WO2010073688A1 - 電子血圧計および血圧測定方法 - Google Patents

電子血圧計および血圧測定方法 Download PDF

Info

Publication number
WO2010073688A1
WO2010073688A1 PCT/JP2009/007226 JP2009007226W WO2010073688A1 WO 2010073688 A1 WO2010073688 A1 WO 2010073688A1 JP 2009007226 W JP2009007226 W JP 2009007226W WO 2010073688 A1 WO2010073688 A1 WO 2010073688A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
cuff
measurement
pressure
information
Prior art date
Application number
PCT/JP2009/007226
Other languages
English (en)
French (fr)
Inventor
澤野井幸哉
上坂知里
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to JP2010543900A priority Critical patent/JP5195922B2/ja
Priority to CN200980152933XA priority patent/CN102264287A/zh
Priority to RU2011131057/14A priority patent/RU2521349C2/ru
Priority to DE112009003801.8T priority patent/DE112009003801T5/de
Publication of WO2010073688A1 publication Critical patent/WO2010073688A1/ja
Priority to US13/167,536 priority patent/US20110257540A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • G01G19/50Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons having additional measuring devices, e.g. for height
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/14Devices for determining tare weight or for cancelling out the tare by zeroising, e.g. mechanically operated
    • G01G23/16Devices for determining tare weight or for cancelling out the tare by zeroising, e.g. mechanically operated electrically or magnetically operated

Definitions

  • the present invention relates to an electronic sphygmomanometer including a cuff attached to a blood pressure measurement site, a blood pressure calculation means for calculating a blood pressure value by the cuff pressure, and a blood pressure measurement method using the same.
  • Blood pressure is one of the indicators for analyzing cardiovascular diseases. Performing risk analysis based on blood pressure is effective in preventing cardiovascular diseases such as stroke, heart failure and myocardial infarction. Diagnosis for performing this risk analysis has been conventionally performed based on blood pressure (at any time) measured at a medical institution such as during a hospital visit or during a health examination. However, recent studies have shown that blood pressure measured at home (home blood pressure) is more useful for diagnosis of cardiovascular disease than blood pressure at any time. Accordingly, blood pressure monitors used at home have become widespread.
  • oscillometric blood pressure calculation algorithm Most of the electronic sphygmomanometers that are currently popular use an oscillometric blood pressure calculation algorithm.
  • a cuff is wound around a measurement site such as the upper arm, and after pressurizing to a predetermined pressure, the pressure is gradually or stepwise reduced.
  • This oscillometric method detects a change in arterial volume that occurs during decompression as a pressure change (pressure pulse wave amplitude) superimposed on the cuff pressure, and applies a predetermined algorithm to the change in pressure pulse wave amplitude.
  • This is a method for determining systolic blood pressure and diastolic blood pressure.
  • the first and second constants ( ⁇ , ⁇ ) for determining the blood pressure calculation parameter are empirically based on a large number of blood pressure values and pressure pulse wave amplitude change patterns (hereinafter referred to as “envelopes”). I had to make a statistical decision.
  • envelopes blood pressure values and pressure pulse wave amplitude change patterns
  • the pressure pulse wave amplitude forming the envelope has the following problems.
  • the pressure pulse wave amplitude is obtained by detecting a change in the volume of the artery transmitted to the cuff attached to the measurement site as a pressure change. Therefore, the pressure pulse wave amplitude is affected by the cuff characteristics.
  • cuff compliance air flow rate
  • cuff pressure air flow rate necessary for changing the pressure in the cuff
  • the cuff compliance decreases as the cuff pressure increases. Therefore, when a constant pulse wave amplitude is given to this cuff without depending on the cuff pressure, the amplitude is detected as the cuff pressure increases, as shown in FIG.
  • the pressure pulse wave amplitude detected by the sphygmomanometer according to the blood pressure that is, the envelope curve The shape is different. For this reason, the measurement accuracy may differ depending on the blood pressure.
  • the [Equation 1] is changed as shown in [Equation 2] below. That is, the offset correction value (third constant ⁇ ) indicating the background pulse wave component is added to the value obtained by multiplying the maximum value of the pressure pulse wave amplitude by a predetermined ratio (first constant ⁇ ).
  • the systolic blood pressure calculation parameter is calculated, and further, the value obtained by multiplying the maximum value of the pressure pulse wave amplitude by a predetermined ratio (second constant ⁇ ) is set to the value of the background pulse wave.
  • the diastolic blood pressure calculation parameter is calculated by adding an offset correction value (fourth constant ⁇ ) indicating the component.
  • Equation 2 is the state of the user at the time of blood pressure measurement and / or the state of the cuff 2101 such as the background pulse wave is the user attribute (peripheral length of the arm A / blood pressure), the size of the cuff 2101 and the cuff pressure. It is based on the premise that it is constant without depending on.
  • the background pulse wave changes depending on the various states during blood pressure measurement. For example, when the cuff pressure is increased, the width in which the artery B is occluded becomes wider as shown in FIG. Accordingly, the width of the generation of the background pulse wave is narrowed because the artery B is not closed, and the level of the background pulse wave detected as a result is reduced as shown in the graph of FIG.
  • the pressure pulse wave amplitude changes depending on the mechanical characteristics of the user's artery B (arterial volume change due to intra-arterial pressure difference). For example, a person with a soft artery B has a large amplitude, whereas a person with advanced arteriosclerosis has a small amplitude (see FIG. 14). Therefore, the background pulse wave also changes depending on the mechanical characteristics.
  • the blood pressure is determined to be too small or excessive by the user.
  • the present invention measures a constant when a predetermined calculation is performed using a preset constant with respect to a change in pressure pulse wave amplitude indicating a change in arterial volume during blood pressure measurement.
  • An object of the present invention is to provide an electronic sphygmomanometer and a blood pressure measurement method that accurately acquire a blood pressure value using acquired data by performing correction based on related information, and to improve user satisfaction.
  • the present invention relates to a cuff attached to a blood pressure measurement site, pressurizing / depressurizing means for adjusting the pressure applied to the cuff, pressure detecting means for detecting the pressure in the cuff, and blood pressure calculating means for calculating a blood pressure value by the cuff pressure
  • An electronic sphygmomanometer including a recording means for recording a blood pressure value and an operation means for performing an operation such as blood pressure measurement, wherein the blood pressure calculation means is a pressure pulse wave indicating a change in volume of the artery during blood pressure measurement.
  • the blood pressure calculation parameter is calculated by executing a predetermined calculation using a preset constant with respect to the change in the amplitude, and the measurement related to the state of the user at the time of blood pressure measurement and / or the state of the cuff.
  • An information acquisition unit that separately acquires state-related information; and when the measurement state-related information is acquired by the information acquisition unit, the constant is corrected based on the measurement state-related information.
  • the calculated parameter is an electronic sphygmomanometer and a correcting means for correcting the.
  • the measurement state related information related to the user state includes information related to the blood pressure value of the user at the time of measurement, the maximum value of the pressure pulse wave amplitude, information related to the measurement site, information on the disease of the user, use Can be composed of the age information of the person.
  • the measurement state related information related to the state of the cuff can be constituted by information on the maximum value of the cuff pressure at the time of blood pressure measurement, cuff winding strength, and cuff specification information such as the size and type of the cuff.
  • the present invention it is possible to set an optimal blood pressure calculation parameter for each state of the user at the time of blood pressure measurement and / or the state of the cuff, thereby reducing measurement errors.
  • the blood pressure calculation means calculates the systolic blood pressure calculation parameter based on a predetermined calculation by multiplying the maximum value of the pressure pulse wave amplitude by a first constant, and sets the maximum value of the pressure pulse wave amplitude.
  • the diastolic blood pressure calculation parameter is calculated based on a predetermined calculation for multiplying the second constant, and the information acquisition means temporarily determines the blood pressure value as the measurement state related information related to the user's state.
  • the correction means is an electronic sphygmomanometer that is configured to correct the first and second constants based on the temporarily determined blood pressure value.
  • the provisionally determined blood pressure value can be provisionally determined during decompression using standard blood pressure calculation parameters.
  • the provisionally determined blood pressure value can be provisionally determined during pressurization using standard blood pressure calculation parameters.
  • the temporarily determined blood pressure value can be a blood pressure value recorded in the recording means. According to the present invention, it is possible to set an optimal blood pressure calculation parameter for each blood pressure value of the user and reduce measurement errors.
  • the present invention provides a back-up that occurs when the blood pressure calculation means multiplies the maximum value of the pressure pulse wave amplitude by a first constant and pressurizes the pressure in the cuff to a predetermined pressure outside the blood pressure value measurement range.
  • the systolic blood pressure calculation parameter is calculated based on a predetermined calculation for adding the third constant related to the ground pulse wave component, the maximum value of the pressure pulse wave amplitude is multiplied by the second constant, and the background pulse
  • a systolic blood pressure calculation parameter is calculated based on a predetermined operation for adding a fourth constant related to a wave component, and the correction means is configured to calculate the third and fourth constants based on the measurement state related information. It is an electronic sphygmomanometer that is configured to correct the above.
  • the third and fourth constants related to the background pulse wave component can be corrected for each user state and / or cuff state at the time of blood pressure measurement.
  • An accurate blood pressure value can be calculated while suppressing the influence of the error caused by the component.
  • this invention is the structure in which the said information acquisition means acquires the information of the blood pressure value provisionally determined as the said measurement state relevant information relevant to a user's state,
  • the said correction means is the said blood pressure value temporarily determined. Based on the above, the third and fourth constants can be corrected.
  • the present invention is a configuration in which the information acquisition unit acquires information on a maximum value of cuff pressure as the measurement state related information, and the correction unit is configured to perform the third and third operations based on the maximum value of the cuff pressure.
  • a configuration in which four constants are corrected can be adopted.
  • the present invention is configured such that the information acquisition unit acquires information on a maximum value of a pressure pulse wave amplitude as the measurement state related information related to a user's state, and the correction unit includes the pressure pulse wave
  • the third and fourth constants may be corrected based on the maximum amplitude value.
  • the present invention is configured such that the information acquisition means acquires information on the winding strength of the cuff as the measurement state related information, and the correction means is configured to acquire the information based on the information on the winding strength of the cuff. 3. It can be configured to correct the fourth constant.
  • the present invention is a configuration in which the information acquisition means acquires cuff specification information related to the size or / and type of the cuff as the measurement state related information, and the correction means is based on the cuff specification information.
  • the third and fourth constants can be corrected.
  • the present invention is a configuration in which the information acquisition unit acquires information related to a measurement site of a user as the measurement state related information, and the correction unit is based on information related to the measurement site of the user.
  • the third and fourth constants can be corrected.
  • the information related to the measurement site of the user can be composed of information such as the circumference and quality of the measurement site.
  • the quality of the measurement site can be body fat percentage, subcutaneous fat percentage, or BMI.
  • the information acquisition unit acquires user's disease information as the measurement state-related information, and the correction unit calculates the third and fourth constants based on the user's disease information. It can be set as the structure corrected.
  • the information acquisition unit acquires user age information as the measurement state related information, and the correction unit calculates the third and fourth constants based on the user age information. It can be set as the structure corrected.
  • the present invention can be configured such that the information acquisition means acquires the measurement state related information based on detection of a change in the internal pressure of the cuff.
  • the present invention includes an input unit that allows a user to input the measurement state related information, and the information acquisition unit acquires the measurement state related information input before the blood pressure measurement is started. Can do.
  • the pressure applied to the cuff when the cuff is attached to the blood pressure measurement site is adjusted by the pressurizing / depressurizing means, and the blood pressure value is calculated by the blood pressure calculating means based on the cuff pressure detected by the pressure detecting means.
  • a blood pressure measurement method wherein the blood pressure calculation means calculates a blood pressure by executing a predetermined calculation using a preset constant for a maximum value of a pressure pulse wave amplitude indicating a change in volume of an artery during blood pressure measurement.
  • the blood pressure calculation parameter is corrected by correcting the constant based on the measurement state related information. It can be a blood pressure measuring method having the step of correcting.
  • the present invention it is possible to set an optimal blood pressure calculation parameter for each state of the user during blood pressure measurement and / or the state of the cuff, and to execute processing for reducing measurement error.
  • the step of calculating the blood pressure calculation parameter by the blood pressure calculation means calculates the systolic blood pressure calculation parameter based on a predetermined calculation by multiplying the maximum value of the pressure pulse wave amplitude by a first constant
  • the step of calculating a diastolic blood pressure calculation parameter based on a predetermined calculation for multiplying the maximum value of the pressure pulse wave amplitude by a second constant and correcting by the correction means includes measurement state related information related to the state of the user As a result, information on the temporarily determined blood pressure value can be acquired by the information acquisition means, and the first and second constants can be corrected based on the temporarily determined blood pressure value.
  • the step of calculating the blood pressure calculation parameter by the blood pressure calculation means multiplies the maximum value of the pressure pulse wave amplitude by a first constant, and sets a third constant related to the background pulse wave component.
  • the systolic blood pressure calculation parameter is calculated based on a predetermined calculation to be added, the second constant is multiplied by the maximum value of the pressure pulse wave amplitude, and the fourth constant related to the background pulse wave component is added.
  • the step of calculating the diastolic blood pressure calculation parameter based on the predetermined calculation and correcting by the correction means can correct the third and fourth constants based on the measurement state related information.
  • the third and fourth constants related to the background pulse wave component are corrected for each state of the user at the time of blood pressure measurement and / or the cuff state, resulting from the background pulse wave component.
  • a process of calculating an accurate blood pressure value while suppressing the influence of the error can be executed.
  • the present invention it is possible to provide an electronic sphygmomanometer and a blood pressure measurement method that accurately acquire a blood pressure value using acquired data, and to improve user satisfaction.
  • FIG. 1 is a block diagram showing a configuration of an electronic sphygmomanometer according to Embodiment 1.
  • FIG. 3 is a flowchart showing a blood pressure measurement operation in the first embodiment.
  • the table which shows the ratio for the blood pressure calculation parameter determination for every standard and temporary mean blood pressure values.
  • 6 is a flowchart illustrating another example of the blood pressure measurement operation according to the first embodiment.
  • 6 is a flowchart illustrating another example of the blood pressure measurement operation according to the first embodiment.
  • 9 is a flowchart showing blood pressure measurement operation in the second embodiment.
  • FIG. 1 It is a figure which shows a state when the artery of a user's arm is compressed with the cuff, and is a figure for demonstrating the relationship between a background pulse wave and a blood pressure value.
  • an electronic sphygmomanometer 2100 includes a cuff 2101, an air tube 2102, a pressure sensor 2103, a pump 2104, a valve 2105, an oscillation circuit 2111, a pump drive circuit 2112, a valve drive circuit 2113, and a time measuring unit. 2115, a power source 2116, a CPU 2120, a display unit 2121, a memory (for processing) 2122, a memory (for recording) 2123, an operation unit 2130, an interface 2171, and an external memory 2172.
  • FIG. 1 is a block diagram illustrating a configuration of the electronic blood pressure monitor 2100 according to the first embodiment.
  • the cuff 2101 is a belt-like member that is connected to the air tube 2102 and is attached to the blood pressure measurement site of the user in order to pressurize by air pressure.
  • the pressure sensor 2103 is a capacitance type pressure sensor, and the capacitance value changes according to the pressure in the cuff (cuff pressure).
  • the pump 2104 and the valve 2105 apply pressure to the cuff and adjust (control) the pressure in the cuff.
  • the oscillation circuit 2111 outputs a signal having a frequency corresponding to the capacitance value of the pressure sensor 2103.
  • the pump drive circuit 2112 and the valve drive circuit 2113 drive the pump 2104 and the valve 2105, respectively.
  • the clock unit 2115 is a device that clocks the current date and time, and transmits the clocked date and time to the CPU 2120 as necessary.
  • the power source 2116 supplies power to each component.
  • the CPU 2120 executes control of the pump 2104, valve 2105, display unit 2121, memories 2122 and 2123, operation unit 2130, interface 2171, blood pressure determination processing, and management of recorded values.
  • the display unit 2121 is configured by a display device such as a liquid crystal screen, and displays a blood pressure value according to a signal sent from the CPU 2120.
  • the memory (for processing) 2122 stores a ratio for determining blood pressure calculation parameters (described later) and a blood pressure monitor control program.
  • the memory (for recording) 2123 stores the blood pressure value, and stores the date / time / user / measured value in association with each other as necessary.
  • the operation unit 2130 includes a power switch 2131, a measurement switch 2132, a stop switch 2133, a recording call switch 2141, and a user selection switch 2142, and allows operation inputs such as power ON / OFF of the sphygmomanometer and start of measurement.
  • the received input signal is sent to the CPU 2120.
  • the interface 2171 executes recording / reading of the blood pressure value with respect to the external memory 2172 according to the control of the CPU 2120.
  • FIG. 2 is a flowchart showing the blood pressure measurement operation in the first embodiment.
  • Step S2101 when the power is turned on by operating the power switch 2131 (power SW) (step S2101), the CPU 2120 executes initialization processing of the working memory of the sphygmomanometer and performs 0 mmg adjustment of the pressure sensor 2103 ( Step S2102).
  • the cuff 2101 is wound around the measurement site of the user, the user is selected (step S2103), and when the measurement switch 2132 (measurement SW) is pressed (step S2104), the CPU 2120 displays the pump 2104. After increasing the cuff pressure to a predetermined pressure (steps S2105 to S2106), the cuff pressure is gradually reduced by the valve 2105 (step S2107).
  • the CPU 2120 extracts a pressure change component accompanying the arterial volume change superimposed on the cuff pressure obtained during the decompression, and calculates a temporary blood pressure value by a predetermined calculation (step S2108). After calculating the temporary blood pressure value (step S2109), the CPU 2120 opens the valve 2105 and exhausts the air in the cuff. The CPU 2120 optimizes the blood pressure calculation parameter from the calculated provisional blood pressure value (step S2110), and calculates the blood pressure value using the optimized blood pressure calculation parameter (step S2111). The CPU 2120 displays the calculated blood pressure value on the display unit 2121 (step S2112), and records it in the memory (for recording) 2123 in association with the measurement date / time (step S2113).
  • step S2105 The process from step S2105 to step S2111 will be described in detail with a focus on the above-described blood pressure calculation parameter optimization process (step S2110).
  • the memory (for processing) 2122 As shown in the table of FIG. 3, ratios ⁇ and ⁇ for determining blood pressure calculation parameters (systolic blood pressure calculation parameters, diastolic blood pressure calculation parameters) for each standard and provisional blood pressure value are recorded. Keep it.
  • FIG. 3 is a table showing ratios ( ⁇ , ⁇ ) for determining blood pressure calculation parameters classified according to the standard and provisional average blood pressure values.
  • the CPU 2120 that executes step S2108 in FIG. 2 multiplies the maximum value of the pressure pulse wave amplitude by the ratio ⁇ , ⁇ (first and second constants) for determining the standard blood pressure calculation parameter, A temporary diastolic blood pressure calculation parameter is calculated, thereby calculating a temporary blood pressure value (temporary diastolic blood pressure, temporary systolic blood pressure).
  • the ratio ⁇ (first constant) for determining the temporary systolic blood pressure calculation parameter is 0.5 (50%)
  • the ratio ⁇ (second constant) for determining the temporary diastolic blood pressure calculation parameter is 0.7 (70). %).
  • the CPU 2120 calculates a temporary average blood pressure value by the following equation.
  • Temporary mean blood pressure temporary diastolic blood pressure + (temporary systolic blood pressure ⁇ temporary diastolic blood pressure) / 3
  • the CPU 2120 that executes Steps S2109 to S2110 determines the ratios ⁇ and ⁇ for determining the blood pressure calculation parameter corresponding to the provisional average blood pressure value based on FIG. 3, and sets the ratios ⁇ and ⁇ to the maximum value of the pressure pulse wave amplitude. Is calculated as an optimized blood pressure calculation parameter, and the blood pressure calculation is performed again using the optimized blood pressure calculation parameter in step S2111.
  • the provisional average blood pressure value is divided into a plurality of (for example, three) categories according to a predetermined range, and the ratio ⁇ for determining the systolic blood pressure calculation parameter and the diastolic blood pressure calculation parameter determining parameter for each category.
  • the ratio ⁇ is set in advance.
  • the ratio ⁇ is 55%, which is the largest in the category of less than 100 mmHg, and decreases as the provisional mean blood pressure value increases. For example, in the segment of 150 mmHg or more, it is the smallest 45%.
  • the ratio ⁇ is the smallest in the section of less than 100 mmHg, which is 60%, and increases as the provisional average blood pressure value increases.
  • the maximum is 80%.
  • the ratios ⁇ and ⁇ are classified based on the provisional mean blood pressure value, but the classification is performed based on either the provisional systolic blood pressure value or the provisional diastolic blood pressure value, or two or more provisional blood pressure values. May be. Furthermore, you may classify
  • the blood pressure calculation parameter may be calculated by the following formula using any one of the temporary systolic blood pressure, the temporary diastolic blood pressure, the temporary average blood pressure, and the cuff pressure that is the maximum value of the pulse wave amplitude.
  • Systolic blood pressure calculation parameter P_SBP ⁇ ⁇ P 2 + ⁇ ⁇ P + ⁇
  • Diastolic blood pressure calculation parameter P_DBP ⁇ ⁇ P 2 + ⁇ ⁇ P + ⁇
  • P represents one of temporary systolic blood pressure, temporary diastolic blood pressure, temporary average blood pressure, and cuff pressure at which the pulse wave amplitude is maximum, and ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ are cuff compliances.
  • the predetermined coefficient determined from the above is shown.
  • FIG. 4 is a flowchart illustrating an example of the blood pressure measurement operation in the first embodiment.
  • the calculation in the CPU 2120 is mainly different, the hardware configuration of the electronic sphygmomanometer 2100 is substantially the same as that of the above-described embodiment. Will be described.
  • step S2121 when the power switch 2131 of the sphygmomanometer is pressed (step S2121), the CPU 2120 initializes the work memory of the sphygmomanometer and performs 0 mmHg adjustment of the pressure sensor 2103 (step S2122).
  • step S2123 when a user who measures blood pressure is selected (step S2123) and the measurement switch 2132 is pressed (step S2124), the CPU 2120 gradually increases the cuff pressure by the pump 2104 (step S2125).
  • the CPU 2120 extracts a pressure change component accompanying the arterial volume change superimposed on the cuff pressure obtained during pressurization, and calculates a temporary blood pressure value by a predetermined calculation (step S2126).
  • step S2127 After pressurizing to a predetermined pressure (step S2127), the CPU 2120 optimizes the blood pressure calculation parameter based on the temporary blood pressure value calculated during pressurization (step S2128).
  • the CPU 2120 gradually reduces the cuff pressure using the valve 2105 (step S2129).
  • the CPU 2120 extracts a pressure change component accompanying the arterial volume change superimposed on the cuff pressure obtained during decompression, and calculates a blood pressure value by a predetermined calculation using the optimized blood pressure calculation parameter (step S2130). .
  • the CPU 2120 opens the valve 2105 and exhausts the air in the cuff.
  • the CPU 2120 displays the calculated blood pressure value on the display unit 2121 (step S2132) and records it in the memory (for recording) 2123 in association with the measurement date / time (step S2133).
  • the blood pressure calculation parameter optimization process here is the same process as described above, and is therefore omitted.
  • FIG. 5 is a flowchart illustrating an example of the blood pressure measurement operation according to the first embodiment.
  • step S2141 When the power switch 2131 of the sphygmomanometer is pressed (step S2141), the CPU 2120 initializes the working memory of the sphygmomanometer and performs 0 mmHg adjustment of the pressure sensor 2103 (step S2142).
  • step S2143 when a user who measures blood pressure is selected (step S2143) and the measurement switch 2132 is pressed (step S2144), the CPU 2120 stores the latest recorded value of the selected user in the memory (for recording) 2123. (Step S2145), and the blood pressure calculation parameter is optimized based on the recorded value (step S2146).
  • the CPU 2120 gradually increases the cuff pressure by the pump 2104 (step S2147). After pressurizing to a predetermined pressure (step S2148), the CPU 2120 gradually reduces the cuff pressure by the valve 2105 (step S2149).
  • the CPU 2120 extracts a pressure change component accompanying the arterial volume change superimposed on the cuff pressure obtained during decompression, and calculates a blood pressure value by a predetermined calculation using the optimized blood pressure calculation parameter (step S2150). .
  • the CPU 2120 opens the valve 2105 and exhausts the air in the cuff.
  • the CPU 2120 displays the calculated blood pressure value on the display unit 2121 (step S2152) and records it in the memory (for recording) 2123 in association with the measurement date / time (step S2153).
  • the blood pressure calculation parameter optimization process here is the same process as described above, and is therefore omitted.
  • the recorded value used for optimizing the blood pressure calculation parameter may be an average value or a representative value of the two or more latest recorded values. Furthermore, the recorded value may be a value recorded in an external recording medium (external memory 2172 such as a USB memory), a personal computer, a server via the Internet, or the like.
  • an external recording medium external memory 2172 such as a USB memory
  • the biometric information acquisition means for measuring the blood pressure value the recording means (memory 2123) for recording the blood pressure value, and the means (memory 2122) for storing the ratio for determining the blood pressure calculation parameter and the control program for the sphygmomanometer.
  • An operation unit (operation unit 2130) for performing an operation such as blood pressure measurement, and a blood pressure value acquired by the biological information acquisition unit are related to the state of the user at the time of blood pressure measurement and / or the state of the cuff 2101.
  • a correction means (CPU 2120) for correcting based on the measurement state related information, and an output means (display unit 2121) for outputting the corrected information (blood pressure value) after the correction are provided.
  • Cuff 2101 to be attached to the part pressurizing / depressurizing means 2104 and 2105 for adjusting the pressure applied to cuff 2101, and pressure for detecting the pressure in the cuff
  • An electronic sphygmomanometer 2100 provided with an output means (pressure sensor 2103) and a blood pressure calculation means (CPU 2120) for calculating a blood pressure value by cuff pressure, wherein the blood pressure calculation means (CPU 2120) changes the volume of the artery during blood pressure measurement.
  • the blood pressure calculation parameter is calculated based on a predetermined calculation in which a ratio ⁇ as a first constant and a ratio ⁇ as a second constant are multiplied with a maximum value (change) of the pressure pulse wave amplitude indicating Yes, it comprises information acquisition means (CPU 2120 for executing steps S2108, S2126, S2145) for acquiring information on the blood pressure value provisionally determined as the measurement state related information of the user, and the correction means (steps S2110, S2128, S2146).
  • CPU 2120 executes the correction by correcting the ratios ⁇ and ⁇ based on the temporarily determined blood pressure value.
  • the pressure correction parameter is corrected.
  • FIG. 6 is a flowchart illustrating an example of a blood pressure measurement operation according to the second embodiment.
  • step S2161 when the power switch 2131 of the sphygmomanometer is pressed (step S2161), the CPU 2120 initializes the work memory of the sphygmomanometer and performs 0 mmHg adjustment of the pressure sensor 2103 (step S2162).
  • step S2163 when a user who measures blood pressure is selected (step S2163) and the measurement switch 2132 is pressed (step S2164), the CPU 2120 gradually increases the cuff pressure by the pump 2104 (steps S2165 to S2165). S2166), the cuff pressure is gradually reduced by the valve 2105 (step S2167).
  • the CPU 2120 extracts a pressure change component accompanying the arterial volume change superimposed on the cuff pressure obtained during the decompression, and performs a temporary systolic blood pressure value and a temporary diastolic blood pressure value by a predetermined calculation shown in [Formula 5] below. Is calculated (step S2168).
  • T_AmpSys maximum pressure pulse wave amplitude ⁇ ⁇ + ⁇ tsys
  • T_AmpDia pressure pulse wave amplitude maximum value ⁇ ⁇ + ⁇ tdia
  • T_AmpSys in [Formula 5] is a temporary systolic blood pressure calculation parameter
  • T_AmpDia is a temporary diastolic blood pressure calculation parameter.
  • ⁇ tsys and ⁇ tdia are offset correction values (third and fourth constants) related to the background pulse wave component generated when the pressure in the cuff 2101 is increased to a predetermined pressure outside the blood pressure value measurement range. Is a value determined in advance by experiment.
  • the CPU 2120 determines the cuff pressure at the point where T_AmpSys calculated in step S2168 intersects the envelope shown in FIG. 9 as the temporary systolic blood pressure value, and the point where T_AmpDia calculated in step S2168 intersects the envelope shown in FIG.
  • the cuff pressure is determined as the temporary diastolic blood pressure value.
  • the CPU 2120 determines, based on the temporary systolic blood pressure value and the temporary diastolic blood pressure value determined in step S2168, the offset correction value ⁇ (third constant) and offset related to the background pulse wave component in [Formula 5].
  • the correction value ⁇ (fourth constant) is corrected.
  • the offset correction value is corrected by a predetermined calculation shown in the following [Equation 6] (step S2169).
  • the CPU 2120 performs the systolic blood pressure calculation parameter and the diastolic blood pressure calculation parameter by the predetermined calculation shown in the following [Expression 7] in which ⁇ and ⁇ corrected in Step S2169 are replaced with ⁇ tsys and ⁇ tdia of [Expression 5]. Is calculated and optimized (step S2170).
  • the CPU 2120 calculates the cuff pressure at the point where the systolic blood pressure calculation parameter and the diastolic blood pressure calculation parameter calculated in step S2170 intersect with the envelope.
  • the systolic blood pressure value and the diastolic blood pressure value are determined (step S2171).
  • the CPU 2120 displays the calculated blood pressure value on the display unit 2121 (step S2172) and records it in the memory (for recording) 2123 in association with the measurement date / time (step S2173).
  • the biological information acquisition means for measuring the blood pressure value the recording means (memory 2123) for recording the blood pressure value, the means for storing the control program for the sphygmomanometer (memory 2122), and operations such as blood pressure measurement And a correction means (CPU 2120) for correcting the blood pressure value based on a background pulse wave component generated when the pressure in the cuff 2101 is increased to a predetermined pressure outside the blood pressure value measurement range.
  • And output means (display unit 2121) for outputting the corrected information (blood pressure value) after the correction, and as the biological information acquisition means, a cuff 2101 to be attached to the blood pressure measurement site, and a pressure applied to the cuff 2101
  • the pressure / pressure reduction means 2104 and 2105 for adjusting the pressure, the pressure detection means (pressure sensor 2103) for detecting the pressure in the cuff, and the blood pressure value is calculated by the cuff pressure.
  • An electronic sphygmomanometer 2100 provided with a pressure calculating means (CPU 2120), which is preset with respect to the maximum value (change) of the pressure pulse wave amplitude indicating the change in the volume of the artery during blood pressure measurement.
  • the systolic blood pressure calculation parameter is calculated based on a predetermined calculation of multiplying the ratio ⁇ as the first constant and adding the offset correction value ⁇ as the third constant related to the background pulse wave component.
  • the maximum value (change) of the pressure pulse wave amplitude is multiplied by a preset ratio ⁇ as the second constant, and an offset correction value ⁇ as the fourth constant related to the background pulse wave component is added.
  • the diastolic blood pressure calculation parameter is calculated based on a predetermined calculation, and temporary systolic blood is used as measurement state related information related to the user's state at the time of blood pressure measurement.
  • the information acquisition means (CPU 2120 that executes step S2168) for acquiring information on the pressure value and the temporary diastolic blood pressure value is provided, and the correction means (CPU 2120 that executes step S2169) includes the temporary systolic blood pressure value and the temporary diastolic period.
  • the blood pressure calculation parameter is corrected by correcting the blood pressure value offset correction values ⁇ and ⁇ based on the blood pressure value information.
  • the offset correction values ⁇ and ⁇ related to the background pulse wave component can be corrected for each state of the user at the time of blood pressure measurement (in this embodiment, the user's blood pressure value). An effect is obtained that an accurate blood pressure value can be calculated while suppressing the influence of an error caused by the background pulse wave component.
  • the offset correction value (the third and fourth constants) is determined by multiplying the temporary systolic blood pressure value and the temporary diastolic blood pressure value by a predetermined ratio, but the memory 2123 of the electronic sphygmomanometer 2100 is determined in advance.
  • An offset correction value determination (third and fourth constant determination) table corresponding to the temporary systolic blood pressure value and the temporary diastolic blood pressure value is stored in the table, and the offset correction value (third and fourth) is stored from the table. Constant) may be read.
  • a reduced pressure measurement method there is a method of determining the blood pressure value during the cuff pressure reduction (hereinafter referred to as a reduced pressure measurement method).
  • a reduced pressure measurement method after the cuff pressure is increased to a pressure higher than a predetermined pressure, the pressure is gradually reduced. The point at which the pulse wave amplitude suddenly increases is determined as the systolic blood pressure value, the cuff pressure is gradually reduced, and the point at which the pressure pulse wave rapidly decreases is determined as the diastolic blood pressure value.
  • a pressurization measurement method for determining a blood pressure value during pressurization of the cuff 2101.
  • the cuff pressure is gradually increased, and the pressure pulse in the process.
  • the point at which the wave amplitude suddenly increases is determined as the diastolic blood pressure value
  • the cuff pressure is gradually increased, and the point at which the pressure pulse wave rapidly decreases is determined as the systolic blood pressure value.
  • the cuff pressure is increased to a pressure higher than the measurement range by a predetermined pressure (for example, 30 mmHg).
  • the pressure value is defined as the cuff pressure maximum value Pcmax.
  • pressure is increased until pressure pulse wave amplitude information necessary for determining a systolic blood pressure value is detected while gradually increasing the cuff pressure. After the systolic blood pressure value is determined, pressurization is stopped and the cuff pressure is rapidly reduced by the valve 2105.
  • the cuff pressure immediately before the start of the pressure reduction is defined as the maximum cuff pressure value Pcmax.
  • the CPU 2120 corrects the offset correction values ⁇ and ⁇ indicating the background pulse wave components by the predetermined calculation shown in the following [Equation 8].
  • the offset correction values ⁇ and ⁇ are corrected using the offset correction values ⁇ tsys and ⁇ tdia shown in [Equation 5].
  • ⁇ and ⁇ in [Equation 8] are values determined in advance by experiments.
  • the offset correction values ⁇ and ⁇ corrected in [Formula 8] are applied to [Formula 7] as in the embodiment shown in FIG.
  • the blood pressure value is determined by calculating and optimizing the calculation parameters.
  • a table for offset correction value determination in which the offset correction value and Pcmax are associated with each other is recorded in the memory 2123 of the electronic sphygmomanometer 2100 in advance.
  • the offset correction values may be read from the table.
  • the offset correction value is corrected based on the maximum value of the pressure pulse wave amplitude
  • the cuff pressure at the point where the pressure pulse wave amplitude becomes maximum (AmpMax) in the envelope shown in FIG. 9 is defined as Pcamp.
  • the CPU 2120 corrects the offset correction values ⁇ and ⁇ indicating the background pulse wave components by a predetermined calculation shown in the following [Equation 9].
  • ⁇ and ⁇ in [Equation 9] are values determined in advance by experiments.
  • the blood pressure calculation parameter optimization process here is the same process as described above, and is therefore omitted.
  • an offset correction value determination (third and fourth constant determination) table in which the offset correction value and Pcamp are associated with each other is recorded in the memory 2123 of the electronic sphygmomanometer 2100 in advance.
  • the offset correction value may be read from the table.
  • the cuff pressure at the point where the pressure pulse wave amplitude becomes maximum (AmpMax) is caused by the difference in the maximum value of the pressure pulse wave amplitude.
  • An accurate blood pressure value can be calculated while suppressing the influence of the error.
  • the offset correction value is corrected based on the winding strength of the cuff 2101
  • the electronic sphygmomanometer 2100 compared to a state where the cuff 2101 is appropriately wound around the measurement site such as the arm A (see FIG. 12) without a gap, in a state where there is a gap between the measurement site and the cuff 2101, In order to apply the same pressure to the measurement site, it is necessary to cause a large amount of air to flow into the air bag in the cuff 2101.
  • the pressure pulse wave amplitude detects the volume change of the cuff 2101 caused by the volume change of the artery B (see FIG. 12) as the pressure change, the pressure pulse wave amplitude is the volume of the same artery. Even if it is a change, it changes depending on the air volume in the cuff 2101, and the pressure pulse wave amplitude decreases as the air volume increases. Therefore, the background pulse wave component also changes depending on the winding strength of the cuff 2101.
  • the CPU 2120 calculates a systolic blood pressure calculation parameter and a diastolic blood pressure calculation parameter by a predetermined calculation shown in the following [Equation 10] in which correction based on the winding method of the cuff 2101 is added to the above [Equation 7].
  • the offset correction value ⁇ is multiplied by a predetermined ratio ⁇ to correct it, and the predetermined ratio ⁇ is multiplied by the offset correction value ⁇ to correct it.
  • Systolic blood pressure calculation parameter pressure pulse wave amplitude maximum value ⁇ ⁇ + ⁇ ⁇ ⁇
  • Diastolic blood pressure calculation parameter pressure pulse wave amplitude maximum value ⁇ ⁇ + ⁇ ⁇ ⁇
  • ⁇ and ⁇ in the [Equation 10] are values determined in advance by experiments. A method in which these values are recorded in advance in the memory 2123 of the electronic sphygmomanometer 2100 and read from the table for offset correction value determination (third and fourth constant determination) associated with the winding strength of the cuff 2101 You just have to decide.
  • the winding strength of the cuff 2101 is determined by adding the cuff 2101 using a known technique as described in JP-A-62-84738, JP-B-5-62538, and Japanese Patent No. 4134234. What is necessary is just to detect by the ratio of the cuff pressure change at the time of pressing.
  • the offset correction value is corrected based on the specification (size) of the cuff 2101
  • the longer the perimeter of the measurement site the greater the attenuation of pressure transmission to the artery B. Therefore, in order to perform accurate blood pressure measurement, it is necessary to select a cuff 2101 having an appropriate size depending on the circumference of the measurement site. That is, it is necessary to increase the width (the direction perpendicular to the circumferential direction of the measurement site) and the length (the circumferential direction of the measurement site) of the cuff 2101 as the peripheral length of the measurement site is longer.
  • the width and length of the cuff suitable for the circumference of the measurement site are recommended and recommended by the WHO (World Health Organization).
  • the size (width / length) of the cuff 2101 becomes longer, and accordingly, the size of the air bag in the cuff 2101 also becomes larger. Therefore, as described above, when the size of the cuff 2101 is increased, the detected pressure pulse wave amplitude is also reduced, so that the background pulse wave component is also reduced (see FIG. 7).
  • the CPU 2120 calculates the systolic blood pressure calculation parameter and the diastolic blood pressure calculation parameter by the predetermined calculation shown in the following [Equation 11] obtained by adding correction based on the size of the cuff 2101 to the above [Equation 7]. Optimize this. That is, in the present embodiment, the offset correction value ⁇ is multiplied by a predetermined ratio ⁇ to correct it, and the predetermined ratio ⁇ is multiplied by the offset correction value ⁇ to correct it.
  • Systolic blood pressure calculation parameter pressure pulse wave amplitude maximum value ⁇ ⁇ + ⁇ ⁇ ⁇
  • Diastolic blood pressure calculation parameter pressure pulse wave amplitude maximum value ⁇ ⁇ + ⁇ ⁇ ⁇
  • ⁇ and ⁇ in [Equation 11] are values determined in advance by experiments. These values are obtained by recording an offset correction value determination (third and fourth constant determination) table associated with the size of the cuff 2101 in advance in the memory 2123 of the electronic sphygmomanometer 2100 and reading from the table. Just decide.
  • the size of the cuff 2101 may be input before measurement by providing a switch in an input unit such as the operation unit 2130, or may be input to the cuff 2101 of the electronic sphygmomanometer 2100 main body.
  • a sensor for detecting the size 2101 may be provided to automatically detect the size.
  • the amount of air that flows into the cuff 2101 before reaching a predetermined cuff pressure increases, and the elapsed time also increases. Therefore, the time until the predetermined cuff pressure is reached may be measured based on the change in the cuff pressure in one blood pressure measurement, and the size of the cuff 2101 may be detected based on this time.
  • the various information can be acquired with a simple configuration without separately providing an input unit or a sensor for inputting various information necessary for calculating the blood pressure value such as the size of the cuff 2101.
  • the cuff 2101 includes a cuff having a single air bag structure such as a balloon in the cuff 2101 and a cuff having a gusset structure on the side surface of the air bag as described in Japanese Patent No. 3747917.
  • the latter has a larger volume of air that flows into the air bag in order to reach a predetermined internal pressure.
  • the softer the material of the air bag in the cuff 2101 the larger the volume of air that flows into the air bag so that the cuff 2101 reaches a predetermined internal pressure.
  • the size of the cuff 2101 used for measurement increases as the circumference of the measurement site increases. Therefore, based on the change of the background pulse wave component depending on the size of the cuff 2101 as shown in FIG. You may make it correct
  • the softer the quality of the measurement site the greater the swelling of the air bag in the cuff 2101.
  • a state similar to a state in which there is a gap between the measurement site and the cuff 2101 is obtained, and the pressure pulse amplitude is reduced. Therefore, correction may be performed according to the quality of the measurement site.
  • an accurate blood pressure value can be calculated while suppressing the influence of an error caused by the difference in the inflation of the air bag of the cuff 2101.
  • the peripheral length or quality of the measurement site may be input from an input unit such as the operation unit 2130, or until a predetermined cuff pressure is reached based on a change in cuff pressure in one blood pressure measurement. Time may be measured and detected based on this time.
  • the measurement site quality input can be replaced by, for example, BMI (Body Mass Index) or body fat percentage. For example, when the BMI is large or the body fat percentage is large, it can be determined that the measurement site has a lot of fat and the quality of the measurement site is considered to be soft and can be corrected. .
  • the information related to the measurement site can be obtained with a simple configuration without separately providing an input unit or a sensor for inputting various information related to the measurement site.
  • FIG. 14 is a graph showing an example of mechanical characteristics of an artery, and arterial elasticity is one of the factors that determine the mechanical characteristics of the artery as shown in FIG.
  • the elasticity of arteries depends on age and disease (especially arteriosclerosis), and the elasticity of arteries becomes harder as the population ages and the disease progresses.
  • the arterial elasticity becomes stiff, the artery is not easily closed even when the cuff 2101 is compressed. Therefore, a background pulse wave exists until the cuff pressure becomes higher than that of a person with soft arterial elasticity.
  • the input unit such as the operation unit 2130 allows the input of age and disease information, and the CPU 2120 adds correction based on the input age and disease information to the above [Equation 7].
  • the systolic blood pressure calculation parameter and the diastolic blood pressure calculation parameter are calculated and optimized by the predetermined calculation shown in FIG. In other words, in this embodiment, the offset correction value ⁇ is multiplied by a predetermined ratio ⁇ to correct it, and the predetermined ratio ⁇ is multiplied by the offset correction value ⁇ to correct it.
  • Systolic blood pressure calculation parameter pressure pulse wave amplitude maximum value ⁇ ⁇ + ⁇ ⁇ ⁇
  • Diastolic blood pressure calculation parameter pressure pulse wave amplitude maximum value ⁇ ⁇ + ⁇ ⁇ ⁇
  • ⁇ and ⁇ in the above [Equation 12] are values determined in advance by experiments. These values may be determined by a method in which an offset correction value determination table associated with age and disease information is recorded in advance in the memory 2123 of the electronic sphygmomanometer 2100 and is read from the table.
  • age and disease information may be input from the operation unit 2130 at the start of measurement.
  • the user and age or disease information may be associated with each other and recorded in the memory 2123 in advance, and may be read from the memory 2123 by selecting the user from the operation unit 2130 at the start of measurement.
  • age and disease information may be recorded on a medium such as the external memory 2172, and the information may be read at the start of measurement.
  • the time to reach a predetermined cuff pressure is measured based on the change in the cuff pressure in one blood pressure measurement, and the elasticity of the user's artery B is detected based on this time.
  • Disease information in this case, information on arteriosclerosis
  • the present invention is not limited to the configuration of the above-described embodiment, and many embodiments can be obtained.
  • the electronic sphygmomanometer 2100 may be configured such that functions can be expanded by downloading appropriate parameters, threshold values, algorithms, and the like from a dedicated server. In this case, it is possible to easily upgrade the software without changing the hardware or to optimize the software for the user.
  • the function expansion of the electronic sphygmomanometer 2100 may be executed from a user terminal such as a personal computer owned by the user without using the server.
  • the configuration may be such that parameters, threshold values, algorithms, etc. are downloaded from a recording medium such as a CD-ROM.
  • the electronic blood pressure monitor 2100 may be connected to other biological information acquisition devices such as a body composition meter, a pedometer, and an electronic thermometer so as to be able to communicate directly or wirelessly. Also in this case, it is possible to improve the individual accuracy by transmitting / receiving data to / from each other.
  • the present invention can be used for an electronic sphygmomanometer that employs an oscillometric method using a cuff.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Distances Traversed On The Ground (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

血圧測定時における動脈の容積変化を示す圧脈波振幅の変化に対し、予め設定した定数を用いて所定の演算を実行することにより血圧算出パラメータを算出する血圧算出手段を備え、血圧測定時における利用者の状態又は/及び前記カフの状態に関連する測定状態関連情報を別途取得する情報取得手段と、該情報取得手段により前記測定状態関連情報を取得した場合、前記定数を前記測定状態関連情報に基づいて補正することにより、血圧算出パラメータを補正する補正手段とを備えた電子血圧計。

Description

電子血圧計および血圧測定方法
 この発明は、血圧測定部位に装着するカフと、カフ圧により血圧値を算出する血圧算出手段を備えた電子血圧計、およびこれを用いた血圧測定方法に関する。
 血圧は、循環器系疾患を解析する指標の一つである。血圧に基づいてリスク解析を行うことは、たとえば脳卒中や心不全や心筋梗塞などの心血管系の疾患の予防に有効である。このリスク解析を行うための診断は、従来、通院時や健康診断時などの医療機関で測定される血圧(随時血圧)により行われていた。しかし、近年の研究により、家庭で測定する血圧(家庭血圧)が随時血圧より循環器系疾患の診断に有用であることが判明してきた。それに伴い、家庭で使用する血圧計が普及している。
 現在普及している電子血圧計は、そのほとんどがオシロメトリック方式の血圧算出アルゴリズムを用いている。オシロメトリック方式は、上腕などの測定部位にカフを巻き、所定圧まで加圧したあと、徐々に、あるいは、段階的に減圧していく。このオシロメトリック方式は、その減圧途中に発生する動脈容積変化をカフ圧に重畳する圧変化(圧脈波振幅)として検出し、その圧脈波振幅の変化に対し、所定のアルゴリズムを適用して収縮期血圧・拡張期血圧を決定する方式である。一般的に、減圧中に得られる圧脈波振幅が急に大きくなった点が収縮期血圧、逆に急に小さくなった点が拡張期血圧に近似している。そこで、この点を検出するために様々なアルゴリズムが検討されてきた。
 例えば、図9、及び、下記[数1]に示すように、圧脈波振幅の最大値に予め設定された所定の比率(第1定数α、第2定数β)を乗じて得られた値を血圧算出パラメータとし、そのパラメータと合致(あるいはもっとも近い)する圧脈波振幅が得られるカフ圧を血圧値として算出するものが提案されている(下記特許文献1参照)。 
    [数1] 
  収縮期血圧算出パラメータ=圧脈波振幅最大値×α 
  拡張期血圧算出パラメータ=圧脈波振幅最大値×β
特公平3-81375号公報
 しかし、この圧脈波振幅が急変するところが収縮期血圧、拡張期血圧と一致するという理論的根拠は存在しない。このため、上記血圧算出パラメータを決定する第1、第2定数(α、β)は、多数の血圧値および圧脈波振幅の変化パターン(以下、「包絡線」という。)に基づき経験的あるいは統計的に決定せざるを得なかった。ここで、従来においては、血圧測定時における利用者の状態又は/及び前記カフの状態に関わらず、第1定数αは約0.5程度、第2定数βは約0.7程度の固定値とされていた。
 一方、包絡線を形成する圧脈波振幅について、次のような課題がある。 
 まず、圧脈波振幅は、測定部位に装着したカフに伝達される動脈の容積変化を圧力変化として検出したものである。そのため、圧脈波振幅は、カフの特性に影響を受けることになる。カフの特性の一つとして、図10のグラフに示すように、カフ内の圧力(以下カフ圧)を1mmHg変化させるために必要な空気流量(以下、カフコンプライアンス)がある。図10に示すように、カフ圧が高くなるにつれ、カフコンプライアンスは小さくなる。そのため、このカフに、カフ圧に依存せず一定の脈波振幅を与えると、図11に示すように、その振幅はカフ圧が高くなるにつれ大きく検出されることになる。
 したがって、例えば同一の包絡線形状となるような圧脈波振幅の変化をもった血圧の異なる2人の利用者を測定した場合、血圧によって血圧計が検出する圧脈波振幅、すなわち、包絡線形状が異なる。このため、血圧によってその測定精度に差が出ることがあった。
 次に、図12を参照しながら、利用者の腕Aの動脈Bをカフ2101によって圧迫した時の状態を説明する。カフ圧を血圧測定範囲の所定圧以上に加圧したとき、図12に示すように、カフ2101の中央部はその圧力が十分に動脈Bに伝達され、動脈Bは完全に圧閉されている。
 しかしながら、カフ2101の端部はその圧力が十分に動脈Bに伝達されないため、動脈Bは完全には圧閉されないことになる。これは、カフ2101の構造に依存するもので、一般に使用されているカフ構造では、必ず動脈Bが圧閉されない部分が生じる。カフ2101の心臓側にあたるこの圧閉されない部分では、血流が存在するため、動脈Bの容積変化が発生し、それによる圧脈波が検出されることになる。前記特許文献1では、この圧脈波をバックグラウンド脈波と称している。このバックグラウンド脈波が存在するため、前記[数1]では収縮期血圧を過大に、拡張期血圧を過小に検出することになる。
 そこで、前記特許文献1に開示された従来技術では、前記[数1]を下記[数2]に示すように変更している。つまり、圧脈波振幅の最大値に予め設定された所定の比率(第1定数α)を乗じて得られた値にバックグラウンド脈波の成分を示すオフセット補正値(第3定数ζ)を加算することにより、収縮期血圧算出パラメータを算出し、さらには、圧脈波振幅の最大値に予め設定された所定の比率(第2定数β)を乗じて得られた値にバックグラウンド脈波の成分を示すオフセット補正値(第4定数η)を加算することにより、拡張期血圧算出パラメータを算出している。
    [数2] 
  収縮期血圧算出パラメータ=圧脈波振幅最大値×α+ζ 
  拡張期血圧算出パラメータ=圧脈波振幅最大値×β+η 
 前記[数2]は、バックグラウンド脈波が利用者の属性(腕Aの周囲長・血圧)やカフ2101のサイズ、カフ圧など、血圧測定時における利用者の状態又は/及びカフ2101の状態に依存せず一定であるとの前提に基づいている。
 しかしながら、バックグラウンド脈波は血圧測定時における前記各種状態によって変化することが判明してきた。例えば、カフ圧を上昇していくと、図12に示すように動脈Bが圧閉される幅が広くなる。これに伴い、動脈Bが圧閉されないことによってバックグラウンド脈波が発生する幅が狭くなり、図13に示すグラフのように、結果として検出されるバックグラウンド脈波のレベルは小さくなる。
 また、圧脈波振幅は利用者の動脈Bの力学的特性(動脈内外圧差に伴う動脈容積変化)に依存して変化する。例えば、動脈Bが柔らかい人はその振幅が大きく、逆に動脈硬化が進行した人ではその振幅が小さくなる(図14参照)。したがって、前記力学的特性に依存してバックグラウンド脈波も変化する。
 このことより、バックグラウンド脈波の成分を一定として定義された前記[数2]により収縮期血圧・拡張期血圧を決定すると、利用者によって過小または過大に血圧を決定されることになる。
 この発明は、上述の問題に鑑み、血圧測定時における動脈の容積変化を示す圧脈波振幅の変化に対し、予め設定した定数を用いて所定の演算を実行する際に、該定数を測定状態関連情報に基づいて補正することにより、取得済みのデータを利用して精度よく血圧値を取得する電子血圧計および血圧測定方法を提供し、利用者の満足度を向上させることを目的とする。
 この発明は、血圧測定部位に装着するカフと、カフに加える圧力を調整する加圧・減圧手段と、カフ内の圧力を検出する圧力検出手段と、カフ圧により血圧値を算出する血圧算出手段を備え、血圧値を記録する記録手段と、血圧測定などの操作を行う操作手段を備えた電子血圧計であって、前記血圧算出手段は、血圧測定時における動脈の容積変化を示す圧脈波振幅の変化に対し、予め設定した定数を用いて所定の演算を実行することにより血圧算出パラメータを算出する構成であり、血圧測定時における利用者の状態又は/及び前記カフの状態に関連する測定状態関連情報を別途取得する情報取得手段と、該情報取得手段により前記測定状態関連情報を取得した場合、前記定数を前記測定状態関連情報に基づいて補正することにより、血圧算出パラメータを補正する補正手段とを備えた電子血圧計であることを特徴とする。
 前記利用者の状態に関連する前記測定状態関連情報は、測定時における利用者の血圧値に関連する情報、圧脈波振幅の最大値、測定部位に関連する情報、利用者の疾病情報、利用者の年齢情報で構成することができる。 
 前記カフの状態に関連する前記測定状態関連情報は、血圧測定時におけるカフ圧の最大値の情報、カフの巻付け強度の他、カフのサイズ、種類といったカフ仕様情報で構成することができる。
 この発明により、血圧測定時における利用者の状態又は/及び前記カフの状態ごとに最適な血圧算出パラメータを設定し、測定誤差を低減できる。
 またこの発明は、前記血圧算出手段が、圧脈波振幅の最大値に対し第1定数を乗算する所定の演算に基づいて収縮期血圧算出パラメータを算出するととともに、圧脈波振幅の最大値に対し第2定数を乗算する所定の演算に基づいて拡張期血圧算出パラメータを算出する構成であり、前記情報取得手段は、利用者の状態に関連する前記測定状態関連情報として、仮決定した血圧値の情報を取得する構成であり、前記補正手段は、前記仮決定した血圧値に基づいて前記第1、第2定数を補正する構成である電子血圧計であることを特徴とする。
 前記仮決定した血圧値は、標準の血圧算出パラメータにより減圧中に仮決定することができる。 
 前記仮決定した血圧値は、標準の血圧算出パラメータにより加圧中に仮決定することができる。 
 前記仮決定した血圧値は、前記記録手段に記録されている血圧値とすることができる。 
 この発明により、利用者の血圧値ごとに最適な血圧算出パラメータを設定し、測定誤差を低減できる。
 またこの発明は、前記血圧算出手段が、圧脈波振幅の最大値に対し第1定数を乗算し、かつ前記カフ内の圧力を血圧値測定範囲外の所定圧に加圧した時に発生するバックグラウンド脈波の成分に関連する第3定数を加算する所定の演算に基づいて収縮期血圧算出パラメータを算出するととともに、圧脈波振幅の最大値に第2定数を乗算し、かつ前記バックグラウンド脈波の成分に関連する第4定数を加算する所定の演算に基づいて収縮期血圧算出パラメータを算出する構成であり、前記補正手段は、前記測定状態関連情報に基づいて前記第3、第4定数を補正する構成である電子血圧計であることを特徴とする。
 この発明により、バックグラウンド脈波の成分に関連する第3、第4定数を、血圧測定時における利用者の状態又は/及び前記カフの状態ごとに補正することができ、これによりバックグラウンド脈波の成分に起因する誤差の影響を抑制して正確な血圧値を算出できる。
 またこの発明は、前記情報取得手段が、利用者の状態に関連する前記測定状態関連情報として、仮決定した血圧値の情報を取得する構成であり、前記補正手段は、前記仮決定した血圧値に基づいて前記第3、第4定数を補正する構成とすることができる。
 またこの発明は、前記情報取得手段が、前記測定状態関連情報としてカフ圧の最大値の情報を取得する構成であり、前記補正手段は、前記カフ圧の最大値に基づいて前記第3、第4定数を補正する構成とすることができる。
 またこの発明は、前記情報取得手段が、利用者の状態に関連する前記測定状態関連情報として、圧脈波振幅の最大値の情報を取得する構成であり、前記補正手段は、前記圧脈波振幅の最大値に基づいて前記第3、第4定数を補正する構成とすることができる。
 またこの発明は、前記情報取得手段が、前記測定状態関連情報として前記カフの巻付け強度の情報を取得する構成であり、前記補正手段は、前記カフの巻付け強度の情報に基づいて前記第3、第4定数を補正する構成とすることができる。
 またこの発明は、前記情報取得手段が、前記測定状態関連情報として前記カフのサイズ又は/及び種類に関連するカフ仕様情報を取得する構成であり、前記補正手段は、前記カフ仕様情報に基づいて前記第3、第4定数を補正する構成とすることができる。
 またこの発明は、前記情報取得手段が、前記測定状態関連情報として利用者の測定部位に関連する情報を取得する構成であり、前記補正手段は、利用者の測定部位に関連する情報に基づいて前記第3、第4定数を補正する構成とすることができる。
 前記利用者の測定部位に関連する情報は、測定部位の周囲長、質といった情報で構成することができる。
 前記測定部位の質は体脂肪率、皮下脂肪率、又は、BMIとすることができる。
 またこの発明は、前記情報取得手段が、前記測定状態関連情報として利用者の疾病情報を取得する構成であり、前記補正手段は、利用者の疾病情報に基づいて前記第3、第4定数を補正する構成とすることができる。
 またこの発明は、前記情報取得手段が、前記測定状態関連情報として利用者の年齢情報を取得する構成であり、前記補正手段は、利用者の年齢情報に基づいて前記第3、第4定数を補正する構成とすることができる。
 またこの発明は、前記情報取得手段が、前記のカフの内圧の変化の検出に基づいて前記測定状態関連情報を取得する構成とすることができる。
 またこの発明は、利用者による前記測定状態関連情報の入力を許容する入力手段を備え、前記情報取得手段は、前記血圧測定開始前に入力された前記測定状態関連情報を取得する構成とすることができる。
 またこの発明は、カフを血圧測定部位に装着した時に前記カフに加える圧力を加圧・減圧手段により調整し、圧力検出手段により検出したカフ圧に基づいて、血圧算出手段により血圧値を算出する血圧測定方法であって、前記血圧算出手段において、血圧測定時における動脈の容積変化を示す圧脈波振幅の最大値に対し、予め設定した定数を用いて所定の演算を実行することにより血圧算出パラメータを算出するステップを有するとともに、血圧測定時における利用者の状態又は/及び前記カフの状態に関連する測定状態関連情報を情報取得手段により別途取得し、前記測定状態関連情報を前記情報取得手段により取得した場合、補正手段において前記定数を前記測定状態関連情報に基づいて補正することにより、前記血圧算出パラメータを補正するステップを有する血圧測定方法とすることができる。
 この発明により、血圧測定時における利用者の状態又は/及び前記カフの状態ごとに最適な血圧算出パラメータを設定し、測定誤差を低減する処理を実行することができる。
 またこの発明は、前記血圧算出手段により血圧算出パラメータを算出するステップが、圧脈波振幅の最大値に対し第1定数を乗算する所定の演算に基づいて収縮期血圧算出パラメータを算出するとともに、圧脈波振幅の最大値に第2定数を乗算する所定の演算に基づいて拡張期血圧算出パラメータを算出し、前記補正手段により補正するステップは、前記利用者の状態に関連する測定状態関連情報として、仮決定した血圧値の情報を情報取得手段により取得し、前記仮決定した血圧値に基づいて前記第1、第2定数を補正することができる。
 この発明により、利用者の血圧値ごとに最適な血圧算出パラメータを設定し、測定誤差を低減する処理を実行することができる。
 またこの発明は、前記血圧算出手段により血圧算出パラメータを算出するステップが、圧脈波振幅の最大値に対し第1定数を乗算し、かつ前記バックグラウンド脈波の成分に関連する第3定数を加算する所定の演算に基づいて収縮期血圧算出パラメータを算出するとともに、圧脈波振幅の最大値に対し第2定数を乗算し、かつ前記バックグラウンド脈波の成分に関連する第4定数を加算する所定の演算に基づいて拡張期血圧算出パラメータを算出し、前記補正手段により補正するステップは、前記測定状態関連情報に基づいて前記第3、第4定数を補正することができる。
 この発明により、バックグラウンド脈波の成分に関連する第3、第4定数を、血圧測定時における利用者の状態又は/及び前記カフの状態ごとに補正し、バックグラウンド脈波の成分に起因する誤差の影響を抑制して正確な血圧値を算出する処理を実行することができる。
 この発明により、取得済みのデータを利用して精度よく血圧値を取得する電子血圧計および血圧測定方法を提供し、利用者の満足度を向上させることができる。
実施例1の電子血圧計の構成を示すブロック図。 実施例1における血圧測定動作を示すフローチャート。 標準及び仮平均血圧値ごとの血圧算出パラメータ決定用の比率を示すテーブル。 実施例1における血圧測定動作の別の例を示すフローチャート。 実施例1における血圧測定動作の別の例を示すフローチャート。 実施例2における血圧測定動作を示すフローチャート。 利用者の腕の動脈をカフによって圧迫した時の状態を示す図であり、バックグラウンド脈波と利用者の測定部位の周囲長との関係を説明するための図。 利用者の腕の動脈をカフによって圧迫した時の状態を示す図であり、バックグラウンド脈波とカフのサイズとの関係を説明するための図。 オシロトリック方式血圧計の血圧算出アルゴリズム例を説明するグラフ。 カフの特性(カフコンプライアンス)例を示すグラフ。 一定の脈波振幅を入力したとき血圧計が検出する圧脈波振幅例を示すグラフ。 利用者の腕の動脈をカフによって圧迫した時の状態を示す図であり、バックグラウンド脈波と血圧値との関係を説明するための図。 バックグラウンド脈波振幅の特性を示すグラフ。 動脈の力学的特性例を示すグラフ。
 以下、この発明の一実施形態を図面と共に説明する。 
 先ず、血圧算出パラメータを利用者の血圧値毎に最適化する実施例1について説明する。 
 実施例1の電子血圧計2100は、図1に示すように、カフ2101、エア管2102、圧力センサ2103、ポンプ2104、弁2105、発振回路2111、ポンプ駆動回路2112、弁駆動回路2113、計時部2115、電源2116、CPU2120、表示部2121、メモリ(処理用)2122、メモリ(記録用)2123、操作部2130、インターフェイス2171、外部メモリ2172を備えている。 
 なお、図1は、実施例1の電子血圧計2100の構成を示すブロック図である。
 カフ2101は、エア管2102に接続され、空気圧により加圧するために利用者の血圧測定部位に装着される帯状の部材である。
 圧力センサ2103は、静電容量型の圧力センサであり、カフ内の圧力(カフ圧)に応じて容量値が変化する。
 ポンプ2104、及び、弁2105は、カフ内に圧力を付与するとともにカフ内の圧力を調節(制御)する。 
 発振回路2111は、圧力センサ2103の容量値に応じた周波数の信号を出力する。 
 ポンプ駆動回路2112、及び、弁駆動回路2113は、それぞれポンプ2104、弁2105を駆動する。
 計時部2115は、現在日時を計時する装置であり、必要に応じて計時した日時をCPU2120へ送信する。 
 電源2116は、各構成部に電力供給を行なう。
 CPU2120は、ポンプ2104、弁2105、表示部2121、メモリ2122,2123、操作部2130、インターフェイス2171の制御と血圧決定処理と記録値の管理を実行する。
 表示部2121は、液晶画面などの表示装置によって構成され、CPU2120から送られる信号に従って血圧値を表示する。
 メモリ(処理用)2122は、血圧算出パラメータ決定用の比率(後述)や血圧計の制御プログラムを格納する。
 メモリ(記録用)2123は、血圧値を記憶し、必要に応じて日時・利用者・測定値を関連付けて記憶する。
 操作部2130は、電源スイッチ2131、測定スイッチ2132、停止スイッチ2133、記録呼び出しスイッチ2141、利用者選択スイッチ2142から構成され、血圧計の電源ON/OFF・測定開始などの操作入力を許容し、入力された入力信号をCPU2120へ送る。 
 インターフェイス2171は、CPU2120の制御に従って外部メモリ2172に対し血圧値を記録/読み出しを実行する。
 このように構成された電子血圧計2100を用いた血圧測定動作について、図2のフローチャートに従い説明する。 
 なお、図2は、実施例1における血圧測定動作を示すフローチャートである。
 まず、電源スイッチ2131(電源SW)の操作により電源がONの状態になると(ステップS2101)、CPU2120は、血圧計の作業用メモリの初期化処理を実行し、圧力センサ2103の0mmg調整を行なう(ステップS2102)。
 初期化処理が終了すると、利用者の測定部位にカフ2101を巻き付け、利用者を選択し(ステップS2103)、測定スイッチ2132(測定SW)が押下されると(ステップS2104)、CPU2120は、ポンプ2104によりカフ圧を所定の圧力まで加圧したあと(ステップS2105~ステップS2106)、弁2105により徐々にカフ圧を減圧していく(ステップS2107)。
 CPU2120は、この減圧中に得られるカフ圧に重畳した動脈の容積変化に伴う圧変化成分を抽出し、所定の演算により仮血圧値を算出する(ステップS2108)。仮血圧値を算出した後(ステップS2109)、CPU2120は、弁2105を開放し、カフ内の空気を排気する。CPU2120は、算出した仮血圧値より血圧算出パラメータを最適化し(ステップS2110)、最適化された血圧算出パラメータを用いて血圧値を算出する(ステップS2111)。CPU2120は、算出した血圧値を表示部2121に表示するとともに(ステップS2112)、測定日時・利用者と関連づけてメモリ(記録用)2123に記録する(ステップS2113)。
 上述した血圧算出パラメータの最適化処理(ステップS2110)を中心にステップS2105からステップS2111までの処理について詳述する。 
 メモリ(処理用)2122には、図3のテーブルに示すように、標準および仮血圧値ごとの血圧算出パラメータ(収縮期血圧算出パラメータ、拡張期血圧算出パラメータ)決定用の比率α、βを記録しておく。 
 なお、図3は、標準および仮平均血圧値に応じて分類した血圧算出パラメータ決定用の比率(α、β)を示すテーブルである。
 図2中のステップS2108を実行するCPU2120は、圧脈波振幅の最大値に標準の血圧算出パラメータ決定用の比率α、β(第1、第2定数)を乗じて仮収縮期血圧算出パラメータ及び仮拡張期血圧算出パラメータを算出し、これによって仮血圧値(仮拡張期血圧、仮収縮期血圧)を算出する。ここでは、仮収縮期血圧算出パラメータ決定用の比率α(第1定数)を0.5(50%)、仮拡張期血圧算出パラメータ決定用の比率β(第2定数)を0.7(70%)に設定する。このようにして、仮収縮期血圧算出パラメータ及び仮拡張期血圧算出パラメータを算出すると、CPU2120は、次式で仮平均血圧値を算出する。 
    [数3] 
  仮平均血圧値=仮拡張期血圧+(仮収縮期血圧-仮拡張期血圧)/3 
 ステップS2109~S2110を実行するCPU2120は、図3をもとに仮平均血圧値に該当する血圧算出パラメータ決定用の比率α、βを決定し、圧脈波振幅の最大値に前記比率α、βを乗じて得た血圧算出パラメータを、最適化された血圧算出パラメータとして決定し、ステップS2111では、最適化された血圧算出パラメータを使用して再度血圧算出を行う。
 本実施例では、仮平均血圧値を所定範囲別に複数(例えば3つ)の区分に分けており、各区分毎に収縮期血圧算出パラメータ決定用の比率α、及び拡張期血圧算出パラメータ決定用の比率βが事前に設定されている。
 前記比率αは、100mmHg未満の区分が最も大きく55%であり、その仮平均血圧値が大きくなるに従って小さくなっている。例えば、150mmHg以上の区分においては、最も小さい45%になっている。
 一方、前記比率βは、逆に100mmHg未満の区分の区分が最も小さく60%であり、その仮平均血圧値が大きくなるに従って大きくなっている。例えば、150mmHg以上の区分においては、最も大きい80%になっている。
 上述では、仮平均血圧値に基づいて前記比率α、βを分類したが、仮収縮期血圧値や仮拡張期血圧値のいずれか、または、2つ以上の複数の仮血圧値に基づいて分類してもよい。 
 さらに、脈波振幅が最大値となるカフ圧で分類してもよい。
 さらにまた、仮収縮期血圧、仮拡張期血圧、仮平均血圧、脈波振幅最大値となるカフ圧のいずれかを用いて、次式で血圧算出パラメータを算出してもよい。 
    [数4] 
  収縮期血圧算出パラメータ P_SBP = Ψ×P+ω×P+ε 
  拡張期血圧算出パラメータ P_DBP = δ×P+π×P+ρ 
 ここで、Pは、仮収縮期血圧、仮拡張期血圧、仮平均血圧、脈波振幅最大値となるカフ圧のいずれかを示し、Ψ,ω,ε,δ,π,ρは、カフコンプライアンスより決定される所定の係数を示す。
 続いて、血圧測定動作の別の例として前記仮決定した血圧値を、標準の血圧算出パラメータにより加圧中に仮決定することを特徴とする実施例について、図4のフローチャートに従い説明する。 
 なお、図4は、実施例1における血圧測定動作の一例を示すフローチャートである。また、以下に述べる各実施例では、主にCPU2120における演算が異なるものの、電子血圧計2100のハードウェア構成については上述した実施例と略同様であるため、各部の構成については、図1の符号を用いて説明する。
 まず、血圧計の電源スイッチ2131が押下されると(ステップS2121)、CPU2120は、血圧計の作業用メモリを初期化し、圧力センサ2103の0mmHg調整を行う(ステップS2122)。 
 次に、血圧を測定する利用者が選択され(ステップS2123)、測定スイッチ2132が押下されると(ステップS2124)、CPU2120は、ポンプ2104によりカフ圧を徐々に加圧していく(ステップS2125)。CPU2120は、加圧中に得られるカフ圧に重畳した動脈の容積変化に伴う圧変化成分を抽出し、所定の演算により仮血圧値を算出する(ステップS2126)。所定の圧力まで加圧したあと(ステップS2127)、CPU2120は、加圧中に算出された仮血圧値により血圧算出パラメータを最適化する(ステップS2128)。
 次に、CPU2120は、弁2105により徐々にカフ圧を減圧していく(ステップS2129)。CPU2120は、減圧中に得られるカフ圧に重畳した動脈の容積変化に伴う圧変化成分を抽出し、前記最適化された血圧算出パラメータを用いて所定の演算により血圧値を算出する(ステップS2130)。血圧値を算出した後は(ステップS2131)、CPU2120は、弁2105を開放しカフ内の空気を排気する。CPU2120は、算出した血圧値は表示部2121に表示するとともに(ステップS2132)、測定日時・利用者と関連づけてメモリ(記録用)2123に記録する(ステップS2133)。 
 ここでの血圧算出パラメータの最適化処理は、前述と同様の処理であるため省略する。
 続いて、血圧測定動作の別の例として、前記仮決定した血圧値が、メモリ(記録用)2123に記録されている血圧値であることを特徴とする実施例について、図5のフローチャートに従い説明する。 
 なお、図5は、実施例1における血圧測定動作の一例を示すフローチャートである。
 血圧計の電源スイッチ2131が押下されると(ステップS2141)、CPU2120は、血圧計の作業用メモリを初期化し、圧力センサ2103の0mmHg調整を行う(ステップS2142)。
 次に、血圧を測定する利用者が選択され(ステップS2143)、測定スイッチ2132が押下されると(ステップS2144)、CPU2120は、選択された利用者の直近の記録値をメモリ(記録用)2123から読み出し(ステップS2145)、その記録値に基づいて血圧算出パラメータを最適化する(ステップS2146)。 
 次に、CPU2120は、ポンプ2104によりカフ圧を徐々に加圧していく(ステップS2147)。所定の圧力まで加圧した後(ステップS2148)、CPU2120は、弁2105により徐々にカフ圧を減圧していく(ステップS2149)。
 CPU2120は、減圧中に得られるカフ圧に重畳した動脈の容積変化に伴う圧変化成分を抽出し、前記最適化された血圧算出パラメータを用いて所定の演算により血圧値を算出する(ステップS2150)。血圧値を算出した後は(ステップS2151:YES)、CPU2120は、弁2105を開放しカフ内の空気を排気する。CPU2120は、算出した血圧値は表示部2121に表示するとともに(ステップS2152)、測定日時・利用者と関連づけてメモリ(記録用)2123に記録する(ステップS2153)。
 ここでの血圧算出パラメータの最適化処理は、前述と同様の処理であるため省略する。
 また、血圧算出パラメータの最適化に使用する記録値は直近の2個以上の記録値の平均値や代表値であってもよい。 
 さらに、記録値は外部の記録媒体(USBメモリなどの外部メモリ2172)やパソコン、インターネット等を介したサーバに記録されている値を使用してもよい。
 以上説明したように、血圧値を測定する生体情報取得手段と、血圧値を記録する記録手段(メモリ2123)と、血圧算出パラメータ決定用の比率や血圧計の制御プログラムを格納する手段(メモリ2122)と、血圧測定などの操作を行う操作手段(操作部2130)と、前記生体情報取得手段により取得する血圧値を、血圧測定時における利用者の状態又は/及び前記カフ2101の状態に関連する測定状態関連情報に基づいて補正する補正手段(CPU2120)と、該補正後の補正後情報(血圧値)を出力する出力手段(表示部2121)とを備え、前記生体情報取得手段として、血圧測定部位に装着するカフ2101と、カフ2101に加える圧力を調整する加圧・減圧手段2104,2105と、カフ内の圧力を検出する圧力検出手段(圧力センサ2103)と、カフ圧により血圧値を算出する血圧算出手段(CPU2120)を備えた電子血圧計2100であって、血圧算出手段(CPU2120)は、血圧測定時における動脈の容積変化を示す圧脈波振幅の最大値(変化)に対し、予め設定した第1定数としての比率α、第2定数としての比率βを乗算する所定の演算に基づいて血圧算出パラメータを算出する構成であり、前記利用者の測定状態関連情報として、仮決定した血圧値の情報を取得する情報取得手段(ステップS2108,S2126,S2145を実行するCPU2120)を備え、前記補正手段(ステップS2110,S2128,S2146を実行するCPU2120)は、前記仮決定した血圧値に基づいて比率α、βを補正することにより、血圧算出パラメータを補正する構成である。
 前記構成により、利用者の血圧値ごとに最適な血圧算出パラメータを設定し、測定誤差を低減できるという効果が得られる。
 次に、バックグラウンド脈波の成分に関連するオフセット補正値(第3、第4定数)を血圧測定時における利用者の状態又は/及び前記カフ2101の状態に関連する測定状態関連情報により補正し、測定誤差を低減することのできる実施例2について、図6のフローチャートに従い説明する。 
 なお、図6は、実施例2における血圧測定動作の一例を示すフローチャートである。
 まず、血圧計の電源スイッチ2131が押下されると(ステップS2161)、CPU2120は、血圧計の作業用メモリを初期化し、圧力センサ2103の0mmHg調整を行う(ステップS2162)。 
 次に、血圧を測定する利用者が選択され(ステップS2163)、測定スイッチ2132が押下されると(ステップS2164)、CPU2120は、ポンプ2104によりカフ圧を徐々に加圧したあと(ステップS2165~ステップS2166)、弁2105により徐々にカフ圧を減圧していく(ステップS2167)。
 CPU2120は、この減圧中に得られるカフ圧に重畳した動脈の容積変化に伴う圧変化成分を抽出し、下記[数5]に示す所定の演算により、仮収縮期血圧値、仮拡張期血圧値を算出する(ステップS2168)。
    [数5] 
 T_AmpSys=圧脈波振幅最大値×α+ζtsys 
 T_AmpDia=圧脈波振幅最大値×β+ηtdia 
 ここで、前記[数5]におけるT_AmpSysは、仮収縮期血圧算出パラメータ、T_AmpDiaは、仮拡張期血圧算出パラメータである。また、ζtsysおよびηtdiaは、カフ2101内の圧力を血圧値測定範囲外の所定圧に加圧した時に発生するバックグラウンド脈波の成分に関連するオフセット補正値(第3、第4定数)であり、あらかじめ実験により決定された値である。
 CPU2120は、ステップS2168で算出したT_AmpSysが図9に示す包絡線と交差する点のカフ圧を仮収縮期血圧値として決定し、ステップS2168で算出したT_AmpDiaが図9に示す包絡線と交差する点のカフ圧を仮拡張期血圧値として決定する。
 次に、CPU2120は、ステップS2168で決定した仮収縮期血圧値、仮拡張期血圧値より、前記[数5]におけるバックグラウンド脈波の成分に関連するオフセット補正値ζ(第3定数)、オフセット補正値η(第4定数)を補正する。図13に示すように、カフ圧が高くなるにつれバックグラウンド脈波の成分は小さくなるため、下記[数6]に示す所定の演算により、オフセット補正値を補正する(ステップS2169)。
    [数6] 
  ζ=ζtsys+仮収縮期血圧値×θ
  η=ηtdia+仮拡張期血圧値×ι
 ここで、ここで、前記[数6]におけるθおよびιは、あらかじめ実験により決定された値である。
 そして、CPU2120は、ステップS2169で補正したζ、ηを前記[数5]のζtsys、ηtdiaに置き換えた下記[数7]に示す所定の演算により、収縮期血圧算出パラメータ、および拡張期血圧算出パラメータを算出し、最適化する(ステップS2170)。
    [数7] 
  収縮期血圧算出パラメータ=圧脈波振幅最大値×α+ζ 
  拡張期血圧算出パラメータ=圧脈波振幅最大値×β+η 
 ここで、CPU2120は、仮収縮期血圧値、仮拡張期血圧値の場合と同様、ステップS2170で算出した収縮期血圧算出パラメータ、拡張期血圧算出パラメータが前記包絡線と交差する点のカフ圧を、収縮期血圧値、拡張期血圧値として決定する(ステップS2171)。
 CPU2120は、算出した血圧値を表示部2121に表示するとともに(ステップS2172)、測定日時・利用者と関連づけてメモリ(記録用)2123に記録する(ステップS2173)。
 以上説明したように、血圧値を測定する生体情報取得手段と、血圧値を記録する記録手段(メモリ2123)と、血圧計の制御プログラムを格納する手段(メモリ2122)と、血圧測定などの操作を行う操作手段(操作部2130)と、カフ2101内の圧力を血圧値測定範囲外の所定圧に加圧した時に発生するバックグラウンド脈波の成分に基づいて血圧値を補正する補正手段(CPU2120)と、該補正後の補正後情報(血圧値)を出力する出力手段(表示部2121)とを備え、前記生体情報取得手段として、血圧測定部位に装着するカフ2101と、カフ2101に加える圧力を調整する加圧・減圧手段2104,2105と、カフ内の圧力を検出する圧力検出手段(圧力センサ2103)と、カフ圧により血圧値を算出する血圧算出手段(CPU2120)を備えた電子血圧計2100であって、血圧算出手段(CPU2120)は、血圧測定時における動脈の容積変化を示す圧脈波振幅の最大値(変化)に対し、予め設定した第1定数としての比率αを乗算し、かつ前記バックグラウンド脈波の成分に関連する第3定数としてのオフセット補正値ζを加算する所定の演算に基づいて収縮期血圧算出パラメータを算出するとともに、圧脈波振幅の最大値(変化)に対し予め設定した第2定数としての比率βを乗算し、かつ前記バックグラウンド脈波の成分に関連する第4定数としてのオフセット補正値ηを加算する所定の演算に基づいて拡張期血圧算出パラメータを算出する構成であり、血圧測定時における利用者の状態に関連する測定状態関連情報として仮収縮期血圧値、仮拡張期血圧値の情報を取得する情報取得手段(ステップS2168を実行するCPU2120)を備え、前記補正手段(ステップS2169を実行するCPU2120)は、前記仮収縮期血圧値、仮拡張期血圧値の情報に基づいて血圧値のオフセット補正値ζ、ηを補正することにより、血圧算出パラメータを補正する構成である。
 前記構成により、バックグラウンド脈波の成分に関連するオフセット補正値ζ、ηを血圧測定時における利用者の状態(本実施例では、利用者の血圧値)ごとに補正することができ、これによりバックグラウンド脈波の成分に起因する誤差の影響を抑制して正確な血圧値を算出できるという効果が得られる。
 上述では、仮収縮期血圧値、仮拡張期血圧値に対し所定の比率を乗算することでオフセット補正値(第3、第4定数)を決定しているが、あらかじめ電子血圧計2100のメモリ2123内に仮収縮期血圧値、仮拡張期血圧値に対応するオフセット補正値決定用(第3、第4定数決定用)テーブルを記憶しておき、そのテーブルよりオフセット補正値(第3、第4定数)を読み出しても良い。
 続いて、血圧測定動作の別の例としてカフ圧の最大値に基づいて前記オフセット補正値を補正する実施例について説明する。
 一般的に、オシロメトリック法の血圧値の決定方法としては以下に述べるものがある。 
 まず、カフ圧の減圧中に血圧値を決定する方法(以下、減圧測定方式)があり、この減圧測定方式では、カフ圧を所定より高い圧まで加圧後、徐々に減圧していく時に圧脈波振幅が急増する点を収縮期血圧値、さらにカフ圧を徐々に減圧していき、圧脈波が急減する点を拡張期血圧値として決定する。 
 これに対し、カフ2101の加圧中の血圧値を決定する方法(以後、加圧測定方式)があり、この加圧測定方式では、カフ圧を徐々に加圧していき、その過程で圧脈波振幅が急増する点を拡張期血圧値、さらにカフ圧を徐々に加圧していき、圧脈波が急減する点を収縮期血圧値として決定する。
 ここで、減圧測定方式の場合は、カフ圧を測定範囲より所定の圧力(たとえば30mmHg)高い圧力まで加圧するが、本実施例では、その圧力値をカフ圧最大値Pcmaxと定義する。一方、加圧測定方式の血圧測定装置においては、カフ圧を徐々に加圧しながら収縮期血圧値を決定するために必要な圧脈波振幅情報が検出されるまで加圧する。収縮期血圧値決定後、加圧を停止し、弁2105によりカフ圧を急速に減圧するが、本実施例ではこの減圧開始直前のカフ圧をカフ圧最大値Pcmaxと定義する。
 本実施例では、このPcmaxに基づいて、CPU2120が、下記[数8]に示す所定の演算により、バックグラウンド脈波の成分を示すオフセット補正値ζ、ηを補正する。本実施例では、下記[数8]に示すように、前記[数5]に示したオフセット補正値ζtsys、ηtdiaを用いてオフセット補正値ζ、ηを補正している。
    [数8] 
  ζ=ζtsys+Pcmax×κ 
  η=ηtdia+Pcmax×λ 
 ここで、前記[数8]におけるκおよびλは、あらかじめ実験により決定された値である。本実施例では、前記[数8]で補正したオフセット補正値ζ、ηを、図6に示した実施例と同様前記[数7]に適用して、収縮期血圧算出パラメータ、および拡張期血圧算出パラメータを算出し、最適化することによって血圧値を決定する。
 なお、本実施例では、オフセット補正値とPcmaxとを対応づけたオフセット補正値決定用(第3、第4定数決定用)テーブルをあらかじめ電子血圧計2100のメモリ2123内に記録しておき、そのテーブルよりオフセット補正値(第3、第4定数)を読み出しても良い。
 このように、カフ圧の最大値Pcmaxの情報に基づいて前記オフセット補正値ζ、ηを補正することで、カフ圧の最大値Pcmaxの差に起因する誤差の影響を抑制して正確な血圧値を算出できる。
 次に、血圧測定動作の別の例として圧脈波振幅の最大値に基づいて前記オフセット補正値を補正する実施例について説明する。 
 本実施例では、図9に示す包絡線において、圧脈波振幅が最大(AmpMax)となる点のカフ圧をPcampと定義する。そして、このPcampに基づいて、CPU2120は、バックグラウンド脈波の成分を示すオフセット補正値ζ、ηを下記[数9]に示す所定の演算により、補正する。
    [数9] 
  ζ=ζtsys+Pcamp×μ 
  η=ηtdia+Pcamp×ν 
 ここで、前記[数9]におけるμおよびνは、あらかじめ実験により決定された値である。ここでの血圧算出パラメータの最適化処理は、前述と同様の処理であるため省略する。
 なお、本実施例では、オフセット補正値とPcampとを対応づけたオフセット補正値決定用(第3、第4定数決定用)テーブルをあらかじめ電子血圧計2100のメモリ2123内に記録しておき、そのテーブルよりオフセット補正値を読み出しても良い。
 このように、圧脈波振幅が最大(AmpMax)となる点のカフ圧をPcampの情報に基づいて前記オフセット補正値ζ、ηを補正することで、圧脈波振幅の最大値の差に起因する誤差の影響を抑制して正確な血圧値を算出できる。
 続いて、血圧測定動作の別の例としてカフ2101の巻き付け強度に基づいてオフセット補正値を補正する実施例について説明する。 
 電子血圧計2100の場合、カフ2101が腕A(図12参照)などの測定部位に隙間なく適切に巻かれている状態と比較すると、測定部位とカフ2101との間に隙間がある状態では、測定部位に同じ圧力を加えるためにカフ2101内の空気袋に多くの空気を流入させる必要がある。
 前記のように、圧脈波振幅は動脈B(図12参照)の容積変化に伴って発生するカフ2101の容積変化を圧力変化として検出しているため、その圧脈波振幅は同じ動脈の容積変化であったとしても、カフ2101内の空気容量によって変化し、その空気容量が大きいほど圧脈波振幅は小さくなる。したがってカフ2101の巻き付け強度によってもバックグラウンド脈波の成分が変化することになる。
 そこで、前記[数7]のオフセット補正値をカフ2101の巻き付け強度に基づいて補正する必要がある。本実施例では、CPU2120が、カフ2101の巻き方による補正を前記[数7]に加えた下記[数10]に示す所定の演算により、収縮期血圧算出パラメータ、拡張期血圧算出パラメータを算出して、これを最適化している。すなわち、本実施例では、所定の比率ξをオフセット補正値ζに乗じてこれを補正するとともに、所定の比率σをオフセット補正値ηに乗じてこれを補正している。
    [数10] 
  収縮期血圧算出パラメータ=圧脈波振幅最大値×α+ζ×ξ 
  拡張期血圧算出パラメータ=圧脈波振幅最大値×β+η×σ 
 ここで、前記[数10]におけるξおよびσは、あらかじめ実験により決定された値である。これらの値はカフ2101の巻き付け強度と対応づけたオフセット補正値決定用(第3、第4定数決定用)テーブルをあらかじめ電子血圧計2100のメモリ2123内に記録しておき、そのテーブルより読み出す方法で決定すれば良い。
 また、カフ2101の巻き付け強度は、特開昭62-84738号公報、特公平5-62538号公報、および特許第4134234号公報に記載されているような公知の技術を用いて、カフ2101を加圧する際のカフ圧変化の割合によって検出すれば良い。
 このように、カフ2101の巻き付け強度の情報に基づいて前記オフセット補正値ζ、ηを補正することで、前記巻き付け強度の違いによって生じるカフ2101内の空気容量の差に起因する誤差の影響を抑制して正確な血圧値を算出できる。
 続いて、血圧測定動作の別の例としてカフ2101の仕様(サイズ)に基づいて前記オフセット補正値を補正する実施例について説明する。 
 電子血圧計2100の場合、測定部位の周囲長が長くなればなるほど、動脈Bへの圧伝達の減衰が大きくなる。したがって、正確な血圧測定を行うには、測定部位の周囲長により適切なサイズのカフ2101を選択する必要がある。すなわち、測定部位の周囲長が長いほどカフ2101の幅(測定部位の周方向に直交する方向)や長さ(測定部位の周方向)を長くする必要がある。測定部位の周囲長に適したカフの幅や長さはWHO(世界保健機構)などで勧告・推奨されている。
 測定部位の周囲長が長くなればなるほどカフ2101のサイズ(幅・長さ)は長くなるため、それに伴いカフ2101内の空気袋の大きさも大きくなる。したがって、前述のとおりカフ2101のサイズが大きくなると、検出される圧脈波振幅も小さくなるため、バックグランド脈波の成分も小さくなる(図7参照)。
 そこで、前記[数7]のオフセット補正値をカフ2101のサイズで補正する必要がある。本実施例では、CPU2120が、カフ2101のサイズによる補正を前記[数7]に加えた下記[数11]に示す所定の演算により、収縮期血圧算出パラメータ、拡張期血圧算出パラメータを算出して、これを最適化している。すなわち、本実施例では、所定の比率τをオフセット補正値ζに乗じてこれを補正するとともに、所定の比率υをオフセット補正値ηに乗じてこれを補正している。
    [数11] 
  収縮期血圧算出パラメータ=圧脈波振幅最大値×α+ζ×τ 
  拡張期血圧算出パラメータ=圧脈波振幅最大値×β+η×υ 
 ここで、前記[数11]におけるτおよびυは、あらかじめ実験により決定された値である。これらの値はカフ2101のサイズと対応づけたオフセット補正値決定用(第3、第4定数決定用)テーブルをあらかじめ電子血圧計2100のメモリ2123内に記録しておき、そのテーブルより読み出す方法で決定すれば良い。
 このように、カフ2101のサイズの情報に基づいて前記オフセット補正値ζ、ηを補正することで、カフ2101の空気袋の大きさの違いに起因する誤差の影響を抑制して正確な血圧値を算出できる。
 また、カフ2101のサイズは、操作部2130などの入力部にスイッチを設けて、該スイッチにより測定前に入力するようにしても良いし、電子血圧計2100本体のカフ2101との接続部にカフ2101のサイズを検出するセンサを設けて自動的に検出するようにしても良い。
 ここで、操作部2130などの入力部にスイッチを設けて、カフ2101のサイズなどの各種情報を測定前に入力可能にすることで、血圧値の算出に必要な各種情報を予め容易に取得することができ、血圧測定に要する時間の短縮化を図ることができる。
 また、カフ2101のサイズが大きくなるのに依存して、所定のカフ圧に達するまでにカフ2101に流入させる空気容量が大きくなるため、その経過時間も長くなる。したがって1回の血圧測定におけるカフ圧の変化に基づいて所定のカフ圧に達するまでの時間を測定し、この時間に基づいてカフ2101のサイズを検出するようにしてもよい。
 これにより、カフ2101のサイズなど、血圧値の算出に必要な各種情報を入力するための入力部やセンサなどを別途設けなくても、前記各種情報を簡素な構成によって取得することができる。
 また、上述では、カフ2101の仕様に関連する情報のうち、カフ2101のサイズに関連する情報に基づいてオフセット補正値ζ、ηを補正する場合を説明したが、カフ2101の仕様に関連する、構造・材質といった種類に関連する情報に基づいて前記補正を行ってもよい。たとえば、カフ2101内の空気袋の構造が風船のような1重構造であるカフと、特許3747917号公報に記載されているように空気袋の側面にマチ構造を設けたカフとでは、カフ2101が所定の内圧に達するために空気袋へ流入させる空気の容量は後者の方が大きくなる。また、例えば、カフ2101内の空気袋の材質が柔らかい材質ほど、カフ2101が所定の内圧に達するために空気袋へ流入させる空気の容量が大きくなる。
 これに対し、カフ2101の種類に関連する情報に基づいて前記オフセット補正値ζ、ηを補正することで、カフ2101の種類別の空気容量の差に起因する誤差の影響を抑制して正確な血圧値を算出できる。
 また、前述のとおり、測定部位の周囲長が長いほど測定に使用するカフ2101のサイズは大きくなる。したがって、図8に示すようにカフ2101のサイズに依存してバックグランド脈波の成分が変化することに基づき、前記[数11]のオフセット補正値(第3、第4定数)を測定部位の周囲長によって補正するようにしてもよい。これにより、カフ2101のサイズの違いに起因する誤差の影響を抑制して正確な血圧値を算出できる。
 また、測定部位の質が柔らかいほど、カフ2101内の空気袋の膨らみが大きくなる。そして、この場合、測定部位とカフ2101との間に隙間がある状態と同じような状態になり、圧脈派振幅は小さくなる。したがって、測定部位の質によって補正を行うようにしてもよい。これにより、カフ2101の空気袋の膨らみの差に起因する誤差の影響を抑制して正確な血圧値を算出できる。
 この場合、測定部位の周囲長または質は、操作部2130などの入力部から入力するようにしてもよいし、1回の血圧測定におけるカフ圧の変化に基づいて所定のカフ圧に達するまでの時間を測定し、この時間に基づいて検出してもよい。なお、測定部位の質の入力は、例えばBMI(Body Mass Index)、体脂肪率などで代替できる。例えば、BMIが大きい場合や、体脂肪率が大きい場合には、測定部位にも脂肪が多く付いていると判断し、該測定部位の質が柔らかいものとみなして補正をすることも可能である。
 これにより、測定部位に関連する各種情報を入力するための入力部やセンサなどを別途設けなくても、前記測定部位に関連する情報を簡素な構成によって取得することができる。
 続いて、血圧測定動作の別の例として血圧測定開始前に入力された利用者情報
に基づいて前記オフセット補正値を補正する実施例について説明する。 
 電子血圧計2100の場合、図9に示す包絡線の形状は動脈の力学的特性に依存して決定される。図14は、動脈の力学的特性例を示すグラフであり、図14に示すような動脈の力学的特性を決定する要因の一つに動脈弾性がある。動脈の弾性は年齢や疾病(特に動脈硬化)に依存し、高齢化や疾病の進行に伴い動脈弾性は硬くなる。動脈弾性が硬くなるとカフ2101で圧迫してもなかなか動脈が圧閉されないため、動脈弾性の軟らかい人と比べるとカフ圧が高くなるまでバックグランド脈波が存在することになる。
 そこで、あらかじめ年齢や疾病情報を入力し、それにより前記[数7]のオフセット補正値ζ、ηを年齢や疾病情報で補正する。本実施例では、操作部2130などの入力部で年齢や疾病情報の入力を許容するとともに、CPU2120が、入力した年齢や疾病情報に基づく補正を前記[数7]に加えた下記[数12]に示す所定の演算により、収縮期血圧算出パラメータ、拡張期血圧算出パラメータを算出して、これを最適化している。すわなち、本実施例では、所定の比率φをオフセット補正値ζに乗じてこれを補正するとともに、所定の比率χをオフセット補正値ηに乗じてこれを補正している。
    [数12] 
  収縮期血圧算出パラメータ=圧脈波振幅最大値×α+ζ×φ 
  拡張期血圧算出パラメータ=圧脈波振幅最大値×β+η×χ 
 ここで、前記[数12]におけるφおよびχは、あらかじめ実験により決定された値である。これらの値は年齢や疾病情報と対応づけたオフセット補正値決定用テーブルをあらかじめ電子血圧計2100のメモリ2123内に記録しておき、そのテーブルより読み出す方法で決定すれば良い。
 また、年齢や疾病情報は、測定開始時に操作部2130より入力するようにすればよい。また、あらかじめ使用者と年齢または疾病情報を関連づけてメモリ2123内に記録しておき、測定開始時に操作部2130より使用者を選択することで、メモリ2123より読み出すようにしてもよい。また、外部メモリ2172などの媒体に年齢や疾病情報を記録しておき、測定開始時にその情報を読み出すようにしてもよい。
 また、本実施例の場合、1回の血圧測定におけるカフ圧の変化に基づいて所定のカフ圧に達するまでの時間を測定し、この時間に基づいて利用者の動脈Bの弾性を検出し、その検出結果に基づいて疾病情報(この場合、動脈硬化の情報)を取得するようにしてもよい。
 このように、利用者の年齢や疾病情報に基づいて前記オフセット補正値ζ、ηを補正することで、動脈Bの弾性の差に起因する誤差の影響を抑制して正確な血圧値を算出できる。
 この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
 例えば、電子血圧計2100は、専用のサーバから適宜のパラメータ、閾値、アルゴリズムなどをダウンロードして機能を拡張できるように構成してもよい。この場合、ハードウェアはそのままでソフトウェアをバージョンアップすることや、利用者自身に最適化することを容易に実現できる。
 また、電子血圧計2100の機能拡張は、前記サーバを用いず、利用者が所有するパーソナルコンピュータ等のユーザ端末から実行する構成にしてもよい。この場合、CD-ROMなどの記録媒体からパラメータ、閾値、アルゴリズムなどをダウンロードする構成にしてもよい。
 また、電子血圧計2100を、体組成計、歩数計、電子体温計といった他の生体情報取得装置と直接無線または有線で通信可能に接続してもよい。この場合も、相互にデータを送受信して個々の精度を向上させることができる。
 この発明は、カフを用いるオシロメトリック方式を採用した電子血圧計に利用することができる。
2100…電子血圧計、2101…カフ、2103…圧力センサ、2104…ポンプ、2105…弁、2120…CPU、2121…表示部、2122…メモリ(処理用)、2123…メモリ(記録用)、2130…操作部

Claims (16)

  1.  血圧測定部位に装着するカフと、カフに加える圧力を調整する加圧・減圧手段と、カフ内の圧力を検出する圧力検出手段と、カフ圧により血圧値を算出する血圧算出手段を備え、
    血圧値を記録する記録手段と、血圧測定などの操作を行う操作手段を備えた電子血圧計であって、
    前記血圧算出手段は、血圧測定時における動脈の容積変化を示す圧脈波振幅の変化に対し、予め設定した定数を用いて所定の演算を実行することにより血圧算出パラメータを算出する構成であり、
    血圧測定時における利用者の状態又は/及び前記カフの状態に関連する測定状態関連情報を別途取得する情報取得手段と、
    該情報取得手段により前記測定状態関連情報を取得した場合、
    前記定数を前記測定状態関連情報に基づいて補正することにより、血圧算出パラメータを補正する補正手段とを備えた
    電子血圧計。
  2.  前記血圧算出手段は、圧脈波振幅の最大値に対し第1定数を乗算する所定の演算に基づいて収縮期血圧算出パラメータを算出するととともに、
    圧脈波振幅の最大値に対し第2定数を乗算する所定の演算に基づいて拡張期血圧算出パラメータを算出する構成であり、
    前記情報取得手段は、利用者の状態に関連する前記測定状態関連情報として、仮決定した血圧値の情報を取得する構成であり、
    前記補正手段は、前記仮決定した血圧値に基づいて前記第1、第2定数を補正する構成である
    請求項1記載の電子血圧計。
  3.  前記血圧算出手段は、圧脈波振幅の最大値に対し第1定数を乗算し、かつ前記カフ内の圧力を血圧値測定範囲外の所定圧に加圧した時に発生するバックグラウンド脈波の成分に関連する第3定数を加算する所定の演算に基づいて収縮期血圧算出パラメータを算出するととともに、
    圧脈波振幅の最大値に第2定数を乗算し、かつ前記バックグラウンド脈波の成分に関連する第4定数を加算する所定の演算に基づいて収縮期血圧算出パラメータを算出する構成であり、
    前記補正手段は、前記測定状態関連情報に基づいて前記第3、第4定数を補正する構成である
    請求項1記載の電子血圧計。
  4.  前記情報取得手段は、利用者の状態に関連する前記測定状態関連情報として、仮決定した血圧値の情報を取得する構成であり、
    前記補正手段は、前記仮決定した血圧値に基づいて前記第1、第2定数または前記第3、第4定数を補正する構成である
    請求項2または3記載の電子血圧計。
  5.  前記情報取得手段は、前記測定状態関連情報としてカフ圧の最大値の情報を取得する構成であり、
    前記補正手段は、前記カフ圧の最大値に基づいて前記第1、第2定数または前記第3、第4定数を補正する構成である
    請求項2または3記載の電子血圧計。
  6.  前記情報取得手段は、利用者の状態に関連する前記測定状態関連情報として、圧脈波振幅の最大値の情報を取得する構成であり、
    前記補正手段は、前記圧脈波振幅の最大値に基づいて前記第1、第2定数または前記第3、第4定数を補正する構成である
    請求項2または3記載の電子血圧計。
  7.  前記情報取得手段は、前記測定状態関連情報として前記カフの巻付け強度の情報を取得する構成であり、
    前記補正手段は、前記カフの巻付け強度の情報に基づいて前記第1、第2定数または前記第3、第4定数を補正する構成である
    請求項2または3記載の電子血圧計。
  8.  前記情報取得手段は、前記測定状態関連情報として前記カフのサイズ又は/及び種類に関連するカフ仕様情報を取得する構成であり、
    前記補正手段は、前記カフ仕様情報に基づいて前記第1、第2定数または前記第3、第4定数を補正する構成である
    請求項2または3記載の電子血圧計。
  9.  前記情報取得手段は、前記測定状態関連情報として利用者の測定部位に関連する情報を取得する構成であり、
    前記補正手段は、利用者の測定部位に関連する情報に基づいて前記第1、第2定数または前記第3、第4定数を補正する構成である
    請求項2または3記載の電子血圧計。
  10.  前記情報取得手段は、前記測定状態関連情報として利用者の疾病情報を取得する構成であり、
    前記補正手段は、利用者の疾病情報に基づいて前記第1、第2定数または前記第3、第4定数を補正する構成である
    請求項2または3記載の電子血圧計。
  11.  前記情報取得手段は、前記測定状態関連情報として利用者の年齢情報を取得する構成であり、
    前記補正手段は、利用者の年齢情報に基づいて前記第1、第2定数または前記第3、第4定数を補正する構成である
    請求項2または3記載の電子血圧計。
  12.  前記情報取得手段は、前記のカフの内圧の変化の検出に基づいて前記測定状態関連情報を取得する構成である
    請求項2または3記載の電子血圧計。
  13.  利用者による前記測定状態関連情報の入力を許容する入力手段を備え、
    前記情報取得手段は、前記血圧測定開始前に入力された前記測定状態関連情報を取得する構成である
    請求項2または3記載の電子血圧計。
  14.  カフを血圧測定部位に装着した時に前記カフに加える圧力を加圧・減圧手段により調整し、圧力検出手段により検出したカフ圧に基づいて、血圧算出手段により血圧値を算出する血圧測定方法であって、
    前記血圧算出手段において、血圧測定時における動脈の容積変化を示す圧脈波振幅の最大値に対し、予め設定した定数を用いて所定の演算を実行することにより血圧算出パラメータを算出するステップを有するとともに、
    血圧測定時における利用者の状態又は/及び前記カフの状態に関連する測定状態関連情報を情報取得手段により別途取得し、
    前記測定状態関連情報を前記情報取得手段により取得した場合、補正手段において前記定数を前記測定状態関連情報に基づいて補正することにより、前記血圧算出パラメータを補正するステップを有する
    血圧測定方法。
  15.  前記血圧算出手段により血圧算出パラメータを算出するステップは、圧脈波振幅の最大値に対し第1定数を乗算する所定の演算に基づいて収縮期血圧算出パラメータを算出するとともに、
    圧脈波振幅の最大値に第2定数を乗算する所定の演算に基づいて拡張期血圧算出パラメータを算出し、
    前記補正手段により補正するステップは、前記利用者の状態に関連する測定状態関連情報として、仮決定した血圧値の情報を情報取得手段により取得し、
    前記仮決定した血圧値に基づいて前記第1、第2定数を補正する
    請求項14記載の血圧測定方法。
  16.  前記血圧算出手段により血圧算出パラメータを算出するステップは、圧脈波振幅の最大値に対し第1定数を乗算し、かつ前記バックグラウンド脈波の成分に関連する第3定数を加算する所定の演算に基づいて収縮期血圧算出パラメータを算出するとともに、
    圧脈波振幅の最大値に対し第2定数を乗算し、かつ前記バックグラウンド脈波の成分に関連する第4定数を加算する所定の演算に基づいて拡張期血圧算出パラメータを算出し、
    前記補正手段により補正するステップは、前記測定状態関連情報に基づいて前記第3、第4定数を補正する
    請求項14記載の血圧測定方法。
PCT/JP2009/007226 2008-12-26 2009-12-25 電子血圧計および血圧測定方法 WO2010073688A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010543900A JP5195922B2 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
CN200980152933XA CN102264287A (zh) 2008-12-26 2009-12-25 电子血压计及血压测定方法
RU2011131057/14A RU2521349C2 (ru) 2008-12-26 2009-12-25 Электронный сфигмоманометр и способ измерения кровяного давления
DE112009003801.8T DE112009003801T5 (de) 2008-12-26 2009-12-25 Elektronisches Blutdruckmessgerät und Verfahren zur Blutdruckmessung
US13/167,536 US20110257540A1 (en) 2008-12-26 2011-06-23 Electronic sphygmomanometer and blood pressure measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-333402 2008-12-26
JP2008333402 2008-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/167,536 Continuation US20110257540A1 (en) 2008-12-26 2011-06-23 Electronic sphygmomanometer and blood pressure measuring method

Publications (1)

Publication Number Publication Date
WO2010073688A1 true WO2010073688A1 (ja) 2010-07-01

Family

ID=42287323

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/JP2009/007223 WO2010073685A1 (ja) 2008-12-26 2009-12-25 生体情報取得システム及び生体情報取得方法
PCT/JP2009/007230 WO2010073691A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
PCT/JP2009/007224 WO2010073686A1 (ja) 2008-12-26 2009-12-25 重量測定装置および重量測定方法
PCT/JP2009/007222 WO2010073684A1 (ja) 2008-12-26 2009-12-25 歩数検出システム及び歩数検出方法及び活動量計
PCT/JP2009/007228 WO2010073689A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
PCT/JP2009/007229 WO2010073690A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
PCT/JP2009/007232 WO2010073692A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
PCT/JP2009/007226 WO2010073688A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
PCT/JP2009/007220 WO2010073682A1 (ja) 2008-12-26 2009-12-25 重量測定装置

Family Applications Before (7)

Application Number Title Priority Date Filing Date
PCT/JP2009/007223 WO2010073685A1 (ja) 2008-12-26 2009-12-25 生体情報取得システム及び生体情報取得方法
PCT/JP2009/007230 WO2010073691A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
PCT/JP2009/007224 WO2010073686A1 (ja) 2008-12-26 2009-12-25 重量測定装置および重量測定方法
PCT/JP2009/007222 WO2010073684A1 (ja) 2008-12-26 2009-12-25 歩数検出システム及び歩数検出方法及び活動量計
PCT/JP2009/007228 WO2010073689A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
PCT/JP2009/007229 WO2010073690A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法
PCT/JP2009/007232 WO2010073692A1 (ja) 2008-12-26 2009-12-25 電子血圧計および血圧測定方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007220 WO2010073682A1 (ja) 2008-12-26 2009-12-25 重量測定装置

Country Status (7)

Country Link
US (8) US8849609B2 (ja)
EP (1) EP2413114A4 (ja)
JP (10) JP5246270B2 (ja)
CN (8) CN102264296B (ja)
DE (8) DE112009003807B4 (ja)
RU (8) RU2521268C2 (ja)
WO (9) WO2010073685A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061778A1 (ja) * 2011-10-26 2013-05-02 オムロンヘルスケア株式会社 電子血圧計
US20140207009A1 (en) * 2012-01-23 2014-07-24 Yukiya Sawanoi Blood pressure measurement device

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425200B2 (en) * 2009-04-21 2013-04-23 Xylem IP Holdings LLC. Pump controller
JP5565164B2 (ja) * 2010-07-21 2014-08-06 オムロンヘルスケア株式会社 電子血圧計
JP5590730B2 (ja) * 2011-02-07 2014-09-17 株式会社タニタ 体重計
JP5923857B2 (ja) * 2011-03-01 2016-05-25 オムロンヘルスケア株式会社 活動量計
US9986919B2 (en) * 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
JP5718189B2 (ja) * 2011-08-23 2015-05-13 シチズンホールディングス株式会社 電子血圧計
JP5853533B2 (ja) * 2011-09-26 2016-02-09 オムロンヘルスケア株式会社 体重管理装置
JP5821658B2 (ja) * 2012-01-25 2015-11-24 オムロンヘルスケア株式会社 測定装置および測定方法
KR20130100806A (ko) * 2012-01-31 2013-09-12 삼성전자주식회사 운동량 정보 관리 방법 및 이를 이용한 디스플레이 장치, 그리고 서버
US9658338B2 (en) * 2012-04-13 2017-05-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Apparatus and method to conserve power in a portable GNSS unit
JP6049308B2 (ja) * 2012-05-29 2016-12-21 豊田通商株式会社 活動量測定端末および活動量測定装置
KR101323595B1 (ko) * 2012-06-29 2013-11-01 주식회사 카스 저울교정이력 확인단말기, 저울교정이력 관리시스템 및 저울교정이력 확인방법
JP3178848U (ja) * 2012-07-23 2012-10-04 株式会社アコーズ 健康増進装置
KR101473653B1 (ko) 2012-09-21 2014-12-18 한국과학기술연구원 보행자 모션 인식 기반 보행자 위치 추정 장치, 및 그 방법
US9615756B2 (en) * 2012-10-31 2017-04-11 Cnsystems Medizintechnik Ag Device and method for the continuous non-invasive measurement of blood pressure
JP6049424B2 (ja) * 2012-11-29 2016-12-21 豊田通商株式会社 活動量測定端末を用いた健康管理システム
US10564178B2 (en) 2012-12-21 2020-02-18 Qualcomm Incorporated Swing compensation in step detection
CN103162782A (zh) * 2013-02-04 2013-06-19 河南紫光物联技术有限公司 一种新型身高体重测量装置
US9091585B2 (en) * 2013-02-08 2015-07-28 Raf Technology, Inc. Smart phone scale that uses the built-in barometric pressure sensor or orientation sensors to calculate weight
JP6160819B2 (ja) * 2013-05-22 2017-07-12 株式会社タニタ 重量測定装置、生体測定装置及び重量測定プログラム
JP6170774B2 (ja) * 2013-08-08 2017-07-26 任天堂株式会社 測定システム、測定装置の測定方法、測定装置および測定装置の制御プログラム
JP6142266B2 (ja) * 2013-09-09 2017-06-07 株式会社タニタ 健康管理システム及び活動量計
WO2015066445A1 (en) * 2013-10-31 2015-05-07 The General Hospital Corporation System for measuring and monitoring blood pressure
CN104713566B (zh) * 2013-12-16 2018-02-23 中国移动通信集团公司 一种计步方法、计步装置和计步器
JP2015128491A (ja) * 2014-01-07 2015-07-16 三菱電機株式会社 テレビジョン受信機
JP6241304B2 (ja) * 2014-02-06 2017-12-06 オムロンヘルスケア株式会社 電子血圧計、および、接続カフ種判定方法
JP2015150276A (ja) * 2014-02-17 2015-08-24 Necプラットフォームズ株式会社 ヘルスケアシステムおよびヘルスケア機器
KR101584604B1 (ko) * 2014-04-25 2016-01-21 (주)야긴스텍 가축의 운동량 분석에 따른 질병 판독 시스템
US9546898B2 (en) * 2014-06-12 2017-01-17 PhysioWave, Inc. Fitness testing scale
JP6365031B2 (ja) * 2014-07-07 2018-08-01 オムロンヘルスケア株式会社 活動量測定装置、活動量の測定方法、活動量の測定プログラム
JP2015062067A (ja) * 2014-10-07 2015-04-02 株式会社ニコン 撮影レンズ、撮影装置及び撮影システム
EP3221812A1 (en) * 2014-11-19 2017-09-27 NIKE Innovate C.V. Athletic band with removable module
US20170347895A1 (en) 2015-01-04 2017-12-07 Vita-Course Technologies Co.,Ltd System and method for health monitoring
CN204515353U (zh) 2015-03-31 2015-07-29 深圳市长桑技术有限公司 一种智能手表
CN106153071A (zh) * 2015-04-15 2016-11-23 昆山研达电脑科技有限公司 基于波形匹配的计步器的校正方法及其系统
CN106156234A (zh) * 2015-04-24 2016-11-23 上海箩箕技术有限公司 生物信息识别方法、识别装置以及智能锁
WO2017037272A1 (en) * 2015-09-03 2017-03-09 Koninklijke Philips N.V. Non-invasive blood pressure monitoring device and method
CN105243260A (zh) * 2015-09-08 2016-01-13 深圳市双平泰科技有限公司 一种体征数据校正方法及其装置
DE102015118770A1 (de) * 2015-11-03 2017-05-04 Seca Ag Kombinationsmessgerät zur Messung des Gewichts und mindestens eines weiteren Körperparameters eines Probanden
JP6610251B2 (ja) * 2015-12-28 2019-11-27 オムロンヘルスケア株式会社 血圧関連情報表示装置
JP6348132B2 (ja) * 2016-01-13 2018-06-27 ファナック株式会社 ロボットを用いた重量測定システム及び重量測定方法
CN205924005U (zh) * 2016-03-28 2017-02-08 上海夏先机电科技发展有限公司 一种便携式血压检测装置
JP7120001B2 (ja) * 2016-03-29 2022-08-17 日本電気株式会社 血圧計、血圧測定方法及び血圧測定プログラム
US10635370B2 (en) * 2016-03-31 2020-04-28 Tanita Corporation Image forming apparatus that acquires data from an activity amount meter
CN106017502B (zh) * 2016-05-17 2019-02-26 中国地质大学(武汉) 一种计步方法及电子设备
WO2017212633A1 (ja) * 2016-06-10 2017-12-14 新光電子株式会社 電子秤とその表示部の表示方法
CN105953875B (zh) * 2016-06-22 2018-10-16 锐马(福建)电气制造有限公司 一种活体动物称重方法及其装置
JP6697567B2 (ja) * 2016-09-09 2020-05-20 旭化成株式会社 歩数計数装置、歩数計数方法、およびプログラム
JP6793522B2 (ja) 2016-10-31 2020-12-02 オムロンヘルスケア株式会社 生体データ処理装置、生体データ処理システムおよびプログラム
JP2017042627A (ja) * 2016-11-22 2017-03-02 豊田通商株式会社 活動量測定端末を用いた健康管理システム
DE102016223930B4 (de) * 2016-12-01 2023-01-26 Siemens Healthcare Gmbh Verfahren, Anordnung, Computerprogrammprodukt und computerlesbares Medium zur automatischen Ermittlung des Patientengewichts mit einer Patientenlagerungsvorrichtung
JP2017060899A (ja) * 2017-01-17 2017-03-30 京セラ株式会社 携帯機器、活動量算出システム
JP6847721B2 (ja) * 2017-03-14 2021-03-24 オムロン株式会社 情報処理装置、情報処理方法及びそのプログラム
JP6747344B2 (ja) * 2017-03-14 2020-08-26 オムロンヘルスケア株式会社 血圧データ処理装置、血圧データ処理方法および血圧データ処理プログラム
JP7020790B2 (ja) * 2017-03-30 2022-02-16 日本光電工業株式会社 血圧測定装置
JP6804087B2 (ja) * 2017-04-05 2020-12-23 株式会社タニタ 歩数計測プログラム及び携帯端末
KR20230048458A (ko) 2017-04-12 2023-04-11 나이키 이노베이트 씨.브이. 착탈식 모듈을 갖는 웨어러블 물품
US10455867B2 (en) 2017-04-12 2019-10-29 Nike, Inc. Wearable article with removable module
CN107607183A (zh) * 2017-08-03 2018-01-19 上海斐讯数据通信技术有限公司 一种提供体重数据的方法、智能装置及智能系统
JP6837942B2 (ja) * 2017-08-09 2021-03-03 オムロンヘルスケア株式会社 測定装置、送信方法およびプログラム
EP3456253A1 (en) * 2017-09-14 2019-03-20 Koninklijke Philips N.V. Inflation apparatus for an inflation-based non-invasive blood pressure monitor and a method of operating the same
CN110006952A (zh) * 2018-01-04 2019-07-12 上海雷誉光触媒环保科技有限公司 气体检测传感器装置
JP7099036B2 (ja) * 2018-05-07 2022-07-12 オムロン株式会社 データ処理装置、モニタリングシステム、覚醒システム、データ処理方法、及びデータ処理プログラム
JP2019208482A (ja) * 2018-06-08 2019-12-12 シャープ株式会社 制御装置、動物用トイレ、情報処理装置、情報処理端末、制御プログラム及び制御方法
WO2020045371A1 (ja) * 2018-08-27 2020-03-05 一博 椎名 歩行評価システム、歩行評価方法、そのプログラム、記憶媒体、携帯端末、及び、サーバ
CN109480804A (zh) * 2018-12-04 2019-03-19 南京国科医工科技发展有限公司 用于脉搏波检测的最佳取脉压方法
JP7309381B2 (ja) 2019-02-22 2023-07-18 キヤノンメディカルシステムズ株式会社 医用画像診断装置および医用寝台装置
CN110123270A (zh) * 2019-04-02 2019-08-16 博脉有限公司 诊脉仪输出信号修正方法及系统
WO2020202543A1 (ja) * 2019-04-05 2020-10-08 日本電気株式会社 歩行周期判定システム、歩行周期判定方法、およびプログラム記録媒体
CN111858563A (zh) * 2019-04-28 2020-10-30 京东方科技集团股份有限公司 校正测量数据的方法、装置、电子设备、介质和测量装置
CN110639192B (zh) * 2019-08-20 2021-08-06 苏宁智能终端有限公司 一种运动设备步数计算方法、步数核算方法及装置
RU2728152C1 (ru) * 2019-09-04 2020-07-28 Иван Александрович Лебедев Устройство для измерения артериального давления
WO2021084690A1 (ja) * 2019-10-31 2021-05-06 日本電気株式会社 情報処理システム、情報処理装置、インソール、情報処理方法および記録媒体
JP7447449B2 (ja) * 2019-12-05 2024-03-12 オムロンヘルスケア株式会社 血圧分析装置、血圧分析方法、及び血圧分析プログラム
CN116649938B (zh) * 2023-07-31 2023-10-20 深圳市长坤科技有限公司 一种基于蓝牙通信的血压测量系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299339A (ja) * 1996-05-15 1997-11-25 Omron Corp 血圧計
WO2008133012A1 (ja) * 2007-04-24 2008-11-06 Omron Healthcare Co., Ltd. 着衣のままでの血圧を測定できる血圧測定装置

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986012A (en) * 1974-05-02 1976-10-12 Reliance Electric Company Digital weight measuring and computing apparatus with automatic zero correction
US4101071A (en) * 1977-04-04 1978-07-18 Carl Brejnik Electronic calorie counter
DE2812755C2 (de) * 1978-03-23 1980-01-17 Blasius 7455 Jungingen Speidel Druckmeßwerk für Blutdruckmeßgeräte
JPS6042688A (ja) * 1983-08-19 1985-03-06 Citizen Watch Co Ltd 消費カロリ−測定装置
JPS6211431A (ja) * 1985-07-08 1987-01-20 コーリン電子株式会社 カフ種類判別方法および装置
JPS6266835A (ja) 1985-09-18 1987-03-26 オムロン株式会社 電子血圧計
JPS6284738A (ja) * 1985-10-09 1987-04-18 オムロン株式会社 指用電子血圧計
US4860760A (en) * 1986-05-15 1989-08-29 Omron Tateisi Electronics Co. Electronic blood pressure meter incorporating compensation function for systolic and diastolic blood pressure determinations
CH670508A5 (ja) * 1986-05-23 1989-06-15 Mettler Instrumente Ag
US4660663A (en) * 1986-05-27 1987-04-28 Ncr Corporation Method of calibrating a weighing apparatus within an enclosure
US4751661A (en) * 1986-05-27 1988-06-14 Ncr Corporation Automatic zero balancing of a weighing apparatus
US4880013A (en) * 1988-03-24 1989-11-14 Chio Shiu Shin Method and apparatus for determining blood pressure and cardiovascular condition
SU1696888A1 (ru) * 1989-04-11 1991-12-07 Производственное Объединение "Ленинградский Завод Турбинных Лопаток Им.50-Летия Ссср" Способ калибровки электронных весов
SE466884B (sv) * 1989-05-23 1992-04-27 Goeran Sjoenell Foerfarande vid blodtrycksmaetning samt en blodtrycksmaetare foer utfoerande av foerfarandet
JPH0667381B2 (ja) 1989-05-24 1994-08-31 テルモ株式会社 電子血圧計
JPH0375037A (ja) * 1989-08-18 1991-03-29 Nec San-Ei Instr Co Ltd 血圧測定方法
JPH0381375A (ja) 1989-08-25 1991-04-05 Ain:Kk 脱臭性、抗殺菌性、遠赤外線放射性、耐酸防触性及び帯電防止性を有する塗料
JP2557534B2 (ja) 1989-11-07 1996-11-27 富士通株式会社 半導体集積回路装置
US5054494A (en) * 1989-12-26 1991-10-08 U.S. Medical Corporation Oscillometric blood pressure device
JPH0464426A (ja) 1990-07-03 1992-02-28 Sekisui Chem Co Ltd 熱可塑性樹脂シートの製造方法及びその装置
JP2936815B2 (ja) * 1991-08-09 1999-08-23 オムロン株式会社 電子血圧計
JPH06180379A (ja) * 1992-12-15 1994-06-28 Casio Comput Co Ltd 消費カロリー計算装置及び消費カロリー計算装置を備えた電 子時計
US5797850A (en) * 1993-11-09 1998-08-25 Medwave, Inc. Method and apparatus for calculating blood pressure of an artery
US6045510A (en) * 1994-02-25 2000-04-04 Colin Corporation Blood pressure measuring apparatus
IT1274170B (it) * 1994-05-04 1997-07-15 Fabio Marchesi Apparecchiatura per la riduzione di specifiche zone adipose mediante la concomitanza dell'apporto di calore e d'attivita' muscolare.
JP2760478B2 (ja) * 1995-02-21 1998-05-28 アニマ株式会社 重心動揺計
JPH0924028A (ja) * 1995-07-12 1997-01-28 Toto Ltd 容積振動法型指血圧計
US5832417A (en) * 1996-11-27 1998-11-03 Measurement Specialties, Inc. Apparatus and method for an automatic self-calibrating scale
JP3547318B2 (ja) * 1998-06-29 2004-07-28 株式会社東芝 加熱調理器
JP2000018582A (ja) 1998-07-06 2000-01-18 Sanden Corp 燃焼機器用制御装置
JP2000314637A (ja) * 1999-04-30 2000-11-14 Tanita Corp 消費エネルギーの演算方法およびその装置
JP3149873B2 (ja) 1999-09-08 2001-03-26 オムロン株式会社 電子血圧計
JP4505093B2 (ja) * 1999-12-28 2010-07-14 株式会社 タウザー研究所 血圧測定装置
JP3698608B2 (ja) * 2000-03-06 2005-09-21 ヒロセ電機株式会社 歩行運動量表示装置
JP3599635B2 (ja) * 2000-04-21 2004-12-08 ヤーマン株式会社 カロリー計算機
US6450966B1 (en) * 2000-05-03 2002-09-17 Datex-Ohmeda, Inc. Method for non-invasive blood pressure cuff identification using deflation pressure measurements
CN1117268C (zh) * 2000-09-27 2003-08-06 潘伟潮 电子式人体健康秤
US6872182B2 (en) 2000-11-14 2005-03-29 Omron Corporation Electronic sphygmomanometer
JP2002243529A (ja) * 2001-02-09 2002-08-28 Kubota Corp マルチロードセル式はかり及びその偏置誤差調整方法
DE10120978A1 (de) * 2001-05-01 2002-11-14 Bizerba Gmbh & Co Kg Vorrichtung und Verfahren zur Erfassung und Aufbereitung von auf einen Fahrzeugsitz wirkenden Gewichtskräften
JP3685741B2 (ja) * 2001-06-13 2005-08-24 ヒロセ電機株式会社 運動量測定装置
JP2003088529A (ja) * 2001-07-13 2003-03-25 Tanita Corp 婦人用身体測定装置
WO2003013649A2 (en) * 2001-08-08 2003-02-20 Orton Kevin R Apparatus and method for electrically conductive weight reduction
KR100745747B1 (ko) * 2001-08-21 2007-08-02 삼성전자주식회사 선형적으로 변화시킬 수 있는 공기 압력을 이용한 혈압측정 장치 및 방법
JP3668843B2 (ja) * 2001-08-27 2005-07-06 オムロンヘルスケア株式会社 電子血圧計および血圧測定データ処理システム
US6730038B2 (en) * 2002-02-05 2004-05-04 Tensys Medical, Inc. Method and apparatus for non-invasively measuring hemodynamic parameters using parametrics
JP2003290175A (ja) 2002-03-29 2003-10-14 Sony Corp 体調検出装置およびプログラム
JP4309111B2 (ja) * 2002-10-02 2009-08-05 株式会社スズケン 健康管理システム、活動状態測定装置及びデータ処理装置
JP4261295B2 (ja) * 2003-09-08 2009-04-30 カルソニックカンセイ株式会社 乗員検出装置
JP2005172484A (ja) * 2003-12-09 2005-06-30 Tachi S Co Ltd 車両用シートの荷重判別方法およびその荷重判別装置
JP4426282B2 (ja) 2003-12-26 2010-03-03 日本精密測器株式会社 血圧計
JP3835461B2 (ja) * 2004-04-20 2006-10-18 オムロンヘルスケア株式会社 電子血圧計
RU2252693C1 (ru) * 2004-05-17 2005-05-27 Пензенский государственный университет Способ измерения артериального давления
KR20050117825A (ko) * 2004-06-11 2005-12-15 삼성전자주식회사 혈압계 및 이를 이용한 혈압측정방법
JP2006026212A (ja) * 2004-07-20 2006-02-02 Sharp Corp 生体情報検出装置
KR20060008835A (ko) * 2004-07-24 2006-01-27 삼성전자주식회사 가속도 센서를 이용한 운동량 측정장치 및 방법
JP4369855B2 (ja) * 2004-11-10 2009-11-25 大和製衡株式会社 柔軟運動用器具
JP4299257B2 (ja) * 2005-03-09 2009-07-22 株式会社理研オプテック 荷重計のゼロ点補正回路
CN1723838A (zh) * 2005-07-21 2006-01-25 高春平 个性化立体减肥的方法及装置
JP4902153B2 (ja) * 2005-08-12 2012-03-21 オムロンヘルスケア株式会社 電子血圧計およびデータ処理装置
EP1770369B1 (en) * 2005-10-03 2012-06-06 STMicroelectronics Srl A method for controlling a pedometer.
JP2007111119A (ja) * 2005-10-18 2007-05-10 Omron Healthcare Co Ltd 電子血圧計
JP3117972U (ja) * 2005-10-25 2006-01-19 テルモ株式会社 血圧計
ATE538366T1 (de) * 2005-11-15 2012-01-15 Mettler Toledo Ag Verfahren zur überwachung und/oder zur bestimmung des zustandes einer kraftmessvorrichtung und kraftmessvorrichtung
US20080235058A1 (en) * 2005-12-01 2008-09-25 The General Electric Company Vital sign monitor utilizing historic patient data
JP4325639B2 (ja) * 2005-12-05 2009-09-02 オムロンヘルスケア株式会社 血圧測定装置
JP4586727B2 (ja) * 2005-12-28 2010-11-24 オムロンヘルスケア株式会社 体組成計
JP4904861B2 (ja) 2006-03-14 2012-03-28 ソニー株式会社 体動検出装置、体動検出方法および体動検出プログラム
JP4064426B2 (ja) * 2006-03-23 2008-03-19 株式会社タニタ 運動消費エネルギー推定装置
JP4720615B2 (ja) * 2006-05-25 2011-07-13 パナソニック電工株式会社 バランス計測機能付体重計
JP2007330200A (ja) 2006-06-16 2007-12-27 Harada Denshi Kogyo Kk ペット用自動体重計測システム
JP2008058010A (ja) * 2006-08-29 2008-03-13 Seiko Instruments Inc 歩数計
JP4818035B2 (ja) * 2006-09-19 2011-11-16 株式会社タニタ 睡眠時消費カロリー測定装置
JP4091644B2 (ja) * 2006-10-18 2008-05-28 シチズンホールディングス株式会社 電子血圧計
US20080119745A1 (en) * 2006-10-26 2008-05-22 Health & Life Co., Ltd Manually pressurized electronic sphygmomanometer
JP2008142258A (ja) * 2006-12-08 2008-06-26 Omron Healthcare Co Ltd 体動検出装置
JP5089200B2 (ja) * 2007-03-09 2012-12-05 特定非営利活動法人熟年体育大学リサーチセンター 消費カロリー算出方法および携帯用消費カロリー測定装置
JP2007203086A (ja) * 2007-03-12 2007-08-16 Tanita Corp 妊婦用健康管理装置
JP4798031B2 (ja) * 2007-03-19 2011-10-19 オムロンヘルスケア株式会社 血圧測定装置
US20080287262A1 (en) * 2007-05-18 2008-11-20 King I Tech Corporation Control system of an electric treadmill
US8419649B2 (en) * 2007-06-12 2013-04-16 Sotera Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms
JP4940026B2 (ja) * 2007-06-15 2012-05-30 株式会社タニタ 生体測定装置
US20090062664A1 (en) * 2007-08-30 2009-03-05 Fego Precision Industrial Co., Ltd. Blood pressure measurement device
US20090182238A1 (en) * 2008-01-14 2009-07-16 Triple Precision Int'l. Co., Ltd Method of predicting a blood pressure trend by blood pressure measurements
JP5923857B2 (ja) * 2011-03-01 2016-05-25 オムロンヘルスケア株式会社 活動量計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299339A (ja) * 1996-05-15 1997-11-25 Omron Corp 血圧計
WO2008133012A1 (ja) * 2007-04-24 2008-11-06 Omron Healthcare Co., Ltd. 着衣のままでの血圧を測定できる血圧測定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061778A1 (ja) * 2011-10-26 2013-05-02 オムロンヘルスケア株式会社 電子血圧計
JP2013090824A (ja) * 2011-10-26 2013-05-16 Omron Healthcare Co Ltd 電子血圧計
US20140207009A1 (en) * 2012-01-23 2014-07-24 Yukiya Sawanoi Blood pressure measurement device
US9642541B2 (en) * 2012-01-23 2017-05-09 Omron Healthcare Co., Ltd. Blood pressure measurement device

Also Published As

Publication number Publication date
RU2011131057A (ru) 2013-02-10
DE112009003805T5 (de) 2012-06-21
DE112009003809T5 (de) 2014-02-13
WO2010073692A1 (ja) 2010-07-01
CN102264288A (zh) 2011-11-30
WO2010073691A1 (ja) 2010-07-01
US8818752B2 (en) 2014-08-26
CN102265295B (zh) 2014-04-02
RU2516870C2 (ru) 2014-05-20
DE112009003806B4 (de) 2024-07-04
WO2010073686A1 (ja) 2010-07-01
JPWO2010073692A1 (ja) 2012-06-07
US20110238326A1 (en) 2011-09-29
DE112009003806T5 (de) 2012-06-28
JP5246270B2 (ja) 2013-07-24
RU2522969C2 (ru) 2014-07-20
US20110231152A1 (en) 2011-09-22
RU2011131065A (ru) 2013-02-10
CN102264288B (zh) 2015-07-01
US8707753B2 (en) 2014-04-29
CN102265123B (zh) 2014-07-09
EP2413114A1 (en) 2012-02-01
WO2010073685A1 (ja) 2010-07-01
US20110257539A1 (en) 2011-10-20
RU2512923C2 (ru) 2014-04-10
DE112009004271T5 (de) 2013-06-27
JPWO2010073691A1 (ja) 2012-06-07
JPWO2010073682A1 (ja) 2012-06-07
JP2010167275A (ja) 2010-08-05
DE112009003803T5 (de) 2012-08-09
RU2011131050A (ru) 2013-02-10
US20110251500A1 (en) 2011-10-13
CN102264287A (zh) 2011-11-30
WO2010073689A1 (ja) 2010-07-01
JP5152343B2 (ja) 2013-02-27
US20110251501A1 (en) 2011-10-13
RU2520152C2 (ru) 2014-06-20
RU2011131069A (ru) 2013-02-10
CN102264289A (zh) 2011-11-30
JPWO2010073684A1 (ja) 2012-06-07
DE112009003797T5 (de) 2012-06-21
DE112009003801T5 (de) 2014-01-16
DE112009003807T5 (de) 2012-02-09
CN102265123A (zh) 2011-11-30
EP2413114A4 (en) 2013-09-25
WO2010073682A1 (ja) 2010-07-01
JPWO2010073685A1 (ja) 2012-06-07
JP5187402B2 (ja) 2013-04-24
RU2011131051A (ru) 2013-02-10
RU2011131068A (ru) 2013-02-10
RU2517797C2 (ru) 2014-05-27
CN102264296B (zh) 2013-09-04
WO2010073684A1 (ja) 2010-07-01
US20110257538A1 (en) 2011-10-20
CN102264296A (zh) 2011-11-30
JP5146543B2 (ja) 2013-02-20
RU2011131070A (ru) 2013-02-10
JPWO2010073690A1 (ja) 2012-06-07
RU2011131072A (ru) 2013-02-10
JP5120462B2 (ja) 2013-01-16
JP5310742B2 (ja) 2013-10-09
US20110257540A1 (en) 2011-10-20
RU2521349C2 (ru) 2014-06-27
JP5195922B2 (ja) 2013-05-15
US8849609B2 (en) 2014-09-30
JPWO2010073688A1 (ja) 2012-06-07
WO2010073690A1 (ja) 2010-07-01
CN102264289B (zh) 2013-06-19
JP5062332B2 (ja) 2012-10-31
JPWO2010073689A1 (ja) 2012-06-07
RU2521268C2 (ru) 2014-06-27
DE112009003807B4 (de) 2024-05-02
US9377344B2 (en) 2016-06-28
CN102265295A (zh) 2011-11-30
US20110226035A1 (en) 2011-09-22
CN102264286A (zh) 2011-11-30
CN102264285A (zh) 2011-11-30
JPWO2010073686A1 (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5195922B2 (ja) 電子血圧計および血圧測定方法
JP5098721B2 (ja) 血圧測定装置、血圧導出プログラムおよび血圧導出方法
JP5467095B2 (ja) 循環器機能測定装置
WO2011122125A9 (ja) 血圧測定装置
JP6019592B2 (ja) 血圧測定装置
WO2010098195A1 (ja) 血圧測定装置、血圧測定プログラムプロダクト、および、血圧測定制御方法
JP5928341B2 (ja) 電子血圧計および当該電子血圧計における血圧測定方法
JP4426282B2 (ja) 血圧計
JP4730332B2 (ja) 血圧測定装置および測定データ処理プログラム
JP5228620B2 (ja) 血圧測定装置
JP2010167181A (ja) 電子血圧計、情報処理装置、測定管理システム、測定管理プログラム、および測定管理方法
JP5092885B2 (ja) 電子血圧計
JP2010068922A (ja) 電子血圧計および血圧測定制御方法
JP2013090824A (ja) 電子血圧計
WO2024053166A1 (ja) 血圧計
JP2012115413A (ja) 電子血圧計
JP2020116364A (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP2012196322A (ja) 血圧測定装置
JP2010035775A (ja) 電子血圧計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152933.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834494

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010543900

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120090038018

Country of ref document: DE

Ref document number: 112009003801

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2011131057

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09834494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

Effective date: 20110628