JP2004028027A - Cylinder injection-type internal combustion engine and its combustion method - Google Patents

Cylinder injection-type internal combustion engine and its combustion method Download PDF

Info

Publication number
JP2004028027A
JP2004028027A JP2002188222A JP2002188222A JP2004028027A JP 2004028027 A JP2004028027 A JP 2004028027A JP 2002188222 A JP2002188222 A JP 2002188222A JP 2002188222 A JP2002188222 A JP 2002188222A JP 2004028027 A JP2004028027 A JP 2004028027A
Authority
JP
Japan
Prior art keywords
fuel
supercharging
injection
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002188222A
Other languages
Japanese (ja)
Inventor
Koji Onishi
大西 浩二
Matsuharu Abo
阿保 松春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002188222A priority Critical patent/JP2004028027A/en
Publication of JP2004028027A publication Critical patent/JP2004028027A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a combustion condition where the ignition and combustion can be properly kept by allowing the fuel injected during a compression stroke in a supercharging operation, to reach an ignition plug at a determined ignition timing even when the rise of pressure in a cylinder caused by the supercharging pressure is found in a cylinder injection-type internal combustion engine comprising a supercharging mechanism. <P>SOLUTION: A correction value of fuel pressure is calculated on the basis of a supercharging pressure in supercharging stratification operation, to supply the fuel into the cylinder in a state of increasing the fuel pressure in comparison with a non-supercharging operation. Whereby the penetration of the fuel spray is increased, and the fuel can reach the ignition plug even when the pressure in a combustion chamber is increased in the supercharging operation, at an injection timing and an ignition timing same as those in the non-supercharging operation. The correction for hastening a fuel injection period or the correction for delaying the ignition period in accordance with the supercharging pressure, may be performed, and further the correction for adjusting an opening of a tumble control valve may be also performed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は筒内噴射型内燃機関とその燃焼方法に関し、特に、過給機構を備えた筒内噴射型内燃機関において、大きな負荷まで成層リーン運転の領域を拡大することを可能とした筒内噴射型内燃機関とその燃焼方法に関する。
【0002】
【従来の技術】
圧縮行程中に燃料を噴射して成層燃焼を行う形態の筒内噴射型内燃機関は知られている。成層リーン運転することにより、吸気行程で燃料噴射を行う均質ストイキ運転に比べてポンプ損失や冷却損失を低減できるため、燃料消費率を低下させることができる。この形態の内燃機関において、成層リーンの状態で回転を一定に保って負荷を増加させる場合、自然吸気内燃機関では、ある負荷に到達するとスロットルを全開にしても吸入空気量が不足して、成層リーン運転を行うことができなくなる。吸入空気量が不足した状態で無理に成層運転を行うと、不完全燃焼のためにスモークの排出が急激に悪化したり、未燃炭化水素の排出量が増加する。
【0003】
この問題の解決策として、運転条件に応じて、燃料を圧縮行程で噴射する成層燃焼モード(低負荷時)と、燃料を吸入行程で噴射する均質燃焼モード(高負荷時)を切り替えて運転すること、さらには、過給機構を備えて内燃機関に供給される空気の量を増加させ、自然吸気内燃機関に比べて大きな負荷まで成層運転モードを可能とし、結果として、均質燃焼モード運転に対して燃料消費率を低下させる方法も提案されている(例えば特開2000−248978号公報参照)。
【0004】
【発明が解決しようとする課題】
上記のような過給機構を備えた内燃機関においては、過給運転されるとき、過給圧に起因する圧縮行程における気筒内圧上昇が生じ、それにより燃料噴霧の到達距離が低下して、噴射弁から噴射された燃料が点火プラグに到達できない、あるいは点火プラグまでの到達時間に遅れが生じることが発生する。そのために、無過給運転時と同じ条件で燃焼を継続すると、失火が生じるなど安定燃焼が得られなくなることが生じる。
【0005】
この問題について、より具体的に述べると、この種の内燃機関においては、内燃機関が過給運転されるときには、無過給運転に比べて吸入空気の量が増える。したがって圧縮行程で上昇する気筒内の圧力は、過給運転時には無過給運転時に比べてより過給圧に応じた分だけ高い圧力となる。一方、燃料消費率の低下を目的に成層リーン運転するためには、点火プラグの周辺が可燃混合比で、その外側は希薄混合比であるような層状の混合気を形成する必要がある。
【0006】
ここで、過給運転の圧縮行程で燃料を噴射した場合、気筒内の圧力が高いため、噴射された燃料は無過給運転時に比べて到達距離が短くなる。このため、無過給運転時には十分点火プラグに到達した燃料が、過給運転時には点火プラグまで到達できず、あるいは到達したとしても無過給運転時とは時間遅れが生じて、混合気に所定の点火タイミングで着火できないことが起きる。失火が発生すると運転性の悪化、排気エミッションや燃費の悪化といった内燃機関性能の著しい低下をきたす。そのため失火発生の可能性がある運転領域では過給成層燃焼を行うことができず、結果として成層リーン運転の領域が狭くなり、燃料消費率改善の効果が小さくなってしまう。
【0007】
本発明は、従来知られた過給機構を備えた筒内噴射型内燃機関の持つ上記のような不都合を解消することを目的としており、より具体的には、より高い負荷領域まで安定した過給成層燃焼を行うことを可能とし、それにより、燃料消費率を大きく改善することのできる筒内噴射型内燃機関とその燃焼方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、基本的に、燃料を気筒内に直接噴射する噴射機構と過給機構とを少なくとも備え、圧縮行程中に燃料を噴射して成層燃焼を行う形態の筒内噴射型内燃機関であって、前記内燃機関は、さらに、噴射燃料が点火プラグに到達する時間が過給圧に起因して無過給運転時よりも遅くなることによって生じる点火タイミングのズレを是正するための制御手段を備えているようにした。また、本発明は、そのような内燃機関の燃焼方法をも開示する。
【0009】
前記したように、燃料を気筒内に直接噴射する噴射機構と過給機構とを備え、圧縮行程中に燃料を気筒内に噴射して成層燃焼を行う形態の筒内噴射型内燃機関においては、無過給運転時と過給運転時とで同じ条件で噴射機構から燃料を噴射すると、過給圧に起因する筒内圧力の上昇により、噴射される燃料のペネトレーションが不十分となり、点火プラグへの非到達あるいは到達遅れが生じる。そのために、燃焼条件(燃料圧力、燃料噴射時期、点火時期など)を無過給運転時と同じとして過給運転を継続すると、点火タイミングのズレが生じ、失火が生じる。本発明による内燃機関は、上記した点火タイミングのズレを是正するための制御手段を備えているので、過給運転時においても、安定した点火タイミングを得ることができ、失火が生じない条件下で燃焼を継続することが可能となる。結果として、より高い負荷領域まで安定した過給成層燃焼を行うことが可能となり、燃料消費率を大きく改善することができる。
【0010】
本発明において、内燃機関は、少なくとも燃料を気筒内に直接噴射する噴射機構と過給機構とを備え、圧縮行程中に燃料を噴射して成層燃焼を行いうることを条件に、任意の形態の筒内噴射型内燃機関であってよい。噴射機構や過給機構も従来知られた任意のものを用いうる。ピストンヘッドの形状も任意であってよい。また、低負荷時には成層燃焼モードで運転を行い、高負荷時には均質燃焼モードで運転を行う形態の内燃機関であることは好ましいが、成層運転のみを行う形態の内燃機関であってもよい。
【0011】
本発明の具体的な態様では、上記した点火タイミングのズレを是正するために、過給圧に応じて噴射機構からの燃料圧力を無過給運転時よりも高圧とする制御を行いうる制御手段が用いられる。そして、過給運転時には、過給圧に応じて噴射機構からの燃料圧力を無過給運転時よりも高圧とし、気筒内に噴射される燃料のペネトレーションを大きくした状態で燃焼を行う。
