JP2012219633A - Device and method for controlling start of internal combustion engine - Google Patents

Device and method for controlling start of internal combustion engine Download PDF

Info

Publication number
JP2012219633A
JP2012219633A JP2011082859A JP2011082859A JP2012219633A JP 2012219633 A JP2012219633 A JP 2012219633A JP 2011082859 A JP2011082859 A JP 2011082859A JP 2011082859 A JP2011082859 A JP 2011082859A JP 2012219633 A JP2012219633 A JP 2012219633A
Authority
JP
Japan
Prior art keywords
fuel
valve
intake
period
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011082859A
Other languages
Japanese (ja)
Inventor
Yukinobu Anezaki
幸信 姉崎
Masatoshi Umasaki
政俊 馬▲崎▼
Motomasa Iizuka
基正 飯塚
Akihiro Ando
彰浩 安藤
Shinichi Mitani
信一 三谷
Hiroshi Nomura
啓 野村
Eiji Murase
栄二 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2011082859A priority Critical patent/JP2012219633A/en
Priority to PCT/IB2012/000660 priority patent/WO2012137055A1/en
Publication of JP2012219633A publication Critical patent/JP2012219633A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an art of performing prompt and better start of an internal combustion engine.SOLUTION: A start control device for an in-cylinder direct-injection type internal combustion engine having a fuel injection valve arranged inside a cylinder is provided with a fuel property detecting means for detecting a property of a fuel injected from the fuel injection valve, a valve controlling means for controlling an opening and closing timing of an intake valve and an exhaust valve to create a period with both intake and exhaust valves closed during a period from exhaust stroke to intake stroke, and a first injection controlling means for injecting fuel from the fuel injection valve during a period created by the valve controlling means with both of the intake and exhaust valves closed. The valve controlling means changes the created period with both intake and exhaust valves closed, based on the property of the fuel detected by the fuel property detecting means.

Description

本発明は、内燃機関の始動制御装置及び内燃機関の始動制御方法に関する。   The present invention relates to an internal combustion engine start control device and an internal combustion engine start control method.

極低温時の内燃機関の始動時の初回の燃料噴射サイクルにて、排気弁を小作動リフト又は完全停止し、且つ、点火を中止することで、次サイクルへ燃料を持ち込むことで、始動時の筒内燃料量を増大させる技術が開示されている(例えば特許文献1参照)。これによると、低燃圧時においても燃料噴射率を増大させることなく、始動時の筒内燃料量を増大させることができ、気化燃料量も増大させることができる。またその際、特別な燃料ポンプや噴射弁を用いる必要が無く、コストが高くならない。   In the first fuel injection cycle at the start of the internal combustion engine at cryogenic temperature, the exhaust valve is brought into a small operating lift or completely stopped, and the ignition is stopped to bring the fuel into the next cycle. A technique for increasing the in-cylinder fuel amount is disclosed (for example, see Patent Document 1). According to this, the in-cylinder fuel amount at the start can be increased without increasing the fuel injection rate even at low fuel pressure, and the vaporized fuel amount can also be increased. At that time, it is not necessary to use a special fuel pump or injection valve, and the cost does not increase.

特開平10−009004号公報JP-A-10-009004 特開2010−025073号公報JP 2010-025073 A

しかしながら、上記特許文献1の技術では、内燃機関の始動時の初点火までのサイクルが増え、結局、始動に要する時間が増大することになる。   However, in the technique of the above-mentioned Patent Document 1, the number of cycles until the initial ignition at the start of the internal combustion engine increases, and eventually the time required for the start increases.

本発明の目的は、内燃機関の始動を短時間でより良く行う技術を提供することにある。   An object of the present invention is to provide a technique for better starting an internal combustion engine in a short time.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
気筒内に配置された燃料噴射弁を有する筒内直噴式の内燃機関の始動制御装置であって、
前記燃料噴射弁から噴射する燃料の性状を検出する燃料性状検出手段と、
排気行程から吸気行程にかけての期間中において、吸気弁及び排気弁の両方を閉弁させた期間を作り出すように前記吸気弁及び前記排気弁の開閉時期を制御する弁制御手段と、
前記弁制御手段で作り出した前記吸気弁及び排気弁の両方を閉弁させた期間に、前記燃料噴射弁から燃料を噴射する第1噴射制御手段と、
を備え、
前記弁制御手段は、前記燃料性状検出手段が検出する燃料の性状に基づいて、作り出す前記吸気弁及び排気弁の両方を閉弁させた期間を変更することを特徴とする内燃機関の始動制御装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A start control device for a direct injection type internal combustion engine having a fuel injection valve disposed in a cylinder,
Fuel property detection means for detecting the property of fuel injected from the fuel injection valve;
Valve control means for controlling the opening and closing timing of the intake valve and the exhaust valve so as to create a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke;
First injection control means for injecting fuel from the fuel injection valve during a period in which both the intake valve and the exhaust valve created by the valve control means are closed;
With
The start control device for an internal combustion engine, wherein the valve control means changes a period during which both the intake valve and the exhaust valve to be created are closed based on the fuel property detected by the fuel property detection means. It is.

ここで、燃料の性状とは、燃料のアルコール濃度(エタノール濃度)等をいい、その性状が異なると、筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なることになるものである。   Here, the fuel property refers to the alcohol concentration (ethanol concentration) of the fuel, etc. If the property is different, the fuel evaporation characteristic with respect to the in-cylinder temperature and the amount of fuel required for combustion differ. .

本発明は、排気行程から吸気行程にかけての期間中における、吸気弁及び排気弁の両方を閉弁させた期間に、燃料噴射弁から燃料を噴射する。このタイミングで吸気弁及び排気弁の両方を閉弁させた期間を設けると、ピストンの上昇により気筒内に残留しているガスは再圧縮されて筒内温度が上昇する。よって、高温の筒内に燃料の噴射ができ、燃料の蒸発を促進することができる。   In the present invention, fuel is injected from the fuel injection valve during a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke. If a period in which both the intake valve and the exhaust valve are closed at this timing is provided, the gas remaining in the cylinder is recompressed due to the rise of the piston, and the in-cylinder temperature rises. Therefore, fuel can be injected into the hot cylinder, and fuel evaporation can be promoted.

ここで、燃料の性状が異なると、筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なることから、性状が異なる燃料の蒸発を促進するための筒内温度が異なってくる。すなわち、筒内温度に対する燃料の蒸発特性が悪くなる燃料の性状の場合や、燃焼に必要な燃料量が多くなる燃料の性状の場合には、筒内温度をより上昇させる必要がある。筒内温度をより上昇させるためには、再圧縮されるガス量を増大させるように、排気弁の閉弁時期を進角させる必要がある。そこで、燃料の性状に最適な筒内温度を実現するために、燃料の性状に基づいて、作り出す吸気弁及び排気弁の両方を閉弁させた期間を変更するようにした。本発明によると、燃料の性状に最適な筒内温度を実現するように、吸気弁及び排気弁の両方を閉弁させた期間を調整することができ、燃料の蒸発を促進することができる。これによって、蒸発が促進された燃料は、そのサイクルの点火で良好に燃焼することができる。このように燃料が良好に燃焼することから、安定した始動性を確保することができると共に、未燃HCが生じ難く排気エミッションの悪化も抑制することができる。したがって、内燃機関の始動を短時間でより良く行うことができる。   Here, when the fuel properties are different, the fuel evaporation characteristics with respect to the in-cylinder temperature and the amount of fuel required for combustion differ, so that the in-cylinder temperature for promoting the evaporation of fuel having different properties varies. That is, in the case of a fuel property in which the fuel evaporation characteristics with respect to the in-cylinder temperature deteriorate, or in the case of a fuel property in which the amount of fuel required for combustion increases, the in-cylinder temperature needs to be further increased. In order to further increase the in-cylinder temperature, it is necessary to advance the closing timing of the exhaust valve so as to increase the amount of gas to be recompressed. Therefore, in order to realize the optimum in-cylinder temperature for the fuel properties, the period during which both the intake valve and the exhaust valve to be created are closed is changed based on the fuel properties. According to the present invention, it is possible to adjust the period during which both the intake valve and the exhaust valve are closed so as to realize the in-cylinder temperature optimum for the properties of the fuel, and it is possible to promote the evaporation of the fuel. As a result, the fuel whose evaporation is promoted can be burned well by ignition in the cycle. Since the fuel burns well in this manner, stable startability can be ensured, and unburned HC is hardly generated, and deterioration of exhaust emission can be suppressed. Therefore, the internal combustion engine can be started better in a short time.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
気筒内に配置された燃料噴射弁を有する筒内直噴式の内燃機関の始動制御装置であって、
前記燃料噴射弁から噴射する燃料の性状を検出する燃料性状検出手段と、
排気行程から吸気行程にかけての期間中において、吸気弁及び排気弁の両方を閉弁させた期間を作り出すように前記吸気弁及び前記排気弁の開閉時期を制御する弁制御手段と、
前記弁制御手段で作り出した前記吸気弁及び排気弁の両方を閉弁させた期間に、前記燃料噴射弁から燃料を噴射する第1噴射制御手段と、
を備え、
前記第1噴射制御手段は、前記燃料性状検出手段が検出する燃料の性状に基づいて、前記吸気弁及び排気弁の両方を閉弁させた期間に噴射する燃料の噴射パラメータを変更することを特徴とする内燃機関の始動制御装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A start control device for a direct injection type internal combustion engine having a fuel injection valve disposed in a cylinder,
Fuel property detection means for detecting the property of fuel injected from the fuel injection valve;
Valve control means for controlling the opening and closing timing of the intake valve and the exhaust valve so as to create a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke;
First injection control means for injecting fuel from the fuel injection valve during a period in which both the intake valve and the exhaust valve created by the valve control means are closed;
With
The first injection control means changes an injection parameter of fuel to be injected during a period in which both the intake valve and the exhaust valve are closed based on the fuel property detected by the fuel property detection means. An internal combustion engine start control device.

ここで、燃料の性状とは、燃料のアルコール濃度(エタノール濃度)等をいい、その性状が異なると、筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なることになるものである。また、燃料の噴射パラメータとは、燃料噴射量、燃料噴射の分割数、燃料噴射時期等の燃料の噴射の際に変化させることができる変数である。   Here, the fuel property refers to the alcohol concentration (ethanol concentration) of the fuel, etc. If the property is different, the fuel evaporation characteristic with respect to the in-cylinder temperature and the amount of fuel required for combustion differ. . The fuel injection parameters are variables that can be changed at the time of fuel injection, such as the fuel injection amount, the number of fuel injection divisions, and the fuel injection timing.

本発明は、排気行程から吸気行程にかけての期間中における、吸気弁及び排気弁の両方を閉弁させた期間に、燃料噴射弁から燃料を噴射する。このタイミングで吸気弁及び排気弁の両方を閉弁させた期間を設けると、ピストンの上昇により気筒内に残留しているガスは再圧縮されて筒内温度が上昇する。よって、高温の筒内に燃料の噴射ができ、燃料の蒸発を促進することができる。   In the present invention, fuel is injected from the fuel injection valve during a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke. If a period in which both the intake valve and the exhaust valve are closed at this timing is provided, the gas remaining in the cylinder is recompressed due to the rise of the piston, and the in-cylinder temperature rises. Therefore, fuel can be injected into the hot cylinder, and fuel evaporation can be promoted.

ここで、燃料の性状が異なると、筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なることから、上昇した所定筒内温度に対して性状が異なる燃料の蒸発を促進するための燃料の噴射パラメータが異なってくる。すなわち、所定筒内温度に対する燃料の蒸発特性が悪くなる燃料の性状の場合や、所定筒内温度で燃焼に必要な燃料量が多くなる燃料の性状の場合には、所定筒内温度に合わせて燃料の噴射パラメータをより燃料の蒸発を促進させるように変更する必要がある。例えば、所定筒内温度で燃料の蒸発を促進させるには、燃料噴射量を増量したり、燃料噴射の分割数を増やしたり、燃料噴射時期を早めたりする必要がある。そこで、燃料の性状と、吸気弁及び排気弁の両方を閉弁させた期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するために、燃料の性状に基づいて、吸気弁及び排気弁の両方を閉弁させた期間に噴射する燃料の噴射パラメータを変更するようにした。本発明によると、燃料の性状と、吸気弁及び排気弁の両方を閉弁させた期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するように、燃
料の噴射パラメータを調整することができ、燃料の蒸発を促進することができる。これによって、蒸発が促進された燃料は、そのサイクルの点火で良好に燃焼することができる。このように燃料が良好に燃焼することから、安定した始動性を確保することができると共に、未燃HCが生じ難く排気エミッションの悪化も抑制することができる。したがって、内燃機関の始動を短時間でより良く行うことができる。
Here, when the fuel properties are different, the fuel evaporation characteristics with respect to the in-cylinder temperature and the amount of fuel required for combustion differ, so that the evaporation of fuel having different properties with respect to the increased in-cylinder temperature is promoted. The fuel injection parameters will be different. That is, in the case of fuel properties where the fuel evaporation characteristics with respect to the predetermined in-cylinder temperature deteriorate, or in the case of fuel properties in which the amount of fuel required for combustion increases at the predetermined in-cylinder temperature, the predetermined in-cylinder temperature is adjusted It is necessary to change the fuel injection parameters to further promote fuel evaporation. For example, in order to promote the evaporation of fuel at a predetermined in-cylinder temperature, it is necessary to increase the fuel injection amount, increase the number of fuel injection divisions, or advance the fuel injection timing. Therefore, in order to realize the optimum fuel injection parameters for the fuel properties and the in-cylinder temperature determined by the period during which both the intake valve and the exhaust valve are closed, the intake valve and the The injection parameters of the fuel to be injected during the period when both exhaust valves are closed are changed. According to the present invention, the fuel injection parameter is adjusted so as to realize the optimum fuel injection parameter for the fuel property and the in-cylinder temperature determined by the period during which both the intake valve and the exhaust valve are closed. Can evaporate the fuel. As a result, the fuel whose evaporation is promoted can be burned well by ignition in the cycle. Since the fuel burns well in this manner, stable startability can be ensured, and unburned HC is hardly generated, and deterioration of exhaust emission can be suppressed. Therefore, the internal combustion engine can be started better in a short time.

前記吸気弁及び排気弁の両方を閉弁させた期間の経過後に、前記燃料噴射弁から燃料を噴射する第2噴射制御手段を更に備えるとよい。   It is preferable to further include second injection control means for injecting fuel from the fuel injection valve after elapse of a period in which both the intake valve and the exhaust valve are closed.

本発明によると、蒸発を促進可能な燃料の量を第1噴射制御手段で噴射することができ、燃焼に必要な残りの燃料の量を第2噴射制御手段で噴射することができる。したがって、燃料の蒸発を促進することができる。   According to the present invention, the amount of fuel that can promote evaporation can be injected by the first injection control means, and the remaining amount of fuel necessary for combustion can be injected by the second injection control means. Therefore, evaporation of fuel can be promoted.

前記燃料性状検出手段が検出する燃料の性状に基づいて、前記第1噴射制御手段で噴射する燃料の量と前記第2噴射制御手段で噴射する燃料の量との割合を変更するとよい。   The ratio between the amount of fuel injected by the first injection control unit and the amount of fuel injected by the second injection control unit may be changed based on the fuel property detected by the fuel property detection unit.

本発明によると、燃料の性状に基づいて、蒸発を促進可能な燃料の量を第1噴射制御手段で噴射することができるように、燃焼に必要な燃料の量の割合を変更することができる。したがって、燃料の蒸発を促進することができる。   According to the present invention, the ratio of the amount of fuel necessary for combustion can be changed so that the amount of fuel that can promote evaporation can be injected by the first injection control means based on the properties of the fuel. . Therefore, evaporation of fuel can be promoted.

前記弁制御手段は、前記吸気弁及び排気弁の両方を閉弁させた期間を作り出す前記排気弁の閉弁時期から吸気上死点までの期間を、吸気上死点から前記吸気弁の開弁時期までの期間よりも小さくするとよい。   The valve control means creates a period in which both the intake valve and the exhaust valve are closed, and sets a period from the closing timing of the exhaust valve to the intake top dead center from the intake top dead center to the opening of the intake valve. It is better to make it smaller than the period until the time.

本発明によると、吸気上死点から吸気弁開弁時期の間で、排気弁閉弁時期から吸気上死点の期間を超えた期間に気筒内には負圧が発生し、負圧が発生している状態で吸気弁を開弁することになる。これにより、負圧が発生している状態で燃料を噴射することにより、減圧沸騰が行える。また、負圧が発生している状態で吸気弁を開弁することで、気筒内へ流入する吸気の流速が音速近くになり、この運動エネルギにより気筒内のガス温度を上昇させることができる。つまり、気筒内のガス温度を上昇させることにより、吸気弁及び排気弁の両方を閉弁させた期間の後に更に筒内温度を上昇させることができる。したがって、燃料の蒸発を促進することができる。   According to the present invention, negative pressure is generated in the cylinder between the intake top dead center and the intake valve opening timing, and during the period exceeding the intake top dead center period from the exhaust valve closing timing. In this state, the intake valve is opened. Thereby, the boiling under reduced pressure can be performed by injecting the fuel in a state where the negative pressure is generated. Further, by opening the intake valve in a state where negative pressure is generated, the flow velocity of the intake air flowing into the cylinder becomes close to the speed of sound, and this kinetic energy can increase the gas temperature in the cylinder. That is, by increasing the gas temperature in the cylinder, the in-cylinder temperature can be further increased after a period in which both the intake valve and the exhaust valve are closed. Therefore, evaporation of fuel can be promoted.

前記燃料性状検出手段が検出する燃料の性状に基づいて、前記吸気弁及び排気弁の両方を閉弁させた期間の経過後の開弁した前記吸気弁の吸気下死点に対する閉弁時期を変更するとよい。   Based on the fuel property detected by the fuel property detection means, the valve closing timing for the intake bottom dead center of the intake valve that has been opened after the passage of both the intake valve and the exhaust valve is changed. Good.

吸気弁の閉弁時期が吸気下死点に近付くと、始動時に機関回転速度が低回転であることによる機関実効圧縮比が大きくなることを要因として、圧縮行程における気筒内のガス温度を上昇させることができる。これにより本発明によると、吸気弁及び排気弁の両方を閉弁させた期間の経過後の開弁した吸気弁の吸気下死点に対する閉弁時期を変更することで、吸気弁及び排気弁の両方を閉弁させた期間の後に更に筒内温度を変化させることができる。したがって、燃料の性状に基づいて、吸気弁の閉弁時期を最適に変更すれは、燃料の蒸発を促進することができる。   When the closing timing of the intake valve approaches the intake bottom dead center, the gas temperature in the cylinder during the compression stroke is increased due to an increase in the effective engine compression ratio due to the low engine speed at the start. be able to. Thus, according to the present invention, by changing the valve closing timing with respect to the intake bottom dead center of the intake valve that has been opened after the passage of the period during which both the intake valve and the exhaust valve are closed, The in-cylinder temperature can be further changed after the period in which both are closed. Therefore, if the closing timing of the intake valve is optimally changed based on the properties of the fuel, the evaporation of the fuel can be promoted.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
気筒内に配置された燃料噴射弁を有する筒内直噴式の内燃機関の始動制御方法であって、
弁制御手段によって、排気行程から吸気行程にかけての期間中において、吸気弁及び排気弁の両方を閉弁させた期間を作り出すように前記吸気弁及び前記排気弁の開閉時期を制
御し、第1噴射制御手段によって、前記弁制御手段で作り出した前記吸気弁及び排気弁の両方を閉弁させた期間に、前記燃料噴射弁から燃料を噴射するものであり、
前記燃料噴射弁から噴射する燃料の性状を検出する燃料性状検出手段が検出する燃料の性状に基づいて、前記弁制御手段が作り出す前記吸気弁及び排気弁の両方を閉弁させた期間と、前記第1噴射制御手段が前記吸気弁及び排気弁の両方を閉弁させた期間に噴射する燃料の噴射パラメータと、の少なくともいずれかを変更することを特徴とする内燃機関の始動制御方法である。
In the present invention, the following configuration is adopted. That is, the present invention
A method for starting control of an in-cylinder direct injection internal combustion engine having a fuel injection valve disposed in a cylinder,
The valve control means controls the opening and closing timing of the intake valve and the exhaust valve so as to create a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke. Fuel is injected from the fuel injection valve during a period in which both the intake valve and the exhaust valve created by the valve control means are closed by the control means,
A period in which both the intake valve and the exhaust valve created by the valve control unit are closed based on the fuel property detected by the fuel property detection unit that detects the property of the fuel injected from the fuel injection valve; and A starting control method for an internal combustion engine, wherein the first injection control means changes at least one of an injection parameter of fuel injected during a period in which both the intake valve and the exhaust valve are closed.

ここで、燃料の性状とは、燃料のアルコール濃度(エタノール濃度)等をいい、その性状が異なると、筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なることになるものである。また、燃料の噴射パラメータとは、燃料噴射量、燃料噴射の分割数、燃料噴射時期等の燃料の噴射の際に変化させることができる変数である。   Here, the fuel property refers to the alcohol concentration (ethanol concentration) of the fuel, etc. If the property is different, the fuel evaporation characteristic with respect to the in-cylinder temperature and the amount of fuel required for combustion differ. . The fuel injection parameters are variables that can be changed at the time of fuel injection, such as the fuel injection amount, the number of fuel injection divisions, and the fuel injection timing.

本発明は、排気行程から吸気行程にかけての期間中における、吸気弁及び排気弁の両方を閉弁させた期間に、燃料噴射弁から燃料を噴射する。このタイミングで吸気弁及び排気弁の両方を閉弁させた期間を設けると、ピストンの上昇により気筒内に残留しているガスは再圧縮されて筒内温度が上昇する。よって、高温の筒内に燃料の噴射ができ、燃料の蒸発を促進することができる。   In the present invention, fuel is injected from the fuel injection valve during a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke. If a period in which both the intake valve and the exhaust valve are closed at this timing is provided, the gas remaining in the cylinder is recompressed due to the rise of the piston, and the in-cylinder temperature rises. Therefore, fuel can be injected into the hot cylinder, and fuel evaporation can be promoted.

ここで、燃料の性状が異なると、筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なることから、性状が異なる燃料の蒸発を促進するための筒内温度が異なってくる。すなわち、筒内温度に対する燃料の蒸発特性が悪くなる燃料の性状の場合や、燃焼に必要な燃料量が多くなる燃料の性状の場合には、筒内温度をより上昇させる必要がある。筒内温度をより上昇させるためには、再圧縮されるガス量を増大させるように、排気弁の閉弁時期を進角させる必要がある。または、燃料の性状が異なると、筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なることから、上昇した所定筒内温度に対して性状が異なる燃料の蒸発を促進するための燃料の噴射パラメータが異なってくる。すなわち、所定筒内温度に対する燃料の蒸発特性が悪くなる燃料の性状の場合や、所定筒内温度で燃焼に必要な燃料量が多くなる燃料の性状の場合には、所定筒内温度に合わせて燃料の噴射パラメータをより燃料の蒸発を促進させるように変更する必要がある。例えば、所定筒内温度で燃料の蒸発を促進させるには、燃料噴射量を増量したり、燃料噴射の分割数を増やしたり、燃料噴射時期を早めたりする必要がある。そこで、燃料の性状に最適な筒内温度を実現するために、燃料の性状に基づいて、作り出す吸気弁及び排気弁の両方を閉弁させた期間を変更するか、または、燃料の性状と、吸気弁及び排気弁の両方を閉弁させた期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するために、燃料の性状に基づいて、吸気弁及び排気弁の両方を閉弁させた期間に噴射する燃料の噴射パラメータを変更するようにした。本発明によると、燃料の性状に最適な筒内温度を実現するように、吸気弁及び排気弁の両方を閉弁させた期間を調整することができ、燃料の蒸発を促進することができる。または、燃料の性状と、吸気弁及び排気弁の両方を閉弁させた期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するように、燃料の噴射パラメータを調整することができ、燃料の蒸発を促進することができる。これによって、蒸発が促進された燃料は、そのサイクルの点火で良好に燃焼することができる。このように燃料が良好に燃焼することから、安定した始動性を確保することができると共に、未燃HCが生じ難く排気エミッションの悪化も抑制することができる。したがって、内燃機関の始動を短時間でより良く行うことができる。   Here, when the fuel properties are different, the fuel evaporation characteristics with respect to the in-cylinder temperature and the amount of fuel required for combustion differ, so that the in-cylinder temperature for promoting the evaporation of fuel having different properties varies. That is, in the case of a fuel property in which the fuel evaporation characteristics with respect to the in-cylinder temperature deteriorate, or in the case of a fuel property in which the amount of fuel required for combustion increases, the in-cylinder temperature needs to be further increased. In order to further increase the in-cylinder temperature, it is necessary to advance the closing timing of the exhaust valve so as to increase the amount of gas to be recompressed. Or, if the fuel properties are different, the fuel evaporation characteristics with respect to the in-cylinder temperature and the amount of fuel required for combustion differ, so the fuel for promoting the evaporation of fuel having different properties with respect to the increased in-cylinder temperature The injection parameters will be different. That is, in the case of fuel properties where the fuel evaporation characteristics with respect to the predetermined in-cylinder temperature deteriorate, or in the case of fuel properties in which the amount of fuel required for combustion increases at the predetermined in-cylinder temperature, the predetermined in-cylinder temperature is adjusted. It is necessary to change the fuel injection parameters to further promote fuel evaporation. For example, in order to promote the evaporation of fuel at a predetermined in-cylinder temperature, it is necessary to increase the fuel injection amount, increase the number of fuel injection divisions, or advance the fuel injection timing. Therefore, in order to realize the optimum in-cylinder temperature for the fuel property, the period during which both the intake valve and the exhaust valve to be created are closed is changed based on the property of the fuel, or the property of the fuel, In order to achieve optimal fuel injection parameters for the in-cylinder temperature determined by the period during which both the intake and exhaust valves are closed, both the intake and exhaust valves are closed based on the properties of the fuel. The injection parameter of the fuel injected during the period was changed. According to the present invention, it is possible to adjust the period during which both the intake valve and the exhaust valve are closed so as to realize the in-cylinder temperature optimum for the properties of the fuel, and it is possible to promote the evaporation of the fuel. Alternatively, the fuel injection parameters can be adjusted to achieve the optimal fuel injection parameters for the fuel properties and the in-cylinder temperature determined by the period during which both the intake and exhaust valves are closed. , Fuel evaporation can be promoted. As a result, the fuel whose evaporation is promoted can be burned well by ignition in the cycle. Since the fuel burns well in this manner, stable startability can be ensured, and unburned HC is hardly generated, and deterioration of exhaust emission can be suppressed. Therefore, the internal combustion engine can be started better in a short time.

本発明によると、内燃機関の始動を短時間でより良く行うことができる。   According to the present invention, the internal combustion engine can be started better in a short time.

本発明の実施例1に係る内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. 実施例1に係る特殊始動制御と通常始動制御との吸気弁及び排気弁の開閉時期を示す図である。It is a figure which shows the opening / closing timing of the intake valve and exhaust valve by the special start control and normal start control which concern on Example 1. FIG. 実施例1に係る燃料のエタノール濃度に対する筒内温度と燃料の蒸発割合とを示す図である。It is a figure which shows the in-cylinder temperature with respect to the ethanol density | concentration of the fuel which concerns on Example 1, and the evaporation rate of a fuel. 実施例1に係る特殊始動制御と通常始動制御との燃料噴射時期を示す図である。It is a figure which shows the fuel-injection time of the special start control which concerns on Example 1, and normal start control. 実施例1に係る両弁閉弁期間を形成する排気弁の閉弁時期と筒内温度との関係を示す図である。It is a figure which shows the relationship between the valve closing timing of the exhaust valve which forms the both-valve closing period based on Example 1, and in-cylinder temperature. 実施例1に係る2分割燃料噴射の場合の特殊始動制御の燃料噴射時期を示す図である。It is a figure which shows the fuel-injection time of the special starting control in the case of the 2 split fuel injection which concerns on Example 1. FIG. 実施例1に係る特殊始動制御ルーチン1を示すフローチャートである。3 is a flowchart illustrating a special start control routine 1 according to the first embodiment. 変形例1に係る吸気弁と排気弁の開閉時期を示す図である。It is a figure which shows the opening / closing timing of the intake valve and exhaust valve which concern on the modification 1. FIG. 変形例1に係る差分θi−θeと筒内温度との関係を示す図である。It is a figure which shows the relationship between difference (theta) i- (theta) e which concerns on the modification 1, and in-cylinder temperature. 変形例2に係る吸気弁の閉弁時期と筒内温度との関係を示す図である。It is a figure which shows the relationship between the valve closing timing of the intake valve which concerns on the modification 2, and cylinder temperature. 実施例2に係る両弁閉弁期間での燃料噴射の分割数を2つに増加させて両弁閉弁期間での燃料の噴射パラメータを変更した場合を説明する図である。It is a figure explaining the case where the fuel injection parameter in a both valve closing period is changed by increasing the division | segmentation number of the fuel injection in the both valve closing period which concerns on Example 2 to two. 実施例2に係る両弁閉弁期間に噴射する燃料量を増量し、圧縮行程で噴射する燃料量を削減して両弁閉弁期間での燃料の噴射パラメータを変更した場合を説明する図である。The figure explaining the case where the fuel quantity injected in the double stroke valve closing period is increased, the fuel quantity injected in the compression stroke is reduced, and the fuel injection parameters in the double valve closing period are changed. is there. 実施例2に係る両弁閉弁期間に噴射する燃料量の割合と排気ガス温度との関係示す図である。It is a figure which shows the relationship between the ratio of the fuel amount injected in the both-valve closing period which concerns on Example 2, and exhaust gas temperature. 実施例2に係る特殊始動制御ルーチン2を示すフローチャートである。7 is a flowchart showing a special start control routine 2 according to the second embodiment. 変形例3に係る特殊始動制御ルーチン3を示すフローチャートである。10 is a flowchart showing a special start control routine 3 according to Modification 3.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
(内燃機関)
図1は、本発明の実施例1に係る内燃機関の始動制御装置を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1は、4つ配置された気筒2内に配置された燃料噴射弁3を有する筒内直噴式エンジンである。
<Example 1>
(Internal combustion engine)
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which an internal combustion engine start control apparatus according to Embodiment 1 of the present invention is applied. An internal combustion engine 1 shown in FIG. 1 is an in-cylinder direct injection engine having fuel injection valves 3 arranged in four cylinders 2 arranged.

内燃機関1には、気筒2内に吸気を取り込ませる吸気通路4が接続されている。吸気通路4の途中には、新気吸入空気の量を変更するために開度調整されるスロットル弁5が配置されている。スロットル弁5よりも下流側の吸気通路には、サージタンク6が形成されている。   The internal combustion engine 1 is connected with an intake passage 4 for taking intake air into the cylinder 2. A throttle valve 5 whose opening degree is adjusted to change the amount of fresh intake air is disposed in the intake passage 4. A surge tank 6 is formed in the intake passage downstream of the throttle valve 5.

内燃機関1には、気筒2が形成されている。この気筒2内へ斜め上側から燃料を直接噴射する電磁駆動式インジェクタである燃料噴射弁3が設けられている。燃料噴射弁3には、燃料パイプ7を介して燃料タンク8から燃料が供給される。ここで、内燃機関1に使用される燃料としては、エタノール濃度(アルコール濃度)という性状が異なる燃料を用いることができる。すなわち、燃料としては、ガソリンだけの燃料だけなく、ガソリンにエタノールを混合した混合燃料や、エタノールだけのエタノール燃料を用いることができる。このように、内燃機関1に使用される燃料のエタノール濃度は変更可能である。なお、本実施例では、エタノール濃度という燃料の性状を例に挙げて説明するが、燃料の性状が異なると、筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なることになる性状であれば、他の性状を本発明に適用することもできる。燃料タンク8と燃料噴射弁3との間の燃料パイプ7には、燃料中のエタノール濃度を検出するエタノール濃度センサ9が
配置されている。エタノール濃度センサ9が、本発明の燃料性状検出手段に対応する。
A cylinder 2 is formed in the internal combustion engine 1. A fuel injection valve 3 that is an electromagnetically driven injector that directly injects fuel into the cylinder 2 from an obliquely upper side is provided. Fuel is supplied to the fuel injection valve 3 from the fuel tank 8 through the fuel pipe 7. Here, as the fuel used in the internal combustion engine 1, fuels having different properties such as ethanol concentration (alcohol concentration) can be used. That is, as the fuel, not only gasoline but also a mixed fuel obtained by mixing ethanol with gasoline or an ethanol fuel containing only ethanol can be used. Thus, the ethanol concentration of the fuel used for the internal combustion engine 1 can be changed. In this embodiment, the fuel property of ethanol concentration will be described as an example. However, if the fuel property is different, the fuel evaporation characteristic with respect to the in-cylinder temperature and the fuel amount required for combustion will be different. If so, other properties can be applied to the present invention. An ethanol concentration sensor 9 that detects the ethanol concentration in the fuel is disposed in the fuel pipe 7 between the fuel tank 8 and the fuel injection valve 3. The ethanol concentration sensor 9 corresponds to the fuel property detection means of the present invention.

内燃機関1の気筒2に通じる吸気通路4の一部である吸気ポート10には、吸気弁11が設けられ、吸気弁11が開弁することにより、吸気が気筒2内へ導入されるようになっている。内燃機関1の気筒2に通じる排気通路12の一部である排気ポート13には、排気弁14が設けられ、排気弁14が開弁することにより、燃焼後の排気が排気通路12へ排出される。吸気弁11及び排気弁14には、夫々の弁の開閉時期(バルブタイミング)を変更可能とするVVT15,16が設けられている。各VVT15,16で吸気弁11及び排気弁14の開閉時期を制御することにより、排気行程から吸気行程にかけての期間中において、吸気弁11及び排気弁14の両方を閉弁させた期間を作り出すことができる。本実施例におけるVVT15,16が、本発明の弁制御手段に対応する。VVT15,16には、例えば、クランク軸からカム軸への動力伝達経路に配置され、クランク軸の回転角度に対するカム軸の回転角度の相対位置(位相)を可変とした機構等を採用することができる。   An intake port 11 which is a part of the intake passage 4 communicating with the cylinder 2 of the internal combustion engine 1 is provided with an intake valve 11 so that intake air is introduced into the cylinder 2 by opening the intake valve 11. It has become. The exhaust port 13 which is a part of the exhaust passage 12 communicating with the cylinder 2 of the internal combustion engine 1 is provided with an exhaust valve 14. When the exhaust valve 14 is opened, the exhaust gas after combustion is discharged to the exhaust passage 12. The The intake valve 11 and the exhaust valve 14 are provided with VVTs 15 and 16 that can change the opening / closing timing (valve timing) of each valve. By controlling the opening / closing timing of the intake valve 11 and the exhaust valve 14 with each VVT 15, 16, a period in which both the intake valve 11 and the exhaust valve 14 are closed during the period from the exhaust stroke to the intake stroke is created. Can do. VVT15 and 16 in a present Example respond | correspond to the valve control means of this invention. For example, a mechanism that is arranged in a power transmission path from the crankshaft to the camshaft and that can vary the relative position (phase) of the camshaft rotation angle with respect to the crankshaft rotation angle may be employed as the VVT 15 and 16. it can.

内燃機関1の気筒2上部には、点火プラグ17が配置されている。点火プラグ17には、点火コイル等を通じて点火タイミングに高電圧が印加され、点火プラグ17の対向電極に向けて火花放電が発生し、燃料に着火されて燃焼が行われる。また、内燃機関1の気筒2下方には、ピストン18が配置されている。ピストン18には、気筒2内の温度を検出する筒内温度センサ19が設けられている。筒内温度センサ19は、燃料噴射弁3から噴射された燃料が衝突するピストンキャビティの表面温度を直接検出する。なお、筒内温度センサ19を用いず、機関冷却水やシリンダライナの温度と筒内温度との相関を予め求めておき、機関冷却水やシリンダライナの温度を検出して筒内温度を導出するようにしてもよい。また、内燃機関1の気筒2周りの機関冷却水が流通する水路には、機関冷却水の温度を検出する水温センサ20が配置されている。加えて、内燃機関1のクランク軸には、機関回転速度を検出するクランク角センサ23が配置されている。クランク角センサ23は、クランク軸からクランク角パルス信号を取り出し、クランク角パルス信号から機関回転速度、気筒判別、気筒2の停止時の行程検出等を行う。   A spark plug 17 is disposed on the cylinder 2 of the internal combustion engine 1. A high voltage is applied to the ignition plug 17 at an ignition timing through an ignition coil or the like, a spark discharge is generated toward the counter electrode of the ignition plug 17, and the fuel is ignited and burned. A piston 18 is disposed below the cylinder 2 of the internal combustion engine 1. The piston 18 is provided with an in-cylinder temperature sensor 19 that detects the temperature in the cylinder 2. The in-cylinder temperature sensor 19 directly detects the surface temperature of the piston cavity where the fuel injected from the fuel injection valve 3 collides. In addition, without using the in-cylinder temperature sensor 19, a correlation between the temperature of the engine cooling water or the cylinder liner and the in-cylinder temperature is obtained in advance, and the temperature of the engine cooling water or the cylinder liner is detected to derive the in-cylinder temperature. You may do it. Further, a water temperature sensor 20 that detects the temperature of the engine cooling water is disposed in a water channel through which the engine cooling water around the cylinder 2 of the internal combustion engine 1 flows. In addition, a crank angle sensor 23 for detecting the engine rotation speed is disposed on the crankshaft of the internal combustion engine 1. The crank angle sensor 23 extracts a crank angle pulse signal from the crankshaft, and performs engine speed, cylinder discrimination, stroke detection when the cylinder 2 is stopped, and the like from the crank angle pulse signal.

内燃機関1には、気筒2内で燃焼した後の排気を排出させる排気通路12が接続されている。排気通路12の途中には、排気を浄化するための触媒21が配置されている。触媒21としては、三元触媒や吸蔵還元型NOx触媒等が用いられる。   Connected to the internal combustion engine 1 is an exhaust passage 12 for discharging exhaust gas after combustion in the cylinder 2. A catalyst 21 for purifying the exhaust gas is disposed in the middle of the exhaust passage 12. As the catalyst 21, a three-way catalyst, an occlusion reduction type NOx catalyst, or the like is used.

この内燃機関1には、ECU(電子制御ユニット)22が併設されている。ECU22には、エタノール濃度センサ9、筒内温度センサ19、水温センサ20、及びクランク角センサ23等の各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU22に入力されるようになっている。一方、ECU22には、燃料噴射弁3、スロットル弁5、VVT15,16、及び点火プラグ17が電気配線を介して接続されており、ECU22によりこれらの機器が制御される。   The internal combustion engine 1 is provided with an ECU (electronic control unit) 22. Various sensors such as the ethanol concentration sensor 9, the in-cylinder temperature sensor 19, the water temperature sensor 20, and the crank angle sensor 23 are connected to the ECU 22 through electric wiring, and output signals of these various sensors are input to the ECU 22. It has become. On the other hand, the fuel injection valve 3, the throttle valve 5, the VVTs 15 and 16, and the spark plug 17 are connected to the ECU 22 through electrical wiring, and these devices are controlled by the ECU 22.

(特殊始動制御)
内燃機関1の始動では、特に極低温時等であると、初回サイクルに燃料噴射弁3から燃料を噴射して点火プラグ17で点火しても、例えば失火や未燃HCが大量に生じてしまう等燃焼が良好に行えない場合がある。このようなことは、燃料のエタノール濃度が高い程生じ易くなる。これは、燃料のエタノール濃度が高いと、ガソリンに比して低温時に燃料が蒸発し難くなり、燃料が殆ど気化しなくなるためである。このため、燃焼に必要な燃料量も増加する。この問題に対処するために、燃料のエタノール濃度に応じて、燃料噴射圧力の昇圧や燃料噴射量を増量したり、蒸発時間を確保するために燃料噴射時期を進角したりすること等が提案されている。しかし、始動時から燃料噴射圧力を昇圧するには、クランク軸から動力を得る機械式駆動ポンプの代わりに、電動モータで動力を得る電動モータ
式駆動ポンプが必要になり、コストが高くなる。また、始動時の燃料噴射量を増量するにしても、燃料噴射圧力が低いため燃料噴射率も低く、長い噴射期間が必要となり、噴射された燃料の蒸発時間が確保できない。このため、従来、始動時の初回の燃料噴射サイクルにて、排気弁を小作動リフト又は完全停止し、且つ、点火を中止することで、次サイクルでの筒内燃料量を増大させ、初点火を行う技術も提案されている。これによると、低燃圧時においても燃料噴射率を増大させることなく、始動時の筒内燃料量を増大させることができ、また気化燃料量も増大させることができる。またその際、特別な燃料ポンプや噴射弁を用いる必要が無く、コストが高くならない。しかしながら、この技術であると、始動時の初点火までのサイクルが1サイクル以上増えることになり、結局、始動に要する時間が増大することになる。また、この初点火までの増加したサイクルの期間中クランキングを行うスタータモータの負荷が増大し、スタータモータの耐久性悪化が生じるおそれがある。よって、内燃機関1の始動を初点火までのサイクルを増やすことなく短時間で、しかも安定した始動性を確保すると共に、未燃HCが生じ難く排気エミッションの悪化も抑制するようにより良く行うことが望まれる。
(Special start control)
When starting the internal combustion engine 1, particularly when the temperature is extremely low, even if fuel is injected from the fuel injection valve 3 in the first cycle and ignited by the spark plug 17, for example, a large amount of misfire or unburned HC occurs. Equal combustion may not be performed satisfactorily. Such a situation is more likely to occur as the ethanol concentration of the fuel increases. This is because when the ethanol concentration of the fuel is high, it is difficult for the fuel to evaporate at a low temperature as compared with gasoline, and the fuel hardly vaporizes. For this reason, the amount of fuel required for combustion also increases. In order to cope with this problem, it is proposed to increase the fuel injection pressure, increase the fuel injection amount, or advance the fuel injection timing to ensure the evaporation time, etc. according to the ethanol concentration of the fuel Has been. However, in order to increase the fuel injection pressure from the start, an electric motor type drive pump that obtains power with an electric motor is required instead of a mechanical drive pump that obtains power from the crankshaft, which increases costs. Even if the fuel injection amount at the start is increased, the fuel injection rate is low because the fuel injection pressure is low, a long injection period is required, and the evaporation time of the injected fuel cannot be secured. For this reason, conventionally, in the first fuel injection cycle at the time of starting, the exhaust valve is slightly lifted or completely stopped, and the ignition is stopped to increase the in-cylinder fuel amount in the next cycle, and the initial ignition. Techniques for performing this have also been proposed. According to this, the in-cylinder fuel amount at the start can be increased without increasing the fuel injection rate even at a low fuel pressure, and the vaporized fuel amount can also be increased. At that time, it is not necessary to use a special fuel pump or injection valve, and the cost does not increase. However, with this technique, the number of cycles until the initial ignition at the time of starting increases by one cycle or more, and eventually the time required for starting increases. In addition, the load on the starter motor that performs cranking during the increased cycle period until the first ignition increases, and the durability of the starter motor may deteriorate. Therefore, the internal combustion engine 1 can be started in a short time without increasing the cycle until the first ignition, while ensuring a stable startability, and more preferably so that unburned HC hardly occurs and the deterioration of exhaust emission is suppressed. desired.

本発明者らの鋭意検討の結果、この問題に対処するために、排気行程から吸気行程にかけての期間中において、吸気弁11及び排気弁14の両方を閉弁させた期間(両弁閉弁期間という)を作り出し、その両弁閉弁期間に燃料を噴射しようとした。以下、このような始動制御を、特殊始動制御という。両弁閉弁期間は、VVT16を用いて排気行程の途中で排気弁14を閉弁し、VVT15を用いて吸気行程の途中で吸気弁11を開弁することで作り出される。このような特殊始動制御によれば、両弁閉弁期間ではピストン18の上昇により気筒2内に残留しているガスは再圧縮されて筒内温度が上昇しているので、高温の気筒2内に燃料噴射弁3から燃料の噴射ができ、燃料の蒸発を促進することができる。両弁閉弁期間での燃料噴射弁3による燃料噴射制御を実行するECU22が、本発明の第1噴射制御手段に対応する。なお、特殊始動制御に対して、上記で説明した、排気行程から吸気行程にかけての期間中に両弁閉弁期間を作り出し、その両弁閉弁期間に燃料を噴射する特殊始動制御を行わない圧縮行程で燃料を噴射するような一般的な通常行われる始動制御の場合を通常始動制御という。図2は、特殊始動制御と通常始動制御との吸気弁11及び排気弁14の開閉時期を示す図である。図2(a)は、特殊始動制御での吸気弁11及び排気弁14の開閉時期を示す図であり、図2(b)は、通常始動制御での吸気弁11及び排気弁14の開閉時期を示す図である。通常始動制御では、図2(b)に示すように、吸気上死点の前後にわたってわずかながら両弁が開弁しているバルブオーバーラップ期間が設けられるのに対し、特殊始動制御では、図2(a)に示すように、吸気上死点の前後にわたって両弁閉弁期間が設けられる。   As a result of intensive studies by the present inventors, in order to cope with this problem, a period during which both the intake valve 11 and the exhaust valve 14 are closed during the period from the exhaust stroke to the intake stroke (both valve closing period). And tried to inject fuel during both valve closing periods. Hereinafter, such start control is referred to as special start control. The both-valve closing period is created by closing the exhaust valve 14 during the exhaust stroke using the VVT 16 and opening the intake valve 11 during the intake stroke using the VVT 15. According to such special start control, the gas remaining in the cylinder 2 is recompressed by the rise of the piston 18 during the both valve closing period, and the in-cylinder temperature rises. In addition, fuel can be injected from the fuel injection valve 3 and fuel evaporation can be promoted. The ECU 22 that executes the fuel injection control by the fuel injection valve 3 during the both valve closing periods corresponds to the first injection control means of the present invention. In addition, for the special start control, the above-described compression that does not perform the special start control in which the both valve closing periods are created during the period from the exhaust stroke to the intake stroke and fuel is injected during the both valve closing periods. The normal normal start control in which fuel is injected in the stroke is called normal start control. FIG. 2 is a diagram showing opening and closing timings of the intake valve 11 and the exhaust valve 14 in the special start control and the normal start control. FIG. 2A is a diagram showing the opening / closing timing of the intake valve 11 and the exhaust valve 14 in the special start control, and FIG. 2B is the opening / closing timing of the intake valve 11 and the exhaust valve 14 in the normal start control. FIG. In the normal start control, as shown in FIG. 2B, a valve overlap period in which both valves are opened slightly before and after the intake top dead center is provided, whereas in the special start control, FIG. As shown in (a), both valve closing periods are provided before and after the intake top dead center.

しかしながら、本実施例のように、内燃機関1にエタノール濃度が異なる燃料が使用される場合には、燃料のエタノール濃度によって筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なるため、燃料のエタノール濃度に応じて筒内温度を燃料の蒸発を促進するためにどの程度上昇させるかが異なってくる。図3は、燃料のエタノール濃度に対する筒内温度と燃料の蒸発割合とを示す図である。図3に示すように、燃料のエタノール濃度が高くなる程蒸発割合を高めるためにも高い筒内温度が必要になってくる。   However, when fuel having different ethanol concentrations is used in the internal combustion engine 1 as in this embodiment, the fuel evaporation characteristics with respect to the in-cylinder temperature and the amount of fuel required for combustion differ depending on the ethanol concentration of the fuel. Depending on the ethanol concentration of the fuel, how much the in-cylinder temperature is raised in order to promote the evaporation of the fuel differs. FIG. 3 is a diagram showing the in-cylinder temperature and the fuel evaporation rate with respect to the ethanol concentration of the fuel. As shown in FIG. 3, the higher the ethanol concentration of the fuel, the higher the in-cylinder temperature is required to increase the evaporation rate.

そこで、本実施例では、燃料のエタノール濃度に最適な筒内温度を実現するために、特殊始動制御において、燃料のエタノール濃度に基づいて、作り出す両弁閉弁期間を変更するようにした。具体的には、エタノール濃度センサ9で燃料のエタノール濃度を検出し、この検出したエタノール濃度に基づいて、VVT16で排気行程の途中で閉弁させる排気弁14の閉弁時期を制御し、VVT15で吸気行程の途中で開弁させる吸気弁11の開弁時期を制御して、両弁閉弁期間を変更する。そして、変更した両弁閉弁期間内で燃料噴射弁3による燃料噴射を一旦完了させるようにする。図4は、特殊始動制御と通常始動制御との燃料噴射時期を示す図である。図4(a)は、両弁閉弁期間に燃料が噴射される特殊
始動制御での燃料噴射時期を示す図であり、図4(b)は、通常始動制御での燃料噴射時期を示す図である。通常始動制御では、図4(b)に示すように、圧縮上死点手前で全量の燃料が一度に噴射されるのに対し、特殊始動制御では、図4(a)に示すように、両弁閉弁期間に全量の燃料が噴射される。
Therefore, in the present embodiment, in order to achieve the optimum in-cylinder temperature for the ethanol concentration of the fuel, the special valve start control changes the double valve closing period to be created based on the ethanol concentration of the fuel. Specifically, the ethanol concentration sensor 9 detects the ethanol concentration of the fuel, and based on the detected ethanol concentration, the VVT 16 controls the closing timing of the exhaust valve 14 that is closed during the exhaust stroke, and the VVT 15 By controlling the opening timing of the intake valve 11 to be opened during the intake stroke, the both valve closing period is changed. Then, the fuel injection by the fuel injection valve 3 is once completed within the changed both valve closing period. FIG. 4 is a diagram showing fuel injection timings for the special start control and the normal start control. FIG. 4A is a diagram showing the fuel injection timing in the special start control in which fuel is injected during the both valve closing periods, and FIG. 4B is a diagram showing the fuel injection timing in the normal start control. It is. In the normal start control, as shown in FIG. 4 (b), the entire amount of fuel is injected at a time before the compression top dead center, whereas in the special start control, as shown in FIG. The entire amount of fuel is injected during the valve closing period.

なお、排気弁14の閉弁時期を進角するだけでも気筒2内の残留ガス量が増加して再圧縮時の圧縮端温度は増加するので、両弁閉弁期間を変更するためにVVT16で排気行程の途中で閉弁させる排気弁14の閉弁時期だけを制御してもよい。図5は、両弁閉弁期間を形成する排気弁14の閉弁時期と筒内温度との関係を示す図である。図5に示すように、排気弁14の閉弁時期が吸気上死点から進角される程筒内温度が上昇し易くなる。   Note that even if the valve closing timing of the exhaust valve 14 is advanced, the residual gas amount in the cylinder 2 increases and the compression end temperature at the time of recompression increases. Therefore, in order to change both valve closing periods, the VVT 16 Only the closing timing of the exhaust valve 14 that is closed in the middle of the exhaust stroke may be controlled. FIG. 5 is a diagram showing the relationship between the closing timing of the exhaust valve 14 forming the both valve closing periods and the in-cylinder temperature. As shown in FIG. 5, the in-cylinder temperature is more likely to rise as the closing timing of the exhaust valve 14 is advanced from the intake top dead center.

本実施例によると、燃料のエタノール濃度に最適な筒内温度を実現するように、特殊始動制御において、両弁閉弁期間を調整することができ、燃料の蒸発を促進することができる。これによって、蒸発が促進された燃料は、そのサイクルの点火プラグ17での点火で良好に燃焼することができる。よって、始動時の初点火までのサイクルが1サイクル増えることがなく、始動に要する時間が増大することはなく、クランキングを行うスタータモータの負荷も増大せず、スタータモータの耐久性悪化を抑制することができる。またこのように燃料が良好に燃焼することから、安定した始動性を確保することができると共に、未燃HCが生じ難く排気エミッションの悪化も抑制することができる。したがって、内燃機関1の始動を短時間でより良く行うことができる。   According to the present embodiment, both valve closing periods can be adjusted in the special start-up control so as to realize an optimal in-cylinder temperature for the ethanol concentration of the fuel, and fuel evaporation can be promoted. As a result, the fuel whose evaporation has been promoted can be burned well by ignition with the spark plug 17 of the cycle. Therefore, the cycle until the first ignition at the start does not increase by one cycle, the time required for the start does not increase, the load of the starter motor for cranking does not increase, and deterioration of the starter motor durability is suppressed. can do. Further, since the fuel burns well in this way, stable startability can be ensured, and unburned HC is hardly generated, and deterioration of exhaust emission can be suppressed. Therefore, the internal combustion engine 1 can be started better in a short time.

なお、排気行程から吸気行程にかけての期間中における、吸気弁11及び排気弁14の両方を閉弁させた両弁閉弁期間内で燃焼に必要な燃料量を全て噴射できない場合もある。その場合には、蒸発を促進可能な燃料量を両弁閉弁期間に噴射し、燃焼に必要な残りの燃料量を両弁閉弁期間の経過後の圧縮行程で噴射する。両弁閉弁期間の経過後の圧縮行程で燃料噴射弁3による燃料噴射制御を実行するECU22が、本発明の第2噴射制御手段に対応する。このような2分割燃料噴射の場合も、特殊始動制御に包含される。図6は、このような2分割燃料噴射の場合の特殊始動制御の燃料噴射時期を示す図である。2分割燃料噴射の場合の特殊始動制御では、図6に示すように、両弁閉弁期間と圧縮上死点手前との2箇所に分割して燃料が噴射される。   In some cases, during the period from the exhaust stroke to the intake stroke, all of the fuel amount required for combustion cannot be injected within the both valve closing periods in which both the intake valve 11 and the exhaust valve 14 are closed. In that case, the fuel amount capable of promoting evaporation is injected during the both-valve closing period, and the remaining fuel amount necessary for combustion is injected during the compression stroke after the passage of the both-valve closing period. The ECU 22 that executes the fuel injection control by the fuel injection valve 3 in the compression stroke after the passage of both valve closing periods corresponds to the second injection control means of the present invention. Such a two-part fuel injection is also included in the special start control. FIG. 6 is a diagram showing the fuel injection timing of the special start control in the case of such two-part fuel injection. In the special start control in the case of the two-part fuel injection, as shown in FIG. 6, the fuel is injected in two parts, that is, both valve closing periods and before the compression top dead center.

(特殊始動制御ルーチン1)
ECU22における特殊始動制御ルーチン1について、図7に示すフローチャートに基づいて説明する。図7は、特殊始動制御ルーチン1を示すフローチャートである。本ルーチンは、ECU22によって実行される。
(Special start control routine 1)
The special start control routine 1 in the ECU 22 will be described based on the flowchart shown in FIG. FIG. 7 is a flowchart showing the special start control routine 1. This routine is executed by the ECU 22.

図7に示すルーチンは、イグニッションSWがオンされると開始される。本ルーチンが開始されると、S101では、筒内温度センサ19で検出する筒内温度が、所定温度T以下か否かを判別する。所定温度Tとは、それ以下の温度であると、通常始動制御では燃焼が良好に行えなくなる温度である。S101において、肯定判定された場合には、S102へ移行する。S101において、否定判定された場合には、本ルーチンを一旦終了し、通常始動制御を行う。   The routine shown in FIG. 7 is started when the ignition SW is turned on. When this routine is started, in S101, it is determined whether or not the in-cylinder temperature detected by the in-cylinder temperature sensor 19 is equal to or lower than a predetermined temperature T. The predetermined temperature T is a temperature at which combustion cannot be satisfactorily performed under normal start control when the temperature is lower than the predetermined temperature T. If an affirmative determination is made in S101, the process proceeds to S102. If a negative determination is made in S101, this routine is once ended and normal start control is performed.

S102では、エタノール濃度センサ9で検出する燃料のエタノール濃度が所定濃度αよりも高濃度か否かを判別する。所定濃度αとは、それよりも高濃度であると、通常始動制御では燃焼が良好に行えなくなる温度である。S102において、肯定判定された場合には、S103へ移行する。S102において、否定判定された場合には、本ルーチンを一旦終了し、通常始動制御を行う。   In S102, it is determined whether or not the ethanol concentration of the fuel detected by the ethanol concentration sensor 9 is higher than a predetermined concentration α. The predetermined concentration α is a temperature at which combustion cannot be satisfactorily performed under normal start control when the concentration is higher than that. If an affirmative determination is made in S102, the process proceeds to S103. If a negative determination is made in S102, this routine is once ended and normal start control is performed.

S103では、スタータSWがオンされてスタータモータを駆動してクランキングを開
始する。
In S103, the starter SW is turned on and the starter motor is driven to start cranking.

S104では、各気筒2において初回の排気行程となるか否かを判別する。S104において、肯定判定された場合には、S105へ移行する。S104において、否定判定された場合には、本ステップへ戻り、初回の排気行程となるまで燃料噴射や点火は行わない。これにより、両弁閉弁期間を設けることなく燃料噴射や点火を行ってしまうことを回避する。   In S104, it is determined whether or not the first exhaust stroke is performed in each cylinder 2. If a positive determination is made in S104, the process proceeds to S105. If a negative determination is made in S104, the process returns to this step, and fuel injection and ignition are not performed until the first exhaust stroke is reached. This avoids performing fuel injection and ignition without providing both valve closing periods.

S105では、エタノール濃度センサで検出した燃料のエタノール濃度に応じて、VVT16で排気行程の途中で閉弁させる排気弁14の閉弁時期を制御し、VVT15で吸気行程の途中で開弁させる吸気弁11の開弁時期を制御して、両弁閉弁期間を変更する。両弁閉弁期間は、燃料のエタノール濃度が高濃度になる程排気弁14の閉弁時期が進角され、両弁閉弁期間内で一旦燃料噴射が完了するように吸気弁11の開弁時期が遅角される。   In S105, the valve closing timing of the exhaust valve 14 to be closed in the middle of the exhaust stroke is controlled by the VVT 16 according to the ethanol concentration of the fuel detected by the ethanol concentration sensor, and the intake valve to be opened in the middle of the intake stroke by the VVT 15 11 is controlled to change both valve closing periods. During the both-valve closing period, the valve closing timing of the exhaust valve 14 is advanced as the ethanol concentration of the fuel becomes higher, and the intake valve 11 is opened so that fuel injection is once completed within the both-valve closing period. The time is retarded.

S106では、燃料噴射弁3で、両弁閉弁期間に燃料を噴射すると共に、必要であれば燃焼に必要な残りの燃料量を両弁閉弁期間の経過後の圧縮行程で噴射する。そして、圧縮上死点近傍において点火プラグ17で点火を行う。   In S106, the fuel injection valve 3 injects fuel during both valve closing periods, and if necessary, the remaining fuel amount required for combustion is injected in the compression stroke after the passage of both valve closing periods. Then, ignition is performed by the spark plug 17 in the vicinity of the compression top dead center.

S107では、筒内温度センサ19で検出する筒内温度が所定温度Tよりも高いか否かを判別する。所定温度Tとは、それ以下の温度であると、通常始動制御では燃焼が良好に行えなくなる温度である。S107において、肯定判定された場合には、本ルーチンを一旦終了し、通常始動制御又は通常運転を行う。S107において、否定判定された場合には、S105に移行し、特殊始動制御を継続する。   In S107, it is determined whether or not the in-cylinder temperature detected by the in-cylinder temperature sensor 19 is higher than a predetermined temperature T. The predetermined temperature T is a temperature at which combustion cannot be satisfactorily performed under normal start control when the temperature is lower than the predetermined temperature T. If an affirmative determination is made in S107, this routine is once ended, and normal start control or normal operation is performed. If a negative determination is made in S107, the process proceeds to S105 and the special start control is continued.

以上の本ルーチンであると、燃料のエタノール濃度に最適な筒内温度を実現するように、特殊始動制御において、両弁閉弁期間を調整することができる。これにより、特殊始動制御で始動を良好に行うことができる。   In the present routine described above, the both valve closing periods can be adjusted in the special start control so as to realize the in-cylinder temperature optimum for the ethanol concentration of the fuel. As a result, the start can be performed satisfactorily by the special start control.

<変形例1>
本発明の変形例1では、実施例1と同様に燃料のエタノール濃度に応じて両弁閉弁期間を変更するものであるが、両弁閉弁期間を作り出す排気弁14の閉弁時期から吸気上死点までの期間を、吸気上死点から吸気弁11の開弁時期までの期間よりも小さくする。
<Modification 1>
In the first modification of the present invention, as in the first embodiment, the both valve closing periods are changed according to the ethanol concentration of the fuel. However, the intake is started from the closing timing of the exhaust valve 14 that creates the both valve closing periods. The period until the top dead center is made shorter than the period from the intake top dead center to the opening timing of the intake valve 11.

図8は、本発明の変形例1に係る吸気弁と排気弁の開閉時期を示す図である。図8(a)は、変形例1に係る排気弁14の開閉時期を示す図であり、図8(b)は、変形例1に係る吸気弁11の開閉時期を示す図である。変形例1では、図8に示すように、両弁閉弁期間を作り出す排気弁14の閉弁時期から吸気上死点までの期間(閉弁角度)θeを、吸気上死点から吸気弁11の開弁時期までの期間(開弁角度)θiよりも小さくする(θe<θi)。   FIG. 8 is a diagram showing opening and closing timings of the intake valve and the exhaust valve according to the first modification of the present invention. FIG. 8A is a diagram illustrating the opening / closing timing of the exhaust valve 14 according to the first modification, and FIG. 8B is a diagram illustrating the opening / closing timing of the intake valve 11 according to the first modification. In the first modification, as shown in FIG. 8, the period (valve closing angle) θe from the closing timing of the exhaust valve 14 to the intake top dead center, which creates the both valve closing periods, is set from the intake top dead center to the intake valve 11. The period until the valve opening timing (opening angle) θi is made smaller (θe <θi).

変形例1によると、θe<θiであるので、排気弁14の閉弁時の気筒内容積よりも吸気弁11の開弁時の気筒内容積が大きくなり、両弁閉弁期間の吸気弁11の開弁時までに気筒2内には負圧が発生し、負圧が発生している状態で吸気弁11を開弁することになる。これにより、特殊始動制御では、負圧が発生している状態の両弁閉弁期間に燃料を噴射することにより、減圧沸騰が行える。また、負圧が発生している状態で吸気弁11を開弁することで、気筒2内へ流入する吸気の流速が音速近くになり、この運動エネルギにより気筒2内のガス温度を上昇させることができる。つまり、気筒2内のガス温度を上昇させることにより、両弁閉弁期間の後に更に筒内温度を上昇させることができる。図9は、本発明の変形例1に係る差分θi−θeと筒内温度との関係を示す図である。図9に示すように、吸気上死点から吸気弁11の開弁時期までの期間θiから、排気弁14の閉弁時期
から吸気上死点までの期間θeを差し引いた差分θi−θeが大きくなる程筒内温度が上昇する。したがって、燃料の蒸発を促進することができる。特に実施例1で説明した両弁閉弁期間の経過後の圧縮行程で燃料を噴射する場合には、当該圧縮行程で噴射される燃料の蒸発をも促進することができる。
According to the first modification, since θe <θi, the cylinder internal volume when the intake valve 11 is opened is larger than the cylinder internal volume when the exhaust valve 14 is closed, and the intake valve 11 during both valve close periods is closed. By the time the valve is opened, a negative pressure is generated in the cylinder 2, and the intake valve 11 is opened in a state where the negative pressure is generated. Thereby, in the special start control, the reduced pressure boiling can be performed by injecting the fuel during the both valve closing period in a state where the negative pressure is generated. Further, by opening the intake valve 11 in a state where negative pressure is generated, the flow velocity of the intake air flowing into the cylinder 2 becomes close to the speed of sound, and this kinetic energy increases the gas temperature in the cylinder 2. Can do. That is, by increasing the gas temperature in the cylinder 2, the in-cylinder temperature can be further increased after the both valve closing periods. FIG. 9 is a diagram showing a relationship between the difference θi−θe and the in-cylinder temperature according to the first modification of the present invention. As shown in FIG. 9, the difference θi−θe obtained by subtracting the period θe from the closing timing of the exhaust valve 14 to the intake top dead center from the period θi from the intake top dead center to the opening timing of the intake valve 11 is large. The in-cylinder temperature rises. Therefore, evaporation of fuel can be promoted. In particular, when fuel is injected in the compression stroke after the lapse of both valve closing periods described in the first embodiment, evaporation of fuel injected in the compression stroke can be promoted.

<変形例2>
本発明の変形例2では、燃料のエタノール濃度に基づいて、両弁閉弁期間の経過後の開弁した吸気弁11の吸気下死点に対する閉弁時期を変更する。
<Modification 2>
In the second modification of the present invention, the valve closing timing with respect to the intake bottom dead center of the intake valve 11 that has been opened after the lapse of both valve closing periods is changed based on the ethanol concentration of the fuel.

吸気弁11の閉弁時期が吸気下死点に近付くと、始動時に機関回転速度が低回転であることによる機関実効圧縮比が大きくなることを要因として、気筒2内のガス温度を上昇させることができる。図10は、吸気弁11の閉弁時期と筒内温度との関係を示す図である。図10に示すように、吸気弁11の閉弁時期が進角側及び遅角側のどちらからでも吸気下死点に近付く程筒内温度を上昇させることができる。これにより変形例2によると、両弁閉弁期間の経過後の開弁した吸気弁11の吸気下死点に対する閉弁時期を変更することで、両弁閉弁期間の後の圧縮行程での筒内温度を変化させることができる。したがって、燃料のエタノール濃度に基づいて、吸気弁11の閉弁時期を最適に変更すれは、燃料の蒸発を促進することができる。特に実施例1で説明した両弁閉弁期間の経過後の圧縮行程で燃料を噴射する場合には、吸気弁11の閉弁時期が吸気下死点に近付く程、当該圧縮行程で噴射される燃料の蒸発をも促進することができる。   When the closing timing of the intake valve 11 approaches the intake bottom dead center, the gas temperature in the cylinder 2 is increased due to an increase in the effective engine compression ratio due to the low engine speed at the start. Can do. FIG. 10 is a diagram illustrating a relationship between the valve closing timing of the intake valve 11 and the in-cylinder temperature. As shown in FIG. 10, the in-cylinder temperature can be increased as the closing timing of the intake valve 11 approaches the intake bottom dead center from either the advance side or the retard side. Thereby, according to the modified example 2, by changing the valve closing timing with respect to the intake bottom dead center of the intake valve 11 that has been opened after the both valve closing periods have elapsed, the compression stroke after the both valve closing periods is changed. The in-cylinder temperature can be changed. Therefore, if the closing timing of the intake valve 11 is optimally changed based on the ethanol concentration of the fuel, the evaporation of the fuel can be promoted. In particular, when fuel is injected in the compression stroke after the lapse of both valve closing periods described in the first embodiment, the fuel is injected in the compression stroke as the valve closing timing of the intake valve 11 approaches the intake bottom dead center. Fuel evaporation can also be promoted.

<実施例2>
本発明の実施例2では、燃料のエタノール濃度に基づいて、両弁閉弁期間に噴射する燃料の噴射パラメータを変更する。なお、上記実施例と同様な構成については説明を省略する。
<Example 2>
In the second embodiment of the present invention, the injection parameter of the fuel to be injected during both valve closing periods is changed based on the ethanol concentration of the fuel. The description of the same configuration as that in the above embodiment is omitted.

特殊始動制御によれば、両弁閉弁期間ではピストン18の上昇により気筒2内に残留しているガスは再圧縮されて筒内温度が上昇しているので、高温の筒内に燃料の噴射ができ、燃料の蒸発を促進することができる。しかしながら、内燃機関1にエタノール濃度が異なる燃料が使用される場合には、燃料のエタノール濃度によって筒内温度に対する燃料の蒸発特性や燃焼に必要な燃料量が異なるため、特殊始動制御で両弁閉弁期間を設定することで上昇した所定筒内温度に対してエタノール濃度が異なる燃料の蒸発を促進するための燃料の噴射パラメータが異なってくる。すなわち、所定筒内温度に対する燃料の蒸発特性が悪くなる燃料のエタノール濃度の場合や、所定筒内温度で燃焼に必要な燃料量が多くなる燃料のエタノール濃度の場合には、所定筒内温度に合わせて燃料の噴射パラメータをより燃料の蒸発を促進させるように変更する必要がある。例えば、所定筒内温度で燃料の蒸発を促進させるには、両弁閉弁期間において、燃料噴射量を増量したり、燃料噴射の分割数を増やしたり、燃料噴射時期を早めたりする必要がある。   According to the special start control, the gas remaining in the cylinder 2 is recompressed by the rise of the piston 18 and the in-cylinder temperature rises during the both-valve closing period, so that the fuel is injected into the hot cylinder. Can evaporate the fuel. However, when fuels having different ethanol concentrations are used in the internal combustion engine 1, the fuel evaporation characteristics with respect to the in-cylinder temperature and the amount of fuel required for combustion differ depending on the ethanol concentration of the fuel. By setting the valve period, the fuel injection parameters for promoting the evaporation of fuels having different ethanol concentrations differ from the predetermined in-cylinder temperature. That is, in the case of the ethanol concentration of the fuel that causes the fuel evaporation characteristics to deteriorate with respect to the predetermined in-cylinder temperature, or in the case of the ethanol concentration of fuel in which the amount of fuel required for combustion increases at the predetermined in-cylinder temperature, At the same time, it is necessary to change the fuel injection parameters so as to further promote the evaporation of the fuel. For example, in order to promote the evaporation of fuel at a predetermined in-cylinder temperature, it is necessary to increase the fuel injection amount, increase the number of divided fuel injections, or advance the fuel injection timing during both valve closing periods. .

そこで、燃料のエタノール濃度と、両弁閉弁期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するために、燃料のエタノール濃度に基づいて、両弁閉弁期間に噴射する燃料の噴射パラメータを変更するようにした。具体的には、エタノール濃度センサ9で燃料のエタノール濃度を検出し、この検出したエタノール濃度に基づいて、両弁閉弁期間に噴射する燃料の燃料噴射量、燃料噴射の分割数、燃料噴射時期等の噴射パラメータを変更する。そして、両弁閉弁期間内で燃料噴射弁3による燃料噴射を一旦完了させるように、変更した噴射パラメータで燃料噴射を行う。   Therefore, in order to realize the optimum fuel injection parameters for the fuel ethanol concentration and the in-cylinder temperature determined by the both-valve closing period, the fuel injected during the both-valve closing period is based on the ethanol concentration of the fuel. Changed the injection parameters. Specifically, the ethanol concentration sensor 9 detects the ethanol concentration of the fuel, and based on the detected ethanol concentration, the fuel injection amount of the fuel to be injected during the valve closing period, the number of divided fuel injections, the fuel injection timing Change the injection parameters. Then, fuel injection is performed with the changed injection parameters so that the fuel injection by the fuel injection valve 3 is once completed within the both valve closing periods.

図11は、両弁閉弁期間での燃料噴射の分割数を2つに増加させて両弁閉弁期間での燃料の噴射パラメータを変更した場合を説明する図である。図11に示すように、両弁閉弁期間での燃料噴射の分割数を2つに増加すれば、燃料のエタノール濃度が高濃度になって
も燃料の蒸発を促進することができる。
FIG. 11 is a diagram for explaining a case where the fuel injection parameter in the both valve closing period is changed by increasing the number of divided fuel injections in the both valve closing period to two. As shown in FIG. 11, if the number of divided fuel injections in the both valve closing periods is increased to two, fuel evaporation can be promoted even if the ethanol concentration of the fuel becomes high.

なお、蒸発を促進可能な燃料量を両弁閉弁期間に噴射し、燃焼に必要な残りの燃料量を両弁閉弁期間の経過後の圧縮行程で噴射する2分割燃料噴射の場合には、両弁閉弁期間での燃料の噴射パラメータの変更に伴い、後半の圧縮行程での燃料の噴射パラメータも変更する。つまり、燃料のエタノール濃度に基づいて、蒸発を促進可能な燃料量を両弁閉弁期間内で噴射することができるように、燃焼に必要な燃料量のうち、両弁閉弁期間に噴射する燃料量と、圧縮行程で噴射する燃料量との割合を、燃料のエタノール濃度に基づいて変更してもよい。図12は、両弁閉弁期間に噴射する燃料量を増量し、圧縮行程で噴射する燃料量を削減して両弁閉弁期間での燃料の噴射パラメータを変更した場合を説明する図である。図13は、両弁閉弁期間に噴射する燃料量の割合と排気ガス温度との関係を示す図である。図13に示すように、噴射する全燃料に対する両弁閉弁期間に噴射する燃料量の割合が大きくなると、筒内に均質混合気が形成されることで燃焼が緩慢になり、後燃えが促進されて筒内の排気ガス温度が上昇する。したがって、図12に示すように、両弁閉弁期間で噴射する燃料量を増量すれば、次サイクル以降における筒内ガス温度が上昇し燃料の蒸発を促進することができる。   In the case of two-split fuel injection in which a fuel amount capable of promoting evaporation is injected during the both-valve closing period, and the remaining fuel amount required for combustion is injected in the compression stroke after the passage of both valve closing periods. As the fuel injection parameters are changed during the both valve closing periods, the fuel injection parameters in the latter half of the compression stroke are also changed. In other words, based on the ethanol concentration of the fuel, the amount of fuel that can promote evaporation can be injected within the both-valve closing period so that the fuel amount can be injected within the both-valve closing period. The ratio between the fuel amount and the fuel amount injected in the compression stroke may be changed based on the ethanol concentration of the fuel. FIG. 12 is a diagram for explaining a case where the amount of fuel injected during the both-valve closing period is increased and the amount of fuel injected during the compression stroke is reduced to change the fuel injection parameters during the both-valve closing period. . FIG. 13 is a diagram showing the relationship between the ratio of the amount of fuel injected during both valve closing periods and the exhaust gas temperature. As shown in FIG. 13, when the ratio of the amount of fuel injected during both valve closing periods to the total fuel to be injected becomes large, a homogeneous air-fuel mixture is formed in the cylinder, so that combustion becomes slow, and afterburning is promoted. As a result, the exhaust gas temperature in the cylinder rises. Accordingly, as shown in FIG. 12, if the amount of fuel injected in the both valve closing period is increased, the in-cylinder gas temperature in the next cycle and thereafter can be increased, and fuel evaporation can be promoted.

本実施例によると、燃料のエタノール濃度と、両弁閉弁期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するように、特殊始動制御において、燃料の噴射パラメータを調整することができ、燃料の蒸発を促進することができる。これによって、蒸発が促進された燃料は、そのサイクルの点火プラグ17の点火で良好に燃焼することができる。よって、始動時の初点火までのサイクルが1サイクル増えることがなく、始動に要する時間が増大することはなく、クランキングを行うスタータモータの負荷も増大せず、スタータモータの耐久性悪化を抑制することができる。またこのように燃料が良好に燃焼することから、安定した始動性を確保することができると共に、未燃HCが生じ難く排気エミッションの悪化も抑制することができる。したがって、内燃機関1の始動を短時間でより良く行うことができる。   According to this embodiment, the fuel injection parameter is adjusted in the special start-up control so as to realize the optimal fuel injection parameter for the fuel ethanol concentration and the in-cylinder temperature determined by the both valve closing periods. Can evaporate the fuel. As a result, the fuel whose evaporation has been promoted can be burned well by the ignition of the spark plug 17 in that cycle. Therefore, the cycle until the first ignition at the start does not increase by one cycle, the time required for the start does not increase, the load of the starter motor for cranking does not increase, and deterioration of the starter motor durability is suppressed. can do. Further, since the fuel burns well in this way, stable startability can be ensured, and unburned HC is hardly generated, and deterioration of exhaust emission can be suppressed. Therefore, the internal combustion engine 1 can be started better in a short time.

(特殊始動制御ルーチン2)
ECU22における特殊始動制御ルーチン2について、図14に示すフローチャートに基づいて説明する。図14は、特殊始動制御ルーチン2を示すフローチャートである。本ルーチンは、ECU22によって実行される。図14に示す特殊始動制御ルーチン2は、図7に示す特殊始動制御ルーチン1のS105及びS106が、S205及びS206に変更されたものであるので、その点のみを説明する。
(Special start control routine 2)
The special start control routine 2 in the ECU 22 will be described based on the flowchart shown in FIG. FIG. 14 is a flowchart showing the special start control routine 2. This routine is executed by the ECU 22. The special start control routine 2 shown in FIG. 14 will be described only because S105 and S106 of the special start control routine 1 shown in FIG. 7 are changed to S205 and S206.

S205では、VVT16で排気行程の途中で閉弁させる排気弁14の閉弁時期を制御し、VVT15で吸気行程の途中で開弁させる吸気弁11の開弁時期を制御して、一定の両弁閉弁期間を設ける。両弁閉弁期間は、燃料のエタノール濃度が高濃度になる程排気弁14の閉弁時期が進角され、両弁閉弁期間内で一旦燃料噴射が完了するように吸気弁11の開弁時期が遅角される。   In S205, the valve closing timing of the exhaust valve 14 to be closed in the middle of the exhaust stroke is controlled by the VVT 16, and the valve opening timing of the intake valve 11 to be opened in the middle of the intake stroke is controlled by the VVT 15 to control the constant both valves. Provide a valve closing period. During the both-valve closing period, the valve closing timing of the exhaust valve 14 is advanced as the ethanol concentration of the fuel becomes higher, and the intake valve 11 is opened so that fuel injection is once completed within the both-valve closing period. The time is retarded.

S206では、燃料噴射弁3で、エタノール濃度センサ9で検出した燃料のエタノール濃度に応じて、燃料の噴射パラメータを変更して両弁閉弁期間に燃料を噴射すると共に、必要であれば燃焼に必要な残りの燃料量を両弁閉弁期間の経過後の圧縮行程で噴射する。そして、圧縮上死点近傍において点火プラグ17で点火を行う。   In S206, the fuel injection valve 3 changes the fuel injection parameters according to the ethanol concentration of the fuel detected by the ethanol concentration sensor 9, and injects the fuel during the both valve closing periods, and if necessary, the fuel is burned. The required remaining fuel amount is injected in the compression stroke after the passage of both valve closing periods. Then, ignition is performed by the spark plug 17 in the vicinity of the compression top dead center.

以上の本ルーチンであると、燃料のエタノール濃度と、両弁閉弁期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するように、特殊始動制御において、両弁閉弁期間での燃料の噴射パラメータを調整することができる。これにより、特殊始動制御で始動を良好に行うことができる。   In the routine described above, in the special start-up control, in the both valve closing period, the optimal fuel injection parameters for the ethanol concentration of the fuel and the in-cylinder temperature determined by the both valve closing period are realized. The fuel injection parameters can be adjusted. As a result, the start can be performed satisfactorily by the special start control.

<変形例3>
本発明の変形例3では、実施例1と実施例2との両方の特徴を含ませ、燃料のエタノール濃度に基づいて、両弁閉弁期間、又は、両弁閉弁期間に噴射する燃料の噴射パラメータの少なくともいずれかを変更する。なお、上記実施例と同様な構成については説明を省略する。
<Modification 3>
In the third modification of the present invention, both features of the first and second embodiments are included, and based on the ethanol concentration of the fuel, both the valve closing periods or the fuel injected during the both valve closing periods Change at least one of the injection parameters. The description of the same configuration as that in the above embodiment is omitted.

変形例3では、実施例1のように、燃料のエタノール濃度に最適な筒内温度を実現するために、特殊始動制御において、燃料のエタノール濃度に基づいて、作り出す両弁閉弁期間を変更するようにする。又は、実施例2のように、燃料のエタノール濃度と、両弁閉弁期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するために、燃料のエタノール濃度に基づいて、両弁閉弁期間に噴射する燃料の噴射パラメータを変更するようにする。   In the third modified example, as in the first embodiment, in order to realize the in-cylinder temperature optimum for the ethanol concentration of the fuel, the special valve start control changes the both valve closing periods to be created based on the ethanol concentration of the fuel. Like that. Alternatively, as in the second embodiment, in order to realize an optimal fuel injection parameter for the fuel ethanol concentration and the in-cylinder temperature determined by the both valve closing periods, the both valves are based on the ethanol concentration of the fuel. The injection parameter of the fuel injected during the valve closing period is changed.

変形例3によると、燃料のエタノール濃度に最適な筒内温度を実現するように、特殊始動制御において、両弁閉弁期間を調整することができ、燃料の蒸発を促進することができる。又は、燃料のエタノール濃度と、両弁閉弁期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するように、特殊始動制御において、燃料の噴射パラメータを調整することができ、燃料の蒸発を促進することができる。これによって、蒸発が促進された燃料は、そのサイクルの点火プラグ17の点火で良好に燃焼することができる。よって、始動時の初点火までのサイクルが1サイクル増えることがなく、始動に要する時間が増大することはなく、クランキングを行うスタータモータの負荷も増大せず、スタータモータの耐久性悪化を抑制することができる。またこのように燃料が良好に燃焼することから、安定した始動性を確保することができると共に、未燃HCが生じ難く排気エミッションの悪化も抑制することができる。したがって、内燃機関の始動を短時間でより良く行うことができる。   According to the third modified example, the both valve closing periods can be adjusted in the special start control so as to realize the optimum in-cylinder temperature for the ethanol concentration of the fuel, and the evaporation of the fuel can be promoted. Alternatively, the fuel injection parameter can be adjusted in the special start control so as to realize the optimal fuel injection parameter for the fuel ethanol concentration and the in-cylinder temperature determined by the both valve closing periods. Can promote evaporation. As a result, the fuel whose evaporation has been promoted can be burned well by the ignition of the spark plug 17 in that cycle. Therefore, the cycle until the first ignition at the start does not increase by one cycle, the time required for the start does not increase, the load of the starter motor for cranking does not increase, and deterioration of the starter motor durability is suppressed. can do. Further, since the fuel burns well in this way, stable startability can be ensured, and unburned HC is hardly generated, and deterioration of exhaust emission can be suppressed. Therefore, the internal combustion engine can be started better in a short time.

(特殊始動制御ルーチン3)
ECU22における特殊始動制御ルーチン3について、図15に示すフローチャートに基づいて説明する。図15は、特殊始動制御ルーチン3を示すフローチャートである。本ルーチンは、ECU22によって実行される。図15に示す特殊始動制御ルーチン3は、図7に示す特殊始動制御ルーチン1のS105及びS106が、S305及びS306に変更されたものであるので、その点のみを説明する。
(Special start control routine 3)
The special start control routine 3 in the ECU 22 will be described based on the flowchart shown in FIG. FIG. 15 is a flowchart showing the special start control routine 3. This routine is executed by the ECU 22. The special start control routine 3 shown in FIG. 15 will be described only because S105 and S106 of the special start control routine 1 shown in FIG. 7 are changed to S305 and S306.

S305では、エタノール濃度センサ9で検出した燃料のエタノール濃度に応じて、VVT16で排気行程の途中で閉弁させる排気弁14の閉弁時期を制御し、VVT15で吸気行程の途中で開弁させる吸気弁11の開弁時期を制御して、両弁閉弁期間を変更する。両弁閉弁期間は、燃料のエタノール濃度が高濃度になる程排気弁14の閉弁時期が進角され、両弁閉弁期間内で一旦燃料噴射が完了するように吸気弁11の開弁時期が遅角される。   In S305, the valve closing timing of the exhaust valve 14 to be closed in the middle of the exhaust stroke is controlled by the VVT 16 according to the ethanol concentration of the fuel detected by the ethanol concentration sensor 9, and the intake air to be opened in the middle of the intake stroke by the VVT 15 is controlled. The valve opening period of the valve 11 is controlled to change both valve closing periods. During the both-valve closing period, the valve closing timing of the exhaust valve 14 is advanced as the ethanol concentration of the fuel becomes higher, and the intake valve 11 is opened so that fuel injection is once completed within the both-valve closing period. The time is retarded.

S306では、燃料噴射弁3で、エタノール濃度センサ9で検出した燃料のエタノール濃度に応じて、燃料の噴射パラメータを変更して両弁閉弁期間に燃料を噴射すると共に、必要であれば燃焼に必要な残りの燃料量を両弁閉弁期間の経過後の圧縮行程で噴射する。なお、S305及びS306での両弁閉弁期間又は燃料の噴射パラメータは、一方のみが変更され他方が固定されていてもよいし、変更される一方に合わせて他方も変更されてもよい。   In S306, the fuel injection valve 3 changes the fuel injection parameters in accordance with the ethanol concentration of the fuel detected by the ethanol concentration sensor 9 and injects the fuel during both valve closing periods, and if necessary, the fuel is burned. The required remaining fuel amount is injected in the compression stroke after the passage of both valve closing periods. Note that only one of the both valve closing periods or the fuel injection parameters in S305 and S306 may be changed and the other may be fixed, or the other may be changed in accordance with the changed one.

以上の本ルーチンであると、燃料のエタノール濃度に最適な筒内温度を実現するように、特殊始動制御において、両弁閉弁期間を調整することができる。又は、燃料のエタノー
ル濃度と、両弁閉弁期間により定まる筒内温度と、に最適な燃料の噴射パラメータを実現するように、特殊始動制御において、両弁閉弁期間での燃料の噴射パラメータを調整することができる。これにより、特殊始動制御で始動を良好に行うことができる。
In the present routine described above, the both valve closing periods can be adjusted in the special start control so as to realize the in-cylinder temperature optimum for the ethanol concentration of the fuel. Or, in order to achieve the optimal fuel injection parameters for the fuel ethanol concentration and the in-cylinder temperature determined by the both valve closing periods, the fuel injection parameters for both valve closing periods are set in the special start control. Can be adjusted. As a result, the start can be performed satisfactorily by the special start control.

<その他>
本発明に係る内燃機関の始動制御装置は、上述の実施例及び変形例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。このため、各実施例及び変形例を実施可能に組み合わせてもよい。また、上述の実施例及び変形例は、本発明に係る内燃機関の始動制御方法の実施例及び変形例でもある。
<Others>
The start control device for an internal combustion engine according to the present invention is not limited to the above-described embodiments and modifications, and various modifications may be made without departing from the scope of the present invention. For this reason, you may combine each Example and a modification so that implementation is possible. The above-described embodiments and modifications are also embodiments and modifications of the internal combustion engine start control method according to the present invention.

1 内燃機関
2 気筒
3 燃料噴射弁
4 吸気通路
5 スロットル弁
6 サージタンク
7 燃料パイプ
8 燃料タンク
9 エタノール濃度センサ
10 吸気ポート
11 吸気弁
12 排気通路
13 排気ポート
14 排気弁
15,16 VVT
17 点火プラグ
18 ピストン
19 筒内温度センサ
20 水温センサ
21 触媒
22 ECU
23 クランク角センサ
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Fuel injection valve 4 Intake passage 5 Throttle valve 6 Surge tank 7 Fuel pipe 8 Fuel tank 9 Ethanol concentration sensor 10 Intake port 11 Intake valve 12 Exhaust passage 13 Exhaust port 14 Exhaust valves 15, 16 VVT
17 Spark plug 18 Piston 19 In-cylinder temperature sensor 20 Water temperature sensor 21 Catalyst 22 ECU
23 Crank angle sensor

Claims (7)

気筒内に配置された燃料噴射弁を有する筒内直噴式の内燃機関の始動制御装置であって、
前記燃料噴射弁から噴射する燃料の性状を検出する燃料性状検出手段と、
排気行程から吸気行程にかけての期間中において、吸気弁及び排気弁の両方を閉弁させた期間を作り出すように前記吸気弁及び前記排気弁の開閉時期を制御する弁制御手段と、
前記弁制御手段で作り出した前記吸気弁及び排気弁の両方を閉弁させた期間に、前記燃料噴射弁から燃料を噴射する第1噴射制御手段と、
を備え、
前記弁制御手段は、前記燃料性状検出手段が検出する燃料の性状に基づいて、作り出す前記吸気弁及び排気弁の両方を閉弁させた期間を変更することを特徴とする内燃機関の始動制御装置。
A start control device for a direct injection type internal combustion engine having a fuel injection valve disposed in a cylinder,
Fuel property detection means for detecting the property of fuel injected from the fuel injection valve;
Valve control means for controlling the opening and closing timing of the intake valve and the exhaust valve so as to create a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke;
First injection control means for injecting fuel from the fuel injection valve during a period in which both the intake valve and the exhaust valve created by the valve control means are closed;
With
The start control device for an internal combustion engine, wherein the valve control means changes a period during which both the intake valve and the exhaust valve to be created are closed based on the fuel property detected by the fuel property detection means. .
気筒内に配置された燃料噴射弁を有する筒内直噴式の内燃機関の始動制御装置であって、
前記燃料噴射弁から噴射する燃料の性状を検出する燃料性状検出手段と、
排気行程から吸気行程にかけての期間中において、吸気弁及び排気弁の両方を閉弁させた期間を作り出すように前記吸気弁及び前記排気弁の開閉時期を制御する弁制御手段と、
前記弁制御手段で作り出した前記吸気弁及び排気弁の両方を閉弁させた期間に、前記燃料噴射弁から燃料を噴射する第1噴射制御手段と、
を備え、
前記第1噴射制御手段は、前記燃料性状検出手段が検出する燃料の性状に基づいて、前記吸気弁及び排気弁の両方を閉弁させた期間に噴射する燃料の噴射パラメータを変更することを特徴とする内燃機関の始動制御装置。
A start control device for a direct injection type internal combustion engine having a fuel injection valve disposed in a cylinder,
Fuel property detection means for detecting the property of fuel injected from the fuel injection valve;
Valve control means for controlling the opening and closing timing of the intake valve and the exhaust valve so as to create a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke;
First injection control means for injecting fuel from the fuel injection valve during a period in which both the intake valve and the exhaust valve created by the valve control means are closed;
With
The first injection control means changes an injection parameter of fuel to be injected during a period in which both the intake valve and the exhaust valve are closed based on the fuel property detected by the fuel property detection means. An internal combustion engine start control device.
前記吸気弁及び排気弁の両方を閉弁させた期間の経過後に、前記燃料噴射弁から燃料を噴射する第2噴射制御手段を更に備えたことを特徴とする請求項1又は2に記載の内燃機関の始動制御装置。   3. The internal combustion engine according to claim 1, further comprising a second injection control unit that injects fuel from the fuel injection valve after a lapse of a period in which both the intake valve and the exhaust valve are closed. Engine start control device. 前記燃料性状検出手段が検出する燃料の性状に基づいて、前記第1噴射制御手段で噴射する燃料の量と前記第2噴射制御手段で噴射する燃料の量との割合を変更することを特徴とする請求項3に記載の内燃機関の始動制御装置。   The ratio between the amount of fuel injected by the first injection control unit and the amount of fuel injected by the second injection control unit is changed based on the property of the fuel detected by the fuel property detection unit. An internal combustion engine start control device according to claim 3. 前記弁制御手段は、前記吸気弁及び排気弁の両方を閉弁させた期間を作り出す前記排気弁の閉弁時期から吸気上死点までの期間を、吸気上死点から前記吸気弁の開弁時期までの期間よりも小さくすることを特徴とする請求項1〜4のいずれか1項に記載の内燃機関の始動制御装置。   The valve control means creates a period in which both the intake valve and the exhaust valve are closed, and sets a period from the closing timing of the exhaust valve to the intake top dead center from the intake top dead center to the opening of the intake valve. The start control device for an internal combustion engine according to any one of claims 1 to 4, wherein the start control device is set to be smaller than a period until time. 前記燃料性状検出手段が検出する燃料の性状に基づいて、前記吸気弁及び排気弁の両方を閉弁させた期間の経過後の開弁した前記吸気弁の吸気下死点に対する閉弁時期を変更することを特徴とする請求項1〜5のいずれか1項に記載の内燃機関の始動制御装置。   Based on the fuel property detected by the fuel property detection means, the valve closing timing for the intake bottom dead center of the intake valve that has been opened after the passage of both the intake valve and the exhaust valve is changed. The start control device for an internal combustion engine according to any one of claims 1 to 5, wherein: 気筒内に配置された燃料噴射弁を有する筒内直噴式の内燃機関の始動制御方法であって、
弁制御手段によって、排気行程から吸気行程にかけての期間中において、吸気弁及び排気弁の両方を閉弁させた期間を作り出すように前記吸気弁及び前記排気弁の開閉時期を制御し、第1噴射制御手段によって、前記弁制御手段で作り出した前記吸気弁及び排気弁の両方を閉弁させた期間に、前記燃料噴射弁から燃料を噴射するものであり、
前記燃料噴射弁から噴射する燃料の性状を検出する燃料性状検出手段が検出する燃料の
性状に基づいて、前記弁制御手段が作り出す前記吸気弁及び排気弁の両方を閉弁させた期間と、前記第1噴射制御手段が前記吸気弁及び排気弁の両方を閉弁させた期間に噴射する燃料の噴射パラメータと、の少なくともいずれかを変更することを特徴とする内燃機関の始動制御方法。
A method for starting control of an in-cylinder direct injection internal combustion engine having a fuel injection valve disposed in a cylinder,
The valve control means controls the opening and closing timing of the intake valve and the exhaust valve so as to create a period in which both the intake valve and the exhaust valve are closed during the period from the exhaust stroke to the intake stroke. Fuel is injected from the fuel injection valve during a period in which both the intake valve and the exhaust valve created by the valve control means are closed by the control means,
A period in which both the intake valve and the exhaust valve created by the valve control unit are closed based on the fuel property detected by the fuel property detection unit that detects the property of the fuel injected from the fuel injection valve; and A starting control method for an internal combustion engine, characterized in that at least one of a fuel injection parameter to be injected during a period when both the intake valve and the exhaust valve are closed by the first injection control means.
JP2011082859A 2011-04-04 2011-04-04 Device and method for controlling start of internal combustion engine Withdrawn JP2012219633A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011082859A JP2012219633A (en) 2011-04-04 2011-04-04 Device and method for controlling start of internal combustion engine
PCT/IB2012/000660 WO2012137055A1 (en) 2011-04-04 2012-04-03 Internal combustion engine starting control device and internal combustion engine starting control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082859A JP2012219633A (en) 2011-04-04 2011-04-04 Device and method for controlling start of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012219633A true JP2012219633A (en) 2012-11-12

Family

ID=46025801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082859A Withdrawn JP2012219633A (en) 2011-04-04 2011-04-04 Device and method for controlling start of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2012219633A (en)
WO (1) WO2012137055A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152641A (en) * 2013-02-05 2014-08-25 Nippon Soken Inc Control device for internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353664B2 (en) * 2014-02-20 2018-07-04 日立オートモティブシステムズ株式会社 Engine control device
US11499496B2 (en) * 2018-01-16 2022-11-15 Caterpillar Inc. Engine control system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3747519B2 (en) 1996-06-26 2006-02-22 日産自動車株式会社 Direct cylinder injection spark ignition engine
JP3525737B2 (en) * 1998-05-06 2004-05-10 日産自動車株式会社 In-cylinder injection gasoline engine
JP4251090B2 (en) * 2004-02-06 2009-04-08 トヨタ自動車株式会社 Compression auto-ignition gasoline engine and control method of fuel injection
US8316819B2 (en) * 2008-09-26 2012-11-27 Mazda Motor Corporation Control of spark ignited internal combustion engine
EP2343445B1 (en) * 2008-11-06 2015-01-21 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152641A (en) * 2013-02-05 2014-08-25 Nippon Soken Inc Control device for internal combustion engine

Also Published As

Publication number Publication date
WO2012137055A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
EP2264303B1 (en) Control method and device of engine and corresponding engine
JP5310733B2 (en) Control device for internal combustion engine
US20100077990A1 (en) Control of spark ignited internal combustion engine
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
KR19980033086A (en) Exhaust temperature increaser of cylinder type internal combustion engine
JP2006348863A (en) Starter of internal combustion engine
JP2006283636A (en) Engine control device
JP4161789B2 (en) Fuel injection control device
JP2007198308A (en) Starting control device for internal combustion engine
JP2012255366A (en) Control device and control method for internal combustion engine
JP2006291939A (en) Controller of engine
JP2009036086A (en) Direct injection engine and method for controlling the same
JP2012219633A (en) Device and method for controlling start of internal combustion engine
JP2009243360A (en) Engine combustion control device
JP4274063B2 (en) Control device for internal combustion engine
JP2017145735A (en) Control device for internal combustion engine and warming-up method for exhaust emission control catalyst
JP2005061323A (en) Control device for compression ignition internal combustion engine
JP2010209859A (en) Controlling device of internal combustion engine
JP2005194965A (en) Fuel injection controller of engine
JP2004232580A (en) Control for internal combustion engine in period of changing compression ratio
JP5925099B2 (en) Control device for internal combustion engine
JP6551500B2 (en) Engine control device
JP5429148B2 (en) Premixed compression self-ignition engine
JP5831168B2 (en) Start control device for compression self-ignition engine
JP2012002076A (en) Device for control of internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701