JPH0636735B2 - A novel rhabdovirus isolated from horseradish - Google Patents

A novel rhabdovirus isolated from horseradish

Info

Publication number
JPH0636735B2
JPH0636735B2 JP1720190A JP1720190A JPH0636735B2 JP H0636735 B2 JPH0636735 B2 JP H0636735B2 JP 1720190 A JP1720190 A JP 1720190A JP 1720190 A JP1720190 A JP 1720190A JP H0636735 B2 JPH0636735 B2 JP H0636735B2
Authority
JP
Japan
Prior art keywords
virus
rhabdovirus
wasabi
horseradish
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1720190A
Other languages
Japanese (ja)
Other versions
JPH03224481A (en
Inventor
日出男 岸良
浩子 西田
徹 下村
監一郎 匠原
修一 山下
常男 土崎
Original Assignee
日本鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鉱業株式会社 filed Critical 日本鉱業株式会社
Priority to JP1720190A priority Critical patent/JPH0636735B2/en
Publication of JPH03224481A publication Critical patent/JPH03224481A/en
Publication of JPH0636735B2 publication Critical patent/JPH0636735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、退化現象の現れたワサビから分離されたラブ
ドウイルス(Pant rhabdovirus)に属する新規ウ
イルス及びその変異株に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel virus belonging to the rhabdovirus (Pant rhabdovirus) isolated from horseradish in which a degeneration phenomenon appears, and a mutant strain thereof.

本発明のウイルスは、退化現象の原因となるこれらのウ
イルスにワサビが感染しているか否かを検定するための
抗体作製用の抗原として利用することができる。さら
に、これらのワサビウイルス病を予防乃至治療するため
の検体として利用することもできる。
The virus of the present invention can be used as an antigen for producing an antibody for assaying whether or not horseradish is infected with these viruses that cause the degeneration phenomenon. Further, it can be used as a sample for preventing or treating these wasabi virus diseases.

〔従来の技術〕[Conventional technology]

ワサビ(Wasabia japonica)の多くの品種は実生で増殖さ
れているが、「真妻」等の優良品種は株分けで増殖され
ている。しかし株分けを繰り返すことによって根茎の肥
大が悪くなり、子株もほとんど採れなくなるという、い
わゆる退化現象が現われるので、優良株分け品種は絶滅
の危機に瀕している。この退化現象の主な原因となって
いるのがウイルス感染によるウイルス病と考えられてい
る。〔鈴木春夫ら、静岡農試研法21,55〜66(1976)〕。
ワサビから分離されているウイルスはTMV-W(タバコモ
ザイクウイルスワサビ系)CMV(キュウリモザイクウイ
ルス)及びTuMV(カブモザイクウイルス)の3種が報告
されている〔上掲誌、小室康雄ら、植物防疫20,486〜48
8(1966)、栃原比呂志ら、関東東山病虫研報11,46(196
4)〕。現在のところ、植物に感染しているウイルスを殺
滅し、ウイルス病を治療する農薬はまだ見出されていな
い。ウイルスに感染した植物からウイルスを除去するい
わゆるウイルスフリー化のためのほとんど唯一の方法と
して組織培養技術を利用した茎頂生長点培養法がラン、
ユリ、カーネーション等の花卉、ブドウ、リンゴ、ミカ
ン等の果樹、イチゴ、ヤマノイモ等の野菜、センキョ
ウ、ジオウ等の薬用植物において実用化されている。ワ
サビにおいても茎頂生長点培養法が適用され、メリクロ
ン法や苗条原基法により実用化が進められている。
Many varieties of wasabi (Wasabia japonica) are cultivated in seedlings, while excellent varieties such as "Matsuma" are cultivated by stocking. However, because the so-called degeneration phenomenon, in which the rhizome grows worse and the offspring can hardly be collected by repeating the stock splitting, the excellent stock split varieties are endangered. The main cause of this degeneration phenomenon is considered to be a viral disease due to viral infection. [Suzuki Haru et al., Shizuoka Agricultural Exploration Method 21 , 55-66 (1976)].
Three types of viruses isolated from wasabi have been reported: TMV-W (tobacco mosaic virus wasabi system) CMV (cucumber mosaic virus) and TuMV (turnip mosaic virus) [above journal, Yasuo Komuro et al., Plant protection 20 , 486 ~ 48
8 (1966), Hiroshi Tochihara et al., Kanto Higashiyama disease and bug research report 11 , 46 (196
Four)〕. To date, no pesticides have been found to kill viruses that infect plants and treat viral diseases. The shoot apex growth point culture method using tissue culture technology is the only method for removing so-called virus-free virus from plants infected with virus.
It has been put to practical use in flowers such as lilies and carnations, fruit trees such as grapes, apples and mandarins, vegetables such as strawberries and yams, and medicinal plants such as syringa and dio. The shoot apical growth point culture method is also applied to horseradish, and its practical application is being promoted by the melicron method and the shoot primordium method.

