JP2513004B2 - In-cylinder direct injection spark ignition engine - Google Patents

In-cylinder direct injection spark ignition engine

Info

Publication number
JP2513004B2
JP2513004B2 JP29020088A JP29020088A JP2513004B2 JP 2513004 B2 JP2513004 B2 JP 2513004B2 JP 29020088 A JP29020088 A JP 29020088A JP 29020088 A JP29020088 A JP 29020088A JP 2513004 B2 JP2513004 B2 JP 2513004B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
injection amount
ratio
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29020088A
Other languages
Japanese (ja)
Other versions
JPH02140441A (en
Inventor
善行 玉城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29020088A priority Critical patent/JP2513004B2/en
Priority to EP19890121343 priority patent/EP0369480A3/en
Priority to US07/438,698 priority patent/US4955339A/en
Publication of JPH02140441A publication Critical patent/JPH02140441A/en
Application granted granted Critical
Publication of JP2513004B2 publication Critical patent/JP2513004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は筒内直接噴射式火花点火機関に関する。The present invention relates to a direct injection spark ignition engine for a cylinder.

〔従来の技術〕[Conventional technology]

特開昭62−191622号公報には、ピストン頂部に凹状燃
焼室を形成し、この燃焼室を浅皿部と、この浅皿部の中
央付近に形成された浅皿部よりも小径の深皿部との二層
構造とし、吸気行程から圧縮行程前半にかけて燃焼室の
浅皿部上方に向けて抵貫徹力にて噴射する第1の燃料噴
射と、圧縮上死点近傍で燃焼室の深皿部に高貫徹力にて
噴射する第2の燃料噴射とを可能とし、機関高負荷運転
時には第1および第2の燃料噴射を実行し、低中負荷運
転時には第2の燃料噴射のみを行うようにした筒内直接
噴射式火花点火機関が開示されている。
In JP-A-62-191622, a concave combustion chamber is formed at the top of the piston, and this combustion chamber is provided with a shallow dish and a deep dish having a diameter smaller than that of the shallow dish formed near the center of the shallow dish. It has a two-layer structure with the first part, the first fuel injection that is injected by penetration force toward the upper part of the shallow plate part of the combustion chamber from the intake stroke to the first half of the compression stroke, and the deep plate of the combustion chamber near the compression top dead center. It is possible to perform a second fuel injection with a high penetration force to the engine portion, and to execute the first and second fuel injections during engine high load operation, and to perform only the second fuel injection during low and medium load operation. A direct injection type spark ignition engine is disclosed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしこの機関では負荷が変化する過渡的な運転時に
おいて、負荷の変化に筒内温度が追従しないため過渡性
能が良好でないという問題がある。すなわち、定常的な
機関運転時においては筒内温度は燃料噴射量によって定
まるほぼ一定の温度となる。定常運転時における定常時
筒内温度は燃料噴射量の増大に伴って上昇する。定常運
転から、例えば負荷が減少して燃料噴射量が減少した場
合、筒内温度は燃料噴射量の減少に追従して低下するこ
とができないため、筒内温度は減少した燃料噴射量に対
応する定常時筒内温度よりも過渡的に高くなる。このた
め燃焼室壁温が高くなり燃焼室壁面に付着した燃料の蒸
発が促進され混合気形成が早められる。従って、混合気
が形成されてから点火されるまでの時間が長くなり、混
合気が空気流に流されて、過薄領域が発生し燃焼が不安
定になる。特に出力空燃比での定常運転から負荷が減少
して噴射量を低減せしめ、理論空燃比近傍となった場
合、点火容易な混合気が早期に形成されるためノッキン
グが発生する。一方、例えば負荷が増大して燃料噴射量
が増大した場合、筒内噴射温度は、増大した燃料噴射量
に対応する定常時筒内温度より過渡的に低くなる。この
ため燃焼室壁温が低くなり、燃焼室壁面に付着した燃料
の蒸発が不十分となり、過濃な領域が発生してスモーク
の発生および出力の低下を招く。
However, this engine has a problem that the transient performance is not good because the in-cylinder temperature does not follow the change of the load during the transient operation of changing the load. That is, during steady engine operation, the in-cylinder temperature is a substantially constant temperature determined by the fuel injection amount. During steady-state operation, the steady-state in-cylinder temperature rises as the fuel injection amount increases. From steady operation, for example, when the load decreases and the fuel injection amount decreases, the in-cylinder temperature cannot follow the decrease in the fuel injection amount, so the in-cylinder temperature corresponds to the decreased fuel injection amount. Constantly higher than the in-cylinder temperature. As a result, the temperature of the combustion chamber wall becomes high, the evaporation of the fuel adhering to the wall surface of the combustion chamber is promoted, and the mixture formation is accelerated. Therefore, the time from when the air-fuel mixture is formed to when it is ignited becomes long, the air-fuel mixture is caused to flow into the air flow, and a thin region is generated, which makes combustion unstable. In particular, when the load is reduced from the steady operation at the output air-fuel ratio to reduce the injection amount and the amount becomes close to the stoichiometric air-fuel ratio, the air-fuel mixture that is easy to ignite is formed early and knocking occurs. On the other hand, for example, when the load increases and the fuel injection amount increases, the in-cylinder injection temperature transiently becomes lower than the steady-state in-cylinder temperature corresponding to the increased fuel injection amount. For this reason, the temperature of the combustion chamber wall becomes low, the evaporation of the fuel adhering to the wall surface of the combustion chamber becomes insufficient, and a rich region is generated, which causes smoke and a reduction in output.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題点を解決するため本考案によれば、機関運転
状態に応じた要求燃料噴射量を、吸気行程と圧縮行程と
に分割噴射する筒内直接噴射式火花点火機関において、
負荷が減少する減少過渡運転時に、圧縮行程燃料噴射量
に対する吸気行程燃料噴射量の比である燃料噴射比を減
少過渡運転時と同一負荷の定常運転時の燃料噴射比より
小さくせしめるか、又は負荷が増大する増大過渡運転時
に、燃料噴射比を増大過渡運転時と同一負荷の定常運転
時の燃料噴射比より大きくせしめるようにしている。
According to the present invention to solve the above problems, in a direct injection type spark ignition engine for a cylinder, which directly injects a required fuel injection amount according to an engine operating state into an intake stroke and a compression stroke,
During the decrease transient operation where the load decreases, the fuel injection ratio, which is the ratio of the intake stroke fuel injection amount to the compression stroke fuel injection amount, is made smaller than the fuel injection ratio during the steady operation at the same load as the decrease transient operation, or the load The fuel injection ratio is made to be larger than the fuel injection ratio at the time of steady operation with the same load as at the time of increasing transient operation during the increasing transient operation.

〔作用〕[Action]

負荷が減少する減少過渡運転時おいては、燃料噴射比
(=吸気行程燃料噴射量/圧縮行程燃料噴射量)を減少
過渡運転時と同一負荷の定常運転時の燃料噴射比より小
さくし、すなわち吸気行程燃料噴射量の割合を減少させ
る。これによって、混合気形成が抑制されることとな
る。
During the reduced transient operation in which the load decreases, the fuel injection ratio (= intake stroke fuel injection amount / compression stroke fuel injection amount) is made smaller than the fuel injection ratio in the steady operation with the same load as during the reduced transient operation, that is, The ratio of the intake stroke fuel injection amount is reduced. As a result, the mixture formation is suppressed.

一方、負荷が増大する増大過渡運転時においては、燃
料噴射比を増大過渡運転時と同一負荷の定常運転時の燃
料噴射比より大きくし、すなわち吸気行程燃料噴射量の
割合を増大させる。これによって、混合気形成が促進さ
れることとなる。
On the other hand, during the increased transient operation where the load increases, the fuel injection ratio is made larger than the fuel injection ratio during the steady operation of the same load as during the increased transient operation, that is, the ratio of the intake stroke fuel injection amount is increased. As a result, the mixture formation is promoted.

〔実施例〕〔Example〕

第1図は本発明の一実施例を採用した4気筒ガソリン
機関の構成図を示す。同図において、1は機関本体、2
はサージタンク、3はエアクリーナ、4はサージタンク
2とエアクリーナ3とを連結する吸気管、5は各気筒内
に燃料噴射する電歪式の燃料噴射弁、6は高圧用リザー
バタンク、7は高圧導管8を介して高圧燃料をリザーバ
タンク6に圧送するための、吐出圧制御可能な高圧燃料
ポンプ、9は燃料タンク、10は導管11を介して燃料タン
ク9から高圧燃料ポンプ7に燃料を供給する低圧燃料ポ
ンプを夫々示す。低圧燃料ポンプ10の吐出側は、各燃料
噴射弁5のピエゾ圧電素子を冷却するための圧電素子冷
却用導入管12に接続される。圧電素子冷却用返戻管13は
燃料タンク9に連結され、この返戻管13を介して圧電素
子冷却用導入管12を流れる燃料を燃料タンク9に回収す
る。各枝管14は、各燃料噴射弁5を高圧用リザーバタン
ク6に接続する。
FIG. 1 is a block diagram of a four-cylinder gasoline engine that employs an embodiment of the present invention. In the figure, 1 is the engine body, 2
Is a surge tank, 3 is an air cleaner, 4 is an intake pipe connecting the surge tank 2 and the air cleaner 3, 5 is an electrostrictive fuel injection valve for injecting fuel into each cylinder, 6 is a high pressure reservoir tank, and 7 is high pressure. Discharge pressure controllable high-pressure fuel pump for pumping high-pressure fuel to reservoir tank 6 via conduit 8, 9 is a fuel tank, 10 is fuel from fuel tank 9 to high-pressure fuel pump 7 via conduit 11. Each low pressure fuel pump is shown. The discharge side of the low-pressure fuel pump 10 is connected to a piezoelectric element cooling introduction pipe 12 for cooling the piezoelectric element of each fuel injection valve 5. The piezoelectric element cooling return pipe 13 is connected to the fuel tank 9, and the fuel flowing through the piezoelectric element cooling introduction pipe 12 is collected in the fuel tank 9 through the return pipe 13. Each branch pipe 14 connects each fuel injection valve 5 to the high pressure reservoir tank 6.

電子制御ユニット20はディジタルコンピュータからな
り、双方向性バス21によって相互に接続されたROM(リ
ードオンリメモリ)22、RAM(ランダムアクセスメモ
リ)23、CPU(マイクロプロセッサ)24、入力ポート25
および出力ポート26を具備する。高圧用リザーバタンク
6に取り付けられた圧力センサ27は高圧用リザーバタン
ク6内の圧力Pを検出し、その検出信号はA/Dコンバー
タ28を介して入力ポート25に入力される。機関回転数Ne
に比例した出力パルスを発生するクランク角センサ29の
出力パルスは入力ポート25に入力される。アクセルペダ
ル(図示せず)の開度θAに応じた出力電圧を発生する
アクセル開度センサ30の出力電圧はA/Dコンバータ31を
介して入力ポート25に入力される。一方、各燃料噴射弁
5は各駆動回路34から37を介して出力ポート26に接続さ
れる。また高圧燃料ポンプ7は駆動回路38を介して出力
ポート26に接続される。
The electronic control unit 20 is composed of a digital computer, and has a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, a CPU (Microprocessor) 24, an input port 25, which are mutually connected by a bidirectional bus 21.
And an output port 26. The pressure sensor 27 attached to the high pressure reservoir tank 6 detects the pressure P in the high pressure reservoir tank 6, and the detection signal is input to the input port 25 via the A / D converter 28. Engine speed Ne
The output pulse of the crank angle sensor 29 that generates an output pulse proportional to is input to the input port 25. An output voltage of an accelerator opening sensor 30 that generates an output voltage according to an opening θA of an accelerator pedal (not shown) is input to an input port 25 via an A / D converter 31. On the other hand, each fuel injection valve 5 is connected to the output port 26 via each drive circuit 34 to 37. Further, the high-pressure fuel pump 7 is connected to the output port 26 via the drive circuit 38.

第2図に燃料噴射弁5の側面断面図を示す。第2図を
参照すると、40はノズル50内に挿入されたニードル、41
は加圧ロッド、42は可動プランジャ、43はばね収容室44
内に配置されかつニードル40を下方に向けて押圧する圧
縮ばね、45は加圧ピストン、46はピエゾ圧電素子、47は
可動プランジャ42の頂部とピストン45間に形成されかつ
燃料で満たされた加圧室、48はニードル加圧室を夫々示
す。ニードル加圧室48は燃料通路49および枝管14を介し
て高圧用リザーバタンク6(第1図)に連結され、従っ
て高圧用リザーバタンク6内の高圧燃料が枝管14および
燃料通路49を介してニードル加圧室48内に供給される。
ピエゾ圧電素子46に電荷がチャージされるとピエゾ圧電
素子46が伸長し、それによって加圧室47内の燃料圧が高
められる。その結果、可動プランジャ42が下方に押圧さ
れ、ノズル口53は、ニードル40によって閉弁状態に保持
される。一方、ピエゾ圧電素子46にチャージされた電荷
がディスチャージされるとピエゾ圧電素子46が収縮し、
加圧室47内の燃料圧が低下する。その結果、可動プラン
ジャ42が上昇するためにニードル40が上昇し、ノズル口
53から燃料が噴射される。
FIG. 2 shows a side sectional view of the fuel injection valve 5. Referring to FIG. 2, reference numeral 40 denotes a needle inserted into a nozzle 50;
Is a pressure rod, 42 is a movable plunger, 43 is a spring chamber 44
A compression spring, which is arranged inside and presses the needle 40 downward, 45 is a pressure piston, 46 is a piezoelectric element, 47 is formed between the top of the movable plunger 42 and the piston 45 and is filled with fuel. The pressure chamber and 48 are needle pressurizing chambers, respectively. The needle pressurizing chamber 48 is connected to the high pressure reservoir tank 6 (FIG. 1) via the fuel passage 49 and the branch pipe 14, so that the high pressure fuel in the high pressure reservoir tank 6 passes through the branch pipe 14 and the fuel passage 49. Are supplied into the needle pressurizing chamber 48.
When the piezoelectric element 46 is charged, the piezoelectric element 46 expands, thereby increasing the fuel pressure in the pressurizing chamber 47. As a result, the movable plunger 42 is pressed downward, and the nozzle opening 53 is kept closed by the needle 40. On the other hand, when the electric charge charged in the piezoelectric element 46 is discharged, the piezoelectric element 46 contracts,
The fuel pressure in the pressurizing chamber 47 decreases. As a result, the movable plunger 42 rises, the needle 40 rises, and the nozzle opening
Fuel is injected from 53.

第3図を参照すると、60はシリンダブロック、61はシ
リンダヘッド、62はピストン、63はピストン62の頂面に
形成された凹状燃焼室、64はピストン62頂面とシリンダ
ヘッド61内壁面間に形成されたシリンダ室、65はピスト
ン62の上死点時凹状燃焼室63内に位置するように配設さ
れた点火栓を夫々示す。燃料噴射弁5は凹状燃焼室63内
に燃料噴射可能にシリンダ室64に斜め下方を指向して配
置される。
Referring to FIG. 3, 60 is a cylinder block, 61 is a cylinder head, 62 is a piston, 63 is a concave combustion chamber formed on the top surface of the piston 62, and 64 is between the top surface of the piston 62 and the inner wall surface of the cylinder head 61. The formed cylinder chambers and 65 are spark plugs arranged so as to be located in the concave combustion chamber 63 at the top dead center of the piston 62, respectively. The fuel injection valve 5 is arranged in the concave combustion chamber 63 so as to be capable of injecting fuel and directed obliquely downward to the cylinder chamber 64.

燃焼室63は、上部側の大径の浅皿部66と、浅皿部66の
中央部に形成された下部側の深皿部67との二重構造に構
成され、深皿部67は浅皿部66よりも小径に形成されてい
る。深皿部67の内周面には、燃料噴射弁5からの噴射燃
料を点火プラグ65とのギャップ位置へと導く溝が設けら
れている。
The combustion chamber 63 has a double structure of a large-diameter shallow dish portion 66 on the upper side and a deep dish portion 67 on the lower side formed in the central portion of the shallow dish portion 66, and the deep dish portion 67 is shallow. The diameter is smaller than that of the dish 66. A groove that guides the fuel injected from the fuel injection valve 5 to a gap position with the spark plug 65 is provided on the inner peripheral surface of the deep plate portion 67.

機関の運転状態に応じて算出される要求燃料噴射量Q
は、吸気行程噴射と圧縮行程噴射とに分割して噴射され
る(第4図参照)。吸気行程において、燃焼室63内を指
向して噴射された燃料は燃焼室63内壁面に一旦付着した
後蒸発して予混合気を形成する。吸気行程において噴射
された燃料は、燃料噴射から点火までの時間を長くとる
ことができる。このため、吸気行程において噴射された
燃料は十分蒸発して予混合気を形成し燃焼室63およびシ
リンダ室64内に拡散する。
Required fuel injection amount Q calculated according to the operating state of the engine
Is injected separately into the intake stroke injection and the compression stroke injection (see FIG. 4). In the intake stroke, the fuel injected toward the inside of the combustion chamber 63 once adheres to the inner wall surface of the combustion chamber 63 and then evaporates to form a premixture. The fuel injected in the intake stroke can take a long time from fuel injection to ignition. Therefore, the fuel injected in the intake stroke sufficiently evaporates to form a premixed gas and diffuses into the combustion chamber 63 and the cylinder chamber 64.

燃料噴射弁5は、圧縮行程噴射において、噴射時期が
早い場合には噴射燃料が浅皿部66内に噴射せしめられる
ように、一方、噴射時期が遅くピストン62がさらに上昇
している場合には深皿部67内に噴射せしめられるように
配設されている。圧縮行程噴射における高負荷運転域で
は、燃料噴射弁5から噴射された燃料のうち、初期に噴
射されたものは、上部燃焼室すなわち浅皿部66の壁面に
付着したのち、スワール流あるいはスキッシュ流ととも
に浅皿部66内を流動しながら蒸発、拡散、混合される。
In the compression stroke injection, the fuel injection valve 5 allows the injected fuel to be injected into the shallow dish portion 66 when the injection timing is early, while on the other hand, when the injection timing is late and the piston 62 further rises. It is arranged so that it can be injected into the deep plate portion 67. In the high-load operation region in the compression stroke injection, among the fuel injected from the fuel injection valve 5, the initially injected fuel adheres to the upper combustion chamber, that is, the wall surface of the shallow dish portion 66, and then swirl flow or squish flow. At the same time, they are evaporated, diffused, and mixed while flowing in the shallow dish 66.

一方、後期に噴射された噴射燃料は、下部燃焼室すな
わち深皿部67の壁面に付着した後、スキッシュ流、スワ
ール流とともに外深皿部67内を流動し、その一部は燃焼
室63の内壁に設けられた溝に沿って点火プラグ65のギャ
ップ位置まで導かれる。点火プラグ65により点火される
と、点火により発生した火災は、スワールに乗って深皿
部67内を拡散し、またその一部はピストン62の移動に伴
って発生する逆スキッシュ流により、浅皿部66側に導か
れる。その結果、初期に噴射され浅皿部66に滞留してい
た燃料および吸気行程噴射により形成された予混合気が
燃焼を開始し、浅皿部66においても深皿部67と同様の空
気流動に伴う火災の拡散が行われ、一部は燃焼室63外へ
出て、デッドボリューム内の予混合気も利用しながら燃
焼が完了する。
On the other hand, the injected fuel injected in the latter period, after adhering to the wall surface of the lower combustion chamber, that is, the basin portion 67, flows in the outer basin portion 67 together with the squish flow and swirl flow, and a part of it flows into the combustion chamber 63. It is guided to the gap position of the spark plug 65 along the groove provided on the inner wall. When ignited by the spark plug 65, the fire generated by the ignition rides on the swirl and diffuses in the deep dish part 67, and part of it is generated by the reverse squish flow generated by the movement of the piston 62. Guided to section 66 side. As a result, the fuel that was initially injected and stayed in the shallow dish portion 66 and the premixed gas formed by the intake stroke injection start combustion, and the shallow dish portion 66 has the same air flow as the deep dish portion 67. Along with the spread of the fire, a part of the fire goes out of the combustion chamber 63, and the combustion is completed while using the premixed gas in the dead volume.

また、圧縮行程噴射における軽負荷運転域において
は、深皿部67に燃料が噴射され、少量の噴射料が小さな
容積内で蒸発され、過薄とならないよう局所的に空燃比
が適正なレベルに保たれて着火され、この火災が予混合
気にも伝播して良好な燃焼が得られる。
Further, in the light load operation range in the compression stroke injection, fuel is injected into the deep plate portion 67, a small amount of the injection material is evaporated in a small volume, and the air-fuel ratio is locally set to an appropriate level so as not to become thin. It is kept and ignited, and this fire propagates to the premixed gas to obtain good combustion.

次に本実施例の動作を第5図を参照しつつ説明する。
第5図に示されるルーチンは一定クランク角毎の割り込
みによって実行される。
Next, the operation of this embodiment will be described with reference to FIG.
The routine shown in FIG. 5 is executed by interruption every constant crank angle.

第5図を参照すると、まずステップ70において機関回
転数NEおよびアクセル開度θAが読み込まれる。続いて
ステップ71では、第6図に示すマップ1より、アクセル
開度θAおよび機関回転数NEに基づいて要求燃料噴射量
Qが算出される。第6図に示されるようにQはθAおよ
びNEが増大するにつれて増大する。ステップ72では現時
点より過去n回噴射分(例えば約1分間)の平均燃料噴
射量QAVを次式より算出する。
Referring to FIG. 5, first, at step 70, the engine speed NE and the accelerator opening degree θA are read. Subsequently, at step 71, the required fuel injection amount Q is calculated from the map 1 shown in FIG. 6 based on the accelerator opening degree θA and the engine speed NE. As shown in FIG. 6, Q increases as θA and NE increase. In step 72, the average fuel injection amount Q AV for the past n injections (for example, about 1 minute) from the present time is calculated by the following equation.

ここでTiはi回目の燃料噴射の燃料噴射時間、Pは燃
料圧力(一定)、kはT・Pを燃料噴射量に換算するた
めの係数を示す。QAVは機関定常運転時における燃料噴
射量(負荷)と仮定される。ステップ73では要求燃料噴
射量QがQAV+E以上か否か判定され、ステップ74では
QがQAV−E以下か否か判定される。ここでEは定数で
あり、QAVに所定の範囲をもたせることによってハンチ
ングを防止している。また、緩減速、緩加速では比較的
筒内温度の追従性が良いため緩加速、緩減速に相当する
所定値以下の噴射量変化に対しては定常状態とみなすよ
うに定めて過補償を防止している。また、Eをハンチン
グ防止分程度の大きさにしてQとQAVの偏差に応じてマ
ップ3、マップ4のCの値を補正して偏差が大きいほど
Cの変更量を大きくしても上述と同様の効果が得られ
る。ステップ73およびステップ74で否定判定された場
合、すなわち燃料噴射量QがQAV−EとQAV+Eの範囲内
にあるとき、定常運転時の燃料噴射量QAVに比べて今回
の要求燃料噴射量Qはほとんど変化せず、従って過渡的
な運転状態でないと判定され、ステップ75に進む。ステ
ップ75ではマップ2(第7図)から燃料噴射比Cが要求
燃料噴射量Qに基づいて算出される。燃料噴射比Cは、
圧縮行程燃料噴射量QCに対する吸気行程燃料噴射量QI
比を示しており次式により算出される。
Here, Ti is the fuel injection time of the i-th fuel injection, P is the fuel pressure (constant), and k is a coefficient for converting T · P into the fuel injection amount. Q AV is assumed to be the fuel injection amount (load) during engine steady operation. In step 73, it is determined whether the required fuel injection amount Q is Q AV + E or more, and in step 74 it is determined whether Q is Q AV −E or less. Here, E is a constant, and hunting is prevented by making Q AV have a predetermined range. Also, since the in-cylinder temperature has a relatively good followability in slow deceleration and slow acceleration, it is determined that the steady state is assumed for changes in the injection amount below a predetermined value corresponding to slow acceleration and slow deceleration, and overcompensation is prevented. are doing. Also, even if E is set to a size that is equivalent to hunting prevention, the values of C in maps 3 and 4 are corrected according to the deviation between Q and Q AV , and the larger the deviation, the larger the amount of change in C. The same effect can be obtained. When a negative determination is made in step 73 and step 74, that is, when the fuel injection amount Q is within the range of Q AV −E and Q AV + E, the current required fuel injection is higher than the fuel injection amount Q AV during steady operation. The quantity Q hardly changes, so that it is judged that it is not in a transient operating state, and the routine proceeds to step 75. In step 75, the fuel injection ratio C is calculated from the map 2 (FIG. 7) based on the required fuel injection amount Q. The fuel injection ratio C is
It shows the ratio of the intake stroke fuel injection quantity Q I to the compression stroke fuel injection quantity Q C, and is calculated by the following equation.

第7図は大きな負荷変動のない機関定常運転時におけ
る要求燃料噴射量Qと燃料噴射比Cとの関係を示してお
り、Qが増大するにつれてCは直線的に増大する。
FIG. 7 shows the relationship between the required fuel injection amount Q and the fuel injection ratio C at the time of steady engine operation without large load fluctuation, and C increases linearly as Q increases.

ステップ73で肯定判定された場合、すなわち負荷が増
大する過渡的な運転時(増大過渡運転時)の場合にはス
テップ76に進み、マップ3(第8図)から燃料噴射比C
が要求燃料噴射量Qに基づいて算出される。第8図は負
荷が増大する過渡的な機関運転時におけるQとCとの関
係を示しており、Qが増大するにつれて上方に凸状の曲
線に沿ってCが増大する。同じQの値に対応するマップ
3のCの値とマップ2(第7図)のCの値を比較する
と、マップ3のCの値の方がマップ2のCの値より常に
大きい。
If an affirmative decision is made in step 73, that is, during transient operation in which the load increases (during increasing transient operation), the routine proceeds to step 76, where the fuel injection ratio C is determined from map 3 (Fig. 8).
Is calculated based on the required fuel injection amount Q. FIG. 8 shows the relationship between Q and C during transient engine operation in which the load increases, and C increases along an upwardly convex curve as Q increases. Comparing the C value of Map 3 and the C value of Map 2 (FIG. 7) corresponding to the same Q value, the C value of Map 3 is always greater than the C value of Map 2.

定常運転状態から負荷が増大して燃料噴射量が増大し
ても、筒内温度は燃料噴射量の増大に追従して上昇する
ことができないため、筒内温度は増大した燃料噴射量に
対応する定常時筒内温度よりも過渡的に低くなってしま
う。このような運転状態においても、定常運転時と同じ
の燃料噴射比Cで燃料を噴射すると、燃料の蒸発が不十
分となり、スモークの発生および出力の低下を招く。
Even if the load increases from the steady operation state and the fuel injection amount increases, the in-cylinder temperature cannot follow the increase in the fuel injection amount, so the in-cylinder temperature corresponds to the increased fuel injection amount. The temperature inside the cylinder will be transiently lower than the temperature. Even in such an operating state, if the fuel is injected at the same fuel injection ratio C as that in the steady operation, the evaporation of the fuel becomes insufficient, and the smoke is generated and the output is lowered.

そこで、負荷の増大する過渡的な運転状態において
は、燃料噴射比Cを定常運転時におけるCより増大せし
め、燃料が蒸発する時間を長くとることができる吸気行
程噴射の割合を増大せしめている。これにより十分な蒸
発霧化時間を確保して良好な混合気を形成することがで
き、斯くして良好な燃焼を得ることができる。
Therefore, in a transient operating state in which the load increases, the fuel injection ratio C is made to be larger than C in the steady operation, and the ratio of the intake stroke injection that can take a longer time to evaporate the fuel is increased. As a result, a sufficient evaporative atomization time can be secured and a good mixture can be formed, and thus good combustion can be obtained.

一方、ステプ74で肯定判定された場合、すなわち負荷
が減少する過渡的な運転時(減少過渡運転時)の場合に
はステップ77に進み、マップ4(第9図)から燃料噴射
比Cが要求燃料噴射量Qに基づいて算出される。第9図
は負荷が減少する過渡的な機関運転時におけるQとCと
の関係を示しており、Qが増大するにつれて下方に凸状
の曲線に沿ってCが増大する。マップ4のCの値は、同
じQの値に対応するマップ2(第7図)のCの値より常
に小さい。
On the other hand, if the affirmative determination is made in step 74, that is, during the transient operation in which the load decreases (during transient operation), the process proceeds to step 77, and the fuel injection ratio C is requested from the map 4 (FIG. 9). It is calculated based on the fuel injection amount Q. FIG. 9 shows the relationship between Q and C during transient engine operation in which the load decreases, and as Q increases, C increases along a downwardly convex curve. The value of C in map 4 is always smaller than the value of C in map 2 (FIG. 7) corresponding to the same value of Q.

定常運転状態から負荷が減少して燃料噴射量が減少し
ても、筒内温度は燃料噴射量の減少に追従して低下する
ことができないため、筒内温度は減少した燃料噴射量に
対応する定常筒内温度よりも過渡的に高くなってしま
う。このような運転状態においても、定常運転時と同じ
燃料噴射比Cで燃料を噴射すると混合気形成が早めら
れ、このため混合気が形成されてから点火されるまでの
時間が長くなり、混合気が空気流に流されて過薄領域が
発生し燃焼が不安定になる。
Even if the load decreases from the steady operation state and the fuel injection amount decreases, the in-cylinder temperature cannot follow the decrease in the fuel injection amount, so the in-cylinder temperature corresponds to the decreased fuel injection amount. It becomes higher than the steady-state in-cylinder temperature transiently. Even in such an operating state, when the fuel is injected at the same fuel injection ratio C as that in the steady operation, the mixture formation is accelerated, so that the time from the formation of the mixture to the ignition becomes longer, and the mixture becomes longer. Are made to flow into the air flow, and a thin region is generated, making combustion unstable.

そこでこのように負荷の減少する過渡的な運転状態に
おいては、燃料噴射比Cを定常運転時におけるCより減
少せしめ吸気行程噴射の割合を減少せしめている。これ
により混合気形成が早すぎることによる燃焼不安定やノ
ッキングを防止できる。
Therefore, in such a transient operation state in which the load is reduced, the fuel injection ratio C is made smaller than C in the steady operation, and the ratio of intake stroke injection is made smaller. This can prevent combustion instability and knocking due to premature mixture formation.

ステップ78では吸気行程燃料噴射量QIが、ステップ79
では圧縮行程燃料噴射量QCが夫々次式により算出され
る。
In step 78, the intake stroke fuel injection amount Q I is
Then, the compression stroke fuel injection amount Q C is calculated by the following equation, respectively.

ステップ80ではマップ5(第10図)からQIおよびQC
基づいて、吸気行程燃料噴射時間TIおよび圧縮行程燃料
噴射時間TCが算出される。第10図に示されるように、TI
およびTCはQIおよびQCが増大するにつれて直線的に増大
する。ステップ81ではマップ6(第11図)からQIおよび
QCに基づいて、吸気行程燃料噴射開始時期TSIおよび圧
縮行程燃料噴射開始時期TSCが算出される。第11図は、
吸気行程および圧縮行程燃料噴射量QI,QCと、圧縮上死
点からの噴射進角で示した吸気行程および圧縮行程燃料
噴射開始時期TSI,TSCとの関係を夫々示している。吸気
行程噴射では燃料霧化時間を十分に長くとれるため、TS
IはQIに無関係に一定クランク角である。一方、圧縮行
程噴射では、TSCはQCの増大につれて増大し、より早い
時期に噴射開始される。これは、QCが大きい程燃料噴射
時間TCが大きいからである。以上のステップの後本ルー
チンを終了し、図示しない他のルーチンによって燃料噴
射が実行される。
In step 80, the intake stroke fuel injection time T I and the compression stroke fuel injection time T C are calculated from Map 5 (FIG. 10) based on Q I and Q C. As shown in Figure 10, T I
And T C increase linearly as Q I and Q C increase. In step 81, map 6 (Fig. 11) shows Q I and
Based on the Q C, the intake stroke fuel injection start timing TS I and the compression stroke fuel injection start timing TS C is calculated. FIG.
The relationships between the intake stroke and compression stroke fuel injection amounts Q I and Q C and the intake stroke and compression stroke fuel injection start timings TS I and TS C indicated by the injection advance angle from the compression top dead center are shown, respectively. In the intake stroke injection, the fuel atomization time can be set sufficiently long, so TS
I is a constant crank angle regardless of Q I. On the other hand, in compression stroke injection, TS C increases as Q C increases, and injection is started earlier. This is because the fuel injection time T C is longer as Q C is larger. After the above steps, this routine is ended, and fuel injection is executed by another routine not shown.

なお、ステップ73,74で過度運転であると判定されて
から所定期間Cの変更を継続させる制御としてよい。
It should be noted that the control may be such that the change of the predetermined period C is continued after it is determined in Steps 73 and 74 that the vehicle is in excessive operation.

また、本実施例では、定常運転、減少および増大過渡
運転の判断を燃料噴射量に基づいて行ったが、アクセル
開度θAに基づいて判断してもよい。
Further, in the present embodiment, the determination of the steady operation, the decrease operation and the increase transient operation is performed based on the fuel injection amount, but the determination may be performed based on the accelerator opening degree θA.

また本実施例では減少および増大過度運転時の両方に
おいて燃料噴射比を変化させているが、機関冷却系や燃
料噴射自体、あるいは吸気系の制御等によりどちらか一
方の過度時での問題が少ない場合には、減少または増大
過度運転時のどちらか一方の場合にだけ燃料噴射比を本
実施例のように変化させてもよい。
Further, in this embodiment, the fuel injection ratio is changed during both the decrease and increase transient operation, but there is little problem in either transient condition due to control of the engine cooling system, the fuel injection itself, or the intake system. In this case, the fuel injection ratio may be changed as in this embodiment only when either the decrease or the increase transient operation is performed.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば減少過渡運転時において
は混合気形成が抑制され、混合気形成が早すぎることに
よる燃焼の不安定やノッキングを防止することができ
る。
As described above, according to the present invention, the mixture formation is suppressed during the decreasing transient operation, and the combustion instability and knocking due to the mixture formation being too early can be prevented.

一方、増大過渡運転時においては混合気形成が促進さ
れ、混合気形成の遅れによるスモークの発生や出力の低
下を防止して良好な燃焼が得られる。
On the other hand, during the increasing transient operation, the air-fuel mixture formation is promoted, and it is possible to prevent the generation of smoke and the decrease in the output due to the delay in the air-fuel mixture formation, and to obtain good combustion.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を採用した4気筒筒内直接噴
射式火花点火機関の全体構成図、第2図は燃料噴射弁の
縦断面図、第3図は機関本体の縦断面図、第4図は燃料
噴射時期を示す図、第5図は本発明の実施例を実行する
ためのフローチャート、第6図は機関回転数をパラメー
タとしてアクセル開度と要求燃料噴射量との関係を示す
線図、第7図から第9図は要求燃料噴射料Qと燃料噴射
比Cとの関係を示す線図で、第7図は定常運転時のQと
Cの関係を示す線図、第8図は増大過渡運転時のQとC
の関係を示す線図、第9図は減少過渡運転時のQとCの
関係を示す線図、第10図は吸気行程および圧縮行程燃料
噴射量と吸気行程および圧縮行程燃料噴射時間との関係
を示す線図、第11図は吸気行程および圧縮行程燃料噴射
量と吸気行程および圧縮行程燃料噴射開始時期との関係
を示す線図である。 1……機関本体、5……燃料噴射弁、20……電子制御ユ
ニット、63……燃焼室。
FIG. 1 is an overall configuration diagram of a 4-cylinder in-cylinder direct injection spark ignition engine adopting an embodiment of the present invention, FIG. 2 is a vertical sectional view of a fuel injection valve, and FIG. 3 is a vertical sectional view of an engine body. FIG. 4 is a diagram showing fuel injection timing, FIG. 5 is a flow chart for carrying out the embodiment of the present invention, and FIG. 6 shows the relationship between the accelerator opening and the required fuel injection amount with the engine speed as a parameter. FIG. 7 to FIG. 9 are diagrams showing the relationship between the required fuel injection charge Q and the fuel injection ratio C, and FIG. 7 is a diagram showing the relationship between Q and C during steady operation. Figure 8 shows Q and C during increasing transient operation.
FIG. 9 is a graph showing the relationship between Q and C during a decreasing transient operation, and FIG. 10 is a graph showing the relationship between the intake stroke and compression stroke fuel injection amount and the intake stroke and compression stroke fuel injection time. FIG. 11 is a diagram showing the relationship between the intake stroke and compression stroke fuel injection amount and the intake stroke and compression stroke fuel injection start timing. 1 ... Engine body, 5 ... Fuel injection valve, 20 ... Electronic control unit, 63 ... Combustion chamber.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/34 9523−3G F02D 41/34 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display F02D 41/34 9523-3G F02D 41/34 H

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関運転状態に応じた要求燃料噴射量を、
吸気行程と圧縮行程とに分割噴射する筒内直接噴射式火
花点火機関において、負荷が減少する減少過渡運転時
に、圧縮行程燃料噴射量に対する吸気行程燃料噴射量の
比である燃料噴射比を前記減少過渡運転時と同一負荷の
定常運転時の燃料噴射比より小さくせしめるか、又は負
荷が増大する増大過渡運転時に、燃料噴射比を前記増大
過渡運転時と同一負荷の定常運転時の燃料噴射比より大
きくせしめるようにした筒内直接噴射式火花点火機関。
1. A required fuel injection amount according to an engine operating state,
In a direct injection spark ignition engine for direct injection that performs split injection into an intake stroke and a compression stroke, during a decrease transient operation in which the load decreases, the fuel injection ratio, which is the ratio of the intake stroke fuel injection amount to the compression stroke fuel injection amount, is reduced as described above. The fuel injection ratio can be made smaller than the fuel injection ratio during steady operation under the same load as during transient operation, or during increased transient operation where the load increases In-cylinder direct injection spark ignition engine with a large size.
JP29020088A 1988-11-18 1988-11-18 In-cylinder direct injection spark ignition engine Expired - Lifetime JP2513004B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29020088A JP2513004B2 (en) 1988-11-18 1988-11-18 In-cylinder direct injection spark ignition engine
EP19890121343 EP0369480A3 (en) 1988-11-18 1989-11-17 An internal combustion engine
US07/438,698 US4955339A (en) 1988-11-18 1989-11-17 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29020088A JP2513004B2 (en) 1988-11-18 1988-11-18 In-cylinder direct injection spark ignition engine

Publications (2)

Publication Number Publication Date
JPH02140441A JPH02140441A (en) 1990-05-30
JP2513004B2 true JP2513004B2 (en) 1996-07-03

Family

ID=17753049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29020088A Expired - Lifetime JP2513004B2 (en) 1988-11-18 1988-11-18 In-cylinder direct injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP2513004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130637B1 (en) 2003-12-01 2012-04-02 가부시키가이샤 고마쓰 세이사쿠쇼 Direct injection diesel engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430687B2 (en) * 1994-12-15 2003-07-28 マツダ株式会社 Gas fuel engine
JP2006291971A (en) * 2006-06-28 2006-10-26 Denso Corp Fuel injection control device of cylinder injection type internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130637B1 (en) 2003-12-01 2012-04-02 가부시키가이샤 고마쓰 세이사쿠쇼 Direct injection diesel engine

Also Published As

Publication number Publication date
JPH02140441A (en) 1990-05-30

Similar Documents

Publication Publication Date Title
US4955339A (en) Internal combustion engine
JP2765305B2 (en) Internal combustion engine
US5170759A (en) Fuel injection control device for an internal combustion engine
JP2917617B2 (en) Internal combustion engine
JPH05113146A (en) Internal combustion engine
JP4134038B2 (en) Method of operating an internal combustion engine by direct fuel injection
JPH02169834A (en) Inner-cylinder direct jet type spark ignition engine
US6006720A (en) Internal combustion engine
JPH03294640A (en) Engine control device of inner-cylinder direct jet type spark ignition engine
US8181625B2 (en) Method for operating an internal combustion engine
JPH11236848A (en) Compression ignition type internal combustion engine
US5101785A (en) Control device for an internal combustion engine
JP2007154853A (en) Control device of spark-ignition direct-injection internal combustion engine
JPH08193536A (en) Fuel injection controller of cylinder injection type internal combustion engine
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JP2513004B2 (en) In-cylinder direct injection spark ignition engine
JP2987925B2 (en) In-cylinder direct injection spark ignition engine
JP2754938B2 (en) Fuel injection device for compression ignition type internal combustion engine
JPH0238047Y2 (en)
JP3196674B2 (en) In-cylinder injection spark ignition engine
JP2000110646A (en) Diesel engine
JP3094641B2 (en) In-cylinder internal combustion engine
JP2590551B2 (en) Fuel injection device for internal combustion engine
JP3680335B2 (en) Injection control device for in-cylinder internal combustion engine
JP2751637B2 (en) Control device for internal combustion engine