【0012】
この態様によれば、過給運転時の圧縮行程噴射で気筒内の過給圧に相当する分だけ圧力が上昇しているときでも、それに相応して燃料圧力も上昇しており、噴霧のペネトレーションは大きくなる。それにより、噴射された燃料は点火プラグまで容易に到達し、点火火花によって確実に着火されるので、無過給運転時と同じ燃料噴射時期および点火時期を維持したままであっても、失火が生じる確率は大きく低減し、広い安定燃焼領域が確保される。
【0013】
本発明の他の具体的態様において、上記した点火タイミングのズレを是正するために、過給圧に起因して生じる点火プラグへの噴射燃料の到達遅れに応じて、燃料噴射時期を無過給運転時よりも早める制御を行いうる制御手段が用いられる。そして、過給運転時には、過給圧に起因して生じる点火プラグへの噴射燃料の到達遅れに応じて、噴射機構からの燃料噴射時期を無過給運転時よりも早めた状態で燃焼を行う。
【0014】
この態様によれば、内燃機関の過給運転時かつ圧縮行程噴射時には、過給圧に応じて燃料の噴射時期を早めるようにしたことにより、気筒内圧が比較的低い雰囲気中を燃料が移動すること、また、燃料噴射タイミングから点火タイミングまでに時間を取れることから、噴射された燃料が点火タイミングまでに確実に点火プラグに到達するようになり、点火タイミングのズレにより失火が生じるのを回避できる。
【0015】
本発明のさらに他の具体的態様において、上記した点火タイミングのズレを是正するために、過給圧に起因して生じる点火プラグへの噴射燃料の到達遅れに応じて、点火時期を無過給運転時よりも遅らせる制御を行いうる制御手段が用いられる。そして、過給運転時には、過給圧に起因して生じる点火プラグへの噴射燃料の到達遅れに応じて、点火時期を遅らせた状態で燃焼を行うようにする。
【0016】
この態様では、内燃機関の過給運転時かつ圧縮行程噴射時には、過給圧に応じて点火時期を遅らせるようにしたことにより、噴射された燃料が点火プラグに達したときと、点火タイミングとを容易に一致させることができ、点火タイミングのズレにより失火が生じるのを容易に回避できる。
【0017】
本発明のさらに他の具体的態様において、上記した点火タイミングのズレを是正するために、過給器管路内に配置した適宜のタンブル制御弁を開閉する制御を行いうる制御手段が用いられる。そして、過給運転時には、該タンブル制御弁の開度を適宜調整しながら燃焼を行う。
【0018】
この態様では、内燃機関の過給運転時かつ圧縮行程噴射時には、タンブル制御弁を、閉じるあるいは過給圧に応じて開度を適宜調整して、気筒内のタンブル強さを高め、噴射された燃料が気筒内のタンブルによって点火プラグに移送されるようにする。それにより、噴霧のペネトレーションが小さくなった分を補うことで、燃料噴霧を点火プラグに確実に到達させることができ、点火タイミングのズレにより失火が生じるのを回避できる。
【0019】
なお、上記した各具体的態様は、1つの内燃機関において、個々に用いられてもよく、2つ以上の態様を適宜組み合わせて用いるようにしてもよい。実機に応じて、適宜選択する。
【0020】
【発明の実施の形態】
以下、本発明を、図面を参照しながら、いくつかの実施の形態に基づき説明する。
【0021】
図1は、過給機を付けた筒内噴射型内燃機関を表したものである。簡単のために、多気筒機関の一つの気筒のみを図示している。ピストン1によって下部を形成される燃焼室2には、点火プラグ10および燃料噴射弁9が取り付けられており、燃料を燃焼室2内に直接噴射できるようになっている。燃料は燃料タンク15内の低圧ポンプ14によって圧送され、当該内燃機関によって駆動される高圧ポンプ13に入る。高圧ポンプ13に入った燃料は、燃焼室2内に燃料を直接噴射し得る圧力まで昇圧されて燃料分配管11内に送られる。燃料分配管11には燃圧センサ12が取り付けられている。高圧レギュレータ16は高圧ポンプ13から吐出された燃料の一部をリターン配管17に戻す。
【0022】
機関の排気系には排気タービン27が取り付けられ、該排気タービン27は、排気弁6、排気ポート4、排気マニホールド26を通って燃焼室2から流出する排気ガスによって駆動される。タービン27から流出した排気ガスは、排気管28、触媒コンバータ29、消音器30を通って排出される。タービン27と同軸にコンプレッサ21が取り付けられており、コンプレッサ21は機関の吸気系に配置される。
【0023】
吸入空気はエアクリーナ20を通った後コンプレッサ21によって圧縮され、絞り弁22を通って吸気コレクタ23に流入する。吸気コレクタ23には吸気圧センサ25が取り付けられている。
【0024】
吸気マニホールド24によって分岐した流れは吸気ポート3を通ってそれぞれの気筒に流入する。吸気ポート3は吸気弁5の上流で仕切り板7によって上下に分割されており、分割された下の部分を遮断できるタンブル制御弁8が仕切り板の端部に付けられている。詳細な作動については後述する。
【0025】
機関のクランク軸に取り付けたリングギア18の外周部には歯が切ってあり、クランク角センサ19でクランク軸の回転に応じたパルスを検出してコントロールユニット31に送り、クランク角をモニターしている。
【0026】
コントロールユニット31が内燃機関制御パラメータを決定する手順を、図2のフローチャートを用いて説明する。本実施の形態の内燃機関は、運転条件に応じて燃料を圧縮行程で噴射する成層燃焼モードと、燃料を吸入行程で噴射する均質燃焼モードを切り替えて運転することができる。S101で各種センサからの信号入力を読み込む。読み込んだ信号をもとにS102で均質か成層かの燃焼モードを決定する。S103からS107で、燃焼モードに応じた内燃機関制御パラメータ(目標燃圧、噴射パルス幅、燃料噴射時期、点火時期、タンブル制御弁開度等)を決定する。
【0027】
図3は、上記した形態の筒内噴射型内燃機関を無過給成層燃焼運転したときの気筒内の様子を模式的に表したものである。圧縮行程中に燃料噴射弁9から噴射された燃料噴霧32は、噴霧自身の運動量と筒内の空気流動により、燃焼室2内を移動して点火プラグ10に到達する。燃料噴霧32は移動する間に気化および空気との混合が進み、プラグ電極33の近傍に可燃混合比の混合気を形成する。図4は、圧縮行程の後期に設定された点火時期付近で、プラグ電極33の近傍に燃料噴霧32が到達した状態を表す。
【0028】
図5は機関を過給して成層燃焼運転した場合の、燃料噴射時の燃焼室2内の様子を表す。圧縮行程で燃料噴射弁9から燃料が噴射されたとき、燃焼室2内の圧力は無過給運転時と比べて高くなっている。そのため、噴射された燃料の到達距離は小さくなる。また、燃料噴霧32は無過給運転のときと比べて小さく縮まっている。図6は過給成層燃焼時の点火時期付近における燃焼室2内の様子であって、燃料が点火プラグ10に到達していないためにプラグ電極33の近傍に可燃混合気を形成できない。このような混合気の状態でプラグに火花を飛ばしても混合気に着火することはできず、このサイクルは失火となってしまう。失火が発生すると、燃費・排気・運転性等の内燃機関性能が著しく悪化する。
【0029】
図7は、成層燃焼時の燃焼安定領域を示したものである。グラフの横軸は燃料噴射時期、縦軸は点火時期をそれぞれ表している。前述のように圧縮行程で噴射弁9から噴射された燃料は、ある時間が経過した後、点火プラグ10の近傍に到達する。そのときにプラグ電極33の回りに可燃混合比の混合気を形成し、プラグ電極33に火花を飛ばして点火する。このような混合気の形成が安定してできる噴射時期と点火時期の領域では各サイクルで燃焼による有効な仕事が行われ、かつサイクル間の燃焼状態のばらつきが少ない、つまり燃焼安定がよい。
【0030】
燃焼安定性を示す指標として、例えば平均有効圧の標準偏差を取り、それがある基準値以下の領域を燃焼安定領域としてグラフ中に示すものとする。内燃機関の制御パラメータとしての噴射時期と点火時期の選定に当たっては、この燃焼安定領域の中で燃費・排気エミッション等の内燃機関性能が所期の目標値を満足するように決める。内燃機関コントロールユニット31にはこのような制御パラメータ決定手段が収められている。このようなコントロールユニット31は知られたものであり、詳細な説明は省略する。
【0031】
噴射された燃料はある時間が経過してから点火プラグ10近傍に移動するから、燃焼安定領域は、噴射時期=点火時期であるような直線37よりも点火時期が遅れた側に存在する。図7グラフ中に無過給運転時の燃焼安定領域34と過給運転時の燃焼安定領域35の例を示す。同じ噴射時期で燃料を噴射した場合、過給運転では無過給運転よりも気筒内の圧力が上昇しているために、噴射された燃料の到達距離が小さくなる。したがって、無過給運転では燃料が点火プラグ10に到達して可燃混合気を形成できた領域でも、燃料が点火プラグ10に届かなくなり、安定した燃焼が実現できなくなる。
【0032】
本発明の第1の実施の形態では、この問題を、燃料配管11内の燃料の圧力を高め、それにより噴射された燃料の到達距離を大きくすることにより解決する。まず、図1を用いて燃料分配管11内の燃料の圧力(以下燃圧)を制御する方法について述べる。コントロールユニット31は前述のように内燃機関回転、負荷等の情報をもとに、内燃機関の運転状態に応じた目標燃圧を計算する。次に燃圧センサ12の信号から現在の燃圧を読み取り、目標燃圧と比較する。コントロールユニット31は現在の燃圧が目標燃圧と一致するように、高圧レギュレータ16に信号を送り、リターン配管17に戻す燃料の量を変化させることによって燃料分配管11内の燃圧を目標値に合わせて制御する。
【0033】
過給運転時に燃圧を高める制御方式を図8に示すフローチャートを用いて説明する。S201で吸気圧センサ25の信号から吸気圧Pmを読みこむ。次に、S202で燃焼モードが成層燃焼か均質燃焼かを判断する。成層燃焼であれば、Pmが大気圧Paよりも大きいかどうかを判断する。Pmを大気との相対圧で測定する場合は、Pmが正の値を取った場合にPmがPaよりも大きいと判断する。PmがPaよりも大きい場合、S204でPmに応じた燃圧補正量を計算する。これで過給成層時燃圧補正量の計算ルーチンが終了し、計算された燃圧補正量は目標燃圧に加算される。
【0034】
図7グラフ中に過給圧に応じて燃圧を上げたときの燃焼安定領域36を示す。このように燃圧を上げた場合、気筒内の圧力が上昇していても噴射された燃料が点火プラグまで到達できるために、無過給運転時と同じ燃料噴射時期と点火時期を維持していても、燃圧を高めない場合に比べて燃焼安定領域が広くなり、内燃機関の失火発生を防止することができる。
【0035】
次に本発明の第2の実施の形態について説明する。この形態では、過給状態で点火プラグ10に噴霧を届かせるための方策として、噴射時期を早めるようにしている。噴射時期を早めることにより、ピストン1がまだ下方にあり、燃焼室内の圧力が上昇する前のタイミングに燃料噴射を行うので噴射された燃料の到達距離が噴射時期を早めないときに比べて長くなるという効果がある。また、噴射時期を早めることで点火時期までに時間が取れるので、燃料が点火プラグ10に到達できるという効果がある。この効果を燃焼室2内の噴霧の様子で示したのが図9および図10である。図9に示すように燃料噴射時のピストン位置が、燃料噴射時期を早めないとき、例えば図5の場合と比べると下方にあるため、噴霧の到達距離が短くなりにくい。そのため、図10に示すように点火時期付近では燃料噴霧が点火プラグに到達することができる。
【0036】
また、この効果を燃料噴射時期−点火時期のグラフで示したのが図11である。無過給運転時の噴射時期−点火時期の設定点M1は、過給運転したときの安定領域35の位置が無過給運転の安定領域34から変わるので、そのままでは安定領域から外れてしまう。過給運転時には噴射時期を早めることで設定点をM1からM2に移動させて、噴射時期−点火時期の設定点が過給運転時の安定領域35から外れることを防止している。
【0037】
図12は過給成層時噴射時期補正量の計算ルーチンについて図8と同様のフローチャートに表したものである。なお、S301〜S303までは、図8におけるS201〜S203までと同じであり、説明は省略する。図12において、PmがPaよりも大きい場合、S304でPmに応じた噴射時期補正量を計算する。これで過給成層時噴射時期補正量の計算ルーチンが終了し、計算された噴射時期補正量が従前の噴射時期に加算される。
【0038】
本発明の第3の実施の形態は、過給状態では点火時期を遅らせるものである。点火時期を遅らせることで燃料噴射から点火までの時間を長く取ることができるので、噴射された燃料が点火プラグに到達して燃焼できる。図13は、この効果を燃料噴射時期−点火時期のグラフで示したものである。無過給運転時の燃焼安定領域34と過給運転時の燃焼安定領域35は燃料噴射時期−点火時期グラフ上の位置が異なるため、無過給運転時の燃料噴射時期−点火時期の設定点M3では過給運転時に燃焼安定領域から外れてしまう。点火時期を遅らせることで設定点をM3からM4に移動させて、設定点が過給運転時の安定領域35から外れることを防止するものである。
【0039】
また、図14は過給成層時点火時期補正量の計算ルーチンを示した図8、図12と同様のフローチャートである。なお、S401〜S403までは、図8におけるS201〜S203までと同じであり、説明は省略する。図14において、PmがPaよりも大きい場合、S404でPmに応じた点火時期補正量を計算する。これで過給成層時点火時期補正量の計算ルーチンが終了し、計算された点火時期補正量が従前の点火時期に加算される。
【0040】
本発明の第4の実施の形態は、過給運転時に燃料噴霧32を点火プラグ10に到達させる手段として、燃焼室2内のタンブル流を発生させるあるいはさらに強めるようにしている。既に述べたように燃料噴射弁9から噴射された燃料は自身の運動量と気筒内の空気流動によって燃焼室内を移動していくのであるから、空気流動を強化することで燃料の移動を補助することができる。図15、図16はこの考えに基づいた本発明の実施の形態を示す。
【0041】
この例において、吸気ポート3は吸気弁5の上流で仕切り板7によって上下に分割されており、分割された下の部分を遮断できるタンブル制御弁8が付けられている。タンブル制御弁8を駆動するアクチュエータ(図示しない)は、コントロールユニット31によって制御されている。タンブル制御弁8の開度を変化させることで、吸気弁5の上部と下部を通過する空気量の比率を変えることができる。これにより、吸気ポート3から燃焼室2内に流入した空気のタンブルの強さを制御することができる。図示のタンブル制御弁8は1つの例であって、このような形態のものに限られるわけではない。
【0042】
図15はタンブル制御弁を閉じたときの吸気行程における燃焼室の様子を示したものである。吸気弁5は開いて、ピストン1は下降している。吸気ポート内を流れる空気は、矢印38で表されるようにポートの上部通路から燃焼室2内に流入する。そのため、燃焼室2に流入した後で燃焼室2内に強いタンブル流39を形成する。その後圧縮行程に燃料噴射弁9から燃料が噴射されたときの様子を図16に示す。燃料噴霧32は、燃焼室2内のタンブル流39に乗って点火プラグ10の方向へ移動する、いわゆるタンブルガイド式の筒内噴射燃焼システムをとっている。前述したように、過給運転時には噴霧のペネトレーションが小さくなって、無過給運転時と同じタンブル強度だと点火プラグ10に届かないおそれがある。本実施例では過給運転時にタンブル制御弁8を閉じ側に制御することにより燃焼室2内のタンブルを強化して、噴霧のペネトレーションが小さくなった分を補うことで、燃料噴霧32を点火プラグ10に到達させるものである。
【0043】
図17は過給成層時タンブル制御弁開度補正量の計算ルーチンについて図8、図12、図14と同様のフローチャートに表したものである。なお、S501〜S503までは、図8におけるS201〜S203までと同じであり、説明は省略する。図17において、PmがPaよりも大きい場合、S504でPmに応じたタンブル制御弁開度補正量を計算する。これでタンブル制御弁開度補正量の計算ルーチンが終了し、計算された補正量が従前の開度に加算される。
【0044】
【発明の効果】
以上説明したように本発明によれば、筒内噴射内燃機関の過給成層運転時の失火発生を防止できるので、成層リーン燃焼が可能な領域を拡大し、燃料消費率を改善できる。
【図面の簡単な説明】
【図1】本発明による筒内噴射型内燃機関の一実施の形態を説明するシステム図。
【図2】筒内噴射型内燃機関と共に用いる内燃機関コントロールユニットにおいて制御パラメータ決定する手段を示すフローチャートである。
【図3】無過給成層運転で、圧縮行程の燃料噴射タイミングにおける燃焼室周辺の縦断面図であり、燃料噴霧の様子を模式的に表している。
【図4】無過給成層運転で、点火タイミングにおける燃焼室周辺の縦断面図であり、燃料噴霧の様子を模式的に表している。
【図5】過給成層運転で、圧縮行程の燃料噴射タイミングにおける燃焼室周辺の縦断面図であり、燃料噴霧の様子を模式的に表している。
【図6】過給成層運転で、点火タイミングにおける燃焼室周辺の縦断面図であり、燃料噴霧の様子を模式的に表している。
【図7】燃料噴射時期−点火時期のグラフ上に、無過給運転時、過給運転時、過給+燃圧上昇運転時の各々の燃焼安定領域を表した図。
【図8】過給運転時の燃圧補正量計算を示すフローチャート。
【図9】過給成層運転で燃圧を上昇させたときの、圧縮行程の燃料噴射タイミングにおける燃焼室周辺の縦断面図であり、燃料噴霧の様子を模式的に表している。
【図10】過給成層運転で燃圧を上昇させたときの、点火タイミングにおける燃焼室周辺の縦断面図であり、燃料噴霧の様子を模式的に表している。
【図11】燃料噴射時期−点火時期のグラフ上に無過給運転時と過給運転時の燃焼安定領域を表し、過給運転時に噴射時期を進めることの効果を示した図である。
【図12】過給運転時の燃料噴射時期補正量計算を示すフローチャート。
【図13】燃料噴射時期−点火時期のグラフ上に無過給運転時と過給運転時の燃焼安定領域を表し、過給運転時に点火時期を遅らせることの効果を示した図である。
【図14】過給運転時の点火時期補正量計算を示すフローチャート。
【図15】タンブル制御弁を閉じたときの、吸入行程における燃焼室周辺の縦断面図であり、燃焼室内の空気流動の様子を模式的に表している。
【図16】タンブル制御弁を閉じたときの、圧縮行程における燃焼室周辺の縦断面図であり、燃焼室内の空気流動と噴霧の様子を模式的に表している。
【図17】過給運転時のタンブル制御弁開度補正量計算を示すフローチャート。
【符号の説明】
1  ピストン
2  燃焼室
3  吸気ポート
4  排気ポート
5  吸気弁
6  排気弁
7  仕切り板
8  タンブル制御弁
9  燃料噴射弁
10 点火プラグ
11 燃料分配管
12 燃圧センサ
13 高圧ポンプ
14 低圧ポンプ
15 燃料タンク
16 高圧レギュレータ
17 リターン配管
18 リングギア
19 クランク角センサ
20 エアクリーナ
21 コンプレッサ
22 絞り弁
23 吸気コレクタ
24 吸気マニホールド
25 吸気圧センサ
26 排気マニホールド
27 タービン
28 排気管
29 触媒コンバータ
30 消音器
31 内燃機関コントロールユニット
32 燃料噴霧
33 プラグ電極
34 無過給運転時の燃焼安定領域
35 過給運転時の燃焼安定領域
36 燃圧を上げたときの燃焼安定領域
37 噴射時期=点火時期の直線
38 吸気ポート内の空気の動き
39 燃焼室内のタンブル流
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a direct injection type internal combustion engine and a combustion method thereof, and more particularly, to a direct injection type internal combustion engine equipped with a supercharging mechanism, which is capable of expanding a range of stratified lean operation to a large load. The present invention relates to an internal combustion engine and its combustion method.
[0002]
[Prior art]
2. Description of the Related Art There is known an in-cylinder injection internal combustion engine in which fuel is injected during a compression stroke to perform stratified combustion. By performing the stratified lean operation, the pump loss and the cooling loss can be reduced as compared with the homogeneous stoichiometric operation in which the fuel is injected in the intake stroke, so that the fuel consumption rate can be reduced. In the internal combustion engine of this embodiment, when the load is increased while keeping the rotation constant in a stratified lean state, in the naturally aspirated internal combustion engine, when a certain load is reached, even if the throttle is fully opened, the intake air amount is insufficient, and the stratified Lean operation cannot be performed. If the stratified operation is forcibly performed in a state where the intake air amount is insufficient, the emission of smoke rapidly deteriorates due to incomplete combustion, and the emission of unburned hydrocarbons increases.
