JP4798031B2 - 血圧測定装置 - Google Patents

血圧測定装置 Download PDF

Info

Publication number
JP4798031B2
JP4798031B2 JP2007071234A JP2007071234A JP4798031B2 JP 4798031 B2 JP4798031 B2 JP 4798031B2 JP 2007071234 A JP2007071234 A JP 2007071234A JP 2007071234 A JP2007071234 A JP 2007071234A JP 4798031 B2 JP4798031 B2 JP 4798031B2
Authority
JP
Japan
Prior art keywords
measurement
fluid
control
cuff
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007071234A
Other languages
English (en)
Other versions
JP2008228916A (ja
JP2008228916A5 (ja
Inventor
佳彦 佐野
新吾 山下
正夫 橋本
尚樹 森
和延 糸永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Healthcare Co Ltd
Original Assignee
Omron Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co Ltd filed Critical Omron Healthcare Co Ltd
Priority to JP2007071234A priority Critical patent/JP4798031B2/ja
Priority to PCT/JP2007/071774 priority patent/WO2008114474A1/ja
Priority to TW97109420A priority patent/TWI437975B/zh
Publication of JP2008228916A publication Critical patent/JP2008228916A/ja
Publication of JP2008228916A5 publication Critical patent/JP2008228916A5/ja
Application granted granted Critical
Publication of JP4798031B2 publication Critical patent/JP4798031B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

この発明は血圧測定装置に関し、特に、生体にカフを固定することのできる血圧測定装置に関する。
血圧を測定する際、血圧測定用流体袋を含む阻血帯であるカフを生体の一部に巻き付けた後固定し、流体袋を加減圧する。このように、生体の一部に巻いたカフ圧を加減圧することにより、圧迫された血管の容積変化をカフ圧変動の振幅変化として捕らえ、血圧算出する手法はオシロメトリック法と言われる。
オシロメトリック法を用いた電子血圧計としては、カフ圧を加圧する過程のカフ圧変動の振幅変化に基づいて血圧を算出する方式と、設定カフ圧まで加圧した後に減圧する過程のカフ圧変動の振幅変化に基づいて血圧を算出する方式とがある。後者の方式の場合には、始めに血圧算出に必要なカフ圧以上の設定カフ圧まで加圧するため、流体袋内に流体を注入するためのポンプに要求される吐出流量が前者の方式に比べて大きくなり、ポンプを大型化する必要がある。また、測定開始後に設定カフ圧まで加圧するステップがあるために、前者の方式に比べて測定時間が長くなる。また、血圧算出に必要なカフ圧以上の設定カフ圧まで加圧するため、前者の方式に比べて測定部位にかかる圧力が高く、被測定者にとっては圧迫される際の痛みを感じる場合がある。そのため、電子血圧計の小型化、高速化、および被験者への負担の削減を図る場合には、前者の方式が採用される場合が多い。
カフ圧を加圧する過程で血圧を算出する前者の方式では、カフ圧を微速に等加圧速度で上昇させるように加圧する。カフ圧を加圧する過程でのカフ圧の加圧速度は、カフ容積、測定部位のサイズ、および測定箇所の人体の組織の柔らかさなどの影響を受ける。また、カフ圧の加圧速度は、カフ圧の変化自体にも影響を受ける。
