WO2010097936A1 - 車両の制御装置 - Google Patents
車両の制御装置 Download PDFInfo
- Publication number
- WO2010097936A1 WO2010097936A1 PCT/JP2009/053678 JP2009053678W WO2010097936A1 WO 2010097936 A1 WO2010097936 A1 WO 2010097936A1 JP 2009053678 W JP2009053678 W JP 2009053678W WO 2010097936 A1 WO2010097936 A1 WO 2010097936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shift
- control
- sensor
- detection unit
- select
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/02—Selector apparatus
- F16H2059/0295—Selector apparatus with mechanisms to return lever to neutral or datum position, e.g. by return springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/122—Avoiding failures by using redundant parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/126—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
- F16H2061/1268—Electric parts of the controller, e.g. a defect solenoid, wiring or microprocessor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/1284—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/02—Selector apparatus
- F16H59/08—Range selector apparatus
- F16H59/10—Range selector apparatus comprising levers
- F16H59/105—Range selector apparatus comprising levers consisting of electrical switches or sensors
Definitions
- the present invention relates to vehicle control, and more particularly, to control when abnormality occurs in a sensor that detects the position of a shift lever.
- a vehicle in which the position of a shift lever operated by a driver is detected by a sensor, and the control state (traveling range) of the automatic transmission is switched according to the detection result of the sensor.
- Patent Document 1 Japanese Patent Laid-Open No. 5-223162
- Patent Document 1 when an abnormality occurs in a shift lever sensor (shift selection switch) and a wire harness connected to the shift lever sensor, the automatic transmission is controlled to a neutral state, but the vehicle is traveling on a highway.
- a technique is disclosed in which the automatic transmission is not controlled to be in a neutral state under a specific traveling environment such as when the vehicle is stopped at an intersection or when the driver is not recognizing a failure. According to the technique disclosed in Patent Document 1, even when an abnormality occurs in the shift lever sensor (shift selection switch), the vehicle does not immediately stop traveling. It can be moved.
- the automatic transmission is controlled to be in a neutral state when a shift lever sensor abnormality occurs in a driving environment other than a specific driving environment. I can't let you.
- the present invention has been made to solve the above-described problems, and its purpose is to switch the control mode according to the abnormality pattern of the sensor when an abnormality of the sensor that detects the position of the movable portion occurs. Accordingly, it is an object of the present invention to provide a control device that can improve the convenience of retreating the vehicle while avoiding forward / reverse switching unintended by the driver.
- a control device is a control device for a vehicle that travels by the output of an automatic transmission that changes the rotation of a driving force source, and is operated by a driver of the vehicle, and is in a first direction related to forward / reverse switching.
- a second detection unit having a plurality of sensors configured to detect positions of the movable unit in the first direction, and a second of the movable unit.
- a second detection unit having a plurality of sensors for detecting a position in the direction, and a control unit for controlling at least one of the driving force source and the automatic transmission based on detection results of the first detection unit and the second detection unit.
- the control unit determines whether each sensor of the first detection unit and each sensor of the second detection unit is abnormal, and all the sensors of the first detection unit are normal and some of the sensors of the second detection unit
- a first abnormality that is abnormal occurs, the first control that allows the vehicle to travel by the output of the automatic transmission is executed, all the sensors of the second detection unit are normal, and at least one of the first detection units.
- the second abnormality which is an abnormality of the sensor of the part, occurs, the second control is executed that allows the vehicle to travel while suppressing the output of the automatic transmission more than when the first control is executed.
- the control unit when the first abnormality occurs, performs the first control based on the detection result of the first detection unit and the detection result of the remaining normal sensors excluding the abnormal sensors of the second detection unit. If the second abnormality occurs, the control state of the automatic transmission before the abnormality detection of the first detection unit is established as the second control when the second abnormality occurs. After the predetermined condition is satisfied, the lowering control is executed to lower the output of the automatic transmission than when the first control is executed.
- the predetermined condition includes a condition that an operation of the movable part is detected. More preferably, the predetermined condition includes a condition that the detection result of the second detection unit has changed.
- the movable part is moved along the shift gate.
- the predetermined condition includes a condition that it is detected that the position of the movable part is not included in a predetermined range corresponding to the shift gate.
- the lowering control includes at least one of control for setting the control state of the automatic transmission to a neutral state for cutting off power and control for reducing the output of the driving force source.
- the plurality of sensors of the second detection unit include a main sensor used to determine the position in the second direction and a sub sensor used to monitor abnormality of the main sensor.
- the control unit executes the first control, when the main sensor of the second detection unit is abnormal and the sub sensor is normal, the detection result of the first detection unit and the detection result of the sub sensor of the second detection unit The control state of the automatic transmission is switched based on
- the control unit changes the control state of the automatic transmission to the power when the third abnormality occurs. At least one of the control for setting the neutral state to shut off the power and the control for reducing the output of the driving force source is executed.
- control unit determines that the third abnormality has occurred when at least some of the sensors of the first detection unit are abnormal and at least some of the sensors of the second detection unit are abnormal.
- the correspondence between the detection result of the first detection unit and the position in the first direction is learned based on the detection result of the first detection unit when the detection result of the second detection unit changes.
- the control unit is at least one of when the learning result of the position in the first direction is erased and when the control state of the automatic transmission is a parking state in which the vehicle axle is locked. When switching, the control state of the automatic transmission is prohibited.
- the control unit is configured to detect the abnormality of the second detection unit. Until the operation of the movable part is detected, the control state of the automatic transmission before the abnormality detection of the second detection part is maintained, and when the operation of the movable part is detected, the power is cut off from the control state of the automatic transmission. At least one of control for setting the neutral state to be performed and control for reducing the output of the driving force source is executed.
- FIG. 6 is a diagram (part 1) illustrating a shift position determination region;
- FIG. 6 is a second diagram illustrating a shift position determination region;
- It is a functional block diagram of ECU.
- FIG. 5 is a (second) diagram illustrating a processing flow of an ECU.
- FIG. 9 is a (third) diagram illustrating a processing flow of the ECU.
- FIG. 10 is a third diagram illustrating a shift position determination area;
- FIG. 1 shows a configuration of a shift control system 10 according to the present embodiment.
- the shift control system 10 controls a control state (hereinafter also referred to as “traveling range”) of the speed change mechanism 2 that changes the speed of a driving device 1 (for example, an engine) that is a driving power source of a vehicle and transmits the speed to a driving wheel. ) Function as a shift-by-wire system that switches by electrical control.
- a hybrid vehicle will be described as an example of a vehicle on which the shift control system 10 is mounted.
- the vehicle is not particularly limited to a hybrid vehicle.
- the transmission mechanism 2 is described as a transmission including a continuously variable transmission mechanism, but may be configured of a stepped transmission mechanism.
- the shift control system 10 includes a P switch 20, a shift lever mechanism 26, an HV (Hybrid Vehicle) -ECU (Electronic Control Unit) 30, a parking control device (hereinafter also referred to as “P-ECU”) 40, and an actuator 42. And an encoder 46 and a shift switching mechanism 48.
- the P switch 20 is a momentary switch for switching the travel range to a parking range (hereinafter also referred to as “P range”).
- the driver inputs an instruction to switch the traveling range to the P range through the P switch 20.
- a P command signal indicating an instruction from the driver received by the P switch 20 is transmitted to the HV-ECU 30. Note that the travel range may be switched from the non-P range to the P range by using a device other than the P switch 20.
- Non-P range Switching from the P range to a travel range other than the P range (hereinafter also referred to as “non-P range”) is performed by operating a shift lever 270 (described later). Note that the travel range does not have to be switched from the P range to the non-P range by operating the shift lever 270. For example, the travel range is switched from the P range to the non-P range by operating the P switch 20. May be.
- the shift lever mechanism 26 includes a shift gate 260, a shift lever 270, a shift sensor 22, and a select sensor 24.
- the shift gate 260 is formed along the select direction (see FIG. 1) and the first shift path 262 and the second shift path 264, which are formed along the shift direction (see FIG. 1), respectively.
