WO2015033876A1 - 滅菌済み医療用成形体の製造方法 - Google Patents

滅菌済み医療用成形体の製造方法 Download PDF

Info

Publication number
WO2015033876A1
WO2015033876A1 PCT/JP2014/072809 JP2014072809W WO2015033876A1 WO 2015033876 A1 WO2015033876 A1 WO 2015033876A1 JP 2014072809 W JP2014072809 W JP 2014072809W WO 2015033876 A1 WO2015033876 A1 WO 2015033876A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
block copolymer
parts
molded body
antioxidant
Prior art date
Application number
PCT/JP2014/072809
Other languages
English (en)
French (fr)
Inventor
小原 禎二
淳 石黒
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP14841657.1A priority Critical patent/EP3042927B1/en
Priority to JP2015535451A priority patent/JP6350530B2/ja
Priority to US14/914,363 priority patent/US9814792B2/en
Priority to CN201480048173.9A priority patent/CN105518064B/zh
Publication of WO2015033876A1 publication Critical patent/WO2015033876A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/087Particle radiation, e.g. electron-beam, alpha or beta radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/081Gamma radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified

Definitions

  • the present invention relates to a sterilized medical molded body for sterilizing a medical molded body comprising a resin composition obtained by blending a specific block copolymer hydride with a phenolic antioxidant at a specific ratio by high energy ray irradiation. It relates to the manufacturing method.
  • Sterilization by high-energy radiation is widely used as a simple and reliable sterilization method because the medical molded body can be sterilized in a packaged state, for example, packed in a cardboard box or plastic case for transportation. .
  • block copolymer hydrides are excellent in transparency, heat resistance, flexibility, etc. and can be sterilized by steam, so that they can be suitably used for medical molded articles such as vials, infusion bags, syringes, and culture containers.
  • Patent Documents 1 to 4 In addition, to prevent coloring and strength reduction due to oxidative degradation during molding of block copolymer hydrides, antioxidants such as phenolic antioxidants, phosphorus antioxidants and sulfur antioxidants are blended. This is also known (Patent Documents 2 to 4).
  • Patent Document 4 describes that a container formed from a block copolymer hydride can be sterilized by an electron beam or gamma ray.
  • antioxidants to be blended phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants, and the like are listed in order to prevent oxidative deterioration during molding into containers.
  • the present invention provides a method for sterilizing a medical molded article made of a hydride of a block copolymer, in which there is no significant change in the pH of the contents due to an eluate in water even after sterilization by irradiation with high energy rays. For the purpose.
  • the present inventors have formed a medical composition formed from a resin composition in which a specific amount of a phenolic antioxidant is blended with a specific block copolymer hydride.
  • the method for producing a sterilized medical molded article (1) to (3) is provided.
  • At least two polymer blocks [A] mainly composed of repeating units derived from an aromatic vinyl compound and at least one polymer block mainly composed of repeating units derived from a chain conjugated diene compound [ B] are provided.
  • the weight fraction of the whole polymer block [A] in the entire block copolymer is wA
  • the weight fraction of the whole polymer block [B] in the whole block copolymer is wB.
  • W represents the weight part of the phenolic antioxidant with respect to 100 parts by weight of the block copolymer hydride
  • H represents the hydrogenation rate expressed in percent units of the block copolymer hydride.
  • H is a numerical value from 99 to 100.
  • E represents the irradiation dose displayed in kGy units of high energy rays.
  • a sterilized medical molded article made of a hydride of a block copolymer which has no significant change in pH of contents due to an eluate into water even after sterilization treatment by high energy ray irradiation. Can be manufactured efficiently.
  • the method for producing a sterilized medical molded body of the present invention comprises a medical molded body formed by molding a resin composition comprising a specific block copolymer hydride and a specific amount of a phenolic antioxidant, Sterilized by irradiation with high energy rays.
  • Block copolymer hydride A block copolymer (hereinafter referred to as “block copolymer (C)”), which is a precursor of a block copolymer hydride (hereinafter sometimes referred to as “block copolymer hydride [1]”) used in the present invention. Is a polymer having at least two polymer blocks [A] and at least one polymer block [B].
  • the polymer block [A] has a structural unit derived from an aromatic vinyl compound as a main component.
  • the content of the structural unit derived from the aromatic vinyl compound in the polymer block [A] is usually 90% by weight or more, preferably 95% by weight or more, more preferably 99% by weight or more.
  • polymer block [A] may have components other than the structural unit derived from an aromatic vinyl compound. Examples of the component other than the structural unit derived from the aromatic vinyl compound include a structural unit derived from a chain conjugated diene and / or a structural unit derived from another vinyl compound.
  • the content thereof is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less based on the polymer block [A].
  • the plurality of polymer blocks [A] may be the same as or different from each other as long as the above range is satisfied.
  • the polymer block [B] has a structural unit derived from a chain conjugated diene compound as a main component.
  • the content of the structural unit derived from the chain conjugated diene compound in the polymer block [B] is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more.
  • the resin composition of the present invention is excellent in the balance of flexibility, fusion property by high frequency fusion or thermal fusion.
  • the polymer block [B] may have components other than the structural unit derived from a chain conjugated diene compound.
  • Examples of the component other than the structural unit derived from the chain conjugated diene compound include a structural unit derived from an aromatic vinyl compound and / or a structural unit derived from another vinyl compound.
  • the content thereof is usually 30% by weight or less, preferably 10% by weight or less, based on the polymer block [B].
  • the transparency of the medical molded article of the present invention is improved. There is a possibility that the flexibility of the medical molded body is lowered and the fusion property by high frequency fusion or heat fusion is lowered.
  • the polymer blocks [B] may be the same or different as long as the above range is satisfied.
  • aromatic vinyl compound used in the present invention examples include styrene; ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4- Alkyl-substituted styrene such as t-butylstyrene and 5-t-butyl-2-methylstyrene: halogen-substituted styrene such as 4-chlorostyrene and 2,4-dichlorostyrene; Therefore, styrene is particularly preferable.
  • Examples of the chain conjugated diene compound used in the present invention include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like, which are easily available industrially. In view of easy control of the polymerization reaction, 1,3-butadiene and isoprene are particularly preferred.
  • vinyl compounds used in the present invention include chain vinyl compounds and cyclic vinyl compounds.
  • a chain olefin such as pentene or 4,6-dimethyl-1-heptene
  • a cyclic olefin such as vinylcyclohexane, which does not contain a polar group is preferable in terms of acid resistance and alkali resistance, and a chain olefin is more preferable.
  • Particularly preferred are ethylene and propylene.
  • the number of polymer blocks [A] in the block copolymer (C) is usually 5 or less, preferably 4 or less, more preferably 3 or less.
  • the weight average molecular weight of the polymer block having the maximum and minimum weight average molecular weight in the polymer block [A] is expressed as Mw (A1 ) And Mw (A2), and when the weight average molecular weight of the polymer block having the largest and smallest weight average molecular weight in the polymer block [B] is Mw (B1) and Mw (B2), respectively, the Mw ( The ratio between A1) and Mw (A2) (Mw (A1) / Mw (A2)) and the ratio between Mw (B1) and Mw (B2) (Mw (B1) / Mw (B2)) Each is usually 2.0 or less, preferably 1.5 or less, more preferably 1.2 or less.
  • the form of the block of the block copolymer (C) may be a chain type block or a radial type block, but a chain type block is preferred because of excellent mechanical strength.
  • the most preferred form of the block copolymer of the present invention is a triblock copolymer ([A]-[B]-[A]) in which the polymer block [A] is bonded to both ends of the polymer block [B], And a pentablock copolymer in which the polymer block [B] is bonded to both ends of the polymer block [A], and the polymer block [A] is bonded to the other end of the both polymer blocks [B]. ([A]-[B]-[A]-[B]).
  • the weight fraction of the whole polymer block [A] in the whole block copolymer is wA
  • the weight fraction in which the whole polymer block [B] is in the whole block copolymer is wB
  • the ratio of wA to wB is 30:70 to 70:30, preferably 35:65 to 65:35, and more preferably 40:60 to 60:40.
  • the molecular weight of the block copolymer (C) is a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC using tetrahydrofuran (THF) as a solvent, and is usually 30,000 to 150,000, preferably 40,000 to 130,000, more preferably 50,000 to 100,000. Further, the molecular weight distribution (Mw / Mn) of the block copolymer is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less.
  • the block copolymer (C) is prepared by, for example, a monomer mixture (a) containing an aromatic vinyl compound as a main component and a monomer mixture containing a chain conjugated diene compound (as a main component) by a method such as living anion polymerization. a method of alternately polymerizing b): a monomer mixture (a) containing an aromatic vinyl compound as a main component and a monomer mixture (b) containing a chain conjugated diene compound as a main component in order, It can be produced by a method of coupling the ends of the combined block [B] with a coupling agent.
  • Block copolymer hydride [1] The block copolymer hydride [1] used in the present invention is obtained by hydrogenating the carbon-carbon unsaturated bond of the main chain and the side chain of the block copolymer (C) and the carbon-carbon unsaturated bond of the aromatic ring. It was obtained.
  • the hydrogenation rate is usually 99% or more, preferably 99.5% or more, more preferably 99.9% or more. When the hydrogenation rate is less than 99%, there is a risk that a significant change in the pH of the contents due to the eluate from the medical molded body into the water may be observed in the sterilization treatment by high energy ray irradiation.
  • the hydrogenation rate of the block copolymer hydride can be determined by measurement by 1 H-NMR or by comparison of peak areas of the UV detector and RI detector by gel permeation chromatography (GPC).
  • the hydrogenation method and reaction mode of the unsaturated bond are not particularly limited, and may be carried out according to a known method, but a hydrogenation method that can increase the hydrogenation rate and has little polymer chain scission reaction is preferable. Examples of such a hydrogenation method include methods described in International Publication WO2011 / 096389, International Publication WO2012 / 043708, and the like.
  • the target block copolymer hydride [1] is recovered from the reaction solution after removing the hydrogenation catalyst and / or the polymerization catalyst from the reaction solution containing the block copolymer hydride.
  • the form of the recovered block copolymer hydride is not limited, it can usually be formed into a pellet shape and used for subsequent molding of a medical molded body.
  • the molecular weight of the block copolymer hydride [1] is a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using THF as a solvent, and is usually 30,000 to 150, 000, preferably 40,000 to 130,000, more preferably 50,000 to 100,000.
  • Mw / Mn The molecular weight distribution (Mw / Mn) of the block copolymer hydride is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. When Mw and Mw / Mn are within the above ranges, the mechanical strength and heat resistance of the molded medical molded body are improved.
  • the block copolymer hydride [1] used in the present invention suppresses a significant change in the pH of the content due to the eluate in water by sterilization of the medical molded body by irradiation with high energy rays. It is preferable to add a phenolic antioxidant.
  • the phenolic antioxidant is excellent in the effect of suppressing a significant change in the pH of the contents due to the eluate in water due to the sterilization treatment by high energy ray irradiation.
  • the amount of the phenolic antioxidant is determined by melting the block copolymer hydride [1] to form a medical molded product, and then sterilizing by high-energy radiation, and then the content of the eluate in water. It is an amount that can suppress a significant change in the pH of the molded product and that does not bleed out even after the transparency of the molded product is reduced or after long-term storage.
  • the blending amount is 100 parts by weight of the block copolymer hydride [1] and the phenolic antioxidant is not less than parts by weight represented by the following formula 1 and not more than 0.50 parts by weight. is there.
  • W represents parts by weight of the phenolic antioxidant with respect to 100 parts by weight of the block copolymer hydride [1]
  • H is expressed in percent units of the block copolymer hydride [1].
  • H is a numerical value of 99-100.
  • E represents the dose displayed in kGy units of high energy rays.
  • the amount of the phenolic antioxidant added is more than the amount necessary for preventing the oxidation of the carbon-carbon double bond and the carbon-carbon single bond.
  • 0.46 ⁇ (100 ⁇ H) corresponds to the amount of antioxidant necessary to prevent oxidation of the carbon-carbon double bond when irradiated with an energy beam of 25 kGy
  • 0 0.04 corresponds to the amount of antioxidant necessary to prevent oxidation of the carbon-carbon single bond when irradiated with an energy beam of 25 kGy.
  • E / 25 as a coefficient corresponding to the dose actually irradiated with 25 kGy as a standard.
  • the blending amount of the antioxidant is less than the amount specified in Formula 1, after the molded body is sterilized by irradiation with high energy rays, the pH tends to be significantly lowered due to the eluate in water. Moreover, when a compounding quantity exceeds 0.50 weight part, it becomes easy to bleed out when a molded object is preserve
  • phenolic antioxidants include pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3, 5-di-t-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, 1,3,5-tris (3,5- Di-t-butyl-4-hydroxyphenylmethyl) -2,4,6-trimethylbenzene, 3,9-bis ⁇ 2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) proonyloxy ] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5.5] undecane, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2, 2 ' Thiodiethylenebis [
  • Medical molded body The medical molded body used in the present invention (hereinafter, sometimes referred to as “medical molded body [3]”) specifies a phenolic antioxidant in the block copolymer hydride [1].
  • the medical molded product [3] is obtained by molding a resin composition [2], which is blended in an amount, and has excellent transparency, heat resistance, flexibility, mechanical strength, etc. Even after sterilization by high energy ray irradiation, no change in appearance such as a change in transparency or coloring can be seen, and excellent contents visibility can be maintained.
  • the medical molded body [3] used in the present invention is obtained by transforming the resin composition [2] into a container by a molding method such as a melt extrusion molding method, an injection molding method, an injection blow molding method, a blow molding method, or an inflation molding method. It can be obtained by forming into a shape such as a tube or a sheet. The sheets can be cut into a preferred shape and then joined together by high frequency fusion or heat fusion to form a bag or bag-like container.
  • a molding method such as a melt extrusion molding method, an injection molding method, an injection blow molding method, a blow molding method, or an inflation molding method. It can be obtained by forming into a shape such as a tube or a sheet. The sheets can be cut into a preferred shape and then joined together by high frequency fusion or heat fusion to form a bag or bag-like container.
  • the molding conditions for the resin composition [2] are appropriately selected depending on the molding method.
  • the molten resin temperature is appropriately selected in the range of usually 170 to 260 ° C., preferably 180 to 240 ° C., more preferably 190 to 220 ° C.
  • the resin temperature is too low, the fluidity is deteriorated and a molded article having a good shape may not be obtained.
  • the resin temperature is too high, it is easy to cause defects such as a significant change in the pH of the contents due to the eluate from the medical molded product [3] into water, or a decrease in mechanical strength.
  • the present invention is the production of a sterilized medical molding characterized by irradiating the medical molding [3] obtained as described above with high energy rays at an irradiation dose E. Is the method.
  • the medical molded body [3] in order to maintain the aseptic state, can be sterilized by irradiating high energy rays in a sealed container made of a resin film that does not allow passage of bacteria. preferable.
  • the sterilized medical molded body [3] is stored in a sealed container made of a resin film while maintaining sterility until it is used.
  • the medical molded body [3] is put in a resin bag such as polyethylene, the opening is sealed by a method such as heat sealing, and the sealed bag is further wrapped in a bag made of a resin film.
  • a method of carrying out sterilization by irradiating a high-energy ray as it is is carried out by packing it in a cardboard box or a plastic case and transporting it.
  • a single-layer or multi-layer bag or case molded from a resin is used as a sealed container from a resin film that encloses a medical molded body [3].
  • Resins used include ethylene-vinyl alcohol copolymer, low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, polycarbonate, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyethylene Examples include terephthalate, polybutylene terephthalate, polyamide-6, polyamide-66, and polyamide-12. These resins can be used alone or in combination of two or more.
  • a sealing method a method of heat-sealing the opening after encapsulating the medical molded body [3] in a resin bag or the like can be used.
  • the resin film constituting the sealed container for example, a film made of ethylene-vinyl alcohol copolymer, polyethylene terephthalate, polyamide-6, etc., having an oxygen permeability of 100 cc / m 2 ⁇ day ⁇ atm or less is used for medical purposes.
  • a method such as simultaneously containing an oxygen scavenger in the sealed container containing the molded body [3]
  • This is preferable because the pH change due to the eluate from the medical molded article after sterilization into water is further suppressed.
  • high energy rays examples include X-rays, gamma rays, beta rays, electron beams, neutron glands, etc., and as a sterilization treatment, a method using irradiation with gamma rays or electron beams is generally used and preferably employed.
  • a medicinal solution container for injection an ampoule, an infusion bag, a solid medicine container, an eye drop container, an instillation medicine container, a test medicine container, a nutrient container Liquid or powder such as liquid, solid chemical containers;
  • Sample containers such as sampling tubes for blood tests, blood collection tubes and specimen containers; Piping materials such as infusion tubes, pipes, joints, valves, cocks; Storage for contact lenses Containers: Examples of artificial organs such as denture bases, artificial hearts, and artificial kidneys, and parts thereof.
  • infusion bags, nutrient containers, medicine bottles, ampoules and the like for storing medicines, particularly liquid medicines, for a long period of time are particularly preferable because the amount of eluate from the container is small.
  • the measurement methods for various physical properties are shown below.
  • Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The molecular weights of the block copolymer and the hydride of the block copolymer were measured at 38 ° C. as standard polystyrene conversion values by gel permeation chromatography (GPC) using THF as an eluent. As the measuring device, HLC8020GPC manufactured by Tosoh Corporation was used.
  • Hydrogenation rate The hydrogenation rate of the block copolymer hydride is determined by the carbon-carbon unsaturated bonds and chain of aromatic rings contained in the structural unit derived from the aromatic vinyl compound of the block copolymer as a precursor.
  • the hydrogenation rate of the block copolymer hydride is calculated by 1 H-NMR spectrum or GPC analysis.
  • the region where the hydrogenation rate was 99% or less was calculated by measuring a 1 H-NMR spectrum, and the region exceeding 99% was calculated from the ratio of the peak areas obtained by the UV detector and the RI detector by GPC analysis.
  • Table 2 shows the results of evaluation as follows.
  • -PH change The case where the difference from the blank sample was within ⁇ 1.0 was evaluated as “ ⁇ ”, and the case outside the range of ⁇ 1.0 was evaluated as “ ⁇ ”.
  • -Foaming property The case where the foam disappeared within 3 minutes was evaluated as “ ⁇ ”, and the case where the foam did not disappear within 3 minutes was evaluated as “x”.
  • UV absorption amount “O” when the difference in absorbance from the blank sample is 0.08 or less at 220 to 241 nm, “X” when exceeding 0.08, and 0.05 or less when 241 to 350 nm. The case where “ ⁇ ” and 0.05 were exceeded was evaluated as “ ⁇ ”.
  • -Potassium permanganate reducing substance amount “ ⁇ ” when the difference in consumption of the potassium permanganate solution with a concentration of 0.002 mol / l is 1.0 ml or less, and “x” when the difference exceeds 1.0 ml. Indicated.
  • the polymer solution is transferred to a pressure-resistant reactor equipped with a stirrer, and a diatomaceous earth supported nickel catalyst (product name “E22U”, nickel supported amount 60%, manufactured by JGC Catalysts & Chemicals) as a hydrogenation catalyst 4 0.0 part and 100 parts dehydrated cyclohexane were added and mixed.
  • the inside of the reactor was replaced with hydrogen gas, hydrogen was further supplied while stirring the solution, and a hydrogenation reaction was performed at a temperature of 170 ° C. and a pressure of 4.5 MPa for 6 hours.
  • the weight average molecular weight (Mw) of the block copolymer hydride ([1] -1) obtained by the hydrogenation reaction was 66,200, and the molecular weight distribution (Mw / Mn) was 1.06.
  • the reaction solution was filtered to remove the hydrogenation catalyst, and then the filtrate was subjected to pentaerythrityl tetrakis [3- (3,5-di-t-butyl-), a phenolic antioxidant. 4-hydroxyphenyl) propionate] (manufactured by BASF, product name “Irganox (registered trademark) 1010”) 1.0 part of xylene solution in which 0.05 part by weight was dissolved was added and dissolved.
  • the solution is filtered through a Zeta Plus (registered trademark) filter 30H (Cuno, pore size 0.5 to 1 ⁇ m), and further with another metal fiber filter (Nichidai Corp., pore size 0.4 ⁇ m). After filtering to remove fine solids, using a cylindrical concentrating dryer (manufactured by Hitachi, Ltd.), at a temperature of 260 ° C.
  • the weight average molecular weight (Mw) of the block copolymer hydride ([1] -1) contained in the obtained resin composition ([2] -1) is 65,600, and the molecular weight distribution (Mw / Mn) is 1.
  • the amount of the antioxidant was 1.00 parts by weight relative to 100 parts by weight of the block copolymer hydride ([1] -2).
  • the resin composition ([2] -2MP) data of composition wA: wB, weight average molecular weight (Mw), hydrogenation rate, and antioxidant amount are shown in Table 1.
  • the amount of the antioxidant was 1.00 parts by weight with respect to 100 parts by weight of the block copolymer hydride ([1] -3).
  • the data of composition wA: wB, weight average molecular weight (Mw), hydrogenation rate, and antioxidant amount are shown in Table 1.
  • the amount of the antioxidant was 1.00 parts by weight with respect to 100 parts by weight of the block copolymer hydride.
  • resin composition ([2] -4MP) data of composition wA: wB, weight average molecular weight (Mw), hydrogenation rate, and antioxidant amount are shown in Table 1.
  • Example 1 95 parts by weight of the pellets of the resin composition ([2] -1) obtained in Reference Example 1 and 5 parts by weight of the pellets of the resin composition ([2] -1MP) obtained in Reference Example 5 are uniformly mixed in a blender. did. The amount of the antioxidant in the mixed pellets was 0.098 parts by weight with respect to 100 parts by weight of the block copolymer hydride ([1] -2).
  • this injection pellet molding machine manufactured by Nissei ASB Machine Co., Ltd., product name “ASB-50MB”
  • a preform is first molded by injection molding at a cylinder temperature of 240 ° C. and an injection mold temperature of 60 ° C.
  • blow molding was performed at a preform heating pot temperature of 150 ° C., a blow pressure of 0.5 MPa, and a blow mold temperature of 60 ° C. to produce a single-layer vial having a diameter of 50 mm ⁇ height of 90 mm and a side wall thickness of 1 mm. .
  • the formed vial was colorless and transparent, and the contents were highly visible.
  • Example 2 77 parts by weight of the pellets of the resin composition ([2] -2) obtained in Reference Example 2 and 23 parts by weight of the pellets of the resin composition ([2] -2MP) obtained in Reference Example 6 were mixed, and mixed pellets Gamma-ray sterilization treatment and elution were conducted in the same manner as in Example 1 except that the amount of the antioxidant was 0.269 parts by weight with respect to 100 parts by weight of the block copolymer hydride ([1] -2). A physical test and a bleed-out test were conducted. The results are shown in Table 2.
  • Example 3 58 parts by weight of the pellets of the resin composition ([2] -3) obtained in Reference Example 3 and 42 parts by weight of the pellets of the resin composition ([2] -3MP) obtained in Reference Example 6 were mixed, and mixed pellets Gamma-ray sterilization treatment and elution were conducted in the same manner as in Example 1 except that the amount of the antioxidant was 0.449 parts by weight with respect to 100 parts by weight of the block copolymer hydride ([1] -3). A physical test and a bleed-out test were conducted. The results are shown in Table 2.
  • Example 4 85 parts by weight of the pellet of the resin composition ([2] -1) obtained in Reference Example 1 and 15 parts by weight of the pellet of the resin composition ([2] -1MP) obtained in Reference Example 5 were mixed, and mixed pellets In the same manner as in Example 1 except that the amount of antioxidant in the mixture was 0.193 parts by weight with respect to 100 parts by weight of the block copolymer hydride ([1] -1), and the irradiation dose was changed to 35 kGy. Sterilization was performed, and the eluate test and bleed-out test were performed. The results are shown in Table 2.
  • Example 5 65 parts by weight of the pellet of the resin composition ([2] -2) obtained in Reference Example 2 and 35 parts by weight of the pellet of the resin composition ([2] -2MP) obtained in Reference Example 6 were mixed, and mixed pellets In the same manner as in Example 1 except that the amount of antioxidant in the mixture was 0.383 parts by weight with respect to 100 parts by weight of the block copolymer hydride ([1] -2), and the irradiation dose was changed to 35 kGy. Sterilization was performed, and the eluate test and bleed-out test were performed. The results are shown in Table 2.
  • the mixture was kneaded with a biaxial kneader to obtain 95 parts of pellets of the resin composition ([2] -11) comprising the block copolymer hydride ([1] -1) and the antioxidant.
  • the total amount of the antioxidant was 0.190 parts by weight with respect to 100 parts by weight of the block copolymer hydride ([1] -1).
  • the composition wA: wB was 50:50
  • the weight average molecular weight (Mw) was 65,600
  • the hydrogenation rate was 99.9%.
  • the W value of Formula 1 when E is 25 kGy was 0.086 parts by weight, and the total amount of the antioxidant was equal to or greater than the W value.
  • the total amount of the antioxidant was 0.190 parts by weight with respect to 100 parts by weight of the block copolymer hydride ([1] -1).
  • the composition wA: wB was 50:50
  • the weight average molecular weight (Mw) was 65,600
  • the hydrogenation rate was 99.9%.
  • the W value of Formula 1 when E is 25 kGy was 0.086 parts by weight, and the total amount of the antioxidant was equal to or greater than the W value.
  • Example 6 Except for using the pellet of the resin composition ([2] -12) obtained in Reference Example 10, a vial was formed in the same manner as in Example 1, and gamma sterilization was performed in the same manner as in Example 1. An eluate test was performed. As a result, the difference between the pH change and the blank sample was 1.0 or less, no significant decrease in pH was observed, and the effect of suppressing the decrease in pH was confirmed. Further, the foaming property was good with the foam disappearing within 3 minutes. The amount of UV absorption was 0.08 or less at 220 to 241 nm and 0.05 or less at 241 to 350 nm as the difference in absorbance from the blank sample. Regarding the amount of the potassium permanganate reducing substance, the difference in consumption of the potassium permanganate solution was 1.0 ml or less.
  • the medical container of the present invention includes a block copolymer hydride having a hydrogenation rate of 99% or more, and a phenolic system having a W value or more represented by Formula 1 corresponding to a high energy ray irradiation dose used for sterilization treatment. It was obtained from a resin composition blended with an antioxidant, and there was no significant change in the pH of the contents due to the eluate in water even after the high energy ray irradiation treatment (Example 1 to 6).
  • the method for sterilization of a medical molded article comprising a specific block copolymer hydride resin composition containing a specific amount of a phenolic antioxidant according to the present invention by irradiation with high energy rays is the content of an eluate in water. No significant change in the pH of the product is observed, and the medical molded product used in the present invention is excellent in heat resistance, low elution, content visibility, etc., and is useful as a medical molded product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

芳香族ビニル化合物由来の単位を主成分とする重合体ブロック[A]の重量分率と、鎖状共役ジエン化合物由来の単位を主成分とする重合体ブロック[B]の重量分率との比が30:70~70:30であるブロック共重合体の、全不飽和結合の99%以上を水素化したブロック共重合体水素化物100重量部と、フェノール系酸化防止剤が式1:W=[0.46×(100-H)+0.04]×(E/25)(式中、Wはブロック共重合体水素化物100重量部に対する酸化防止剤の重量部、Hはブロック共重合体水素化物の%単位で表示された水素化率、Hは99~100の数値、Eは高エネルギー線のkGy単位で表示される照射線量を表す。)で表される重量部以上、0.50重量部以下である量を含む樹脂組成物から形成された医療用成形体を、照射線量Eで高エネルギー線照射する、滅菌済み医療用成形体の製造方法。

Description

滅菌済み医療用成形体の製造方法
 本発明は、特定のブロック共重合体水素化物に、フェノール系酸化防止剤を特定割合で配合した樹脂組成物からなる医療用成形体を、高エネルギー線照射により滅菌処理する滅菌済み医療用成形体の製造方法に関する。
 高エネルギー線照射による滅菌処理は、医療用成形体を、例えば、輸送用のダンボール箱やプラスチックケースなどに梱包した状態で一括して滅菌処理できるため、簡易で確実な滅菌方法として多用されている。
 ブロック共重合体水素化物は、透明性、耐熱性、柔軟性などに優れ、蒸気滅菌が可能なため、バイアル、輸液バッグ、シリンジ、培養容器、などの医療用成形体に好適に使用できることが知られている(特許文献1~4)。
 また、ブロック共重合体水素化物の成形時の酸化劣化による着色や強度低下を防止するために、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などの酸化防止剤を配合することも知られている(特許文献2~4)。
 さらに、特許文献4には、ブロック共重合体水素化物から成形されてなる容器が、電子線やガンマ線による滅菌処理も可能であることが記載されている。
 しかしながら、この文献には、配合する酸化防止剤として、容器に成形する際に酸化劣化を防止するために、リン系酸化防止剤、フェノ-ル系酸化防止剤、硫黄系酸化防止剤などが挙げられ、着色がより少ないリン系酸化防止剤が好ましいものと記載されているのみであり、電子線滅菌やガンマ線滅菌に対して有利な酸化防止剤の種類や量に関する記載は無い。
国際公開WO00/077094号 特開2002-121244号公報 特開2003-82113号公報 特開2013-48560号公報
 本発明者らは、ブロック共重合体水素化物からなる医療用成形体を、高エネルギー線照射による滅菌処理した場合の影響を詳細に検討した結果、例えば、第十六改正日本薬局方「プラスチック製医薬品容器試験法」に従った溶出物試験では、滅菌処理後にpHの低下を生じる場合もあり、イオンクロマトグラフィーによる分析では蟻酸、酢酸などが検出されることが分かった。
 そこで本発明は、高エネルギー線照射による滅菌処理後でも、水中への溶出物による内容物のpHの大幅な変化がない、ブロック共重合体水素化物からなる医療用成形体の滅菌方法を提供することを目的とする。
 本発明者らはこれら従来技術の課題を改善するために鋭意検討した結果、特定のブロック共重合体水素化物に、フェノール系酸化防止剤を特定量配合した樹脂組成物から形成されてなる医療用成形体を、高エネルギー線照射により滅菌処理することにより、滅菌処理の後にも、水中への溶出物によるpHの顕著な差異を生じないことを見出し、本発明を完成するに至った。
 かくして本発明によれば、(1)~(3)の滅菌済み医療用成形体の製造方法が提供される。
(1)芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が30:70~70:30であるブロック共重合体の、全不飽和結合の99%以上を水素化したブロック共重合体水素化物とフェノール系酸化防止剤とを含有する樹脂組成物であって、
前記フェノール系酸化防止剤の配合量が、前記ブロック共重合体水素化物100重量部に対し、下記式1で表されるW重量部以上、0.50重量部以下である樹脂組成物から形成されてなる医療用成形体を、照射線量Eで、高エネルギー線照射することを特徴とする滅菌済み医療用成形体の製造方法。
Figure JPOXMLDOC01-appb-M000002
(式1中、Wは、ブロック共重合体水素化物100重量部に対するフェノール系酸化防止剤の重量部を表し、Hは、ブロック共重合体水素化物のパーセント単位で表示された水素化率を表し、Hは99~100の数値である。Eは、高エネルギー線のkGy単位で表示される照射線量を表す。)
(2)前記高エネルギー線がガンマ線又は電子線である、(1)に記載の滅菌済み医療用成形体の製造方法。
(3)前記医療用成形体を、樹脂フィルムからなる密閉容器に内包した状態で、高エネルギー線照射することを特徴とする、(1)に記載の滅菌済み医療用成形体の製造方法。
 本発明の製造方法によれば、高エネルギー線照射による滅菌処理後でも、水中への溶出物による内容物のpHの大幅な変化がない、ブロック共重合体水素化物からなる滅菌済み医療用成形体を効率よく製造することができる。
 以下、本発明を詳細に説明する。
 本発明の滅菌済み医療用成形体の製造方法は、特定のブロック共重合体水素化物に、フェノール系酸化防止剤を特定量配合してなる樹脂組成物を成形してなる医療用成形体を、高エネルギー線照射により滅菌処理するものである。
1.ブロック共重合体水素化物
(1)ブロック共重合体(C)
 本発明で用いるブロック共重合体水素化物(以下、「ブロック共重合体水素化物[1]ということがある。)の前駆体であるブロック共重合体(以下、「ブロック共重合体(C)」ということがある。)は、少なくとも2つの重合体ブロック[A]と少なくとも1つの重合体ブロック[B]を有する高分子である。
 重合体ブロック[A]は、芳香族ビニル化合物由来の構造単位を主成分とするものである。重合体ブロック[A]中の芳香族ビニル化合物由来の構造単位の含有量は、通常90重量%以上、好ましくは95重量%以上、より好ましくは99重量%以上である。
 また、重合体ブロック[A]は、芳香族ビニル化合物由来の構造単位以外の成分を有していてもよい。芳香族ビニル化合物由来の構造単位以外の成分としては、鎖状共役ジエン由来の構造単位及び/又はその他のビニル化合物由来の構造単位が挙げられる。その含有量は、重合体ブロック[A]に対し、通常10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。重合体ブロック[A]中の芳香族ビニル化合物由来の構造単位が少なすぎると、医療用成形体の耐熱性が低下するおそれがある。
 複数の重合体ブロック[A]は、上記の範囲を満足すれば互いに同一であっても、相異なっていても良い。
 重合体ブロック[B]は、鎖状共役ジエン化合物由来の構造単位を主成分とするものである。重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位の含有量は、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上である。鎖状共役ジエン化合物由来の構造単位が上記範囲にあると、本発明の樹脂組成物の柔軟性、高周波融着や熱融着による融着性のバランスに優れる。
 また、重合体ブロック[B]は、鎖状共役ジエン化合物由来の構造単位以外の成分を有していてもよい。鎖状共役ジエン化合物由来の構造単位以外の成分としては、芳香族ビニル化合物由来の構造単位及び/又はその他のビニル化合物由来の構造単位が挙げられる。その含有量は、重合体ブロック[B]に対し、通常30重量%以下、好ましくは10重量%以下である。重合体ブロック[B]中の芳香族ビニル化合物由来の構造単位の含有量が増加するに連れて、本発明の医療用成形体の透明性が向上するが、あまりに多くなりすぎると、本発明の医療用成形体の柔軟性が低下し、高周波融着や熱融着による融着性が低下するおそれがある。
 ブロック共重合体(C)が重合体ブロック[B]を複数有する場合には、重合体ブロック[B]は、上記の範囲を満足すれば互いに同一であっても、相異なっていても良い。
 本発明で用いられる芳香族ビニル化合物としては、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレンなどのアルキル置換スチレン:4-クロロスチレン、2,4-ジクロロスチレン等のハロゲン置換スチレン;等が挙げられ、工業的な入手の容易さから、スチレンが特に好ましい。
 本発明で用いられる鎖状共役ジエン系化合物としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられ、工業的な入手の容易さ、重合反応の制御の容易さから、1,3-ブタジエン、イソプレンが特に好ましい。
 本発明で用いられるその他のビニル系化合物としては、鎖状ビニル化合物や環状ビニル化合物が挙げられる。具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-エイコセン、4-メチル-1-ペンテン、4,6-ジメチル-1-ヘプテンなどの鎖状オレフィン;ビニルシクロヘキサンなどの環状オレフィン等の、極性基を含有しないものが、耐酸・アルカリ性の面で好ましく、鎖状オレフィンがより好ましく、エチレン、プロピレンが特に好ましい。
 ブロック共重合体(C)中の重合体ブロック[A]の数は、通常5個以下、好ましくは4個以下、より好ましくは3個以下である。
 重合体ブロック[A]及び/又は重合体ブロック[B]が複数存在する際、重合体ブロック[A]の中で重量平均分子量が最大と最少の重合体ブロックの重量平均分子量をそれぞれMw(A1)及びMw(A2)とし、重合体ブロック[B]の中で重量平均分子量が最大と最少の重合体ブロックの重量平均分子量をそれぞれMw(B1)及びMw(B2)とした時、該Mw(A1)とMw(A2)との比(Mw(A1)/Mw(A2))、及び、該Mw(B1)とMw(B2)との比(Mw(B1)/Mw(B2))は、それぞれ通常2.0以下、好ましくは1.5以下、より好ましくは1.2以下である。
 ブロック共重合体(C)のブロックの形態は、鎖状型ブロックでもラジアル型ブロックでも良いが、鎖状型ブロックであるものが、機械的強度に優れ好ましい。
 本発明のブロック共重合体の最も好ましい形態は、重合体ブロック[B]の両端に重合体ブロック[A]が結合したトリブロック共重合体([A]-[B]-[A])、及び、重合体ブロック[A]の両端に重合体ブロック[B]が結合し、更に、該両重合体ブロック[B]の他端にそれぞれ重合体ブロック[A]が結合したペンタブロック共重合体([A]-[B]-[A]-[B]-[A])である。
 ブロック共重合体(C)中の、全重合体ブロック[A]がブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]がブロック共重合体全体に占める重量分率をwBとした時に、wAとwBとの比(wA:wB)は、30:70~70:30、好ましくは35:65~65:35、より好ましくは40:60~60:40である。wAが高過ぎる場合は、本発明の樹脂組成物の耐熱性は高くなるが、柔軟性が低く、耐衝撃性が低下するおそれがある。wAが低過ぎる場合は、耐熱性が低く、スチーム滅菌で変形が著しくなる。
 ブロック共重合体(C)の分子量は、テトラヒドロフラン(THF)を溶媒とするGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、通常30,000~150,000、好ましくは40,000~130,000、より好ましくは50,000~100,000である。また、ブロック共重合体の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下である。
 ブロック共重合体(C)は、例えば、リビングアニオン重合などの方法により、芳香族ビニル化合物を主成分として含有するモノマー混合物(a)と鎖状共役ジエン系化合物を主成分として含有するモノマー混合物(b)を交互に重合させる方法;芳香族ビニル化合物を主成分として含有するモノマー混合物(a)と鎖状共役ジエン系化合物を主成分として含有するモノマー混合物(b)を順に重合させた後、重合体ブロック[B]の末端同士を、カップリング剤によりカップリングさせる方法等により製造することができる。
2.ブロック共重合体水素化物[1]
 本発明に用いるブロック共重合体水素化物[1]は、上記のブロック共重合体(C)の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合を水素化して得られたものである。その水素化率は、通常99%以上、好ましくは99.5%以上、より好ましくは99.9%以上である。水素化率が99%を下回る場合は、高エネルギー線照射による滅菌処理で医療用成形体からの水中への溶出物による内容物のpHの大幅な変化が認められるおそれがある。
 ブロック共重合体水素化物の水素化率は、H-NMRによる測定や、ゲルパーミエーションクロマトグラフィ(GPC)によるUV検出器とRI検出器とのピーク面積の比較などにより求めることができる。
 不飽和結合の水素化方法や反応形態などは特に限定されず、公知の方法にしたがって行えばよいが、水素化率を高くでき、重合体鎖切断反応の少ない水素化方法が好ましい。このような水素化方法としては、例えば、国際公開WO2011/096389号、国際公開WO2012/043708号などに記載された方法を挙げることができる。
 目的とするブロック共重合体水素化物[1]は、ブロック共重合体水素化物を含む反応溶液から水素化触媒及び/又は重合触媒を除去した後、反応溶液から回収される。回収されたブロック共重合体水素化物の形態は、限定されるものではないが、通常はペレット形状にして、その後の医療用成形体の成形加工に供することができる。
 ブロック共重合体水素化物[1]の分子量は、THFを溶媒としたゲル・パーミエーション・クロマトグラフィー(GPC)により測定されるポリスチレン換算の重量平均分子量(Mw)で、通常30,000~150,000、好ましくは40,000~130,000、より好ましくは50,000~100,000である。また、ブロック共重合体水素化物の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下にする。Mw及びMw/Mnが上記範囲となるようにすると、成形した医療用成形体の機械強度や耐熱性が向上する。
3.酸化防止剤
 本発明に用いるブロック共重合体水素化物[1]は、医療用成形体の高エネルギー線照射による滅菌処理により、水中への溶出物による内容物のpHの大幅な変化を抑制するために、フェノール系酸化防止剤を配合することが好ましい。フェノール系酸化防止剤は、高エネルギー線照射による滅菌処理による、水中への溶出物による内容物のpHの大幅な変化を抑制する効果に優れる。
 フェノール系酸化防止剤の配合量は、ブロック共重合体水素化物[1]を溶融させて医療用成形体を成形し、その後高エネルギー線照射により滅菌処理した後に、水中への溶出物による内容物のpHの大幅な変化を抑制でき、且つ、成形体の透明性の低下や長期保存後にもブリードアウトしない量である。その配合量は、ブロック共重合体水素化物[1]100重量部に対し、フェノール系酸化防止剤が、下記式1で表される重量部以上であって、且つ、0.50重量部以下である。
Figure JPOXMLDOC01-appb-M000003
 上記式1中、Wは、ブロック共重合体水素化物[1]100重量部に対するフェノール系酸化防止剤の重量部を表し、Hは、ブロック共重合体水素化物[1]のパーセント単位で表示された水素化率を表し、Hは99~100の数値である。Eは、高エネルギー線のkGy単位で表示される線量を表す。
 フェノール系酸化防止剤の添加量は、炭素-炭素二重結合と炭素-炭素単結合とが受ける酸化を防止するのに必要な量以上である。式1において、0.46×(100-H)は、25kGyのエネルギー線が照射されたときに、炭素-炭素二重結合の酸化を防止するために必要な酸化防止剤量に相当し、0.04は、25kGyのエネルギー線が照射された時に、炭素-炭素単結合の酸化を防止するために必要な酸化防止剤量に相当する。
 但し、酸化を受ける度合いは、高エネルギー線の照射量で変わるため、25kGyを標準として、実際に照射する線量に相当した係数として、E/25を掛ける必要がある。
 酸化防止剤の配合量が式1に規定した量を下回る場合は、成形体を高エネルギー線照射により滅菌処理した後で、水中への溶出物によるpHの顕著な低下を起こし易い。また、配合量が0.50重量部を上回る場合は、成形体を長期保存した際にブリードアウトし易くなる。
 フェノ-ル系酸化防止剤の具体例としては、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、6,6’-ジ-t-ブチル-4,4’-ブチリデンジ-m-クレゾール、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)などの化合物を挙げることができる。これらの中では、分子量が500以上であるものが、樹脂組成物からブリードアウトし難いことから好ましい。
4.医療用成形体
 本発明に用いる医療用成形体(以下、「医療用成形体[3]」ということがある。」は、ブロック共重合体水素化物[1]に、フェノール系酸化防止剤を特定量配合してなる樹脂組成物[2]を成形して得られるものである。かかる医療用成形体[3]は、透明性、耐熱性、柔軟性、機械的強度などに優れており、また、高エネルギー線照射による滅菌処理を行った後であっても、透明性の変化や着色などの外観上の変化が見られず、優れた内容物視認性を維持できる。
 本発明に用いる医療用成形体[3]は、樹脂組成物[2]を、溶融押し出し成形法、射出成形法、射出ブロー成形法、ブロー成形法、インフレーション成形法などの成形方法により、容器、チューブ、シートなどの形状に成形することにより得ることができる。
 シートは好ましい形状に裁断した後、高周波融着や熱融着により繋ぎ合わせてバッグや袋状の容器とすることができる。
 樹脂組成物[2]の成形条件は、成形方法により適宜選択される。例えば、溶融押出成形法や射出成形法などによる場合は、溶融樹脂温度は、通常170~260℃、好ましくは180~240℃、より好ましくは190~220℃の範囲で適宜選択される。
 溶融樹脂温度が低過ぎる場合は、流動性が悪化し、良好な形状の成形体が得られなくなるおそれがある。樹脂温度が高過ぎる場合は、医療用成形体[3]から水中への溶出物による内容物のpHの大幅な変化が生じたり、機械的強度が低下するなどの不良を生じ易くなる。
5.高エネルギー線照射による滅菌処理
 本発明は、以上のようにして得られた医療用成形体[3]を、照射線量Eで高エネルギー線照射することを特徴とする滅菌済み医療用成形体の製造方法である。
 本発明では、医療用成形体[3]を、無菌状態を維持するために、菌を通過させない樹脂フィルムからなる密閉容器に内包させた状態で高エネルギー線を照射して滅菌処理を行うことが好ましい。滅菌処理された医療用成形体[3]は、使用されるまでの間、樹脂フィルムからなる密閉容器中に無菌状態を維持して保管される。
 実用的には、医療用成形体[3]をポリエチレンなどの樹脂製袋に入れ、開口部をヒートシールなどの方法で密閉し、さらにその密閉袋を樹脂フィルムからなる袋などで多重に包装し、それをダンボール箱やプラスチックケース内に梱包して輸送できる状態にし、そのまま高エネルギー線を照射して滅菌処理する方法などが実施される。
 本発明で、高エネルギー線照射による滅菌処理を行う際に、医療用成形体[3]を内包させておく樹脂フィルムから密閉容器としては、樹脂で成形された単層又は多層の袋やケースが使用できる。用いる樹脂としては、エチレン-ビニルアルコール共重合体、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド-6、ポリアミド-66、ポリアミド-12などが挙げられる。これらの樹脂は一種又は二種以上を組み合わせて用いることができる。
 密閉方法としては、医療用成形体[3]を樹脂製袋などに内包した後、開口部をヒートシールする方法などが利用できる。
 密閉容器を構成する樹脂フィルムとして、例えば、エチレン-ビニルアルコール共重合体、ポリエチレンテレフタレート、ポリアミド-6などからなる、酸素透過度が100cc/m・day・atm以下のフィルムを使用し、医療用成形体[3]を内包した密閉容器内に、脱酸素剤を同時に内包させるなどの方法により密閉容器内の酸素濃度を低下させた状態で、高エネルギー線照射による滅菌処理を行った場合は、滅菌処理後の医療用成形体から水中への溶出物によるpH変化がより抑制されるため好ましい。
 本発明で利用できる高エネルギー線としては、X線、ガンマ線、ベータ線、電子線、中性子腺などが挙げられ、滅菌処理としては、特にガンマ線又は電子線の照射による方法が汎用的で好ましく採用される。
 医療用成形体[3]の滅菌処理では、高エネルギー線の好ましい照射線量は、通常20~35kGyである。照射線量がこれより少ない場合は滅菌効果が十分でなく、これより多い場合は、照射に時間を要することに加え、滅菌処理後のブロック共重合体水素化物からなる医療用成形体[3]からの溶出物が増加する場合がある。
 本発明の製造方法により得られる滅菌済み医療用成形体[3]としては、注射用の薬液容器、アンプル、輸液バッグ、固体薬容器、点眼薬容器、点滴薬容器、検査薬容器、栄養剤容器などの液体又は粉体、固体の薬品容器; 血液検査用のサンプリング用試験管、採血管、検体容器などのサンプル容器; 輸液チューブ、配管、継ぎ手、バルブ、コック等の配管材料; コンタクトレンズ用保存容器; 義歯床、人工心臓、人工腎臓などの人工臓器やその部品などが例示される。これらの中でも、長期にわたり、薬品、特に液体薬品を保存する輸液バッグ、栄養剤容器、薬ビン、アンプルなどにおいては、容器からの溶出物量が少ないため、特に好ましい。
 以下、本発明について、実施例及び比較例を挙げて、より具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。以下の実施例及び比較例において、部及び%は、特に断りがない限り、重量基準である。
 以下に各種物性の測定法を示す。
(1)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ブロック共重合体及びブロック共重合体水素化物の分子量は、THFを溶離液とするゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算値として38℃において測定した。測定装置としては、東ソー社製、HLC8020GPCを用いた。
(2)水素化率
 ブロック共重合体水素化物の水素化率は、前駆体であるブロック共重合体の芳香族ビニル化合物由来の構造単位に含まれる芳香環の炭素-炭素不飽和結合及び鎖状共役ジエン由来の構造単位に含まれる炭素-炭素不飽和結合の合計に対して水素化された炭素-炭素結合の割合である。
 ブロック共重合体水素化物の水素化率は、H-NMRスペクトル又はGPC分析により算出される。
 水素化率99%以下の領域は、H-NMRスペクトルを測定して算出し、99%を超える領域は、GPC分析により、UV検出器とRI検出器によるピーク面積の比率から算出した。
(3)溶出物
 ブロック共重合体水素化物に酸化防止剤を配合した樹脂組成物からなるペレットを射出ブロー成形して、直径50mm×高さ90mm、側壁厚み1mmの単層のバイアルを作製した。このバイアルを用いて、線量25kGy又は35kGyでガンマ線照射による滅菌処理を行い、ガンマ線照射前と後で、バイアルの側面から長さ60mm、幅10mmの試験片を切り出し、第十六改正日本薬局方「プラスチック製医薬品容器試験法」に従った溶出物試験を行い、pH差、泡立ち、紫外線吸収、過マンガン酸カリウム還元性物質の評価を行った。
 表2には、以下のように評価した結果を示す。
・pH変化:ブランク試料との差が±1.0以内の場合を「○」、±1.0の範囲外の場合を「×」として評価した。
・泡立ち性:泡が3分以内に消失した場合を「○」、3分以内に消失しなかった場合を「×」として評価した。
・紫外線吸収量:ブランク試料との吸光度の差が220~241nmで0.08以下の場合を「○」、0.08を越える場合を「×」、241~350nmで0.05以下の場合を「○」、0.05を越える場合を「×」とそれぞれ評価した。
・過マンガン酸カリウム還元性物質量:濃度0.002mol/lの過マンガン酸カリウム溶液の消費量の差が1.0ml以下の場合を「○」、1.0mlを越える場合を「×」と表記した。
(4)ブリードアウト
 上記の射出ブロー成形したバイアルの表面を、目視による観察及びATR法(減衰全反射法)によりバイアルの壁内部のIRスペクトルと、経時でのバイアル表面のIRスペクトルをそれぞれ測定した。ブロック共重合体水素化物に由来する吸収帯の強度と酸化防止剤に由来する吸収帯の強度を測定して比較し、ブリードアウトの有無を判定した。
 成形から30日後のバイアル表面のIRスペクトルで酸化防止剤に由来する吸収帯の強度が内部のIRスペクトルの強度の1.5倍に達した場合を「ブリードアウト有り」と判定した。
 表2に示す試験結果では、ブリードアウトが無い場合を「○」、ブリードアウトが有る場合を「×」と表記した。
[参考例1]
 ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物[2]-1の合成
 内部が充分に窒素置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン550部、脱水スチレン25.0部、及び、n-ジブチルエーテル0.475部を入れた。全容を60℃で攪拌しながら、n-ブチルリチウム(15%シクロヘキサン溶液)0.67部を加えて重合を開始させ、60℃で攪拌しながら、さらに60分反応させた。反応液をガスクロマトグラフィーにより測定したところ、この時点で重合転化率は99.5%であった。
 その後、反応液に脱水イソプレン50.0部を加え、そのまま60℃で30分攪拌を続けた。反応液をガスクロマトグラフィーにより測定したところ、この時点で重合転化率は99%であった。
 その後さらに、反応液に脱水スチレンを25.0部加え、60℃で60分攪拌した。反応液をガスクロマトグラフィーにより測定したところ、この時点での重合転化率はほぼ100%であった。
 ここでイソプロピルアルコール0.5部を加えて反応を停止させた。得られたブロック共重合体[C]-1の重量平均分子量(Mw)は62,600、分子量分布(Mw/Mn)は1.05であった。
 次に、上記重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(日揮触媒化成社製、製品名「E22U」、ニッケル担持量60%)4.0部及び脱水シクロヘキサン100部を添加して混合した。反応器内部を水素ガスで置換し、更に溶液を攪拌しながら水素を供給し、温度170℃、圧力4.5MPaにて6時間水素化反応を行った。
 水素化反応により得られたブロック共重合体水素化物([1]-1)の重量平均分子量(Mw)は66,200、分子量分布(Mw/Mn)は1.06であった。
 水素化反応終了後、反応液を濾過して水素化触媒を除去した後、濾液にフェノ-ル系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASF社製、製品名「イルガノックス(登録商標)1010」)0.05重量部を溶解したキシレン溶液1.0部を添加して溶解させた。
 次いで、上記溶液を、ゼータプラス(登録商標)フィルター30H(キュノ社製、孔径0.5~1μm)にて濾過し、更に別の金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて順次濾過して微小な固形分を除去した後、円筒型濃縮乾燥器(日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去し、濃縮乾燥器に直結したダイから溶融状態でストランド状に押し出し、冷却後、ペレタイザーでカットして、ブロック共重合体水素化物([1]-1)及び酸化防止剤からなる樹脂組成物([2]-1)のペレット94部を得た。
 得られた樹脂組成物([2]-1)に含まれるブロック共重合体水素化物([1]-1)の重量平均分子量(Mw)は65,600、分子量分布(Mw/Mn)は1.11、水素化率は99.9%、wA:wB=50:50であり、酸化防止剤量はブロック共重合体水素化物([1]-1)100重量部に対して、0.05重量部であった。これらのデータを表1に記載した。
[参考例2]
 ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物[2]-2の合成
 水素化触媒を3.5部とする以外は、参考例1と同様にして、ブロック共重合体水素化物([1]-2)及び酸化防止剤からなる樹脂組成物([2]-2)のペレット94部を得た。
 得られた樹脂組成物([2]-2)のブロック共重合体水素化物の重量平均分子量(Mw)は65,100、分子量分布(Mw/Mn)は1.11、水素化率は99.6%、wA:wB=50:50であり、酸化防止剤量はブロック共重合体水素化物([1]-2)100重量部に対して0.05重量部であった。これらのデータを表1に記載した。
[参考例3]
 ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物[2]-3の合成
 重合段階で、モノマーとして、スチレン20.0部、n-ブチルリチウム(15%シクロヘキサン溶液)0.54部、イソプレン60.0部及びスチレン20.0部をこの順に反応系に添加して重合し、水素化触媒量を5.0部とする以外は、参考例1と同様にして、ブロック共重合体水素化物([1]-3)及び酸化防止剤からなる樹脂組成物([2]-3)のペレット95部を得た。
 得られた樹脂組成物([2]-3)のブロック共重合体水素化物の重量平均分子量(Mw)は81,000、分子量分布(Mw/Mn)は1.15、水素化率は99.2%、wA:wB=40:60であり、酸化防止剤量はブロック共重合体水素化物([1]-3)100重量部に対して0.05重量部であった。これらのデータを表1に記載した。
[参考例4]
ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物([2]-4)の合成
 重合段階で、n-ブチルリチウム(15%シクロヘキサン溶液)0.53部とする以外は、参考例1と同様にして、ブロック共重合体水素化物([1]-4)及び酸化防止剤からなる樹脂組成物([2]-4)のペレット92部を得た。
 得られた樹脂組成物([2]-4)のブロック共重合体水素化物([1]-4)の重量平均分子量(Mw)は82,900、分子量分布(Mw/Mn)は1.16、水素化率は98.1%、wA:wB=50:50であり、酸化防止剤量はブロック共重合体水素化物100重量部に対して0.05重量部であった。これらのデータを表1に記載した。
[参考例5]
 ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物([2]-1MP)の調製
 参考例1で合成したブロック共重合体水素化物([1]-1)及び酸化防止剤からなる樹脂組成物[E]-1のペレット100重量部に対して、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.96重量部を添加し、二軸混練機(製品名「TEM37BS」、東芝機械社製)を使用して樹脂温度230℃で混練し、ストランド状に押出し、ペレタイザーによりカッティングし、ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物([2]-1MP)のペレット97部を得た。
 酸化防止剤量はブロック共重合体水素化物([1]-1)100重量部に対して1.00重量部であった。樹脂組成物([2]-1MP)について、組成wA:wB、重量平均分子量(Mw)、水素化率、酸化防止剤量のデータを表1に記載した。
[参考例6]
ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物([2]-2MP)の調製
 参考例2で合成したブロック共重合体水素化物([1]-2)及び酸化防止剤からなる樹脂組成物([2]-2)のペレット100重量部に対して、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.96重量部を添加し、参考例5と同様にして、ブロック共重合体水素化物([1]-2)及び酸化防止剤からなる樹脂組成物([2]-2MP)のペレット98部を得た。
 酸化防止剤量はブロック共重合体水素化物([1]-2)100重量部に対して、1.00重量部であった。樹脂組成物([2]-2MP)について、組成wA:wB、重量平均分子量(Mw)、水素化率、酸化防止剤量のデータを表1に記載した。
[参考例7]
 ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物([2]-3MP)の調製
 参考例3で合成したブロック共重合体水素化物([1]-3)及び酸化防止剤からなる樹脂組成物([2]-3)のペレット100重量部に対して、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.96重量部を添加し、参考例5と同様にして、ブロック共重合体水素化物([1]-3)及び酸化防止剤からなる樹脂組成物[2]-3MPのペレット97部を得た。
 酸化防止剤量はブロック共重合体水素化物([1]-3)100重量部に対して、1.00重量部であった。樹脂組成物([2]-3MP)について、組成wA:wB、重量平均分子量(Mw)、水素化率、酸化防止剤量のデータを表1に記載した。
[参考例8]
 ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物([2]-4MP)の調製
 参考例3で合成したブロック共重合体水素化物([1]-4)及び酸化防止剤からなる樹脂組成物([2]-4)のペレット100重量部に対して、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.96重量部を添加し、参考例5と同様にして、ブロック共重合体水素化物([1]-4)及び酸化防止剤からなる樹脂組成物([2]-4MP)のペレット96部を得た。酸化防止剤量はブロック共重合体水素化物100重量部に対して1.00重量部であった。樹脂組成物([2]-4MP)について、組成wA:wB、重量平均分子量(Mw)、水素化率、酸化防止剤量のデータを表1に記載した。
Figure JPOXMLDOC01-appb-T000004
[実施例1]
 参考例1で得た樹脂組成物([2]-1)のペレット95重量部と参考例5で得た樹脂組成物([2]-1MP)のペレット5重量部をブレンダーにて均一に混合した。混合したペレット中の酸化防止剤量は、ブロック共重合体水素化物([1]-2)100重量部に対して0.098重量部であった。
 この混合ペレットを、射出ブロー成形機(日精エーエスビー機械社製、製品名「ASB-50MB」)を用いて、先ず、シリンダー温度240℃、射出金型温度60℃で射出成形してプリフォームを作製し、次いで、プリフォームの加熱ポット温度150℃、ブロー圧0.5MPa、ブロー金型温度60℃でブロー成形して、直径50mm×高さ90mm、側壁厚み1mmの単層のバイアルを作製した。成形されたバイアルは無色透明で内容物の視認性に優れていた。
 このバイアル10本を、直鎖状短鎖分岐ポリエチレン(LLDPE)製袋(縦35×横25cm、厚さ0.05mm)に入れて、ヒートシールして密封した。このように密封したバイアルを更にまとめて、直鎖状短鎖分岐ポリエチレン(LLDPE)製袋(45リットル)にて包装して、ダンボール箱に複数梱包した。ダンボール箱に梱包したままガンマ線照射(線量25kGy、コーガアイソトープ社)による滅菌処理を行った。
 実施例1において、前記式1で表されるW(酸化防止剤の量の下限値)は、0.086である。
 ガンマ線照射から5日後に開包して、バイアルを取り出した。外観上の変化は認められず、無色透明であった。このガンマ線滅菌処理したバイアル及び滅菌処理をしていないバイアルから所定量の試験片をそれぞれ切り出し、第十六改正日本薬局方「プラスチック製医薬品容器試験法」に従って溶出物試験を行った。結果を表2に記載した。
 一方、成形後、ポリエチレン袋に密封し、常温で30日間保管していたバイアルの表面を目視観察、及び表面のIRスペクトルを測定して、ブロック共重合体水素化物([1]-1~[1]-4)に由来する吸収帯(2930cm-1)と、酸化防止剤に由来する吸収帯(1740cm-1)の強度を比較し、ブリードアウトの有無を確認した。結果を表2に記載した。
[比較例1]
 参考例1で得た樹脂組成物([2]-1)のペレット100重量部(ペレット中の酸化防止剤量がブロック共重合体水素化物([1]-1)100重量部に対して、0.05重量部)を使用する以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[比較例2]
 参考例1で得た樹脂組成物([2]-1)のペレット50重量部と、参考例5で得た樹脂組成物([E]-1MP)のペレット50重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-1)100重量部に対して、0.525重量部にする以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[実施例2]
 参考例2で得た樹脂組成物([2]-2)のペレット77重量部と、参考例6で得た樹脂組成物([2]-2MP)のペレット23重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-2)100重量部に対して0.269重量部にする以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[比較例3]
 参考例2で得た樹脂組成物([2]-2)のペレット90重量部と、参考例6で得た樹脂組成物([2]-2MP)のペレット10重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-2)100重量部に対して0.145重量部にする以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[実施例3]
 参考例3で得た樹脂組成物([2]-3)のペレット58重量部と、参考例6で得た樹脂組成物([2]-3MP)のペレット42重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-3)100重量部に対して0.449重量部にする以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[比較例4]
 参考例3で得た樹脂組成物([2]-3)のペレット73重量部と、参考例6で得た樹脂組成物([2]-3MP)のペレット27重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-3)100重量部に対して0.307重量部にする以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[比較例5]
 参考例3で得た樹脂組成物([2]-3)のペレット50重量部と、参考例6で得た樹脂組成物[2]-3MPのペレット50重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-3)100重量部に対して0.525重量部にする以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[比較例6]
 参考例4で得た樹脂組成物([2]-4)のペレット47重量部と、参考例6で得た樹脂組成物[2]-4MPのペレット53重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-4)100重量部に対して0.554重量部にする以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[実施例4]
 参考例1で得た樹脂組成物([2]-1)のペレット85重量部と、参考例5で得た樹脂組成物([2]-1MP)のペレット15重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-1)100重量部に対して0.193重量部とし、照射線量を35kGyに変える以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[比較例7]
 実施例1で作製したのと同じバイアルを使用し、照射線量を35kGyに変える以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[実施例5]
 参考例2で得た樹脂組成物([2]-2)のペレット65重量部と、参考例6で得た樹脂組成物([2]-2MP)のペレット35重量部を混合し、混合ペレット中の酸化防止剤量をブロック共重合体水素化物([1]-2)100重量部に対して0.383重量部とし、照射線量を35kGyに変える以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
[比較例8]
 実施例2で作製したのと同じバイアルを使用し、照射線量を35kGyに変える以外は実施例1と同様にして、ガンマ線滅菌処理を行い、溶出物試験及びブリードアウトの試験を行った。結果を表2に記載した。
Figure JPOXMLDOC01-appb-T000005
[参考例9]
 ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物([2]-11)の調製
 参考例1で合成したブロック共重合体水素化物([1]-1)及び酸化防止剤からなる樹脂組成物([2]-1)のペレット100重量部に対して、リン系酸化防止剤である3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン(ADEKA社製、製品名「アデカスタブ(登録商標)PEP-36」)0.14重量部を添加し、参考例5と同様にして二軸混練機により混練し、ブロック共重合体水素化物([1]-1)及び酸化防止剤からなる樹脂組成物([2]-11)のペレット95部を得た。
 酸化防止剤の合計量はブロック共重合体水素化物([1]-1)100重量部に対して、0.190重量部であった。
 樹脂組成物([2]-11)については、組成wA:wBは50:50、重量平均分子量(Mw)は65,600、水素化率は99.9%であった。
 また、式1のW値(Eが25kGyの場合)は0.086重量部であり、酸化防止剤の合計量はW値以上であった。
[比較例9]
 参考例9で得られた樹脂組成物([2]-11)のペレットを使用する以外は、実施例1と同様にしてバイアルを成形し、実施例1と同様にしてガンマ線滅菌処理を行い、溶出物試験を行った。
 その結果、pH変化はブランク試料との差が-1.0以上で、pHの低下を抑制する効果は小さかった。一方、泡立ち性は、泡が3分以内に消失し、良好であった。紫外線吸収量は、ブランク試料との吸光度の差が220~241nmで0.08以下、241~350nmで0.05以下であった。過マンガン酸カリウム還元性物質量は、過マンガン酸カリウム溶液の消費量の差が1.0ml以下であった。
[参考例10]
 ブロック共重合体水素化物及び酸化防止剤からなる樹脂組成物([2]-12)の調製
 参考例1で合成したブロック共重合体水素化物([1]-1)及び酸化防止剤からなる樹脂組成物([2]-1)のペレット100重量部に対して、フェノール系酸化防止剤である1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン(ADEKA社製、製品名「アデカスタブ(登録商標)AO-330」)0.14重量部を添加し、参考例5と同様にして二軸混練機により混練し、ブロック共重合体水素化物([1]-1)及び酸化防止剤からなる樹脂組成物[2]-12のペレット96部を得た。
 酸化防止剤の合計量はブロック共重合体水素化物([1]-1)100重量部に対して、0.190重量部であった。
 樹脂組成物([2]-12)については、組成wA:wBは50:50、重量平均分子量(Mw)は65,600、水素化率は99.9%であった。
 また、式1のW値(Eが25kGyの場合)は0.086重量部であり、酸化防止剤の合計量はW値以上であった。
[実施例6]
 参考例10で得られた樹脂組成物([2]-12)のペレットを使用する以外は、実施例1と同様にしてバイアルを成形し、実施例1と同様にしてガンマ線滅菌処理を行い、溶出物試験を行った。
 その結果、pH変化はブランク試料との差は1.0以下で、pHの顕著な低下は認められず、pHの低下を抑制する効果が確認された。また、泡立ち性は、泡が3分以内に消失し、良好であった。紫外線吸収量は、ブランク試料との吸光度の差が220~241nmで0.08以下、241~350nmで0.05以下であった。過マンガン酸カリウム還元性物質量は、過マンガン酸カリウム溶液の消費量の差が1.0ml以下であった。
 実施例及び比較例の結果から以下のことがわかる。
 本発明の医療用容器は、水素化率が99%以上のブロック共重合体水素化物、及び、滅菌処理に使用する高エネルギー線照射線量に対応した式1で表されるW値以上のフェノール系酸化防止剤を配合した樹脂組成物から得られたものであり、高エネルギー線照射処理後においても、水中への溶出物による内容物のpHの大幅な変化がないものである(実施例1~6)。
 フェノール系酸化防止剤の配合量が式1で表されるW値に満たない場合、高エネルギー線照射処理後に水中への溶出物によるpHの顕著な低下が認められる(比較例1、3、4、6~8)。
 フェノール系酸化防止剤の配合量が式1で表されるW値に満たない場合、及び、リン系酸化防止剤を追加配合して、合計の酸化防止剤の配合量が式1で表されるW値以上となった場合も、高エネルギー線照射処理後に水中への溶出物によるpHの顕著な低下が認められる(比較例9)。
 ブロック共重合体水素化物100重量部に対して、フェノール系酸化防止剤の配合量が0.5重量部を超える場合は、高エネルギー線照射処理後にも水中への溶出物によるpHの顕著な低下が無いが、経時で成形体の表面に酸化防止剤がブリードアウトする(比較例2、5、6)。
 本発明の、フェノール系酸化防止剤が特定量配合された特定のブロック共重合体水素化物樹脂組成物からなる医療用成形体の、高エネルギー線照射による滅菌方法は、水中への溶出物による内容物のpHの大幅な変化が認められず、また、本発明に用いる医療用成形体は耐熱性、低溶出性、内容物視認性などにも優れており医療用成形体として有用である。

Claims (3)

  1.  芳香族ビニル化合物由来の繰り返し単位を主成分とする、少なくとも2つの重合体ブロック[A]と、鎖状共役ジエン化合物由来の繰り返し単位を主成分とする、少なくとも1つの重合体ブロック[B]とからなり、全重合体ブロック[A]のブロック共重合体全体に占める重量分率をwAとし、全重合体ブロック[B]のブロック共重合体全体に占める重量分率をwBとしたときに、wAとwBとの比(wA:wB)が30:70~70:30であるブロック共重合体の、全不飽和結合の99%以上を水素化したブロック共重合体水素化物とフェノール系酸化防止剤とを含有する樹脂組成物であって、
    前記フェノール系酸化防止剤の配合量が、前記ブロック共重合体水素化物100重量部に対し、下記式1で表されるW重量部以上、0.50重量部以下である樹脂組成物から形成されてなる医療用成形体を、照射線量Eで、高エネルギー線照射することを特徴とする滅菌済み医療用成形体の製造方法。
    Figure JPOXMLDOC01-appb-M000001
    (式1中、Wは、ブロック共重合体水素化物100重量部に対するフェノール系酸化防止剤の重量部を表し、Hは、ブロック共重合体水素化物のパーセント単位で表示された水素化率を表し、Hは99~100の数値である。Eは、高エネルギー線のkGy単位で表示される照射線量を表す。)
  2.  前記高エネルギー線がガンマ線又は電子線である、請求項1記載の滅菌済み医療用成形体の製造方法。
  3.  前記医療用成形体を、樹脂フィルムからなる密閉容器に内包した状態で、高エネルギー線照射することを特徴とする、請求項1に記載の滅菌済み医療用成形体の製造方法。
PCT/JP2014/072809 2013-09-06 2014-08-29 滅菌済み医療用成形体の製造方法 WO2015033876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14841657.1A EP3042927B1 (en) 2013-09-06 2014-08-29 Method for producing sterilized medical molded body
JP2015535451A JP6350530B2 (ja) 2013-09-06 2014-08-29 滅菌済み医療用成形体の製造方法
US14/914,363 US9814792B2 (en) 2013-09-06 2014-08-29 Method for producing sterilized medical formed article
CN201480048173.9A CN105518064B (zh) 2013-09-06 2014-08-29 已灭菌的医疗用成型体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-185292 2013-09-06
JP2013185292 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033876A1 true WO2015033876A1 (ja) 2015-03-12

Family

ID=52628350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072809 WO2015033876A1 (ja) 2013-09-06 2014-08-29 滅菌済み医療用成形体の製造方法

Country Status (5)

Country Link
US (1) US9814792B2 (ja)
EP (1) EP3042927B1 (ja)
JP (1) JP6350530B2 (ja)
CN (1) CN105518064B (ja)
WO (1) WO2015033876A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472453A (zh) * 2016-01-20 2018-08-31 泰尔茂株式会社 注射器用合成树脂制外筒、注射器、预灌封注射器及已填充液体并已灭菌的合成树脂制容器
WO2020080202A1 (ja) 2018-10-17 2020-04-23 日本ゼオン株式会社 共重合体水素化物およびその製造方法、共重合体水素化物含有組成物、合わせガラス用中間膜、合わせガラス用中間膜積層体、封止材、光学フィルム、医療用成形体およびその製造方法、接着剤、ならびに、接合体およびその製造方法
WO2023181841A1 (ja) * 2022-03-24 2023-09-28 住友ベークライト株式会社 使い捨てピペット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019090086A1 (en) 2017-11-03 2019-05-09 Amgen Inc. Systems and approaches for sterilizing a drug delivery device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051316A (ja) * 1998-08-04 2000-02-22 Nissho Corp 医療用成形体
WO2000077094A1 (en) 1999-06-11 2000-12-21 The Dow Chemical Company Compositions comprising hydrogenated block copolymers and end-use applications thereof
JP2002121244A (ja) 2000-10-19 2002-04-23 Nippon Zeon Co Ltd 容 器
JP2003082113A (ja) 2001-09-12 2003-03-19 Nippon Zeon Co Ltd 非汚染性軟質樹脂成形体
JP2004027131A (ja) * 2002-06-27 2004-01-29 Nippon Zeon Co Ltd 成形体の処理方法及び成形体
JP2005054123A (ja) * 2003-08-07 2005-03-03 Nippon Zeon Co Ltd 耐放射線性脂環式構造含有重合体樹脂組成物
JP2006257296A (ja) * 2005-03-17 2006-09-28 Kuraray Co Ltd 伸縮性部材
WO2011096389A1 (ja) 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール
WO2012043708A1 (ja) 2010-09-29 2012-04-05 日本ゼオン株式会社 アルコキシシリル基を有するブロック共重合体水素化物及びその利用
JP2013048560A (ja) 2011-08-30 2013-03-14 Nippon Zeon Co Ltd 培養用容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033111A (ja) * 1998-07-17 2000-02-02 Nissho Corp 医療用成形品
MY133783A (en) * 1999-07-28 2007-11-30 Dow Global Technologies Inc Hydrogenated block polymers having elasticity and articles made therefrom
CN1300244C (zh) * 2000-05-11 2007-02-14 陶氏环球技术公司 具有改进的耐热性的弹性制品的制造方法
US6723399B2 (en) * 2002-06-12 2004-04-20 Ferro Corporation Medical multilayer film structure
WO2007024957A1 (en) * 2005-08-26 2007-03-01 Becton, Dickinson And Company Methods of sterilizing elastomeric sealing articles
US20100204397A1 (en) * 2007-03-27 2010-08-12 Zeon Corporation Rubber latex, rubber latex for dip molding, and dip-molded article
TW200924802A (en) * 2007-08-01 2009-06-16 Asahi Kasei Kuraray Medical Co Electron beam sterilization method
JP5807643B2 (ja) 2010-09-29 2015-11-10 日本ゼオン株式会社 アルコキシシリル基を有するブロック共重合体水素化物及びその利用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051316A (ja) * 1998-08-04 2000-02-22 Nissho Corp 医療用成形体
WO2000077094A1 (en) 1999-06-11 2000-12-21 The Dow Chemical Company Compositions comprising hydrogenated block copolymers and end-use applications thereof
JP2002121244A (ja) 2000-10-19 2002-04-23 Nippon Zeon Co Ltd 容 器
JP2003082113A (ja) 2001-09-12 2003-03-19 Nippon Zeon Co Ltd 非汚染性軟質樹脂成形体
JP2004027131A (ja) * 2002-06-27 2004-01-29 Nippon Zeon Co Ltd 成形体の処理方法及び成形体
JP2005054123A (ja) * 2003-08-07 2005-03-03 Nippon Zeon Co Ltd 耐放射線性脂環式構造含有重合体樹脂組成物
JP2006257296A (ja) * 2005-03-17 2006-09-28 Kuraray Co Ltd 伸縮性部材
WO2011096389A1 (ja) 2010-02-02 2011-08-11 日本ゼオン株式会社 太陽電池素子封止用樹脂組成物及び太陽電池モジュール
WO2012043708A1 (ja) 2010-09-29 2012-04-05 日本ゼオン株式会社 アルコキシシリル基を有するブロック共重合体水素化物及びその利用
JP2013048560A (ja) 2011-08-30 2013-03-14 Nippon Zeon Co Ltd 培養用容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3042927A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472453A (zh) * 2016-01-20 2018-08-31 泰尔茂株式会社 注射器用合成树脂制外筒、注射器、预灌封注射器及已填充液体并已灭菌的合成树脂制容器
WO2020080202A1 (ja) 2018-10-17 2020-04-23 日本ゼオン株式会社 共重合体水素化物およびその製造方法、共重合体水素化物含有組成物、合わせガラス用中間膜、合わせガラス用中間膜積層体、封止材、光学フィルム、医療用成形体およびその製造方法、接着剤、ならびに、接合体およびその製造方法
US11773193B2 (en) 2018-10-17 2023-10-03 Zeon Corporation Hydrogenated copolymer and method of producing the same, hydrogenated copolymer-containing composition, interlayer film for laminated glass, interlayer film laminate for laminated glass, sealing material, optical film, medical shaped article and method of producing the same, adhesive, and assembly and method of producing the same
WO2023181841A1 (ja) * 2022-03-24 2023-09-28 住友ベークライト株式会社 使い捨てピペット
JP7444340B2 (ja) 2022-03-24 2024-03-06 住友ベークライト株式会社 使い捨てピペット

Also Published As

Publication number Publication date
JPWO2015033876A1 (ja) 2017-03-02
EP3042927A1 (en) 2016-07-13
CN105518064A (zh) 2016-04-20
US9814792B2 (en) 2017-11-14
EP3042927A4 (en) 2017-04-12
US20160213796A1 (en) 2016-07-28
JP6350530B2 (ja) 2018-07-04
CN105518064B (zh) 2018-12-18
EP3042927B1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
TW442527B (en) Radiation tolerant polypropylene and its useful articles
JP6350530B2 (ja) 滅菌済み医療用成形体の製造方法
ES2947595T3 (es) Composiciones de resina reciclada y dispositivos médicos desechables fabricados a partir de las mismas
JP6295588B2 (ja) ポリエチレン樹脂組成物およびそれよりなる医療容器
CN114761484B (zh) 面向医疗用途的注射成型品
CN107835840B (zh) 聚丙烯树脂组合物和使用其得到的医疗用成型体
JP6236897B2 (ja) プロピレン系樹脂組成物およびその成形品
CN104403281A (zh) 一种医用纤维基高分子材料及其制备方法
KR20160141725A (ko) 주사액용 주머니 및 주사용 제제
JP2022054983A (ja) 環状オレフィン樹脂組成物、成形体およびその用途
JP7309461B2 (ja) 成形体および医療用容器
EP2898872B1 (en) Medical container
JP6115286B2 (ja) 医療向け部材用プロピレン系樹脂組成物および医療用部材
JP3689900B2 (ja) 医療用成形品
JP6436612B2 (ja) 透明耐熱容器
JP2016019619A (ja) プレフィルドシリンジ用容器
JP7080351B2 (ja) 医療用器具用環状オレフィン共重合体組成物、および成形体
JP2005054123A (ja) 耐放射線性脂環式構造含有重合体樹脂組成物
JP2021130785A (ja) 医療用器具用環状オレフィン共重合体組成物および成形体
JP2000033111A (ja) 医療用成形品
JP2015183076A (ja) 医療用器材
JP2528443C (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535451

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914363

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014841657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841657

Country of ref document: EP