これらのカフの加圧速度は、カフ圧変動の振幅変化から検出される圧脈波の形状に影響を受ける。測定時にカフの加圧速度が変化すると圧脈波形状が変化し、血圧測定精度に影響を及ぼす。このカフの加圧速度はカフ容量と圧力とに大きく関係し、その関係を示す1つの指標としてカフコンプライアンスが用いられる。カフコンプライアンスとは、カフ圧力の変化に対するカフの容積変化を示す数値を指し、カフ圧がΔP変化したときのカフの容積変化をΔVとすると、カフ圧PについてのカフコンプライアンスCpはCp=ΔV/ΔPで表わされる。つまり、カフコンプライアンスとは、カフ圧を1mmHg減圧(または加圧)するのに必要な空気容量を示す。
また、カフコンプライアンスCpはカフ圧Pの関数であり、図18は、カフコンプライアンスCpとカフ圧Pとの関係を示した概略図である。図18を参照して、カフ圧Pが低いときには同じ空気容量を入れてもあまりカフ圧は上昇しないが、カフ圧Pが高くなっていくと少しの容量を入れることでカフ圧が上昇しやすくなる。そのため、図18に示されるように、カフコンプライアンスCpはカフ圧Pが低圧になるほど大きくなる。
カフコンプライアンスCpは、図18に示されるように、測定部位(腕)のサイズ(腕周)や、カフのサイズ(容積)などに影響される。図18を参照して、カフのサイズが小さく測定部位のサイズが小さい場合にはカフコンプライアンスCpは小さく、カフのサイズが大きく測定部位のサイズが大きい場合にはカフコンプライアンスCpは大きい。
カフ圧を加圧速度Vの等速加圧するために必要な吐出流量Qは、カフコンプライアンスCpに設定加圧速度Vと単位時間とを乗じて得られる(Q=Cp×V×60)。つまり、図18の関係より、カフのサイズおよび測定部位のサイズごとの、カフ圧を等加圧速度Vで加圧する際に必要な吐出流量Qとカフ圧Pとの関係は、図19に示される。図18に示された関係および図19に示された関係より、カフのサイズが小さく測定部位のサイズが小さいほど、少しの空気量でカフ圧が加圧され、カフのサイズが大きく測定部位のサイズが大きいほど、カフ圧を加圧(または減圧)するのに多くの空気量が要されることが示されている。
カフ容積、測定部位のサイズ、および測定箇所の人体の組織の柔らかさなどにより一定流量を加圧してもカフ圧の変化が異なるため、カフ圧の加圧時に単位時間あたりのカフ圧上昇値を検出して微速加圧速度が所定の目標加圧速度となるようポンプに印加される電圧(以下、ポンプ電圧)および電流をフィードバック制御してポンプの吐出流量を制御し、カフ容積および人体サイズなどに応じて目標の加圧速度になるようにカフ圧の加圧速度を制御する方法がある。その方法として、たとえば、特開2006−129920号公報(以下、特許文献1)では、等速加圧方法として、測定開始から所定圧力に加圧した後に微速加圧に移行し、2点の圧力に対応する圧力値と時間差とから平均加圧速度を求め、求めた速度と目標加圧速度との差から目標加圧速度になるよう加圧手段のポンプ電圧をフィードバック制御してポンプの吐出流量を制御し、カフ圧の加圧速度を制御する方法を開示している。
特開2006−129920号公報
しかしながら、特許文献1に開示されているような、加圧手段であるポンプ電圧をフィードバック制御して微速加圧速度を所定の目標加圧速度となるよう制御する方法は、ポンプの特性によって制御可能なポンプ電圧の範囲が制限され、測定可能なカフのサイズ(容量)や測定部位のサイズが制限されるという問題があった。
具体的には、ポンプ電圧を最小電圧(min)で動作させた時の吐出流量Qを吐出流量QMIN、ポンプ電圧を最大電圧(MAX)で動作させた時の吐出流量Qを吐出流量QMAXとし、カフ圧を等加圧速度Vで加圧する際に必要な吐出流量Qとカフ圧Pとの関係を図20に示すと、吐出流量QMINから吐出流量QMAXまでの範囲Hがカフ圧を等加圧速度で加圧するようポンプ電圧で制御し得る吐出流量Qの範囲(制御範囲と称する)と言える。
カフ圧を等加圧速度で加圧する際に必要な吐出流量Qが上記制御範囲H内であり、図20においてカフのサイズおよび測定部位のサイズが制御範囲H内である場合、ポンプ電圧を制御することでカフ圧を等加圧速度で加圧するよう制御が可能である。
しかしながら、図19に示されたように、カフのサイズが小さく測定部位のサイズが小さいほどカフ圧を等加圧速度で加圧する際に必要な吐出流量Qが少なく、カフのサイズが大きく測定部位のサイズが大きいほど必要な吐出流量Qが多い。そのため、速度Vで等速加圧するために必要な吐出流量が吐出流量QMAXよりも多く、図20において制御範囲Hよりも上に位置するカフのサイズおよび測定部位のサイズである場合には、つまりカフのサイズおよび測定部位のサイズがポンプ電圧で制御可能な範囲よりも大きい場合には、カフ圧の加圧速度が目標とする加圧速度Vよりも遅くなる。また、必要な吐出流量が吐出流量QMINよりも少なく、図20において制御範囲Hよりも下に位置するカフのサイズおよび測定部位のサイズである場合には、つまりカフのサイズおよび測定部位のサイズがポンプ電圧で制御可能な範囲よりも小さい場合には、カフ圧の加圧速度が目標とする加圧速度Vよりも速くなる。
特に、カフ容量が非常に小さく測定部位のサイズが小さい場合には上記問題が顕著に現れる。この場合には上述のようにカフ圧の加圧速度が目標の加圧速度よりも速くなってしまうために、血圧算出する圧脈波情報が少なくなり、高い測定精度が得られない場合があるという問題がある。
電子血圧計のカフ加圧手段としてダイヤフラムポンプを採用した場合、ポンプの吐出流量とカフ圧との関係は、カフ圧が高くなればダイヤフラムの容積変化から発生した圧力とカフ圧との差が縮まってポンプの吐出流量が少なくなるという関係にある。また、ポンプを駆動させるモータの電圧に応じて回転数が変化し、吐出流量が変化する。これにより、電子血圧計にダイヤフラムポンプが用いられている場合、ポンプの吐出流量とカフ圧との関係に基づいてポンプのモータ電圧を制御することで、フィードバック制御により目標の加圧速度になるようカフ圧の加圧速度が制御される。このとき、カフ容量が非常に小さく測定部位のサイズが小さい場合には、カフ圧を速度Vで等速加圧するためにはポンプのモータ電圧を最小電圧(min)以下とし、さらに回転数を抑える必要がある。しかしながら、このように制御されると、モータ駆動トルクが下がり、ポンプのモータ電圧とモータが停止するロック電圧との差が小さくなってポンプが停止し、加圧不可となって血圧測定できないという問題が発生する。なお、以降の説明においては、ポンプのモータ電圧をポンプ電圧と称する。
この発明はこのような問題に鑑みてなされたものであって、様々な測定部位のサイズとそれに対応させた様々なカフサイズに対して、特に、カフサイズが小さく、測定部位のサイズが小さい場合にも等速加圧が可能で精度よく血圧測定することができる血圧測定装置を提供することを目的とする。
上記目的を達成するために、本発明のある局面に従うと、血圧測定装置は、測定用流体袋と、測定用流体袋に流体を供給する供給手段と、測定用流体袋から流体を排出する排出手段と、測定用流体袋の内圧を測定するセンサと、測定用流体袋を測定部位に固定する固定手段と、測定部位に固定された測定用流体袋に供給手段で流体を供給する過程において、測定用流体袋の内圧が設定された加圧速度で変化するときにセンサで得られる測定用流体袋の内圧に基づいて、血圧を算出する算出手段と、供給手段における流体の供給量を制御する供給制御手段とを備え、排出手段は、測定用流体袋から体を排出するための弁と、弁の開閉を制御して弁からの流体の排出量を制御する排出制御手段とを含む。排出手段は、測定用流体袋に供給手段で流体を供給する過程において、測定用流体袋の内圧変化に応じた流量の流体を測定用流体袋から排出し、供給制御手段は、測定用流体袋に供給手段で流体を供給する過程においてセンサで得られる測定用流体袋の内圧の加圧速度と設定された加圧速度とが一致しないときに、それらを一致させるように供給手段での流体の供給量を増減させる制御を行ない、排出制御手段は、供給手段での流体の供給量が供給制御手段によって制御可能な供給量の下限に達しても測定用流体袋の内圧の加圧速度と設定された加圧速度とが一致しないときに、それらを一致させるように弁からの流体の排出量を増減させる制御を行なう
より好ましくは、排出制御手段は、測定用流体袋の内圧の加圧速度が設定された加圧速度よりも遅いときには、弁を閉じる方向に制御して弁からの流体の排出量を減少させる制御を行ない、その制御によって弁からの流体の排出量がなくなったときには、その制御を終了し、供給制御手段は、測定用流体袋の内圧の加圧速度と設定された加圧速度とを一致させるように供給手段での流体の供給量を増加させる制御を行なう。
より好ましくは、血圧測定装置は供給手段における流体の供給量を制御する供給制御手段をさらに含み、排出制御手段は、測定用流体袋の内圧の加圧速度が設定された加圧速度よりも遅いときには、弁を閉じる方向に制御して弁からの流体の排出量を減少させる制御を行ない、その制御によって弁からの流体の排出量がなくなったときには、その制御を終了し、供給制御手段は、測定用流体袋の内圧の加圧速度と設定された加圧速度とを一致させるように供給手段での流体の供給量を増減させる制御を行なう。
