete activation temperature) T1 is greatly shortened. However, paying attention to the temperature difference between the inlet temperature and the internal temperature (in other words, the temperature gradient of the catalyst carrier), the temperature difference ΔT when the internal temperature reaches the catalyst activation temperature T1 is due to super retarded combustion indicated by a solid line. The rapid heating becomes larger than the gentle heating shown by the broken line. That is, when the temperature is rapidly increased by super retard combustion, generally, thermal distortion tends to increase.

また、図6は、内部温度が触媒活性温度T1に達した時点で超リタード燃焼を解除した場合の比較例を示している。この場合、超リタード燃焼を解除した後も、触媒コンバータ上流側の排気系部品の熱容量や触媒自体の反応熱等によって触媒コンバータの内部温度は上昇し続け、条件によっては、触媒コンバータの内部温度が触媒劣化温度にまでオーバシュートしてしまう虞がある。   FIG. 6 shows a comparative example when the super retard combustion is canceled when the internal temperature reaches the catalyst activation temperature T1. In this case, even after canceling the super retard combustion, the internal temperature of the catalytic converter continues to increase due to the heat capacity of the exhaust system components upstream of the catalytic converter, the reaction heat of the catalyst itself, etc. There is a risk of overshooting to the catalyst deterioration temperature.

これに対し、図7は、本発明の場合の触媒コンバータの温度変化を示しており、内部温度が触媒活性温度T1に達する前に、超リタード燃焼が解除される。このとき、内部温度は触媒活性温度T1よりも低い例えば温度T2であり、超リタード燃焼の解除後、この温度T2からさらに温度上昇するものの、触媒劣化温度に達することはない。また、超リタード燃焼の解除に伴って入口温度は速やかに低下するため、内部温度が触媒活性温度T1に達した段階での内部温度と入口温度との温度差ΔTは、図5や図6の場合よりも小さくなる。   On the other hand, FIG. 7 shows the temperature change of the catalytic converter in the case of the present invention, and the super retard combustion is canceled before the internal temperature reaches the catalyst activation temperature T1. At this time, the internal temperature is, for example, the temperature T2 lower than the catalyst activation temperature T1, and after the super retard combustion is released, the temperature further rises from the temperature T2, but does not reach the catalyst deterioration temperature. Further, since the inlet temperature rapidly decreases with the release of the super retard combustion, the temperature difference ΔT between the internal temperature and the inlet temperature when the internal temperature reaches the catalyst activation temperature T1 is shown in FIG. 5 and FIG. Smaller than the case.

なお、上記実施例では、触媒コンバータ10の入口温度Tを触媒入口温度センサ13により直接に検出するようにしているが、入口温度Tは内燃機関の吸入空気量に相関するので、この吸入空気量に基づいて入口温度Tを推定することも可能である。   In the above embodiment, the inlet temperature T of the catalytic converter 10 is directly detected by the catalyst inlet temperature sensor 13. However, since the inlet temperature T correlates with the intake air amount of the internal combustion engine, this intake air amount. It is also possible to estimate the inlet temperature T based on.

次に、図8〜図10は、この発明の第2の実施例を示しており、この実施例では、触媒コンバータ10の温度状態を判定するために、図8に示すように、該触媒コンバータ10の入口部に配置された触媒入口温度センサ13に加えて、モノリス型セラミックス触媒担体の長手方向中央部に配置された触媒温度センサ30を備えている。従って、触媒入口温度Tとともに、触媒コンバータ10の内部温度TCが検出される。   Next, FIGS. 8 to 10 show a second embodiment of the present invention. In this embodiment, in order to determine the temperature state of the catalytic converter 10, as shown in FIG. In addition to the catalyst inlet temperature sensor 13 disposed at the inlet portion 10, a catalyst temperature sensor 30 disposed at the center in the longitudinal direction of the monolith ceramic catalyst carrier is provided. Therefore, the internal temperature TC of the catalytic converter 10 is detected together with the catalyst inlet temperature T.

本実施例では、図9のような処理により、触媒コンバータ10の温度状態を監視しつつ燃焼モードの切換が行われる。   In this embodiment, the combustion mode is switched while monitoring the temperature state of the catalytic converter 10 by the processing as shown in FIG.

先ず、ステップ1では、触媒入口温度センサ13により検出される触媒コンバータ10の入口温度Tと、触媒温度センサ30により検出される触媒コンバータ10の内部温度TCを読み込む。次に、ステップ2で触媒が活性しているか否かを、例えば、機関始動時の内部温度TCや冷却水温などから判定する。暖機再始動のように既に触媒が活性状態にあれば、ステップ5へ進み、前述した通常の成層燃焼運転あるいは均質燃焼運転となる。   First, in step 1, the inlet temperature T of the catalytic converter 10 detected by the catalyst inlet temperature sensor 13 and the internal temperature TC of the catalytic converter 10 detected by the catalyst temperature sensor 30 are read. Next, whether or not the catalyst is active in step 2 is determined from, for example, the internal temperature TC at the time of engine start, the cooling water temperature, or the like. If the catalyst is already in an active state as in warm-up restart, the routine proceeds to step 5 and the above-described normal stratified combustion operation or homogeneous combustion operation is performed.

冷間始動のように触媒が未活性状態であれば、ステップ3へ進み、前述した超リタード燃焼を実行する。これにより、排気温度は急激に上昇する。   If the catalyst is in an inactive state as in the cold start, the process proceeds to step 3 to execute the super retard combustion described above. As a result, the exhaust temperature rises rapidly.

その後、ステップ4において、触媒入口温度Tと内部温度TCとに基づいて、触媒コンバータ10の温度状態が触媒完全活性前の所定の段階に達したか否か判定する。具体的には、触媒入口温度Tと内部温度TCとから、図10に示すような特性の許可条件および禁止条件のいずれの領域にあるかを繰り返し判定し、許可条件にある間は、超リタード燃焼を継続する。そして、禁止条件の領域に入ったときに、ステップ4からステップ5へ進み、超リタード燃焼を解除して通常制御へ移行する。上記の禁止条件の領域は、超リタード燃焼の解除後も遅れて上昇する触媒温度が完全活性温度を越えて過度にオーバシュートすることがないように設定されており、特に、排気温度を示す入口温度Tが高いほど、内部温度TCがより低い段階で超リタード燃焼が解除される。従って、触媒温度の過度のオーバシュートや極端な温度勾配による熱歪みが防止される。   Thereafter, in step 4, it is determined based on the catalyst inlet temperature T and the internal temperature TC whether or not the temperature state of the catalytic converter 10 has reached a predetermined stage before the catalyst is fully activated. Specifically, from the catalyst inlet temperature T and the internal temperature TC, it is repeatedly determined whether the region is in the permission condition or the prohibition condition of the characteristic as shown in FIG. Continue burning. When the prohibited condition region is entered, the routine proceeds from step 4 to step 5, where the super retard combustion is canceled and the routine shifts to normal control. The above-mentioned prohibition condition region is set so that the catalyst temperature that rises after the release of super retard combustion does not excessively overshoot beyond the full activation temperature. As the temperature T is higher, the super retard combustion is released at a stage where the internal temperature TC is lower. Therefore, thermal distortion due to excessive overshoot of the catalyst temperature and extreme temperature gradient is prevented.

なお、上記実施例では、触媒コンバータ10の入口温度Tを触媒入口温度センサ13により直接に検出するようにしているが、入口温度Tは内燃機関の吸入空気量に相関するので、この吸入空気量に基づいて入口温度Tを推定することも可能である。   In the above embodiment, the inlet temperature T of the catalytic converter 10 is directly detected by the catalyst inlet temperature sensor 13. However, since the inlet temperature T correlates with the intake air amount of the internal combustion engine, this intake air amount. It is also possible to estimate the inlet temperature T based on.

また、上記実施例では、触媒コンバータ10の内部温度TCを触媒温度センサ30により直接に検出するようにしているが、他のパラメータ、例えば触媒温度に相関する触媒コンバータ10の酸素ストレージ能力から内部温度TCを推定することも可能である。   In the above embodiment, the internal temperature TC of the catalytic converter 10 is directly detected by the catalyst temperature sensor 30. However, the internal temperature is determined from other parameters, for example, the oxygen storage capacity of the catalytic converter 10 correlated with the catalyst temperature. It is also possible to estimate TC.

具体的には、図1や図8に示したように、触媒コンバータ10の上流側および下流側にそれぞれ空燃比センサ11,12が設けられている場合において、図11の上段に示すように、内燃機関の空燃比(排気空燃比)が適当な周期・振幅で振動するように空燃比制御が行われる。これは、一般的な空燃比フィードバック制御の技術を利用することができる。この空燃比変化に対し、上流側空燃比センサ11の検出空燃比は、機関の空燃比変化をそのまま反映したものとなる。一方、下流側空燃比センサ12の検出空燃比は、図11の下段に示すように、触媒コンバータ10が未活性の段階では、酸素ストレージ能力が低いため、上流側空燃比センサ11の信号と同様に変化するが、触媒コンバータ10の温度が上昇すると、酸素ストレージ能力が高くなり、図示するように、周期が長くかつ振幅が小さなものとなる。従って、両者の関係から、触媒が完全活性前の活性開始温度に達したことを検知することができる。   Specifically, as shown in FIGS. 1 and 8, when air-fuel ratio sensors 11 and 12 are provided on the upstream side and downstream side of the catalytic converter 10, respectively, as shown in the upper part of FIG. Air-fuel ratio control is performed so that the air-fuel ratio (exhaust air-fuel ratio) of the internal combustion engine oscillates with an appropriate period and amplitude. For this, a general air-fuel ratio feedback control technique can be used. The air-fuel ratio detected by the upstream air-fuel ratio sensor 11 reflects the change in the air-fuel ratio of the engine as it is with respect to this change in air-fuel ratio. On the other hand, the detected air-fuel ratio of the downstream air-fuel ratio sensor 12 is the same as the signal of the upstream air-fuel ratio sensor 11 because the oxygen storage capacity is low when the catalytic converter 10 is inactive as shown in the lower part of FIG. However, as the temperature of the catalytic converter 10 rises, the oxygen storage capacity increases, and as shown in the figure, the cycle is long and the amplitude is small. Therefore, it can be detected from the relationship between the two that the catalyst has reached the activation start temperature before the complete activation.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the system structure of the whole internal combustion engine which concerns on this invention. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 始動時の燃焼モード切換の処理を示すフローチャート。The flowchart which shows the process of the combustion mode switching at the time of starting. 超リタード燃焼の許可・禁止領域を示す特性図。The characteristic figure which shows the permission / prohibition area | region of super retard combustion. 超リタード燃焼を継続した場合の触媒入口温度と内部温度の変化を、通常の燃焼運転を継続した場合と対比して示す特性図。The characteristic view which shows the change of the catalyst inlet_port | entrance temperature and internal temperature when super retard combustion is continued compared with the case where normal combustion operation is continued. 内部温度が触媒活性温度に達したときに超リタード燃焼を解除した場合の温度変化を示す特性図。The characteristic view which shows the temperature change at the time of canceling | releasing super retard combustion when internal temperature reaches catalyst activation temperature. 本発明による触媒入口温度と内部温度の変化を示す特性図。The characteristic view which shows the change of the catalyst inlet temperature and internal temperature by this invention. 第2実施例を示す構成説明図。Structure explanatory drawing which shows 2nd Example. この第2実施例の処理を示すフローチャート。The flowchart which shows the process of this 2nd Example. この第2実施例の場合の許可・禁止領域を示す特性図。The characteristic view which shows the permission / prohibition area | region in the case of this 2nd Example. 上流側空燃比センサの検出空燃比と下流側空燃比センサの検出空燃比とを示す特性図。The characteristic view which shows the detection air fuel ratio of an upstream air fuel ratio sensor, and the detection air fuel ratio of a downstream air fuel ratio sensor. 従来技術における筒内の乱れの変化を示す説明図。Explanatory drawing which shows the change of the disturbance in a cylinder in a prior art.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
13…触媒入口温度センサ
14…点火プラグ
15…燃料噴射弁
25…コントロールユニット
30…触媒温度センサ
DESCRIPTION OF SYMBOLS 3 ... Combustion chamber 10 ... Catalytic converter 13 ... Catalyst inlet temperature sensor 14 ... Spark plug 15 ... Fuel injection valve 25 ... Control unit 30 ... Catalyst temperature sensor

Claims (11)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、排気系の触媒コンバータの早期昇温が要求される内燃機関の冷間始動時に、点火時期を圧縮上死点後に設定するとともに、この点火時期前でかつ圧縮上死点後に燃料を噴射する超リタード燃焼を行う一方、触媒が完全活性する前に触媒コンバータの温度状態の判定に基づいて上記超リタード燃焼を解除することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。   An internal combustion engine that is provided with a fuel injection valve that directly injects fuel into a cylinder and that is provided with an ignition plug, and that requires an early temperature rise of a catalytic converter in an exhaust system in a control device for an in-cylinder direct injection spark ignition internal combustion engine During the cold start, the ignition timing is set after the compression top dead center, and the super-retard combustion is performed before the ignition timing and after the compression top dead center. A control apparatus for an in-cylinder direct injection spark ignition internal combustion engine, wherein the super retard combustion is canceled based on a determination of a temperature state. 触媒コンバータの入口温度と該入口温度の変化速度とから触媒コンバータの温度状態を判定することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the temperature state of the catalytic converter is determined from an inlet temperature of the catalytic converter and a rate of change of the inlet temperature. 上記入口温度の変化速度が大きいほど入口温度が低い段階で上記超リタード燃焼を解除することを特徴とする請求項2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   3. The control device for a direct injection spark ignition internal combustion engine according to claim 2, wherein the super retard combustion is canceled at a stage where the inlet temperature is lower as the change rate of the inlet temperature is higher. 触媒コンバータの入口温度と内部温度とから触媒コンバータの温度状態を判定することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. The control device for a direct injection spark ignition internal combustion engine according to claim 1, wherein the temperature state of the catalytic converter is determined from the inlet temperature and the internal temperature of the catalytic converter. 上記入口温度が高いほど内部温度が低い段階で上記超リタード燃焼を解除することを特徴とする請求項4に記載の筒内直接噴射式火花点火内燃機関の制御装置。   5. The control device for a direct injection spark ignition internal combustion engine according to claim 4, wherein the super retard combustion is canceled at a stage where the internal temperature is lower as the inlet temperature is higher. 上記入口温度を、内燃機関の吸入空気量に基づいて推定することを特徴とする請求項2〜5のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   6. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 2, wherein the inlet temperature is estimated based on an intake air amount of the internal combustion engine. 上記内部温度を、触媒温度に相関する触媒コンバータの酸素ストレージ能力から推定することを特徴とする請求項4または5に記載の筒内直接噴射式火花点火内燃機関の制御装置。   6. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 4 or 5, wherein the internal temperature is estimated from an oxygen storage capacity of a catalytic converter correlated with a catalyst temperature. 触媒コンバータの上流側に設けられた上流側空燃比検出手段と下流側に設けられた下流側空燃比検出手段とを備え、上記上流側空燃比検出手段の検出信号の変化と下流側空燃比検出手段の検出信号の変化との関係から上記酸素ストレージ能力を推定することを特徴とする請求項7に記載の筒内直接噴射式火花点火内燃機関の制御装置。   An upstream air-fuel ratio detecting means provided upstream of the catalytic converter and a downstream air-fuel ratio detecting means provided downstream; a change in detection signal of the upstream air-fuel ratio detecting means and downstream air-fuel ratio detection; 8. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 7, wherein the oxygen storage capacity is estimated from a relationship with a change in a detection signal of the means. 超リタード燃焼における点火時期は、圧縮上死点後15°〜30°CAであることを特徴とする請求項1〜8のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   9. The control device for a direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 15 ° to 30 ° CA after compression top dead center. 超リタード燃焼においては、圧縮上死点後の燃料噴射に先だって、吸気行程中もしくは圧縮行程中に、さらに燃料噴射を行うことを特徴とする請求項1〜9のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   In the super retard combustion, prior to fuel injection after compression top dead center, fuel injection is further performed during an intake stroke or a compression stroke. A control device for an injection spark ignition internal combustion engine. 超リタード燃焼における空燃比は、理論空燃比もしくは若干リーンであることを特徴とする請求項1〜10のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。
11. The control device for a direct injection spark ignition internal combustion engine according to claim 1, wherein the air-fuel ratio in the super retard combustion is a stoichiometric air-fuel ratio or slightly lean.
JP2005158510A 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4544036B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005158510A JP4544036B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller
CN 200610084544 CN1873202B (en) 2005-05-31 2006-05-25 Combustion control apparatus for direct injection spark ignition internal combustion engine
EP06011018A EP1728996A1 (en) 2005-05-31 2006-05-29 Combustion control method and apparatus for a direct injection spark ignition internal combustion engine
US11/443,179 US7958720B2 (en) 2005-05-31 2006-05-31 Combustion control apparatus for direct-injection spark-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158510A JP4544036B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2006336476A true JP2006336476A (en) 2006-12-14
JP4544036B2 JP4544036B2 (en) 2010-09-15

Family

ID=37557251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158510A Expired - Fee Related JP4544036B2 (en) 2005-05-31 2005-05-31 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4544036B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246335A (en) * 1990-02-23 1991-11-01 Nissan Motor Co Ltd Driving force control device for vehicle
JPH06159109A (en) * 1992-11-27 1994-06-07 Nippondenso Co Ltd Driving force control device for vehicle
JPH0996214A (en) * 1995-10-02 1997-04-08 Nissan Motor Co Ltd Secondary air supplier of internal combustion engine
JPH09310636A (en) * 1996-05-20 1997-12-02 Unisia Jecs Corp Air-fuel ratio controller for internal combustion engine
JP2002295287A (en) * 2001-03-30 2002-10-09 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2005048701A (en) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd Exhaust emission control device for engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246335A (en) * 1990-02-23 1991-11-01 Nissan Motor Co Ltd Driving force control device for vehicle
JPH06159109A (en) * 1992-11-27 1994-06-07 Nippondenso Co Ltd Driving force control device for vehicle
JPH0996214A (en) * 1995-10-02 1997-04-08 Nissan Motor Co Ltd Secondary air supplier of internal combustion engine
JPH09310636A (en) * 1996-05-20 1997-12-02 Unisia Jecs Corp Air-fuel ratio controller for internal combustion engine
JP2002295287A (en) * 2001-03-30 2002-10-09 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP2004036461A (en) * 2002-07-02 2004-02-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2005048701A (en) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd Exhaust emission control device for engine

Also Published As

Publication number Publication date
JP4544036B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
US7958720B2 (en) Combustion control apparatus for direct-injection spark-ignition internal combustion engine
JP4483706B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007321696A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4529832B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4333548B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4544036B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4577091B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4337724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2008273423A (en) Catalyst temperature rise control device and method for vehicle
JP2006336473A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4729920B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP4428226B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4609200B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees