JPH02169834A - Inner-cylinder direct jet type spark ignition engine - Google Patents

Inner-cylinder direct jet type spark ignition engine

Info

Publication number
JPH02169834A
JPH02169834A JP32360488A JP32360488A JPH02169834A JP H02169834 A JPH02169834 A JP H02169834A JP 32360488 A JP32360488 A JP 32360488A JP 32360488 A JP32360488 A JP 32360488A JP H02169834 A JPH02169834 A JP H02169834A
Authority
JP
Japan
Prior art keywords
fuel
injection amount
fuel injection
amount
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32360488A
Other languages
Japanese (ja)
Inventor
Shizuo Sasaki
静夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32360488A priority Critical patent/JPH02169834A/en
Priority to US07/438,698 priority patent/US4955339A/en
Priority to EP19890121343 priority patent/EP0369480A3/en
Publication of JPH02169834A publication Critical patent/JPH02169834A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To perform satisfactory combustion by jetting the total required fuel jet amount when it is not more than a first jet amount, that is, under a low load, and jetting the fuel jet amount while being distributed to intake and compression processes when it is less than a second and not less than a third jet amount, that is, under a medium load. CONSTITUTION:In a control unit 20, a fuel pressure detected by a sensor 27, an engine speed obtained from a crank angle signal of a sensor 29, accelerator opening angle detected by a sensor 30, etc., are input to compute a fuel jet amount. When the required fuel jet amount is not more than a first jet amount which is a sum of a minimum compression process jet amount for an ignition plug 65 enough to form ignitable air fuel mixture and a minimum intake process jet amount enough to propagate frame, a fuel jet valve 5 is controlled such that the total amount is jet during compression process. When the required jet amount is not less than a third jet amount which is less than a second jet amount enough to form an even air-fuel mixture and not less than the first amount, the total amount is jet while being distributed to the intake and compression processes. Satisfactory ignition and combustion are thus performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は筒内直接噴射式火花点火機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an in-cylinder direct injection spark ignition engine.

〔従来の技術〕[Conventional technology]

特開昭60−30420号公報には、負荷の増大に伴っ
て燃料噴射時期を早めるようにした筒内直接噴射式火花
点火機関が開示されている。この機関では、低負荷運転
時には圧縮行程後半に燃料を点火栓付近に噴射し、点火
栓付近に燃焼可能な混合気を形成して良好な着火と燃焼
とを得られるようにし、一方、高負荷運転時には吸気行
程前半に燃料を噴射し、燃料を筒内に十分拡散させるこ
とによって空気利用率を高め、出力の向上を図るように
している。
JP-A-60-30420 discloses an in-cylinder direct injection spark ignition engine in which the fuel injection timing is advanced as the load increases. In this engine, during low load operation, fuel is injected near the spark plug in the latter half of the compression stroke to form a combustible air-fuel mixture near the spark plug to ensure good ignition and combustion. During operation, fuel is injected during the first half of the intake stroke, allowing the fuel to diffuse sufficiently into the cylinder to increase air utilization and improve output.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この機関では、中負荷運転時においては吸気行程後半か
ら圧縮行程簡単付近で燃料を噴射し、この噴射燃料は筒
内金体に拡散する。しかし、中負荷運転時における燃料
噴射量は高負荷運転時における程十分に多くないため、
筒内全体に拡散した燃料によって形成される混合気は過
薄となり、着火および燃焼が困難になるという問題があ
る。
In this engine, during medium load operation, fuel is injected from the latter half of the intake stroke to near the beginning of the compression stroke, and this injected fuel diffuses into the cylinder metal body. However, since the fuel injection amount during medium load operation is not as large as that during high load operation,
There is a problem in that the mixture formed by the fuel diffused throughout the cylinder becomes too lean, making ignition and combustion difficult.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するため本発明によれば、機関運転状
態に応じた要求燃料噴射量を、吸気行程と圧縮行程とに
分割噴射可能な筒内直接噴射式火花点火機関において、
要求燃料噴射量が、点火栓により着火可能な混合気を形
成し得る最小限圧縮行程燃料噴射量と、筒内に均質に拡
散した際に着火火炎が伝播可能な最小限吸気行程燃料噴
射量との和である第1の噴射量以下の場合には要求燃料
噴射量の全量を圧縮行程において噴射し、要求燃料噴射
量が、点火栓により着火可能な均質混合気を筒内全体に
形成可能な最小限燃料噴射量である第2の噴射量より小
さく、かつ第1の噴射量以上である第3の噴射量以上の
場合には要求噴射量を吸気行程と圧縮行程とに分割して
噴射するようにしている。
In order to solve the above-mentioned problems, the present invention provides an in-cylinder direct injection spark ignition engine that can split-inject the required fuel injection amount depending on the engine operating state into the intake stroke and the compression stroke.
The required fuel injection amount is the minimum compression stroke fuel injection amount that can form a mixture that can be ignited by the ignition plug, and the minimum intake stroke fuel injection amount that allows the ignition flame to propagate when uniformly diffused in the cylinder. If the required fuel injection amount is less than or equal to the first injection amount, which is the sum of If the required injection amount is smaller than the second injection amount, which is the minimum fuel injection amount, and is greater than or equal to the first injection amount, the required injection amount is divided into the intake stroke and the compression stroke, and the injection is performed. That's what I do.

〔作 用〕 要求燃料噴射量が第1の噴射量以下の場合には要求燃料
噴射量の全量が圧縮行程において噴射され、着火および
燃焼可能な成層化された混合気が形成される。
[Operation] When the required fuel injection amount is less than or equal to the first injection amount, the entire required fuel injection amount is injected in the compression stroke, forming a stratified air-fuel mixture that can be ignited and combusted.

要求燃料噴射量が第2の噴射量より小さくかつ第3の噴
射量以上の場合には、要求燃料噴射量は吸気行程と圧縮
行程とに分割して噴射される。吸気行程において噴射さ
れた燃料により火炎伝播用の希薄混合気が筒内全体に形
成され、圧縮行程において噴射された燃料により点火栓
近傍に比較的濃い点火用の混合気が形成される。
When the required fuel injection amount is smaller than the second injection amount and greater than or equal to the third injection amount, the required fuel injection amount is divided into an intake stroke and a compression stroke and injected. The fuel injected during the intake stroke forms a lean mixture for flame propagation throughout the cylinder, and the fuel injected during the compression stroke forms a relatively rich mixture for ignition near the spark plug.

〔実施例〕〔Example〕

第1図は本発明の一実施例を採用した4気筒ガソリン機
関の構成図を示す。同図において、1は機関本体、2は
サージタンク、3はエアクリーナ、4はサージタンク2
とエアクリーナ3とを連結する吸気管、5は各気筒内に
燃料噴射する電歪式の燃料噴射弁、65は点火栓、6は
高圧用リザーバタンク、7は高圧導管8を介して高圧燃
料をリザーバタンク6に圧送するための、吐出圧制御可
能な高圧燃料ポンプ、9は燃料タンク、10は導管11
を介して燃料タンク9から高圧燃料ポンプ7に燃料を供
給する低圧燃料ポンプを夫々示す。低圧燃料ポンプ10
の吐出側は、各燃料噴射弁5のピエゾ圧電素子を冷却す
るための圧電素子冷却用導入管12に接続される。圧電
素子冷却用返戻管13は燃料タンク9に連結され、この
返戻管13を介して圧電素子冷却用導入管12を流れる
燃料を燃料タンク9に回収する。各枝管14は、各高圧
燃料噴射弁5を高圧用リザーバタンク6に接続する。
FIG. 1 shows a configuration diagram of a four-cylinder gasoline engine employing an embodiment of the present invention. In the figure, 1 is the engine body, 2 is the surge tank, 3 is the air cleaner, and 4 is the surge tank 2.
5 is an electrostrictive fuel injection valve that injects fuel into each cylinder; 65 is a spark plug; 6 is a high-pressure reservoir tank; A high-pressure fuel pump whose discharge pressure can be controlled for pressure-feeding to the reservoir tank 6; 9 is a fuel tank; 10 is a conduit 11;
A low-pressure fuel pump is shown which supplies fuel from the fuel tank 9 to the high-pressure fuel pump 7 via the fuel tank 9, respectively. Low pressure fuel pump 10
The discharge side of each fuel injection valve 5 is connected to a piezoelectric element cooling introduction pipe 12 for cooling the piezoelectric element of each fuel injection valve 5 . The piezoelectric element cooling return pipe 13 is connected to the fuel tank 9 , and the fuel flowing through the piezoelectric element cooling introduction pipe 12 is recovered into the fuel tank 9 via the return pipe 13 . Each branch pipe 14 connects each high pressure fuel injection valve 5 to a high pressure reservoir tank 6.

電子制御ユニット20はディジタルコンピュータからな
り、双方向性バス21によって相互に接続された8口M
(リードオンメモリ)22、RAM(ランダムアクセス
メモリ> 23、CPU(マイクロプロセッサ)24、
人力ポート25および出力ポート26を具備する。高圧
用リザーバクンクロに取り付けられた圧力センサ27は
高圧用リザーバタンク6内の圧力を検出し、その検出信
号はA/Dコンバータ28を介して入力ポート25に人
力される。機関回転数Neに比例した出力パルスを発生
するクランク角センサ29の出力パルスは人力ポート2
5に入力される。アクセルペダル(図示せず)の開度θ
Aに応じた出力電圧を発生するアクセル開度センサ30
の出力電圧はA/Dコンバーク31を介して人力ポート
25に人力される。一方、各燃料噴射弁5は各駆動回路
34を介して出力ポート26に接続される。また、各点
火栓65は各駆動回路35を介して出力ポート26に接
続される。
The electronic control unit 20 consists of a digital computer and has 8 ports connected to each other by a bidirectional bus 21.
(Read-on memory) 22, RAM (Random access memory> 23, CPU (microprocessor) 24,
A human power port 25 and an output port 26 are provided. A pressure sensor 27 attached to the high-pressure reservoir tank 6 detects the pressure within the high-pressure reservoir tank 6, and its detection signal is input to the input port 25 via the A/D converter 28. The output pulse of the crank angle sensor 29, which generates an output pulse proportional to the engine speed Ne, is output from the human power port 2.
5 is input. Opening degree θ of the accelerator pedal (not shown)
Accelerator opening sensor 30 that generates an output voltage according to A
The output voltage is input to the input port 25 via the A/D converter 31. On the other hand, each fuel injection valve 5 is connected to the output port 26 via each drive circuit 34. Further, each spark plug 65 is connected to the output port 26 via each drive circuit 35.

また高圧燃料ポンプ7は駆動回路36を介して出力ポー
ト26に接続される。
Further, the high-pressure fuel pump 7 is connected to the output port 26 via a drive circuit 36.

第2図に燃料噴射弁5の側面断面図を示す。第2図を参
照すると、40はノズル50内に挿入されたニードル、
41は加圧ロッド、42は可動プランジャ、43はばね
収容室44内に配置されかつニードル40を下方に向け
て押圧する圧縮ばね、45は加圧ピストン、46はピエ
ゾ圧電素子、47は可動プランジャ42の頂部とピスト
ン45間に形成されかつ燃料で満たされた加圧室、48
はニードル加圧室を夫々示す。ニードル加圧室48は燃
料通路49および枝管14を介して高圧用リザーバタン
ク6 (第1図)に連結され、従って高圧用リザーバタ
ンク6内の高圧燃料が枝管14および燃料通路49を介
してニードル加圧室48内に供給される。ピエゾ圧電素
子46に電荷がチャージされるとピエゾ圧電素子46が
伸長し、それによって加圧室47内の燃料圧が高められ
る。
FIG. 2 shows a side sectional view of the fuel injection valve 5. Referring to FIG. 2, 40 is a needle inserted into a nozzle 50;
41 is a pressure rod, 42 is a movable plunger, 43 is a compression spring disposed in the spring housing chamber 44 and presses the needle 40 downward, 45 is a pressure piston, 46 is a piezoelectric element, and 47 is a movable plunger. a pressurized chamber 48 formed between the top of 42 and the piston 45 and filled with fuel;
indicate needle pressurization chambers, respectively. The needle pressurizing chamber 48 is connected to the high-pressure reservoir tank 6 (FIG. 1) via the fuel passage 49 and the branch pipe 14, so that the high-pressure fuel in the high-pressure reservoir tank 6 flows through the branch pipe 14 and the fuel passage 49. and is supplied into the needle pressurizing chamber 48. When the piezoelectric element 46 is charged, the piezoelectric element 46 expands, thereby increasing the fuel pressure within the pressurizing chamber 47.

その結果、可動プランジャ42が下方に押圧され、ノズ
ル口53は、ニードル40によって閉弁状態に保持され
る。一方、ピエゾ圧電素子46にチャージされた電荷が
ディスチャージされるとピエゾ圧電素子46が収縮し、
加圧室47内の燃料圧が低下する。その結果、可動プラ
ンジャ42が上昇するためにニードル40が上昇し、ノ
ズル口53から燃料が噴射される。
As a result, the movable plunger 42 is pressed downward, and the nozzle port 53 is held closed by the needle 40. On the other hand, when the electric charge charged in the piezoelectric element 46 is discharged, the piezoelectric element 46 contracts,
The fuel pressure within the pressurizing chamber 47 decreases. As a result, the movable plunger 42 rises, the needle 40 rises, and fuel is injected from the nozzle port 53.

第3図は第1の実施例の機関の縦断面図を示す。FIG. 3 shows a longitudinal sectional view of the engine of the first embodiment.

第3図を参照すると、60はシリンダブロック、61は
シリンダヘッド、62はピストン、63はピストン62
0頂面に形成された略円筒状凹部、64はピストン62
頂面とシリンダへラド61内壁面間に形成されたシリン
ダ室を夫々示す。点火栓65はシリンダ室64に臨んで
シリンダヘッド61のほぼ中央部に取り付けられる。図
面には示さないがシリンダへラド61内には吸気ボート
および排気ボートが形成され、これら吸気ボートおよび
排気ボートのシリンダ室64内への開口部には夫々吸気
弁66 (第5図(a)参照)および排気弁が配置され
る。燃料噴射弁5はスワール型の燃料噴射弁であり、広
がり角が大きく貫徹力の弱い噴霧状の燃料を噴射する。
Referring to FIG. 3, 60 is a cylinder block, 61 is a cylinder head, 62 is a piston, and 63 is a piston 62.
0 a substantially cylindrical recess formed on the top surface; 64 is a piston 62;
The cylinder chambers formed between the top surface and the inner wall surface of the cylinder Rad 61 are shown. The ignition plug 65 is attached to a substantially central portion of the cylinder head 61 facing the cylinder chamber 64. Although not shown in the drawing, an intake boat and an exhaust boat are formed inside the cylinder head 61, and intake valves 66 (see FIG. 5(a)) are provided at the openings of these intake boats and exhaust boats into the cylinder chamber 64, respectively. ) and an exhaust valve are arranged. The fuel injection valve 5 is a swirl type fuel injection valve, and injects fuel in the form of a spray with a large spread angle and a weak penetration force.

燃料噴射弁5は、斜め下方を指向して、シリンダ室64
の頂部に配置され、点火栓65近傍に向かって燃料噴射
するように配置される。また、燃料噴射弁5の燃料噴射
方向および燃料噴射時期は、噴射燃料がピストン62頂
部に形成された凹部63を指向するように決められる。
The fuel injection valve 5 is oriented obliquely downward to the cylinder chamber 64.
The spark plug 65 is disposed at the top of the spark plug 65, and is disposed so as to inject fuel toward the vicinity of the spark plug 65. Further, the fuel injection direction and fuel injection timing of the fuel injection valve 5 are determined so that the injected fuel is directed toward the recess 63 formed at the top of the piston 62.

第4図には本実施例の圧縮行程噴射と吸気行程噴射の制
御パターンを示す。第4図を参照すると、横軸は機関の
負荷を表しており、第4図では負荷として燃料噴射量Q
をとり、縦軸には燃料噴射量Qをとっている。低負荷か
ら第3の噴射量である燃料噴射量Q、までは、圧縮行程
においてだけ燃料が噴射される。圧縮行程燃料噴射量Q
cはQsまで漸次増大せしめられる。燃料噴射量Qsに
おいて、圧縮行程燃料噴射量QcはQ。まで急激に減少
せしめられると共に吸気行程燃料噴射量Q1はQ、まで
急激に増大せしめられる。Q、は中負荷付近の燃料噴射
量であり、Q、とOlとの和として次式で示される。
FIG. 4 shows control patterns for compression stroke injection and intake stroke injection in this embodiment. Referring to Figure 4, the horizontal axis represents the engine load, and in Figure 4, the load is the fuel injection amount Q.
and the fuel injection amount Q is plotted on the vertical axis. From low load to the third injection amount Q, fuel is injected only in the compression stroke. Compression stroke fuel injection amount Q
c is gradually increased up to Qs. In the fuel injection amount Qs, the compression stroke fuel injection amount Qc is Q. At the same time, the intake stroke fuel injection amount Q1 is suddenly increased to Q. Q is the fuel injection amount near medium load, and is expressed by the following equation as the sum of Q and Ol.

QS =Qo +Qp ここで、Qoは点火栓65により着火可能な混合気を形
成し得る最小限の圧縮行程燃料噴射量であり、Q、は吸
気行程において噴射された燃料がシリンダ室64内に均
質に拡散した際に点火栓65による着火火炎が伝播可能
な最小限の吸気行程燃料噴射量である。従ってQsは第
1の噴射量でもあり、この実施例では第1の噴射Mと第
3の噴射量とが一致している。
QS = Qo + Qp Here, Qo is the minimum amount of fuel injection during the compression stroke that can form a mixture that can be ignited by the spark plug 65, and Q is the minimum fuel injection amount during the compression stroke that can form a mixture that can be ignited by the spark plug 65. This is the minimum intake stroke fuel injection amount that allows the ignition flame by the ignition plug 65 to propagate when it spreads. Therefore, Qs is also the first injection amount, and in this embodiment, the first injection M and the third injection amount match.

燃料噴射量がQsより大きい負荷領域においては、要求
燃料噴射iQを圧縮行程と吸気行程とに分割して噴射し
、圧縮行程燃料噴射l Q。は負荷によらず一定とし吸
気行程燃料噴射量Q、は負荷の増大に伴って増大せしめ
る。
In a load region where the fuel injection amount is larger than Qs, the required fuel injection iQ is divided into the compression stroke and the intake stroke and injected, and the compression stroke fuel injection lQ is performed. is constant regardless of the load, and the intake stroke fuel injection amount Q is increased as the load increases.

中負荷付近Q5より低い負荷領域においては、第3図に
示されるように、圧縮行程後期に圧縮行程噴射が実行さ
れ、燃料噴射弁5から点火栓65およびピストン62頂
面の凹部63を指向して燃料が噴射される。この噴射燃
料は貫徹力が弱く、またシリンダ室64内の圧力が高く
かつ空気流動が弱いため、噴射燃料は点火栓65付近の
領域Kに偏在する。この領域に内の燃料分布は不均一で
あり、リッチな混合気層がら空気層まで変化するため、
領域に内には最も燃焼し易い理論空燃比付近の可燃混合
気層が存在する。従って点火栓65付近の可燃混合気層
が容易に着火され、この着火火炎が不均一混合気層全体
に伝播して燃焼が完了する。このように、中負荷より低
い低負荷領域においては、圧縮行程後期に点火栓65付
近に燃料を噴射し、これによって点火栓65付近に可燃
混合気層を形成し、斯くして良好な着火および燃焼が得
られることとなる。
In a load region lower than Q5 near the medium load, as shown in FIG. 3, compression stroke injection is performed in the latter half of the compression stroke, and fuel is directed from the fuel injection valve 5 toward the ignition plug 65 and the concave portion 63 on the top surface of the piston 62. fuel is injected. This injected fuel has a weak penetrating force, and since the pressure inside the cylinder chamber 64 is high and the air flow is weak, the injected fuel is unevenly distributed in the region K near the ignition plug 65. The fuel distribution within this region is non-uniform, varying from a rich mixture layer to an air layer.
Within this region, there is a combustible air-fuel mixture layer near the stoichiometric air-fuel ratio that is most combustible. Therefore, the combustible mixture layer near the ignition plug 65 is easily ignited, and the ignition flame propagates throughout the heterogeneous mixture layer to complete combustion. In this way, in a low load region lower than medium load, fuel is injected near the spark plug 65 in the latter half of the compression stroke, thereby forming a combustible mixture layer near the spark plug 65, thus achieving good ignition and This results in combustion.

一方中負荷付近Q、より高い負荷領域においては、第5
図に示されるように、吸気行程初期(第5図(a))に
吸気行程噴射が実行され、燃料噴射弁5から点火栓65
およびピストン62頂面の凹部63を指向して燃料が噴
射される。この噴射燃料は、広がり角が大きく貫徹力の
弱い噴霧状の燃料であり、噴射燃料の一部はシリンダ室
64内に浮遊し、他は凹部63に衝突する。これらの噴
射燃料は、吸気ボートからシリンダ室64内に流入する
吸入空気流によって生ずるシリンダ室64内の乱れRに
よってシリンダ室64内に拡散され、吸気行程から圧縮
行程に至る間に予混合気Pが形成される(第5図(b)
)。この予混合気Pの空燃比は、着火火炎が伝播できる
程度の空燃比である。
On the other hand, near the medium load Q, in the higher load region, the fifth
As shown in the figure, intake stroke injection is performed at the beginning of the intake stroke (FIG. 5(a)), and the fuel injection valve 5 causes the spark plug 65 to
Then, fuel is injected toward the recess 63 on the top surface of the piston 62. This injected fuel is a spray-like fuel with a large spread angle and a weak penetration force, and a part of the injected fuel floats in the cylinder chamber 64 and the other part collides with the recess 63. These injected fuels are diffused into the cylinder chamber 64 by the turbulence R in the cylinder chamber 64 caused by the intake air flow flowing into the cylinder chamber 64 from the intake boat, and are dispersed into the premixture P during the period from the intake stroke to the compression stroke. is formed (Fig. 5(b)
). The air-fuel ratio of this premixture P is such that an ignition flame can propagate.

尚、第5図(b)の状態では噴射燃料の中心軸線の延長
がシリンダ壁に指向しているため、噴射燃料の貫徹力が
強い場合には噴霧の一部が直接シリンダ壁に付着するお
それがある。本実施例では比較的貫徹力の弱い噴射を行
なっているため特に問題はないが、本発明の実施例では
この期間を無噴射期間とすることにより燃料のシリンダ
壁面への付着防止効果を高めている。続いて圧縮行程後
期(第5図(C))に圧縮行程噴射が実行され、燃料噴
射弁5から点火栓65近傍およびピストン62頂面の凹
部63を指向して燃料が噴射される。この噴射燃料は元
々点火栓65に指向しているうえ貫徹力が弱く、またシ
リンダ室64内の圧力が大きいため、噴射燃料は点火栓
65付近の領域Kに偏在する。この領域に内の燃料分布
も不均一であり、リッチな混合気層がら空気層まで変化
するため、この領域に内には最も燃焼し易い理論空燃比
付近の可燃混合気層が存在する。従って点火栓65付近
の可燃混合気層が着火されると、不均一混合気領域Kを
中心に燃焼が進行する(第5図(d))。この燃焼過程
で体壁膨張した燃焼ガスBの周辺から順次、予混合気P
に火炎が伝播し燃焼が完了する。このように、中負荷お
よび高負荷領域においては、吸気行程初期において燃料
を噴射することにより火炎伝播用の混合気をシリンダ室
64内全体に形成すると共に、圧縮行程後期において燃
料を噴射することにより点火栓65近傍に比較的濃い混
合気を形成して着火および火炎核形成用の混合気を形成
する。斯くして良好な着火と空気利用率の高い燃焼が得
られる。特に中負荷運転時においては、従来の機関のよ
うに吸気行程、または圧縮行程前半に要求噴射量の全量
を噴射すると、噴射燃料はシリンダ室64内全体に拡散
してしまうため、シリンダ室64内に形成される混合気
は過薄となり、着火および燃焼が困難になるという問題
がある。また一方、中負荷運転時において要求噴射量の
全量を圧縮行程後期において噴射すると、多量のスモー
クが発生したり、空気利用率を高めることができず十分
な高出力を得ることができないという問題がある。本実
施例では、前述のように中負荷運転時においては吸気行
程と圧縮行程とに分割噴射することにより、良好な着火
と、空気利用率の高い燃焼により高出力が得られるので
ある。
In addition, in the state shown in Fig. 5(b), the central axis of the injected fuel is directed toward the cylinder wall, so if the penetration force of the injected fuel is strong, there is a risk that part of the spray may directly adhere to the cylinder wall. There is. In this embodiment, there is no particular problem because the injection is performed with a relatively weak penetration force, but in the embodiment of the present invention, this period is set as a non-injection period to enhance the effect of preventing fuel from adhering to the cylinder wall surface. There is. Subsequently, compression stroke injection is performed in the latter half of the compression stroke (FIG. 5(C)), and fuel is injected from the fuel injection valve 5 toward the vicinity of the spark plug 65 and the recess 63 on the top surface of the piston 62. This injected fuel is originally directed toward the ignition plug 65 and has a weak penetrating force, and the pressure inside the cylinder chamber 64 is high, so the injected fuel is unevenly distributed in the area K near the ignition plug 65. The fuel distribution within this region is also non-uniform and changes from a rich mixture layer to an air layer, so within this region there is a combustible mixture layer near the stoichiometric air-fuel ratio where combustion is most likely to occur. Therefore, when the combustible mixture layer near the ignition plug 65 is ignited, combustion proceeds centering around the heterogeneous mixture region K (FIG. 5(d)). In this combustion process, the premixture P
The flame spreads and combustion is completed. In this manner, in medium load and high load regions, fuel is injected at the beginning of the intake stroke to form a mixture for flame propagation throughout the cylinder chamber 64, and fuel is injected at the latter half of the compression stroke. A relatively rich air-fuel mixture is formed near the ignition plug 65 to form an air-fuel mixture for ignition and flame kernel formation. In this way, good ignition and combustion with high air utilization efficiency can be obtained. Particularly during medium load operation, if the entire required injection amount is injected during the intake stroke or the first half of the compression stroke as in conventional engines, the injected fuel will diffuse throughout the cylinder chamber 64; The problem is that the air-fuel mixture that is formed becomes too lean, making ignition and combustion difficult. On the other hand, if the entire required injection amount is injected in the latter half of the compression stroke during medium-load operation, there are problems such as a large amount of smoke being generated, and the air utilization rate not being able to be increased, making it impossible to obtain a sufficiently high output. be. In this embodiment, as mentioned above, during medium load operation, by splitting injection into the intake stroke and compression stroke, high output can be obtained due to good ignition and combustion with high air utilization rate.

また、中負荷付近においては、吸気行程で噴射された燃
料により形成される均質混合気は、着火可能な空燃比よ
り薄い火炎伝播可能な程度の空燃比でよく、希薄燃焼に
より燃費を向上することができる。
In addition, near medium loads, the homogeneous air-fuel mixture formed by the fuel injected during the intake stroke may have an air-fuel ratio that is thinner than the air-fuel ratio that allows ignition and is sufficient to allow flame propagation, improving fuel efficiency through lean combustion. Can be done.

また、点火栓付近に燃料を供給する燃料噴射弁を用いて
分割噴射を行っているため、1つの気筒について1つの
燃料噴射弁で本実施例を実行することができる。
Further, since split injection is performed using a fuel injection valve that supplies fuel near the ignition plug, this embodiment can be executed with one fuel injection valve for one cylinder.

また、燃料噴射量がQs以下の場合で吸気行程噴射を実
行する場合には、着火および火炎伝播可能な混合気を形
成するため吸気を絞って吸入空気量を減少せしめ、着火
および火炎伝播可能な空燃比に維持する必要がある。し
かしながら、空燃比を維持するために吸気を絞るとポン
ピングロスが生じる。本実施例では燃料噴射量がQs以
下の場合には圧縮行程噴射のみとしたので、このような
ポンピングロスを低減することができる。
In addition, when performing intake stroke injection when the fuel injection amount is less than Qs, the intake air is throttled to reduce the amount of intake air in order to form a mixture that can ignite and spread flame. It is necessary to maintain the air-fuel ratio. However, when the intake air is throttled to maintain the air-fuel ratio, pumping loss occurs. In this embodiment, only compression stroke injection is performed when the fuel injection amount is equal to or less than Qs, so that such pumping loss can be reduced.

なお、筒内直接噴射式内燃機関では成層燃焼により空気
過剰状態でも燃焼が可能であるため本実施例では吸入空
気量を絞らない場合について説明したが、例えばアイド
リング近傍での騒音振動を低減するため、低温時の機関
の熱損失を低減するため、さらにはEGRのために、一
部の運転領域で吸気を絞ってもよい。ただし、この場合
の吸気絞りは前述の空燃比維持のための吸気絞りより小
さいため、ボンピングロスはあまり増加しない。
Note that in a direct injection internal combustion engine, combustion is possible even in an excess air condition due to stratified combustion, so in this example, the case where the intake air amount is not throttled is explained. In order to reduce engine heat loss at low temperatures, and further for EGR, intake air may be throttled in some operating regions. However, since the intake throttle in this case is smaller than the intake throttle for maintaining the air-fuel ratio described above, the pumping loss does not increase much.

本実施例を実行するためのルーチンを第6図に示す。第
6図に示されるルーチンは一定クランク角毎の割り込み
によって実行される。第6図を参照すると、まずステッ
プ70において機関回転数NEおよびアクセル開度θA
が読み込まれる。ステップ71ではマツプl (第7図
)から、NEおよびθAに基づいて要求燃料噴射量Qが
算出される。第7図を参照するとaはθAが増大するに
つれて増大し、NEが4000rpm付近で最大値を有
する。
FIG. 6 shows a routine for executing this embodiment. The routine shown in FIG. 6 is executed by interrupts at every fixed crank angle. Referring to FIG. 6, first, in step 70, the engine speed NE and the accelerator opening θA are determined.
is loaded. In step 71, the required fuel injection amount Q is calculated from the map I (FIG. 7) based on NE and θA. Referring to FIG. 7, a increases as θA increases, and has a maximum value when NE is around 4000 rpm.

ステップ73では、要求燃料噴射量ΩがQs(第4図参
照)以下か否か判定される。肯定判定された場合、ステ
ップ74以下で要求燃料噴射量Qの全量が圧縮行程にお
いて噴射される。ステップ74で圧縮行程燃料噴射量Q
cに要求燃料噴射i1Qが格納される。ステップ75で
吸気行程燃料噴射量Q1は0とされる。ステップ76で
圧縮行程燃料噴射期間Tcがマツプ2 (第8図)から
Q。
In step 73, it is determined whether the required fuel injection amount Ω is equal to or less than Qs (see FIG. 4). If the determination is affirmative, the entire required fuel injection amount Q is injected in the compression stroke from step 74 onwards. In step 74, the compression stroke fuel injection amount Q
The requested fuel injection i1Q is stored in c. In step 75, the intake stroke fuel injection amount Q1 is set to zero. In step 76, the compression stroke fuel injection period Tc changes from map 2 (FIG. 8) to Q.

に基づいて算出される。第8図を参照するとT。Calculated based on. Referring to FIG.

はQ。が増大するにつれて直線的に増大する。ステップ
77では吸気行程燃料噴射期間T+が0とされる。ステ
ップ78ではマツプ3(第9図)から圧縮行程燃料噴射
量Q。および機関回転数NEに基づいて圧縮行程燃料噴
射開始時期TScが算出され本ルーチンを終了する。第
9図を参照すると、TScは圧縮上死点からの噴射進角
で示されている。TSoは、NEおよびQ。が増大する
につれ早められる。
Q. increases linearly as . In step 77, the intake stroke fuel injection period T+ is set to zero. In step 78, the compression stroke fuel injection amount Q is determined from map 3 (FIG. 9). The compression stroke fuel injection start timing TSc is calculated based on the engine speed NE and the present routine ends. Referring to FIG. 9, TSc is shown as an injection advance angle from compression top dead center. TSo is NE and Q. speeds up as the value increases.

ステップ73で否定判定された場合、ステップ79以下
で要求燃料噴射IQは吸気行程と圧縮行程とに分割して
噴射せしめられる。ステップ79ては圧縮行程燃料噴射
量Q。にQ、  (第4図参照)が入れられる。ステッ
プ80では吸気行程燃料噴射量Q1にQ−Q、が入れら
れる。すなわち吸気行程燃料噴射量Q+ と圧縮行程燃
料噴射量Q。との和が要求噴射量Qになるようにされる
。ステップ81ではマツプ2 (第8図)からQ。に基
づいて圧縮行程燃料噴射期間Tcが算出される。ステッ
プ82ではマツプ2 (第8図)からQ、に基づいて吸
気行程燃料噴射期間TIが算出される。第8図を参照す
るとTI はQ、が増大するにつれて直線的に増大する
。ステップ83ではマツプ4(第10図)から要求噴射
iQおよび機関回転数NEに基づいて圧縮行程燃料噴射
開始時期TS。
If a negative determination is made in step 73, the required fuel injection IQ is divided into the intake stroke and the compression stroke and injected in steps 79 and thereafter. Step 79 is the compression stroke fuel injection amount Q. Q, (see Figure 4) is inserted into. In step 80, Q-Q is entered into the intake stroke fuel injection amount Q1. That is, the intake stroke fuel injection amount Q+ and the compression stroke fuel injection amount Q. The sum of the required injection amount Q is made to be the required injection amount Q. In step 81, Q from map 2 (Figure 8). The compression stroke fuel injection period Tc is calculated based on. In step 82, the intake stroke fuel injection period TI is calculated based on map 2 (FIG. 8) to Q. Referring to FIG. 8, TI increases linearly as Q increases. In step 83, the compression stroke fuel injection start timing TS is determined from the map 4 (FIG. 10) based on the requested injection iQ and the engine speed NE.

が算出される。第10図を参照すると、TS、は圧縮上
死点からの噴射進角で示されており、TScはNEおよ
びQが増大するにつれて早められる。
is calculated. Referring to FIG. 10, TS is shown as the injection advance from compression top dead center, and TSc is advanced as NE and Q increase.

ステップ84ではマツプ5 (第11図)から吸気行程
燃料噴射量Q1および機関回転数NEに基づいて吸気行
程燃料噴射開始時期TS、が算出される。第11図を参
照すると、TS、は圧縮上死点からの噴射進角で示され
ており、TSI はNEが増大するにつれて早められる
。マツプ5では、TSI はQ+ によっては変化せし
められない。これは、吸気行程噴射では燃料が拡散して
混合気を形成するのに十分な時間があるため、Q工の多
少に応じて変化させる必要がないからである。
In step 84, the intake stroke fuel injection start timing TS is calculated from the map 5 (FIG. 11) based on the intake stroke fuel injection amount Q1 and the engine speed NE. Referring to FIG. 11, TS is shown as the injection advance from compression top dead center, and TSI is advanced as NE increases. In map 5, TSI is not changed by Q+. This is because in intake stroke injection, there is sufficient time for the fuel to diffuse and form an air-fuel mixture, so there is no need to change it depending on the Q factor.

以上のステップ抜本ルーチンを終了し、図示しない他の
ルーチンによって燃料噴射が実行される。
The above step routine is completed, and fuel injection is executed by another routine (not shown).

第12図には点火時期を算出するためのルーチンを示す
。第12図に示されるルーチンは一定クランク角毎の割
り込みによって実行される。第12図を参照すると、ス
テップ90において機関回転数NEおよび要求燃料噴射
iQが読み込まれる。ステップ91では、マツプ6 (
第13図)から点火時期が算出される。第13図を参照
すると、横軸は要求燃料噴射量Qを示し、縦軸は圧縮上
死点からの点火進角を示している。点火時期は、Qが減
少するにつれて進角が増大せしめられ、NEが増大する
につれて進角が増大せしめられる。
FIG. 12 shows a routine for calculating ignition timing. The routine shown in FIG. 12 is executed by an interrupt at every fixed crank angle. Referring to FIG. 12, in step 90, the engine speed NE and requested fuel injection iQ are read. In step 91, map 6 (
The ignition timing is calculated from Fig. 13). Referring to FIG. 13, the horizontal axis shows the required fuel injection amount Q, and the vertical axis shows the ignition advance from compression top dead center. As for the ignition timing, the advance angle is increased as Q decreases, and the advance angle is increased as NE increases.

次に第2の実施例について説明する。第2の実施例は、
第1の実施例と、燃料噴射弁5およびピストン62の頂
部に形成される凹部が異なり、異なる点について説明す
る。ピストン頂部に形成された凹状燃焼室67は、上部
側の大径の浅皿部68と、浅皿部68の中央部に形成さ
れた下部側の深皿部69との二重構造とされ、深皿部6
9は浅皿部68よりも小径に形成されている。
Next, a second embodiment will be described. The second example is
This embodiment differs from the first embodiment in the recesses formed at the tops of the fuel injection valve 5 and the piston 62, and the differences will be explained. The concave combustion chamber 67 formed at the top of the piston has a double structure of a large-diameter shallow dish part 68 on the upper side and a deep dish part 69 on the lower side formed in the center of the shallow dish part 68, Deep dish part 6
9 is formed to have a smaller diameter than the shallow dish portion 68.

図示しない吸気ポートはスワールポートとなっており、
燃料噴射弁5は多噴孔ホールノズルを有する。したがっ
て燃料噴射弁5は比較的貫徹力が強くかつ広がり角の小
さい比較的棒状の燃料を噴射する。燃料噴射弁5は、斜
め下方を指向してシリンダ室64の頂部に配置される。
The intake port (not shown) is a swirl port,
The fuel injection valve 5 has a multi-hole nozzle. Therefore, the fuel injection valve 5 injects a relatively rod-shaped fuel having a relatively strong penetration force and a small spread angle. The fuel injection valve 5 is arranged at the top of the cylinder chamber 64 so as to face diagonally downward.

また燃料噴射弁5の燃料噴射方向および燃料噴射時期は
、噴射燃料が燃焼室67内に指向するように決められて
いる。点火栓65はピストン62上死点時凹状燃焼室6
7内に位置するように配設される。
Further, the fuel injection direction and fuel injection timing of the fuel injection valve 5 are determined so that the injected fuel is directed into the combustion chamber 67. The ignition plug 65 is connected to the concave combustion chamber 6 at the top dead center of the piston 62
7.

第2の実施例の圧縮行程噴射と吸気行程噴射の制御パタ
ーンは第1の実施例(第4図参照)と同様である。
The control pattern for compression stroke injection and intake stroke injection in the second embodiment is similar to that in the first embodiment (see FIG. 4).

第4図および第14図を参照すると、中負荷付近Q、よ
り低い負荷領域においては、圧縮行程後期に燃料噴射弁
5から燃焼室67に向かって要求噴射量の全量が噴射さ
れる。燃料噴射・時期は遅くされ、このため大部分の燃
料は深皿部69内に噴射される。深皿部69内壁面に付
着した燃料は蒸発霧化し、燃焼室67内に可燃域を含む
濃淡のある混合気層を形成する、この混合気層の一部が
点火栓65により点火され、主に深皿部69内で良好な
燃焼が完了する。
Referring to FIGS. 4 and 14, in the middle load vicinity Q and lower load region, the entire required injection amount is injected from the fuel injection valve 5 toward the combustion chamber 67 in the latter half of the compression stroke. The fuel injection timing is delayed so that most of the fuel is injected into the deep dish portion 69. The fuel adhering to the inner wall surface of the deep dish portion 69 evaporates and becomes atomized, forming a rich and light mixture layer including a flammable region in the combustion chamber 67. A part of this mixture layer is ignited by the ignition plug 65, and the main Good combustion is completed within the deep dish portion 69.

中負荷付近Q、より高い負荷領域においては、第15図
に示されるように、吸気行程初期(第15図(a))に
吸気行程噴射が実行され、燃料噴射弁5から燃焼室67
を指向して燃料が噴射される。噴射燃料Fは主に浅皿部
68に衝突し、その一部はシリンダ室64中に反射し、
他の一部は浅皿部68の壁面に付着し壁面からの加熱に
より蒸発霧化する。これらの燃料は、吸入渦流SWおよ
び吸気流の乱れRによって吸気行程から圧縮行程に至る
間に予混合気Pが形成される(第15図(b))。この
予混合気Pの空燃比は、第1の実施例と同様、着火火炎
が伝播できる程度の空燃比とされる。吸入渦流SWが強
い場合には、シリンダ室64外周付近が濃く、中心付近
が薄くなるような予混合気が形成される。
Near medium load Q, in a higher load region, as shown in FIG. 15, intake stroke injection is performed at the beginning of the intake stroke (FIG. 15(a)), and the fuel injector 5 is injected into the combustion chamber 67.
Fuel is injected towards the The injected fuel F mainly collides with the shallow dish portion 68, and a portion of it is reflected into the cylinder chamber 64.
The other part adheres to the wall surface of the shallow dish portion 68 and is evaporated and atomized by heating from the wall surface. These fuels form a premixture P during the period from the intake stroke to the compression stroke due to the intake swirl SW and the turbulence R of the intake flow (FIG. 15(b)). The air-fuel ratio of this premixture P is set to such an extent that the ignition flame can propagate, as in the first embodiment. When the suction vortex SW is strong, a premixture is formed that is rich near the outer periphery of the cylinder chamber 64 and thin near the center.

なお、吸気行程噴射時期を早めて、ピストン62がより
上死点に近い位置にあるときに燃料を噴射すると、大部
分の燃料は深皿部69内に噴射され、大部分の燃料が深
皿部69内で予混合気化される。
Note that if the intake stroke injection timing is advanced and the fuel is injected when the piston 62 is closer to the top dead center, most of the fuel will be injected into the deep dish portion 69; The mixture is pre-vaporized in the section 69.

続いて圧縮行程後期(第15図(C))に圧縮行程噴射
が実行され、大部分の燃料が深皿部69内に噴射される
。深皿部69内壁面に付着した燃料は、壁面および圧縮
空気からの加熱により気化し、渦流SWにより拡散混合
し、可燃域を含む濃淡のある不均一混合気層が形成され
る。この混合気層の一部が点火栓65により点火され、
不均一混合気層の燃焼が進行する(第15図(d))。
Subsequently, compression stroke injection is performed in the latter half of the compression stroke (FIG. 15(C)), and most of the fuel is injected into the deep dish portion 69. The fuel adhering to the inner wall surface of the deep dish portion 69 is vaporized by heating from the wall surface and compressed air, and is diffused and mixed by the vortex SW, forming a heterogeneous mixture layer with a rich and light concentration including a flammable region. A part of this mixture layer is ignited by the spark plug 65,
Combustion of the heterogeneous mixture layer progresses (FIG. 15(d)).

この燃焼により形成された火炎Bが深皿部69内で発達
する過程で、周辺の予混合気に伝播し、さらに逆スキッ
シュ流Sにより、深皿部69外まで燃焼を進行させる。
As the flame B formed by this combustion develops inside the deep dish part 69, it propagates into the surrounding premixture, and further, due to the reverse squish flow S, the combustion progresses to the outside of the deep dish part 69.

なお圧縮行程噴射時期を早め、燃料を浅皿部68と深皿
部69の両方に噴射する場合には、火炎が浅皿部68と
深皿部69とに広く分布し、予混合気への火炎の伝播を
より容易にすることができる。
In addition, when the compression stroke injection timing is advanced and the fuel is injected into both the shallow dish part 68 and the deep dish part 69, the flame is widely distributed in the shallow dish part 68 and the deep dish part 69, and the premixture is affected. Flame propagation can be made easier.

圧縮行程噴射と吸気行程噴射の制御パターンは、第1お
よび第2の実施例とも第4図に示される制御パターンと
したが、これに限られず、例えば第16図から第19図
に示されるパターンが考えられる。これらの図の横軸お
よび縦軸は第4図と同様、夫々負荷および燃料噴射量を
示している。
The control pattern for the compression stroke injection and the intake stroke injection is the control pattern shown in FIG. 4 in both the first and second embodiments, but is not limited to this, and may be, for example, the patterns shown in FIGS. 16 to 19. is possible. Similar to FIG. 4, the horizontal and vertical axes in these figures indicate the load and the fuel injection amount, respectively.

第16図の制御パターンは第2の噴射量であるQ)Iま
では第4図に示される制御パターンと同様である。負荷
QH以上のごく高負荷時においては、燃料噴射量が多い
ため吸気行程噴射によって形成されるシリンダ室内の予
混合気の濃度が着火に十分なほど濃いため、着火のため
の圧縮行程噴射をやめて、要求燃料噴射量の全量を吸気
行程において噴射することとしている。Q、はシリンダ
室内に燃料が均質に拡散した場合にも点火栓により着火
可能な均質混合気を形成可能な最小限吸気行程燃料噴射
量である。
The control pattern shown in FIG. 16 is similar to the control pattern shown in FIG. 4 up to the second injection amount Q)I. When the load is extremely high (QH or above), the amount of fuel injected is large and the concentration of the premixture in the cylinder chamber formed by intake stroke injection is high enough for ignition, so compression stroke injection for ignition is stopped. , the entire required fuel injection amount is injected during the intake stroke. Q is the minimum intake stroke fuel injection amount that can form a homogeneous mixture that can be ignited by the spark plug even when the fuel is uniformly diffused in the cylinder chamber.

第17図の制御パターンは、第16図の制御パターンに
おいて負荷Q、からQoまて圧縮行程燃料噴射量を漸次
減少させたものである。負荷の増大に伴い吸気行程燃料
噴射量が増大するにしたがって、予混合気が濃くなる。
The control pattern shown in FIG. 17 is the control pattern shown in FIG. 16 in which the compression stroke fuel injection amount is gradually decreased from load Q to Qo. As the intake stroke fuel injection amount increases as the load increases, the premixture becomes richer.

このため、安定した着火に必要な圧縮行程燃料噴射量を
漸次減少することができる。
Therefore, the compression stroke fuel injection amount required for stable ignition can be gradually reduced.

第18図および第19図の制御パターンは第4図、第1
6図および第17図の制御パターンと異なり、第3の噴
射量は第1の噴射量より大きい。
The control patterns in Figs. 18 and 19 are as shown in Figs. 4 and 1.
Unlike the control patterns of FIGS. 6 and 17, the third injection amount is larger than the first injection amount.

第18図の制御パターンでは、第1の噴射量Qsより大
きい第3の噴射量Qxまでは圧縮行程噴射のみによって
要求噴射燃料全量が噴射され、QXを越えると、圧縮行
程燃料噴射量はQxで一定に維持され、Qxを越える燃
料は吸気行程において噴射される。圧縮行程最大燃料噴
射量Qxは十分に大きく、この圧縮行程噴射により形成
される混合気の燃焼により十分な火炎が成長するために
、吸気行程噴射により形成された低濃度の予混合気にも
火炎を伝播することが可能である。
In the control pattern shown in Fig. 18, the entire required injection fuel amount is injected only by compression stroke injection until the third injection amount Qx, which is larger than the first injection amount Qs, and when QX is exceeded, the compression stroke fuel injection amount becomes Qx. Fuel that is kept constant and exceeds Qx is injected on the intake stroke. The compression stroke maximum fuel injection amount Qx is sufficiently large, and the combustion of the air-fuel mixture formed by this compression stroke injection causes a sufficient flame to grow. It is possible to propagate

第19図の制御パターンは、第18図の制御パターンで
負荷Q、から圧縮行程燃料噴射量を上次減少させ、最大
負荷で吸気行程噴射のみになるようにしたものである。
The control pattern shown in FIG. 19 is the same as the control pattern shown in FIG. 18, in which the compression stroke fuel injection amount is reduced upward from the load Q, so that only intake stroke injection occurs at the maximum load.

負荷の増大に伴い吸気行程燃料噴射量が増大し、これに
よって予混合気が濃くなるので火炎が伝播し易くなるた
め、安定した着火に必要な圧縮行程燃料噴射量を漸次減
少できるのである。
As the load increases, the intake stroke fuel injection amount increases, which enriches the premixture and facilitates flame propagation, making it possible to gradually reduce the compression stroke fuel injection amount required for stable ignition.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、燃料噴射量が第1の噴射
量以下の例えば低負荷時において、良好な着火および燃
焼を得ることができる。
As described above, according to the present invention, good ignition and combustion can be obtained when the fuel injection amount is equal to or less than the first injection amount, for example, at a low load.

一方、燃料噴射量が第2の噴射量より小さくかつ第3の
噴射量以上の場合、特に中負荷時において、圧縮行程に
おいて噴射された燃料によって形成された混合気によっ
て良好な着火を得、吸気行程において噴射された燃料に
よって形成された混合気によって空気利用率の高い燃焼
を得ることができる。
On the other hand, when the fuel injection amount is smaller than the second injection amount and greater than or equal to the third injection amount, good ignition is achieved by the air-fuel mixture formed by the fuel injected during the compression stroke, especially at medium load, and the intake air is Combustion with high air utilization can be achieved by the mixture formed by the fuel injected during the stroke.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の機関の一実施例を示す全体構成図、第
2図は燃料噴射弁の縦断面図、第3図は第1の実施例の
機関の縦断面図、第4図は圧縮行程噴射と吸気行程噴射
の制御パターンの一例を示す線図、第5図は第1の実施
例の動作説明図、第6図は燃料噴射を制御するためのフ
ローチャート、第7図はアクセル開度と要求燃料噴射量
との関係を示す線図、第8図は吸気行程および圧縮行程
燃料噴射量と吸気行程および圧縮行程燃料噴射時間との
関係を示す線図、第9図は圧縮行程燃料噴射量と圧縮行
程燃料噴射開始時期との関係を示す線図、第10図は要
求燃料噴射量と圧縮行程燃料噴射開始時期との関係を示
す線図、第11図は吸気行程燃料噴射量と吸気行程燃料
噴射開始時期との関係を示す線図、第12図は点火時期
を算出するためのフローチャート、第13図は要求燃料
噴射量と点火進角との関係を示す線図、第14図は第2
の実施例の機関の縦断面図、第15図は第2の実施例の
動作説明図、第16図から第19図は圧縮行程噴射と吸
気行程噴射の制御パターンの他の例を示す線図である。
Fig. 1 is an overall configuration diagram showing one embodiment of the engine of the present invention, Fig. 2 is a longitudinal sectional view of a fuel injection valve, Fig. 3 is a longitudinal sectional view of the engine of the first embodiment, and Fig. 4 is a longitudinal sectional view of the engine of the first embodiment. A diagram showing an example of a control pattern for compression stroke injection and intake stroke injection, FIG. 5 is an explanatory diagram of the operation of the first embodiment, FIG. 6 is a flowchart for controlling fuel injection, and FIG. 7 is a flowchart for controlling fuel injection. Figure 8 is a diagram showing the relationship between intake stroke and compression stroke fuel injection amount and intake stroke and compression stroke fuel injection time. Figure 9 is a diagram showing the relationship between intake stroke and compression stroke fuel injection time. A diagram showing the relationship between the injection amount and the compression stroke fuel injection start timing, FIG. 10 is a diagram showing the relationship between the required fuel injection amount and the compression stroke fuel injection start timing, and FIG. 11 is a diagram showing the relationship between the intake stroke fuel injection amount and the compression stroke fuel injection start timing. A diagram showing the relationship between the intake stroke fuel injection start timing, FIG. 12 is a flowchart for calculating the ignition timing, FIG. 13 is a diagram showing the relationship between the required fuel injection amount and the ignition advance angle, and FIG. 14 is the second
FIG. 15 is an explanatory diagram of the operation of the second embodiment, and FIGS. 16 to 19 are diagrams showing other examples of control patterns for compression stroke injection and intake stroke injection. It is.

Claims (1)

【特許請求の範囲】[Claims] 機関運転状態に応じた要求燃料噴射量を、吸気行程と圧
縮行程とに分割噴射可能な筒内直接噴射式火花点火機関
において、前記要求燃料噴射量が、点火栓により着火可
能な混合気を形成し得る最小限圧縮行程燃料噴射量と、
筒内に均質に拡散した際に着火火炎が伝播可能な最小限
吸気行程燃料噴射量との和である第1の噴射量以下の場
合には前記要求燃料噴射量の全量を圧縮行程において噴
射し、前記要求燃料噴射量が、前記点火栓により着火可
能な均質混合気を前記筒内全体に形成可能な最小限燃料
噴射量である第2の噴射量より小さく、かつ前記第1の
噴射量以上である第3の噴射量以上の場合には前記要求
噴射量を吸気行程と圧縮行程とに分割して噴射するよう
にした筒内直接噴射式火花点火機関。
In an in-cylinder direct injection spark ignition engine that can split-inject a required fuel injection amount depending on the engine operating state into an intake stroke and a compression stroke, the required fuel injection amount forms an air-fuel mixture that can be ignited by a spark plug. the minimum possible compression stroke fuel injection amount;
If the injection amount is less than the first injection amount, which is the sum of the minimum intake stroke fuel injection amount that allows the ignition flame to propagate when homogeneously diffused in the cylinder, the entire required fuel injection amount is injected in the compression stroke. , the required fuel injection amount is smaller than a second injection amount that is the minimum fuel injection amount that can form a homogeneous mixture that can be ignited by the spark plug in the entire cylinder, and is greater than or equal to the first injection amount If the required injection amount is equal to or greater than a third injection amount, the required injection amount is divided into an intake stroke and a compression stroke and the injection is performed.
JP32360488A 1988-11-18 1988-12-23 Inner-cylinder direct jet type spark ignition engine Pending JPH02169834A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32360488A JPH02169834A (en) 1988-12-23 1988-12-23 Inner-cylinder direct jet type spark ignition engine
US07/438,698 US4955339A (en) 1988-11-18 1989-11-17 Internal combustion engine
EP19890121343 EP0369480A3 (en) 1988-11-18 1989-11-17 An internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32360488A JPH02169834A (en) 1988-12-23 1988-12-23 Inner-cylinder direct jet type spark ignition engine

Publications (1)

Publication Number Publication Date
JPH02169834A true JPH02169834A (en) 1990-06-29

Family

ID=18156568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32360488A Pending JPH02169834A (en) 1988-11-18 1988-12-23 Inner-cylinder direct jet type spark ignition engine

Country Status (1)

Country Link
JP (1) JPH02169834A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451829A2 (en) * 1990-04-11 1991-10-16 Toyota Jidosha Kabushiki Kaisha A control device for an internal combustion engine
US5101785A (en) * 1990-03-08 1992-04-07 Toyoto Jidosha Kabushiki Kaisha Control device for an internal combustion engine
US5115776A (en) * 1990-12-27 1992-05-26 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US5115774A (en) * 1990-12-26 1992-05-26 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US5127379A (en) * 1990-06-26 1992-07-07 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JPH04194354A (en) * 1990-11-28 1992-07-14 Toyota Motor Corp Cylinder injection type internal combustion engine
US5140958A (en) * 1990-06-27 1992-08-25 Toyota Jidosha Kabushiki Kaisha Two-stroke engine
US5207058A (en) * 1990-11-16 1993-05-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US5271362A (en) * 1990-06-27 1993-12-21 Toyota Jidosha Kabushiki Kaisha Two-stroke engine
WO1996016262A1 (en) * 1994-11-17 1996-05-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection control device for internal combustion engine and fuel injection control method for internal combustion engine
US5794585A (en) * 1997-10-24 1998-08-18 Mitsubishi Denki Kabushiki Kaisha Cylinder injection fuel control device for an internal-combustion engine
EP0890718A2 (en) 1997-07-10 1999-01-13 Nissan Motor Company, Limited Gasoline vapor purging system of internal combustion engine
EP0900927A2 (en) 1997-09-03 1999-03-10 Fuji Jukogyo Kabushiki Kaisha System for diagnosing and controlling high-pressure fuel system for in-cylinder fuel injection engine
US5893352A (en) * 1997-06-11 1999-04-13 Mitsubishi Denki Kabushiki Kaisha Cylinder injection type fuel control apparatus
EP0924402A1 (en) 1997-12-18 1999-06-23 Nissan Motor Company, Limited Arrangement for spark-igniting direct-injection internal combustion engine
EP0924403A1 (en) 1997-12-18 1999-06-23 Nissan Motor Company, Limited Direct-injection spark-ignition engine
US5947077A (en) * 1996-05-15 1999-09-07 Mitsubishi Denki Kabushiki Kaisha Control device for cylinder injection internal-combustion engine
EP0943793A2 (en) 1998-03-17 1999-09-22 Nissan Motor Company, Limited Control for direct fuel injection spark ignition internal combustion engine
US6026781A (en) * 1997-12-25 2000-02-22 Nippon Soken, Inc. Fuel injection control device of cylinder direct injection engine
US6095113A (en) * 1997-04-02 2000-08-01 Hitachi, Ltd. Fuel injection apparatus and control method thereof
EP1083325A2 (en) * 1999-09-09 2001-03-14 Nissan Motor Co., Ltd. Control apparatus and method for direct-injection spark-ignition internal combustion engine
JP2001248482A (en) * 2000-02-29 2001-09-14 Hitachi Ltd Control device for cylinder injection type internal combustion engine
US6510834B1 (en) 1999-08-31 2003-01-28 Nissan Motor Co., Ltd. Control for spark-ignited direct fuel injection internal combustion engine
US6938607B1 (en) * 1997-04-02 2005-09-06 Hitachi, Ltd. Fuel injection apparatus and control method thereof
DE19810379B4 (en) * 1997-09-09 2013-05-29 Mitsubishi Denki K.K. Fuel control system for internal combustion cylinder direct injection internal combustion engines
JP2015021389A (en) * 2013-07-16 2015-02-02 富士重工業株式会社 Fuel injection control device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101785A (en) * 1990-03-08 1992-04-07 Toyoto Jidosha Kabushiki Kaisha Control device for an internal combustion engine
EP0451829A2 (en) * 1990-04-11 1991-10-16 Toyota Jidosha Kabushiki Kaisha A control device for an internal combustion engine
US5127379A (en) * 1990-06-26 1992-07-07 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US5140958A (en) * 1990-06-27 1992-08-25 Toyota Jidosha Kabushiki Kaisha Two-stroke engine
US5271362A (en) * 1990-06-27 1993-12-21 Toyota Jidosha Kabushiki Kaisha Two-stroke engine
US5207058A (en) * 1990-11-16 1993-05-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JPH04194354A (en) * 1990-11-28 1992-07-14 Toyota Motor Corp Cylinder injection type internal combustion engine
US5115774A (en) * 1990-12-26 1992-05-26 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US5115776A (en) * 1990-12-27 1992-05-26 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
WO1996016262A1 (en) * 1994-11-17 1996-05-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection control device for internal combustion engine and fuel injection control method for internal combustion engine
US5947077A (en) * 1996-05-15 1999-09-07 Mitsubishi Denki Kabushiki Kaisha Control device for cylinder injection internal-combustion engine
US6095113A (en) * 1997-04-02 2000-08-01 Hitachi, Ltd. Fuel injection apparatus and control method thereof
US6938607B1 (en) * 1997-04-02 2005-09-06 Hitachi, Ltd. Fuel injection apparatus and control method thereof
US5893352A (en) * 1997-06-11 1999-04-13 Mitsubishi Denki Kabushiki Kaisha Cylinder injection type fuel control apparatus
DE19755951C2 (en) * 1997-06-11 2001-07-26 Mitsubishi Electric Corp Fuel injection device for direct injection
EP0890718A2 (en) 1997-07-10 1999-01-13 Nissan Motor Company, Limited Gasoline vapor purging system of internal combustion engine
US6116221A (en) * 1997-07-10 2000-09-12 Nissan Motor Co., Ltd. Gasoline vapor purging system of internal combustion engine
EP0900927A2 (en) 1997-09-03 1999-03-10 Fuji Jukogyo Kabushiki Kaisha System for diagnosing and controlling high-pressure fuel system for in-cylinder fuel injection engine
DE19810379B4 (en) * 1997-09-09 2013-05-29 Mitsubishi Denki K.K. Fuel control system for internal combustion cylinder direct injection internal combustion engines
US5794585A (en) * 1997-10-24 1998-08-18 Mitsubishi Denki Kabushiki Kaisha Cylinder injection fuel control device for an internal-combustion engine
US6167864B1 (en) 1997-12-18 2001-01-02 Nissan Motor Co., Ltd. Arrangement for spark-igniting direct-injection internal combustion engine
US6065444A (en) * 1997-12-18 2000-05-23 Nissan Motor Co., Ltd. Direct-injection spark-ignition engine
EP0924402A1 (en) 1997-12-18 1999-06-23 Nissan Motor Company, Limited Arrangement for spark-igniting direct-injection internal combustion engine
EP0924403A1 (en) 1997-12-18 1999-06-23 Nissan Motor Company, Limited Direct-injection spark-ignition engine
US6026781A (en) * 1997-12-25 2000-02-22 Nippon Soken, Inc. Fuel injection control device of cylinder direct injection engine
EP0943793A2 (en) 1998-03-17 1999-09-22 Nissan Motor Company, Limited Control for direct fuel injection spark ignition internal combustion engine
US6340014B1 (en) 1998-03-17 2002-01-22 Nissan Motor Co., Inc. Control for direct fuel injection spark ignition internal combustion engine
US6510834B1 (en) 1999-08-31 2003-01-28 Nissan Motor Co., Ltd. Control for spark-ignited direct fuel injection internal combustion engine
EP1083325A2 (en) * 1999-09-09 2001-03-14 Nissan Motor Co., Ltd. Control apparatus and method for direct-injection spark-ignition internal combustion engine
EP1083325A3 (en) * 1999-09-09 2003-07-30 Nissan Motor Co., Ltd. Control apparatus and method for direct-injection spark-ignition internal combustion engine
US6408816B1 (en) 1999-09-09 2002-06-25 Nissan Motor Co., Ltd. Control apparatus and method for direct-injection spark-ignition internal combustion engine
JP2001248482A (en) * 2000-02-29 2001-09-14 Hitachi Ltd Control device for cylinder injection type internal combustion engine
JP2015021389A (en) * 2013-07-16 2015-02-02 富士重工業株式会社 Fuel injection control device

Similar Documents

Publication Publication Date Title
JPH02169834A (en) Inner-cylinder direct jet type spark ignition engine
US4955339A (en) Internal combustion engine
US5170759A (en) Fuel injection control device for an internal combustion engine
US5941207A (en) Direct injection spark ignition engine
US6725827B2 (en) Spark ingition stratified combustion internal combustion engine
JPH04187851A (en) Cylinder direct-injection type spark ignition engine
JP2917617B2 (en) Internal combustion engine
JPH05113146A (en) Internal combustion engine
KR20000017110A (en) Control device for direct injection engine
JPH03294640A (en) Engine control device of inner-cylinder direct jet type spark ignition engine
JP3534634B2 (en) Control device for internal combustion engine
US5101785A (en) Control device for an internal combustion engine
US8718903B2 (en) Direct injection spark ignition internal combustion engine, and fuel injection control method therefor
JP2871220B2 (en) In-cylinder internal combustion engine
JPH08193536A (en) Fuel injection controller of cylinder injection type internal combustion engine
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JPS60230544A (en) Fuel injector for engine
JP2987925B2 (en) In-cylinder direct injection spark ignition engine
JP2929708B2 (en) In-cylinder direct injection spark ignition engine
JP2836353B2 (en) In-cylinder internal combustion engine
JP2513004B2 (en) In-cylinder direct injection spark ignition engine
JP3196674B2 (en) In-cylinder injection spark ignition engine
JP5262991B2 (en) Intake control system for spark ignition direct injection engine
JPH04187819A (en) Cylinder direct injection type spark ignition engine
JPH02146239A (en) Intra-tube direct injection type spark ignition engine