- the first shift path 262 includes a reverse position (R position) at the upper end position, a forward position (D position) at the lower end position, and a neutral position (N position) at the center position (position connected to the select path 266). ) are provided.
- a neutral position (M position) is provided at the upper end position (connection position with the select path 266), and a brake position (B position) is provided at the lower end position.
- the select path 266 connects the N position of the first shift path 262 and the M position of the second shift path 264.
- shift position the position of the shift lever 270 (hereinafter also referred to as “shift position”) may be switched between the R position and the D position, The decimal may be switched.
- shift lever 270 when the shift lever 270 is moved in the select direction, the vehicle is not switched at least between the R position and the D position, and the vehicle is not switched back and forth.
- Shift lever 270 is a momentary type shift lever that is maintained in the M position when not operated by the driver and is moved along a path formed in shift gate 260 by the operation of the driver. Since the structure and operation of the momentary type shift lever are well-known techniques, detailed description thereof will not be given. The shift lever 270 is not limited to the momentary type.
- the shift sensor 22 detects a voltage signal corresponding to the position of the shift lever 270 in the shift direction (see FIG. 1).
- the shift sensor 22 is a multi-system sensor.
- the shift sensor 22 includes two systems of sensors, that is, a shift main sensor 22A and a shift sub sensor 22B. Note that the shift sensor 22 may include two or more sensors.
- the shift main sensor 22A and the shift sub sensor 22B detect the shift voltage values Vsha and Vshb corresponding to the position of the shift lever 270 in the shift direction, and output the detection results to the HV-ECU 30.
- the shift voltage value Vsha and the shift voltage value Vshb are the same value.
- the shift voltage value Vsha detected by the shift main sensor 22A is mainly used by the HV-ECU 30 to determine the position of the shift lever 270 in the shift direction.
- the shift voltage value Vshb detected by the shift sub sensor 22B is mainly used by the HV-ECU 30 to monitor the shift voltage value Vsha for abnormality (abnormality of the shift main sensor 22A).
- abnormality abnormality of the shift main sensor 22A
- the shift voltage value Vsh is a value within the range from the lower limit value Vshmin to the upper limit value Vshmax corresponding to the boundary of the movable range in the shift direction of the shift lever 270.
- the lower limit value Vshmin and the upper limit value Vshmax are both voltage values in the range of at least about 0 to 5 volts.
- the relationship between the position of the shift lever 270 in the shift direction and the shift voltage value Vsh has, for example, a linear relationship. Note that it is not necessary to have a linear relationship as long as the position of the shift lever 270 in the shift direction can be calculated based on the shift voltage value Vsh.
- the select sensor 24 detects a voltage signal corresponding to the position of the shift lever 270 in the select direction (see FIG. 1).
- the select sensor 24 is a multi-system sensor.
- the select sensor 24 includes two systems of sensors, that is, a select main sensor 24A and a select sub sensor 24B. Note that the select sensor 24 may include two or more sensors.
- the select main sensor 24A and the select sub sensor 24B detect the select voltage values Vsea and Vseb corresponding to the position of the shift lever 270 in the select direction, and output the detection results to the HV-ECU 30.
- the select voltage value Vsea and the select voltage value Vseb are the same value.
- the select voltage value Vsea detected by the select main sensor 24A is mainly used by the HV-ECU 30 to determine the position of the shift lever 270 in the select direction.
- the select voltage value Vseb detected by the select sub sensor 24B is mainly used by the HV-ECU 30 to monitor the abnormality of the select voltage value Vsea (abnormality of the select main sensor 24A).
- the select voltage value Vse is also described without distinguishing them.
- the select voltage value Vse is a value within the range from the lower limit value Vsemin to the upper limit value Vsemax corresponding to the boundary of the movable range in the select direction of the shift lever 270.
- the lower limit value Vsemin and the upper limit value Vsemax are both voltage values in the range of at least about 0 to 5 volts.
- the relationship between the position of the shift lever 270 in the select direction and the select voltage value Vse is, for example, a linear relationship. Note that a linear relationship may not be provided as long as the position of the shift lever 270 in the select direction can be calculated based on the select voltage value Vse.
- the shift main sensor 22A, the shift sub sensor 22B, the select main sensor 24A, and the select sub sensor 24B are connected to the connector 25, respectively.
- the connector 25 By inserting the connector 25 into a connector (not shown) on the HV-ECU 30 side, the shift main sensor 22A, shift sub sensor 22B, select main sensor 24A, select sub sensor 24B and the HV-ECU 30 are electrically connected. Connected to.
- the HV-ECU 30 comprehensively manages the operation of the shift control system 10 based on the outputs from the P switch 20, the shift sensor 22, and the select sensor 24.
- the HV-ECU 30 determines the shift position based on the shift voltage value Vsh from the shift sensor 22 and the select voltage value Vse from the select sensor 24.
- the HV-ECU 30 moves to the destination position. Confirm the corresponding shift position.
- maps as shown in FIGS. 2 and 3 for detecting the shift position based on the shift voltage value Vsh and the select voltage value Vse are stored in advance. .
- an upper limit value Vshmax and a lower limit value Vshmin are set for the boundary of the movable range in the shift direction.
- An upper limit value Vsemax and a lower limit value Vsemin are set for the boundary of the movable range in the select direction.
- Threshold value Vsemid is set between upper limit value Vsemax and lower limit value Vsemin.
- the upper limit value Vsemax, the lower limit value Vsemin, and the threshold value Vsemid are set within a range of 0 to 5 volts.
- Threshold value Vshmid (1) and threshold value Vshmid (2) are set between upper limit value Vshmax and lower limit value Vshmin.
- the upper limit value Vshmax, the lower limit value Vshmin, the threshold value Vshmid (1), and the threshold value Vshmid (2) are set within a range of 0 to 5 volts.
- the HV-ECU 30 learns in advance the shift voltage value Vsh when the shift lever 270 is positioned on the select path 266 (for example, when the select voltage value Vse has changed) as the reference voltage value VC, and stores the internal storage unit 3300. (See FIG. 4), a value obtained by subtracting the predetermined value ⁇ V from the reference voltage value VC is set as a threshold value Vshmid (1), and a value obtained by adding the predetermined value ⁇ V to the reference voltage value VC is set as a threshold. Set to the value Vshmid (2). Therefore, the threshold value Vshmid (1) and the threshold value Vshmid (2) are values that vary depending on the learning result of the reference voltage value VC. Reference voltage value VC is erased from storage unit 3300 when power supply from a battery (not shown) is interrupted (for example, when the battery is removed from the vehicle).
- the HV-ECU 30 has a shift voltage value Vsh of a shift L region between Vshmin and Vshmid (1), a shift M region between Vshmid (1) and Vshmid (2), and Vshmid (2) and Vshmax. It is determined whether it is included in any of the shift H regions.
- the HV-ECU 30 determines whether the select voltage value Vse is included in a select L region between Vsemin and Vsemid or a select H region between Vsemid and Vsemax.
- the HV-ECU 30 detects the shift position as the R position when the shift voltage value Vsh is included in the shift L region and the select voltage value Vse is included in the select H region.
- the HV-ECU 30 detects the shift position as the N position when the shift voltage value Vsh is included in the shift M region and the select voltage value Vse is included in the select H region.
- HV-ECU 30 detects the shift position as the D position when shift voltage value Vsh is included in the shift H region and select voltage value Vse is included in the select H region.
- HV-ECU 30 detects the shift position as the M position when shift voltage value Vsh is included in the shift M region and select voltage value Vse is included in the select L region.
- the HV-ECU 30 detects the shift position as the B position when the shift voltage value Vsh is included in the shift region H and the select voltage value Vse is included in the select region L.
- the HV-ECU 30 detects the shift position as the EX position when the shift voltage value Vsh is included in the shift L region and the select voltage value Vse is included in the select L region. If the shift voltage value Vsh and the select voltage value Vse are normal values, the EX position is not detected.
- the HV-ECU 30 calculates the required torque based on the vehicle information (for example, the accelerator opening degree), outputs a drive command corresponding to the required torque to the drive device 1, and displays the detection results of the shift sensor 22 and the select sensor 24. Based on the determined shift position, a range command corresponding to the determined shift position is output to the transmission mechanism 2. As a result, the output torque of the drive device 1 is controlled to a torque corresponding to the required torque, and ranges (D range, N range, R range, B range) corresponding to the shift position where the traveling range of the speed change mechanism 2 is determined. One of these). In the D range, the vehicle moves forward, and in the R range, the vehicle moves backward. Further, in the N range, the power transmission of the speed change mechanism 2 is interrupted.
- the vehicle information for example, the accelerator opening degree
- the HV-ECU 30 transmits a P request signal to the P-ECU 40.
- the P-ECU 40 is connected to the HV-ECU 30 so that they can communicate with each other.
- the P-ECU 40 controls the actuator 42 that drives the shift switching mechanism 48 to switch the traveling range between the P range and the non-P range. Control the behavior.
- Actuator 42 is configured by a switched reluctance motor (hereinafter referred to as “SR motor”), and drives shift switching mechanism 48 in accordance with a control signal from P-ECU 40. Specifically, when the actuator 42 receives a P command signal from the P-ECU 40, the parking gear, which forms a parking mechanism (not shown), is fitted with a parking pole so that the travel range is set to the P range. The shift switching mechanism 48 is driven so as to enter a parking lock state (hereinafter also referred to as “P lock state”) that locks the axle.
- P lock state a parking lock state
- autonomous P control when the vehicle power is turned off (when an ignition switch (not shown) is turned off), the control for automatically switching the traveling range to the P range (hereinafter also referred to as “auto P control”) is performed. It has been adopted.
- the actuator 42 drives the shift switching mechanism 48 so as to release the P lock state.
- the actuator 42 is described as being configured by a motor, but may be configured by hydraulic pressure.
- Encoder 46 rotates integrally with actuator 42 and detects the rotation status of the SR motor.
- the encoder 46 of this embodiment is a rotary encoder that outputs A-phase, B-phase, and Z-phase signals.
- the P-ECU 40 obtains a signal output from the encoder 46, grasps the rotation state of the SR motor, controls the energization for driving the SR motor, and indicates that the P-lock state is currently set. Either a signal (P detection signal) or a signal (non-P detection signal) indicating that the P lock state is currently released is transmitted to the HV-ECU 30.
- the present invention provides a retreat traveling control according to a combination of abnormality of the shift sensor 22 and the select sensor 24 when an abnormality occurs in at least one of the shift sensor 22 and the select sensor 24. It is characterized in that
- the present invention specifies an abnormal pattern of the shift sensor 22 and the select sensor 24, and when the specified abnormal pattern is a pattern that can be evacuated, the evacuation according to the abnormal pattern is performed even after the abnormality occurs. By running, the vehicle continues to run as much as possible.
- FIG. 4 shows a functional block diagram of the HV-ECU 30 according to the present embodiment.
- HV-ECU 30 includes an input interface 3100, an arithmetic processing unit 3200, a storage unit 3300, and an output interface 3400.
- the input interface 3100 includes shift voltage values Vsha, Vshb from the shift sensor 22 (shift main sensor 22A, shift sub sensor 22B), and select voltage values Vsea, Vseb from the select sensor 24 (select main sensor 24A, select sub sensor 24B). Are transmitted to the arithmetic processing unit 3200.
- the storage unit 3300 stores various information, programs, threshold values, maps, and the like, and data is read from or stored in the arithmetic processing unit 3200 as necessary. Note that the information stored in the storage unit 3300 includes a shift position, a travel range history, and the like in addition to the maps shown in FIGS. 2 and 3 and the learning value of the reference voltage value VC.
- the arithmetic processing unit 3200 includes an abnormality determination unit 3210, an abnormality pattern determination unit 3220, a normal control unit 3230, a first failsafe control unit 3240, a second failsafe control unit 3250, and a third failsafe control unit 3260. And a fourth fail-safe control unit 3270.
- the abnormality determination unit 3210 determines whether each of the shift main sensor 22A, the shift sub sensor 22B, the select main sensor 24A, and the select sub sensor 24B is abnormal.
- the abnormality determination unit 3210 determines that the shift main sensor 22A is normal when Vshmin ⁇ Vsha ⁇ Vshmax, and determines that the shift main sensor 22A is abnormal when Vsha ⁇ Vshmin or Vsha> Vshmax. Similarly, abnormality determination unit 3210 determines that shift subsensor 22B is normal when Vshmin ⁇ Vshb ⁇ Vshmax, and determines that shift subsensor 22B is abnormal when Vshb ⁇ Vshmin or Vshb> Vshmax.
- the abnormality determination unit 3210 determines that the select main sensor 24A is normal when Vsemin ⁇ Vsea ⁇ Vsemax, and determines that the select main sensor 24A is abnormal when Vsea ⁇ Vsemin or Vsea> Vsemax. Similarly, the abnormality determining unit 3210 determines that the select subsensor 24B is normal when Vsemin ⁇ Vseb ⁇ Vsemax, and determines that the select subsensor 24B is abnormal when Vseb ⁇ Vsemin or Vseb> Vsemax.
- the abnormal pattern determination unit 3220 stratifies the determination result of the abnormality determination unit 3210 into first to fourth abnormal patterns.
- the abnormal pattern stratification method described below is merely an example, and the number of abnormal patterns and the stratification method are not limited thereto.
- the abnormal pattern determination unit 3220 all the sensors of the shift sensor 22 (the shift main sensor 22A and the shift sub sensor 22B) are normal, and some of the sensors (the select main sensor 24A and the select sub sensor 24B) of the select sensor 24 If it is abnormal, it is identified as the first abnormal pattern.
- the abnormal pattern determination unit 3220 all the sensors of the select sensor 24 (select main sensor 24A and select sub sensor 24B) are normal, and at least some of the sensors (shift main sensor 22A and shift sub sensor 22B) of the shift sensor 22. If there is an abnormality in at least one of them, the second abnormality pattern is specified.
- the abnormal pattern determination unit 3220 has an abnormality in at least a part of the shift sensor 22 (at least one of the shift main sensor 22A and the shift sub sensor 22B) and at least a part of the select sensor 24 (the select main sensor 24A). When at least one of the select sub sensor 24B) is abnormal, it is identified as a third abnormal pattern.
- the abnormal pattern determination unit 3220 all the sensors of the shift sensor 22 (shift main sensor 22A and shift sub sensor 22B) are normal, and all the sensors of the select sensor 24 (select main sensor 24A and select sub sensor 24B) are abnormal. In this case, the fourth abnormal pattern is specified.
- the normal control unit 3230 that is, all the sensors of the shift sensor 22 (the shift main sensor 22A and the shift sub sensor 22B) and the select sensor 24
- the shift position is determined based on the shift voltage value Vsha from the shift main sensor 22A and the select voltage value Vsea from the select main sensor 24A, and the travel range is controlled according to the determined shift position.
- the first fail-safe control unit 3240 executes the first fail-safe control when the abnormal pattern determination unit 3220 specifies the first abnormal pattern.
- the first abnormal pattern all the sensors (the shift main sensor 22A and the shift sub sensor 22B) of the shift sensor 22 related to the forward / reverse switching are normal, and the forward / reverse switching is performed against the driver's intention. There is nothing. Further, a part of the select sensor 24 is normal.
- the shift position is determined using the shift voltage value Vsh and the detection result of a normal sensor that is not abnormal among the select main sensor 24A and the select sub sensor 24B.
- the travel range is controlled according to the determined shift position.
- the second fail-safe control unit 3250 executes the second fail-safe control when the abnormal pattern determination unit 3220 specifies the second abnormal pattern.
- the second abnormal pattern although both sensors of the select sensor 24 that are not related to forward / reverse switching are normal, at least some of the sensors of the shift sensor 22 related to forward / backward switching are abnormal, and the driver There is a possibility that the forward / reverse switching is performed contrary to the intention.
- the current range (current travel range) is maintained until the operation of the shift lever 270 in the select direction is detected (until the select voltage value Vse changes), and the shift lever 270
- an operation in the select direction is detected (when the select voltage value Vse changes)
- the travel range is switched to the N range, and torque reduction (for example, fuel cut) of the drive device 1 is performed.
- the third fail-safe control unit 3260 performs the third fail-safe control when the abnormal pattern determination unit 3220 specifies the third abnormal pattern.
- the third abnormal pattern at least a part of the sensors of the shift sensor 22 related to the forward / reverse switching may be abnormal, and the forward / backward switching may be performed against the driver's intention.
- the select sensor 24 since at least a part of the select sensor 24 is also abnormal, there is a possibility that an operation of the shift lever 270 in the select direction is erroneously detected.
- the connector 25 since both the shift sensor 22 and the select sensor 24 are abnormal, the connector 25 may be disconnected from the HV-ECU 30 in the first place.
- the traveling range is switched to the N range and the torque of the drive device 1 is reduced.
- 4th fail safe control part 3270 performs 4th fail safe control, when abnormal pattern judgment part 3220 specifies with the 4th abnormal pattern.
- the fourth abnormal pattern all the sensors of the shift sensor 22 related to the forward / reverse switching are normal and there is no possibility that the forward / reverse switching is performed against the driver's intention. The sensor is abnormal, and it is very likely that a shift position unintended by the driver is detected.
- the current range is maintained until the operation in the shift direction of the shift lever 270 is detected (until the shift voltage value Vsh changes), and the operation in the shift direction of the shift lever 270 is not performed.
- the travel range is switched to the N range, and the torque of the drive device 1 is reduced.
- FIG. 5 is a processing flow of the HV-ECU 30 when the above-described functions are realized by software. This process is repeatedly performed at a predetermined cycle time.
- step (hereinafter, step is described as S) 10 HV-ECU 30 determines whether or not at least some of the sensors of shift sensor 22 are abnormal. If at least some of shift sensors 22 are abnormal (YES in S10), the process proceeds to S200. If all the sensors of shift sensor 22 are normal (NO in S10), the process proceeds to S20.
- the HV-ECU 30 determines whether or not at least some of the sensors of the select sensor 24 are abnormal. If at least some sensors of select sensor 24 are abnormal (YES in S20), the process proceeds to S100. If all the sensors of select sensor 24 are normal (NO in S20), it is determined that none of the above-described first to fourth abnormal patterns is applicable, and the process proceeds to S30.
- the HV-ECU 30 executes the normal control described above. That is, the HV-ECU 30 determines the shift position based on the shift voltage value Vsha and the select voltage value Vsea, and controls the traveling range according to the determined shift position.
- the HV-ECU 30 determines whether only one of the select sensors 24 is abnormal. If only one of the select sensors 24 is abnormal (YES in S100), the HV-ECU 30 identifies the first abnormal pattern described above and corresponds to the first failsafe control described above. The process of S102 is executed. On the other hand, if all the sensors of select sensor 24 are abnormal (NO in S100), HV-ECU 30 specifies that the above-described fourth abnormal pattern is present, and S104 corresponding to the above-described fourth fail-safe control. The processes of S112 are executed.
- the HV-ECU 30 determines the shift position using the shift voltage value Vsha and the detection result of the normal sensor that is not abnormal among the select main sensor 24A and the select sub sensor 24B.
- the driving range is controlled according to the determined shift position. For example, when the select main sensor 24A is abnormal and the select sub sensor 24B is normal, the shift voltage value Vsha and the select voltage value Vshb (normally a select sub sensor for monitoring that is not used for determining the position in the select direction). 24B detection value) is used to determine the shift position.
- the HV-ECU 30 determines whether or not the current range is the P range. If the current range is the P range (YES in S104), the process proceeds to S108. If not (NO in S104), the process proceeds to S106.
- HV-ECU 30 determines whether or not shift lever 270 has been operated in the shift direction. For example, the HV-ECU 30 determines that the shift lever 270 has been operated in the shift direction when the shift voltage value Vsh changes more than a predetermined amount. If there is an operation in the shift direction of shift lever 270 (YES in S106), the process proceeds to S110. If there is no operation in the shift direction (NO in S106), the process proceeds to S108.
- HV-ECU 30 maintains the traveling range in the current range.
- HV-ECU 30 switches the travel range to the N range.
- HV-ECU 30 decreases the output torque of drive device 1.
- HV-ECU 30 determines whether or not the current range is the P range. If the current range is P range (YES in S200), the process proceeds to S208. If not (NO in S200), the process proceeds to S202.
- the HV-ECU 30 determines whether at least some of the sensors of the select sensor 24 are abnormal. If at least a part of the select sensors 24 are abnormal (YES in S202), the HV-ECU 30 identifies the third abnormal pattern as described above, and S300 corresponding to the third failsafe control described above. The process of S302 is executed. On the other hand, when all the sensors of select sensor 24 are normal (NO in S202), HV-ECU 30 specifies that the above-described second abnormality pattern is present, and S204 corresponding to the above-described second fail-safe control. The processes of S212 are executed.
- HV-ECU 30 determines whether or not shift lever 270 has been operated in the select direction. For example, the HV-ECU 30 determines that the shift lever 270 has been operated in the select direction when the select voltage value Vse changes more than a predetermined amount. If there is an operation in the select direction of shift lever 270 (YES in S204), the process proceeds to S210. If there is no operation in the select direction (NO in S204), the process proceeds to S206.
- the HV-ECU 30 determines whether or not the current range is the R range. If the current range is the R range (YES in S206), the process proceeds to S210. If not (NO in S206), the process proceeds to S208.
- HV-ECU 30 maintains the traveling range in the current range.
- HV-ECU 30 switches the travel range to the N range.
- HV-ECU 30 decreases the output torque of drive device 1.
- HV-ECU 30 switches the traveling range to the N range. In S302, HV-ECU 30 decreases the output torque of drive device 1.
- both sensors of the shift sensor 22 related to the detection of the R position are normal, and at least the position of the shift lever 270 in the shift direction is not erroneously detected. Therefore, even when the position of the shift lever 270 in the select direction is determined using the detection results of the remaining normal select sub-sensors 24B among the select sensors 24, the travel range is at least contrary to the driver's intention. There is no switching from the D range to the R range.
- the HV-ECU 30 executes the first failsafe control. That is, the HV-ECU 30 uses the shift voltage value Vsh (shift voltage value Vsha) and the select voltage value Vshb that is a detection value of the monitoring select subsensor 24B that is not normally used for determining the position in the select direction. The shift position is determined, and the traveling range is controlled according to the determined shift position, as in the normal control (S102).
- Vsh shift voltage value Vsha
- Vshb select voltage value of the monitoring select subsensor 24B that is not normally used for determining the position in the select direction.
- the shift position is determined, and the traveling range is controlled according to the determined shift position, as in the normal control (S102).
- the shift sub sensor 22B related to the detection of the R position is abnormal. Therefore, the shift voltage value Vsha cannot be monitored using the shift voltage value Vshb, and the reliability of the shift voltage value Vsha cannot be verified. Therefore, it cannot be said that there is no possibility that the driving range is switched from the D range to the R range against the driver's intention.
- the select sensor 24 since the select sensor 24 is normal, the operation of the shift lever 270 in the select direction can be accurately detected.
- the HV-ECU 30 executes the second fail-safe control. That is, the HV-ECU 30 holds the current D range until an operation in the select direction of the shift lever 270 is detected based on the select voltage value Vse (NO in S204, NO in S206, S208). .
- Vse select voltage value
- HV-ECU 30 switches the travel range to the N range and reduces the output torque of drive device 1 at the point in time when operation of shift lever 270 in the select direction is detected (YES in S204, S210, S212). .
- the driving force in the forward direction or the reverse direction generated due to erroneous detection of the shift position can be appropriately suppressed.
- some sensors of the shift sensor 22 related to the detection of the R position are abnormal and may be switched to the R range against the driver's intention. Furthermore, since some sensors of the select sensor 24 are also abnormal, it is not possible to accurately detect not only the operation of the shift lever 270 in the shift direction but also the operation in the select direction. Considering that both the shift sensor 22 and the select sensor 24 are abnormal, the connector 25 may be disconnected from the HV-ECU 30.
- the HV-ECU 30 executes the third fail-safe control. That is, the HV-ECU 30 switches the travel range to the N range and reduces the output torque of the drive device 1 when both the shift sensor 22 and the select sensor 24 are abnormal (S300, S302). As a result, the driving force in the forward direction or the reverse direction generated due to erroneous detection of the shift position can be appropriately suppressed.
- both sensors of the shift sensor 22 related to the detection of the R position are normal, and the position of the shift lever 270 in the shift direction can be accurately detected. Therefore, there is no possibility of switching to the R range against the driver's intention.
- both sensors of the select sensor 24 are abnormal, and it is very likely that a shift position not intended by the driver is detected.
- HV-ECU 30 performs the fourth failsafe control.
- HV-ECU 30 holds the current D range until an operation in the shift direction of shift lever 270 is detected based on shift voltage value Vsh (NO in S106, S108).
- Vsh shift voltage value
- HV-ECU 30 switches the travel range to the N range and detects the output torque of drive device 1 at the time when the shift lever 270 is operated in the shift direction (YES in S106, S110, S112). .
- the driving force in the forward direction or the reverse direction generated due to erroneous detection of the shift position can be appropriately suppressed.
- the abnormal pattern of the shift sensor and the select sensor is specified, and according to the specified abnormal pattern. Evacuate. As a result, it is possible to improve the convenience of retreating the vehicle while avoiding the generation of the driving force in the forward direction and the reverse direction not intended by the driver.
- HV-ECU 30 determines whether or not the current shift position is the EX position during the second fail-safe control (S260). If the current shift position is the EX position (in S260). YES), even if the shift lever 270 is not operated in the select direction (NO in S204), the travel range may be switched to the N range (S210).
- the HV-ECU 30 determines whether or not the current shift position is the EX position (S160). If the current shift position is the EX position (S160) YES), even if there is no operation in the shift direction of the shift lever 270 (NO in S106), the travel range may be switched to the N range (S110).
- the processing of S150 and S152 may be added to the processing flow shown in FIG. That is, HV-ECU 30 determines that the first condition that, for example, the battery is removed from the vehicle and the learned value of reference voltage value VC is erased when the first abnormal pattern occurs (YES in S100), and Whether or not at least one of the second conditions that the range is the P range (that is, a travel range in which the learning value of the reference voltage value VC may be deleted when the battery is removed from the vehicle) is satisfied. If it is determined (S150) and at least one of the conditions is satisfied (YES in S150), then switching of the travel range may be prohibited (S152). If it does in this way, it will be possible to run without performing erroneous learning of the reference voltage value VC.
- the reason for determining whether or not the second condition that the current range is the P range is satisfied in the process of S150 in FIG. 7 is that the above-described auto P control is adopted in the vehicle according to the present embodiment.
- the range is the P range
- the battery is removed from the vehicle when the vehicle power is off. Therefore, when the second condition is satisfied (when the current range is in the P range) This is for the purpose of prohibiting the switching of the travel range because the battery may be removed.
- the application of the right-hand drive to the vehicle has been described as an example.
- the present invention is not particularly limited thereto, and may be applied to a left-hand drive vehicle, for example.
- the shape of the shift gate is symmetrical to that of the right-hand drive vehicle shift gate 260.
- the shift position may be determined based on the map shown in FIG. 8 that is symmetrical to the map shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Transmission Device (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
Description
さらに好ましくは、所定条件は、第2検出部の検出結果が変化したという条件を含む。
たとえば、Dレンジでの前進走行中に、セレクトメインセンサ24Aに異常が生じ、他のシフトメインセンサ22A、シフトサブセンサ22B、セレクトサブセンサ24Bのいずれもが正常である場合(S10にてNO、S20にてYES、S100にてYES)を想定する。なお、この異常パターンは、上述した第1異常パターンである。
たとえば、Dレンジでの前進走行中に、シフトサブセンサ22Bに異常が生じ、他のシフトメインセンサ22A、セレクトメインセンサ24A、セレクトサブセンサ24Bのいずれもが正常である場合(S10にてYES、S200にてNO、S202にてNO)を想定する。なお、この異常パターンは、上述した第2異常パターンである。
たとえば、Dレンジでの前進走行中に、シフトサブセンサ22Bおよびセレクトサブセンサ24Bに異常が生じた場合(S10にてYES、S200にてNO、S202にてYES)を想定する。なお、この異常パターンは、上述した第3異常パターンである。
たとえば、Dレンジでの前進走行中に、セレクトメインセンサ24Aおよびセレクトサブセンサ24Bの双方に異常が生じ、シフトセンサ22の双方のセンサが正常である場合(S10にてNO、S20にてYES、S100にてNO、S104にてNO)を想定する。なお、この異常パターンは、上述した第4異常パターンである。
Claims (11)
- 駆動力源(1)の回転を変速する自動変速機(2)の出力によって走行する車両の制御装置であって、
前記車両の運転者によって操作され、前後進の切替に関連する第1方向と前後進の切替に関連しない第2方向とに移動可能に構成された可動部(270)と、
前記可動部(270)の前記第1方向の位置を検出する複数のセンサを有する第1検出部(22)と、
前記可動部(270)の前記第2方向の位置を検出する複数のセンサを有する第2検出部(24)と、
前記第1検出部(22)および前記第2検出部(24)の検出結果に基づいて前記駆動力源(1)および前記自動変速機(2)の少なくともいずれかを制御する制御ユニット(30)とを含み、
前記制御ユニット(30)は、前記第1検出部(22)の各センサおよび前記第2検出部(24)の各センサが異常であるか否かを判定し、前記第1検出部(22)の全部のセンサが正常かつ前記第2検出部(24)の一部のセンサが異常である第1異常が生じた場合、前記自動変速機(2)の出力によって前記車両を走行させることが可能な第1制御を実行し、前記第2検出部(24)の全センサが正常かつ前記第1検出部(22)の少なくとも一部のセンサが異常である第2異常が生じた場合、前記第1制御実行時よりも前記自動変速機(2)の出力を抑制しつつ前記車両を走行させることが可能な第2制御を実行する、車両の制御装置。 - 前記制御ユニット(30)は、前記第1異常が生じた場合、前記第1制御として、前記第1検出部(22)の検出結果と前記第2検出部(24)の異常なセンサを除いた残りの正常なセンサの検出結果とに基づいて前記自動変速機(2)の制御状態を切り替える制御を実行し、前記第2異常が生じた場合、前記第2制御として、所定条件が成立するまでは前記第1検出部(22)の異常検出前の前記自動変速機(2)の制御状態を保持し、前記所定条件が成立した後は前記第1制御実行時よりも前記自動変速機(2)の出力を低下させる低下制御を実行する、請求の範囲第1項に記載の車両の制御装置。
- 前記所定条件は、前記可動部(270)の操作が検出されたという条件を含む、請求の範囲第2項に記載の車両の制御装置。
- 前記所定条件は、前記第2検出部(24)の検出結果が変化したという条件を含む、請求の範囲第2項に記載の車両の制御装置。
- 前記可動部(270)は、シフトゲート(260)に沿って移動され、
前記所定条件は、前記可動部(270)の位置が前記シフトゲート(260)に対応する所定範囲に含まれない位置であることが検出されたという条件を含む、請求の範囲第2項に記載の車両の制御装置。 - 前記低下制御は、前記自動変速機(2)の制御状態を動力を遮断するニュートラル状態とする制御および前記駆動力源(1)の出力を低下させる制御の少なくともいずれかの制御を含む、請求の範囲第2項に記載の車両の制御装置。
- 前記第2検出部(24)の複数のセンサは、前記第2方向の位置を確定させるために用いられる主センサ(24A)と、前記主センサの異常を監視するために用いられる副センサ(24B)とを含み、
前記制御ユニット(30)は、前記第1制御を実行する場合、前記第2検出部(24)の前記主センサ(24A)が異常で前記副センサ(24B)が正常であるときは、前記第1検出部(22)の検出結果と前記第2検出部(24)の前記副センサ(24B)の検出結果とに基づいて前記自動変速機(2)の制御状態を切り替える、請求の範囲第1項に記載の車両の制御装置。 - 前記制御ユニット(30)は、前記可動部(270)の操作を検出できない第3異常が前記第1検出部(22)および前記第2検出部(24)に生じた場合、前記第3異常が生じた時点で、前記自動変速機(2)の制御状態を動力を遮断するニュートラル状態とする制御および前記駆動力源(1)の出力を低下させる制御の少なくともいずれかの制御を実行する、請求の範囲第1項に記載の車両の制御装置。
- 前記制御ユニット(30)は、前記第1検出部(22)の少なくとも一部のセンサが異常かつ前記第2検出部(24)の少なくとも一部のセンサが異常である場合に、前記第3異常が生じたと判断する、請求の範囲第8項に記載の車両の制御装置。
- 前記第1検出部(22)の検出結果と前記第1方向の位置との対応関係は、前記第2検出部(24)の検出結果が変化した時点の前記第1検出部(22)の検出結果に基づいて学習され、
前記制御ユニット(30)は、前記第1異常が生じた場合に、前記第1方向の位置の学習結果が消去されたときおよび前記自動変速機(2)の制御状態が前記車両の車軸をロックするパーキング状態であるときの少なくともいずれかのときは、前記自動変速機(2)の制御状態の切り替えを禁止する、請求の範囲第1項に記載の車両の制御装置。 - 前記制御ユニット(30)は、前記第1検出部(22)の全部のセンサが正常かつ前記第2検出部(24)の全部のセンサが異常である第4異常が生じた場合、前記第2検出部(24)の異常が検出されてから前記可動部(270)の操作が検出されるまで、前記第2検出部(24)の異常検出前の前記自動変速機(2)の制御状態を保持し、前記可動部(270)の操作が検出された時点で、前記自動変速機(2)の制御状態を動力を遮断するニュートラル状態とする制御および前記駆動力源(1)の出力を低下させる制御の少なくともいずれかの制御を実行する、請求の範囲第1項に記載の車両の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/053678 WO2010097936A1 (ja) | 2009-02-27 | 2009-02-27 | 車両の制御装置 |
JP2011501418A JP5152401B2 (ja) | 2009-02-27 | 2009-02-27 | 車両の制御装置 |
US13/124,981 US8914185B2 (en) | 2009-02-27 | 2009-02-27 | Vehicle control device |
EP09840789.3A EP2402199B1 (en) | 2009-02-27 | 2009-02-27 | Control device for vehicle |
CN200980153596.6A CN102271951B (zh) | 2009-02-27 | 2009-02-27 | 车辆的控制装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/053678 WO2010097936A1 (ja) | 2009-02-27 | 2009-02-27 | 車両の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010097936A1 true WO2010097936A1 (ja) | 2010-09-02 |
Family
ID=42665163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/053678 WO2010097936A1 (ja) | 2009-02-27 | 2009-02-27 | 車両の制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8914185B2 (ja) |
EP (1) | EP2402199B1 (ja) |
JP (1) | JP5152401B2 (ja) |
CN (1) | CN102271951B (ja) |
WO (1) | WO2010097936A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013041501A (ja) * | 2011-08-18 | 2013-02-28 | Hitachi Automotive Systems Ltd | 車両制御装置、車両制御システム |
JP2013194839A (ja) * | 2012-03-21 | 2013-09-30 | Aisin Aw Co Ltd | 油圧制御装置 |
DE102014210049A1 (de) | 2013-06-07 | 2014-12-11 | Suzuki Motor Corporation | System zur Bestimmung der Schaltposition |
CN105203105A (zh) * | 2015-09-30 | 2015-12-30 | 南京多伦科技股份有限公司 | 一种微惯性测量系统的汽车档位信息采集装置及采集方法 |
JP2016038002A (ja) * | 2014-08-06 | 2016-03-22 | トヨタ自動車株式会社 | 車両用シフト位置検出装置および車両用シフト制御装置 |
CN105508592A (zh) * | 2014-09-16 | 2016-04-20 | 富士重工业株式会社 | 线控换挡控制装置 |
JP2016133201A (ja) * | 2015-01-21 | 2016-07-25 | トヨタ自動車株式会社 | 車両用シフト操作装置 |
KR20180126128A (ko) * | 2017-05-16 | 2018-11-27 | 현대자동차주식회사 | 시프트 바이 와이어 시스템의 기어포지션 검출방법 |
DE102018007892A1 (de) | 2017-10-06 | 2019-04-11 | Suzuki Motor Corporation | Fahrzeugsteuervorrichtung |
EP3533682A1 (en) | 2018-01-15 | 2019-09-04 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for vehicle |
WO2022097448A1 (ja) * | 2020-11-04 | 2022-05-12 | 株式会社オートネットワーク技術研究所 | 車載ecu、プログラム及びフェールセーフ方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4978308B2 (ja) | 2007-05-25 | 2012-07-18 | トヨタ自動車株式会社 | シフト切換装置 |
WO2010079606A1 (ja) * | 2009-01-09 | 2010-07-15 | トヨタ自動車株式会社 | 車両の制御装置 |
JP5359459B2 (ja) | 2009-03-27 | 2013-12-04 | トヨタ自動車株式会社 | 車両のシフト制御装置 |
JP5660309B2 (ja) * | 2011-01-14 | 2015-01-28 | スズキ株式会社 | 車両駆動用モータ制御装置 |
JP5626374B2 (ja) * | 2011-02-14 | 2014-11-19 | トヨタ自動車株式会社 | 車両の制御装置 |
JP2014238127A (ja) * | 2013-06-07 | 2014-12-18 | スズキ株式会社 | 車両用変速機のシフト制御装置 |
JP6127151B2 (ja) * | 2013-11-06 | 2017-05-10 | 川崎重工業株式会社 | 乗物およびそれに用いる電源ユニット |
JP6187306B2 (ja) * | 2014-02-18 | 2017-08-30 | トヨタ自動車株式会社 | 車両のシフト切替制御装置 |
JP6418105B2 (ja) * | 2014-12-02 | 2018-11-07 | トヨタ自動車株式会社 | 車両用シフト装置 |
US20180274672A1 (en) * | 2015-09-25 | 2018-09-27 | Nissan Motor Co., Ltd. | Control device for continuously variable transmission and control method for continuously variable transmission |
CN107763203B (zh) * | 2016-08-15 | 2019-11-12 | 法法汽车(中国)有限公司 | 一种车辆档位信号故障的处理方法及系统 |
EP3534044B1 (en) * | 2016-12-01 | 2020-10-07 | Yamaha Hatsudoki Kabushiki Kaisha | Straddled vehicle |
JP2018096528A (ja) * | 2016-12-16 | 2018-06-21 | トヨタ自動車株式会社 | 車両のシフト制御装置 |
DE102018108572B4 (de) * | 2017-04-12 | 2023-05-04 | Toyota Jidosha Kabushiki Kaisha | Spurwechselunterstützungsvorrichtung für ein fahrzeug |
KR101964919B1 (ko) * | 2017-05-26 | 2019-08-13 | 주식회사 만도 | 주차 제어 장치 및 그 방법 |
CN107859736B (zh) * | 2017-11-02 | 2020-01-14 | 盛瑞传动股份有限公司 | 一种具有倒车保护功能的换挡控制方法 |
ES1224624Y (es) * | 2018-12-14 | 2019-04-29 | Teylor Intelligent Processes Sl | Asistente electronico de cambios de marcha |
KR102238146B1 (ko) * | 2019-12-13 | 2021-04-08 | 주식회사 현대케피코 | 전동식 변속 레버 시스템의 제어 장치 및 그 제어 방법 |
CN113374860B (zh) * | 2021-07-20 | 2022-08-23 | 潍柴动力股份有限公司 | 一种变速箱档位识别方法、装置、存储介质和设备 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61157441A (ja) | 1984-12-29 | 1986-07-17 | Isuzu Motors Ltd | 自動変速装置 |
JPH05223162A (ja) | 1992-02-12 | 1993-08-31 | Toyota Motor Corp | 自動変速機の変速操作装置 |
JP2001294056A (ja) | 2000-04-17 | 2001-10-23 | Toyota Motor Corp | シフト制御装置、その方法及びその装置を備えた移動体 |
JP2002048234A (ja) * | 2000-08-04 | 2002-02-15 | Nippon Soken Inc | 自動変速機の制御装置 |
JP2002213600A (ja) | 2001-01-19 | 2002-07-31 | Aisin Ai Co Ltd | 自動変速装置におけるフェール制御装置 |
JP2003065436A (ja) | 2001-08-29 | 2003-03-05 | Bosch Automotive Systems Corp | 変速機変速制御システムの制御方法 |
JP2003139227A (ja) * | 2001-11-02 | 2003-05-14 | Nissan Diesel Motor Co Ltd | 車両の機械式自動変速装置 |
JP2004251309A (ja) | 2003-02-18 | 2004-09-09 | Nissan Motor Co Ltd | シフトバイワイヤ式自動変速機のレンジ選択装置 |
JP2006336717A (ja) * | 2005-05-31 | 2006-12-14 | Denso Corp | 車両制御システム |
JP2007192338A (ja) * | 2006-01-20 | 2007-08-02 | Calsonic Kansei Corp | 自動変速機のセレクトアシスト装置 |
JP2008290622A (ja) * | 2007-05-25 | 2008-12-04 | Toyota Motor Corp | シフト切換装置 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69432322T2 (de) | 1993-07-29 | 2003-08-21 | Fuji Jukogyo K.K., Tokio/Tokyo | Fehlererkennungs-System und -Verfahren für ein Bremssignal eines automatischen Getriebes |
JP3523351B2 (ja) | 1994-12-27 | 2004-04-26 | ジヤトコ株式会社 | 自動変速機の制御方法およびその装置 |
JPH08303287A (ja) | 1995-05-10 | 1996-11-19 | Fujitsu Ten Ltd | 電子燃料噴射制御装置のフェールセーフモードからの復帰方法及び車両用電子燃料噴射制御装置 |
JP3283405B2 (ja) * | 1995-07-27 | 2002-05-20 | ヤマハ発動機株式会社 | エンジン駆動式船舶推進機のシフト制御方法および装置 |
JPH09136637A (ja) | 1995-11-16 | 1997-05-27 | Toyota Motor Corp | 車両制御システム |
JP3651088B2 (ja) | 1995-11-30 | 2005-05-25 | 株式会社デンソー | 内燃機関の制御装置 |
US6047679A (en) * | 1997-04-25 | 2000-04-11 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Control apparatus for an internal combustion engine |
JP4004131B2 (ja) * | 1998-02-27 | 2007-11-07 | いすゞ自動車株式会社 | オートクラッチ車両 |
JP3853527B2 (ja) * | 1998-10-29 | 2006-12-06 | 三菱電機株式会社 | 自動車用エンジンの出力制御システム |
JP3852228B2 (ja) | 1998-11-11 | 2006-11-29 | トヨタ自動車株式会社 | エンジン始動制御装置 |
JP4546601B2 (ja) * | 2000-02-21 | 2010-09-15 | 本田技研工業株式会社 | 車両用自動変速機のシフト制御装置 |
JP2001304390A (ja) | 2000-04-25 | 2001-10-31 | Mitsubishi Electric Corp | 同期噛合式自動変速機の制御装置 |
US6659911B2 (en) * | 2000-11-28 | 2003-12-09 | Yamaha Marine Kabushiki Kaisha | Shift assist system for an outboard motor |
US6655343B2 (en) * | 2001-05-08 | 2003-12-02 | Yamaha Marine Kabushiki Kaisha | Engine control system for an outboard motor |
JP3937774B2 (ja) | 2001-09-05 | 2007-06-27 | 三菱ふそうトラック・バス株式会社 | 車両の定速走行制御装置 |
JP4284905B2 (ja) | 2001-12-04 | 2009-06-24 | 日産自動車株式会社 | 無段変速機の変速制御装置 |
US6939266B2 (en) * | 2002-01-22 | 2005-09-06 | Bombardier Recreational Products Inc | Shift interrupt system |
JP2004052819A (ja) | 2002-07-16 | 2004-02-19 | Aisin Aw Co Ltd | 車輌のレンジ切替え装置 |
JP4007123B2 (ja) * | 2002-08-26 | 2007-11-14 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
DE10393280B4 (de) * | 2002-11-16 | 2016-12-08 | Schaeffler Technologies AG & Co. KG | Getriebevorrichtung und Verfahren zum Betreiben einer Getriebevorrichtung |
JP4356353B2 (ja) | 2002-12-27 | 2009-11-04 | アイシン・エィ・ダブリュ株式会社 | ポジション判断装置、ポジション判断方法及びプログラム |
JP2004293441A (ja) * | 2003-03-27 | 2004-10-21 | Nissan Diesel Motor Co Ltd | アクセルセンサ異常処理装置 |
US20040226801A1 (en) * | 2003-05-15 | 2004-11-18 | De Jonge Robert A. | Vehicle shifter |
JP4049028B2 (ja) | 2003-06-18 | 2008-02-20 | トヨタ自動車株式会社 | 変速機のシフト操作装置 |
US20050030009A1 (en) | 2003-06-24 | 2005-02-10 | Moreno Daniel J. | Discrete absolute sensor and code |
ATE540867T1 (de) * | 2004-05-28 | 2012-01-15 | Volvo Ab | Verfahren zum lenken eines schiffs mit zwei aussenbordantrieben und schiff mit zwei aussenbordantrieben |
JP2006162050A (ja) | 2004-12-10 | 2006-06-22 | Calsonic Kansei Corp | 自動変速機のセレクトアシスト装置 |
JP2006349016A (ja) | 2005-06-15 | 2006-12-28 | Honda Motor Co Ltd | シフト装置およびその制御方法 |
JP2007009946A (ja) | 2005-06-28 | 2007-01-18 | Denso Corp | 車両制御システム |
JP2007062664A (ja) | 2005-09-01 | 2007-03-15 | Tokai Rika Co Ltd | シフト装置 |
KR100726546B1 (ko) | 2005-10-05 | 2007-06-11 | 현대모비스 주식회사 | 차량용 전자식 변속 레버 구조 |
JP4301232B2 (ja) * | 2005-10-26 | 2009-07-22 | トヨタ自動車株式会社 | 自動変速機の変速制御装置 |
DE102006035482B4 (de) | 2005-12-06 | 2021-08-05 | Toyota Jidosha Kabushiki Kaisha | Schaltsteuervorrichtung und Schaltsteuerverfahren eines Fahrzeugautomatikgetriebes |
JP4341631B2 (ja) * | 2006-01-31 | 2009-10-07 | トヨタ自動車株式会社 | 車両の異常判定装置 |
JP4379448B2 (ja) * | 2006-08-03 | 2009-12-09 | トヨタ自動車株式会社 | 自動変速機の診断装置 |
JP4609418B2 (ja) | 2006-11-15 | 2011-01-12 | トヨタ自動車株式会社 | シフト切換機構の制御装置および制御方法 |
JP5057952B2 (ja) | 2007-12-06 | 2012-10-24 | アルパイン株式会社 | 角速度補正装置及びその補正方法並びにナビゲーション装置 |
JP5463620B2 (ja) * | 2008-02-26 | 2014-04-09 | 日産自動車株式会社 | 自動変速機搭載車のシフトバイワイヤ故障時制御装置 |
JP5143690B2 (ja) * | 2008-09-30 | 2013-02-13 | アイシン・エィ・ダブリュ株式会社 | 自動変速機の油圧制御装置 |
JP5359459B2 (ja) * | 2009-03-27 | 2013-12-04 | トヨタ自動車株式会社 | 車両のシフト制御装置 |
JP2011110943A (ja) * | 2009-11-24 | 2011-06-09 | Denso Corp | 車両駆動システムの制御装置 |
BR112013022489A2 (pt) * | 2011-03-03 | 2016-12-06 | Eaton Corp | sistema de controle para controlar um sistema de atuação hidráulico, método para operar um sistema de controle para um circuito hidráulico em um veículo, método para controlar um sistema de atuação hidráulico, método para configurar um controlador para um sistema hidráulico, método para reconfigurar um controlador para um sistema hidráulico e sistema de controle de atuador hidráulico |
-
2009
- 2009-02-27 EP EP09840789.3A patent/EP2402199B1/en not_active Not-in-force
- 2009-02-27 US US13/124,981 patent/US8914185B2/en active Active
- 2009-02-27 CN CN200980153596.6A patent/CN102271951B/zh active Active
- 2009-02-27 JP JP2011501418A patent/JP5152401B2/ja not_active Expired - Fee Related
- 2009-02-27 WO PCT/JP2009/053678 patent/WO2010097936A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61157441A (ja) | 1984-12-29 | 1986-07-17 | Isuzu Motors Ltd | 自動変速装置 |
JPH05223162A (ja) | 1992-02-12 | 1993-08-31 | Toyota Motor Corp | 自動変速機の変速操作装置 |
JP2001294056A (ja) | 2000-04-17 | 2001-10-23 | Toyota Motor Corp | シフト制御装置、その方法及びその装置を備えた移動体 |
JP2002048234A (ja) * | 2000-08-04 | 2002-02-15 | Nippon Soken Inc | 自動変速機の制御装置 |
JP2002213600A (ja) | 2001-01-19 | 2002-07-31 | Aisin Ai Co Ltd | 自動変速装置におけるフェール制御装置 |
JP2003065436A (ja) | 2001-08-29 | 2003-03-05 | Bosch Automotive Systems Corp | 変速機変速制御システムの制御方法 |
JP2003139227A (ja) * | 2001-11-02 | 2003-05-14 | Nissan Diesel Motor Co Ltd | 車両の機械式自動変速装置 |
JP2004251309A (ja) | 2003-02-18 | 2004-09-09 | Nissan Motor Co Ltd | シフトバイワイヤ式自動変速機のレンジ選択装置 |
JP2006336717A (ja) * | 2005-05-31 | 2006-12-14 | Denso Corp | 車両制御システム |
JP2007192338A (ja) * | 2006-01-20 | 2007-08-02 | Calsonic Kansei Corp | 自動変速機のセレクトアシスト装置 |
JP2008290622A (ja) * | 2007-05-25 | 2008-12-04 | Toyota Motor Corp | シフト切換装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2402199A4 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013041501A (ja) * | 2011-08-18 | 2013-02-28 | Hitachi Automotive Systems Ltd | 車両制御装置、車両制御システム |
JP2013194839A (ja) * | 2012-03-21 | 2013-09-30 | Aisin Aw Co Ltd | 油圧制御装置 |
DE102014210049B4 (de) * | 2013-06-07 | 2021-06-17 | Suzuki Motor Corporation | System zur Bestimmung der Schaltposition |
DE102014210049A1 (de) | 2013-06-07 | 2014-12-11 | Suzuki Motor Corporation | System zur Bestimmung der Schaltposition |
JP2014238126A (ja) * | 2013-06-07 | 2014-12-18 | スズキ株式会社 | シフト判定装置 |
JP2016038002A (ja) * | 2014-08-06 | 2016-03-22 | トヨタ自動車株式会社 | 車両用シフト位置検出装置および車両用シフト制御装置 |
CN105508592A (zh) * | 2014-09-16 | 2016-04-20 | 富士重工业株式会社 | 线控换挡控制装置 |
JP2016061320A (ja) * | 2014-09-16 | 2016-04-25 | 富士重工業株式会社 | シフトバイワイヤ制御装置 |
US9574658B2 (en) | 2014-09-16 | 2017-02-21 | Fuji Jukogyo Kabushiki Kaisha | Shift-by-wire control apparatus |
JP2016133201A (ja) * | 2015-01-21 | 2016-07-25 | トヨタ自動車株式会社 | 車両用シフト操作装置 |
CN105203105A (zh) * | 2015-09-30 | 2015-12-30 | 南京多伦科技股份有限公司 | 一种微惯性测量系统的汽车档位信息采集装置及采集方法 |
KR20180126128A (ko) * | 2017-05-16 | 2018-11-27 | 현대자동차주식회사 | 시프트 바이 와이어 시스템의 기어포지션 검출방법 |
KR102324759B1 (ko) | 2017-05-16 | 2021-11-10 | 현대자동차주식회사 | 시프트 바이 와이어 시스템의 기어포지션 검출방법 |
DE102018007892A1 (de) | 2017-10-06 | 2019-04-11 | Suzuki Motor Corporation | Fahrzeugsteuervorrichtung |
FR3072147A1 (fr) | 2017-10-06 | 2019-04-12 | Suzuki Motor Corporation | Dispositif de commande de vehicule |
EP3533682A1 (en) | 2018-01-15 | 2019-09-04 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for vehicle |
RU2706754C1 (ru) * | 2018-01-15 | 2019-11-20 | Тойота Дзидося Кабусики Кайся | Оборудование управления движением транспортного средства в аварийном режиме |
US11061400B2 (en) | 2018-01-15 | 2021-07-13 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for vehicle |
WO2022097448A1 (ja) * | 2020-11-04 | 2022-05-12 | 株式会社オートネットワーク技術研究所 | 車載ecu、プログラム及びフェールセーフ方法 |
Also Published As
Publication number | Publication date |
---|---|
US8914185B2 (en) | 2014-12-16 |
CN102271951B (zh) | 2014-12-03 |
EP2402199A4 (en) | 2012-12-26 |
EP2402199B1 (en) | 2014-07-02 |
CN102271951A (zh) | 2011-12-07 |
US20110202231A1 (en) | 2011-08-18 |
JP5152401B2 (ja) | 2013-02-27 |
JPWO2010097936A1 (ja) | 2012-08-30 |
EP2402199A1 (en) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5152401B2 (ja) | 車両の制御装置 | |
US10625604B2 (en) | Vehicle shift control device | |
JP3716837B2 (ja) | シフトバイワイヤ式自動変速機のレンジ選択装置 | |
JP4978308B2 (ja) | シフト切換装置 | |
US10378646B2 (en) | Shift control system for vehicle and shift control method for vehicle | |
JP2009058085A (ja) | シフト制御装置 | |
EP3260740B1 (en) | Control system for vehicle | |
CN103354880B (zh) | 车辆的控制装置 | |
CN103348164A (zh) | 车辆的控制装置 | |
JP5040467B2 (ja) | 自動変速機の制御装置及び制御方法 | |
RU2729868C1 (ru) | Устройство управления транспортного средства | |
JP5939220B2 (ja) | シフトレバー位置判定装置 | |
JP4978611B2 (ja) | 変速機の制御装置および制御方法 | |
JP2010060125A (ja) | 変速機の制御装置および制御方法 | |
KR101091622B1 (ko) | 자동차용 변속기의 레버포지션 통신 방법 및 장치 | |
US12025217B2 (en) | Control apparatus for vehicle | |
JP5109839B2 (ja) | 変速機の制御装置および制御方法 | |
KR20190027001A (ko) | 차량용 변속기의 고장진단방법 | |
JPH0650423A (ja) | 車両用自動変速機の制御装置 | |
KR20140080031A (ko) | 차량용 변속기 제어 장치 | |
KR20110061198A (ko) | 차량의 쉬프트 락 제어시스템 | |
JP2008008351A (ja) | 自動変速装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980153596.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09840789 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13124981 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009840789 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011501418 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |