WO2012043708A1 - アルコキシシリル基を有するブロック共重合体水素化物及びその利用 - Google Patents

アルコキシシリル基を有するブロック共重合体水素化物及びその利用 Download PDF

Info

Publication number
WO2012043708A1
WO2012043708A1 PCT/JP2011/072348 JP2011072348W WO2012043708A1 WO 2012043708 A1 WO2012043708 A1 WO 2012043708A1 JP 2011072348 W JP2011072348 W JP 2011072348W WO 2012043708 A1 WO2012043708 A1 WO 2012043708A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
polymer
solar cell
weight
parts
Prior art date
Application number
PCT/JP2011/072348
Other languages
English (en)
French (fr)
Inventor
小原 禎二
淳 石黒
竜太 栗原
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US13/877,119 priority Critical patent/US20130244367A1/en
Priority to CN201180057357.8A priority patent/CN103249746B/zh
Priority to EP11829261.4A priority patent/EP2623526B1/en
Priority to PCT/JP2011/072348 priority patent/WO2012043708A1/ja
Priority to JP2012536541A priority patent/JP5807643B2/ja
Publication of WO2012043708A1 publication Critical patent/WO2012043708A1/ja
Priority to US15/331,442 priority patent/US20170037157A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention provides a block copolymer hydride having an alkoxysilyl group, suitable as a sealing material for sealing a solar cell element in a solar cell module, a method for producing the same, a solar cell element sealing material, and the sealing material
  • the present invention relates to a sealing sheet, a laminated sheet, a multilayer sheet, and a solar cell element.
  • sealing material 3 for sealing the solar cell element a sealing material composed of a cured product of EVA obtained by crosslinking and curing an ethylene / vinyl acetate copolymer (EVA) using a crosslinking agent such as an organic peroxide. Stop materials are widely used.
  • EVA cured product used as a sealing material is excellent in transparency and light resistance, but contains a repeating unit derived from vinyl acetate, so it is hydrolyzed over time with moisture or water entering from the outside and acetic acid is used. There is also a concern that acetic acid generated may come into contact with wiring and electrodes inside the battery to promote corrosion.
  • inorganic oxidation as a barrier layer on the back protection sheet Measures are taken such as a method of laminating a vapor deposition layer of a product (Patent Document 1 or the like), a method of using a cyclic olefin resin sheet having a low moisture permeability for the back surface protection sheet (Patent Documents 2 and 3 or the like).
  • Patent Document 1 a method of laminating a vapor deposition layer of a product
  • Patent Documents 2 and 3 or the like a method of using a cyclic olefin resin sheet having a low moisture permeability for the back surface protection sheet.
  • a method using a sealing resin that does not generate acid by hydrolysis for example, a method using an ethylene / ⁇ -olefin copolymer and a crosslinking agent (Patent Documents 6 and 7), A method using a propylene polymer and a specific propylene copolymer (Patent Document 8) has also been proposed.
  • the resin used has low hygroscopicity and moisture permeability, and it is considered that the influence of acid generation is also reduced.
  • a cross-linking step is necessary to produce a solar cell element sealing sheet. there were.
  • Patent Document 9 discloses a prepolymer having at least three blocks, a hard block mainly composed of a repeating unit derived from an aromatic vinyl monomer, and a soft block mainly composed of a repeating unit derived from a conjugated diene.
  • the block copolymer obtained by hydrogenating a carbon-carbon double bond is characterized by high heat distortion resistance, good mechanical properties, high transparency, particularly low water absorption, and is a mechanically fragile system (for example, It is described that it can be used as a cover for protection in the field of solar cells).
  • this block copolymer as a sealing material for solar cell elements is not suggested.
  • Patent Document 10 discloses that a vinyl alicyclic hydrocarbon polymer obtained by hydrogenating a carbon-carbon double bond is utilized for various applications including a sealing material for electrical and electronic parts. It is disclosed that it can be done.
  • the specifically disclosed polymers are block polymers that do not have a conjugated diene block, and are polymers that have a high proportion of aromatic vinyl monomers.
  • the present invention has been made in view of the above-described prior art, has low hygroscopicity, non-hydrolyzability, weather resistance, transparency, flexibility, and has been exposed to a high temperature and high humidity environment for a long time.
  • Block copolymer hydride useful as a solar cell element sealing material that can maintain a strong adhesive force with glass and seal a solar cell element without performing a special water shielding treatment, It is an object of the present invention to provide a manufacturing method, a solar cell element sealing material, a sheet made of the solar cell element sealing material, a laminated sheet, a multilayer sheet, and a solar cell element sealing method.
  • Patent Document 9 The inventors of the present invention have tried to use a block copolymer described in Patent Document 9 in which a large proportion of aromatic vinyl monomer is used as a sealing material for solar cell elements. It was found that the polymer layer was cracked easily and was not suitable as a sealing material. Therefore, as a result of further investigations to eliminate this problem, a block copolymer hydride obtained by hydrogenating a carbon-carbon unsaturated bond of a block copolymer having a specific polymer block was converted into an organic peroxide. In the presence of the product, a modified polymer obtained by modifying with an ethylenically unsaturated silane compound was obtained.
  • the resin composition containing this modified polymer has low hygroscopicity, non-hydrolyzability, weather resistance, transparency and flexibility, and even after being exposed to a high temperature and high humidity environment for a long time, It has been found that a solar cell element can be sealed without maintaining a strong adhesive force with glass and performing a special water shielding treatment.
  • the present inventors have found that when a modified polymer of the specific block copolymer hydride is used as a sealing material when a solar cell element is sealed by vacuum lamination, a conventional EVA is used. It was found that solar cell elements, particularly crystalline solar cell elements, are likely to break unless they are sealed at a higher temperature than the solar cell encapsulant using the cured product. In the case of a sealing material made of a cured product of EVA, the sealing temperature is usually 150 ° C. or lower, but when a modified polymer of the specific block copolymer hydride is used, it usually requires 160 ° C. or higher.
  • an alkoxysilyl group was added to the layer [I] composed of a modified polymer of the specific block copolymer hydride and an olefinic (co) polymer having a specific melting point. It has been found that the use of a multilayer sheet laminated with a layer [II] made of a modified polymer having introduced therein can prevent cracking of a solar cell element (particularly, a crystalline solar cell element) even when sealed at a lower temperature. The present invention has been completed by collecting these findings.
  • a block copolymer hydride having an alkoxysilyl group (1) to (3) a block copolymer hydride having an alkoxysilyl group, (4) a method for producing a block copolymer hydride having an alkoxysilyl group, (5) to (8) A solar cell element sealing material, (9) sheet, (10) laminated sheet, (11) to (14) multilayer sheet, and (15) a solar cell element sealing method are provided.
  • the block copolymer hydride obtained by hydrogenating 90% or more of the total unsaturated bonds of the block copolymer having a ratio (wA: wB) of 40:60 to 60:40 with an alkoxysilyl group A block copolymer hydride having an alkoxysilyl group, which is introduced.
  • the block copolymer hydride obtained by hydrogenating 90% or more of the total unsaturated bonds of the block copolymer having a ratio (wA: wB) of 20:80 to 60:40, Characterized by reacting an ethylenically unsaturated silane compound in the presence of an organic peroxide, The manufacturing method of the block copolymer hydride which has the alkoxy silyl group as described in (1).
  • the ethylenically unsaturated silane compound is vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, p-styryltrimethoxysilane and p-
  • the production method according to (3) which is at least one selected from the group consisting of styryltriethoxysilane.
  • the solar cell element sealing material according to (5) wherein the hindered amine light stabilizer is contained in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the block copolymer hydride having an alkoxysilyl group.
  • the solar cell element sealing material according to (5) containing an ultraviolet absorber in an amount of 0.01 to 0.1 part by weight with respect to 100 parts by weight of the block copolymer hydride having an alkoxysilyl group.
  • the solar cell element sealing according to (5) containing a phosphorus-based antioxidant in an amount of 0.01 to 0.1 parts by weight with respect to 100 parts by weight of the block copolymer hydride having an alkoxysilyl group.
  • Wood (9) A sheet comprising the solar cell element sealing material according to any one of (5) to (8).
  • Polymer block [A] having at least two repeating units derived from an aromatic vinyl compound as a main component and at least one repeating unit having a repeating unit derived from a chain conjugated diene compound as a main component
  • a block copolymer comprising a combined block [B]
  • a block copolymer comprising at least two polymer blocks [A] and at least one polymer block [B]
  • WA and wB when the weight fraction of the polymer block [A] in the entire block copolymer is wA, and the weight fraction of the polymer block [B] in the entire block copolymer is wB.
  • the layer [I] containing the block copolymer hydride (i) having an alkoxysilyl group described in (2) above, and ethylene and / or an ⁇ -olefin having 3 to 10 carbon atoms are polymerized.
  • the layer [I] contains 0.01 to 0.2 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the block copolymer hydride having an alkoxysilyl group (i). And / or the layer [II] contains 0.01 to 0.2 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the (co) polymer (ii).
  • the multilayer sheet as described.
  • a method for sealing a solar cell element wherein the layer [I] side of the multilayer sheet described in (14) is used so as to be in contact with a crystalline solar cell.
  • the block copolymer hydride having an alkoxysilyl group of the present invention comprises a polymer block [A] having a high glass transition temperature and excellent heat resistance, and a polymer block [B] having a low glass transition temperature and excellent flexibility. Therefore, it has low hygroscopicity, low moisture permeability, transparency, weather resistance and flexibility. Since the block copolymer hydride having an alkoxysilyl group of the present invention has an alkoxysilyl group, the solar cell encapsulant containing this has a glass and glass structure even after being exposed to a high temperature and high humidity environment for a long time. Thus, the solar cell element can be sealed without a special water shielding treatment. According to the production method of the present invention, the block copolymer hydride having an alkoxysilyl group of the present invention can be produced efficiently and simply.
  • the solar cell element encapsulant of the present invention the sheet comprising the encapsulant, the laminated sheet, and the multilayer sheet have low moisture absorption, low moisture permeability, transparency, weather resistance, flexibility, heat resistance, and low temperature sealing. Even after being exposed to a high-temperature and high-humidity environment for a long time, the solar cell element can be sealed without applying a special water shielding treatment while maintaining a strong adhesive force with glass. Is. Moreover, since it has sufficient heat resistance even if it does not crosslink and harden
  • the multilayer sheet of the present invention has improved flexibility, it is possible to prevent cracking of a solar cell element, particularly a crystalline solar cell element, during vacuum lamination.
  • the solar cell element can be sealed without performing a special water shielding treatment.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a crystalline silicon-based solar cell module.
  • the present invention includes 1) a block copolymer hydride having an alkoxysilyl group, 2) a method for producing a block copolymer hydride having an alkoxysilyl group, 3) a solar cell element sealing material, 4) a sheet, and This will be described in detail by dividing into a laminated sheet, 5) a multilayer sheet, and 6) a solar cell element sealing method.
  • Block copolymer hydride having an alkoxysilyl group is composed of a heavy compound mainly composed of at least two repeating units derived from an aromatic vinyl compound. 90% or more of the carbon-carbon unsaturated bonds of the block copolymer comprising the combined block [A] and the polymer block [B] having at least one repeating unit derived from a chain conjugated diene compound as a main component Is a hydrogenated block copolymer having an alkoxysilyl group.
  • Block copolymer The block copolymer used in the present invention has at least two polymer blocks [A] and at least one polymer block [B].
  • the polymer block [A] has a repeating unit derived from an aromatic vinyl compound as a main component.
  • the content of the repeating unit derived from the aromatic vinyl compound in the polymer block [A] is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more.
  • Examples of the component other than the repeating unit derived from the aromatic vinyl compound in the polymer block [A] include a repeating unit derived from a chain conjugated diene described later and a repeating unit derived from another unsaturated compound. Its content is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less. When there are too few repeating units derived from the aromatic vinyl compound in the polymer block [A], the heat resistance of the resulting polymer may be lowered.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4- Examples thereof include t-butylstyrene, 5-t-butyl-2-methylstyrene, 4-chlorostyrene, 3,4-dichlorostyrene, 4-fluorostyrene, 4-methoxystyrene, 4-phenylstyrene and the like.
  • those not containing a polar group such as a hydroxyl group, an alkoxy group, and a halogen atom are preferable, and styrene is particularly preferable.
  • unsaturated compounds include chain vinyl compounds, cyclic vinyl compounds, unsaturated cyclic acid anhydrides, unsaturated imide compounds, and the like. These unsaturated compounds may have an alkyl group, a nitrile group, an alkoxy group, an alkoxycarbonyl group, a carboxyl group, or a halogen atom as a substituent, but a nitrile group, an alkoxy group, an alkoxycarbonyl group, a carboxyl group, Those having no polar group such as a halogen atom are preferred in terms of hygroscopicity.
  • Chain vinyl compounds include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-eicosene, 4-methyl -1-pentene, 4,6-dimethyl-1-heptene, and the like.
  • Examples of the cyclic vinyl compound include vinylcyclohexane and the like. Among these, a chain olefin is preferable and ethylene and propylene are more preferable.
  • the number of polymer blocks [A] in the block copolymer is usually 2 or more and 5 or less, preferably 2 or more and 4 or less, more preferably 2 or 3.
  • the plurality of polymer blocks [A] may be the same as or different from each other.
  • the polymer block [B] has a repeating unit derived from a chain conjugated diene compound as a main component.
  • the content of the repeating unit derived from the chain conjugated diene compound in the polymer block [B] is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more.
  • the resin composition of the present invention is excellent in the balance between flexibility and solar cell element sealing properties.
  • examples of the component other than the repeating unit derived from the chain conjugated diene compound in the polymer block [B] include a repeating unit derived from the aromatic vinyl compound and / or a repeating unit derived from another unsaturated compound.
  • the content of components other than the repeating unit derived from the chain conjugated diene compound is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less.
  • the plurality of polymer blocks [B] may be the same as or different from each other.
  • chain conjugated diene compound examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like.
  • chain conjugated diene compound those not containing a polar group such as a hydroxyl group, an alkoxy group, a halogen atom and a carboxyl group are preferable from the viewpoint of hygroscopicity, and 1,3-butadiene and isoprene are particularly preferable.
  • the maximum and minimum weight average molecular weights in the polymer block [A] are Mw (A1) and Mw (A2), respectively.
  • the ratio of Mw (A1) and Mw (A2) is defined as Mw (B1) and Mw (B2), respectively.
  • Mw (A1) / Mw (A2)) and the ratio of Mw (B1) and Mw (B2) (Mw (B1) / Mw (B2)) are each 2.0 or less, preferably 1.5. Below, more preferably 1.2 or less.
  • the form of the block of the block copolymer may be a chain type block or a radial type block, but a chain type block is preferred because of excellent mechanical strength.
  • the most preferred form is a triblock copolymer ([A] / [B] / [A]) in which the polymer block [A] is bonded to both ends of the polymer block [B], and the polymer block [A].
  • the polymer block [B] is bonded to both ends of the polymer block, and the polymer block [A] is bonded to the other end of the polymer block [B]. / [A] / [B] / [A]).
  • the weight fraction of the polymer block [A] in the entire block copolymer is wA
  • the weight fraction of the polymer block [B] in the entire block copolymer is wB
  • the ratio (wA: wB) is 20:80 to 60:40, preferably 25:75 to 60:40, and more preferably 40:60 to 60:40.
  • the molecular weight of the block copolymer is a weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, and is usually 30,000 to 200,000. , Preferably 40,000 to 150,000, more preferably 50,000 to 100,000. Further, the molecular weight distribution (Mw / Mn) of the block copolymer is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less.
  • the polymer block [A] is formed.
  • the monomer mixture (a2) containing the aromatic vinyl compound for forming the polymer block [A] (the monomer mixture (a1) and the monomer mixture (a2) may be the same or different) is polymerized third.
  • any method such as radical polymerization, anion polymerization, cation polymerization, coordination anion polymerization, and coordination cation polymerization may be used.
  • a method of performing radical polymerization, anionic polymerization, cationic polymerization, etc. by living polymerization particularly a method of performing living anionic polymerization, facilitates the hydrogenation reaction in the polymerization operation and in the subsequent steps, and the resulting block copolymer. This is preferable because of improved transparency.
  • the polymerization is performed in the presence of a polymerization initiator.
  • a polymerization initiator for example, in the case of living anion polymerization, monoorganolithium such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium; dilithiomethane, 1,4-dilithiobutane, 1 Polyfunctional organolithium compounds such as 1,4-dilithio-2-ethylcyclohexane and the like.
  • the reaction temperature is usually 0 ° C. to 100 ° C., preferably 10 ° C. to 80 ° C., particularly preferably 20 ° C. to 70 ° C.
  • the polymerization reaction form may be any of solution polymerization, slurry polymerization, and the like. However, when solution polymerization is used, reaction heat can be easily removed. In this case, an inert solvent in which the polymer obtained in each step is dissolved is used.
  • the solvent to be used is not particularly limited as long as it is inert to the reaction.
  • aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane, isooctane; cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, decalin, bicyclo [4.3.0 ] Nonane, tricyclo [4.3.0.1 2,5 ] decane and other alicyclic hydrocarbons; benzene, toluene and other aromatic hydrocarbons; and the like.
  • alicyclic hydrocarbons are preferred because they can be used as they are as an inert solvent for the hydrogenation reaction described later and the solubility of the block copolymer is good.
  • These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is usually 200 to 2000 parts by weight with respect to 100 parts by weight of all the monomers used.
  • a randomizer or the like can be used in order to prevent only one component chain from becoming long.
  • a Lewis base compound or the like it is preferable to use a Lewis base compound or the like as a randomizer.
  • Lewis base compounds examples include ether compounds such as dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, ethylene glycol methyl phenyl ether; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine. And the like; tertiary metal compounds such as potassium-t-amyl oxide and potassium-t-butyl oxide; phosphine compounds such as triphenylphosphine; and the like. These Lewis base compounds may be used alone or in combination of two or more.
  • Block copolymer hydride used in the present invention comprises carbon-carbon unsaturated bonds in the main chain and side chains of the block copolymer, and carbon-carbon unsaturated bonds in the aromatic ring. Is hydrogenated.
  • the hydrogenation rate is usually 90% or more, preferably 97% or more, more preferably 99% or more. The higher the hydrogenation rate, the better the transparency, weather resistance, and heat resistance of the resulting solar cell element sealing material.
  • the hydrogenation rate of the block copolymer hydride can be determined by measurement by 1 H-NMR.
  • the hydrogenation rate of the carbon-carbon unsaturated bonds in the main chain and the side chain is preferably 95% or more, more preferably 99% or more.
  • the hydrogenation rate of the carbon-carbon unsaturated bond of the aromatic ring is preferably 90% or more, more preferably 93% or more, and particularly preferably 95% or more.
  • the hydrogenation method or reaction mode of the unsaturated bond there are no particular restrictions on the hydrogenation method or reaction mode of the unsaturated bond, and it may be carried out according to a known method, but a hydrogenation method that can increase the hydrogenation rate and has little polymer chain scission reaction is preferred.
  • a hydrogenation method include a method using a catalyst containing at least one metal selected from nickel, cobalt, iron, titanium, rhodium, palladium, platinum, ruthenium, rhenium and the like in an organic solvent.
  • the hydrogenation catalyst either a heterogeneous catalyst or a homogeneous catalyst can be used.
  • the heterogeneous catalyst can be used in the form of a metal or metal compound or supported on a suitable carrier.
  • the carrier include activated carbon, silica, alumina, calcium carbonate, titania, magnesia, zirconia, diatomaceous earth, silicon carbide, calcium fluoride and the like.
  • the amount of the catalyst supported is usually in the range of 0.1 to 60% by weight, preferably 1 to 50% by weight, based on the total amount of the catalyst and the carrier.
  • a catalyst having a specific surface area of 100 to 500 m 2 / g and an average pore diameter of 100 to 1000 mm, preferably 200 to 500 mm is preferable.
  • the value of the specific surface area is a value calculated by measuring the nitrogen adsorption amount and using the BET equation, and the value of the average pore diameter is a value measured by a mercury intrusion method.
  • the homogeneous catalyst for example, a catalyst obtained by combining a nickel, cobalt, titanium or iron compound and an organometallic compound (for example, an organoaluminum compound or an organolithium compound); an organometallic complex catalyst; or the like can be used.
  • an organometallic compound for example, an organoaluminum compound or an organolithium compound
  • an organometallic complex catalyst or the like
  • Examples of the nickel, cobalt, titanium, or iron compound include various metal acetylacetonate compounds, carboxylates, and cyclopentadienyl compounds.
  • Examples of the organoaluminum compound include alkylaluminums such as triethylaluminum and triisobutylaluminum; aluminum halides such as diethylaluminum chloride and ethylaluminum dichloride; alkylaluminum hydrides such as diisobutylaluminum hydride; and the like.
  • organometallic complex catalyst examples include dihydrido-tetrakis (triphenylphosphine) ruthenium, dihydrido-tetrakis (triphenylphosphine) iron, bis (cyclooctadiene) nickel, bis (cyclopentadienyl) nickel, and the like.
  • These hydrogenation catalysts may be used alone or in combination of two or more.
  • the amount of the hydrogenation catalyst used is usually 0.01 to 100 parts by weight, preferably 0.05 to 50 parts by weight, more preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer.
  • the hydrogenation reaction temperature is usually 10 ° C to 250 ° C, preferably 50 ° C to 200 ° C, more preferably 80 ° C to 180 ° C. When the reaction temperature is in such a range, the hydrogenation rate increases and molecular cleavage also decreases.
  • the hydrogen pressure is usually 0.1 MPa to 30 MPa, preferably 1 MPa to 20 MPa, more preferably 2 MPa to 10 MPa. When the hydrogen pressure is within such a range, the hydrogenation rate increases, molecular chain scission decreases, and operability is excellent.
  • the hydrogenation catalyst and / or the polymerization catalyst are removed from the reaction solution by a method such as filtration or centrifugation, and the block copolymer hydride is recovered.
  • a method for recovering the block copolymer hydride from the reaction solution include a steam coagulation method in which the solvent is removed by steam stripping from a solution in which the block copolymer hydride is dissolved, and the solvent is removed under reduced pressure heating.
  • Known methods such as a direct desolvation method and a coagulation method in which a solution is poured into a poor solvent of a block copolymer hydride to precipitate and solidify can be exemplified.
  • the form of the recovered block copolymer hydride is not limited, it is usually formed into a pellet shape so that it can be easily used for the subsequent silylation modification reaction (reaction for introducing an alkoxysilyl group).
  • the direct desolvation method for example, the molten block copolymer hydride can be extruded from a die into a strand shape, cooled, and then cut with a pelletizer into pellets for various moldings.
  • the obtained solidified product can be dried and then extruded in a molten state by an extruder and pelletized in the same manner as above to be subjected to a silylation modification reaction.
  • the molecular weight of the resulting block copolymer hydride is a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent, and is usually 30,000 to 200,000, preferably 40,000 to 150, 000, more preferably 50,000 to 100,000. When the Mw is within this range, mechanical strength and heat resistance are improved.
  • the molecular weight distribution (Mw / Mn) of the block copolymer hydride is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. When Mw and Mw / Mn are in the above ranges, the mechanical strength and heat resistance of the formed solar cell element sealing material are improved.
  • Block copolymer hydride having an alkoxysilyl group The block copolymer hydride having an alkoxysilyl group of the present invention is obtained by introducing an alkoxysilyl group into the block copolymer hydride.
  • the alkoxysilyl group may be directly bonded to the block copolymer hydride or may be bonded via a divalent organic group such as an alkylene group.
  • the amount of alkoxysilyl group introduced is usually 0.1 to 10 g / 100 g, preferably 0.2 to 5 g / 100 g, more preferably 0.3 to 3 g / 100 g based on the weight of the block copolymer hydride. is there.
  • the introduction amount of the alkoxysilyl group can be calculated from the measurement data obtained by measuring a 1 H-NMR spectrum (when the introduction amount is small, increase the number of integrations).
  • the method for introducing an alkoxysilyl group is not particularly limited, but as described later, a method of reacting the block copolymer hydride with an ethylenically unsaturated silane compound in the presence of an organic peroxide is preferable.
  • the method for producing a hydride of a block copolymer having an alkoxysilyl group according to the present invention comprises the above hydride of a block copolymer in the presence of an organic peroxide. It is characterized by reacting an ethylenically unsaturated silane compound.
  • the ethylenically unsaturated silane compound to be used is not particularly limited as long as it is capable of graft polymerization with the block copolymer hydride in the presence of an organic peroxide and introducing an alkoxysilyl group into the block copolymer hydride. .
  • an alkoxysilane having a vinyl group such as vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsilane, or diethoxymethylvinylsilane
  • an alkoxysilane having an allyl group such as allyltrimethoxysilane or allyltriethoxysilane
  • p-styryl Alkoxysilanes having a p-styryl group such as trimethoxysilane and p-styryltriethoxysilane
  • 3- Alkoxysilanes having a 3-methacryloxypropyl group such as methacryloxypropylmethyldiethoxysilane
  • 3-acryloxypropyltrimethoxysilane 3-acryloxypropyl Alk
  • vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, allyltrimethoxysilane, allyltriethoxysilane, p-styryltrimethoxy Silane is preferred.
  • These ethylenically unsaturated silane compounds may be used singly or in combination of two or more.
  • the amount of the ethylenically unsaturated silane compound used is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.3 to 10 parts by weight with respect to 100 parts by weight of the block copolymer hydride. 3 parts by weight.
  • the organic peroxide used is not particularly limited as long as it functions as a radical reaction initiator.
  • t-butyl cumyl peroxide dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxyhexane), di-t-butyl Peroxide or the like is preferably used.
  • the amount of the organic peroxide used is usually 0.01 to 5 parts by weight, preferably 0.2 to 3 parts by weight, more preferably 0.3 to 2 parts by weight per 100 parts by weight of the block copolymer hydride. Part.
  • a heating kneader or a reactor can be used.
  • a mixture of a block copolymer hydride, an ethylenically unsaturated silane compound, and an organic peroxide is heated and melted at a temperature equal to or higher than the melting temperature of the block copolymer in a biaxial kneader and kneaded for a desired time. As a result, the object can be obtained.
  • the kneading temperature is usually 180 to 240 ° C, preferably 190 to 230 ° C, more preferably 200 to 220 ° C.
  • the heat kneading time is usually about 0.1 to 15 minutes, preferably about 0.2 to 10 minutes, and more preferably about 0.3 to 5 minutes.
  • the kneading and extruding may be performed continuously such that the residence time is in the above range.
  • the molecular weight of the block copolymer hydride having an alkoxysilyl group obtained as described above is substantially the same as the molecular weight of the raw block copolymer hydride because the amount of the introduced alkoxysilyl group is small. Absent. However, since it is obtained by a modification reaction in the presence of an organic peroxide, a cross-linking reaction and a cleavage reaction of the polymer occur simultaneously, and the molecular weight distribution becomes large.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent is usually 30,000 to 200,000, preferably 40,000 to 150,000, more preferably 50,000 to
  • the molecular weight distribution (Mw / Mn) is usually 3.5 or less, preferably 2.5 or less, particularly preferably 2.0 or less. When Mw and Mw / Mn are within this range, good mechanical strength and tensile elongation of the obtained solar cell element sealing material are maintained.
  • the resulting block copolymer hydride having an alkoxysilyl group has excellent adhesion to glass, metal, etc., so when used as a solar cell element sealing material, adhesion to a glass substrate on the surface, copper wiring, etc. Becomes higher. Therefore, a sufficient adhesive force can be maintained even after 1000 hours of exposure to a high-temperature and high-humidity environment of 85 ° C. and 85% RH, which is usually performed in the reliability evaluation of solar cells.
  • the solar cell element encapsulant of the present invention is a block copolymer hydride having an alkoxysilyl group of the present invention (hereinafter, this may be referred to as “alkoxysilylated polymer”). .).
  • the alkoxysilylated polymer of the present invention is usually 60% by weight or more, preferably 75% by weight or more, more preferably 90% by weight with respect to the entire solar cell element sealing material. % Or more.
  • the balance other than the alkoxysilylated polymer in the solar cell element sealing material preferably contains a compounding agent for improving the performance of the solar cell element sealing material.
  • the compounding agent examples include polymers other than the alkoxysilylated polymer, light stabilizers, ultraviolet absorbers, antioxidants, lubricants, inorganic fillers, and the like. These compounding agents may be used alone or in combination of two or more.
  • a polymer other than the alkoxysilylated polymer (hereinafter sometimes referred to as “other polymer”) is added to improve the resin characteristics of the solar cell element sealing material.
  • Other polymers to be used include hydrogenated block copolymers that are precursors of the alkoxysilylated polymers; olefin polymers such as ethylene / propylene copolymers and propylene / ethylene / 1-butene copolymers; Polyisobutylene, isobutylene-based polymers such as isobutylene-isoprene copolymer hydride; diene-based polymers such as acrylonitrile-butadiene random copolymer, acrylonitrile-butadiene-styrene copolymer, isoprene-styrene block copolymer; poly Acrylic polymers such as butyl acrylate and polyhydroxyethyl methacrylate; Epoxy
  • the light stabilizer is added for the purpose of improving the weather resistance of the solar cell element sealing material.
  • the light stabilizer used is preferably a hindered amine light stabilizer.
  • a hindered amine light stabilizer for example, in the structure, 3,5-di-t-butyl-4-hydroxyphenyl group, 2,2,6,6-tetramethylpiperidyl group, or 1,2,2,6,6-pentamethyl-4- Examples include compounds having a piperidyl group and the like.
  • N, N′-bis (2,2,6,6-tetramethyl-4-N-methylpiperidyl) -N, N′-diformyl-alkylenediamines N, N′-bis (2,2,6,6-tetramethyl-4-N-methylpiperidyl), N, N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylalkylenediamine, N, N′-bis (2,2,6,6-tetramethyl- 4-piperidyl) -N, N′-bisalkylene fatty acid amides
  • poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]] is preferred, and N
  • the amount of the hindered amine light stabilizer used is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.4 to 2 parts by weight based on 100 parts by weight of the alkoxysilylated polymer. 5 parts by weight.
  • the amount of the hindered amine light stabilizer is less than this, the weather resistance of the solar cell element sealing material may be insufficient, and when it is more than this, the solar cell element sealing material is melted into a sheet shape.
  • the T-die or cooling roll of the extruder may be severely soiled, resulting in poor workability.
  • UV absorber An ultraviolet absorber is added in order to improve the light stability of a solar cell element sealing material more.
  • examples of the ultraviolet absorber used include benzophenone ultraviolet absorbers, salicylic acid ultraviolet absorbers, and benzotriazole ultraviolet absorbers. These ultraviolet absorbers can be used alone or in combination of two or more.
  • benzophenone ultraviolet absorbers examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid trihydrate, 2-hydroxy-4-octyloxy Benzophenone, 4-dodecaloxy-2-hydroxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, etc. Is mentioned.
  • salicylic acid ultraviolet absorbers examples include phenylsulcylate, 4-t-butylphenyl-2-hydroxybenzoate, phenyl-2-hydroxybenzoate, 2,4-di-t-butylphenyl-3,5-di-t. -Butyl-4-hydroxybenzoate, hexadecyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • Benzotriazole ultraviolet absorbers include 2- (2-hydroxy-5-methylphenyl) 2H-benzotriazole, 2- (3-t-butyl-2-hydroxy-5-methylphenyl) -5-chloro-2H -Benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) -5-chloro-2H-benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) -2H-benzotriazole, 5-chloro-2- (3,5-di-t-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (3,5-di-t-amyl-2-hydroxy Phenyl) -2H-benzotriazole, 2- (2-hydroxy-5-t-octylphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octyl) Ruphenyl) -2H-benzotriazole, 2- (2H-benz
  • the amount of the ultraviolet absorber used is usually 0.01 to 1 part by weight, preferably 0.02 to 0.5 part by weight, more preferably 0.04 to 0.00 part per 100 parts by weight of the alkoxysilylated polymer. 3 parts by weight.
  • the ultraviolet absorber can further improve the light resistance when used in combination with a hindered amine light stabilizer, but no further improvement is observed even if it is added in excess beyond the above range.
  • Antioxidant is added in order to improve the thermal stability of a solar cell element sealing material.
  • examples of the antioxidant to be used include phosphorus antioxidants, phenol antioxidants, sulfur antioxidants and the like, and phosphorus antioxidants with less coloring are preferable.
  • Phosphorous antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t -Butylphenyl) phosphite, monophosphite such as 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl phosphite), 4,4′-isopropylidene-bis (phenyl-di-alkyl (C12 to C15) ) Phosphite) and other diphos
  • phenolic antioxidants include pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3,9-bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) proonyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5,5] undecane, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and the like.
  • sulfur-based antioxidants examples include dilauryl-3,3′-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, laurylstearyl-3,3.
  • '-Thiodipropionate pentaerythritol-tetrakis- ( ⁇ -lauryl-thio-propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] An undecane etc. are mentioned.
  • the amount of the antioxidant used is usually 0.01 to 1 part by weight, preferably 0.05 to 0.5 part by weight, more preferably 0.1 to 0.00 part by weight based on 100 parts by weight of the alkoxysilylated polymer. 3 parts by weight.
  • the antioxidant can further improve the light resistance when used in combination with a hindered amine light stabilizer, but no further improvement is observed even if it is added in excess of the above range.
  • a method for uniformly dispersing the compounding agent in the alkoxysilylated polymer for example, (i) a block copolymer hydride which is a precursor of a modified polymer by dissolving the compounding agent in a suitable solvent. A method of removing a solvent after adding the solution, recovering a block copolymer hydride containing a compounding agent, and reacting it with an ethylenically unsaturated silane compound in the presence of an organic peroxide; (ii) ) A method of kneading the compounding agent by melting the modified polymer in a molten state using a twin-screw kneader, roll, brabender, extruder, etc.
  • the solar cell element sealing material of the present invention maintains low hygroscopicity, non-hydrolyzability, weather resistance, transparency, flexibility, and strong adhesion to glass even after long-term exposure to high-temperature and high-humidity environments. And since it is excellent in adhesiveness, it is suitable for sealing of an electrical / electronic element etc., and is used suitably for solar cell element sealing.
  • the solar cell element sealing material of the present invention is particularly preferably used for a solar cell having glass as a transparent front substrate.
  • seat of this invention consists of the solar cell element sealing material of this invention, It is characterized by the above-mentioned.
  • seat of this invention is used suitably for manufacture of a solar cell module.
  • the molding method include a melt molding method such as a cast molding method, an extrusion sheet molding method, and an inflation molding method; a known molding method such as a compression molding method and a calendar molding method. Since the solar cell element sealing material of the present invention does not require the blending of an organic peroxide for imparting thermal crosslinkability, the melt molding temperature selection range is wide.
  • Sheet molding conditions are appropriately selected depending on the molding method.
  • the resin temperature is usually 180 to 240 ° C., preferably 190 to 230 ° C., more preferably 200 to 220 ° C. If the resin temperature is too low, the fluidity is deteriorated, and the molded sheet is liable to have a defect such as a skin or a die line, and the sheet extrusion speed cannot be increased, which is not industrially preferable.
  • the resin temperature is too high, the adhesion of the modified polymer to the glass will be poor, or the storage stability of the sheet will be reduced, and the adhesiveness to the glass after storing the sheet in a normal temperature and humidity environment for a long time It is not preferable because it tends to cause problems such as lowering.
  • the thickness of the sheet is not particularly limited, but is usually 0.2 to 0.6 mm.
  • the thickness of the solar cell element sealing material is preferably 0.3 to 0. .5 mm. If the sheet thickness is less than 0.2 mm, the glass and solar cell elements are likely to be damaged in the heating laminate process in the production of the solar cell module. If the sheet thickness is greater than 0.6 mm, the light transmittance of the sheet is lowered. Moreover, since the usage-amount of a solar cell element sealing material increases and economical efficiency falls, it is not preferable.
  • the laminated sheet of the present invention is ( ⁇ ) a block copolymer composed of at least two of the polymer block [A] and at least one of the polymer block [B], and includes wA and wB.
  • a sheet made of a composition containing at least one selected from the group consisting of a light stabilizer, an ultraviolet absorber, and an antioxidant hereinafter sometimes referred to as “compounding agent-containing sheet”.
  • compounding agent (2) Other polymers, light stabilizers, ultraviolet absorbers, and antioxidants (hereinafter collectively referred to as “compounding agent (2)”) used for the compounding agent-containing sheet are the solar cell element sealing. The thing similar to having illustrated as a compounding agent of material is mentioned.
  • seat is a composition which consists of said ((alpha)) block copolymer hydride and ((beta)) compounding agent (2) instead of a solar cell element sealing material in the manufacturing method of the sheet
  • a two-type three-layer coextrusion molding method As a method of laminating the sheet of the present invention on one side or both sides of the compounding agent-containing sheet to form a laminated sheet, a two-type three-layer coextrusion molding method; on one side or both sides of the compounding agent-containing sheet, A method of laminating a sheet by thermocompression bonding or an adhesive; a solution obtained by dissolving the solar cell element sealing material of the present invention in a solvent is applied to one or both sides of a compounding agent-containing sheet, and then the solvent is volatilized and laminated. Method; and the like.
  • the thickness of the laminated sheet is usually 0.001 mm or more, preferably 0.005 mm or more, more preferably 0.01 mm or more. If the thickness of the laminated sheet is smaller than 0.001 mm, it is not preferable if the laminated sheet is exposed to a high temperature and high humidity environment for a long time because the adhesion to the glass substrate tends to be lowered.
  • the shape of the sheet or laminated sheet may be a flat shape or a shape subjected to embossing.
  • a release film can be stacked and stored on one side of the sheet or the like.
  • the embossed sheet or the like also has a cushioning property against the glass and solar cell element at the time of lamination in the solar cell module manufacturing process, and is preferable in terms of preventing breakage thereof.
  • the sheet of the present invention is laminated on one side and / or both sides of the solar cell element, and if necessary, a surface protective layer is laminated on the opposite side of the solar cell element side of the laminated sheet or the like. It can utilize for a solar cell by doing.
  • the method for producing the solar cell module is not particularly limited.
  • a method is generally used in which protective sheets are sequentially laminated and then heated and laminated by vacuum suction or the like.
  • a back protective sheet as a water shielding layer is not essential.
  • a back surface protection sheet may be applied for the purpose of mitigating mechanical shock, and a polyethylene terephthalate resin sheet, a polycarbonate resin sheet, or the like that is inexpensive and excellent in mechanical strength can be used.
  • the back surface protection sheet may have a light shielding property and / or a light reflecting property.
  • the back surface protective sheet may be one containing a light-shielding pigment such as an ultraviolet absorber or titanium oxide.
  • the multilayer sheet of the present invention is a hydride of the block copolymer, wherein the ratio of wA to wB (wA: wB) of the block copolymer hydride is 40:60 to 60:40.
  • Block copolymer hydride (i) having an alkoxysilyl group in which an alkoxysilyl group is introduced into a certain block copolymer hydride hereinafter referred to as “alkoxysilylated polymer (i)”.
  • alkoxysilylated polymer (i) An alkoxysilyl group is introduced into a (co) polymer having a melting point of 90 to 140 ° C.
  • alkoxysilylated polyolefin (ii) obtained by polymerizing ethylene and / or an ⁇ -olefin having 3 to 10 carbon atoms with layer [I] containing And a layer [II] containing the prepared (co) polymer (ii) (hereinafter sometimes referred to as “alkoxysilylated polyolefin (ii)”).
  • the alkoxysilylated polymer (i) of the layer [I] is a block copolymer having a ratio of wA to wB (wA: wB) of 40:60 to 60:40, and the production method of the present invention described above Can be manufactured.
  • the alkoxysilylated polyolefin (ii) of the layer [II] is a polyolefin obtained by polymerizing ethylene and / or an ⁇ -olefin having 3 to 10 carbon atoms and having a melting point of 90 to 140 ° C. (hereinafter referred to as “specific polyolefin”). In which an alkoxysilyl group is introduced.
  • Examples of the ⁇ -olefin having 3 to 10 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene, vinylcyclohexane and the like.
  • the method for synthesizing the specific polyolefin is not particularly limited, and a general method is adopted.
  • a commercially available polyolefin having a melting point of 90 to 140 ° C. is selected and used from one or more olefins selected from the group consisting of ethylene and ⁇ -olefins having 3 to 10 carbon atoms. You can also.
  • the more preferable melting point of the specific polyolefin used is 100 to 130 ° C.
  • the melting point is less than 90 ° C., the heat resistance required for the solar cell is inferior, and when it exceeds 140 ° C., an ethylene / vinyl acetate copolymer (EVA) that expects the sealing temperature of the crystalline solar cell that is the object of the present invention.
  • EVA ethylene / vinyl acetate copolymer
  • the alkoxysilyl group may be directly bonded to the specific polyolefin or may be bonded via a divalent organic group such as an alkylene group.
  • a method for introducing an alkoxysilyl group a method of reacting a specific polyolefin with an ethylenically unsaturated silane compound in the presence of a peroxide is usually employed.
  • Examples of the ethylenically unsaturated silane compound include those exemplified as those used for introducing an alkoxysilyl group into the block copolymer hydride. Of these, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, and p-styryltrimethoxysilane are preferably used. These ethylenically unsaturated silane compounds may be used singly or in combination of two or more.
  • the amount of alkoxysilyl group introduced into the specific polyolefin is usually 0.05 to 5 g / 100 g, preferably 0.1 to 3 g / 100 g, more preferably 0.2 to 2 g / 100 g based on the weight of the specific polyolefin. .
  • the introduction amount of the alkoxysilyl group is too large, the degree of crosslinking between the alkoxysilyl groups decomposed with a small amount of moisture or the like increases, and the crystalline solar cell when sealing the solar cell element which is the object of the present invention The effect of preventing cracking tends to decrease.
  • the introduction of the alkoxysilyl group can be confirmed by an IR spectrum, and the introduction amount is estimated from the elemental analysis value of Si.
  • the same compounds as those used when introducing an alkoxysilyl group into the block copolymer hydride can be used.
  • those having a half-life temperature of 170 to 190 ° C. for 1 minute are preferably used.
  • t-butylcumyl peroxide, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2, 5-di (t-butylperoxy) hexane, di-t-butylperoxide and the like are preferably used.
  • peroxides may be used alone or in combination of two or more.
  • the amount of the peroxide used is usually 0.05 to 2 parts by weight, preferably 0.1 to 1 part by weight, more preferably 0.2 to 0.5 parts by weight, based on 100 parts by weight of the specific polyolefin. .
  • the method of reacting a specific polyolefin with an ethylenically unsaturated silane compound in the presence of a peroxide uses the same heating kneader and reactor as those used when introducing an alkoxysilyl group into the block copolymer hydride. Can be done.
  • a method in which a mixture of a polyolefin, an ethylenically unsaturated silane compound and a peroxide is heated and melted at a temperature equal to or higher than the melting temperature of the polyolefin with a biaxial kneader and kneaded for a desired time can be mentioned.
  • the heating and melting temperature is usually 140 to 220 ° C, preferably 150 to 210 ° C, more preferably 160 to 200 ° C.
  • the heat kneading time is usually about 0.1 to 10 minutes, preferably about 0.2 to 5 minutes, more preferably about 0.3 to 2 minutes.
  • continuous kneading equipment such as a twin-screw kneader and a short-screw extruder, the kneading and extruding may be performed continuously such that the residence time is in the above range.
  • the layer [I] contains the alkoxysilylated polymer (i) in an amount of usually 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more based on the weight of the layer [I]. .
  • the layer [II] contains the alkoxysilylated polyolefin (ii) in an amount of usually 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more based on the weight of the layer [II].
  • the compounding agent for improving the performance of a solar cell element sealing material can be contained.
  • compounding agents include other polymers for improving resin properties, light stabilizers for improving weather resistance and heat resistance, ultraviolet absorbers, antioxidants, lubricants, inorganic fillers, etc. It is preferable to use a stabilizer and an ultraviolet absorber.
  • a compounding agent may be used independently or may use 2 or more types together.
  • the layer [I] is 0.1 to 5 parts by weight of a hindered amine light stabilizer with respect to 100 parts by weight of the alkoxysilylated polymer (i). And / or the layer [II] contains 0.1 to 5 parts by weight of a hindered amine light stabilizer with respect to 100 parts by weight of the alkoxysilylated polyolefin (ii); Alternatively, the layer [I] contains 0.01 to 0.2 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the alkoxysilylated polymer (i) and / or the layer [II] Are preferably those containing 0.01 to 0.2 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the alkoxysilylated polyolefin (ii).
  • light resistance can further be improved by using an antioxidant for the hindered amine light stabilizer.
  • the amount of the antioxidant used is usually 0.01 to 1 part by weight, preferably 0.05 to 0.5 part per 100 parts by weight of the alkoxysilylated polymer (i) and the alkoxysilylated polyolefin (ii). Part by weight, more preferably 0.1 to 0.3 part by weight.
  • the hindered amine light stabilizer compounding agent, the ultraviolet absorber, and the antioxidant include the same as those exemplified in the section of the solar cell element sealing material.
  • the method for uniformly dispersing the compounding agent in the alkoxysilylated product or the like is not particularly limited.
  • the compounding agent is dissolved in an appropriate solvent, and this is used as a precursor of the alkoxysilylated polymer (i).
  • the block copolymer hydride or the specific polyolefin containing the compounding agent is added to the solution of the specific polyolefin that is the precursor of the block copolymer hydride or the alkoxysilylated polyolefin (ii) and then the solvent is removed.
  • the multilayer sheet of the present invention is suitably used for manufacturing a solar cell module.
  • the thickness of the multilayer sheet is not particularly limited, but is preferably in the range of 0.2 to 0.8 mm.
  • the thickness is preferably 0.3 to 0.7 mm, more preferably 0.4 to 0.6 mm. The reason why such a thickness is preferable is as described above.
  • each layer constituting the multilayer sheet of the present invention is not particularly limited, but the layer [I] is preferably used as the outermost layer, and the thickness of the outermost layer [I] is usually from 0.07 to The thickness is 0.3 mm, preferably 0.09 to 0.25 mm, more preferably 0.1 to 0.2 mm. If the thickness of the outermost layer [I] is smaller than 0.07 mm, the effect of preventing cracking of the crystalline solar cell in the heat cycle test is not preferable, and if it exceeds 0.3 mm, the vacuum This is not preferable because the effect of preventing cracking of the crystalline solar cells during lamination is not sufficient.
  • the thickness of the layer [II] is usually 0.05 to 0.3 mm, preferably 0.08 to 0.25 mm, more preferably 0.11 to 0.2 mm. If the thickness of the layer [II] is smaller than 0.05 mm, it is not preferable because the effect of preventing the cracking of the crystalline solar cell during vacuum lamination is not sufficient, and if it exceeds 0.3 mm, the light transmittance of the multilayer sheet is low. It tends to decrease and is not preferable.
  • Examples of the configuration of the multilayer sheet include a two-layer configuration of layer [I] / layer [II], a three-layer configuration of layer [I] / layer [II] / layer [I], and layer [I] / layer [II].
  • ] / Layer [I] / layer [II] 4 layers, layer [I] / layer [II] / layer [I] / layer [II] / layer [I], between these layers
  • a structure in which a layer made of another resin is further laminated.
  • a two-layer structure composed of layer [I] / layer [II] and a three-layer structure composed of layer [I] / layer [II] / layer [I] are preferable.
  • the method for forming the multilayer sheet of the present invention is not particularly limited, but the composition for forming layer [I] (alkoxysilylated polymer (i) or a composition in which a compounding agent is dispersed in this) A layer [II] forming composition (alkoxysilylated polyolefin (ii), or a composition in which a compounding agent is dispersed), and a known multilayer coextrusion molding method; I] A layer [I] formed by a melt extrusion method using the forming composition and a layer [II] formed by the melt extrusion method using the layer [II] forming composition.
  • the melt molding temperature selection range is wide.
  • the molding conditions of the multilayer sheet are appropriately selected depending on the molding method.
  • the resin temperature is usually 150 to 210 ° C., preferably 160 to 200 ° C., more preferably 170 to 190 ° C. It is a range.
  • the resin temperature is too low, the fluidity is deteriorated, the surface smoothness of the formed multilayer sheet is lowered, the sheet extrusion speed is not increased, and the industrial productivity tends to be inferior.
  • the adhesion of the alkoxysilylated polymer (i) and / or alkoxysilylated polyolefin to the glass becomes poor, or a gel-like material is generated and a good multilayer sheet cannot be obtained.
  • the storage stability of the multilayer sheet is lowered, and the adhesion to the glass after the multilayer sheet is stored for a long period of time in a normal temperature and humidity environment may be lowered.
  • the shape of the multilayer sheet of the present invention can be flat or embossed.
  • a release film can be stacked and stored on one side of the multilayer sheet.
  • the embossed multilayer sheet also has a cushioning property against glass and solar cell elements during lamination in the manufacturing process of the solar cell module, and is preferable in terms of preventing breakage thereof.
  • the multilayer sheet of the present invention is laminated on one side or both sides of a solar cell element, and further, if necessary, by laminating a surface protective layer on the surface of the multilayer sheet on the side opposite to the solar cell element side.
  • the method for producing the solar cell module is not particularly limited.
  • the transparent front substrate made of glass, the multilayer sheet of the present invention, the solar cell element and the tab wire connected to the solar cell element, the multilayer sheet of the present invention, the back surface A method is generally used in which protective sheets are sequentially laminated and then heated and laminated by vacuum suction or the like.
  • At least one outermost layer is preferably layer [I], and a solar cell encapsulant having a solar cell element (preferably a crystalline solar cell element) having glass as a transparent front substrate. It is suitable as. Since the multilayer sheet of the present invention has low moisture permeability and low hygroscopicity, a back protective sheet as a water shielding layer is not essential, and a back protective sheet may be applied for the purpose of mitigating mechanical impact and is inexpensive. In addition, a polyethylene terephthalate (PET) resin sheet, a polycarbonate resin sheet and the like having excellent mechanical strength can be used.
  • PET polyethylene terephthalate
  • the back surface protection sheet may have a light shielding property and / or a light reflecting property.
  • the back surface protection sheet may be one containing a light-shielding pigment such as an ultraviolet absorber or titanium oxide.
  • the multilayer sheet of the present invention is useful as a sealing material for solar cell elements, it is also used for other purposes such as bonding of glass plates, bonding of glass plates and metal plates, bonding of metal plates, and sealing of electronic components. it can.
  • the solar cell element sealing method of the present invention is characterized in that the layer [I] side of the multilayer sheet of the present invention is disposed and used in contact with the solar cell element. To do.
  • the layer [I] By disposing the layer [I] in contact with the solar cell element, cracking of the solar cell element (particularly, the crystalline solar cell element) during vacuum lamination can be prevented.
  • cracks are less likely to occur in solar cell elements (particularly crystalline solar cell elements) even after a heat cycle test performed at ⁇ 40 ° C. and + 90 ° C., which is one of the general environmental tests of solar cell modules. .
  • the transparent front substrate of a solar cell module is glass, it is preferable to arrange and use the layer [I] in contact with the glass.
  • the multilayer sheet of the present invention has low moisture absorption, low moisture permeability, transparency, weather resistance, flexibility, heat resistance, low temperature sealing properties, and after being exposed to a high temperature and high humidity environment for a long time.
  • a strong adhesive force with glass can be maintained, and the solar cell element can be sealed without performing a special water shielding treatment.
  • crosslinking process can be abbreviate
  • Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The molecular weights of the block copolymer and the hydride of the block copolymer were measured at 38 ° C. as standard polystyrene equivalent values by GPC using THF as an eluent. As a measuring apparatus, HLC8020GPC manufactured by Tosoh Corporation was used.
  • the test piece was subjected to a tensile test until it broke at a distance of 10 cm between chucks under the conditions of type 5 and 23 ° C.
  • the tensile elastic modulus was a method according to JIS K 7161.
  • the strength at break was regarded as tensile strength, and the elongation at break was regarded as tensile elongation.
  • Extrusion molded sheet of volume resistivity / solar cell element sealing material is laminated and molded with a vacuum laminator to form a test piece having a thickness of 0.9 to 1.1 mm, according to JIS K 6911. Measured at 23 ° C. The measurement was carried out using a test piece of 1.1 to 1.3 mm for an extruded sheet of an alkoxysilylated polymer (i) and / or an alkoxysilylated polyolefin (ii) or a multilayer sheet laminated with an extruded sheet.
  • Adhesive evaluation with glass substrate peel strength
  • the extruded sheet of the solar cell element sealing material, the extruded sheet of the alkoxysilylated polymer (i) and / or the alkoxysilylated polyolefin (ii), or the multilayer sheet laminated with the extruded sheet, Adhesive part is provided and superimposed on a 2mm thick, 25mm wide, 65mm long soda lime glass substrate, heated and pressurized at 50 ° C for 10 minutes with a vacuum laminator, and then heated and pressurized for 10 minutes at 180 ° C. By doing this, a test piece for a peel test was created.
  • the sheet surface was cut into a width of 10 mm, a 90 ° peel test was performed from the non-adhered portion of the sheet at a peel rate of 50 mm / min according to JIS K 6854-1, and the peel strength was measured.
  • the peel strength was measured as an initial value after vacuum lamination and a value after exposure to a high temperature and high humidity environment of 85 ° C. and 85% RH for 1000 hours. The greater the peel strength, the better the adhesion to glass.
  • a sheet made of an alkoxysilylated polymer (i) and / or an alkoxysilylated polyolefin (ii), and then a PET release film instead of a back surface protective sheet are stacked in this order.
  • the laminate was vacuum degassed at a predetermined temperature of 145 to 160 ° C. for 5 minutes using a vacuum laminator, and then sealed by applying vacuum under pressure for 10 minutes to produce a solar cell module.
  • the release film was removed from the obtained solar cell module, and the solar cell was evaluated for cracking by visual observation. Five solar cells were observed. The case where no crack was observed in any of the cells was marked with ⁇ , and when a crack was observed, the number of cracks was counted.
  • the current EVA-based standard vacuum lamination temperature is 150 ° C., and there should be no cracking at 150 ° C.
  • the obtained block copolymer (a) had a weight average molecular weight (Mw) of 61,700 and a molecular weight distribution (Mw / Mn) of 1.05.
  • the polymer solution was transferred to a pressure-resistant reactor equipped with a stirrer, and a silica-alumina supported nickel catalyst (product name “T-8400RL”, manufactured by Zude Chemie Catalysts) was used as a hydrogenation catalyst. And 100 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, and hydrogen was supplied while stirring the solution. A hydrogenation reaction was performed at a temperature of 170 ° C. and a pressure of 4.5 MPa for 6 hours. The weight average molecular weight (Mw) of the block copolymer hydride (A) after the hydrogenation reaction was 65,300, and the molecular weight distribution (Mw / Mn) was 1.06.
  • Mw weight average molecular weight
  • reaction solution is filtered to remove the hydrogenation catalyst, and then phosphorous antioxidant 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetrakis-t-butyldibenzo [d, f] [1.3.2] dioxaphosphepine (product name “Sumilyzer (registered trademark) GP”, manufactured by Sumitomo Chemical Co., Ltd.) 0 1.0 part of xylene solution in which 1 part was dissolved was added and dissolved.
  • the above solution was filtered with a metal fiber filter (pore size 0.4 ⁇ m, manufactured by Nichidai) to remove minute solids, and then a cylindrical concentration dryer (product name “Contro”, manufactured by Hitachi, Ltd.) ), At a temperature of 260 ° C. and a pressure of 0.001 MPa or less, the solvent cyclohexane, xylene and other volatile components are removed from the solution and extruded in a molten state from a die directly connected to a concentration dryer, After cooling, it was cut with a pelletizer to obtain 90 parts of pellets of block copolymer hydride [A1].
  • the resulting block copolymer hydride [A1] had a weight average molecular weight (Mw) of 64,600 and a molecular weight distribution (Mw / Mn) of 1.11. The hydrogenation rate was almost 100%.
  • N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl) as a hindered amine light stabilizer is added to 100 parts of the block copolymer hydride [A1] pellets.
  • Polymers of 1,6-hexanediamine and 2,4,6-trichloro-1,3,5-triazine, N-butyl-1-butanamine and N-butyl-2,2,6,6-tetramethyl -4-piperidineamine reaction product Chimassorb (registered trademark) 2020, manufactured by Ciba Japan Co., Ltd.) 1.0 part
  • 2- (2H-benzotriazol-2-yl)- which is a benzotriazole UV absorber 0.05 part of 4- (1,1,3,3-tetramethylbutyl) phenol (Tinuvin (registered trademark) 329, manufactured by Ciba Japan) was added.
  • This mixture was kneaded at a resin temperature of 250 ° C. using a twin screw extruder (TEM35B, manufactured by Toshiba Machine Co., Ltd.), extruded into a strand shape, cooled with water, cut with a pelletizer, and then a block copolymer hydride resin composition. 98 parts of pellets of product [A2] were obtained.
  • TEM35B twin screw extruder
  • Example 1 (Solar cell element sealing material [A3] and sheet [SA3]) To 100 parts of the resin composition [A2] pellet obtained in Reference Example 1, 2.0 parts of vinyltrimethoxysilane and 0.2 part of di-t-butyl peroxide were added. This mixture was kneaded using a twin screw extruder (product name “TEM37B”, manufactured by Toshiba Machine Co., Ltd.) at a resin temperature of 210 ° C. and a residence time of 80 to 90 seconds, extruded into a strand, air cooled, and then pelletized. Cutting was performed to obtain 97 parts of a pellet of the solar cell element sealing material [A3] containing an alkoxysilylated polymer.
  • TEM37B twin screw extruder
  • a sheet [SA3] having a thickness of 350 ⁇ m and a width of 280 mm was extrusion-molded under molding conditions of 210 ° C., a T-die temperature of 210 ° C., and a roll temperature of 50 ° C.
  • the obtained extruded sheet [SA3] was wound up and collected on a roll.
  • the obtained extruded sheet [SA3] was cut into a size of 200 mm ⁇ 200 mm, three sheets were stacked, vacuum degassed at 180 ° C. for 5 minutes using a vacuum laminator, and further vacuum pressed for 10 minutes to obtain a thickness.
  • a test piece of 0.9 to 1.1 mm was molded.
  • the test piece for evaluating the adhesion to the glass substrate and the test piece for evaluating the durability of the solar cell module were vacuum degassed at a temperature of 180 ° C. for 5 minutes using a vacuum laminator, and further vacuum pressed for 10 minutes. Molded.
  • Example 2 Multilayer sheet [MSA3] of solar cell element sealing material [A3]
  • the dissolved air was removed from the pellets of the solar cell element sealing material [A3] obtained in Example 1 and the pellets of the resin composition [A2] obtained in Reference Example 1 in the same manner as in Example 1.
  • the solar cell element sealing material [A3] is used as the outer layer
  • the resin composition [A2] is used as the inner layer.
  • a sheet [MSA3] having a thickness of 400 ⁇ m and a width of 280 mm was extrusion-molded under molding conditions of a molten resin temperature of 210 ° C., a T-die temperature of 210 ° C., and a roll temperature of 50 ° C.
  • the obtained sheet [MSA3] was wound up and collected on a roll.
  • an extruded sheet [MSA3] and a vacuum press test piece were prepared in the same manner as in Example 1, and light transmittance, moisture permeability, tensile strength, Tensile elongation, initial adhesion to a glass substrate, adhesion after exposure to a high temperature and high humidity environment, evaluation of corrosion resistance and weather resistance of the encapsulated copper plate, and durability evaluation of the solar cell module were performed.
  • the results are shown in Table 1.
  • Example 3 (Solar cell element sealing material [B3] and sheet [SB3])
  • 2.0 parts of vinyltrimethoxysilane and 0.2 part of di-t-butyl peroxide were added to 100 parts of the pellet of the resin composition [B2] obtained in Reference Example 2.
  • This mixture was kneaded in the same manner as in Example 1 to obtain 96 parts of a solar cell element sealing material [B3] pellet.
  • the FT-IR spectrum of the obtained pellets was measured, similarly, a new absorption derived from Si-OCH 3 groups and 825cm -1, the 739cm -1 in Si-CH 2 group at 1090 cm -1 Example 1 A band was observed, and it was confirmed that the resin composition [B3] contains a silane-modified modified polymer. Further, using the solar cell element sealing material [B3], an extruded sheet [SB3] and a vacuum press test piece were prepared in the same manner as in Example 1, and light transmittance, moisture permeability, tensile strength, tensile strength were produced. Elongation, volume resistivity, initial adhesion with glass substrate, adhesion after exposure to high temperature and high humidity environment, evaluation of corrosion resistance and weather resistance of encapsulated copper plate, and durability evaluation of solar cell module were carried out. The results are shown in Table 1.
  • Example 4 (Solar cell element sealing material [C3] and sheet [SC3])
  • 2.0 parts of vinyltrimethoxysilane and 0.2 part of di-t-butyl peroxide were added to 100 parts of the pellet of the resin composition [C2] obtained in Reference Example 3.
  • This mixture was kneaded in the same manner as in Example 1 to obtain 97 parts of a solar cell element sealing material [C3] pellet.
  • the FT-IR spectrum of the obtained pellets was measured, similarly, a new absorption derived from Si-OCH 3 groups and 825cm -1, the 739cm -1 in Si-CH 2 group at 1090 cm -1 Example 1 A band was observed, and it was confirmed that the solar cell element sealing material [C3] contains a silane-modified modified polymer. Further, using the solar cell element sealing material [C3], an extruded sheet [SC3] and a vacuum press test piece were prepared in the same manner as in Example 1, and light transmittance, moisture permeability, tensile strength, tensile strength were produced. Elongation, volume resistivity, initial adhesion with glass substrate, adhesion after exposure to high temperature and high humidity environment, evaluation of corrosion resistance and weather resistance of encapsulated copper plate, and durability evaluation of solar cell module were carried out. The results are shown in Table 1.
  • Example 5 (Solar cell element sealing material [D3] and sheet [SD3])
  • Example 1 As in Example 1, 2.0 parts of vinyltrimethoxysilane and 0.2 part of di-t-butyl peroxide were added to 100 parts of the pellet of the resin composition [D2] obtained in Reference Example 4. .
  • This mixture was kneaded in the same manner as in Example 1 to obtain 96 parts of a solar cell element sealing material [D3] pellet.
  • the FT-IR spectrum of the obtained pellets was measured, similarly, a new absorption derived from Si-OCH 3 groups and 825cm -1, the 739cm -1 in Si-CH 2 group at 1090 cm -1 Example 1 A band was observed, and it was confirmed that the solar cell element sealing material [D3] contains a silane-modified modified polymer. Further, using the solar cell element sealing material [D3], an extruded sheet [SD3] and a vacuum press test piece were produced in the same manner as in Example 1, and light transmittance, moisture permeability, tensile strength, tensile strength were produced. Elongation, volume resistivity, initial adhesion with glass substrate, adhesion after exposure to high temperature and high humidity environment, evaluation of corrosion resistance and weather resistance of encapsulated copper plate, and durability evaluation of solar cell module were carried out. The results are shown in Table 1.
  • Example 2 The obtained solar cell element sealing material [EVA2] pellets were used in the extrusion molding machine used in Example 1, and the same resin composition [EVA2] from two extruders was melted at a resin temperature of 100 ° C.
  • the obtained sheet [SEVA2] was wound up and collected on a roll.
  • the obtained sheet [SEVA2] was cut into a size of 200 mm ⁇ 200 mm, 1 sheet and 3 sheets were stacked, vacuum degassed at a temperature of 150 ° C. for 5 minutes using a vacuum laminator, and further vacuum pressed for 20 minutes.
  • Preparation of a test piece for adhesion evaluation with a glass substrate using the sheet [SEVA2] and a test piece for durability evaluation of a solar cell module was performed by vacuum degassing at a temperature of 150 ° C. for 10 minutes using a vacuum laminator. Furthermore, it vacuum-pressed for 20 minutes and shape
  • the FT-IR spectrum of the obtained pellets was measured, similarly, a new absorption derived from Si-OCH 3 groups and 825cm -1, the 739cm -1 in Si-CH 2 group at 1090 cm -1 Example 1 A band was observed, and it was confirmed that the resin composition [E3] contains a silane-modified modified polymer. Further, using the solar cell element sealing material [E3], an extruded sheet [SE3] and a vacuum press test piece were prepared in the same manner as in Example 1, and light transmittance, moisture permeability, tensile strength, tensile strength were produced. Elongation, volume resistivity, initial adhesion with glass substrate, adhesion after exposure to high temperature and high humidity environment, evaluation of corrosion resistance and weather resistance of encapsulated copper plate, and durability evaluation of solar cell module were carried out. The results are shown in Table 1.
  • the FT-IR spectrum of the obtained pellets was measured, similarly, a new absorption derived from Si-OCH 3 groups and 825cm -1, the 739cm -1 in Si-CH 2 group at 1090 cm -1 Example 1 A band was observed, and it was confirmed that the solar cell element sealing material [F3] contains a silane-modified modified polymer.
  • the solar cell element sealing material of the present invention When the solar cell element sealing material of the present invention is used, the light transmittance, moisture permeability, mechanical strength, flexibility, electrical insulation, adhesion to glass in high temperature and high humidity environment, weather resistance The obtained solar cell module is excellent in durability (Examples 1 to 5). When a sealing material made of EVA is used, there is a concern that internal wiring may be corroded when it is kept for a long time in a high temperature and high humidity environment due to high moisture permeability and generation of acetic acid by hydrolysis (Comparative Example). 1).
  • Example 6 Alkoxysilylated polymer (ia) and sheet [Ia]) To 100 parts of the pellet of the resin composition (a) obtained in Synthesis Example 1, 2.0 parts of vinyltrimethoxysilane and 0.2 part of di-t-butyl peroxide were added. This mixture was kneaded using a twin screw extruder (product name “TEM37B”, manufactured by Toshiba Machine Co., Ltd.) at a resin temperature of 210 ° C. and a residence time of 80 to 90 seconds, extruded into a strand, air cooled, and then pelletized. Cutting was performed to obtain 97 parts of an alkoxysilylated polymer (ia) pellet.
  • TEM37B twin screw extruder
  • T-die width 300 mm Using a T-die type film melt extrusion molding machine (T-die width 300 mm) having an extruder, under the molding conditions of a molten resin temperature of 200 ° C., a T-die temperature of 200 ° C., and a roll temperature of 50 ° C., a thickness of 400 ⁇ m, 170 ⁇ m and Sheets (Ia 400 , Ia 170 and Ia 140 ) having a width of 140 ⁇ m and a width of 280 mm each were extruded. The obtained extruded sheet was wound up and collected on a roll.
  • Example 7 Alkoxysilylated polymer (ib) and sheet [Ib])
  • 2.0 parts of vinyltrimethoxysilane and 0.2 part of di-t-butyl peroxide were added to 100 parts of the pellet of the resin composition (b) obtained in Synthesis Example 2.
  • 97 parts of pellets of the modified polymer (ib) were obtained.
  • the resulting alkoxysilylated polymer FT-IR spectrum of the pellet of (i-b) was measured in the same manner as in Example 6, the Si-OCH 3 groups and 825,739Cm -1 to 1090 cm -1 Si- A new absorption band derived from the CH 2 group was observed, and 0.3% Si was detected by elemental analysis. From this, it was confirmed that the alkoxysilylated polymer (ib) contains a methoxysilyl group.
  • the obtained alkoxysilylated polyolefin (ii-a) pellets were press-molded at 140 ° C. to form a film having a thickness of 30 to 100 ⁇ m.
  • new absorption bands derived from Si—OCH 3 groups at 1090 cm ⁇ 1 and Si—CH 2 groups at 825 and 739 cm ⁇ 1 were found to be those of vinyltrimethoxysilane. Of 1075, 808, and 766 cm ⁇ 1 of the same. In elemental analysis, 0.3% of Si was detected. From these results, it was confirmed that the alkoxysilylated polyolefin (ii-a) contains a methoxysilyl group.
  • the obtained pellets of alkoxysilylated polyolefin (ii-b) were press-molded at 160 ° C. to form a film having a thickness of 30 to 100 ⁇ m.
  • new absorption bands derived from Si—OCH 3 groups at 1090 cm ⁇ 1 and Si—CH 2 groups at 825 and 739 cm ⁇ 1 were found to be those of vinyltrimethoxysilane. Of 1075, 808, and 766 cm ⁇ 1 of the same. In elemental analysis, 0.3% of Si was detected. From these results, it was confirmed that the alkoxysilylated polyolefin (ii-b) contains a methoxysilyl group.
  • Example 8 Evaluation as multilayer sheet [Ia] / [II-a] / [Ia] and solar cell element sealing material
  • the extruded sheet Ia 170 obtained in Example 6 and the extruded sheet II-a 60 obtained in Reference Example 9 were each cut into a size of 220 mm ⁇ 220 mm.
  • the cut sheets were stacked in the order of Ia 170 / II-a 60 / Ia 170 , vacuum degassed at a temperature of 110 ° C. for 1 minute using a vacuum laminator, and then vacuum pressed for 1 minute.
  • a two-type three-layer multilayer sheet [Ia 170 ] / [II-a 60 ] / [Ia 170 ] having a thickness of 0.4 mm was formed.
  • a test sheet was prepared.
  • the results are shown in Tables 2 and 3.
  • Example 9 Evaluation as multilayer sheet [Ia] / [II-a] / [Ia] and solar cell element sealing material
  • the extruded sheet Ia 140 obtained in Example 6 and the extruded sheet II-a 120 obtained in Reference Example 9 were each cut into a size of 220 mm ⁇ 220 mm.
  • the cut sheets were stacked in the order of Ia 140 / II-a 120 / Ia 140 , vacuum degassed at a temperature of 110 ° C. for 1 minute using a vacuum laminator, and further vacuum pressed for 1 minute.
  • a two-type three-layer multilayer sheet [Ia 140 ] / [II-a 120 ] / [Ia 140 ] having a thickness of 0.4 mm was formed.
  • a test sheet was prepared using this multilayer sheet, and various evaluations were performed in the same manner as in Example 6. The results are shown in Tables 2 and 3.
  • Example 10 Evaluation as multilayer sheet [Ib] / [II-a] / [Ib] and solar cell element sealing material
  • the extruded sheet Ib 170 obtained in Example 7 and the extruded sheet II-a 60 obtained in Reference Example 9 were each cut into a size of 220 mm ⁇ 220 mm.
  • the cut sheets were stacked in the order of Ib 170 / II-a 60 / Ib 170 , vacuum degassed at a temperature of 110 ° C. for 1 minute using a vacuum laminator, and further vacuum pressed for 1 minute.
  • a two-type three-layer multilayer sheet [Ib 170 ] / [II-a 60 ] / [Ib 170 ] having a thickness of 0.4 mm was formed.
  • a test sheet was prepared using this multilayer sheet, and various evaluations were performed in the same manner as in Example 6. The results are shown in Table 2.
  • Example 11 (Evaluation as multilayer sheet [Ib] / [II-a] / [Ib] and solar cell element sealing material)
  • Extruded sheet Ib 140 obtained in Example 7 and extruded sheet II-a 120 obtained in Reference Example 9 were each cut into a size of 220 mm ⁇ 220 mm.
  • the cut sheets were stacked in the order of Ib 140 / II-a 120 / Ib 140 , vacuum degassed at a temperature of 110 ° C. for 1 minute using a vacuum laminator, and further vacuum pressed for 1 minute.
  • a two-type three-layer multilayer sheet [Ib 140 ] / [II-a 120 ] / [Ib 140 ] having a thickness of 0.4 mm was formed.
  • a test sheet was prepared using this multilayer sheet, and various evaluations were performed in the same manner as in Example 6. The results are shown in Tables 2 and 3.
  • Example 12 Evaluation as multilayer sheet [Ia] / [II-b] / [Ia] and solar cell element sealing material
  • the extruded sheet Ia 170 obtained in Example 6 and the extruded sheet II-b 60 obtained in Reference Example 10 were each cut into a size of 220 mm ⁇ 220 mm.
  • the cut sheets were stacked in the order Ia 170 / II-b 60 / Ia 170 , vacuum degassed for 1 minute at a temperature of 130 ° C. using a vacuum laminator, and then vacuum-pressed for another 1 minute.
  • a two-type three-layer multilayer sheet [Ia 170 ] / [II-b 60 ] / [Ia 170 ] having a thickness of 0.4 mm was formed.
  • a test sheet was prepared, and various evaluations were performed as in Example 6. The results are shown in Tables 2 and 3.
  • Extruded sheet Ib 170 obtained in Example 7 and extruded sheet II-b 60 obtained in Reference Example 10 were each cut into a size of 220 mm ⁇ 220 mm. The cut sheets were stacked in the order of Ib 170 / II-b 60 / Ib 170 , vacuum degassed for 1 minute at a temperature of 130 ° C. using a vacuum laminator, and then vacuum pressed for another 1 minute.
  • a two-type three-layer multilayer sheet [Ib 170 ] / [II-b 60 ] / [Ib 170 ] having a thickness of 0.4 mm was formed.
  • a test sheet was prepared using this multilayer sheet, and various evaluations were performed in the same manner as in Example 8. The results are shown in Tables 2 and 3.
  • the solar cell element sealing material, sheet, and multilayer sheet of the present invention are useful for sealing solar cell elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本発明は、少なくとも2つの、芳香族ビニル化合物単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物単位を主成分とする重合体ブロック[B]とからなり、重合体ブロック[A]及び[B]の重量分率をそれぞれwA、wBとしたときに、wA:wBが20:80~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、アルコキシシリル基が導入されてなる、アルコキシシリル基を有する変性ブロック共重合体水素化物;その製造方法;太陽電池素子封止材;シート;積層シート;多層シート;太陽電池素子の封止方法;である。本発明の変性ブロック共重合体水素化物は、低吸湿性、非加水分解性、耐候性、透明性及び柔軟性を有し、かつ、長期間高温高湿環境に暴露された後でもガラスとの強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することができる。

Description

アルコキシシリル基を有するブロック共重合体水素化物及びその利用
 本発明は、太陽電池モジュールにおける太陽電池素子を密封する封止用材料として好適な、アルコキシシリル基を有するブロック共重合体水素化物、その製造方法、太陽電池素子封止材、該封止材からなるシート、積層シート、多層シート、及び太陽電池素子の封止方法に関する。
 太陽電池は、近年、クリーンエネルギーとして注目され、現在、種々の形態からなる太陽電池モジュ-ルが開発されている。なかでも、単結晶もしくは多結晶タイプの結晶性シリコン系素子を用いたもの(結晶系太陽電池素子を有するタイプ)、薄膜アモルファスシリコン系素子を用いたもの(アモルファス系太陽電池素子を有するタイプ)等が主流となっている。
 従来の太陽電池モジュールとしては、図1に示すような、太陽光入射面側から、ガラス基板などからなる透明前面基板1、太陽電池素子2、太陽電池素子を密封する封止材3、太陽電池素子に繋がる配線4、及び、裏面保護シート5を有するものが知られている。また、太陽電池素子を密封する封止材3としては、エチレン・酢酸ビニル共重合体(EVA)を有機過酸化物などの架橋剤を用いて架橋硬化させて得られるEVAの硬化物からなる封止材が広く用いられている。
 しかしながら、従来の太陽電池には次のような問題があった。すなわち、太陽電池を高温高湿で風雨に曝される屋外の環境下で長期にわたって使用すると、太陽電池内部に湿気ないし水が浸入して、封止材の絶縁性が低下し、その耐久性が低下する場合があった。また、封止材として用いられるEVAの硬化物は、透明性、耐光性には優れるが、酢酸ビニル由来の繰り返し単位を含むため、外部より浸入した湿気又は水により経時的に加水分解して酢酸が発生し、発生した酢酸が電池内部の配線や電極と接触して腐食を促進させることも懸念されている。
 そこで、太陽電池内部への水分の侵入による絶縁性の低下、配線や電極の腐食などの不具合を防止して、太陽電池の耐久性を向上させるために、裏面保護シートにバリヤー層としての無機酸化物の蒸着層を積層する方法(特許文献1等)や、裏面保護シートに透湿度の低い環状オレフィン系樹脂シートを使用する方法(特許文献2、3等)等の対策がとられている。
 しかしながら、これらの方法でも、湿気ないし水の浸入を完全には防止できていないのが現状である。
 また、封止材の加水分解による酸発生の問題を解決するため、EVAの硬化物に、受酸剤を添加する方法や、EVAの硬化物に酸と反応性を有する置換基を導入する方法(例えば、特許文献4、5)も提案されている。
 しかしながら、これらEVAの硬化物から発生する酸を除外する方法では、酸発生による影響は低減されるが、EVAの硬化物自体の吸湿性及び透湿性が高いため、外部から浸入した水による電池内部の配線や電極の腐食を十分防止することができなかった。
 その他、EVAの硬化物の代わりに、加水分解により酸を発生させない封止用樹脂を用いる方法、例えば、エチレン・α-オレフィン共重合体及び架橋剤を用いる方法(特許文献6、7)や、プロピレン系重合体及び特定のプロピレン系共重合体を用いる方法(特許文献8)も提案されている。
 これらの方法は、用いる樹脂は吸湿性及び透湿性が低いものであり、また、酸発生による影響も低減されると考えられる。しかしながら、用いる封止用樹脂の耐熱性と柔軟性とのバランスが悪く、非架橋では良好な耐熱性を発現しないため、太陽電池素子封止シートを製造するためには架橋工程が必要なものであった。
 更に、特許文献9には、少なくとも3つのブロックを有し、芳香族ビニルモノマー由来の繰り返し単位を主成分とするハードブロックと、共役ジエン由来の繰り返し単位を主成分とするソフトブロックを有するプレポリマーの、炭素-炭素二重結合を水素化して得られるブロックコポリマーが、高耐熱変形性、良好な機械的特性、高い透明性、特に低い吸水性に特徴があり、機械的に傷つきやすい系(例えば太陽電池の分野)の保護のためのカバーに使用することができることが記載されている。しかしながら、このブロックコポリマーを太陽電池素子の封止材に使用することは示唆されていない。
 本発明に関連して、特許文献10には、炭素-炭素二重結合を水素化して得られるビニル脂環式炭化水素重合体が、電気・電子部品の封止材を含む各種の用途に活用できることが開示されている。
 しかしながら、具体的に開示されている重合体は、共役ジエンブロックを有しないブロックポリマーであり、芳香族ビニルモノマーの割合が多い重合体である。
特開2000-91610号公報 特開2000-106450号公報 特開2001-44481号公報 特開2005-29588号公報 特開2008-291222号公報 特開平6-299125号公報 特開2000-91611号公報 WO2008/015984号(US2010/0006600A1) 特表2002-531598号公報(WO2000/032646号パンフレット) WO2002/016447号パンフレット
 本発明は、上記した従来技術に鑑みてなされたものであり、低吸湿性、非加水分解性、耐候性、透明性、柔軟性を有し、かつ、長期間高温高湿環境に暴露された後でもガラスとの強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することが可能な太陽電池素子封止材として有用なブロック共重合体水素化物、その製造方法、太陽電池素子封止材、該太陽電池素子封止材からなるシート、積層シート、多層シート、及び、太陽電池素子の封止方法を提供することを課題とする。
 本発明者らは、特許文献9に記載の、芳香族ビニルモノマーの使用割合が多いブロックコポリマーを太陽電池素子の封止材として用いることを試みたところ、このポリマーは、柔軟性及び封止性が低く、ポリマー層にクラックが生じ易く、封止材としては不適であることがわかった。
 そこで、この不具合を解消すべく更に検討を進めた結果、特定の重合体ブロックを有するブロック共重合体の炭素-炭素不飽和結合を水素化して得られるブロック共重合体水素化物を、有機過酸化物の存在下、エチレン性不飽和シラン化合物により変性させて得られる変性重合体を得た。そして、この変性重合体を含有する樹脂組成物は、低吸湿性、非加水分解性、耐候性、透明性及び柔軟性を有し、かつ、長期間高温高湿環境に暴露された後でも、ガラスとの強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することできることを見出した。
 本発明者らは、更に検討を重ねた結果、太陽電池素子を真空ラミネートにより封止する際、前記特定のブロック共重合体水素化物の変性重合体を封止材として使用した場合、従来のEVAの硬化物を使用した太陽電池封止材に比較して、より高い温度で封止しなければ、太陽電池素子、特に結晶系太陽電池素子が割れ易いことがわかった。EVAの硬化物からなる封止材の場合、通常、封止温度は150℃以下であるが、前記特定のブロック共重合体水素化物の変性重合体を使用した場合は通常160℃以上を要する。
 そこで、この課題を解決すべく鋭意研究したところ、前記特定のブロック共重合体水素化物の変性重合体からなる層[I]と、特定の融点を有するオレフィン系(共)重合体にアルコキシシリル基が導入された変性重合体からなる層[II]を積層した多層シートを使用すると、より低温で封止しても、太陽電池素子(特に、結晶系太陽電池素子)の割れを防止できることを見出し、これらの知見をまとめることで本発明を完成させるに至った。
 かくして本発明によれば、(1)~(3)のアルコキシルシリル基を有するブロック共重合体水素化物、(4)のアルコキシシリル基を有するブロック共重合体水素化物の製造方法、(5)~(8)の太陽電池素子封止材、(9)のシート、(10)の積層シート、(11)~(14)の多層シート、及び、(15)太陽電池素子の封止方法が提供される。
(1)少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が20:80~60:40であるブロック共重合体の、
全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、アルコキシシリル基が導入されてなる、アルコキシシリル基を有するブロック共重合体水素化物。
(2)少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が40:60~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、アルコキシシリル基が導入されてなる、アルコキシシリル基を有するブロック共重合体水素化物。
(3)少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が20:80~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、
有機過酸化物存在下、エチレン性不飽和シラン化合物を反応させることを特徴とする、
(1)に記載のアルコキシシリル基を有するブロック共重合体水素化物の製造方法。
(4)前記エチレン性不飽和シラン化合物が、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、p-スチリルトリメトキシシラン及びp-スチリルトリエトキシシランからなる群から選択される少なくとも1種である(3)に記載の製造方法。
(5)前記(1)又は(2)に記載のアルコキシシリル基を有するブロック共重合体水素化物を含有する太陽電池素子封止材。
(6)ヒンダードアミン系光安定剤を、前記アルコキシシリル基を有するブロック共重合体水素化物100重量部に対して0.1~10重量部含有する(5)に記載の太陽電池素子封止材。
(7)紫外線吸収剤を、前記アルコキシシリル基を有するブロック共重合体水素化物100重量部に対して0.01~0.1重量部含有する(5)に記載の太陽電池素子封止材。
(8)リン系酸化防止剤を、前記アルコキシシリル基を有するブロック共重合体水素化物100重量部に対して0.01~0.1重量部含有する(5)に記載の太陽電池素子封止材。
(9)(5)~(8)のいずれかに記載の太陽電池素子封止材からなるシート。
(10)(α)少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
少なくとも2つの重合体ブロック[A]と、少なくとも1つの重合体ブロック[B]とからなるブロック共重合体であって、
ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が20:80~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物、及び、(β)前記(α)の、アルコキシシリル基を有するブロック共重合体水素化物以外の重合体、光安定剤、紫外線吸収剤、及び酸化防止剤からなる群から選ばれる少なくとも1種を含む樹脂組成物からなるシートの片面又は両面に、(9)に記載のシートを積層してなる多層シート。
(11)前記(2)に記載のアルコキシシリル基を有するブロック共重合体水素化物(i)を含有する層[I]と、エチレン及び/又は炭素数3~10のα-オレフィンを重合して得られる、融点が90~140℃である(共)重合体に、アルコキシシリル基が導入された(共)重合体(ii)を含有する層[II]とを有する多層シート。
(12)前記層[I]が、アルコキシシリル基を有するブロック共重合体水素化物(i)100重量部に対して、ヒンダードアミン系光安定剤を0.1~5重量部含有するものであるか、及び/又は、前記層[II]が、(共)重合体(ii)100重量部に対して、ヒンダードアミン系光安定剤を0.1~5重量部含有するものである、(11)に記載の多層シート。
(13)前記層[I]が、アルコキシシリル基を有するブロック共重合体水素化物(i)100重量部に対して、紫外線吸収剤を0.01~0.2重量部含有するものであるか、及び/又は、前記層[II]が、(共)重合体(ii)100重量部に対して、紫外線吸収剤を0.01~0.2重量部含有するものである、(11)に記載の多層シート。
(14)層[I]/層[II]、又は、層[I]/層[II]/層[I]の層構成を有する(11)に記載の多層シート。
(15)(14)に記載の多層シートの層[I]側を、結晶系太陽電池セルに接するように配置して使用することを特徴とする太陽電池素子の封止方法。
 本発明のアルコキシシリル基を有するブロック共重合体水素化物は、ガラス転移温度が高く耐熱性に優れる重合体ブロック[A]と、ガラス転移温度が低く柔軟性に優れる重合体ブロック[B]とを有するため、低吸湿性、低透湿性、透明性、耐候性及び柔軟性を有する。
 本発明のアルコキシシリル基を有するブロック共重合体水素化物は、アルコキシシリル基を有するため、このものを含有する太陽電池封止材は、長期間高温高湿環境に暴露された後でも、ガラスとの強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することができるものである。
 本発明の製造方法によれば、効率よく簡便に、本発明のアルコキシシリル基を有するブロック共重合体水素化物を製造することができる。
 本発明の太陽電池素子封止材、該封止材からなるシート、積層シート、及び、多層シートは、低吸湿性、低透湿性、透明性、耐候性、柔軟性、耐熱性及び低温封止性を有し、かつ、長期間高温高湿環境に暴露された後でも、ガラスとの強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することができるものである。
 また、有機過酸化物等の架橋剤を用いて架橋硬化しなくても十分な耐熱性を有するため、太陽電池の製造工程で架橋工程を省略することができる。
 本発明の多層シートは、柔軟性が改善されたものであるため、真空ラミネート時において、太陽電池素子、特に結晶系太陽電池素子の割れを防止できる。
 本発明の太陽電池素子の封止方法によれば、特別な遮水処理を施すことなく太陽電池素子を封止することができる。
図1は結晶シリコン系太陽電池モジュールの概要を示す概略断面図である。
 以下、本発明を、1)アルコキシシリル基を有するブロック共重合体水素化物、2)アルコキシシリル基を有するブロック共重合体水素化物の製造方法、3)太陽電池素子封止材、4)シート及び積層シート、5)多層シート、及び、6)太陽電池素子の封止方法、に項分けして、詳細に説明する。
1)アルコキシシリル基を有するブロック共重合体水素化物
 本発明の本発明のアルコキシシリル基を有するブロック共重合体水素化物は、少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体の、炭素-炭素不飽和結合の90%以上を水素化したブロック共重合体水素化物であって、アルコキシシリル基を有するものである。
(1)ブロック共重合体
 本発明に用いるブロック共重合体は、少なくとも2つの重合体ブロック[A]と、少なくとも1つの重合体ブロック[B]を有する。
 重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位を主成分とするものである。重合体ブロック[A]中の芳香族ビニル化合物由来の繰り返し単位の含有量は、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。
重合体ブロック[A]中の芳香族ビニル化合物由来の繰り返し単位以外の成分としては、後述する鎖状共役ジエン由来の繰り返し単位や、その他の不飽和化合物由来の繰り返し単位が挙げられる。その含有量は通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。重合体ブロック[A]中の芳香族ビニル化合物由来の繰り返し単位が少なすぎると、得られる重合体の耐熱性が低下するおそれがある。
 芳香族ビニル化合物としては、具体的には、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、4-クロロスチレン、3,4-ジクロロスチレン、4-フルオロスチレン、4-メトキシスチレン、4-フェニルスチレン等が挙げられる。これらの中でも、吸湿性の面から、水酸基、アルコキシ基、ハロゲン原子等の極性基を含有しないものが好ましく、スチレンが特に好ましい。
 その他の不飽和化合物としては、鎖状ビニル化合物や環状ビニル化合物、不飽和の環状酸無水物、不飽和イミド化合物等が挙げられる。これらの不飽和化合物は、アルキル基、ニトリル基、アルコキシ基、アルコキシカルボニル基、カルボキシル基、ハロゲン原子を置換基として有していてもよいが、ニトリル基、アルコキシ基、アルコキシカルボニル基、カルボキシル基、ハロゲン原子等の極性基を有しないものが吸湿性の面で好ましい。
 鎖状ビニル化合物としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-エイコセン、4-メチル-1-ペンテン、4,6-ジメチル-1-ヘプテン等が挙げられ、環状ビニル化合物としては、ビニルシクロヘキサン等が挙げられる。これらの中でも、鎖状オレフィンが好ましく、エチレン、プロピレンがより好ましい。
 前記ブロック共重合体中の重合体ブロック[A]の個数は、通常2個以上5個以下、好ましくは2個以上4個以下、より好ましくは2個又は3個である。複数の重合体ブロック[A]同士は、互いに同じであっても、相異なっていても良い。
 重合体ブロック[B]は、鎖状共役ジエン化合物由来の繰り返し単位を主成分とするものである。
 重合体ブロック[B]中の鎖状共役ジエン化合物由来の繰り返し単位の含有量は、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。鎖状共役ジエン化合物由来の繰り返し単位が上記範囲にあると、本発明の樹脂組成物の柔軟性、太陽電池素子封止性のバランスに優れる。
 また、重合体ブロック[B]中の鎖状共役ジエン化合物由来の繰り返し単位以外の成分としては、前記芳香族ビニル化合物由来の繰り返し単位及び/又はその他の不飽和化合物由来の繰り返し単位が挙げられる。鎖状共役ジエン化合物由来の繰り返し単位以外の成分の含有量は、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。重合体ブロック[B]中の芳香族ビニル化合物由来の繰り返し単位の含有量が増加すると、本発明の樹脂組成物の柔軟性が低下し、太陽電池素子封止性が低下する恐れがある。
 ブロック共重合体中に、重合体ブロック[B]が複数個ある場合には、複数の重合体ブロック[B]同士は、互いに同じであっても、相異なっていても良い。
 鎖状共役ジエン化合物としては、具体的には、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等が挙げられる。鎖状共役ジエン化合物としては、吸湿性の面から、水酸基、アルコキシ基、ハロゲン原子、カルボキシル基等の極性基を含有しないものが好ましく、1,3-ブタジエン、イソプレンが特に好ましい。
 重合体ブロック[A]、重合体ブロック[B]がそれぞれ複数存在する場合、重合体ブロック[A]の中で重量平均分子量が最大と最少の重量平均分子量をそれぞれMw(A1)及びMw(A2)とし、重合体ブロック[B]の中で重量平均分子量が最大と最少の重量平均分子量をそれぞれMw(B1)及びMw(B2)とした時、Mw(A1)とMw(A2)との比(Mw(A1)/Mw(A2))、及び、Mw(B1)とMw(B2)との比(Mw(B1)/Mw(B2))は、それぞれ2.0以下、好ましくは1.5以下、より好ましくは1.2以下である。
 前記ブロック共重合体のブロックの形態は、鎖状型ブロックでもラジアル型ブロックでも良いが、鎖状型ブロックであるものが、機械的強度に優れ好ましい。
 最も好ましい形態は、重合体ブロック[B]の両端に重合体ブロック[A]が結合したトリブロック共重合体([A]/[B]/[A])、及び、重合体ブロック[A]の両端に重合体ブロック[B]が結合し、更に、該両重合体ブロック[B]の他端にそれぞれ重合体ブロック[A]が結合したペンタブロック共重合体([A]/[B]/[A]/[B]/[A])である。
 前記ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたとき、wAとwBとの比(wA:wB)は、20:80~60:40、好ましくは25:75~60:40、より好ましくは40:60~60:40である。wAが高過ぎる場合は、得られる太陽電池素子封止材の耐熱性は高くなるが、柔軟性が低く、封止性が劣り、wAが低過ぎる場合は、耐熱性が劣る。
 前記ブロック共重合体の分子量は、テトラヒドロフラン(THF)を溶媒としたゲル・パーミエーション・クロマトグラフィー(GPC)により測定されるポリスチレン換算の重量平均分子量(Mw)で、通常30,000~200,000、好ましくは40,000~150,000、より好ましくは50,000~100,000である。また、ブロック共重合体の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下である。
 前記ブロック共重合体の製造方法としては、例えば、3つの重合体ブロックからなるブロック共重合体([A]/[B]/[A])を製造する場合、重合体ブロック[A]を形成する芳香族ビニル化合物を含有するモノマー混合物(a1)を重合させる第1工程と、重合体ブロック[B]を形成する鎖状共役ジエン化合物を含有するモノマー混合物(b1)を重合させる第2工程と、重合体ブロック[A]を形成させる芳香族ビニル化合物を含有するモノマー混合物(a2)(モノマー混合物(a1)とモノマー混合物(a2)は同一でも相異なっていてもよい。)を重合させる第3工程とを有する方法;重合体ブロック[A]を形成するモノマー混合物(a1)を重合させる第1工程と、重合体ブロック[B]を形成するモノマー混合物(b1)を重合させる第2工程と、得られた重合体ブロック[B]の末端同士を、カップリング剤によりカップリングさせる方法;等が挙げられる。
 上記モノマー混合物を用いてそれぞれの重合体ブロックを重合する方法としては、ラジカル重合、アニオン重合、カチオン重合、配位アニオン重合、配位カチオン重合等のいずれの方法を用いてもよい。なかでも、ラジカル重合、アニオン重合、カチオン重合等を、リビング重合により行う方法、特にリビングアニオン重合により行う方法が、重合操作及び後工程での水素化反応が容易になり、得られるブロック共重合体の透明性が向上することから好ましい。
 重合は、重合開始剤の存在下に行う。重合開始剤としては、例えば、リビングアニオン重合の場合は、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム等のモノ有機リチウム;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン等の多官能性有機リチウム化合物等が挙げられる。
 反応温度は、通常0℃~100℃、好ましくは10℃~80℃、特に好ましくは20℃~70℃である。
 重合反応形態は、溶液重合、スラリー重合等のいずれでも構わないが、溶液重合を用いると、反応熱の除去が容易である。この場合、各工程で得られる重合体が溶解する不活性溶媒を用いる。
 用いる溶媒としては、反応に不活性なものであれば特に限定されない。例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、デカリン、ビシクロ[4.3.0]ノナン、トリシクロ[4.3.0.12,5]デカン等の脂環式炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;等が挙げられる。なかでも脂環式炭化水素類は、後述する水素化反応にも不活性な溶媒としてそのまま使用でき、ブロック共重合体の溶解性も良好であるため好ましい。これらの溶媒は、それぞれ単独で用いてもよいし、あるいは2種以上を組み合わせて使用することができる。
 溶媒の使用量は、全使用モノマー100重量部に対して、通常200~2000重量部である。
 それぞれのモノマー混合物が2種以上の成分からなる場合、或る1成分の連鎖だけが長くなるのを防止するために、ランダマイザー等を使用することができる。特に重合反応をアニオン重合により行う場合には、ルイス塩基化合物等をランダマイザーとして使用するのが好ましい。
 使用可能なルイス塩基化合物としては、例えば、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジフェニルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルフェニルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン等の第3級アミン化合物;カリウム-t-アミルオキシド、カリウム-t-ブチルオキシド等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物;等が挙げられる。これらのルイス塩基化合物は、それぞれ単独で用いてもよいし、あるいは2種以上を組み合わせて使用することができる。
(2)ブロック共重合体水素化物
 本発明に用いるブロック共重合体水素化物は、前記ブロック共重合体の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合を水素化したものである。その水素化率は通常90%以上、好ましくは97%以上、より好ましくは99%以上である。水素化率が高いほど、得られる太陽電池素子封止材の透明性、耐候性、耐熱性が良好となる。ブロック共重合体水素化物の水素化率は、H-NMRによる測定において求めることができる。
 特に、主鎖及び側鎖の炭素-炭素不飽和結合の水素化率は、好ましくは95%以上、より好ましくは99%以上である。主鎖及び側鎖の炭素-炭素不飽和結合の水素化率を高めることにより、耐光性、耐酸化性が高くなるという効果が得られる。
 また、芳香環の炭素-炭素不飽和結合の水素化率は、好ましくは90%以上、より好ましくは93%以上、特に好ましくは95%以上である。芳香環の炭素-炭素不飽和結合の水素化率を高めることにより、重合体ブロック[A]のガラス転移温度が高くなり、架橋せずとも太陽電池素子封止材として十分な耐熱性が発現する。
 不飽和結合の水素化方法や反応形態等は特に限定されず、公知の方法にしたがって行えばよいが、水素化率を高くでき、重合体鎖切断反応の少ない水素化方法が好ましい。
 そのような水素化方法としては、有機溶媒中、ニッケル、コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム、レニウム等から選ばれる少なくとも1種の金属を含む触媒を用いる方法が挙げられる。
 水素化触媒は、不均一系触媒、均一系触媒のいずれも使用可能である。
 不均一系触媒は、金属又は金属化合物のままで、又は適当な担体に担持して用いることができる。担体としては、例えば、活性炭、シリカ、アルミナ、炭酸カルシウム、チタニア、マグネシア、ジルコニア、ケイソウ土、炭化珪素、フッ化カルシウム等が挙げられる。
 触媒の担持量は、触媒と担体との合計量に対して、通常0.1~60重量%、好ましくは1~50重量%の範囲である。担持型触媒としては、例えば、比表面積が100~500m/g、平均細孔径100~1000Å、好ましくは200~500Åを有するものが好ましい。上記の比表面積の値は窒素吸着量を測定し、BET式を用いて算出した値であり、平均細孔径の値は水銀圧入法により測定した値である。
 均一系触媒としては、例えば、ニッケル、コバルト、チタン又は鉄化合物と有機金属化合物(例えば、有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒;有機金属錯体触媒;等を用いることができる。
 ニッケル、コバルト、チタン又は鉄化合物としては、例えば、各種金属のアセチルアセトナト化合物、カルボン酸塩、シクロペンタジエニル化合物等が用いられる。
 有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソブチルアルミニウム等のアルキルアルミニウム;ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド等のハロゲン化アルミニウム;ジイソブチルアルミニウムハイドライド等の水素化アルキルアルミニウム;等が挙げられる。
 有機金属錯体触媒としては、例えば、ジヒドリド-テトラキス(トリフェニルホスフィン)ルテニウム、ジヒドリド-テトラキス(トリフェニルホスフィン)鉄、ビス(シクロオクタジエン)ニッケル、ビス(シクロペンタジエニル)ニッケル等が挙げられる。
 これらの水素化触媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用してもよい。水素化触媒の使用量は、重合体100重量部に対して、通常0.01~100重量部、好ましくは0.05~50重量部、より好ましくは0.1~30重量部である。
 水素化反応温度は、通常10℃~250℃、好ましくは50℃~200℃、より好ましくは80℃~180℃である。反応温度がこのような範囲であると、水素化率が高くなり、分子切断も減少する。
 また水素圧力は、通常0.1MPa~30MPa、好ましくは1MPa~20MPa、より好ましくは2MPa~10MPaである。水素圧力がこのような範囲であると、水素化率が高くなり、分子鎖切断も減少し、操作性にも優れる。
 反応終了後は、水素化触媒及び/又は重合触媒を、反応溶液からろ過、遠心分離等の方法により除去して、ブロック共重合体水素化物を回収する。反応溶液からブロック共重合体水素化物を回収する方法としては、例えば、ブロック共重合体水素化物が溶解した溶液から、スチームストリッピングにより溶媒を除去するスチーム凝固法、減圧加熱下で溶媒を除去する直接脱溶媒法、ブロック共重合体水素化物の貧溶媒中に溶液を注いで析出、凝固させる凝固法等の公知の方法を挙げることができる。
 回収されたブロック共重合体水素化物の形態は限定されるものではないが、通常、その後のシリル化変性反応(アルコキシシリル基を導入する反応)に供し易いようにペレット形状とする。直接脱溶媒法を用いる場合は、例えば、溶融状態のブロック共重合体水素化物をダイからストランド状に押し出し、冷却後、ペレタイザーでカッティングしてペレット状にして各種の成形に供することができる。凝固法を用いる場合は、例えば、得られた凝固物を乾燥した後、押出機により溶融状態で押し出し、上記と同様にペレット状にしてシリル化変性反応に供することができる。
 得られるブロック共重合体水素化物の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常30,000~200,000、好ましくは40,000~150,000、より好ましくは50,000~100,000である。Mwがこの範囲であると、機械強度や耐熱性が向上する。
 また、ブロック共重合体水素化物の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下である。Mw及びMw/Mnが上記範囲であると、形成される太陽電池素子封止材の機械強度や耐熱性が向上する。
(3)アルコキシシリル基を有するブロック共重合体水素化物
 本発明のアルコキシシリル基を有するブロック共重合体水素化物は、前記ブロック共重合体水素化物にアルコキシシリル基が導入されたものである。アルコキシシリル基は、上記ブロック共重合体水素化物に直接結合していても、アルキレン基等の2価の有機基を介して結合していても良い。
 アルコキシシリル基の導入量は、通常、ブロック共重合体水素化物の重量に対し、0.1~10g/100g、好ましくは0.2~5g/100g、より好ましくは0.3~3g/100gである。アルコキシシリル基の導入量が多すぎると、微量の水分等で分解されたアルコキシシリル基同士の架橋度が高くなり、ガラスとの接着性が低下し易くなるという問題を生じる。
 アルコキシシリル基の導入量は、H-NMRスペクトル(導入量が少ない場合は積算回数を増やす)を測定し、得られた測定データから算出することができる。
 アルコキシシリル基の導入方法としては、特に限定されないが、後述するように、前記ブロック共重合体水素化物とエチレン性不飽和シラン化合物とを有機過酸化物の存在下で反応させる方法が好ましい。
2)アルコキシシリル基を有するブロック共重合体水素化物の製造方法
 本発明のアルコキシシリル基を有するブロック共重合体水素化物の製造方法は、前記ブロック共重合体水素化物に、有機過酸化物存在下、エチレン性不飽和シラン化合物を反応させることを特徴とする。
 用いるエチレン性不飽和シラン化合物としては、有機過酸化物存在下、前記ブロック共重合体水素化物とグラフト重合し、ブロック共重合体水素化物にアルコキシシリル基を導入できるものであれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン等のビニル基を有するアルコキシシラン;アリルトリメトキシシラン、アリルトリエトキシシラン等のアリル基を有するアルコキシシラン;p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン等のp-スチリル基を有するアルコキシシラン;3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン等の3-メタクリロキシプロピル基を有するアルコキシシラン;3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン等の3-アクリロキシプロピル基を有するアルコキシシラン;2-ノルボルネン-5-イルトリメトキシシラン等の2-ノルボルネン-5-イル基を有するアルコキシシラン;等が挙げられる。
 これらの中でも、本発明の効果がより得られやすいことから、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p-スチリルトリメトキシシランが好ましい。
 これらのエチレン性不飽和シラン化合物は、1種単独で、あるいは2種以上を組み合わせて使用してもよい。
 エチレン性不飽和シラン化合物の使用量は、ブロック共重合体水素化物100重量部に対して、通常0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.3~3重量部である。
 用いる有機過酸化物としては、ラジカル反応開始剤として機能するものであれば特に限定されず、例えば、ジベンゾイルパーオキシド、t-ブチルパーオキシアセテート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシヘキサン)、ジ-t-ブチルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン-3、t-ブチルヒドロパーオキシド、t-ブチルパーオキシイソブチレート、ラウロイルパーオキシド、ジプロピオニルパーオキシド、p-メンタンハイドロパーオキサイド等が挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて使用してもよい。
 本発明においては、これらの中でも、1分間半減期温度が170~190℃のものが好ましい。具体的には、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシヘキサン)、ジ-t-ブチルパーオキシド等が好適に用いられる。
 有機過酸化物の使用量は、ブロック共重合体水素化物100重量部に対して、通常0.01~5重量部、好ましくは0.2~3重量部、より好ましくは0.3~2重量部である。
 前記ブロック共重合体水素化物とエチレン性不飽和シラン化合物とを有機過酸化物の存在下で反応させる際には、加熱混練機や反応器を用いることができる。例えば、ブロック共重合体水素化物とエチレン性不飽和シラン化合物と有機過酸化物との混合物を、二軸混練機にてブロック共重合体の溶融温度以上で加熱溶融させて、所望の時間混練することにより、目的物を得ることができる。
 混練温度は、通常180~240℃、好ましくは190~230℃、より好ましくは200~220℃である。
 加熱混練時間は、通常0.1~15分、好ましくは0.2~10分、より好ましくは0.3~5分程度である。二軸混練機、短軸押出し機等の連続混練設備を使用する場合は、滞留時間が上記範囲になるようにして、連続的に混練、押出しをすればよい。
 以上のようにして得られるアルコキシシリル基を有するブロック共重合体水素化物の分子量は、導入されるアルコキシシリル基の量が少ないため、原料のブロック共重合体水素化物の分子量と実質的には変わらない。ただし、有機過酸化物の存在下での変性反応により得られるものであるため、重合体の架橋反応、切断反応が併発し、分子量分布は大きくなる。THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)は、通常、30,000~200,000、好ましくは、40,000~150,000、より好ましくは、50,000~120,000であり、分子量分布(Mw/Mn)は、通常3.5以下、好ましくは2.5以下、特に好ましくは2.0以下である。Mw及びMw/Mnがこの範囲であると、得られる太陽電池素子封止材の良好な機械強度や引張り伸びが維持される。
 得られるアルコキシシリル基を有するブロック共重合体水素化物は、ガラス、金属等との接着性が優れるため、太陽電池素子封止材に使用した場合、表面のガラス基板、銅配線等との接着性が高くなる。それゆえ、太陽電池の信頼性評価で通常行われる85℃、85%RHの高温高湿環境に1000時間暴露された後も、十分な接着力を維持することができる。
3)太陽電池素子封止材
 本発明の太陽電池素子封止材は、本発明のアルコキシシリル基を有するブロック共重合体水素化物(以下、このものを「アルコキシシリル化重合体」ということがある。)を含有することを特徴とする。
 本発明の太陽電池素子封止材は、本発明のアルコキシシリル化重合体を、太陽電池素子封止材全体に対して、通常60重量%以上、好ましくは75重量%以上、より好ましくは90重量%以上含有する。太陽電池素子封止材中のアルコキシシリル化重合体以外の残部には、太陽電池素子封止材の性能を向上させるための配合剤を含有させるのが好ましい。
 配合剤としては、前記アルコキシシリル化重合体以外の重合体、光安定剤、紫外線吸収剤、酸化防止剤、滑剤、無機フィラー等が挙げられる。
 これらの配合剤は、1種単独で用いても、あるいは2種以上を併用してもよい。
[アルコキシシリル化重合体以外の重合体]
 アルコキシシリル化重合体以外の重合体(以下、「他の重合体」ということがある。)は、太陽電池素子封止材の樹脂特性を向上させるために添加される。用いる他の重合体としては、前記アルコキシシリル化重合体の前駆体であるブロック共重合体水素化物;エチレン・プロピレン共重合体、プロピレン・エチレン・1-ブテン共重合体等のオレフィン系重合体;ポリイソブチレン、イソブチレン・イソプレン共重合体水素化物等のイソブチレン系重合体;アクリロニトリル・ブタジエンランダム共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、イソプレン・スチレンブロック共重合体等のジエン系重合体;ポリブチルアクリレート、ポリヒドロキシエチルメタクリレート等のアクリル系重合体;ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴム等のエポキシ系重合体;1,3-ペンタジエン系石油樹脂、シクロペンタジエン系石油樹脂、芳香族系石油樹脂等の石油樹脂及びその水素化物;等が挙げられる。
[光安定剤]
 光安定剤は、太陽電池素子封止材耐候性の向上を目的として添加される。用いる光安定剤としては、ヒンダードアミン系光安定剤が好ましい。例えば、構造中に3,5-ジ-t-ブチル-4-ヒドロキシフェニル基、2,2,6,6-テトラメチルピペリジル基、あるいは、1,2,2,6,6-ペンタメチル-4-ピペリジル基等を有している化合物が挙げられる。
 具体的には、1,2,3,4-ブタンテトラカルボン酸、1,2,2,6,6-ペンタメチル-4-ピペリジノール、及び3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンからなる混合エステル化物、1,6-ヘキサンジアミン-N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)とモルフォリン-2,4,6-トリクロロ-1,3,5-トリアジンとの重縮合物、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕]-2,2,6,6-テトラメチルピペリジン、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸-ビス-(1,2,2,6,6-ペンタメチル-4-ピペリジル)、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸-ビス-(1,2,2,6,6-ペンタメチル-4-ピペリジル)、4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-2,2,6,6-テトラメチルピペリジン、4-〔N-(1-ベンジル-2-フェニルエチル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-[N-〔2-(1-ピロリジル)エチル)-N-ホルミルアミノ〕]-2,2,6,6-テトラメチルピペリジン、4-[N-〔2-(4-モルホリニル)エチル〕-N-ホルミルアミノ]-2,2,6,6-テトラメチル-N-メチルピペリジン、4-[N-〔2-(4-モルホリニル)エチル〕-N-ホルミルアミノ]-2,2,6,6-テトラメチルピペリジン、4-[N-〔2-(ジイソプロピルアミノ)エチル〕-N-ホルミルアミノ]-2,2,6,6-テトラメチルピペリジン、4-〔N-(2,4,6-トリメチルベンジル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジ、4-[N-〔3-(2-エチルヘキソキシ)プロピル〕-N-ホルミルアミノ]-2,2,6,6-テトラメチルピペリジン、4-〔N-(3,4-メチレンジオキシ)ベンジル〕-N-ホルミルアミノ-2,2,6,6-テトラメチルピペリジン、4-〔N-(ビシクロ[2.2.1]ヘプチル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-(N-1,2,2-トリメチルプロピル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-1、3-ジメチルブチル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-〔N-(1-ベンジルエチル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-〔N-(2,2-ジメチルプロピル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-〔N-(2-エチルヘキシル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-〔N-(3-メチルブチル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-〔N-(4-ヒドロキシブチル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-〔N-(4-ヒドロキシブチル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-(N-イソプロピル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-イソプロピル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-t-ブチル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-イソプロピルベンジル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-エトキシエチル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-エトキシプロピル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-オクタデシル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-オクチル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピペリジン、4-(N-オクチル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-クロロベンジル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-〔N-(2-ジエチルアミノエチル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-(N-シクロドデシル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-シクロヘキシル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルカルボニルピペリジン、4-(N-シクロヘキシル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピリジン、4-(N-シクロヘキシル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピリジン、4-(N-シクロペンチル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピペリジン、4-(N-シクロペンチル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-〔N-(3-ジメチルアミノプロピル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピペリジン、4-(N-デシル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピペリジン、4-(N-デシル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-ドデシル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-ピリジニルメチル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-フェニルエチル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピリジン、4-(N-フェニルエチル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピリジン、4-(N-ブチル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピペリジン、4-(N-ブチル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピペリジン、4-(N-フルオロベンジル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-ヘキシル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピペリジン、4-(N-ヘキシル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-ペンチル-N-ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピペリジン、4-(N-ペンチル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-メチルシクロヘキシル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピリジン、4-(N-メチルベンジル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(N-メトキシベンジル-N-ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-(ホルミルアミノ)-2,2,6,6-テトラメチル-N-メチルピペリジン、4-(ホルミルアミノ)-2,2,6,6-テトラメチルピペリジン、4-〔N-(2,2,6,6-テトラメチル-4-ピペリジル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチル-N-メチルピリジン、4-〔N-(2,2,6,6-テトラメチル-4-ピペリジル)-N-ホルミルアミノ〕-2,2,6,6-テトラメチルピリジン、N,N’,N’’,N’’’-テトラキス-[4,6-ビス〔ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ〕-トリアジン-2-イル]-4,7-ジアザデカン-1,10-アミン、N,N’-ビス(2,2,6,6-テトラメチル-4-N-メチルピペリジル)-N,N’-ジホルミル-1,4-キシリレンジアミン、N,N’-ビス(2,2,6,6-テトラメチル-4-N-メチルピペリジル)-N,N’-ジホルミル-トリメチレンジアミン、N,N’-ビス(2,2,6,6-テトラメチル-4-N-メチルピペリジル)-N,N’-ジホルミル-ヘキサメチレンジアミン、N,N’-ビス(2,2,6,6-テトラメチル-4-N-メチルピペリジル)-N,N’-ジホルミル-エチレンジアミン、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミル-1,4-キシリレンジアミン、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルエチレンジアミン、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミル-トリメチレンジアミン、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルヘキサメチレンジアミン、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンアクリル酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンアラキン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンアンゲリカ酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンウンデシル酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンウンデシレン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンオレイン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンガドレイン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンカプリル酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンカプリン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンカプロン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンクロトン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンシトロネル酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンステアリン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンゾマーリン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレントリデシル酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンノナデシル酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンパルチミン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンブレンツテレビン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンプロピオン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンヘプタン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンベヘン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンペラルゴン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンペンタデシル酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンマルガリン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’
-ビスヘキサメチレンミリスチン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンラウリン酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレンリンデル酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレン吉草酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレン酢酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレン抹香酸アミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスヘキサメチレン酪酸アミド、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物、ジブチルアミンと1,3,5-トリアジンとN,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ポリ〔(6-モルフォリノ-s-トリアジン-2,4-ジイル)〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕-ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕、ポリ[〔(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕]、ポリ[〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕]、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)-1,6-ヘキサンジアミンと2,4,6-トリクロロ-1,3,5-トリアジンとの重合体、N-ブチル-1-ブタンアミン、及びN-ブチル-2,2,6,6-テトラメチル-4-ピペリジンアミンの反応生成物等が挙げられる。
 これらの中でも、耐候性に優れる点で、N,N’-ビス(2,2,6,6-テトラメチル-4-N-メチルピペリジル)-N,N’-ジホルミル-アルキレンジアミン類、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルアルキレンジアミン類、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ビスアルキレン脂肪酸アミド類、ポリ[〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕]が好ましく、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルアルキレンジアミン類、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)-1,6-ヘキサンジアミンと2,4,6-トリクロロ-1,3,5-トリアジンとの重合体、N-ブチル-1-ブタンアミン、及びN-ブチル-2,2,6,6-テトラメチル-4-ピペリジンアミンの反応生成物が特に好ましい。
 ヒンダードアミン系光安定剤の使用量は、アルコキシシリル化重合体100重量部に対して、通常0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.4~2.5重量部である。ヒンダードアミン系光安定剤の量がこれより少ない場合は、太陽電池素子封止材の耐候性が不十分な場合があり、これより多い場合は、太陽電池素子封止材をシート状に成形する溶融成形加工時に、押出し機のTダイや冷却ロールの汚れが酷かったりして加工性に劣る場合がある。
[紫外線吸収剤]
 紫外線吸収剤は、太陽電池素子封止材の光安定性をより向上させるために添加される。用いる紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等が挙げられる。これらの紫外線吸収剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸3水和物、2-ヒドロキシ-4-オクチロキシベンゾフェノン、4-ドデカロキシ-2-ヒドロキシベンゾフェノン、4-ベンジルオキシ-2-ヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。
 サリチル酸系紫外線吸収剤としては、フェニルサルチレート、4-t-ブチルフェニル-2-ヒドロキシベンゾエート、フェニル-2-ヒドロキシベンゾエート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2-ヒドロキシ-5-メチルフェニル)2H-ベンゾトリアゾール、2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、5-クロロ-2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタリミジルメチル)フェノール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-[(2H-ベンゾトリアゾール-2-イル)フェノール]]等が挙げられる。
 紫外線吸収剤の使用量は、アルコキシシリル化重合体100重量部に対して、通常0.01~1重量部、好ましくは0.02~0.5重量部、より好ましくは0.04~0.3重量部である。紫外線吸収剤は、ヒンダードアミン系光安定剤と併用することにより、更に耐光性を改善することができるが、上記範囲を超えて過剰に添加しても、更なる改善は認められない。
[酸化防止剤]
 酸化防止剤は、太陽電池素子封止材の熱安定性を向上させるために添加される。用いる酸化防止剤としては、リン系酸化防止剤、フェノ-ル系酸化防止剤、硫黄系酸化防止剤等が挙げられ、着色がより少ないリン系酸化防止剤が好ましい。
 リン系酸化防止剤としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のモノホスファイト系化合物;4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4’-イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)等のジホスファイト系化合物;6-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラキス-t-ブチルジベンゾ〔d,f〕〔1.3.2〕ジオキサフォスフェピン、6-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ〕-2,4,8,10-テトラキス-t-ブチルジベンゾ〔d,f〕〔1.3.2〕ジオキサフォスフェピン等が挙げられる。
 フェノ-ル系酸化防止剤としては、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。
 硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピピオネート、ジステアリル-3,3’-チオジプロピオネート、ラウリルステアリル-3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等が挙げられる。
 酸化防止剤の使用量は、アルコキシシリル化重合体100重量部に対して、通常0.01~1重量部、好ましくは0.05~0.5重量部、より好ましくは0.1~0.3重量部である。酸化防止剤は、ヒンダードアミン系光安定剤と併用することにより、更に耐光性を改善することができるが、上記範囲を超えて過剰に添加しても、更なる改善は認められない。
 前記アルコキシシリル化重合体に、上記配合剤を均一に分散する方法としては、例えば、(i)配合剤を適当な溶剤に溶解して変性重合体の前駆体であるブロック共重合体水素化物の溶液に添加した後、溶媒を除去して、配合剤を含むブロック共重合体水素化物を回収し、これとエチレン性不飽和シラン化合物とを有機過酸化物の存在下で反応させる方法、(ii)二軸混錬機、ロール、ブラベンダー、押出機等で変性重合体を溶融状態にして配合剤を混練する方法、(iii)ブロック共重合体水素化物とエチレン性不飽和シラン化合物とを有機過酸化物の存在下で反応させる際に同時に上記配合剤も混練する方法、(iv)ブロック共重合体水素化物に上記配合剤を均一に分散してペレット状にしたものと、変成重合体をペレット状にしたものを混合し、溶融混練して均一に分散する方法、等が挙げられる。
 本発明の太陽電池素子封止材は、低吸湿性、非加水分解性、耐候性、透明性、柔軟性及び長期間高温高湿環境に暴露された後でもガラスとの強固な接着力を維持し、接着性に優れる為、電気電子素子等の封止に好適であり、太陽電池素子封止に好適に用いられる。
 本発明の太陽電池素子封止材は、ガラスを透明前面基板とする太陽電池に特に好ましく使用される。
4)シート及び積層シート
〈シート〉
 本発明のシートは、本発明の太陽電池素子封止材からなることを特徴とする。
 本発明のシートは、太陽電池モジュールの製造に好適に用いられる。
 本発明のシートを製造する方法としては、特に制限はなく、本発明の太陽電池素子封止材をシート状に成形すればよい。成形方法としては、キャスト成形法、押出しシート成形法、インフレーション成形法等の溶融押出し成形法;圧縮成形法、カレンダー成形法等の公知の成形方法が挙げられる。本発明の太陽電池素子封止材は、熱架橋性を付与するための有機過酸化物の配合を必要としないため、溶融成形温度の選択領域も広い。
 シートの成形条件は、成形方法により適宜選択される。例えば溶融押出し成形法による場合は、樹脂温度は、通常180~240℃、好ましくは190~230℃、より好ましくは200~220℃である。樹脂温度が低過ぎる場合は、流動性が悪化し、成形シートにゆず肌やダイライン等の不良を生じ易く、シートの押出し速度が上げられず工業的に好ましくない。
 樹脂温度が高過ぎる場合は、変性重合体のガラスへの接着性が不良となったり、シートの貯蔵安定性が低下して、シートを常温常湿環境で長期間貯蔵した後のガラスに対する接着性が低下する等の不具合を生じ易く、好ましくない。
 シートの厚さは、特に制限されないが、通常0.2~0.6mmである。太陽電池素子として結晶系シリコンウェハーを使用する場合は、シリコンウェハーの厚さが0.15~0.2mmであるため、太陽電池素子封止材のシートの厚みは、好ましくは0.3~0.5mmである。シート厚みが0.2mmよりも小さいと、太陽電池モジュール製造の際の加熱ラミネート工程においてガラス、太陽電池素子の破損が起き易くなり、0.6mmよりも大きいと、シートの光線透過率が低下したり、太陽電池素子封止材の使用量が多くなり経済性が低下するため好ましくない。
〈積層シート〉
 本発明の積層シートは、(α)少なくとも2つの、前記重合体ブロック[A]と、少なくとも1つの、前記重合体ブロック[B]とからなるブロック共重合体であって、wAとwBとの比(wA:wB)が20:80~60:40であるブロック共重合体の、全不飽和結合の90%以上が水素化されているブロック共重合体水素化物、及び、(β)前記(α)のブロック共重合体水素化物に、アルコキシシリル基が導入されてなるアルコキシシリル基を有するブロック共重合体水素化物以外の重合体(以下、「他の重合体」ということがある。)、光安定剤、紫外線吸収剤、及び酸化防止剤からなる群から選ばれる少なくとも1種を含む組成物からなるシート(以下、「配合剤含有シート」ということがある。)の片面又は両面に、前記本発明のシートを積層してなることを特徴とする。
 配合剤含有シートに用いる、他の重合体、光安定剤、紫外線吸収剤、及び酸化防止剤(以下、これらをまとめて「配合剤(2)」という。)としては、前記太陽電池素子封止材の配合剤として例示したのと同様のものが挙げられる。
 前記配合剤含有シートは、前記本発明のシートの製造方法において、太陽電池素子封止材の代わりに、前記(α)ブロック共重合体水素化物と(β)配合剤(2)とからなる組成物を用い、当該製造方法と同様にして製造することができる。
 配合剤含有シートの片面又は両面に、本発明のシートを積層して、積層シートを成形する方法としては、2種3層共押出し成形法;配合剤含有シートの片面もしくは両面に、本発明のシートを、熱圧着や接着剤で積層する方法;配合剤含有シートの片面もしくは両面に、本発明の太陽電池素子封止材を溶媒に溶解した溶液を塗布した後、溶媒を揮発させて積層する方法;等が挙げられる。
 積層シートの厚みは、通常は0.001mm以上、好ましくは0.005mm以上、より好ましくは0.01mm以上である。積層シートの厚みが0.001mmよりも小さいと、長期間高温高湿環境に暴露されると、ガラス基板との接着性が低下し易くなるため好ましくない。
 前記シート又は積層シート(以下、「シート等」ということがある。)の形状は、平面状やエンボス加工を施した形状等とすることができる。シート等同士のブロッキングを防止するために、該シート等の片面に離型フィルムを重ねて保管することもできる。エンボス加工したシート等は、太陽電池モジュール製造工程でのラミネート時のガラス、太陽電池素子に対するクッション性も有し、これらの破損が防止される点で好ましい。
 本発明のシート等は、太陽電池素子の片面及び/又は両面に積層し、更に必要に応じて、積層された当該シート等の、太陽電池素子側とは反対側の面に表面保護層を積層することにより、太陽電池に利用することができる。
 太陽電池モジュールを製造する方法としては特に制限は無いが、例えば、ガラスからなる透明前面基板、本発明のシート等、太陽電池素子、及び、太陽電池素子に繋がる配線、本発明のシート等、裏面保護シートを順に積層し、次いで真空吸引等により加熱ラミネートさせる方法が一般的である。
 本発明のシート等は透湿度が小さく、吸湿性も低いため、遮水層としての裏面保護シートは必須としない。機械的衝撃を緩和する目的で裏面保護シートを適用すれば良く、安価で機械的強度に優れたポリエチレンテレフテレート樹脂シート、ポリカーボネート樹脂シート等が使用できる。
 本発明のシート等を使用した太陽電池モジュールの耐久性を更に高めるために、裏面保護シートは、遮光性及び/又は光反射性を有していても良い。この場合、裏面保護シートは、紫外線吸収剤や酸化チタン等の遮光性顔料を含有したもの等が適用できる。
5)多層シート
 本発明の多層シートは、前記ブロック共重合体水素化物であって、該ブロック共重合体水素化物のwAとwBとの比(wA:wB)が40:60~60:40であるブロック共重合体水素化物に、アルコキシシリル基が導入されてなる、アルコキシシリル基を有するブロック共重合体水素化物(i)〔以下、「アルコキシシリル化重合体(i)」ということがある。〕を含有する層[I]と、エチレン及び/又は炭素数3~10のα-オレフィンを重合して得られる、融点が90~140℃である(共)重合体に、アルコキシシリル基が導入された(共)重合体(ii)(以下、「アルコキシシリル化ポリオレフィン(ii)」ということがある。)を含有する層[II]とを有することを特徴とする。
 層[I]のアルコキシシリル化重合体(i)は、wAとwBとの比(wA:wB)が40:60~60:40であるブロック共重合体を用い、上述した本発明の製造方法により製造することができる。
 層[II]のアルコキシシリル化ポリオレフィン(ii)は、エチレン及び/又は炭素数3~10のα-オレフィンを重合して得られる、融点が90~140℃であるポリオレフィン(以下、「特定ポリオレフィン」ということがある。)にアルコキシシリル基が導入されたものである。
 炭素数3~10のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン、ビニルシクロヘキサン等が挙げられる。
 特定ポリオレフィンの合成法は特に限定されるものではなく、一般的な方法が採用される。エチレン及び炭素数3~10のα-オレフィンからなる群より選択される1種類以上のオレフィンを用いて製造された、市販のポリオレフィンの中から、融点が90~140℃のものを選んで使用することもできる。
 用いる特定ポリオレフィンの、より好ましい融点は100~130℃である。融点が90℃未満では太陽電池に要求される耐熱性が劣り、140℃を超える場合は本発明の目的である結晶系太陽電池セルの封止温度を期待するエチレン・酢酸ビニル共重合体(EVA)同等の150℃以下にできない。
 アルコキシシリル基は、特定ポリオレフィンに直接結合していても、アルキレン基などの2価の有機基を介して結合していても良い。アルコキシシリル基の導入方法としては、通常、特定ポリオレフィンとエチレン性不飽和シラン化合物とを過酸化物の存在下で反応させる方法が採用される。
 エチレン性不飽和シラン化合物としては、前記ブロック共重合体水素化物にアルコキシシリル基を導入する際に用いるものとして例示したのと同様のものが挙げられる。なかでも、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、p-スチリルトリメトキシシランが好適に用いられる。
 これらのエチレン性不飽和シラン化合物は、1種単独で、あるいは2種以上を組み合わせて使用してもよい。
 特定ポリオレフィンへのアルコキシシリル基の導入量は、特定ポリオレフィンの重量に対し、通常0.05~5g/100g、好ましくは0.1~3g/100g、より好ましくは0.2~2g/100gである。アルコキシシリル基の導入量が多すぎると、微量の水分等で分解されたアルコキシシリル基同士の架橋度が高くなり、本発明の目的である太陽電池素子を封止する際の結晶系太陽電池セルの割れを防止する効果が低下する傾向にある。アルコキシシリル基の導入はIRスペクトルで確認することができ、導入量はSiの元素分析値から概算される。
 過酸化物としては、前記のブロック共重合体水素化物にアルコキシシリル基を導入する場合と同様の化合物を使用することができる。なかでも、1分間半減期温度が170~190℃のものが好ましく使用され、例えば、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシドなどが好適に用いられる。
 これらの過酸化物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて使用してもよい。過酸化物の使用量は、特定ポリオレフィン100重量部に対して、通常0.05~2重量部、好ましくは0.1~1重量部、より好ましくは0.2~0.5重量部である。
 特定ポリオレフィンとエチレン性不飽和シラン化合物とを過酸化物の存在下で反応させる方法は、前述のブロック共重合体水素化物にアルコキシシリル基を導入する場合と同様の加熱混練機や反応器を用いて行うことができる。例えば、ポリオレフィンとエチレン性不飽和シラン化合物と過酸化物との混合物を、二軸混練機にてポリオレフィンの溶融温度以上で加熱溶融させて、所望の時間混練する方法が挙げられる。
 加熱溶融温度は、通常140~220℃、好ましくは150~210℃、より好ましくは160~200℃である。
 加熱混練時間は、通常0.1~10分、好ましくは0.2~5分、より好ましくは0.3~2分程度である。
 二軸混練機、短軸押出し機などの連続混練設備を使用する場合は、滞留時間が上記範囲になるようにして、連続的に混練、押出しをすればよい。
 前記層[I]は、前記アルコキシシリル化重合体(i)を、層[I]の重量に対して、通常80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上含有する。層[II]は、前記アルコキシシリル化ポリオレフィン(ii)を、層[II]の重量に対して、通常80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上含有する。
 層[I]中のアルコキシシリル化重合体(i)、又は層[II]中のアルコキシシリル化ポリオレフィン(ii)(以下、「アルコキシリル化体等」ということがある。)以外の残部には、太陽電池素子封止材の性能を向上させるための配合剤を含有させることができる。配合剤としては、樹脂特性を向上させるためのその他の重合体、耐候性や耐熱性などを向上させるための光安定剤、紫外線吸収剤、酸化防止剤、滑剤、無機フィラーなどが挙げられ、光安定剤、紫外線吸収剤を用いるのが好ましい。配合剤は、単独で用いても、あるいは2種以上を併用してもよい。
 これらの中でも、層[I]、層[II]としては、層[I]が、アルコキシシリル化重合体(i)100重量部に対して、ヒンダードアミン系光安定剤を0.1~5重量部含有するものであり、及び/もしくは、層[II]が、アルコキシシリル化ポリオレフィン(ii)100重量部に対して、ヒンダードアミン系光安定剤を0.1~5重量部含有するものであるもの;又は、層[I]が、アルコキシシリル化重合体(i)100重量部に対して、紫外線吸収剤を0.01~0.2重量部含有するものであり、及び/もしくは、層[II]が、アルコキシシリル化ポリオレフィン(ii)100重量部に対して、紫外線吸収剤を0.01~0.2重量部含有するものであるもの;が好ましい。
 また、ヒンダードアミン系光安定剤に、更に酸化防止剤を用いることにより、耐光性を更に向上させることができる。酸化防止剤の使用量は、アルコキシシリル化重合体(i)、アルコキシシリル化ポリオレフィン(ii)それぞれ100重量部に対して、通常0.01~1重量部、好ましくは0.05~0.5重量部、より好ましくは0.1~0.3重量部である。
 ヒンダードアミン系光安定剤配合剤、紫外線吸収剤、酸化防止剤としては、前記太陽電池素子封止材の項で例示したのと同様のものが挙げられる。
 アルコキシシリル化体等に配合剤を均一に分散する方法としては、特に制約はないが、例えば、配合剤を適当な溶剤に溶解し、このものを、アルコキシシリル化重合体(i)の前駆体であるブロック共重合体水素化物、又は、アルコキシシリル化ポリオレフィン(ii)の前駆体である特定ポリオレフィンの溶液に添加した後、溶媒を除去し、配合剤を含むブロック共重合体水素化物又は特定ポリオレフィンを回収し、このものとエチレン性不飽和シラン化合物とを過酸化物の存在下で反応させる方法;二軸混錬機、ロール、ブラベンダー、押出機などで、前記ブロック共重合体水素化物又は特定ポリオレフィンを溶融状態にして配合剤を混練し、その後、過酸化物の存在下でエチレン性不飽和シラン化合物を反応させる方法;前記ブロック共重合体水素化物又は特定ポリオレフィンと、エチレン性不飽和シラン化合物とを過酸化物の存在下で反応させる際に、同時に配合剤を混練する方法;前記ブロック共重合体水素化物又は特定ポリオレフィンに配合剤を均一に分散してペレット状にしたものと、アルコキシシリル化重合体又はアルコキシシリル化ポリオレフィンをペレット状にしたものとを混合し、溶融混練して均一に分散する方法;などが挙げられる。
 本発明の多層シートは、太陽電池モジュールの製造に好適に用いられる。
 多層シートの厚みは、特に制限されないが、0.2~0.8mmの範囲にあることが好ましい。太陽電池素子として結晶系シリコンウェハーを使用する場合は、好ましくは0.3~0.7mm、より好ましくは0.4~0.6mmである。このような厚みが好ましい理由は前述した通りである。
 本発明の多層シートを構成する各層の厚さは、特に限定は無いが、最外層に層[I]を用いるのが好ましく、最外層である層[I]の厚みは、通常0.07~0.3mm、好ましくは0.09~0.25mm、より好ましくは0.1~0.2mmである。
 最外層である層[I]の厚みが0.07mmよりも小さいと、ヒートサイクル試験での結晶系太陽電池セルのクラックを防止する効果が低下するため好ましくなく、0.3mmを超えると、真空ラミネート時の結晶系太陽電池セルの割れを防止する効果が十分でないため好ましくない。
 層[II]の厚みは、通常0.05~0.3mm、好ましくは0.08~0.25mm、より好ましくは0.11~0.2mmである。
 層[II]の厚みが0.05mmよりも小さいと、真空ラミネート時の結晶系太陽電池セルの割れを防止する効果が十分でないため好ましくなく、0.3mmを超えると多層シートの光線透過率が低下し易くなり好ましくない。
 多層シートの構成としては、例えば、層[I]/層[II]の2層構成、層[I]/層[II]/層[I]の3層構成、層[I]/層[II]/層[I]/層[II]の4層構成、層[I]/層[II]/層[I]/層[II]/層[I]の5層構成、これらの層の間に更に他の樹脂からなる層が積層された構成等が挙げられる。なかでも、工業生産の観点から、層[I]/層[II]からなる2層構成、層[I]/層[II]/層[I]からなる3層構成が好ましい。
 本発明の多層シートを成形する方法としては、特に制限は無いが、層[I]形成用組成物(アルコキシシリル化重合体(i)、又はこのものに配合剤が分散されてなる組成物)、層[II]形成用組成物(アルコキシシリル化ポリオレフィン(ii)、又はこのものに配合剤が分散されてなる組成物)を用いて、公知の多層共押出し成形法により形成する方法;層[I]形成用組成物を用いて溶融押出し法などで形成された層[I]と、層[II]形成用組成物を用いて同じく溶融押出法などで形成された層[II]を2層以上に積層して熱圧着する方法;前記のようにして得られる層[II]の片面もしくは両面に、層[I]形成用組成物を溶媒に溶解した溶液を塗布した後、溶媒を揮発させて積層する方法;などが挙げられる。
 本発明の多層シートは、熱架橋性を付与するための有機過酸化物の配合を必要としないため、溶融成形温度の選択領域も広い。多層シートの成形条件は、成形方法により適宜選択されるが、例えば溶融押出し成形法による場合は、樹脂温度は、通常150~210℃、好ましくは160~200℃、より好ましくは170~190℃の範囲である。
 樹脂温度が低過ぎる場合は、流動性が悪化し、成形される多層シートの表面平滑性が低下し、また、シートの押出し速度が上げられず、工業生産性に劣る傾向がある。
 樹脂温度が高過ぎる場合は、アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィンのガラスへの接着性が不良となったり、ゲル状物が発生して良好な多層シートが得られなかったり、多層シートの貯蔵安定性が低下して、多層シートを常温常湿環境で長期間貯蔵した後のガラスに対する接着性が低下する場合がある。
 本発明の多層シートの形状は、平面状やエンボス加工を施した形状などとすることができる。多層シート同士のブロッキングを防止するために、該多層シートの片面に離型フィルムを重ねて保管することもできる。エンボス加工した多層シートは、太陽電池モジュール製造工程でのラミネート時のガラス、太陽電池素子に対するクッション性も有し、これらの破損が防止される点で好ましい。
 本発明の多層シートは、太陽電池素子の片面又は両面に積層し、更に必要に応じて、多層シートの、太陽電池素子側とは反対側の面に表面保護層を積層することにより、太陽電池に利用できる。
 太陽電池モジュールを製造する方法としては、特に制限は無いが、例えば、ガラスからなる透明前面基板、本発明の多層シート、太陽電池素子及び太陽電池素子に繋がるタブ線、本発明の多層シート、裏面保護シートを順に積層し、次いで真空吸引等により加熱ラミネートさせる方法が一般的である。
 本発明の多層シートは、少なくとも1つの最外層が層[I]であるのが好ましく、ガラスを透明前面基板とする太陽電池素子(好ましくは結晶系太陽電池素子)を有する太陽電池の封止材として好適である。本発明の多層シートは透湿度が小さく、吸湿性も低いため、遮水層としての裏面保護シートは必須とはせず、機械的衝撃を緩和する目的で裏面保護シートを適用すれば良く、安価で機械的強度に優れたポリエチレンテレフタレート(PET)樹脂シート、ポリカーボネート樹脂シートなどが使用できる。
 本発明の多層シートを使用した太陽電池モジュールの耐久性を更に高めるために、裏面保護シートは、遮光性及び/又は光反射性を有していても良い。この場合、裏面保護シートは紫外線吸収剤や酸化チタンなどの遮光性顔料を含有したものなどが適用できる。
 本発明の多層シートは太陽電池素子の封止材として有用であるが、その他の用途としてガラス板の張り合わせ、ガラス板と金属板の張り合わせ、金属板の張り合わせ、電子部品の封止などにも使用できる。
6)太陽電池素子の封止方法
 本発明の太陽電池素子の封止方法は、本発明の多層シートの層[I]側を、太陽電池素子に接するように配置して使用することを特徴とする。層[I]を太陽電池素子に接するように配置することにより、真空ラミネート時の太陽電池素子(特に、結晶系太陽電池素子)の割れを防止することができる。また、太陽電池モジュールの一般的な環境試験の一つである-40℃及び+90℃で行うヒートサイクル試験を実施した後にも太陽電池素子(特に、結晶系太陽電池素子)にクラックを生じ難くなる。
 更に、太陽電池モジュールの透明前面基板がガラスの場合は、ガラスに対しても層[I]が接するように配置して使用することが好ましい。本発明の多層シートは、低吸湿性、低透湿性、透明性、耐候性、柔軟性、耐熱性、低温封止性を有し、かつ、長期間高温高湿環境に暴露された後でも、ガラスとの強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することができる。
 また、有機過酸化物等の架橋剤を用いて架橋硬化しなくても十分な耐熱性を有するため、太陽電池の製造工程で架橋工程を省略することができる。
 以下、本発明について、実施例及び比較例を挙げて、より具体的に説明する。本発明は、これらの実施例に限定されるものではない。以下の実施例及び比較例において、部及び%は、特に断りがない限り、重量基準である。
 以下に各種物性の測定法を示す。
(1)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ブロック共重合体及びブロック共重合体水素化物の分子量は、THFを溶離液とするGPCによる標準ポリスチレン換算値として38℃において測定した。測定装置としては、東ソー社製HLC8020GPCを用いた。
(2)水素化率
 ブロック共重合体水素化物の主鎖、側鎖及び芳香環の水素化率は、H-NMRスペクトルを測定して算出した。
(3)光線透過率
 太陽電池素子封止材の押出し成形シート、アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)の押出し成形シート又は押出し成形シートを積層した多層シートを、それぞれ、真空ラミネータ(PVL0202S、日清紡メカトロニクス社製)を使用して、150℃で10分間加熱加圧処理した後、ASTM D-1003に従い測定した。
(4)透湿度
 太陽電池素子封止材の押出し成形シート、アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)の押出し成形シート又は押出し成形シートを積層した多層シートを、それぞれ、真空ラミネータで150℃、10分間加熱加圧成形して厚さ300~350μmの試験片を作成し、JIS Z 0208の方法に準じて、40℃、90%RHの環境条件で測定した。シート材料の特性を明確にするために、実測値から、シート厚み300μmの値に換算して比較した。
(5)引張り弾性率、引張り強度及び引張り伸び
 太陽電池素子封止材の押出し成形シート、アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)の押出し成形シート又は押出し成形シートを積層した多層シートを、それぞれ、真空ラミネータで150℃、10分間加熱加圧処理した後、テンシロン万能試験機(RTC-1125A、ORIENTIC社製)を用いて、JIS K 7127/5/200の方法で測定した。試験片はタイプ5、23℃の条件下、チャック間距離10cmで破断するまで引張り試験を行った。引張り弾性率はJIS K 7161に準ずる方法で、破断時の強度を引張り強度とし、破断時の伸びを引張り伸びとした。
(6)体積抵抗率
・太陽電池素子封止材の押出し成形シートを、真空ラミネータで3枚積層して成形して厚さ0.9~1.1mmの試験片にして、JIS K 6911に従って、23℃で測定した。
・アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)の押出し成形シート又は押出し成形シートを積層した多層シートについては、1.1~1.3mmの試験片にして測定した。
(7)ガラス基板との接着性評価(剥離強度)
 太陽電池素子封止材の押出しシート、アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)の押出し成形シート又は押出し成形シートを積層した多層シートにつき、それぞれ、シート端部に非接着部位を設けて厚さ2mm、幅25mm、長さ65mmのソーダライムガラス基板と重ね合わせ、真空ラミネータにて50℃、10分間加熱加圧処理した後、更に180℃で10分間加熱加圧接着することにより、剥離試験用試験片を作成した。シート面を10mm幅に切り目を入れ、シートの非接着部位から、剥離速度50mm/分で、JIS K 6854-1に準じて90度剥離試験を行い、剥離強度を測定した。剥離強度は、真空ラミネート後の初期の値及び85℃、85%RHの高温高湿環境に1000時間暴露した後の値を測定した。剥離強度が大きいほど、ガラスとの接着性が良い。
(8)耐候性
・ガラス基板との接着性評価用に作成した、ガラスと太陽電池素子封止材の押出しシートの張り合わせ試験片を使用して、ガラス面を光源側にし、裏面に白色PETフィルム(製品名「ルミラー(登録商標) E20」、厚さ125μm、東レ社製)を重ねて、サンシャインウェザーメーター(WEL-SUN-HC・B、スガ試験機社製)を用いて、サンシャインカーボンアーク灯、ブラックパネル温度63℃、相対湿度50%の条件にて、300時間露光した後取り出し、ガラスと太陽電池素子封止材の押出しシートを張り合わせた試験片の光線透過率を測定した。
・厚さ2mm、幅25mm、長さ65mmのソーダライムガラス基板2枚の間に、アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)の押出し成形シート又は押出し成形シートを積層した多層シートを挟んで、真空ラミネータにて150℃で10分間加熱加圧接着することにより張り合わせた試験片を使用して、前記と同様にして試験片の波長500nmにおける光線透過率を測定した。
(9)封止銅板の耐腐食性
 太陽電池素子封止材の押出しシート、アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)の押出し成形シートの、それぞれ2枚の間に、酢酸水溶液にて表面をエッチングし、水洗することで酸化物を除去した厚さ0.3mmの銅板をはさみ、真空ラミネータにて150℃で10分間加熱加圧することにより、銅板を封止した耐腐食性評価用試験片を作成した。この試験片を、85℃、85%RHの環境に1週間暴露し、試験片の外観、臭気及び銅箔の変色を観察した。
(10)太陽電池モジュールの耐久性評価(実施例1~5)
 透明基板(ソーダライムガラス)の上に、太陽電池素子封止材からなるシートを載せ、その上に多結晶シリコン太陽電池セルを載せた。太陽電池セルには銅箔からなる配線を接続した。この太陽電池セルの上に更に太陽電池素子封止材からなるシート、裏面保護シート(PET)の順で載せ積層体を得た。次に上記積層体を真空ラミネータにて加熱加圧して封止し、太陽電池モジュールを作製した。
 前記陽電池モジュールを、-40℃で30分、90℃で30分を1サイクルとして200サイクル実施した後に、目視観察で太陽電池モジュールの変形の有無、及び、Cモード超音波走査型顕微鏡(SONIX社製)にて太陽電池セル5個を観察し、クラックの発生の有無を確認した。変形及びクラックが観察されないものを〇とした。
(11)太陽電池モジュール成形時のセルの割れ性評価及び太陽電池モジュールの耐久性評価(実施例6~11)
 透明基板(ソーダライムガラス、200×200mm×厚さ3mm)の上に、アルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)からなるシートを載せ、その上に厚さ200μmの銅線を半田処理したタブ線を表裏に接続した多結晶シリコン太陽電池セル(アドバンテック社製、155×155mm×厚さ200μm)を載せた。この太陽電池セルの上に、更にアルコキシシリル化重合体(i)及び/又はアルコキシシリル化ポリオレフィン(ii)からなるシート、次に、裏面保護シートの代わりにPET製離形フィルムの順で載せ積層体を得た。次いで上記積層体を真空ラミネータにて、145~160℃の所定温度で、5分間真空脱気した後、10分間真空加圧して封止し、太陽電池モジュールを作製した。
 得られた太陽電池モジュールから離形フィルムを除去し、目視観察で太陽電池セルの割れの評価を行った。太陽電池セル5個を観察し、いずれのセルにもクラックが観察されない場合を〇とし、クラックが観察された場合はクラックが発生した枚数を数えた。
 現行のEVA系の標準的真空ラミネート温度は150℃であり、150℃での割れの発生があってはならない。
 前記の太陽電池モジュール成形時のセルの割れ性評価の項で作成した太陽電池モジュールで、セルにクラックの無いものを選別し、-40℃で30分、90℃で30分を1サイクルとして200サイクルのヒートサイクル処理を実施した後に、目視観察及びCモード超音波走査型顕微鏡(SONIX社製)にて太陽電池セル5個を観察し、クラックの発生の有無を確認した。いずれのセルにも変形及びクラックが観察されない場合を〇とした。
[参考例1]
(ブロック共重合体水素化物樹脂組成物[A2]の合成)
 充分に窒素置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン550部、脱水スチレン25.0部、n-ジブチルエーテル0.475部を入れ、60℃で攪拌しながらn-ブチルリチウム(15%シクロヘキサン溶液)0.68部を加えて重合を開始した。攪拌しながら60℃で60分反応させた。ガスクロマトグラフィーにより測定したこの時点で重合転化率は99.5%であった。
 次に、脱水イソプレン50.0部を加えそのまま30分攪拌を続けた。この時点で重合転化率は99%であった。
 その後、更に、脱水スチレンを25.0部加え、60分攪拌した。この時点での重合転化率はほぼ100%であった。ここでイソプロピルアルコール0.5部を加えて反応を停止した。
 得られたブロック共重合体(a)の重量平均分子量(Mw)は61,700、分子量分布(Mw/Mn)は1.05であった。
 次に、上記重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒としてシリカ-アルミナ担持型ニッケル触媒(製品名「T-8400RL」、ズードケミー触媒社製)3.0部及び脱水シクロヘキサン100部を添加して混合した。反応器内部を水素ガスで置換し、更に溶液を攪拌しながら水素を供給し、温度170℃、圧力4.5MPaにて6時間水素化反応を行った。
 水素化反応後のブロック共重合体水素化物(A)の重量平均分子量(Mw)は65,300、分子量分布(Mw/Mn)は1.06であった。
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、リン系酸化防止剤である6-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラキス-t-ブチルジベンゾ〔d,f〕〔1.3.2〕ジオキサフォスフェピン(製品名「スミライザー(登録商標)GP」、住友化学社製)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。
 次いで、上記溶液を、金属ファイバー製フィルター(孔径0.4μm、ニチダイ社製)にてろ過して微小な固形分を除去した後、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去し、濃縮乾燥器に直結したダイから溶融状態でストランド状に押出し、冷却後、ペレタイザーでカットしてブロック共重合体水素化物[A1]のペレット90部を得た。得られたブロック共重合体水素化物[A1]の重量平均分子量(Mw)は64,600、分子量分布(Mw/Mn)は1.11であった。水素化率はほぼ100%であった。
 次に、上記ブロック共重合体水素化物[A1]のペレット100部に対して、ヒンダードアミン系光安定剤であるN,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)-1,6-ヘキサンジアミンと2,4,6-トリクロロ-1,3,5-トリアジンとの重合体、N-ブチル-1-ブタンアミン及びN-ブチル-2,2,6,6-テトラメチル-4-ピペリジンアミンの反応生成物(Chimassorb(登録商標) 2020、チバ・ジャパン社製)1.0部、及びベンゾトリアゾール系紫外線吸収剤である2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(Tinuvin(登録商標) 329、チバ・ジャパン社製)0.05部を添加した。この混合物を、二軸押出機(TEM35B、東芝機械社製)を用いて、樹脂温度250℃で混練し、ストランド状に押出し、水冷した後、ペレタイザーによりカッティングし、ブロック共重合体水素化物樹脂組成物[A2]のペレット98部を得た。
[参考例2]
(ブロック共重合体水素化物樹脂組成物[B2]の合成)
 重合段階でモノマーとして、スチレン15.0部、n-ブチルリチウム(15%シクロヘキサン溶液)0.50部、イソプレン70.0部、及び、スチレン15.0部をこの順に反応系に添加して重合する以外は参考例1と同様にして、ブロック共重合体水素化物[B1]のペレット92部を得た。得られたブロック共重合体水素化物[B1]の重量平均分子量(Mw)は86,200、分子量分布(Mw/Mn)は1.15であった。水素化率はほぼ100%であった。
 参考例1と同様にしてブロック共重合体水素化物[B1]のペレット100部に参考例1と同じヒンダードアミン系光安定剤1.0部及びベンゾトリアゾール系紫外線吸収剤0.05部を添加し、混練してブロック共重合体水素化物樹脂組成物[B2]のペレット98部を得た。
[参考例3]
(ブロック共重合体水素化物樹脂組成物[C2]の合成)
 重合段階でモノマーとして、スチレン20.0部、n-ブチルリチウム(15%シクロヘキサン溶液)0.55部、イソプレン60.0部、及び、スチレン20.0部をこの順に反応系に添加して重合する以外は参考例1と同様にして、ブロック共重合体水素化物[C1]のペレット90部を得た。得られたブロック共重合体水素化物[C1]の重量平均分子量(Mw)は79,500、分子量分布(Mw/Mn)は1.15であった。水素化率はほぼ100%であった。
 参考例1と同様にしてブロック共重合体水素化物[C1]のペレット100部に、参考例1と同じヒンダードアミン系光安定剤1.0部及びベンゾトリアゾール系紫外線吸収剤0.05部を添加し、混練してブロック共重合体水素化物樹脂組成物[C2]のペレット98部を得た。
[参考例4]
(ブロック共重合体水素化物樹脂組成物[D2]の合成)
 重合段階でモノマーとして、スチレン25.0部、イソプレンに変えて液化ブタジエン50.0部、及び、スチレン25.0部をこの順に反応系に添加して重合する以外は参考例1と同様にして、ブロック共重合体水素化物[D1]のペレット88部を得た。得られたブロック共重合体水素化物[D1]の重量平均分子量(Mw)は64,000、分子量分布(Mw/Mn)は1.11であった。水素化率はほぼ100%であった。
 参考例1と同様にしてブロック共重合体水素化物[D1]のペレット100部に、参考例1と同じヒンダードアミン系光安定剤1.0部及びベンゾトリアゾール系紫外線吸収剤0.05部を添加し、混練してブロック共重合体水素化物樹脂組成物[D2]のペレット97部を得た。
[参考例5]
(ブロック共重合体水素化物樹脂組成物[E2]の合成)
 重合段階でモノマーとして、スチレン5.0部、イソプレン90.0部、及び、スチレン5.0部をこの順に反応系に添加して重合する以外は参考例1と同様にして、ブロック共重合体水素化物[E1]のペレット78部を得た。得られたブロック共重合体水素化物[E1]の重量平均分子量(Mw)は60,300、分子量分布(Mw/Mn)は1.10であった。水素化率はほぼ100%であった。
 参考例1と同様にしてブロック共重合体水素化物[E1]のペレット100部に、参考例1と同じヒンダードアミン系光安定剤1.0部及びベンゾトリアゾール系紫外線吸収剤0.05部を添加し、混練してブロック共重合体水素化物樹脂組成物[E2]のペレット95部を得た。
[参考例6]
(ブロック共重合体水素化物樹脂組成物[F2]の合成)
 重合段階でモノマーとして、スチレン37.5部、イソプレン25.0部、及び、スチレン37.5部をこの順に反応系に添加して重合する以外は参考例1と同様にして、ブロック共重合体水素化物[F1]のペレット96部を得た。得られたブロック共重合体水素化物[F1]の重量平均分子量(Mw)は66,300、分子量分布(Mw/Mn)は1.10であった。水素化率はほぼ100%であった。
 参考例1と同様にしてブロック共重合体水素化物[F1]のペレット100部に、参考例1と同じヒンダードアミン系光安定剤1.0部及びベンゾトリアゾール系紫外線吸収剤0.05部を添加し、混練してブロック共重合体水素化物樹脂組成物[F2]のペレット95部を得た。
[実施例1]
(太陽電池素子封止材[A3]及びシート[SA3])
 参考例1で得た樹脂組成物[A2]のペレット100部に対して、ビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加した。この混合物を、二軸押出機(製品名「TEM37B」、東芝機械社製)を用いて、樹脂温度 210℃、滞留時間80~90秒で混練し、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル化重合体を含有する太陽電池素子封止材[A3]のペレット97部を得た。
 得られた太陽電池素子封止材[A3]のペレット10部をシクロヘキサン100部に溶解した後、脱水したメタノール400部中に注いで、アルコキシシリル化重合体を凝固させ、濾別した後、25℃で真空乾燥して、アルコキシシリル化重合体9.5部を単離した。
 得られたアルコキシシリル化重合体のFT-IRスペクトルを測定したところ、1090cm-1にSi-OCH基及び825、739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075、808、766cm-1と異なる位置に観察された。
 また、このものを元素分析した結果、Siが0.3%検出された。
 このことから、太陽電池素子封止材[A3]は、アルコキシシリル基が導入されたアルコキシシリル化重合体を含有することが確認された。
(押出しフィルム化)
 得られた太陽電池素子封止材[A3]のペレットを、空気を流通させた熱風乾燥器を用いて50℃で4時間加熱して、溶存空気を除去した後、25mmφのスクリューを備えた樹脂溶融押出し機2基を有するTダイ式2種3層フィルム溶融押出し成形機(Tダイ幅300mm)を使用し、2基の押出し機から同じ太陽電池素子封止材[A3]を、溶融樹脂温度210℃、Tダイ温度210℃、ロール温度50℃の成形条件にて、厚さ350μm、幅280mmのシート[SA3]を押出し成形した。得られた押出シート[SA3]はロールに巻き取り回収した。
(真空プレス成形)
 得られた押出シート[SA3]を、200mm×200mmサイズに切り出し、3枚重ねて、真空ラミネータを使用して温度180℃で、5分間真空脱気し、更に10分間真空プレスして、厚さ0.9~1.1mmの試験片を成形した。
 ガラス基板との接着性評価用試験片及び太陽電池モジュールの耐久性評価用試験片の作製は、真空ラミネータを使用して温度180℃で、5分間真空脱気し、更に10分間真空プレスして成形した。
(太陽電池素子封止材の評価)
 得られた押出シート[SA3]と真空プレス成形試験片を用いて、光線透過率、透湿度、引張り強度、引張り伸び、体積抵抗率、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
[実施例2]
(太陽電池素子封止材[A3]の多層シート[MSA3])
 実施例1で得られた太陽電池素子封止材[A3]のペレット及び参考例1で得られた樹脂組成物[A2]のペレットを、実施例1と同様にして溶存空気を除去した。実施例1で使用した2種3層フィルム溶融押出し成形機を使用し、2基の押出し機から別々に、太陽電池素子封止材[A3]を外層に、樹脂組成物[A2]を内層にして、溶融樹脂温度210℃、Tダイ温度210℃、ロール温度50℃の成形条件にて、厚さ400μm、幅280mmのシート[MSA3]を押出し成形した。得られたシート[MSA3]はロールに巻き取り回収した。
 得られた2種3層押出しシート[MSA3]を使用して、実施例1と同様にして、押出しシート[MSA3]及び真空プレス試験片を作成して、光線透過率、透湿度、引張り強度、引張り伸び、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
[実施例3]
(太陽電池素子封止材[B3]及びシート[SB3])
 参考例2で得られた樹脂組成物[B2]のペレット100部に対して、実施例1と同様にビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加した。この混合物を、実施例1と同様に混練して太陽電池素子封止材[B3]のペレット96部を得た。
 得られたペレットのFT-IRスペクトルを測定したところ、実施例1と同様に、1090cm-1にSi-OCH基及び825cm-1、739cm-1にSi-CH基に由来する新たな吸収帯が観察され、樹脂組成物[B3]はシラン変成された変成重合体を含有することが確認された。
 また、太陽電池素子封止材[B3]を使用して、実施例1と同様にして、押出しシート[SB3]及び真空プレス試験片を作製して、光線透過率、透湿度、引張り強度、引張り伸び、体積抵抗率、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
[実施例4]
(太陽電池素子封止材[C3]及びシート[SC3])
 参考例3で得た樹脂組成物[C2]のペレット100部に対して、実施例1と同様にビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加した。この混合物を、実施例1と同様に混練して太陽電池素子封止材[C3]のペレット97部を得た。
 得られたペレットのFT-IRスペクトルを測定したところ、実施例1と同様に、1090cm-1にSi-OCH基及び825cm-1、739cm-1にSi-CH基に由来する新たな吸収帯が観察され、太陽電池素子封止材[C3]はシラン変成された変成重合体を含有することが確認された。
 また、太陽電池素子封止材[C3]を使用して、実施例1と同様にして、押出しシート[SC3]及び真空プレス試験片を作製して、光線透過率、透湿度、引張り強度、引張り伸び、体積抵抗率、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
[実施例5]
(太陽電池素子封止材[D3]及びシート[SD3])
 参考例4で得られた樹脂組成物[D2]のペレット100部に対して、実施例1と同様にビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加した。この混合物を、実施例1と同様に混練して太陽電池素子封止材[D3]のペレット96部を得た。
 得られたペレットのFT-IRスペクトルを測定したところ、実施例1と同様に、1090cm-1にSi-OCH基及び825cm-1、739cm-1にSi-CH基に由来する新たな吸収帯が観察され、太陽電池素子封止材[D3]はシラン変成された変成重合体を含有することが確認された。
 また、太陽電池素子封止材[D3]を使用して、実施例1と同様にして、押出しシート[SD3]及び真空プレス試験片を作製して、光線透過率、透湿度、引張り強度、引張り伸び、体積抵抗率、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
 [比較例1]
 エチレン・酢酸ビニル共重合体(製品名「エバフレックス(登録商標) EV250」、酢酸ビニル含有量:28重量%、三井デュポンポリケミカル社製)100部に対して、参考例1と同じN,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)-1,6-ヘキサンジアミン、2,4,6-トリクロロ-1,3,5-トリアジンとの重合体とN-ブチル-1-ブタンアミン、及び、N-ブチル-2,2,6,6-テトラメチル-4-ピペリジンアミンの反応生成物1.0部、並びに、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール0.05部を添加し、更に、有機過酸化物の2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(製品名「パーヘキサ(登録商標) 25B」、日油社製)0.1部、架橋助剤としてトリアリルイソシアヌレート(製品名「M-60」、日本化成社製)0.5部及びシランカップリング剤の3-メタクリロキシプロピルトリメトキシシラン1.0部(KBM-503、信越化学工業社製)を添加し、二軸混練機を用いて、樹脂温度100℃で混練し、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、太陽電池素子封止材[EVA2]のペレット94部を得た。
(押出しフィルム化)
 得られた太陽電池素子封止材[EVA2]のペレットを、実施例1で使用した押出し成形機を使用し、2基の押出し機から同じ樹脂組成物[EVA2]を、溶融樹脂温度100℃、Tダイ温度100℃、ロール温度25℃の成形条件にて、厚さ350μm、幅280mmのシート[SEVA2]を押出し成形した。得られたシート[SEVA2]はロールに巻き取り回収した。
(真空プレス成形)
 得られたシート[SEVA2]を、200mm×200mmサイズに切り出し、1枚及び3枚重ねて、真空ラミネータを使用して温度150℃で、5分間真空脱気し、更に20分間真空プレスして、厚さ300~350μm及び厚さ0.9~1.1mmの試験片[SEVA3]を成形した。
 シート[SEVA2]を使用したガラス基板との接着性評価用試験片及び太陽電池モジュールの耐久性評価用試験片の作製は、真空ラミネータを使用して温度150℃で、10分間真空脱気し、更に20分間真空プレスして成形した。
(太陽電池素子封止材の評価)
 得られた成形試験片を用いて、光線透過率、透湿度、引張り強度、引張り伸び、体積抵抗率、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
[比較例2]
(太陽電池素子封止材[E3]及びシート[SE3])
 参考例5で得た樹脂組成物[E2]のペレット100部に対して、実施例1と同様にビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加した。この混合物を、実施例1と同様に混練して太陽電池素子封止材[E3]のペレット96部を得た。
 得られたペレットのFT-IRスペクトルを測定したところ、実施例1と同様に、1090cm-1にSi-OCH基及び825cm-1、739cm-1にSi-CH基に由来する新たな吸収帯が観察され、樹脂組成物[E3]はシラン変成された変成重合体を含有することが確認された。また、太陽電池素子封止材[E3]を使用して、実施例1と同様にして、押出しシート[SE3]及び真空プレス試験片を作製して、光線透過率、透湿度、引張り強度、引張り伸び、体積抵抗率、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
 [比較例3]
(太陽電池素子封止材[F3]及びシート[SF3])
 参考例6で得られた樹脂組成物[F2]のペレット100部に対して、実施例1と同様にビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加した。この混合物を、実施例1と同様に混練して太陽電池素子封止材[F3]のペレット95部を得た。
 得られたペレットのFT-IRスペクトルを測定したところ、実施例1と同様に、1090cm-1にSi-OCH基及び825cm-1、739cm-1にSi-CH基に由来する新たな吸収帯が観察され、太陽電池素子封止材[F3]はシラン変成された変成重合体を含有することが確認された。
 また、太陽電池素子封止材[F3]を使用して、実施例1と同様にして、押出しシート[SF3]及び真空プレス試験片を作製して、光線透過率、透湿度、引張り強度、引張り伸び、体積抵抗率、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
 [比較例4]
(ブロック共重合体水素化物樹脂組成物[A2]及びシート[SA2])
 参考例1で得られた樹脂組成物[A2]のペレットを太陽電池素子封止材[A2]のペレットとして使用して、実施例1と同様にして、押出しシート[SA2]及び真空プレス試験片を作成して、光線透過率、透湿度、引張り強度、引張り伸び、体積抵抗率、ガラス基板との初期接着性及び高温高湿環境に暴露後の接着性、封止銅板の耐腐食性及び耐候性の評価、太陽電池モジュールの耐久性評価を実施した。結果を表1に記載した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から以下のことがわかる。
 本発明の太陽電池素子封止材を用いた場合には、光線透過率、透湿度、機械的強度、柔軟性、電気絶縁性、高温高湿環境下でのガラスとの接着性、耐候性に優れ、得られる太陽電池モジュールは耐久性に優れる(実施例1~5)。
 EVAからなる封止材を用いると、透湿度が高いこと、加水分解により酢酸が発生することにより、高温高湿環境で長期間保持された場合に内部配線に腐食を生じる懸念がある(比較例1)。
 芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]の含有量が少ないと、耐熱性が低く、太陽電池モジュールの耐久性が低い(比較例2)。
 芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]の含有量が多いと、樹脂組成物とガラスとの接着性が低く、太陽電池モジュールの耐久性が低い(比較例3)。
 シラン変成していないブロック共重合体水素化物を使用した場合には、高温高湿環境に暴露された後は、ガラスとの接着性が低下する(比較例4)。
[合成例1]
(ブロック共重合体水素化物樹脂組成物(a)の合成)
 参考例1で得られたブロック共重合体水素化物[A1]のペレット100部に対して、参考例1と同じヒンダードアミン系耐光安定剤0.1部、及びベンゾトリアゾール系紫外線吸収剤0.1部を添加した。この混合物を、二軸押出機(製品名「TEM35B」、東芝機械社製)を用いて、樹脂温度250℃で混練し、ストランド状に押出し、水冷した後、ペレタイザーによりカッティングし、ブロック共重合体水素化物樹脂組成物(a)(以下、「樹脂組成物(a)」という。)のペレット98部を得た。
[合成例2]
(ブロック共重合体水素化物樹脂組成物(b)の合成)
 参考例3で得られたブロック共重合体水素化物[C1]のペレット100部に対して、参考例3と同じヒンダードアミン系耐光安定剤0.1部、及びベンゾトリアゾール系紫外線吸収剤0.1部を添加し、混練してブロック共重合体水素化物樹脂組成物(b)(以下、「樹脂組成物(b)」という。)のペレット96部を得た。
[実施例6]
(アルコキシシリル化重合体(i-a)及びシート[I-a])
 合成例1で得た樹脂組成物(a)のペレット100部に対して、ビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加した。この混合物を、二軸押出機(製品名「TEM37B」、東芝機械社製)を用いて、樹脂温度210℃、滞留時間80~90秒で混練し、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル化重合体(i-a)のペレット97部を得た。
 得られたアルコキシシリル化重合体(i-a)のペレット10部をシクロヘキサン100部に溶解した後、脱水したアセトン400部中に注いで変成重合体を凝固させ、濾別した後、25℃で真空乾燥して、アルコキシシリル化重合体9.5部を単離した。
 得られたアルコキシシリル化重合体のFT-IRスペクトルを測定したところ、1090cm-1にSi-OCH基及び825、739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075、808、766cm-1と異なる位置に観察された。また、元素分析では、Siが0.3%検出された。これらのことから、アルコキシシリル化重合体(i-a)はメトキシシリル基を含有することが確認された。
(押出しフィルム化)
 得られた変性重合体(i-a)のペレットを、空気を流通させた熱風乾燥器を用いて50℃で4時間加熱して、溶存空気を除去した後、25mmφのスクリューを備えた樹脂溶融押出し機を有するTダイ式フィルム溶融押出し成形機(Tダイ幅300mm)を使用し、溶融樹脂温度200℃、Tダイ温度200℃、ロール温度50℃の成形条件にて、厚さ400μm、170μm及び140μmで幅が各々280mmのシート(I-a400、I-a170及びI-a140)を押出し成形した。得られた押出シートはロールに巻き取り回収した。
[実施例7]
(アルコキシシリル化重合体(i-b)及びシート[I-b])
 合成例2で得た樹脂組成物(b)のペレット100部に対して、実施例6と同様に、ビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加して変性重合体(i-b)のペレット97部を得た。
 得られたアルコキシシリル化重合体(i-b)のペレットのFT-IRスペクトルを測定したところ、実施例6と同様に、1090cm-1にSi-OCH基及び825、739cm-1にSi-CH基に由来する新たな吸収帯が観察され、また、元素分析では、Siが0.3%検出された。このことから、アルコキシシリル化重合体(i-b)はメトキシシリル基を含有することが確認された。
(押出しフィルム化)
 得られたアルコキシシリル化重合体(i-b)のペレットを、参考例7と同様にして、厚さ400μm、170μm及び140μmで幅が各々280mmのシート(I-b400、I-b170及びI-b140)を押出し成形した。得られた押出シートはロールに巻き取り回収した。
[参考例7]
(アルコキシシリル化ポリオレフィン(ii-a)及びシート[II-a])
 市販のエチレン・オクテン共重合体(製品名「アフィニティー(登録商標) PL1880」、融点100℃、ダウ・ケミカル日本社製)のペレット100部に対してビニルトリメトキシシラン1.5部及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン0.15部を添加した。この混合物を、参考例7と同様にして、樹脂温度180℃、滞留時間90~120秒で混練し、アルコキシシリル化ポリオレフィン(ii-a)のペレット90部を得た。
 得られたアルコキシシリル化ポリオレフィン(ii-a)のペレットを140℃でプレス成形して厚さ30~100μmのフィルム状にした。
 得られたフィルムのFT-IRスペクトルを測定したところ、1090cm-1にSi-OCH基及び825、739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075、808、766cm-1と異なる位置に観察された。また、元素分析では、Siが0.3%検出された。これらのことから、アルコキシシリル化ポリオレフィン(ii-a)はメトキシシリル基を含有することが確認された。
(押出しフィルム化)
 得られたアルコキシシリル化ポリオレフィン(ii-a)のペレットを、参考例7と同様にして、溶融樹脂温度190℃、Tダイ温度190℃、ロール温度50℃の成形条件にて、厚さ120μm及び60μmで幅が各々280mmのシート(II-a120、II-a60)を押出し成形した。得られた押出シートはロールに巻き取り回収した。
[参考例8]
(アルコキシシリル化ポリオレフィン(ii-b)及びシート[II-b])
 市販のLLDPE(製品名「ユメリット(登録商標) 20B」、融点119℃、宇部丸善ポリエチレン社製)のペレット100部に対してビニルトリメトキシシラン2.0部及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン0.2部を添加した。
 この混合物を、実施例6と同様にして、樹脂温度200℃、滞留時間80~90秒で混練し、アルコキシシリル化ポリオレフィン(ii-b)のペレット95部を得た。
 得られたアルコキシシリル化ポリオレフィン(ii-b)のペレットを160℃でプレス成形して厚さ30~100μmのフィルム状にした。
 得られたフィルムのFT-IRスペクトルを測定したところ、1090cm-1にSi-OCH基及び825、739cm-1にSi-CH基に由来する新たな吸収帯が、ビニルトリメトキシシランのそれらの1075、808、766cm-1と異なる位置に観察された。また、元素分析では、Siが0.3%検出された。これらのことから、アルコキシシリル化ポリオレフィン(ii-b)はメトキシシリル基を含有することが確認された。
(押出しフィルム化)
 得られたアルコキシシリル化ポリオレフィン(ii-b)のペレットを、参考例7と同様にして、溶融樹脂温度210℃、Tダイ温度210℃、ロール温度70℃の成形条件にて、厚さ60μmで幅が280mmのシート(II-b60)を押出し成形した。得られた押出シートはロールに巻き取り回収した。
[実施例8]
(多層シート[I-a]/[II-a]/[I-a]及び太陽電池素子封止材としての評価)
 実施例6で得た押出シートI-a170及び参考例9で得られた押出しシートII-a60を、それぞれ220mm×220mmサイズに切り出した。切り出したシートをI-a170/II-a60/I-a170の順で重ね、真空ラミネータを使用して、温度110℃で1分間真空脱気した後、更に1分間真空プレスして、厚さ0.4mmの2種3層多層シート[I-a170]/[II-a60]/[I-a170]を成形した。
 この多層シートを使用して、試験用シートを作成し、(3)光線透過率、(4)透湿度、(5)引張り弾性率・引張り強度・引張り伸び、(6)体積低効率、(7)ガラス基板との接着性評価(剥離強度)、(8)耐候性、(9)封止銅板の耐腐食性、(11)太陽電池モジュール成形時のセルの割れ性及び太陽電池モジュールの耐久性の評価を行った。結果を、表2、表3に示す。
[実施例9]
(多層シート[I-a]/[II-a]/[I-a]及び太陽電池素子封止材としての評価)
 実施例6で得られた押出シートI-a140及び参考例9で得られた押出しシートII-a120を、それぞれ220mm×220mmサイズに切り出した。切り出したシートをI-a140/II-a120/I-a140の順で重ね、真空ラミネータを使用して、温度110℃で1分間真空脱気した後、更に1分間真空プレスして、厚さ0.4mmの2種3層多層シート[I-a140]/[II-a120]/[I-a140]を成形した。
 この多層シートを使用して、試験用シートを作製し、実施例6と同様に、各種評価を行った。結果を表2、表3に示す。
[実施例10]
(多層シート[I-b]/[II-a]/[I-b]及び太陽電池素子封止材としての評価)
 実施例7で得た押出シートI-b170及び参考例9で得られた押出しシートII-a60を、それぞれ220mm×220mmサイズに切り出した。切り出したシートをI-b170/II-a60/I-b170の順で重ね、真空ラミネータを使用して、温度110℃で1分間真空脱気した後、更に1分間真空プレスして、厚さ0.4mmの2種3層多層シート[I-b170]/[II-a60]/[I-b170]を成形した。
 この多層シートを使用して、試験用シートを作製し、実施例6と同様に、各種評価を行った。結果を表2に示す。
[実施例11]
(多層シート[I-b]/[II-a]/[I-b]及び太陽電池素子封止材としての評価)
 実施例7で得た押出シートI-b140及び参考例9で得られた押出しシートII-a120を、それぞれ220mm×220mmサイズに切り出した。切り出したシートをI-b140/II-a120/I-b140の順で重ね、真空ラミネータを使用して、温度110℃で1分間真空脱気した後、更に1分間真空プレスして、厚さ0.4mmの2種3層多層シート[I-b140]/[II-a120]/[I-b140]を成形した。
 この多層シートを使用して、試験用シートを作製し、実施例6と同様に、各種評価を行った。結果を表2、表3に示す。
[実施例12]
(多層シート[I-a]/[II-b]/[I-a]及び太陽電池素子封止材としての評価)
 実施例6で得た押出シートI-a170及び参考例10で得られた押出しシートII-b60を、それぞれ220mm×220mmサイズに切り出した。切り出したシートをI-a170/II-b60/I-a170順で重ね、真空ラミネータを使用して、温度130℃で1分間真空脱気した後、更に1分間真空プレスして、厚さ0.4mmの2種3層多層シート[I-a170]/[II-b60]/[I-a170]を成形した。
 この多層シートを使用して、試験用シートを作製し、実施例6と同様、各種評価を行った。結果を表2、表3に示す。
[実施例13]
(多層シート[I-b]/[II-b]/[I-b]及び太陽電池素子封止材としての評価)
 実施例7で得た押出シートI-b170及び参考例10で得られた押出しシートII-b60を、それぞれ220mm×220mmサイズに切り出した。切り出したシートをI-b170/II-b60/I-b170順で重ね、真空ラミネータを使用して、温度130℃で1分間真空脱気した後、更に1分間真空プレスして、厚さ0.4mmの2種3層多層シート[I-b170]/[II-b60]/[I-b170]を成形した。
 この多層シートを使用して、試験用シートを作製し、実施例8と同様、各種評価を行った。結果を表2、表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2、表3の結果から以下のことがわかる。
 すなわち、シラン変性したブロック共重合体水素化物(アルコキシシリル化重合体)とシラン変性したポリオレフィン(アルコキシシリル化ポリオレフィン)を多層シートにした場合(実施例8~13)は、低吸湿性、非加水分解性、耐候性、透明性を有し、かつ、長期間高温高湿環境に暴露された後でもガラスとの強固な接着力を維持し、特別な遮水処理を施すことなく太陽電池素子を封止することができる。また、145℃~160℃で多結晶シリコン太陽電池セルを封止しても、セル割れが発生し難く、より低温で封止が可能である。
 本発明の太陽電池素子封止材、シート、多層シートは、太陽電池素子の封止に有用である。
1・・・透明前面基板
2・・・太陽電池素子
3・・・封止材
4・・・タブ線
5・・・裏面保護シート

Claims (15)

  1.  少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
    ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が20:80~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、アルコキシシリル基が導入されてなる、アルコキシシリル基を有するブロック共重合体水素化物。
  2.  少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
    ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が40:60~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、アルコキシシリル基が導入されてなる、アルコキシシリル基を有するブロック共重合体水素化物。
  3.  少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
    ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が20:80~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、
    有機過酸化物存在下、エチレン性不飽和シラン化合物を反応させることを特徴とする、
    請求項1に記載のアルコキシシリル基を有するブロック共重合体水素化物の製造方法。
  4.  エチレン性不飽和シラン化合物が、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、p-スチリルトリメトキシシラン及びp-スチリルトリエトキシシランからなる群から選択される少なくとも1種である請求項3に記載の製造方法。
  5.  請求項1又は2に記載のアルコキシシリル基を有するブロック共重合体水素化物を含有する太陽電池素子封止材。
  6.  ヒンダードアミン系光安定剤を、前記アルコキシシリル基を有するブロック共重合体水素化物100重量部に対して0.1~10重量部含有する請求項5に記載の太陽電池素子封止材。
  7.  紫外線吸収剤を、前記アルコキシシリル基を有するブロック共重合体水素化物100重量部に対して0.01~0.1重量部含有する請求項5に記載の太陽電池素子封止材。
  8.  リン系酸化防止剤を、前記アルコキシシリル基を有するブロック共重合体水素化物100重量部に対して0.01~0.1重量部含有する請求項5に記載の太陽電池素子封止材。
  9.  請求項5~8のいずれかに記載の太陽電池素子封止材からなるシート。
  10. (α)少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
    少なくとも2つの重合体ブロック[A]と、少なくとも1つの重合体ブロック[B]とからなるブロック共重合体であって、ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が20:80~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物、並びに、
    (β)前記(α)の、アルコキシシリル基を有するブロック共重合体水素化物以外の重合体、光安定剤、紫外線吸収剤及び酸化防止剤からなる群から選ばれる少なくとも1種
    を含む樹脂組成物からなるシートの片面又は両面に、
    請求項9に記載のシートを積層してなる積層シート。
  11.  少なくとも2つの、芳香族ビニル化合物由来の繰り返し単位を主成分とする重合体ブロック[A]と、少なくとも1つの、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする重合体ブロック[B]とからなるブロック共重合体であって、
    ブロック共重合体全体に占める、重合体ブロック[A]の重量分率をwAとし、ブロック共重合体全体に占める、重合体ブロック[B]の重量分率をwBとしたときの、wAとwBとの比(wA:wB)が40:60~60:40であるブロック共重合体の、全不飽和結合の90%以上を水素化して得られるブロック共重合体水素化物に、アルコキシシリル基が導入されてなる、アルコキシシリル基を有するブロック共重合体水素化物(i)を含有する層[I]と、
    エチレン及び/又は炭素数3~10のα-オレフィンを重合して得られる(共)重合体にアルコキシシリル基が導入された、融点が90~140℃である(共)重合体(ii)を含有する層[II]と
    を有する多層シート。
  12.  層[I]が、前記アルコキシシリル基を有するブロック共重合体水素化物(i)100重量部に対して、ヒンダードアミン系光安定剤を0.1~5重量部含有する層形成剤からなるものであるか、及び/又は、層[II]が、前記(共)重合体(ii)100重量部に対して、ヒンダードアミン系光安定剤を0.1~5重量部含有する層形成剤からなるものである、請求項11に記載の多層シート。
  13.  層[I]が、前記アルコキシシリル基を有するブロック共重合体水素化物(i)100重量部に対して、紫外線吸収剤を0.01~0.2重量部含有する層形成剤からなるものであるか、及び/又は、層[II]が、前記(共)重合体(ii)100重量部に対して、紫外線吸収剤を0.01~0.2重量部含有する層形成剤からなるものである、請求項11に記載の多層シート。
  14.  層[I]-層[II]、又は、層[I]-層[II]-層[I]の層構成を有する請求項11に記載の多層シート。
  15.  請求項14に記載の多層シートの層[I]側を、結晶系太陽電池セルに接するように配置して使用することを特徴とする太陽電池素子の封止方法。
PCT/JP2011/072348 2010-09-29 2011-09-29 アルコキシシリル基を有するブロック共重合体水素化物及びその利用 WO2012043708A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/877,119 US20130244367A1 (en) 2010-09-29 2011-09-29 Hydrogenated block copolymer having alkoxysilyl group and use therefor
CN201180057357.8A CN103249746B (zh) 2010-09-29 2011-09-29 具有烷氧基甲硅烷基的嵌段共聚物氢化物及其利用
EP11829261.4A EP2623526B1 (en) 2010-09-29 2011-09-29 Hydrogenated block copolymer having alkoxysilyl group, and use therefor
PCT/JP2011/072348 WO2012043708A1 (ja) 2010-09-29 2011-09-29 アルコキシシリル基を有するブロック共重合体水素化物及びその利用
JP2012536541A JP5807643B2 (ja) 2010-09-29 2011-09-29 アルコキシシリル基を有するブロック共重合体水素化物及びその利用
US15/331,442 US20170037157A1 (en) 2010-09-29 2016-10-21 Hydrogenated block copolymer having alkoxysilyl group and use therefor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010-218074 2010-09-29
JP2010218074 2010-09-29
JP2011-063435 2011-03-23
JP2011063435 2011-03-23
PCT/JP2011/072348 WO2012043708A1 (ja) 2010-09-29 2011-09-29 アルコキシシリル基を有するブロック共重合体水素化物及びその利用

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/877,119 A-371-Of-International US20130244367A1 (en) 2010-09-29 2011-09-29 Hydrogenated block copolymer having alkoxysilyl group and use therefor
US15/331,442 Division US20170037157A1 (en) 2010-09-29 2016-10-21 Hydrogenated block copolymer having alkoxysilyl group and use therefor

Publications (1)

Publication Number Publication Date
WO2012043708A1 true WO2012043708A1 (ja) 2012-04-05

Family

ID=59093653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072348 WO2012043708A1 (ja) 2010-09-29 2011-09-29 アルコキシシリル基を有するブロック共重合体水素化物及びその利用

Country Status (2)

Country Link
EP (1) EP2623526B1 (ja)
WO (1) WO2012043708A1 (ja)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050341A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2014086634A (ja) * 2012-10-25 2014-05-12 Dainippon Printing Co Ltd 太陽電池モジュール用の封止材シート及びそれを用いた太陽電池モジュール
WO2014077267A1 (ja) 2012-11-15 2014-05-22 日本ゼオン株式会社 樹脂組成物およびそれからなる成形体
JP2014133848A (ja) * 2013-01-11 2014-07-24 Nippon Zeon Co Ltd 成形体の製造方法
JP2014150246A (ja) * 2013-01-08 2014-08-21 Sumitomo Chemical Co Ltd 太陽電池用封止シート
WO2014133003A1 (ja) 2013-02-27 2014-09-04 日本ゼオン株式会社 太陽電池モジュール及びその製造方法
JP2015000821A (ja) * 2013-06-13 2015-01-05 日本ゼオン株式会社 合わせガラス板
WO2015002020A1 (ja) 2013-07-01 2015-01-08 日本ゼオン株式会社 光学用フィルム及びその製造方法
KR20150016567A (ko) * 2012-05-25 2015-02-12 니폰 제온 가부시키가이샤 합판 유리, 및 블록 공중합체 수소화물을 합판 유리의 접착제로서 사용하는 방법
WO2015033876A1 (ja) 2013-09-06 2015-03-12 日本ゼオン株式会社 滅菌済み医療用成形体の製造方法
JP2015078090A (ja) * 2013-10-16 2015-04-23 日本ゼオン株式会社 合わせガラス
WO2015105127A1 (ja) 2014-01-09 2015-07-16 日本ゼオン株式会社 多層フィルム及びその製造方法
WO2015115397A1 (ja) 2014-01-29 2015-08-06 日本ゼオン株式会社 透明粘着シート
CN104854190A (zh) * 2012-12-10 2015-08-19 日本瑞翁株式会社 有机电子器件密封用树脂组合物及有机电子器件
JPWO2013150730A1 (ja) * 2012-04-06 2015-12-17 三井化学東セロ株式会社 太陽電池モジュール
WO2016043235A1 (ja) * 2014-09-18 2016-03-24 三井・デュポンポリケミカル株式会社 太陽電池用封止材及び太陽電池モジュール
CN105830533A (zh) * 2013-12-26 2016-08-03 日本瑞翁株式会社 密封膜、有机场致发光显示装置及有机半导体器件
JP2016180026A (ja) * 2015-03-23 2016-10-13 日本ゼオン株式会社 樹脂組成物及び複合成形体
JPWO2015137376A1 (ja) * 2014-03-13 2017-04-06 日本ゼオン株式会社 複合多層シート
US20170151757A1 (en) * 2014-07-09 2017-06-01 Zeon Corporation Laminated glass
WO2017150166A1 (ja) * 2016-02-29 2017-09-08 日本ゼオン株式会社 複層フィルム及び製造方法
JP2017171833A (ja) * 2016-03-25 2017-09-28 日本ゼオン株式会社 接着剤および複合接合体
EP3225393A1 (en) 2016-04-01 2017-10-04 Asahi Glass Company, Limited Laminated glass for vehicle
WO2017199892A1 (ja) * 2016-05-16 2017-11-23 日本ゼオン株式会社 多層フィルム
KR20170139561A (ko) * 2015-04-22 2017-12-19 니폰 제온 가부시키가이샤 합판 유리
WO2018003713A1 (ja) * 2016-06-29 2018-01-04 日本ゼオン株式会社 導電性フィルム
WO2018043182A1 (ja) * 2016-08-29 2018-03-08 日本ゼオン株式会社 接着剤シートの製造方法
WO2018097146A1 (ja) 2016-11-24 2018-05-31 日本ゼオン株式会社 接着剤シート及び合わせガラス
US10005924B2 (en) 2014-02-28 2018-06-26 Zeon Corporation Transparent adhesive sheet
WO2018116997A1 (ja) 2016-12-22 2018-06-28 日本ゼオン株式会社 合わせガラス
WO2018180427A1 (ja) 2017-03-29 2018-10-04 日本ゼオン株式会社 樹脂組成物、並びに、成形体およびその製造方法
JPWO2017154718A1 (ja) * 2016-03-09 2019-01-10 日本ゼオン株式会社 接合体、その製造方法、および変性ブロック共重合体水素化物からなるシート
WO2019044108A1 (ja) 2017-08-30 2019-03-07 日本ゼオン株式会社 積層体およびその製造方法
US10239966B2 (en) 2014-10-15 2019-03-26 Zeon Corporation Block copolymer hydride and stretched film formed from same
WO2019065401A1 (ja) * 2017-09-27 2019-04-04 日本ゼオン株式会社 光学積層フィルム及びタッチパネル
WO2019225424A1 (ja) * 2018-05-22 2019-11-28 日本ゼオン株式会社 接着性樹脂の製造方法
US10553818B2 (en) 2016-03-18 2020-02-04 Zeon Corporation Method for manufacturing organic electronic device sealing body
WO2020080202A1 (ja) 2018-10-17 2020-04-23 日本ゼオン株式会社 共重合体水素化物およびその製造方法、共重合体水素化物含有組成物、合わせガラス用中間膜、合わせガラス用中間膜積層体、封止材、光学フィルム、医療用成形体およびその製造方法、接着剤、ならびに、接合体およびその製造方法
WO2020137497A1 (ja) * 2018-12-28 2020-07-02 日本ゼオン株式会社 積層体の製造方法
US10865302B2 (en) 2016-01-29 2020-12-15 Zeon Corporation Resin composition and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120266943A1 (en) * 2011-04-20 2012-10-25 Bo Li Solar cell module structure and fabrication method for preventing polarization
FR3019180B1 (fr) * 2014-03-26 2016-03-25 Saint Gobain Composition d'elastomere thermoplastique pour encapsulation

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218468A (ja) * 1986-02-28 1987-09-25 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ シ−ラント組成物
JPH01210410A (ja) * 1987-12-22 1989-08-24 Shell Internatl Res Maatschappij Bv シラン変性ブロックコポリマーの製造方法
JPH06299125A (ja) 1993-04-14 1994-10-25 Du Pont Mitsui Polychem Co Ltd 太陽電池用接着シート
JP2000091610A (ja) 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000091611A (ja) 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000106450A (ja) 1998-09-29 2000-04-11 Nippon Zeon Co Ltd 太陽電池モジュール用保護シートおよびモジュール
WO2000032646A1 (de) 1998-11-28 2000-06-08 Bayer Aktiengesellschaft Blockcopolymere auf vinylcyclohexanbasis
JP2001044481A (ja) 1999-08-04 2001-02-16 Dainippon Printing Co Ltd 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
WO2002016447A1 (fr) 2000-08-25 2002-02-28 Nippon Zeon Co., Ltd. Procede de production de polymere d'hydrocarbure alicyclique vinylique et objet moule
JP2002235048A (ja) * 2001-02-09 2002-08-23 Mitsubishi Plastics Ind Ltd 接着性シート、太陽電池充填材用シート及びそれを用いた太陽電池
JP2003155385A (ja) * 2001-09-04 2003-05-27 Jsr Corp 重合体組成物および電線被覆材
JP2003201312A (ja) * 2001-08-10 2003-07-18 Asahi Kasei Corp 官能基含有ブロック共重合体及びその組成物
JP2005019975A (ja) * 2003-06-03 2005-01-20 Dainippon Printing Co Ltd 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール
JP2005029588A (ja) 2003-07-07 2005-02-03 Bridgestone Corp 透明フィルム
JP2006328410A (ja) * 2001-03-26 2006-12-07 Jsr Corp 水添変性重合体及びその製造方法並びにそれを含む組成物
WO2008015984A1 (fr) 2006-07-31 2008-02-07 Mitsui Chemicals, Inc. Composition de résine thermoplastique pour scellement de cellule solaire, feuille pour scellement de cellule solaire et cellule solaire
JP2008291222A (ja) 2007-04-09 2008-12-04 Bridgestone Corp 封止膜及びこれを用いた太陽電池
WO2009151029A1 (ja) * 2008-06-09 2009-12-17 Jsr株式会社 封止材料およびそれを用いた太陽電池モジュール
US20100006600A1 (en) 2008-07-14 2010-01-14 Dascanio Gustavo A Fluid dispenser including hydrophobic ring
WO2011068188A1 (ja) * 2009-12-04 2011-06-09 Jsr株式会社 封止用材料、太陽電池モジュール用積層シートおよび太陽電池モジュール
WO2011096389A1 (ja) * 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112004000919T5 (de) * 2003-06-03 2006-06-29 Dai Nippon Printing Co., Ltd. Zwischenschicht für ein Solarzellenmodul und Solarzellenmodul, bei dem die Zwischenschicht eingesetzt wird
WO2006093936A2 (en) * 2005-03-01 2006-09-08 Rwe Schott Solar Inc. Solar encapsulants with protective additives

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218468A (ja) * 1986-02-28 1987-09-25 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ シ−ラント組成物
JPH01210410A (ja) * 1987-12-22 1989-08-24 Shell Internatl Res Maatschappij Bv シラン変性ブロックコポリマーの製造方法
JPH06299125A (ja) 1993-04-14 1994-10-25 Du Pont Mitsui Polychem Co Ltd 太陽電池用接着シート
JP2000091610A (ja) 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000091611A (ja) 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000106450A (ja) 1998-09-29 2000-04-11 Nippon Zeon Co Ltd 太陽電池モジュール用保護シートおよびモジュール
JP2002531598A (ja) 1998-11-28 2002-09-24 バイエル アクチェンゲゼルシャフト ビニルシクロヘキサン系ブロックコポリマー
WO2000032646A1 (de) 1998-11-28 2000-06-08 Bayer Aktiengesellschaft Blockcopolymere auf vinylcyclohexanbasis
JP2001044481A (ja) 1999-08-04 2001-02-16 Dainippon Printing Co Ltd 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル
WO2002016447A1 (fr) 2000-08-25 2002-02-28 Nippon Zeon Co., Ltd. Procede de production de polymere d'hydrocarbure alicyclique vinylique et objet moule
JP2002235048A (ja) * 2001-02-09 2002-08-23 Mitsubishi Plastics Ind Ltd 接着性シート、太陽電池充填材用シート及びそれを用いた太陽電池
JP2006328410A (ja) * 2001-03-26 2006-12-07 Jsr Corp 水添変性重合体及びその製造方法並びにそれを含む組成物
JP2003201312A (ja) * 2001-08-10 2003-07-18 Asahi Kasei Corp 官能基含有ブロック共重合体及びその組成物
JP2003155385A (ja) * 2001-09-04 2003-05-27 Jsr Corp 重合体組成物および電線被覆材
JP2005019975A (ja) * 2003-06-03 2005-01-20 Dainippon Printing Co Ltd 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール
JP2005029588A (ja) 2003-07-07 2005-02-03 Bridgestone Corp 透明フィルム
WO2008015984A1 (fr) 2006-07-31 2008-02-07 Mitsui Chemicals, Inc. Composition de résine thermoplastique pour scellement de cellule solaire, feuille pour scellement de cellule solaire et cellule solaire
JP2008291222A (ja) 2007-04-09 2008-12-04 Bridgestone Corp 封止膜及びこれを用いた太陽電池
WO2009151029A1 (ja) * 2008-06-09 2009-12-17 Jsr株式会社 封止材料およびそれを用いた太陽電池モジュール
US20100006600A1 (en) 2008-07-14 2010-01-14 Dascanio Gustavo A Fluid dispenser including hydrophobic ring
WO2011068188A1 (ja) * 2009-12-04 2011-06-09 Jsr株式会社 封止用材料、太陽電池モジュール用積層シートおよび太陽電池モジュール
WO2011096389A1 (ja) * 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013150730A1 (ja) * 2012-04-06 2015-12-17 三井化学東セロ株式会社 太陽電池モジュール
KR102078212B1 (ko) * 2012-05-25 2020-02-17 니폰 제온 가부시키가이샤 합판 유리, 및 블록 공중합체 수소화물을 합판 유리의 접착제로서 사용하는 방법
US20170274632A1 (en) * 2012-05-25 2017-09-28 Zeon Corporation Glass laminate, and method for using block copolymer hydrogenation product as binder for glass laminate
TWI617526B (zh) * 2012-05-25 2018-03-11 Zeon Corp 夾層玻璃及使用嵌段共聚物氫化物作爲夾層玻璃之接著劑之方法
TWI630185B (zh) * 2012-05-25 2018-07-21 日本傑恩股份有限公司 使用嵌段共聚物氫化物作為夾層玻璃之接著劑之方法
CN108638614A (zh) * 2012-05-25 2018-10-12 日本瑞翁株式会社 夹层玻璃的制造方法
US20150104654A1 (en) * 2012-05-25 2015-04-16 Zeon Corporation Glass laminate, and method for using block copolymer hydrogenation product as binder for glass laminate
CN108638614B (zh) * 2012-05-25 2021-09-28 日本瑞翁株式会社 夹层玻璃的制造方法
CN104428268A (zh) * 2012-05-25 2015-03-18 日本瑞翁株式会社 夹层玻璃、以及将嵌段共聚物氢化物用作夹层玻璃的粘接剂的方法
KR20150016567A (ko) * 2012-05-25 2015-02-12 니폰 제온 가부시키가이샤 합판 유리, 및 블록 공중합체 수소화물을 합판 유리의 접착제로서 사용하는 방법
KR20150065618A (ko) * 2012-09-28 2015-06-15 제온 코포레이션 공액 디엔계 고무의 제조 방법
WO2014050341A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
KR102036153B1 (ko) 2012-09-28 2019-10-24 제온 코포레이션 공액 디엔계 고무의 제조 방법
US9868794B2 (en) 2012-09-28 2018-01-16 Zeon Corporation Method for producing conjugated diene rubber
CN104302676A (zh) * 2012-09-28 2015-01-21 日本瑞翁株式会社 共轭二烯系橡胶的制造方法
JPWO2014050341A1 (ja) * 2012-09-28 2016-08-22 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2014086634A (ja) * 2012-10-25 2014-05-12 Dainippon Printing Co Ltd 太陽電池モジュール用の封止材シート及びそれを用いた太陽電池モジュール
WO2014077267A1 (ja) 2012-11-15 2014-05-22 日本ゼオン株式会社 樹脂組成物およびそれからなる成形体
US9493688B2 (en) 2012-11-15 2016-11-15 Zeon Corporation Resin composition and molded article comprising same
CN104797653B (zh) * 2012-11-15 2017-08-25 日本瑞翁株式会社 树脂组合物以及由其形成的成型体
JPWO2014077267A1 (ja) * 2012-11-15 2017-01-05 日本ゼオン株式会社 樹脂組成物およびそれからなる成形体
CN104797653A (zh) * 2012-11-15 2015-07-22 日本瑞翁株式会社 树脂组合物以及由其形成的成型体
TWI625356B (zh) * 2012-11-15 2018-06-01 Zeon Corp Resin composition and formed body composed thereof
CN108559217A (zh) * 2012-12-10 2018-09-21 日本瑞翁株式会社 有机电子器件密封用树脂组合物的膜及有机电子器件
CN104854190A (zh) * 2012-12-10 2015-08-19 日本瑞翁株式会社 有机电子器件密封用树脂组合物及有机电子器件
US20150307758A1 (en) * 2012-12-10 2015-10-29 Zeon Corporation Resin composition for sealing organic electronics devices and organic electronics device
JP2014150246A (ja) * 2013-01-08 2014-08-21 Sumitomo Chemical Co Ltd 太陽電池用封止シート
JP2014133848A (ja) * 2013-01-11 2014-07-24 Nippon Zeon Co Ltd 成形体の製造方法
US20160013342A1 (en) * 2013-02-27 2016-01-14 Zeon Corporation Solar cell module and method for manufacturing same
WO2014133003A1 (ja) 2013-02-27 2014-09-04 日本ゼオン株式会社 太陽電池モジュール及びその製造方法
JP2015000821A (ja) * 2013-06-13 2015-01-05 日本ゼオン株式会社 合わせガラス板
CN105359011A (zh) * 2013-07-01 2016-02-24 日本瑞翁株式会社 光学用膜及其制造方法
US10088605B2 (en) 2013-07-01 2018-10-02 Zeon Corporation Optical film and production method for same
WO2015002020A1 (ja) 2013-07-01 2015-01-08 日本ゼオン株式会社 光学用フィルム及びその製造方法
TWI636079B (zh) * 2013-07-01 2018-09-21 日本瑞翁股份有限公司 Optical film and manufacturing method thereof
US9814792B2 (en) 2013-09-06 2017-11-14 Zeon Corporation Method for producing sterilized medical formed article
WO2015033876A1 (ja) 2013-09-06 2015-03-12 日本ゼオン株式会社 滅菌済み医療用成形体の製造方法
JP2015078090A (ja) * 2013-10-16 2015-04-23 日本ゼオン株式会社 合わせガラス
CN105830533A (zh) * 2013-12-26 2016-08-03 日本瑞翁株式会社 密封膜、有机场致发光显示装置及有机半导体器件
TWI664079B (zh) * 2013-12-26 2019-07-01 日商日本瑞翁股份有限公司 密封薄膜、有機電激發光顯示裝置及有機半導體元件
US10374190B2 (en) 2013-12-26 2019-08-06 Zeon Corporation Sealing film, organic electroluminescent display, and organic semiconductor device
WO2015105127A1 (ja) 2014-01-09 2015-07-16 日本ゼオン株式会社 多層フィルム及びその製造方法
JPWO2015105127A1 (ja) * 2014-01-09 2017-03-23 日本ゼオン株式会社 多層フィルム及びその製造方法
WO2015115397A1 (ja) 2014-01-29 2015-08-06 日本ゼオン株式会社 透明粘着シート
US10005924B2 (en) 2014-02-28 2018-06-26 Zeon Corporation Transparent adhesive sheet
JPWO2015137376A1 (ja) * 2014-03-13 2017-04-06 日本ゼオン株式会社 複合多層シート
US20190248114A1 (en) * 2014-07-09 2019-08-15 Zeon Corporation Laminated glass
US20170151757A1 (en) * 2014-07-09 2017-06-01 Zeon Corporation Laminated glass
US10328674B2 (en) 2014-07-09 2019-06-25 Zeon Corporation Laminated glass
WO2016043235A1 (ja) * 2014-09-18 2016-03-24 三井・デュポンポリケミカル株式会社 太陽電池用封止材及び太陽電池モジュール
US10239966B2 (en) 2014-10-15 2019-03-26 Zeon Corporation Block copolymer hydride and stretched film formed from same
JP2016180026A (ja) * 2015-03-23 2016-10-13 日本ゼオン株式会社 樹脂組成物及び複合成形体
KR102491476B1 (ko) 2015-04-22 2023-01-20 니폰 제온 가부시키가이샤 합판 유리
US10889091B2 (en) 2015-04-22 2021-01-12 Zeon Corporation Laminated glass
KR20170139561A (ko) * 2015-04-22 2017-12-19 니폰 제온 가부시키가이샤 합판 유리
US10865302B2 (en) 2016-01-29 2020-12-15 Zeon Corporation Resin composition and use thereof
WO2017150166A1 (ja) * 2016-02-29 2017-09-08 日本ゼオン株式会社 複層フィルム及び製造方法
JPWO2017150166A1 (ja) * 2016-02-29 2018-12-27 日本ゼオン株式会社 複層フィルム及び製造方法
JPWO2017154718A1 (ja) * 2016-03-09 2019-01-10 日本ゼオン株式会社 接合体、その製造方法、および変性ブロック共重合体水素化物からなるシート
US10553818B2 (en) 2016-03-18 2020-02-04 Zeon Corporation Method for manufacturing organic electronic device sealing body
JP2017171833A (ja) * 2016-03-25 2017-09-28 日本ゼオン株式会社 接着剤および複合接合体
EP3225393A1 (en) 2016-04-01 2017-10-04 Asahi Glass Company, Limited Laminated glass for vehicle
WO2017199892A1 (ja) * 2016-05-16 2017-11-23 日本ゼオン株式会社 多層フィルム
JP7070410B2 (ja) 2016-06-29 2022-05-18 日本ゼオン株式会社 導電性フィルム
JPWO2018003713A1 (ja) * 2016-06-29 2019-04-18 日本ゼオン株式会社 導電性フィルム
WO2018003713A1 (ja) * 2016-06-29 2018-01-04 日本ゼオン株式会社 導電性フィルム
JPWO2018043182A1 (ja) * 2016-08-29 2019-06-24 日本ゼオン株式会社 接着剤シートの製造方法
WO2018043182A1 (ja) * 2016-08-29 2018-03-08 日本ゼオン株式会社 接着剤シートの製造方法
WO2018097146A1 (ja) 2016-11-24 2018-05-31 日本ゼオン株式会社 接着剤シート及び合わせガラス
US11247538B2 (en) 2016-12-22 2022-02-15 Zeon Corporation Laminated glass
WO2018116997A1 (ja) 2016-12-22 2018-06-28 日本ゼオン株式会社 合わせガラス
WO2018180427A1 (ja) 2017-03-29 2018-10-04 日本ゼオン株式会社 樹脂組成物、並びに、成形体およびその製造方法
JPWO2019044108A1 (ja) * 2017-08-30 2020-08-13 日本ゼオン株式会社 積層体およびその製造方法
US11440303B2 (en) 2017-08-30 2022-09-13 Zeon Corporation Laminate and method of manufacturing same
WO2019044108A1 (ja) 2017-08-30 2019-03-07 日本ゼオン株式会社 積層体およびその製造方法
JP7205477B2 (ja) 2017-08-30 2023-01-17 日本ゼオン株式会社 積層体およびその製造方法
WO2019065401A1 (ja) * 2017-09-27 2019-04-04 日本ゼオン株式会社 光学積層フィルム及びタッチパネル
KR20200060378A (ko) * 2017-09-27 2020-05-29 니폰 제온 가부시키가이샤 광학 적층 필름 및 터치 패널
JPWO2019065401A1 (ja) * 2017-09-27 2020-11-19 日本ゼオン株式会社 光学積層フィルム及びタッチパネル
KR102514977B1 (ko) * 2017-09-27 2023-03-27 니폰 제온 가부시키가이샤 광학 적층 필름 및 터치 패널
JP7264056B2 (ja) 2017-09-27 2023-04-25 日本ゼオン株式会社 光学積層フィルム及びタッチパネル
WO2019225424A1 (ja) * 2018-05-22 2019-11-28 日本ゼオン株式会社 接着性樹脂の製造方法
US11624010B2 (en) 2018-05-22 2023-04-11 Zeon Corporation Method of producing adhesive resin
WO2020080202A1 (ja) 2018-10-17 2020-04-23 日本ゼオン株式会社 共重合体水素化物およびその製造方法、共重合体水素化物含有組成物、合わせガラス用中間膜、合わせガラス用中間膜積層体、封止材、光学フィルム、医療用成形体およびその製造方法、接着剤、ならびに、接合体およびその製造方法
US11773193B2 (en) 2018-10-17 2023-10-03 Zeon Corporation Hydrogenated copolymer and method of producing the same, hydrogenated copolymer-containing composition, interlayer film for laminated glass, interlayer film laminate for laminated glass, sealing material, optical film, medical shaped article and method of producing the same, adhesive, and assembly and method of producing the same
JPWO2020137497A1 (ja) * 2018-12-28 2021-11-11 日本ゼオン株式会社 積層体の製造方法
WO2020137497A1 (ja) * 2018-12-28 2020-07-02 日本ゼオン株式会社 積層体の製造方法
JP7380593B2 (ja) 2018-12-28 2023-11-15 日本ゼオン株式会社 積層体の製造方法

Also Published As

Publication number Publication date
EP2623526A4 (en) 2015-06-24
EP2623526B1 (en) 2017-07-26
EP2623526A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5807643B2 (ja) アルコキシシリル基を有するブロック共重合体水素化物及びその利用
WO2012043708A1 (ja) アルコキシシリル基を有するブロック共重合体水素化物及びその利用
JP5765238B2 (ja) 太陽電池素子封止用樹脂組成物及び太陽電池モジュール
JP6295962B2 (ja) 樹脂組成物およびそれからなる成形体
KR102078212B1 (ko) 합판 유리, 및 블록 공중합체 수소화물을 합판 유리의 접착제로서 사용하는 방법
CN103189996B (zh) 太阳能电池密封材料及太阳能电池模块
CN104126231B (zh) 太阳能电池密封材及太阳能电池模块
TWI606088B (zh) 太陽電池封裝材及太陽電池模組
JP7249926B2 (ja) 合わせガラス
JP6287040B2 (ja) 合わせガラス
JP2013132755A (ja) 多層シート及びその利用
JP6073787B2 (ja) 封止材及びその製造方法
CN106715571A (zh) 密封片、太阳能电池模块以及密封片的制造方法
CN107148678A (zh) 太阳能电池模块
JP2016204217A (ja) 複層ガラス
WO2018116997A1 (ja) 合わせガラス
JP2014127544A (ja) 太陽電池モジュール
JP6205783B2 (ja) 太陽電池モジュールの製造方法
WO2019044108A1 (ja) 積層体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536541

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011829261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011829261

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13877119

Country of ref document: US