[0003]
As a solution to this problem, the operation is switched between a stratified combustion mode in which fuel is injected in a compression stroke (at low load) and a homogeneous combustion mode in which fuel is injected in a suction stroke (at high load), according to operating conditions. In addition, a supercharging mechanism is provided to increase the amount of air supplied to the internal combustion engine, enabling the stratified operation mode to a large load as compared with the naturally aspirated internal combustion engine, and as a result, for the homogeneous combustion mode operation. A method of lowering the fuel consumption rate by using the method has been proposed (for example, see Japanese Patent Application Laid-Open No. 2000-248978).
[0004]
[Problems to be solved by the invention]
In the internal combustion engine having the above-described supercharging mechanism, when the supercharging operation is performed, the pressure in the cylinder increases in the compression stroke due to the supercharging pressure, thereby decreasing the reach of the fuel spray and causing the injection. The fuel injected from the valve may not be able to reach the spark plug, or the arrival time to the spark plug may be delayed. Therefore, if the combustion is continued under the same conditions as in the non-supercharging operation, stable combustion may not be obtained such as misfire.
[0005]
To describe this problem more specifically, in this type of internal combustion engine, when the internal combustion engine is supercharged, the amount of intake air is increased as compared to non-supercharged operation. Therefore, the pressure in the cylinder that rises during the compression stroke is higher by the amount corresponding to the supercharging pressure in the supercharging operation than in the non-supercharging operation. On the other hand, in order to perform the stratified lean operation for the purpose of lowering the fuel consumption rate, it is necessary to form a stratified mixture having a combustible mixture ratio around the ignition plug and a lean mixture ratio outside the ignition plug.
[0006]
Here, when the fuel is injected in the compression stroke of the supercharging operation, since the pressure in the cylinder is high, the distance of the injected fuel becomes shorter than that in the non-supercharging operation. For this reason, fuel that has sufficiently reached the spark plug during non-supercharging operation cannot reach the ignition plug during supercharging operation, or even if it has reached, there is a time delay compared to during non-supercharging operation, and the fuel May not be able to ignite at the ignition timing. When a misfire occurs, the performance of the internal combustion engine is significantly reduced, such as deterioration of drivability, exhaust emission and fuel consumption. For this reason, supercharging stratified combustion cannot be performed in an operation region where a misfire may occur, and as a result, the region of stratified lean operation is narrowed, and the effect of improving the fuel consumption rate is reduced.
[0007]
An object of the present invention is to eliminate the above-mentioned disadvantages of a cylinder injection type internal combustion engine having a conventionally known supercharging mechanism. It is an object of the present invention to provide a direct injection internal combustion engine capable of performing stratified charge combustion and thereby greatly improving the fuel consumption rate, and a combustion method thereof.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention basically includes at least an injection mechanism for directly injecting fuel into a cylinder and a supercharging mechanism, and injects fuel during a compression stroke to perform stratified combustion. An in-cylinder injection type internal combustion engine, wherein the internal combustion engine further includes a shift in ignition timing caused by a time when injected fuel reaches an ignition plug being later than in a non-supercharging operation due to a supercharging pressure. Control means to correct the problem. The present invention also discloses such a combustion method for an internal combustion engine.
[0009]
As described above, an in-cylinder injection type internal combustion engine that includes an injection mechanism that directly injects fuel into a cylinder and a supercharging mechanism, and that performs stratified combustion by injecting fuel into the cylinder during a compression stroke, When fuel is injected from the injection mechanism under the same conditions during the non-supercharging operation and the supercharging operation, the injection pressure of the fuel becomes insufficient due to the increase in the in-cylinder pressure due to the supercharging pressure. Non-arrival or arrival delay occurs. For this reason, if the supercharging operation is continued with the combustion conditions (fuel pressure, fuel injection timing, ignition timing, etc.) being the same as in the non-supercharging operation, the ignition timing will be shifted, and misfire will occur. Since the internal combustion engine according to the present invention includes the control means for correcting the above-described deviation of the ignition timing, a stable ignition timing can be obtained even at the time of the supercharging operation, and under the condition that the misfire does not occur. Combustion can be continued. As a result, stable supercharged stratified combustion can be performed up to a higher load region, and the fuel consumption rate can be greatly improved.
[0010]
In the present invention, the internal combustion engine includes at least an injection mechanism for directly injecting fuel into a cylinder and a supercharging mechanism, and is provided with an arbitrary form on condition that stratified combustion can be performed by injecting fuel during a compression stroke. It may be a direct injection internal combustion engine. Any conventionally known injection mechanism or supercharging mechanism can be used. The shape of the piston head may be arbitrary. Further, it is preferable that the internal combustion engine be configured to operate in the stratified combustion mode when the load is low and be operated in the homogeneous combustion mode when the load is high, but may be configured to perform only the stratified operation.
[0011]
In a specific embodiment of the present invention, in order to correct the above-described deviation of the ignition timing, a control means capable of performing control to make the fuel pressure from the injection mechanism higher than in the non-supercharging operation in accordance with the supercharging pressure Is used. Then, during the supercharging operation, the fuel pressure from the injection mechanism is set to be higher than that during the non-supercharging operation according to the supercharging pressure, and combustion is performed in a state where the penetration of the fuel injected into the cylinder is increased.
[0012]
According to this aspect, even when the pressure is increased by an amount corresponding to the supercharging pressure in the cylinder in the compression stroke injection during the supercharging operation, the fuel pressure is also correspondingly increased, and the penetration of the spray Becomes larger. As a result, the injected fuel easily reaches the spark plug and is reliably ignited by the ignition spark.Therefore, even if the same fuel injection timing and ignition timing as in the non-supercharging operation are maintained, a misfire occurs. The probability of occurrence is greatly reduced, and a wide stable combustion region is secured.
[0013]
In another specific embodiment of the present invention, in order to correct the above-described deviation of the ignition timing, the fuel injection timing is set to non-supercharging according to the arrival delay of the injected fuel to the ignition plug caused by the supercharging pressure. Control means capable of performing control earlier than during operation is used. During the supercharging operation, combustion is performed in a state in which the fuel injection timing from the injection mechanism is advanced earlier than in the non-supercharging operation, according to the arrival delay of the injected fuel to the ignition plug caused by the supercharging pressure. .
[0014]
According to this aspect, during the supercharging operation of the internal combustion engine and during the compression stroke injection, the fuel injection timing is advanced according to the supercharging pressure, so that the fuel moves in the atmosphere where the cylinder pressure is relatively low. In addition, since time is taken from the fuel injection timing to the ignition timing, the injected fuel reaches the spark plug surely by the ignition timing, and it is possible to avoid the occurrence of misfire due to the deviation of the ignition timing. .
[0015]
In still another specific embodiment of the present invention, in order to correct the above-mentioned deviation of the ignition timing, the ignition timing is set to non-supercharged in accordance with the arrival delay of the injected fuel to the ignition plug caused by the supercharging pressure. Control means capable of performing control to delay the operation from the operation is used. Then, during the supercharging operation, combustion is performed with the ignition timing delayed in accordance with the delay of the injection fuel reaching the ignition plug caused by the supercharging pressure.
[0016]
In this aspect, at the time of the supercharging operation of the internal combustion engine and during the compression stroke injection, the ignition timing is delayed according to the supercharging pressure, so that when the injected fuel reaches the spark plug and the ignition timing. It is possible to easily match them, and it is possible to easily avoid the occurrence of misfire due to a shift in ignition timing.
[0017]
In still another specific embodiment of the present invention, a control means capable of controlling the opening and closing of an appropriate tumble control valve disposed in the supercharger conduit is used to correct the above-mentioned deviation of the ignition timing. During the supercharging operation, combustion is performed while appropriately adjusting the opening of the tumble control valve.
[0018]
In this aspect, during the supercharging operation of the internal combustion engine and during the compression stroke injection, the tumble control valve is closed or the opening degree is appropriately adjusted according to the supercharging pressure to increase the tumble strength in the cylinder, and the injection is performed. Fuel is transferred to the spark plug by tumble in the cylinder. Thus, by compensating for the decrease in the penetration of the spray, the fuel spray can reliably reach the spark plug, and misfire due to a shift in ignition timing can be avoided.
[0019]
Each of the above specific embodiments may be used individually in one internal combustion engine, or two or more embodiments may be used in an appropriate combination. Select as appropriate according to the actual machine.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on some embodiments with reference to the drawings.
[0021]
FIG. 1 shows a direct injection internal combustion engine equipped with a supercharger. For simplicity, only one cylinder of a multi-cylinder engine is shown. An ignition plug 10 and a fuel injection valve 9 are attached to a combustion chamber 2 having a lower portion formed by the piston 1 so that fuel can be directly injected into the combustion chamber 2. Fuel is pumped by a low pressure pump 14 in a fuel tank 15 and enters a high pressure pump 13 driven by the internal combustion engine. The fuel that has entered the high-pressure pump 13 is pressurized to a pressure at which fuel can be directly injected into the combustion chamber 2 and sent into the fuel distribution pipe 11. A fuel pressure sensor 12 is attached to the fuel distribution pipe 11. The high-pressure regulator 16 returns a part of the fuel discharged from the high-pressure pump 13 to the return pipe 17.
[0022]
An exhaust turbine 27 is attached to an exhaust system of the engine, and the exhaust turbine 27 is driven by exhaust gas flowing out of the combustion chamber 2 through the exhaust valve 6, the exhaust port 4, and the exhaust manifold 26. The exhaust gas flowing out of the turbine 27 is discharged through an exhaust pipe 28, a catalytic converter 29, and a muffler 30. The compressor 21 is mounted coaxially with the turbine 27, and the compressor 21 is disposed in an intake system of the engine.
[0023]
The intake air is compressed by the compressor 21 after passing through the air cleaner 20 and flows into the intake collector 23 through the throttle valve 22. An intake pressure sensor 25 is attached to the intake collector 23.
[0024]
The flow branched by the intake manifold 24 flows into each cylinder through the intake port 3. The intake port 3 is vertically divided by a partition plate 7 upstream of the intake valve 5, and a tumble control valve 8 that can shut off the divided lower portion is attached to an end of the partition plate. The detailed operation will be described later.
[0025]
The outer periphery of the ring gear 18 attached to the crankshaft of the engine is cut off, and a pulse corresponding to the rotation of the crankshaft is detected by the crank angle sensor 19 and sent to the control unit 31 to monitor the crank angle. I have.
[0026]
The procedure by which the control unit 31 determines the internal combustion engine control parameters will be described with reference to the flowchart of FIG. The internal combustion engine of the present embodiment can be operated by switching between a stratified combustion mode in which fuel is injected in a compression stroke and a homogeneous combustion mode in which fuel is injected in a suction stroke, according to operating conditions. In step S101, signal inputs from various sensors are read. Based on the read signal, a combustion mode of homogeneous or stratified is determined in S102. In S103 to S107, the internal combustion engine control parameters (target fuel pressure, injection pulse width, fuel injection timing, ignition timing, tumble control valve opening, etc.) corresponding to the combustion mode are determined.
[0027]
FIG. 3 schematically shows a state in the cylinder when the above-described in-cylinder injection type internal combustion engine is operated in a supercharged stratified charge combustion operation. The fuel spray 32 injected from the fuel injection valve 9 during the compression stroke moves in the combustion chamber 2 and reaches the ignition plug 10 by the momentum of the spray itself and the air flow in the cylinder. During the movement of the fuel spray 32, the vaporization and the mixing with the air progress, and a mixture having a combustible mixture ratio is formed near the plug electrode 33. FIG. 4 shows a state where the fuel spray 32 has reached the vicinity of the plug electrode 33 near the ignition timing set in the latter half of the compression stroke.
[0028]
FIG. 5 shows a state inside the combustion chamber 2 at the time of fuel injection when the engine is supercharged and stratified combustion operation is performed. When fuel is injected from the fuel injection valve 9 in the compression stroke, the pressure in the combustion chamber 2 is higher than in the non-supercharging operation. Therefore, the reach of the injected fuel is reduced. Further, the fuel spray 32 is smaller and shrunk as compared with the non-supercharging operation. FIG. 6 shows the inside of the combustion chamber 2 near the ignition timing at the time of supercharging stratified combustion. Since the fuel has not reached the ignition plug 10, a combustible mixture cannot be formed near the plug electrode 33. Even if a spark is blown to the plug in such a state of the air-fuel mixture, the air-fuel mixture cannot be ignited, and this cycle is misfired. When a misfire occurs, the internal combustion engine performance, such as fuel efficiency, exhaust, and operability, is significantly deteriorated.
[0029]
FIG. 7 shows a stable combustion region during stratified combustion. The horizontal axis of the graph represents the fuel injection timing, and the vertical axis represents the ignition timing. As described above, the fuel injected from the injection valve 9 during the compression stroke reaches the vicinity of the ignition plug 10 after a certain time has elapsed. At that time, an air-fuel mixture having a flammable mixture ratio is formed around the plug electrode 33, and the plug electrode 33 is ignited by sparks. In the region of the injection timing and the ignition timing in which the formation of such an air-fuel mixture can be stably performed, effective work by combustion is performed in each cycle, and the variation in the combustion state between the cycles is small, that is, the combustion is stable.
[0030]
As an index indicating combustion stability, for example, a standard deviation of the average effective pressure is taken, and an area where the standard deviation is equal to or less than a certain reference value is shown in the graph as a combustion stability area. In selecting the injection timing and the ignition timing as the control parameters of the internal combustion engine, it is determined that the internal combustion engine performance such as fuel consumption and exhaust emission satisfies the desired target values in this stable combustion region. The internal combustion engine control unit 31 contains such control parameter determining means. Such a control unit 31 is known, and a detailed description thereof will be omitted.
[0031]
Since the injected fuel moves to the vicinity of the ignition plug 10 after a certain time has elapsed, the combustion stable region exists on the side where the ignition timing is later than the straight line 37 where the injection timing = ignition timing. FIG. 7 shows an example of the stable combustion region 34 during the non-supercharging operation and the stable combustion region 35 during the supercharging operation. When the fuel is injected at the same injection timing, in the supercharging operation, since the pressure in the cylinder is higher than in the non-supercharging operation, the reach of the injected fuel becomes shorter. Therefore, in the non-supercharging operation, even in a region where the fuel reaches the ignition plug 10 and a combustible mixture can be formed, the fuel does not reach the ignition plug 10 and stable combustion cannot be realized.
[0032]
In the first embodiment of the present invention, this problem is solved by increasing the pressure of the fuel in the fuel pipe 11 and thereby increasing the reach of the injected fuel. First, a method of controlling the pressure of fuel in the fuel distribution pipe 11 (hereinafter referred to as fuel pressure) will be described with reference to FIG. The control unit 31 calculates the target fuel pressure according to the operating state of the internal combustion engine based on the information such as the internal combustion engine rotation and the load as described above. Next, the current fuel pressure is read from the signal of the fuel pressure sensor 12 and compared with the target fuel pressure. The control unit 31 sends a signal to the high-pressure regulator 16 so that the current fuel pressure matches the target fuel pressure, and changes the amount of fuel returned to the return pipe 17 to adjust the fuel pressure in the fuel distribution pipe 11 to the target value. Control.
[0033]
A control method for increasing the fuel pressure during the supercharging operation will be described with reference to a flowchart shown in FIG. In S201, the intake pressure Pm is read from the signal of the intake pressure sensor 25. Next, in S202, it is determined whether the combustion mode is stratified combustion or homogeneous combustion. In the case of stratified combustion, it is determined whether or not Pm is higher than the atmospheric pressure Pa. When Pm is measured by a relative pressure with the atmosphere, it is determined that Pm is larger than Pa when Pm takes a positive value. If Pm is larger than Pa, a fuel pressure correction amount corresponding to Pm is calculated in S204. This completes the routine for calculating the supercharged stratified fuel pressure correction amount, and the calculated fuel pressure correction amount is added to the target fuel pressure.
[0034]
FIG. 7 shows a combustion stable region 36 when the fuel pressure is increased according to the supercharging pressure. When the fuel pressure is increased in this manner, the injected fuel can reach the spark plug even if the pressure in the cylinder is increased, so that the same fuel injection timing and ignition timing as in the non-supercharging operation are maintained. In addition, the combustion stability region is widened as compared with the case where the fuel pressure is not increased, and the occurrence of misfire in the internal combustion engine can be prevented.
[0035]
Next, a second embodiment of the present invention will be described. In this embodiment, the injection timing is advanced as a measure for making the spray reach the ignition plug 10 in a supercharged state. By advancing the injection timing, the piston 1 is still below and the fuel is injected at a timing before the pressure in the combustion chamber increases, so that the distance of the injected fuel becomes longer than when the injection timing is not advanced. This has the effect. In addition, since the time is taken before the ignition timing by advancing the injection timing, there is an effect that the fuel can reach the ignition plug 10. FIGS. 9 and 10 show this effect in the form of spray in the combustion chamber 2. FIG. As shown in FIG. 9, when the piston position at the time of fuel injection is not advanced, when the fuel injection timing is not advanced, for example, the piston position is lower than in the case of FIG. Therefore, the fuel spray can reach the ignition plug near the ignition timing as shown in FIG.
[0036]
FIG. 11 shows this effect in a graph of fuel injection timing-ignition timing. The set point M1 of the injection timing-ignition timing in the non-supercharging operation is out of the stable region as it is because the position of the stable region 35 in the supercharging operation changes from the stable region 34 in the non-supercharging operation. In the supercharging operation, the set point is moved from M1 to M2 by advancing the injection timing to prevent the set point between the injection timing and the ignition timing from deviating from the stable region 35 during the supercharging operation.
[0037]
FIG. 12 is a flowchart similar to FIG. 8 showing a routine for calculating the supercharged stratification injection timing correction amount. Steps S301 to S303 are the same as steps S201 to S203 in FIG. 8, and a description thereof will be omitted. In FIG. 12, when Pm is larger than Pa, an injection timing correction amount according to Pm is calculated in S304. This completes the routine for calculating the supercharged stratification injection timing correction amount, and the calculated injection timing correction amount is added to the previous injection timing.
[0038]
The third embodiment of the present invention delays the ignition timing in a supercharging state. By delaying the ignition timing, a longer time from fuel injection to ignition can be taken, so that the injected fuel reaches the ignition plug and can be burned. FIG. 13 shows this effect in a graph of fuel injection timing-ignition timing. Since the position of the stable combustion region 34 during the non-supercharging operation and the stable combustion region 35 during the supercharging operation are different on the fuel injection timing-ignition timing graph, the set point of the fuel injection timing-ignition timing during the non-supercharging operation is set. In the case of M3, it deviates from the stable combustion region during the supercharging operation. By delaying the ignition timing, the set point is moved from M3 to M4 to prevent the set point from deviating from the stable region 35 during the supercharging operation.
[0039]
FIG. 14 is a flowchart similar to FIGS. 8 and 12 showing a routine for calculating the ignition timing correction amount at the time of supercharging stratification. Steps S401 to S403 are the same as steps S201 to S203 in FIG. 8, and a description thereof will be omitted. In FIG. 14, when Pm is larger than Pa, an ignition timing correction amount corresponding to Pm is calculated in S404. This completes the routine for calculating the ignition timing correction amount at the time of supercharging, and the calculated ignition timing correction amount is added to the previous ignition timing.
[0040]
In the fourth embodiment of the present invention, as a means for causing the fuel spray 32 to reach the ignition plug 10 during the supercharging operation, a tumble flow in the combustion chamber 2 is generated or further strengthened. As described above, the fuel injected from the fuel injection valve 9 moves in the combustion chamber by its own momentum and the air flow in the cylinder. Therefore, it is necessary to assist the movement of the fuel by enhancing the air flow. Can be. FIGS. 15 and 16 show an embodiment of the present invention based on this concept.
[0041]
In this example, the intake port 3 is divided into upper and lower parts by a partition plate 7 upstream of the intake valve 5, and a tumble control valve 8 that can shut off the divided lower part is provided. An actuator (not shown) for driving the tumble control valve 8 is controlled by the control unit 31. By changing the opening of the tumble control valve 8, the ratio of the amount of air passing through the upper part and the lower part of the intake valve 5 can be changed. Thereby, the intensity of the tumble of the air flowing into the combustion chamber 2 from the intake port 3 can be controlled. The illustrated tumble control valve 8 is one example, and is not limited to this type.
[0042]
FIG. 15 shows the state of the combustion chamber in the intake stroke when the tumble control valve is closed. The intake valve 5 is open and the piston 1 is down. The air flowing in the intake port flows into the combustion chamber 2 from the upper passage of the port as indicated by an arrow 38. Therefore, a strong tumble flow 39 is formed in the combustion chamber 2 after flowing into the combustion chamber 2. FIG. 16 shows a state where fuel is injected from the fuel injection valve 9 during the compression stroke thereafter. The fuel spray 32 adopts a so-called tumble guide type in-cylinder injection combustion system that moves toward the spark plug 10 on the tumble flow 39 in the combustion chamber 2. As described above, the penetration of the spray becomes small during the supercharging operation, and if the tumble intensity is the same as in the non-supercharging operation, the fuel may not reach the spark plug 10. In this embodiment, by controlling the tumble control valve 8 to the closed side at the time of the supercharging operation, the tumble in the combustion chamber 2 is strengthened to compensate for the decrease in the penetration of the spray, and thereby the fuel spray 32 is connected to the ignition plug. 10 is reached.
[0043]
FIG. 17 is a flowchart similar to FIGS. 8, 12, and 14 showing a routine for calculating the correction amount of the tumble control valve opening during supercharging stratification. Steps S501 to S503 are the same as steps S201 to S203 in FIG. 8, and a description thereof will be omitted. In FIG. 17, when Pm is larger than Pa, a tumble control valve opening correction amount according to Pm is calculated in S504. This completes the tumble control valve opening correction amount calculation routine, and the calculated correction amount is added to the previous opening.
[0044]
【The invention's effect】
As described above, according to the present invention, misfires can be prevented from occurring during supercharging stratified operation of the direct injection internal combustion engine, so that the region where stratified lean combustion is possible can be expanded and the fuel consumption rate can be improved.
[Brief description of the drawings]
FIG. 1 is a system diagram illustrating an embodiment of a direct injection internal combustion engine according to the present invention.
FIG. 2 is a flowchart showing a means for determining control parameters in an internal combustion engine control unit used with a direct injection internal combustion engine.
FIG. 3 is a vertical cross-sectional view of a periphery of a combustion chamber at a fuel injection timing in a compression stroke in a non-supercharging stratified operation, and schematically illustrates a state of fuel spray.
FIG. 4 is a vertical cross-sectional view around a combustion chamber at an ignition timing in a non-supercharging stratified operation, and schematically illustrates a state of fuel spray.
FIG. 5 is a vertical cross-sectional view of the vicinity of a combustion chamber at a fuel injection timing in a compression stroke in a supercharging stratified operation, and schematically illustrates a state of fuel spray.
FIG. 6 is a vertical cross-sectional view of the vicinity of the combustion chamber at the ignition timing in the supercharging stratified operation, and schematically illustrates a state of fuel spray.
FIG. 7 is a diagram showing, on a graph of fuel injection timing-ignition timing, stable combustion regions during a non-supercharging operation, a supercharging operation, and a supercharging + fuel pressure increasing operation.
FIG. 8 is a flowchart showing calculation of a fuel pressure correction amount during a supercharging operation.
FIG. 9 is a longitudinal sectional view of the vicinity of a combustion chamber at a fuel injection timing in a compression stroke when the fuel pressure is increased in the supercharging stratified operation, and schematically illustrates a state of fuel spray.
FIG. 10 is a vertical cross-sectional view of the vicinity of the combustion chamber at the ignition timing when the fuel pressure is increased in the supercharging stratified operation, and schematically illustrates a state of fuel spray.
FIG. 11 is a diagram showing a combustion stable region in a non-supercharging operation and a supercharging operation on a graph of fuel injection timing-ignition timing, and showing an effect of advancing the injection timing in a supercharging operation.
FIG. 12 is a flowchart showing calculation of a fuel injection timing correction amount during a supercharging operation.
FIG. 13 is a diagram showing combustion stable regions during a non-supercharging operation and a supercharging operation on a graph of fuel injection timing-ignition timing, and showing an effect of delaying the ignition timing during the supercharging operation.
FIG. 14 is a flowchart illustrating calculation of an ignition timing correction amount during a supercharging operation.
FIG. 15 is a vertical cross-sectional view of the vicinity of a combustion chamber during a suction stroke when the tumble control valve is closed, and schematically illustrates a state of air flow in the combustion chamber.
FIG. 16 is a vertical cross-sectional view of the vicinity of a combustion chamber in a compression stroke when the tumble control valve is closed, and schematically illustrates a state of air flow and spray in the combustion chamber.
FIG. 17 is a flowchart showing a tumble control valve opening correction amount calculation at the time of supercharging operation.
[Explanation of symbols]
1 piston
2 Combustion chamber
3 Intake port
4 Exhaust port
5 Intake valve
6 Exhaust valve
7 Partition plate
8 Tumble control valve
9 Fuel injection valve
10 Spark plug
11 Fuel distribution pipe
12 Fuel pressure sensor
13 High pressure pump
14 Low pressure pump
15 Fuel tank
16 High pressure regulator
17 Return piping
18 Ring gear
19 Crank angle sensor
20 Air cleaner
21 Compressor
22 Throttle valve
23 intake collector
24 Intake manifold
25 Intake pressure sensor
26 Exhaust manifold
27 Turbine
28 exhaust pipe
29 Catalytic converter
30 silencer
31 Internal combustion engine control unit
32 Fuel Spray
33 plug electrode
34 Combustion stable region during non-supercharging operation
35 Combustion stable region during supercharging operation
36 Combustion stability region when fuel pressure is increased
37 Injection timing = ignition timing straight line
38 Air movement in the intake port
39 Tumble flow in the combustion chamber

Claims (10)

燃料を気筒内に直接噴射する噴射機構と過給機構とを少なくとも備え、圧縮行程中に燃料を噴射して成層燃焼を行う形態の筒内噴射型内燃機関であって、前記内燃機関は、さらに、噴射燃料が点火プラグに到達する時間が過給圧に起因して無過給運転時よりも遅くなることによって生じる点火タイミングのズレを是正するための制御手段を備えていることを特徴とする筒内噴射型内燃機関。An in-cylinder injection-type internal combustion engine including at least an injection mechanism for directly injecting fuel into a cylinder and a supercharging mechanism, and performing stratified combustion by injecting fuel during a compression stroke, wherein the internal combustion engine further includes: A control means for correcting a deviation in ignition timing caused by a time when the injected fuel reaches the ignition plug being later than that in the non-supercharging operation due to the supercharging pressure. In-cylinder injection type internal combustion engine. 前記制御手段は、過給圧に応じて噴射機構からの燃料圧力を無過給運転時よりも高圧とする制御を行いうる制御手段であることを特徴とする請求項1記載の筒内噴射型内燃機関。2. The in-cylinder injection type according to claim 1, wherein the control means is a control means capable of performing control to increase the fuel pressure from the injection mechanism in accordance with the supercharging pressure to be higher than in the non-supercharging operation. Internal combustion engine. 前記制御手段は、過給圧に起因して生じる点火プラグへの噴射燃料の到達遅れに応じて、燃料噴射時期を無過給運転時よりも早める制御を行いうる制御手段であることを特徴とする請求項1記載の筒内噴射型内燃機関。The control means is a control means capable of performing control to advance the fuel injection timing as compared with the non-supercharging operation in accordance with the arrival delay of the injected fuel to the ignition plug caused by the supercharging pressure. The in-cylinder injection type internal combustion engine according to claim 1. 前記制御手段は、過給圧に起因して生じる点火プラグへの噴射燃料の到達遅れに応じて、点火時期を無過給運転時よりも遅らせる制御を行いうる制御手段であることを特徴とする請求項1記載の筒内噴射型内燃機関。The control means is a control means capable of performing control for delaying the ignition timing from that in the non-supercharging operation in accordance with the arrival delay of the injected fuel to the ignition plug caused by the supercharging pressure. The direct injection internal combustion engine according to claim 1. 前記制御手段は、過給器管路内に配置した適宜のタンブル制御弁の開度調整を行いうる制御手段であることを特徴とする請求項1記載の筒内噴射型内燃機関。2. The direct injection internal combustion engine according to claim 1, wherein the control means is a control means capable of adjusting an opening degree of an appropriate tumble control valve disposed in a supercharger conduit. 燃料を気筒内に直接噴射する噴射機構と過給機構とを少なくとも備え、圧縮行程中に燃料を噴射して成層燃焼を行う形態の筒内噴射型内燃機関の燃焼方法であって、過給運転時に、噴射燃料が点火プラグに到達する時間が過給圧に起因して無過給運転時よりも遅くなることによって生じる点火タイミングのズレを是正するための制御を行いながら燃焼を継続することを特徴とする筒内噴射型内燃機関の燃焼方法。A combustion method for an in-cylinder injection type internal combustion engine comprising at least an injection mechanism for directly injecting fuel into a cylinder and a supercharging mechanism, and performing stratified combustion by injecting fuel during a compression stroke. Occasionally, it is necessary to continue combustion while performing control to correct a shift in ignition timing caused by the time when the injected fuel reaches the spark plug being slower than in the non-supercharging operation due to the supercharging pressure. A combustion method for a direct injection internal combustion engine. 点火タイミングのズレを是正するために、過給運転時には、過給圧に応じて噴射機構からの燃料圧力を無過給運転時よりも高圧とし、気筒内に噴射される燃料のペネトレーションを大きくした状態で燃焼を行うことを特徴とする請求項6記載の筒内噴射型内燃機関の燃焼方法。In order to correct the ignition timing deviation, during supercharging operation, the fuel pressure from the injection mechanism was set higher according to the supercharging pressure than during non-supercharging operation, and the penetration of fuel injected into the cylinder was increased. The combustion method for a direct injection internal combustion engine according to claim 6, wherein combustion is performed in a state. 点火タイミングのズレを是正するために、過給運転時には、過給圧に起因して生じる点火プラグへの噴射燃料の到達遅れに応じて、噴射機構からの燃料噴射時期を無過給運転時よりも早めた状態で燃焼を行うことを特徴とする請求項6記載の筒内噴射型内燃機関の燃焼方法。In order to correct the deviation of the ignition timing, during the supercharging operation, the fuel injection timing from the injection mechanism is changed from the non-supercharging operation according to the arrival delay of the injected fuel to the spark plug caused by the supercharging pressure. 7. The combustion method for an in-cylinder injection internal combustion engine according to claim 6, wherein the combustion is performed in an earlier state. 点火タイミングのズレを是正するために、過給運転時には、過給圧に起因して生じる点火プラグへの噴射燃料の到達遅れに応じて、点火時期を遅らせた状態で燃焼を行うことを特徴とする請求項6記載の筒内噴射型内燃機関の燃焼方法。In order to correct the ignition timing shift, during supercharging operation, combustion is performed with the ignition timing delayed in accordance with the delay of the injection fuel to the ignition plug caused by the supercharging pressure. 7. The combustion method for a direct injection type internal combustion engine according to claim 6, wherein: 点火タイミングのズレを是正するために、過給運転時には、過給器管路内に配置した適宜のタンブル制御弁の開度を調整しながら燃焼を行うことを特徴とする請求項6記載の筒内噴射型内燃機関の燃焼方法。7. The cylinder according to claim 6, wherein during the supercharging operation, combustion is performed while adjusting the opening degree of an appropriate tumble control valve disposed in the supercharger pipe in order to correct a shift in ignition timing. A combustion method for an internal injection internal combustion engine.
JP2002188222A 2002-06-27 2002-06-27 Cylinder injection-type internal combustion engine and its combustion method Pending JP2004028027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188222A JP2004028027A (en) 2002-06-27 2002-06-27 Cylinder injection-type internal combustion engine and its combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188222A JP2004028027A (en) 2002-06-27 2002-06-27 Cylinder injection-type internal combustion engine and its combustion method

Publications (1)

Publication Number Publication Date
JP2004028027A true JP2004028027A (en) 2004-01-29

Family

ID=31183038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188222A Pending JP2004028027A (en) 2002-06-27 2002-06-27 Cylinder injection-type internal combustion engine and its combustion method

Country Status (1)

Country Link
JP (1) JP2004028027A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248857A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Combustion control device for internal combustion engine
WO2005085611A1 (en) * 2004-03-09 2005-09-15 Hitachi, Ltd. Engine with electric supercharger and control device of the engine
JP2007198325A (en) * 2006-01-30 2007-08-09 Nissan Motor Co Ltd Control device of cylinder direct-injection type spark ignition internal combustion engine
JP2015203320A (en) * 2014-04-11 2015-11-16 株式会社デンソー fuel spray control device
JP2016180359A (en) * 2015-03-24 2016-10-13 マツダ株式会社 Engine air-intake device
JP2017210934A (en) * 2016-05-27 2017-11-30 日立オートモティブシステムズ株式会社 Engine control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248857A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Combustion control device for internal combustion engine
WO2005085611A1 (en) * 2004-03-09 2005-09-15 Hitachi, Ltd. Engine with electric supercharger and control device of the engine
JP2007198325A (en) * 2006-01-30 2007-08-09 Nissan Motor Co Ltd Control device of cylinder direct-injection type spark ignition internal combustion engine
JP4631725B2 (en) * 2006-01-30 2011-02-16 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
JP2015203320A (en) * 2014-04-11 2015-11-16 株式会社デンソー fuel spray control device
JP2016180359A (en) * 2015-03-24 2016-10-13 マツダ株式会社 Engine air-intake device
JP2017210934A (en) * 2016-05-27 2017-11-30 日立オートモティブシステムズ株式会社 Engine control system

Similar Documents

Publication Publication Date Title
KR100310094B1 (en) The control system of cylnder injection type internal combustion enging with pryo-ignition method
US8078387B2 (en) Control apparatus for spark-ignition engine
KR100394847B1 (en) Fuel injection timing control system for direct injection type internal combustion engine and method for the same
KR101934198B1 (en) Internal combustion engine and control method of internal combustion engine
JP2017186984A (en) Control device of internal combustion engine
JP6049921B1 (en) Gas engine control method and gas engine drive system
JPH1068341A (en) Control device for cylinder fuel injection type spark ignition internal combustion engine
KR20130117854A (en) Control device for internal combustion engine
JP4085900B2 (en) Fuel injection control device for in-cylinder direct injection spark ignition engine
KR101542540B1 (en) Control device of internal combustion engine with supercharger
JP2018040263A (en) Control device for internal combustion engine
JP2018040264A (en) Control device for internal combustion engine
JP2004028027A (en) Cylinder injection-type internal combustion engine and its combustion method
JP2006299992A (en) Control system of internal combustion engine
JP5240385B2 (en) Control device for multi-cylinder internal combustion engine
JP5110119B2 (en) Control device for multi-cylinder internal combustion engine
JP6002339B1 (en) Gas engine drive system and gas engine control method
JP2007040219A (en) Control device of internal combustion engine
JP2004190539A (en) Overhead-valve multi-cylinder engine capable of two cycle operation
JP2006097603A (en) Control device for internal combustion engine
JP2006257999A (en) Internal combustion engine
JP6777113B2 (en) Engine low temperature oxidation reaction detection method and control method, and engine low temperature oxidation reaction detection device and control device
JP5240384B2 (en) Control device for multi-cylinder internal combustion engine
JP6866871B2 (en) Engine control device and control method
JP6848917B2 (en) Engine control