JP2017210934A - Engine control system - Google Patents

Engine control system Download PDF

Info

Publication number
JP2017210934A
JP2017210934A JP2016105756A JP2016105756A JP2017210934A JP 2017210934 A JP2017210934 A JP 2017210934A JP 2016105756 A JP2016105756 A JP 2016105756A JP 2016105756 A JP2016105756 A JP 2016105756A JP 2017210934 A JP2017210934 A JP 2017210934A
Authority
JP
Japan
Prior art keywords
fuel injection
injection
fuel
timing
engine control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016105756A
Other languages
Japanese (ja)
Inventor
大嗣 荒木田
Daishi Arakida
大嗣 荒木田
豊原 正裕
Masahiro Toyohara
正裕 豊原
修 向原
Osamu Mukaihara
修 向原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016105756A priority Critical patent/JP2017210934A/en
Publication of JP2017210934A publication Critical patent/JP2017210934A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To attain the optimum fuel consumption without reducing a combustion stability even if a spray speed shows a certain change.SOLUTION: In order to solve the prescribed problems, this invention provides an engine control system for controlling an engine to which a fuel injection valve for injecting fuel directly into a combustion chamber and an ignition plug for igniting fuel injected by the fuel injection valve are fixed. There is provided an injection control part for dividing a fuel injection operation performed by the fuel injection valve at one time combustion into a plurality of fuel injection operations, and the injection control part controls the fuel injection timing in compliance with the ignition timing in such a way that an interval between the injection timing of a predetermined injection operation of the plurality of divided fuel injection operations and the ignition timing may become a desired interval.SELECTED DRAWING: Figure 6

Description

本発明は、エンジン制御装置に関する。   The present invention relates to an engine control device.

燃焼室内に直接燃料を噴射する、燃焼室内燃料噴射式エンジンが広く知られている。燃焼室内燃料噴射式エンジンは、燃料噴射弁により燃焼室内に直接燃料噴射を行うものであり、排気性能向上、燃料消費量の削減、出力の向上等を図っている。   2. Description of the Related Art A combustion chamber fuel injection engine that directly injects fuel into a combustion chamber is widely known. The fuel injection type engine in the combustion chamber directly injects fuel into the combustion chamber by a fuel injection valve, and aims to improve exhaust performance, reduce fuel consumption, improve output, and the like.

近年,エンジンの排気性能向上策として、当該気筒において、1燃焼サイクル中に少なくとも1回以上の燃料噴射を行う多段噴射制御が用いられている。多段噴射制御では、エンジンの運転状態などから求められる多段噴射回数に基づき、燃料噴射量を分割した上で、燃料噴射を実行する。   In recent years, as a measure for improving the exhaust performance of an engine, multistage injection control in which fuel injection is performed at least once in one combustion cycle is used in the cylinder. In the multi-stage injection control, the fuel injection is executed after dividing the fuel injection amount based on the number of multi-stage injections determined from the operating state of the engine.

燃焼室内燃料噴射式エンジンでは、主に吸気行程で燃料噴射することにより燃料と空気との均一混合気により燃焼させる均質燃焼と、圧縮行程で燃料噴射することにより燃料の濃い層と薄い層とを生成して燃焼させる成層燃焼とを運転状態に応じて使い分けている。
近年の厳しい排気ガス規制を満足するため、多段噴射の噴射回数増加、もしくは、分割比細分化により、1回あたりの燃料噴射量は減少している。燃料噴射弁がエンジンの燃焼室の頂部に設置されるシステム(直上噴射システム)においては、特定噴射回数における燃料噴射量が所定量より多くなると、点火プラグ周り空燃比がリッチになり、失火する恐れがある。
In a fuel injection type engine in a combustion chamber, a homogeneous combustion in which fuel is mainly burned by a uniform mixture of fuel and air by injecting fuel in the intake stroke, and a thick layer and a thin layer of fuel by injecting fuel in the compression stroke are performed. The stratified combustion that is generated and burned is properly used according to the operating state.
In order to satisfy strict exhaust gas regulations in recent years, the amount of fuel injection per time has decreased due to the increase in the number of injections of multistage injection or the division ratio subdivision. In a system in which a fuel injection valve is installed at the top of a combustion chamber of an engine (direct injection system), if the fuel injection amount at a specific number of injections exceeds a predetermined amount, the air-fuel ratio around the spark plug becomes rich and there is a risk of misfire. There is.

このような課題に対して、燃料噴射量を最適化し、燃料噴霧が点火プラグ周りを通過するタイミングと点火時期とを合わせ、点火時期に点火プラグ周り空燃比を燃焼可能領域にすることが求められる。   For such a problem, it is required to optimize the fuel injection amount, match the timing when the fuel spray passes around the spark plug and the ignition timing, and set the air-fuel ratio around the spark plug to the combustible region at the ignition timing. .

特開2007-092554(特許文献1)には、燃料噴霧が点火プラグ周りを通過するタイミングに点火できるようにするため、燃料噴射時期を基準にして点火時期を設定する技術が開示されている。   Japanese Patent Laid-Open No. 2007-092554 (Patent Document 1) discloses a technique for setting the ignition timing based on the fuel injection timing so that the fuel spray can be ignited at the timing when it passes around the spark plug.

また、特開2000-045845(特許文献2)には、燃焼状態を安定させ且つ燃料噴射時期の進角に基づく機関出力を得られるように、燃料噴射時期及び点火時期を制御し、燃料噴射時期と点火時期との間の期間を一定に維持する技術が開示されている。   Japanese Patent Laid-Open No. 2000-045845 (Patent Document 2) controls the fuel injection timing and the ignition timing to stabilize the combustion state and obtain engine output based on the advance angle of the fuel injection timing. A technique for maintaining a constant period between ignition timing and ignition timing is disclosed.

特開2007-092554号公報JP 2007-092554 A 特開2000-045845号公報Japanese Unexamined Patent Publication No. 2000-045845

特許文献1に記載の技術では、燃料噴射時期を基準として点火プラグの点火時期を制御するため、最適なトルクを得られる点火時期(MBT)で点火できないことによって、最適燃費が得られないという問題がある。   In the technique disclosed in Patent Document 1, since the ignition timing of the spark plug is controlled based on the fuel injection timing, the optimal fuel consumption cannot be obtained because the ignition timing (MBT) at which an optimal torque can be obtained cannot be ignited. There is.

また、特許文献2に記載の技術では、燃料噴射時期と点火時期との間隔を一定に維持するため、燃料噴射弁の燃圧や燃焼室内のガス流動の変化によって、噴霧速度に変化がある場合、燃料噴霧が点火プラグ周りを通過するタイミングに点火できないことによって、燃焼安定性が低下する恐れがある。   Further, in the technique described in Patent Document 2, in order to maintain a constant interval between the fuel injection timing and the ignition timing, when there is a change in the spray speed due to a change in the fuel pressure of the fuel injection valve or a gas flow in the combustion chamber, If the fuel spray cannot be ignited when it passes around the spark plug, combustion stability may be lowered.

本発明はこうした問題に鑑みてなされたものであり、その目的は、噴霧速度に変化があっても、燃焼安定性を低下させず、最適燃費を得ることにある。   The present invention has been made in view of these problems, and an object of the present invention is to obtain optimum fuel consumption without deteriorating combustion stability even when the spraying speed is changed.

上記する課題を解決するために、本発明は、燃焼室内に直接燃料を噴射する燃料噴射弁と、前記燃料噴射弁により噴射した燃料に点火する点火プラグと、が取り付けられたエンジンを制御するエンジン制御装置において、1回の燃焼における前記燃料噴射弁による噴射を複数回に分割する噴射制御部を備え、前記噴射制御部は、前記分割された複数の燃料噴射動作のうち、予め指定した噴射動作の噴射時期と、点火時期との間隔が所望の間隔になるように、点火時期に合わせて燃料噴射時期を制御することを特徴としている。   In order to solve the above-described problems, the present invention provides an engine that controls an engine to which a fuel injection valve that directly injects fuel into a combustion chamber and an ignition plug that ignites the fuel injected by the fuel injection valve are attached. The control apparatus includes an injection control unit that divides the injection by the fuel injection valve in one combustion into a plurality of times, and the injection control unit performs an injection operation designated in advance among the plurality of divided fuel injection operations. The fuel injection timing is controlled in accordance with the ignition timing so that the interval between the injection timing and the ignition timing becomes a desired interval.

本発明によって、噴霧速度に変化があっても、燃焼安定性を低下させず、最適燃費を得ることができる。本発明のその他の構成、作用、効果は以下の実施例において詳細に説明する。 According to the present invention, even when there is a change in the spraying speed, it is possible to obtain optimum fuel consumption without deteriorating combustion stability. Other configurations, operations, and effects of the present invention will be described in detail in the following examples.

本発明に係る火花点火エンジンとその制御装置の基本構成図Basic configuration diagram of spark ignition engine and control device thereof according to the present invention エンジンコントロールユニットの内部構成を示した図Diagram showing the internal configuration of the engine control unit 1つの気筒における1燃焼サイクル分の燃料噴射と点火の例を示した図Diagram showing an example of fuel injection and ignition for one combustion cycle in one cylinder 点火プラグ周り空燃比の時間変化を示した図The figure which showed the time change of the air fuel ratio around the spark plug 本実施形態の制御ブロック図Control block diagram of this embodiment 燃料噴射点火間隔演算部400の内部構成を示した図The figure which showed the internal structure of the fuel injection ignition interval calculating part 400 燃料噴射弁の燃圧、TGV開度、エンジン回転数に対する、燃料噴射点火間隔の基本値の関係を示した図The figure which showed the relationship of the basic value of the fuel injection ignition interval with respect to the fuel pressure of a fuel injection valve, TGV opening degree, and engine speed 燃料噴射弁の燃圧の変化による燃料噴射点火間隔の基本値の変化を示した図The figure which showed the change of the basic value of the fuel injection ignition interval by the change of the fuel pressure of the fuel injection valve 燃料噴射弁の燃圧の変化による燃料噴霧の動きの変化を示した図The figure which showed the change of the movement of the fuel spray by the change of the fuel pressure of the fuel injection valve 1つの気筒における学習値算出のフローチャートFlow chart of learning value calculation in one cylinder 燃料噴射信号、学習値1、基準閉弁時期Cの関係を示した図A diagram showing the relationship between the fuel injection signal, the learning value 1, and the reference valve closing timing C 学習値2の時間変化を示した図The figure which showed the time change of learning value 2 燃料噴射点火間隔、及びその基本値と学習値の関係を示した図The figure which showed the relation between the fuel injection ignition interval and the basic value and the learning value

以下、図面を参照しながら、本発明の一実施形態に係るエンジン制御装置について説明する。 Hereinafter, an engine control apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明に係る火花点火エンジンとその制御装置の基本構成図である。図において、エンジン1には、ピストン2、吸気バルブ3、排気バルブ4が備えられ、吸気は、空気流量計18を通過して絞り弁17に入り、分岐部であるコレクタ14より吸気管10、吸気バルブ3を介してエンジン1の燃焼室19に供給される。吸気管10には、燃焼室19内のガス流動を制御するTGV(タンブルジェネレータバルブ)が備えられている。燃料は、燃料噴射弁5からエンジン1の燃焼室19に噴射され、点火コイル7、点火プラグ6で点火される。燃料噴射弁5は、エンジン1の燃焼室19の頂部に設置されており、点火プラグ6は、燃料噴射弁5の噴口近傍に設置されている。   FIG. 1 is a basic configuration diagram of a spark ignition engine and its control device according to the present invention. In the figure, the engine 1 is provided with a piston 2, an intake valve 3, and an exhaust valve 4. The intake air passes through an air flow meter 18 and enters a throttle valve 17, and the intake pipe 10, It is supplied to the combustion chamber 19 of the engine 1 through the intake valve 3. The intake pipe 10 is provided with a TGV (tumble generator valve) that controls the gas flow in the combustion chamber 19. The fuel is injected from the fuel injection valve 5 into the combustion chamber 19 of the engine 1 and ignited by the ignition coil 7 and the spark plug 6. The fuel injection valve 5 is installed at the top of the combustion chamber 19 of the engine 1, and the spark plug 6 is installed near the injection port of the fuel injection valve 5.

図示していないが、燃料噴射弁5に燃料を送る高圧ポンプが燃料噴射弁5に接続されており、この高圧ポンプによって、燃料噴射弁5から燃料を吐出する圧力である燃圧を調整する。燃焼後の排気ガスは排気バルブ4を介して排気管11に排出され、排気管11には排気ガス浄化のための三元触媒12が備えられている。エンジンコントロールユニット9には、エンジン1のクランク角度センサ15の信号、空気流量計18の空気量信号、排気ガス中の空燃比を検出する空燃比センサ13の信号、アクセル開度センサ20のアクセル開度等の信号が入力される。エンジンコントロールユニット9はアクセル開度センサ20の信号からエンジンへの要求トルクの算出、アイドル状態の判定等を行い、エンジン1に必要な吸入空気量を算出し、それに見合った開度信号を絞り弁17に出力する。   Although not shown, a high-pressure pump that sends fuel to the fuel injection valve 5 is connected to the fuel injection valve 5, and a fuel pressure that is a pressure for discharging fuel from the fuel injection valve 5 is adjusted by the high-pressure pump. The exhaust gas after combustion is discharged to the exhaust pipe 11 through the exhaust valve 4, and the exhaust pipe 11 is provided with a three-way catalyst 12 for purifying the exhaust gas. The engine control unit 9 includes a signal from the crank angle sensor 15 of the engine 1, an air amount signal from the air flow meter 18, a signal from the air-fuel ratio sensor 13 for detecting the air-fuel ratio in the exhaust gas, and an accelerator opening of the accelerator opening sensor 20. A signal such as a degree is input. The engine control unit 9 calculates the required torque for the engine from the signal of the accelerator opening sensor 20, determines the idle state, etc., calculates the intake air amount necessary for the engine 1, and calculates the opening signal corresponding to the intake air amount. 17 to output.

また燃料噴射弁5へは燃料噴射信号、点火プラグ6へは点火信号を出力する。さらにエンジン1に取り付けられたノックセンサ8が、エンジン1の異常燃焼時に発生するノックを検出し、点火信号をフィードバック制御している。   A fuel injection signal is output to the fuel injection valve 5 and an ignition signal is output to the spark plug 6. Further, a knock sensor 8 attached to the engine 1 detects a knock that occurs during abnormal combustion of the engine 1 and feedback-controls the ignition signal.

図2は、エンジンコントロールユニット9の内部構成を示した図である。
エンジンコントロールユニット9は、入力回路101、A/D変換部102、中央演算部103、ROM104、RAM105、および出力回路106を含んだマイクロコンピュータにより構成されている。
FIG. 2 is a diagram showing an internal configuration of the engine control unit 9.
The engine control unit 9 is composed of a microcomputer including an input circuit 101, an A / D conversion unit 102, a central processing unit 103, a ROM 104, a RAM 105, and an output circuit 106.

入力回路101は、入力信号100がアナログ信号の場合(例えば、空気流量計18、アクセル開度センサ20等からの信号)、信号からノイズ成分の除去等を行い、当該信号をA/D変換部102に出力するためのものである。   When the input signal 100 is an analog signal (for example, a signal from the air flow meter 18, the accelerator opening sensor 20, etc.), the input circuit 101 removes a noise component from the signal and converts the signal into an A / D converter. This is for outputting to 102.

中央演算部103は、A/D変換結果を取り込み、ROM104等の媒体に記憶された、燃料噴射制御プログラムやその他の制御プログラムを実行することによって、各制御及び診断等を実行する機能を備えている。なお演算結果、及び、前記A/D変換結果は、RAM105に一時保管されるとともに、演算結果は、出力回路106を通じて制御信号107として出力され、燃料噴射弁5、点火コイル7等の制御に用いられる。   The central processing unit 103 has a function of executing each control, diagnosis, and the like by fetching the A / D conversion result and executing a fuel injection control program and other control programs stored in a medium such as the ROM 104. Yes. The calculation result and the A / D conversion result are temporarily stored in the RAM 105, and the calculation result is output as the control signal 107 through the output circuit 106 and used for controlling the fuel injection valve 5, the ignition coil 7, and the like. It is done.

図3は、1つの気筒における1燃焼サイクル分の燃料噴射と点火の例を示した図である。201は、1回の燃焼における複数回に分割して実行される燃料噴射のうち、最終噴射段の燃料噴射終了時期と、当該燃焼サイクルの点火時期との間隔である。説明のため、この間隔を燃料噴射点火間隔とする。   FIG. 3 is a diagram showing an example of fuel injection and ignition for one combustion cycle in one cylinder. 201 is an interval between the fuel injection end timing of the final injection stage and the ignition timing of the combustion cycle among the fuel injections divided and executed in one combustion. For the sake of explanation, this interval is referred to as a fuel injection ignition interval.

図4は、燃料噴射弁が燃焼室の頂部に設置されるシステム(直上噴射システム)における、点火プラグ周り空燃比の時間変化を示した図である。301は燃焼可能空燃比のリーン側限界、302は燃焼可能空燃比のリッチ側限界であり、それらの間の領域が燃焼可能領域である。燃料噴射量が多いと、空燃比がリッチ失火領域になる期間が長くなり、最適なトルクを得るためにMBTで点火しようとしても、点火時期における点火プラグ周り空燃比を燃焼可能領域にすることが困難である。失火による燃焼安定性低下を避けるため、点火プラグ周り空燃比がリッチ失火領域にならない燃料噴射量に設定した上で、燃料噴霧が点火プラグ周りを通過するタイミングと点火時期とを合わせ、点火時期に点火プラグ周り空燃比を燃焼可能領域にする必要がある。また、このとき最終噴射段の燃料噴射に対して、空燃比等に基づいて、燃料噴射量を補正する処理をすると、点火時期における点火プラグ周り空燃比が燃焼可能領域でなくなり、失火する可能性があるため、最終噴射段の燃料噴射に対する燃料噴射量を補正する処理は行わないようにする。   FIG. 4 is a diagram showing the time variation of the air-fuel ratio around the spark plug in a system (direct injection system) in which the fuel injection valve is installed at the top of the combustion chamber. 301 is the lean limit of the combustible air-fuel ratio, 302 is the rich limit of the combustible air-fuel ratio, and the region between them is the combustible region. When the fuel injection amount is large, the period during which the air-fuel ratio is in the rich misfire region becomes long, and even if an attempt is made to ignite with MBT in order to obtain the optimum torque, the air-fuel ratio around the spark plug at the ignition timing can be made a combustible region. Have difficulty. To avoid deterioration in combustion stability due to misfire, set the fuel injection amount so that the air-fuel ratio around the spark plug does not become a rich misfire region, and then match the timing when the fuel spray passes around the spark plug and the ignition timing to make the ignition timing The air-fuel ratio around the spark plug needs to be in a combustible region. Further, at this time, if the fuel injection amount is corrected based on the air-fuel ratio or the like for the fuel injection at the final injection stage, the air-fuel ratio around the spark plug at the ignition timing is not in the combustible region, and there is a possibility of misfire. Therefore, the process for correcting the fuel injection amount for the fuel injection in the final injection stage is not performed.

前述の理由から、本実施形態では燃料噴射点火間隔を制御し、点火時期に対して燃料噴射終了時期を設定することで、点火時期に燃料噴霧が点火プラグ周りを通過するように設定する。   For the above-described reason, in this embodiment, the fuel injection ignition interval is controlled, and the fuel injection end timing is set with respect to the ignition timing, so that the fuel spray passes around the spark plug at the ignition timing.

本実施形態では、最終噴射段の燃料噴射と点火との間隔を制御するが、最終噴射段以外の燃料噴射と点火との間隔を制御してもよい。また、本実施形態では、点火時期に対して燃料噴射終了時期を設定するが、点火時期に対して燃料噴射開始時期を設定してもよい。   In the present embodiment, the interval between fuel injection and ignition in the final injection stage is controlled, but the interval between fuel injection and ignition other than the final injection stage may be controlled. In this embodiment, the fuel injection end timing is set with respect to the ignition timing, but the fuel injection start timing may be set with respect to the ignition timing.

図5は、本実施形態の制御ブロック図である。燃料噴射点火間隔演算部400において、前述の燃料噴射点火間隔を演算する。点火時期演算部401では、エンジン回転数、負荷値から、当該燃焼サイクルの点火時期を演算する。点火時期の演算に用いるパラメータは、エンジン回転数、負荷値に限らず、その他のパラメータを用いて演算してもよい。燃料噴射時期演算部では、点火時期演算部401で演算した点火時期から、燃料噴射点火間隔演算部400で演算した燃料噴射点火間隔を減算し、1回の燃焼における分割された複数の燃料噴射のうち、最終噴射段の燃料噴射時期を設定する。   FIG. 5 is a control block diagram of the present embodiment. The fuel injection ignition interval calculation unit 400 calculates the aforementioned fuel injection ignition interval. The ignition timing calculation unit 401 calculates the ignition timing of the combustion cycle from the engine speed and the load value. The parameters used for calculating the ignition timing are not limited to the engine speed and the load value, and may be calculated using other parameters. The fuel injection timing calculation unit subtracts the fuel injection ignition interval calculated by the fuel injection ignition interval calculation unit 400 from the ignition timing calculated by the ignition timing calculation unit 401 to obtain a plurality of divided fuel injections in one combustion. Of these, the fuel injection timing of the final injection stage is set.

燃料噴射点火間隔は、基本値と学習値で構成される。基本値は噴霧速度やエンジン回転数に応じて、燃料噴射点火間隔を制御する目的で設定する値であり、学習値は燃料噴射弁5応答性の機差ばらつきを吸収する目的で設定する値である。
図6は、燃料噴射点火間隔演算部400の内部構成を示した図である。燃料噴射点火間隔演算部400は、燃料噴射点火間隔の基本値を演算する、基本値演算部403と、燃料噴射点火間隔の学習値を演算する、学習値演算部404とで構成され、両者の和を燃料噴射点火間隔として出力する。
The fuel injection ignition interval is composed of a basic value and a learning value. The basic value is a value set for the purpose of controlling the fuel injection ignition interval according to the spray speed and the engine speed, and the learning value is a value set for the purpose of absorbing the machine difference variation in the response of the fuel injection valve 5. is there.
FIG. 6 is a diagram showing an internal configuration of the fuel injection ignition interval calculation unit 400. The fuel injection ignition interval calculation unit 400 includes a basic value calculation unit 403 that calculates a basic value of the fuel injection ignition interval, and a learning value calculation unit 404 that calculates a learning value of the fuel injection ignition interval. The sum is output as the fuel injection ignition interval.

本実施形態では、燃料噴射点火間隔を調整し、点火時期に燃料噴霧が点火プラグ周りを通過するように設定する。そのため、噴霧速度が変わると、それに応じて燃料噴射点火間隔を調整する必要がある。噴霧速度に影響するパラメータとして、燃料噴射弁の燃圧と燃焼室内のガス流動がある。また、燃料噴射点火間隔は、制御上エンジンのクランク角と同期して、角度で値を設定するため、燃料噴射点火間隔は、エンジン回転数に応じて調整する必要がある。   In the present embodiment, the fuel injection ignition interval is adjusted and set so that the fuel spray passes around the spark plug at the ignition timing. Therefore, when the spraying speed changes, it is necessary to adjust the fuel injection ignition interval accordingly. Parameters affecting the spray speed include the fuel pressure of the fuel injector and the gas flow in the combustion chamber. In addition, since the fuel injection ignition interval is set with a value in synchronism with the crank angle of the engine for control, it is necessary to adjust the fuel injection ignition interval according to the engine speed.

次に、燃料噴射点火間隔の基本値の設定方法について説明する。図7は、燃料噴射弁の燃圧、TGV開度、エンジン回転数に対する、燃料噴射点火間隔の基本値の関係を示した図である。501は燃料噴射弁の燃圧と燃料噴射点火間隔の基本値の関係であり、燃料噴射弁の燃圧が高いほど、噴霧速度が速くなるため、燃料噴射点火間隔の基本値は狭く設定する必要がある。502はTGV開度と燃料噴射点火間隔の基本値の関係であり、TGV開度が大きいほど、燃焼室内のガス流動が小さくなり、ガス流動による燃料噴霧の減速が少なく、噴霧速度が速くなるため、燃料噴射点火間隔の基本値は狭く設定する必要がある。503はエンジン回転数と燃料噴射点火間隔の基本値の関係であり、エンジン回転数が高いほど、一定時間間隔におけるクランク角の変化量は大きくなるため、燃料噴射時期と点火時期の時間間隔を同じにするためには、燃料噴射点火間隔の基本値を広く設定する必要がある。   Next, a method for setting the basic value of the fuel injection ignition interval will be described. FIG. 7 is a diagram showing the relationship of the basic value of the fuel injection ignition interval with respect to the fuel pressure of the fuel injection valve, the TGV opening, and the engine speed. Reference numeral 501 denotes the relationship between the fuel pressure of the fuel injection valve and the basic value of the fuel injection ignition interval. The higher the fuel pressure of the fuel injection valve, the faster the spray speed. Therefore, the basic value of the fuel injection ignition interval needs to be set narrower. . Reference numeral 502 denotes the relationship between the TGV opening and the basic value of the fuel injection ignition interval. The larger the TGV opening, the smaller the gas flow in the combustion chamber, the less the fuel spray deceleration due to the gas flow, and the faster the spray speed. The basic value of the fuel injection ignition interval needs to be set narrow. Reference numeral 503 denotes the relationship between the engine speed and the basic value of the fuel injection ignition interval. The higher the engine speed, the greater the change in the crank angle at a certain time interval. Therefore, the time interval between the fuel injection timing and the ignition timing is the same. In order to achieve this, it is necessary to widely set the basic value of the fuel injection ignition interval.

本実施形態では、TGV開度に応じて燃料噴射点火間隔の基本値を設定しているが、スロットル開度に応じて燃料噴射点火間隔の基本値を設定してもよい。スワールを制御するSCV(スワールコントロールバルブ)を備えるシステムの場合は、SCV開度に応じて燃料噴射点火間隔の基本値を設定してもよい。また、過給圧を制御するウェストゲートバルブを備えるシステムの場合は、ウェストゲートバルブ開度に応じて燃料噴射点火間隔の基本値を設定してもよい。   In this embodiment, the basic value of the fuel injection ignition interval is set according to the TGV opening, but the basic value of the fuel injection ignition interval may be set according to the throttle opening. In the case of a system including an SCV (swirl control valve) that controls the swirl, a basic value of the fuel injection ignition interval may be set according to the SCV opening. Further, in the case of a system including a waste gate valve that controls the supercharging pressure, a basic value of the fuel injection ignition interval may be set according to the waste gate valve opening.

図8は燃料噴射弁の燃圧の変化による燃料噴射点火間隔の基本値の変化を示した図である。また、図9は燃料噴射弁の燃圧の変化による燃料噴霧の動きの変化を示した図である。601は、ある燃圧P1における燃料噴霧の燃料噴射弁からの距離の変化、602は、P1よりも高いある燃圧P2における燃料噴霧の燃料噴射弁からの距離の変化である。また、燃料噴射時期Aは燃料噴射弁の燃圧がP1の場合の燃料噴射終了時期、燃料噴射Bは燃料噴射弁の燃圧がP2の場合の燃料噴射終了時期である。燃料噴射弁の燃圧がP1の場合とP2の場合を比較すると、図8に示すように、P1の場合よりもP2の場合の方が、燃料噴射点火間隔の基本値は狭くなり、燃料噴射終了時期は遅くなる。   FIG. 8 is a diagram showing a change in the basic value of the fuel injection ignition interval due to a change in the fuel pressure of the fuel injection valve. FIG. 9 is a view showing a change in the movement of the fuel spray due to a change in the fuel pressure of the fuel injection valve. Reference numeral 601 denotes a change in the distance of the fuel spray from the fuel injection valve at a certain fuel pressure P1, and reference numeral 602 denotes a change in the distance of the fuel spray from the fuel injection valve at a certain fuel pressure P2 higher than P1. The fuel injection timing A is the fuel injection end timing when the fuel pressure of the fuel injection valve is P1, and the fuel injection B is the fuel injection end timing when the fuel pressure of the fuel injection valve is P2. When the fuel pressure of the fuel injection valve is P1 and P2 is compared, as shown in FIG. 8, the basic value of the fuel injection ignition interval becomes narrower in the case of P2 than in the case of P1, and the fuel injection ends. The time is late.

また、図9に示すように、P1の場合に対してP2の場合の方が、噴霧速度が速い(グラフの傾きが急である)ため、燃料噴射時期Aよりも燃料噴射時期Bの方が遅くなる。それによって、燃料噴霧が点火プラグ周りに到達するのが、P1の場合とP2の場合で同じ時期になる。TGV開度を変化させた時も、燃料噴射弁の燃圧を変化させた時と同様に、燃料噴射点火間隔の基本値の変化によって、燃料噴霧が点火プラグ周りに到達するのが同じ時期になる。   Further, as shown in FIG. 9, since the spray speed is faster in the case of P2 than in the case of P1 (the slope of the graph is steep), the fuel injection timing B is higher than the fuel injection timing A. Become slow. Thereby, the fuel spray reaches around the spark plug at the same time in the case of P1 and P2. When the TGV opening is changed, the fuel spray arrives around the spark plug at the same time due to the change in the basic value of the fuel injection ignition interval, similarly to when the fuel pressure of the fuel injection valve is changed. .

次に、燃料噴射点火間隔の学習値の設定方法について説明する。燃料噴射弁ごとに機差ばらつきは異なるため、学習値は気筒ごとに個別の値を設定する。図10は、1つの気筒における学習値算出のフローチャートである。燃料噴射点火間隔を制御するのは多段噴射中であるため、701では、学習実施条件として多段噴射中か否かを判定する。   Next, a method for setting the learned value of the fuel injection ignition interval will be described. Since the machine difference variation differs for each fuel injection valve, the learning value is set to an individual value for each cylinder. FIG. 10 is a flowchart of learning value calculation in one cylinder. Since the fuel injection ignition interval is controlled during multi-stage injection, it is determined in 701 whether or not multi-stage injection is being performed as a learning execution condition.

702では、失火判定手段による失火判定結果から、失火有無を判定する。失火判定結果が失火無しである場合、学習値の更新はせず、当該気筒の前回の学習値を維持する。失火判定結果が失火有りである場合、学習値の更新処理703〜706を行う。失火判定手段による失火判定は、当該燃焼サイクルと1回前の燃焼サイクルとのエンジン回転数変動を見て、エンジン回転数変動が失火と判定するための所定閾値以上の場合、失火有りと判定し、エンジン回転数変動が失火と判定するための所定閾値未満の場合、失火無しと判定する。尚、失火判定の方法はこれに限られたものではなく、エンジン回転数変動以外の燃焼安定性に関連するパラメータに基づいて判定してもよい。   In 702, the presence or absence of misfire is determined from the misfire determination result by the misfire determination means. If the misfire determination result is no misfire, the learning value is not updated and the previous learning value of the cylinder is maintained. When the misfire determination result indicates that there is a misfire, learning value update processing 703 to 706 is performed. The misfire determination by the misfire determination means is determined to be misfire if the engine speed variation is equal to or greater than a predetermined threshold for determining misfire, by looking at the engine speed variation between the combustion cycle and the previous combustion cycle. When the engine speed fluctuation is less than a predetermined threshold for determining misfire, it is determined that there is no misfire. Note that the misfire determination method is not limited to this, and may be determined based on parameters related to combustion stability other than engine speed fluctuation.

703では、燃料噴射弁5の閉弁検知機能を使用して、当該燃焼サイクルに燃料噴射する燃料噴射弁5の閉弁時期を取得する。704では、適合に使用した燃料噴射弁(基準燃料噴射弁)と当該燃焼サイクルに燃料噴射する燃料噴射弁5の機差ばらつきを吸収するために、閉弁時期に基づいて設定する値である学習値1を更新する。基準燃料噴射弁に同一の燃料噴射信号を入力した時の閉弁時期を基準閉弁時期Cとして、予め取得して、ROM104に定数として設定しておき、図11に示すように、当該燃焼サイクルに燃料噴射する燃料噴射弁5の閉弁時期と基準閉弁時期Cとの差分を学習値1に設定する。   In 703, the valve closing detection function of the fuel injection valve 5 is used to acquire the valve closing timing of the fuel injection valve 5 that injects fuel into the combustion cycle. In 704, learning is a value set based on the valve closing timing in order to absorb the machine difference between the fuel injection valve (reference fuel injection valve) used for adaptation and the fuel injection valve 5 that injects fuel into the combustion cycle. Update value 1. The valve closing timing when the same fuel injection signal is input to the reference fuel injection valve is acquired in advance as the reference valve closing timing C and set as a constant in the ROM 104. As shown in FIG. The difference between the valve closing timing of the fuel injection valve 5 that injects the fuel and the reference valve closing timing C is set to a learning value 1.

705では、学習値1だけで吸収しきれない機差ばらつきを吸収するために設定する値である学習値2を更新する。図12は、学習値2の時間変化を示した図である。学習値2の1回目の演算時には、初期値0を設定する。2回目の演算時には、前回更新した学習値2の値から所定変化量Dだけ増加させる。3回目の演算時には、前回更新した学習値2の値から(所定変化量D×2)だけ減少させる。このように、n回目の学習値2の演算時には、(n−1)回目の学習値2が正の値の場合、(n−1)回目の学習値2から(所定変化量D×(n−1))だけ減少させ、負の値の場合、(n−1)回目の学習値2から(所定変化量D×(n−1))だけ増加させるように演算する。本実施形態では前述の方法で学習値2を設定するが、初期値や演算方法はこれに限られたものではなく、0以外の初期値を設定したり、演算のたびに異なる変化量で学習値を更新したりしてもよい。706では、前述の方法で演算された学習値1と学習値2の和で、学習値を更新する。   In 705, the learning value 2, which is a value set to absorb the machine difference variation that cannot be absorbed only by the learning value 1, is updated. FIG. 12 is a diagram showing the change over time of the learning value 2. At the first calculation of the learning value 2, the initial value 0 is set. In the second calculation, the learning value 2 updated last time is increased by a predetermined change amount D. In the third calculation, the learning value 2 updated last time is reduced by (predetermined change amount D × 2). Thus, when the nth learning value 2 is calculated, if the (n−1) th learning value 2 is a positive value, the (predetermined change D × (n -1)), and in the case of a negative value, an operation is performed so as to increase from the (n-1) th learning value 2 by (predetermined change D × (n-1)). In this embodiment, the learning value 2 is set by the above-described method, but the initial value and the calculation method are not limited to this, and an initial value other than 0 is set or learning is performed with a different amount of change for each calculation. The value may be updated. In 706, the learning value is updated with the sum of the learning value 1 and the learning value 2 calculated by the above-described method.

図13は、燃料噴射点火間隔、及びその基本値と学習値の関係を示した図である。前述の通り、燃料噴射点火間隔=燃料噴射点火間隔の基本値+燃料噴射点火間隔の学習値であり、燃料噴射点火間隔の学習値=学習値1+学習値2である。図13に示す例では、学習値は進角方向を正方向としている。また、学習値1は1サイクル目から5サイクル目まで変化が無く、1サイクル目から4サイクル目まで失火有りと判定されており、5サイクル目で失火無しと判定された例を示している。前述の学習値演算方法により、1サイクル目から4サイクル目は失火有りと判定されているため、学習値が更新され、5サイクル目は失火無しと判定されているため、学習値は更新されず、4サイクル目の学習値と同じ値となる。   FIG. 13 is a diagram showing the fuel injection ignition interval and the relationship between the basic value and the learned value. As described above, the fuel injection ignition interval = the basic value of the fuel injection ignition interval + the learning value of the fuel injection ignition interval, and the learning value of the fuel injection ignition interval = the learning value 1 + the learning value 2. In the example shown in FIG. 13, the learning value has the advance direction as the positive direction. Further, the learning value 1 shows an example in which there is no change from the first cycle to the fifth cycle, it is determined that there is misfire from the first cycle to the fourth cycle, and it is determined that there is no misfire in the fifth cycle. According to the learning value calculation method described above, the first to fourth cycles are determined to have misfire, so the learning value is updated, and the fifth cycle is determined to have no misfire, so the learning value is not updated. It becomes the same value as the learning value in the fourth cycle.

このようにして学習値を設定することで、燃料噴射弁5等の機差ばらつきに起因する、燃料噴霧が点火プラグの周りに到達する時間のばらつきを吸収して、点火時期に燃料噴霧が点火プラグの周りを通過するようにできる。   By setting the learning value in this manner, the fuel spray is ignited at the ignition timing by absorbing the variation in the time that the fuel spray reaches around the spark plug, which is caused by the difference in the fuel injection valve 5 and the like. It can be passed around the plug.

以上の通り本実施例のエンジン制御装置(ECU9)が制御するエンジン1には燃焼室内に直接燃料を噴射する燃料噴射弁5と、燃料噴射弁5により噴射した燃料に点火する点火プラグ6と、が取り付けられている。そして、エンジン制御装置は1回の燃焼における燃料噴射弁による噴射を複数回に分割する噴射制御部(CPU)を備え、噴射制御部(CPU)は、分割された複数の燃料噴射動作のうち、予め指定した噴射動作の噴射時期と、点火時期との間隔が所望の間隔になるように、点火時期に合わせて燃料噴射時期を制御する。   As described above, the engine 1 controlled by the engine control apparatus (ECU 9) of the present embodiment includes the fuel injection valve 5 that directly injects fuel into the combustion chamber, the spark plug 6 that ignites the fuel injected by the fuel injection valve 5, and Is attached. The engine control device includes an injection control unit (CPU) that divides injection by the fuel injection valve in one combustion into a plurality of times, and the injection control unit (CPU) includes a plurality of divided fuel injection operations. The fuel injection timing is controlled in accordance with the ignition timing so that the predetermined interval between the injection timing of the injection operation and the ignition timing becomes a desired interval.

また噴射制御部(CPU)、噴射時期と点火時期との前記所望の間隔を、燃料噴射弁の燃圧、燃焼室内のガス流動、エンジン回転数のいずれか1つ以上のパラメータに基づいて算出し、燃料噴射時期を制御することが望ましい。また噴射制御部(CPU)は、噴射時期と点火時期との前記所望の間隔を、燃料噴射弁の燃圧が高いほど狭くなるように、燃料噴射時期を制御することが望ましい。燃焼室内のガス流動把握手段を備え、噴射制御部(CPU)は、噴射時期と点火時期との前記所望の間隔が燃焼室内のガス流動が小さいほど狭くなるように、燃料噴射時期を制御することが望ましい。   Further, the injection control unit (CPU) calculates the desired interval between the injection timing and the ignition timing based on one or more parameters of the fuel pressure of the fuel injection valve, the gas flow in the combustion chamber, and the engine speed, It is desirable to control the fuel injection timing. Moreover, it is desirable that the injection control unit (CPU) controls the fuel injection timing so that the desired interval between the injection timing and the ignition timing becomes narrower as the fuel pressure of the fuel injection valve becomes higher. Gas flow grasping means in the combustion chamber is provided, and the injection control unit (CPU) controls the fuel injection timing so that the desired interval between the injection timing and the ignition timing becomes narrower as the gas flow in the combustion chamber becomes smaller. Is desirable.

また前記ガス流動把握手段は、TGV(タンブルジェネレータバルブ)開度、SCV(スワールコントロールバルブ)開度、ウェストゲートバルブ開度、スロットル開度の少なくとも1つ以上のパラメータに基づいて、燃焼室内ガス流動の強弱を判定することが望ましい。また噴射制御部(CPU)は、噴射時期と点火時期との前記所望の間隔がエンジン回転数が高いほど広くなるように、燃料噴射時期を制御することが望ましい。また噴射時期と点火時期との前記所望の間隔を、燃料噴射弁の応答性の機差ばらつきに応じて学習する手段を備え、噴射制御部(CPU)は、学習値によって燃料噴射時期を制御することが望ましい。また、失火判定手段を備え、前記失火判定手段によって失火有りと判定した燃焼サイクルで、前記学習値を更新することが望ましい。前記学習値は、燃料噴射弁の閉弁時間に基づいて算出することが望ましい。また噴射制御部(CPU)は、1回の燃焼における分割された複数の燃料噴射動作のうち、点火時期との間隔を調整する予め指定した噴射動作の噴射量に対する補正は行わず、指令値に基づき噴射動作を行うことが望ましい。   Further, the gas flow grasping means is configured to determine the gas flow in the combustion chamber based on at least one parameter of TGV (tumble generator valve) opening, SCV (swirl control valve) opening, waste gate valve opening, and throttle opening. It is desirable to determine the strength of. Moreover, it is desirable that the injection control unit (CPU) controls the fuel injection timing so that the desired interval between the injection timing and the ignition timing becomes wider as the engine speed is higher. In addition, a means for learning the desired interval between the injection timing and the ignition timing in accordance with variation in the difference in response of the fuel injection valve is provided, and an injection control unit (CPU) controls the fuel injection timing based on the learned value. It is desirable. In addition, it is preferable that a misfire determination unit is provided, and the learning value is updated in a combustion cycle in which the misfire determination unit determines that misfire has occurred. The learning value is preferably calculated based on the valve closing time of the fuel injection valve. The injection control unit (CPU) does not correct the injection amount of a predetermined injection operation that adjusts the interval with the ignition timing among a plurality of divided fuel injection operations in one combustion, and sets the command value. It is desirable to perform the injection operation based on this.

1・・・エンジン
2・・・ピストン
3・・・吸気バルブ
4・・・排気バルブ
5・・・燃料噴射弁
6・・・点火プラグ
7・・・点火コイル
8・・・ノックセンサ
9・・・ECU(エンジンコントロールユニット)
10・・・吸気管
11・・・排気管
12・・・三元触媒
13・・・空燃比センサ
14・・・コレクタ
15・・・クランク角度センサ
16・・・シグナルプレート
17・・・絞り弁
18・・・空気流量計
19・・・燃焼室
20・・・アクセル開度センサ
21・・・TGV(タンブルジェネレータバルブ)
100・・・入力信号
101・・・入力回路
102・・・A/D変換部
103・・・中央演算部
104・・・ROM
105・・・RAM
106・・・出力回路
107・・・制御信号
201・・・燃料噴射点火間隔
301・・・燃焼可能空燃比のリーン側限界
302・・・燃焼可能空燃比のリッチ側限界
400・・・燃料噴射点火間隔演算部
401・・・点火時期演算部
402・・・燃料噴射時期演算部
403・・・基本値演算部
404・・・学習値演算部
501・・・燃料噴射弁の燃圧と燃料噴射点火間隔の基本値の関係
502・・・TGV開度と燃料噴射点火間隔の基本値の関係
503・・・エンジン回転数と燃料噴射点火間隔の基本値の関係
DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Piston 3 ... Intake valve 4 ... Exhaust valve 5 ... Fuel injection valve 6 ... Spark plug 7 ... Ignition coil 8 ... Knock sensor 9 ...・ ECU (Engine Control Unit)
DESCRIPTION OF SYMBOLS 10 ... Intake pipe 11 ... Exhaust pipe 12 ... Three-way catalyst 13 ... Air-fuel ratio sensor 14 ... Collector 15 ... Crank angle sensor 16 ... Signal plate 17 ... Throttle valve 18 ... Air flow meter 19 ... Combustion chamber 20 ... Accelerator opening sensor 21 ... TGV (tumble generator valve)
100 ... Input signal 101 ... Input circuit 102 ... A / D converter 103 ... Central processing unit 104 ... ROM
105 ... RAM
106 ... Output circuit 107 ... Control signal 201 ... Fuel injection ignition interval 301 ... Lean side limit of combustible air / fuel ratio 302 ... Rich side limit of combustible air / fuel ratio 400 ... Fuel injection Ignition interval calculator 401 ... Ignition timing calculator 402 ... Fuel injection timing calculator 403 ... Basic value calculator 404 ... Learning value calculator 501 ... Fuel pressure of fuel injection valve and fuel injection ignition Relationship between basic values of intervals 502... Relationship between basic values of TGV opening and fuel injection ignition interval 503... Relationship between engine rotation speed and basic values of fuel injection ignition interval

Claims (10)

燃焼室内に直接燃料を噴射する燃料噴射弁と、前記燃料噴射弁により噴射した燃料に点火する点火プラグと、が取り付けられたエンジンを制御するエンジン制御装置において、
1回の燃焼における前記燃料噴射弁による噴射を複数回に分割する噴射制御部を備え、
前記噴射制御部は、前記分割された複数の燃料噴射動作のうち、予め指定した噴射動作の噴射時期と、点火時期との間隔が所望の間隔になるように、点火時期に合わせて燃料噴射時期を制御することを特徴とするエンジン制御装置。
In an engine control apparatus for controlling an engine to which a fuel injection valve for directly injecting fuel into a combustion chamber and an ignition plug for igniting fuel injected by the fuel injection valve are attached,
An injection control unit that divides injection by the fuel injection valve in one combustion into a plurality of times;
The injection control unit is configured to adjust a fuel injection timing in accordance with an ignition timing so that a predetermined interval between an injection timing of a predetermined injection operation and an ignition timing among the plurality of divided fuel injection operations is a desired interval. An engine control device that controls the engine.
請求項1に記載のエンジン制御装置において、
前記噴射制御部は、噴射時期と点火時期との前記所望の間隔を、燃料噴射弁の燃圧、燃焼室内のガス流動、エンジン回転数のいずれか1つ以上のパラメータに基づいて算出し、燃料噴射時期を制御することを特徴とするエンジン制御装置。
The engine control device according to claim 1,
The injection control unit calculates the desired interval between the injection timing and the ignition timing based on one or more parameters of the fuel pressure of the fuel injection valve, the gas flow in the combustion chamber, and the engine speed, An engine control device that controls timing.
請求項1〜2の何れかに記載のエンジン制御装置において、
前記噴射制御部は、噴射時期と点火時期との前記所望の間隔を、燃料噴射弁の燃圧が高いほど狭くなるように、燃料噴射時期を制御することを特徴とするエンジン制御装置。
In the engine control device according to any one of claims 1 to 2,
The engine control apparatus, wherein the injection control unit controls the fuel injection timing so that the desired interval between the injection timing and the ignition timing becomes narrower as the fuel pressure of the fuel injection valve becomes higher.
請求項1〜2に記載のエンジン制御装置において、
燃焼室内のガス流動把握手段を備え、
前記噴射制御部は、噴射時期と点火時期との前記所望の間隔が燃焼室内のガス流動が小さいほど狭くなるように、燃料噴射時期を制御することを特徴とするエンジン制御装置。
In the engine control device according to claim 1 or 2,
Equipped with gas flow grasping means in the combustion chamber,
The engine control apparatus, wherein the injection control unit controls the fuel injection timing so that the desired interval between the injection timing and the ignition timing becomes narrower as the gas flow in the combustion chamber becomes smaller.
請求項4に記載のエンジン制御装置において、
前記ガス流動把握手段は、TGV(タンブルジェネレータバルブ)開度、SCV(スワールコントロールバルブ)開度、ウェストゲートバルブ開度、スロットル開度の少なくとも1つ以上のパラメータに基づいて、燃焼室内ガス流動の強弱を判定することを特徴とするエンジン制御装置。
The engine control apparatus according to claim 4, wherein
The gas flow grasping means determines the gas flow in the combustion chamber based on at least one parameter of TGV (tumble generator valve) opening, SCV (swirl control valve) opening, wastegate valve opening, and throttle opening. An engine control device characterized by determining strength.
請求項1〜2に記載のエンジン制御装置において、
前記噴射制御部は、噴射時期と点火時期との前記所望の間隔がエンジン回転数が高いほど広くなるように、燃料噴射時期を制御することを特徴とする記載エンジン制御装置。
In the engine control device according to claim 1 or 2,
The engine control apparatus according to claim 1, wherein the injection control unit controls the fuel injection timing so that the desired interval between the injection timing and the ignition timing becomes wider as the engine speed increases.
請求項1に記載のエンジン制御装置において、
噴射時期と点火時期との前記所望の間隔を、燃料噴射弁の応答性の機差ばらつきに応じて学習する手段を備え、前記噴射制御部は、学習値によって燃料噴射時期を制御することを特徴とするエンジン制御装置。
The engine control device according to claim 1,
Means is provided for learning the desired interval between the injection timing and the ignition timing in accordance with variation in the difference in the response of the fuel injection valve, and the injection control unit controls the fuel injection timing based on a learning value. Engine control device.
請求項7に記載のエンジン制御装置において、
失火判定手段を備え、前記失火判定手段によって失火有りと判定した燃焼サイクルで、前記学習値を更新することを特徴とするエンジン制御装置。
The engine control apparatus according to claim 7, wherein
An engine control apparatus comprising: a misfire determination unit, wherein the learning value is updated in a combustion cycle determined by the misfire determination unit as being misfired.
請求項7又は8に記載のエンジン制御装置において、
前記学習値は、燃料噴射弁の閉弁時間に基づいて算出することを特徴とするエンジン制御装置。
The engine control apparatus according to claim 7 or 8,
The engine control apparatus according to claim 1, wherein the learning value is calculated based on a valve closing time of the fuel injection valve.
請求項1に記載のエンジン制御装置において、
前記噴射制御部は、1回の燃焼における分割された複数の燃料噴射動作のうち、点火時期との間隔を調整する予め指定した噴射動作の噴射量に対する補正は行わず、指令値に基づき噴射動作を行うことを特徴とするエンジン制御装置。
The engine control device according to claim 1,
The injection control unit does not correct the injection amount of a predetermined injection operation that adjusts the interval with the ignition timing among a plurality of divided fuel injection operations in one combustion, and performs an injection operation based on a command value. An engine control device characterized in that
JP2016105756A 2016-05-27 2016-05-27 Engine control system Pending JP2017210934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105756A JP2017210934A (en) 2016-05-27 2016-05-27 Engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105756A JP2017210934A (en) 2016-05-27 2016-05-27 Engine control system

Publications (1)

Publication Number Publication Date
JP2017210934A true JP2017210934A (en) 2017-11-30

Family

ID=60475313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105756A Pending JP2017210934A (en) 2016-05-27 2016-05-27 Engine control system

Country Status (1)

Country Link
JP (1) JP2017210934A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132077A (en) * 1997-10-28 1999-05-18 Nippon Soken Inc Fuel supply controlling device for stratified charge combustion internal combustion engine
JPH11166420A (en) * 1997-09-30 1999-06-22 Yamaha Motor Co Ltd Intake device for engine
JP2000282848A (en) * 1999-03-30 2000-10-10 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004028027A (en) * 2002-06-27 2004-01-29 Hitachi Ltd Cylinder injection-type internal combustion engine and its combustion method
JP2006329173A (en) * 2005-05-30 2006-12-07 Nippon Soken Inc Fuel injection controller and fuel injection control method
JP2007327345A (en) * 2006-06-06 2007-12-20 Nissan Motor Co Ltd Cylinder direct injection type internal combustion engine
JP2008255907A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Fuel injection control device for cylinder injection engine
JP2012122412A (en) * 2010-12-08 2012-06-28 Nippon Soken Inc Internal combustion engine control device
JP2012207631A (en) * 2011-03-30 2012-10-25 Mazda Motor Corp Control device of spark ignition type gasoline engine
JP2012233456A (en) * 2011-05-09 2012-11-29 Mitsubishi Electric Corp Internal combustion engine control device
JP2013119803A (en) * 2011-12-07 2013-06-17 Toyota Motor Corp Failure detecting device of internal combustion engine
JP2014098341A (en) * 2012-11-14 2014-05-29 Toyota Motor Corp Fuel injection characteristic learning device for internal combustion engine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166420A (en) * 1997-09-30 1999-06-22 Yamaha Motor Co Ltd Intake device for engine
JPH11132077A (en) * 1997-10-28 1999-05-18 Nippon Soken Inc Fuel supply controlling device for stratified charge combustion internal combustion engine
JP2000282848A (en) * 1999-03-30 2000-10-10 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004028027A (en) * 2002-06-27 2004-01-29 Hitachi Ltd Cylinder injection-type internal combustion engine and its combustion method
JP2006329173A (en) * 2005-05-30 2006-12-07 Nippon Soken Inc Fuel injection controller and fuel injection control method
JP2007327345A (en) * 2006-06-06 2007-12-20 Nissan Motor Co Ltd Cylinder direct injection type internal combustion engine
JP2008255907A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Fuel injection control device for cylinder injection engine
JP2012122412A (en) * 2010-12-08 2012-06-28 Nippon Soken Inc Internal combustion engine control device
JP2012207631A (en) * 2011-03-30 2012-10-25 Mazda Motor Corp Control device of spark ignition type gasoline engine
JP2012233456A (en) * 2011-05-09 2012-11-29 Mitsubishi Electric Corp Internal combustion engine control device
JP2013119803A (en) * 2011-12-07 2013-06-17 Toyota Motor Corp Failure detecting device of internal combustion engine
JP2014098341A (en) * 2012-11-14 2014-05-29 Toyota Motor Corp Fuel injection characteristic learning device for internal combustion engine

Similar Documents

Publication Publication Date Title
US9856845B2 (en) Control device for internal combustion engine
US10174696B2 (en) Control apparatus for internal combustion engine
JP6477619B2 (en) Control device for internal combustion engine
JP3775942B2 (en) Fuel injection control device for internal combustion engine
JPWO2012157043A1 (en) Control device for internal combustion engine
JP2017210934A (en) Engine control system
JPS6181532A (en) Fuel feed controlling method of multicylinder internal-combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
RU2626179C1 (en) Control unit for internal combustion engine
JP6603150B2 (en) Fuel injection control device for internal combustion engine
JP6283959B2 (en) Engine control device
JP2016029264A (en) Internal combustion engine control device and fuel injection control method
JP5260770B2 (en) Engine control device
JP6737156B2 (en) Control device for internal combustion engine
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2013238111A (en) Air-fuel ratio control device of internal combustion engine
JP6733690B2 (en) Combustion control device
JP2018096355A (en) Control device of internal combustion engine
JP6887723B2 (en) Internal combustion engine control device
JP6570504B2 (en) Control device for internal combustion engine
WO2014141598A1 (en) Cylinder injection type internal combustion engine and fuel injection controller
JP6607138B2 (en) Exhaust gas recirculation control device for internal combustion engine
US9995265B2 (en) Control device for internal combustion engine
JP2016109100A (en) Diagnostic device of internal combustion engine
JP6327477B2 (en) Engine control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191126