しかし茎頂生長点培養法により作出した苗が全てウイル
スフリーになるわけではなく、茎頂生長点培養法により
作出した苗のウイルス検定は必須である。ウイルス検定
法には、生物検定法、電子顕微鏡法及び抗血清試験法が
あり、対照とする植物とウイルスの種類により、これら
の方法を組合せて検定することが必要である。ワサビに
おいては前述のごとく3種類のウイルスすなわちTMV-W
CMV及びTuMVにのみ感染していることが知られていたた
め、茎頂培養法により作出した培養苗がウイルスフリー
か否かの検定は当然これら3種類のウイルスのみを対照
として行なわれてきた。しかし、検定の結果、ウイルス
フリーと判断されても実際にはウイルスに感染されてい
ることが見出されている。
However, not all the seedlings produced by the shoot apical point culture method are virus-free, and a virus assay for seedlings produced by the shoot apical point culture method is essential. Viral assay methods include bioassay methods, electron microscopy methods, and antiserum test methods, and it is necessary to combine these methods depending on the type of plant and virus used as controls. In horseradish, as mentioned above, there are three types of viruses, namely TMV-W.
Since it has been known that only CMV and TuMV are infected, the test whether the cultured seedlings produced by the shoot apical culture method are virus-free or not has naturally been carried out using only these three kinds of viruses as controls. However, as a result of the test, it is found that the virus is actually infected even if it is determined to be virus-free.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、ワサビのウイルス検定を確実なものとし、完
全にウイルスフリーなワサビを得ることを目的としてワ
サビに感染する新規なウイルスを検索し、これを獲得し
ようとするものである。そして得られたウイルスは、ワ
サビウイルス検定を行うための抗体作製用の抗原とし
て、またこれらのウイルス病の予防ないし治療のための
検体として利用しようとするものである。
The present invention is intended to secure the virus assay of wasabi and to search for and acquire a novel virus that infects wasabi for the purpose of obtaining completely virus-free wasabi. The virus thus obtained is intended to be used as an antigen for producing an antibody for performing a horseradish virus assay and as a specimen for preventing or treating these viral diseases.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、ワサビの新規ウイルスを取得することを
目的として静岡県湯ケ島町のワサビ田から得られたワサ
ビ(品種:真妻)について新規ウイルスの検索を行っ
た。その結果、棒状ウイルス、ひも状ウイルス及び桿菌
状〜弾丸状ウイルスの3種のウイルスが検出された。こ
のうち棒状ウイルスは、300nm×18nmの大きさでTMV-Wの
抗血清とよく反応したので、公知のtabaco mosaic viru
sのワサビ系と同定した。そして、ひも状ウイルス及び
桿菌状〜弾丸状ウイルスについては後述するような検定
の結果、丈献未載の新規のウイルスであることが確認さ
れ、本発明をなすに至った。
The present inventors searched for a new virus of wasabi (variety: Mazuma) obtained from the wasabi field in Yugashima Town, Shizuoka Prefecture, with the aim of obtaining a new virus of wasabi. As a result, three types of viruses, rod-shaped virus, string-shaped virus, and rod-shaped to bullet-shaped virus were detected. Among them, the rod-shaped virus had a size of 300 nm × 18 nm and reacted well with the antiserum of TMV-W, so that the known tabaco mosaic viru
s wasabi strain. As a result of an assay as described below, the cord-shaped virus and the bacillus-shaped to bullet-shaped virus were confirmed to be novel viruses that have not been written yet, and the present invention has been completed.

本発明は、上記2種のウイルスのうち桿菌状〜弾丸状ウ
イルスであるラブドウイルス(Pant rhabdoviru
s)に属する新規ウイルスに関する。
The present invention provides a rhabdo virus (Pant rhabdoviru) which is a rod-shaped to bullet-shaped virus among the above-mentioned two kinds of viruses.
s) relating to new viruses.

また、本発明のラブドウイルスは35〜37℃で5〜15日程
度さらす高温処理、亜硝酸、ヒドロキシアミンで処理す
る化学処理及びIn vitro mutagen-esis-reverse geneti
cs法等による遺伝子操作等で変異させることができるが
このような変異株も本発明は包含する。
In addition, the rhabdovirus of the present invention is exposed to high temperature at 35 to 37 ° C. for about 5 to 15 days, chemical treatment with nitrite and hydroxyamine, and in vitro mutagen-esis-reverse geneti.
The present invention also includes such mutant strains, which can be mutated by genetic manipulation such as the cs method.

本発明のウイルスについて採取法及び形態等を示すと次
のとおりである。
The collection method and morphology of the virus of the present invention are as follows.

a) ウイルスの採取及び検出 静岡県湯ケ島町のワサビ田から得られたワサビ(品種:
「真妻」)を10mm×1mm程度に細切し、さらにそれを切
りきざんだ。スライドグラス上に0.1mo/リン酸
緩衝液を一滴たらし、その中に上記切りきざんだわさび
を入れ、汁液をしみ出させた。
a) Virus collection and detection Wasabi obtained from the Wasabi field in Yugashima Town, Shizuoka Prefecture (variety:
"Matsuma") was chopped into 10 mm x 1 mm pieces, and further chopped. A drop of 0.1 mo / phosphate buffer was dropped on a slide glass, and the above chopped wasabi was put therein to exude the juice.

次いで、コロジオン支持膜を張り、カーボン補強した銅
製グリッドの膜面をこのワサビ汁液に接触させ、速やか
に余分の液を濾紙で吸いとり膜面を上にして風乾させ
た。スライドグラス上に0.1mo/リン酸緩衝液に
1%グルタルアルデヒドを溶かした固定液を数滴たら
し、その液面に風乾させたグリッドの試料面を下にして
3〜5分間浮かべ、固定させた。固定させた試料の乗っ
たグリッドを脱イオン蒸留水で3回洗浄した後、染色液
(2%リンタングステン酸水溶液、ドライウェル0.5%
添加pH7.0)で30秒間染色し、濾紙で余分の染色液を吸
いとり、膜面を上にして風乾させて検出のための試料と
した。
Next, a collodion support film was attached, and the film surface of a carbon grid reinforced copper grid was brought into contact with this wasabi juice liquid, and the excess liquid was quickly absorbed by a filter paper and air-dried with the film surface facing upward. Place a few drops of fixative solution of 1% glutaraldehyde in 0.1mo / phosphate buffer solution on a slide glass, float the sample surface of the air-dried grid on the liquid surface for 3-5 minutes, and fix it. It was The fixed sample grid was washed three times with deionized distilled water and then stained (2% phosphotungstic acid aqueous solution, 0.5% drywell).
The sample was dyed for 30 seconds with an added pH of 7.0), the excess dyeing solution was absorbed with filter paper, and air-dried with the film surface facing upward to obtain a sample for detection.

b) ウイルスの形態の観察 この様にして作成した試料を透過型電子顕微鏡で検鏡
し、ウイルスの形態を観察した。
b) Observation of virus morphology The sample thus prepared was observed under a transmission electron microscope to observe virus morphology.

その結果、棒状ウイルス、ひも状ウイルス及び桿菌状〜
弾丸状ウイルスの3種のウイルスが検出された。棒状ウ
イルスは300nm×18nmの大きさで、TMV-Wの抗血清とよく
反応したことから既知のTMV-Wと同定した。ワサビに感
染していることが報告されているひも状ウイルスとして
はTuMVがあるが、TuMVの大きさが750nm×11nmであるの
に対し検出されたひも状ウイルスの大きさは650〜700nm
×13nmと大きく異なり、また、TuMVに感染した植物に特
異的に見出される風車状封入体は見出されなかった。さ
らに、TuMVの抗血清と全く反応しなかった。以上のこと
からひも状ウイルスはTuMVとは異なるカルラウイルス(C
arlavirus)に属するウイルスであると判断した。一方、
本発明の桿菌状〜弾丸状のウイルスは約230〜250nm×85
〜90nmで内部に約4.5nmのら旋構造のヌクレオキャプシ
ドと外部に被膜を有することから、このウイルスはラブ
ドウイルス(Pant rhabdovirus)に属するウイル
スであると判断した。
As a result, rod-shaped virus, string-shaped virus and rod-shaped virus ~
Three types of bullet virus were detected. The rod-shaped virus had a size of 300 nm × 18 nm and reacted well with the antiserum of TMV-W, so it was identified as a known TMV-W. There is TuMV as a cord-shaped virus that has been reported to be infected with horseradish, but the size of the cord-shaped virus detected is 650 to 700 nm, while the size of TuMV is 750 nm × 11 nm.
Unlike the x13 nm, no windmill-like inclusion bodies found in TuMV-infected plants were found. Furthermore, it did not react with TuMV antiserum at all. Based on the above, the cord-like virus is different from TuMV in terms of carla virus (C
arla virus). on the other hand,
The bacillus-bullet shaped virus of the present invention is about 230-250 nm × 85.
This virus was judged to belong to the rhabdovirus (Pant rhabdovirus) because it has a nucleocapsid with a helical structure of about 4.5 nm at ˜90 nm and a coat on the outside.

c) 超薄切片法によるウイルスの細胞内所見 グルタルアルデヒドとオスミウム酸による二重固定法に
より固定したワサビ試料をエポキシ樹脂に包理・固化
後、超薄切片を作成した。この超薄切片を銅製グリッド
にのせ酢酸ウランとクエン酸鉛による二重染色法で染色
した。この様に作成した試料を透過型電子顕微鏡で検鏡
し、ウイルスの細胞内存在様式及びウイルス感染細胞の
変化について観察した。
c) Intracellular observation of virus by ultra-thin section method An ultra-thin section was prepared after embedding and solidifying a horseradish sample fixed by the double fixation method with glutaraldehyde and osmic acid in epoxy resin. This ultrathin section was placed on a copper grid and stained by a double staining method with uranium acetate and lead citrate. The sample thus prepared was examined under a transmission electron microscope to observe the intracellular presence of virus and changes in virus-infected cells.

本発明のラブドウイルス(Pant rhabdovirus)に
属する桿菌状〜弾丸状ウイルスは、核、核膜間隙及び細
胞質に見出された。核内にはウイルス粒子と共に被膜を
かぶっていないヌクレオキャプシドが認められた。以上
の所見から、このウイルスは核内増殖型のウイルスであ
ることがわかった。
The rod-shaped to bullet-shaped virus belonging to the rhabdovirus of the present invention was found in the nucleus, internuclear space and cytoplasm. Uncoated nucleocapsids were found in the nucleus along with virus particles. From the above findings, this virus was found to be a nuclear-proliferating virus.

d) 寄主範囲 本発明のラブドウイルス(Pant rhabdovirus)が
他の植物に感染するかどうかについてアブラナ科植物を
中心に6科29種の植物について接種試験を行った。
d) Scope of Host Inoculation test was conducted on 29 species of 6 families, mainly Brassicaceae plants, to determine whether or not the rhabdovirus of the present invention infects other plants.

すなわち、ラブドウイルス(Pant rhabdovirus)
カルラウイルス(Carlavirus)及びTMV-Wに混合感染して
いる親ワサビ「真妻」(品種名)を接種源としてアブラ
ナ科植物を中心に6科29種の植物に汁液接種した。そ
の結果を第1表および第2表に示す。いずれの植物に対
してもラブドウイルス(P−ant rhabdovirus)も
カルラウイルス(Carlavirus)も感染を認められなかっ
た。ラブドウイルス(P−ant rhabdovirus)がア
ブラナ科植物に感染することはヨーロッパで、ブロッコ
リーネクロティックイエロウス ウイルスとブラジル
で、ラファナスSP.からの2種が報告されているだけで
あり、本発明のラブドウイルス(Pant rhabdovi
rus)は、第1表に示した通り、ブロッコリーにもラファ
ナス(ダイコン)にも感染せず、このことから本ウイル
スは新種のウイルスであることが明らかとなった。
That is, rhabdovirus
Using the parent horseradish "Mazuma" (variety name), which is mixedly infected with Carla virus and TMV-W, as a source of inoculation, sap was inoculated into 29 species of 6 families, mainly Brassicaceae. The results are shown in Tables 1 and 2. Neither the rhododo (P-ant rhabdovirus) nor the carlavirus (Carlavirus) was infected to any of the plants. Infection of cruciferous plants with rhabdovirus (P-ant rhabdovirus) has been reported in Europe, broccoli necrotic yellow virus and Brazil, only two species from Raphanus sp. Have been reported. Virus (Pant rhabdovi
As shown in Table 1, rus) did not infect broccoli or Raphanus (radish), which revealed that this virus is a novel virus.

e) 新種ウイルスの現地発生調査 ワサビ栽培現地のウイルス発生調査を行なった。すなわ
ち、ワサビ5品種31検体についてDN法で検定を行なっ
たところ、ラブドウイルス(Pant rh-abdoviru
s)は「真妻」のみから検出され、退化現象による収量低
下が問題となっているこのワサビ品種にとって、このウ
イルスは重要な影響を与えるウイルスであることが明ら
かとなった。
e) Local outbreak survey of new virus A virus outbreak in the wasabi cultivation field was conducted. That is, when 31 samples of 5 varieties of wasabi were tested by the DN method, rhabdovirus (Pant rh-abdoviru
s) was detected only in "Matsuma", and it became clear that this virus has an important influence on this wasabi cultivar in which the decrease in yield due to the degeneration phenomenon is a problem.

〔発明の効果〕〔The invention's effect〕

本発明は、退化現象の現れたワサビから分離されたラブ
ドウイルス(Pant rhabdovirus)に属する新種の
ウイルスを提供するものである。本発明の新種ウイルス
は、栽培中のワサビがこのウイルスに感染しているか否
かの検定あるいは、組織培養により作出した培養体がウ
イルスフリーになっているか否かの検定のための抗体作
製用抗原として利用することができる。また、このウイ
ルスに感染したワサビの治療乃至感染予防のための研究
の検体として利用することもできる。
The present invention provides a new kind of virus belonging to the rhabdovirus (Pant rhabdovirus) isolated from horseradish in which degeneration appears. The novel virus of the present invention is an antibody-producing antigen for assaying whether or not wasabi during cultivation is infected with this virus, or assaying whether or not the culture produced by tissue culture is virus-free. Can be used as In addition, it can be used as a sample of research for treatment or infection prevention of horseradish infected with this virus.

その結果、ワサビの退化現象を予防し、ワサビの品質を
向上することができる。
As a result, it is possible to prevent the degeneration phenomenon of the wasabi and improve the quality of the wasabi.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の微生物ラブドウイルス(Pant
rhabdovirus)の形態を示す電子顕微鏡写真である。
(倍率220,000倍)
FIG. 1 shows the microbial rhabdovirus of the present invention (Pant).
2 is an electron micrograph showing the morphology of rhabdovirus).
(Magnification 220,000 times)

フロントページの続き (72)発明者 山下 修一 東京都江東区越中島1―3―16―104 (72)発明者 土崎 常男 茨城県稲敷郡茎崎町城山43―14(72) Inventor Shuichi Yamashita 1-3-16-104 Etchujima, Koto-ku, Tokyo (72) Inventor Tsuneo Tsuchizaki 43-14 Shiroyama, Kukizaki-cho, Inashiki-gun, Ibaraki Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ワサビから分離され、ダイレクトネガティ
ヴ法(DN法)で約230〜250×85〜90nmの桿菌状〜弾丸状
形態を示し、内部にら旋構造のヌクレオキャプシドと外
部に被膜とを有するラブドウイルス(Rhabdovirus)に属
するウイルスまたはその変異株
1. A bacillus-like to bullet-like form of about 230 to 250 × 85 to 90 nm separated from horseradish by the direct negative method (DN method), which has a nucleocapsid with a helical structure inside and a coating on the outside. Virus belonging to Rhabdovirus or its mutants
JP1720190A 1990-01-26 1990-01-26 A novel rhabdovirus isolated from horseradish Expired - Lifetime JPH0636735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1720190A JPH0636735B2 (en) 1990-01-26 1990-01-26 A novel rhabdovirus isolated from horseradish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1720190A JPH0636735B2 (en) 1990-01-26 1990-01-26 A novel rhabdovirus isolated from horseradish

Publications (2)

Publication Number Publication Date
JPH03224481A JPH03224481A (en) 1991-10-03
JPH0636735B2 true JPH0636735B2 (en) 1994-05-18

Family

ID=11937327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1720190A Expired - Lifetime JPH0636735B2 (en) 1990-01-26 1990-01-26 A novel rhabdovirus isolated from horseradish

Country Status (1)

Country Link
JP (1) JPH0636735B2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2627029T3 (en) 2003-02-12 2017-07-26 The Procter & Gamble Company Absorbent core for an absorbent article
EP1808152B1 (en) 2003-02-12 2012-08-29 The Procter and Gamble Company Absorbent Core for an Absorbent Article
PL2478883T3 (en) 2007-06-18 2017-01-31 The Procter And Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
EP2157956B1 (en) 2007-06-18 2013-07-17 The Procter and Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
CA2722538C (en) 2008-04-29 2014-08-12 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
EP2329803B1 (en) 2009-12-02 2019-06-19 The Procter & Gamble Company Apparatus and method for transferring particulate material
SG194984A1 (en) 2011-06-10 2013-12-30 Procter & Gamble Absorbent structure for absorbent articles
ES2484695T5 (en) 2011-06-10 2018-02-13 The Procter & Gamble Company Disposable diaper that has a reduced joint between the absorbent core and the backing sheet
ES2459724T3 (en) 2011-06-10 2014-05-12 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
CA2838980A1 (en) 2011-06-10 2012-12-13 The Procter & Gamble Company Absorbent core for disposable absorbent articles
EP2532329B1 (en) 2011-06-10 2018-09-19 The Procter and Gamble Company Method and apparatus for making absorbent structures with absorbent material
EP2717820B2 (en) 2011-06-10 2022-09-07 The Procter & Gamble Company Absorbent structure for absorbent articles
CA2838951C (en) 2011-06-10 2019-07-16 The Procter & Gamble Company An absorbent core for disposable diapers comprising longitudinal channels
DE202013012607U1 (en) 2012-11-13 2017-11-19 The Procter & Gamble Company Absorbent article with channels and signals
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
EP2740449B1 (en) 2012-12-10 2019-01-23 The Procter & Gamble Company Absorbent article with high absorbent material content
PL2740452T3 (en) 2012-12-10 2022-01-31 The Procter & Gamble Company Absorbent article with high absorbent material content
EP2740450A1 (en) 2012-12-10 2014-06-11 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
ES2655690T3 (en) 2013-06-14 2018-02-21 The Procter & Gamble Company Absorbent article and absorbent core formation channels when wet
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
FR3010631A1 (en) 2013-09-16 2015-03-20 Procter & Gamble ABSORBENT ARTICLES WITH CHANNELS AND SIGNALS
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
EP2851048B1 (en) 2013-09-19 2018-09-05 The Procter and Gamble Company Absorbent cores having material free areas
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
EP2905001B1 (en) 2014-02-11 2017-01-04 The Procter and Gamble Company Method and apparatus for making an absorbent structure comprising channels
EP2949300B1 (en) 2014-05-27 2017-08-02 The Procter and Gamble Company Absorbent core with absorbent material pattern
RU2017133027A (en) 2015-03-16 2019-04-16 Дзе Проктер Энд Гэмбл Компани Rugged Absorbent Products
WO2016149251A1 (en) 2015-03-16 2016-09-22 The Procter & Gamble Company Absorbent articles with improved cores
CA2985807A1 (en) 2015-05-12 2016-11-17 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
JP6743057B2 (en) 2015-05-29 2020-08-19 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Absorbent article having channels and wetness indicators
EP3167859B1 (en) 2015-11-16 2020-05-06 The Procter and Gamble Company Absorbent cores having material free areas
EP3238676B1 (en) 2016-04-29 2019-01-02 The Procter and Gamble Company Absorbent core with profiled distribution of absorbent material
EP3238678B1 (en) 2016-04-29 2019-02-27 The Procter and Gamble Company Absorbent core with transversal folding lines

Also Published As

Publication number Publication date
JPH03224481A (en) 1991-10-03

Similar Documents

Publication Publication Date Title
JPH0636735B2 (en) A novel rhabdovirus isolated from horseradish
Sylvia et al. Phenolic compounds and resistance to fungal pathogens induced in primary roots of Douglas-fir seedlings by the ectomycorrhizal fungus Laccaria laccata.
Seemüller Investigations to demonstrate mycoplasmalike organisms in diseased plants by fluorescence microscopy
Roberts et al. Detection of potato leafroll and potato mop‐top viruses by immunosorbent electron microscopy
Mircetich et al. Etiology of almond leaf scorch disease and transmission of the causal agent
Wakman et al. Presence of a clostero-like virus and a bacilliform virus in pineapple plants in Australia
Adams et al. The effect of cultivar used as host for Polymyxa gmminis on the multiplication and transmission of barley yellow mosaic virus (BaYMV)
Burpee et al. The influence of Pratylenchus penetrans on the incidence and severity of Verticillium wilt of potato
Conci et al. Program for intensive production of virus-free garlic plants
Maha et al. Identification, characterization and ultrastructure aspects of Alfalfa mosaic virus infecting potato (Solanum tuberosum L.) in Egypt
Mian et al. The onset of nitrogen fixation in young alder plants and its relation to differentiation in the nodular endophyte
KUMARASINGHE et al. Rhizobium-stimulated callose formation in clover root hairs and its relation to infection
Silva et al. Detection of tomato mosaic virus in tomato seed and treatment by thermotherapy
Hiruki et al. Light and electron microscopy of Vinca plants infected with mycoplasma-like bodies of the sandal spike disease
Paulitz et al. Is Spizellomyces punctatum a parasite or saprophyte of vesicular-arbuscular mycorrhizal fungi?
Barbara et al. Assessment of UK hops for the occurrence of hop latent and hop stunt viroids
Lawson Controlling Virus Diseases in Major International Flower and Bulb Crops.
Munro Viruses infecting hop, Humulus lupulus, in Australia
Khan et al. Detection, diagnosis and pathogenic potential of Meloidogyne incognita on passion fruit from Mizoram, India
Michail et al. Use of culture filtrates as a rapid technique for screening lucerne for resistance to Verticillium alboatrum
Cahill et al. Changes in root tissue associated with infection by Phytophthora cinnamomi.
Allen et al. Recent advances in research on lily symptomless virus
JPH0636736B2 (en) New Carlavirus isolated from horseradish
Takeuchi et al. Direct immunostaining assay, a new simplified technique for detection of tobamoviruses from seeds of green pepper (Capsicum annuum L.)
Salamon et al. Investigation on the transmission of some Tobamoviruses by pollen and seed in pepper (Capsicum annuum L.)