また好ましくは、血圧測定装置は測定用流体袋に供給手段で流体を供給する際の供給量の初期値を設定する設定手段をさらに含む。
より好ましくは、設定手段は、供給量の初期値を、測定用流体袋の容積との対応関係に応じて設定する。または、より好ましくは、設定手段は、供給量の初期値を、測定用流体袋の内圧の加圧速度に応じて初期設定する。または、より好ましくは、設定手段は測定用流体袋の容積を検出する手段を含み、供給量の初期値を、測定用流体袋の容積との対応関係に応じて設定する。
また好ましくは、排出制御手段は、測定用流体袋に供給手段で流体を供給する過程の初期状態において弁を閉じて測定用流体袋から流体を排出しないように制御し、上記過程において、測定用流体袋の内圧の加圧速度と設定された加圧速度とが一致するように、弁からの流体の排出量を増加させる制御を行なう。
または、好ましくは、排出制御手段は、測定用流体袋に供給手段で流体を供給する過程の初期状態において弁を開いて測定用流体袋から流体を所定量排出し、上記過程において、測定用流体袋の内圧の加圧速度と設定された加圧速度とが一致するように、弁を閉じる方向に制御し、流体の排出量を減少させる制御を行なう。
なお、好ましくは、上記排出手段はコントロール弁を含む
本発明にかかる血圧測定装置を用いると、カフ圧を加圧する過程のカフ圧変動の振幅変化に基づいて血圧を算出する方式を採用して血圧を測定する際に、様々な測定部位のサイズとそれに対応させた様々なカフサイズに対して精度よく血圧測定することができ、特に、カフサイズが小さく、測定部位のサイズが小さい場合に精度よく血圧測定することができる。
以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。
図1は、本実施の形態にかかる血圧測定装置(以下、血圧計)1の外観の具体例を示す斜視図である。
図1を参照して、本実施の形態にかかる血圧計1は、主に、本体2と、測定部位である上腕に巻付ける腕帯5とを備え、それらがエア管10で接続される。本体2の正面には、測定の開始/停止を指示するためのスイッチ3−1、記録されている過去のデータ等を呼出して表示させることを指示するためのスイッチ3−2、および時計を設定する操作を行なうためのスイッチ3−3などを含んだ操作部3と、表示器4とが配備される。腕帯5には測定用空気袋13(図3参照)が配置され、腕帯5を測定部位である上腕に巻付けることで測定用空気袋13が測定部位に押付けられる。測定用空気袋13は後述する測定用エアー系20(図3参照)によって膨張/縮小する。
[第1の実施の形態]
第1の実施の形態にかかる血圧計1では、スイッチ3−1が押されて測定動作が開始してから完了するまで、図2に示される動作が行なわれる。詳しくは、図2を参照して、血圧計1では、スイッチ3−1が押されると、始めに、測定用空気袋13をの内圧を等加圧速度で加圧する制御である等速加圧制御が実行され(ステップS1)、所定のタイミングで、さらに血圧測定が実行される(ステップS2)。ステップS1の等速加圧制御およびステップS2の血圧測定は、血圧値が決定されるまで繰返され、決定すると(ステップS3でYES)、一連の動作が終了して測定が完了する。
図3は、第1の実施の形態にかかる血圧計1の、測定用空気袋13の内圧(カフ圧)の加減圧を制御し血圧測定するための機能構成の具体例を示すブロック図である。
図3を参照して、血圧計1は上記測定用空気袋13を含み、測定用エアー系20に接続されている。測定用エアー系20には、測定用空気袋13の内圧を測定する圧力センサ23、測定用空気袋13に対する給気/排気を行なうポンプ21、およびコントロール弁22が含まれる。
また、血圧計1には、血圧計1全体を制御するCPU(Central Processing Unit)40と、測定用エアー系20に接続される増幅器28、ポンプ駆動回路26、および弁駆動回路27と、増幅器28に接続されるA/D(Analog to Digital)変換器29と、CPU40で実行されるプログラムや測定結果を記憶するメモリ部41と、測定結果等を表示する表示器4と、操作部3とが含まれる。
CPU40は、操作部3から入力される操作信号に基づいてメモリ部41に記憶されている所定のプログラムを実行し、ポンプ駆動回路26および弁駆動回路27に制御信号を出力する。ポンプ駆動回路26および弁駆動回路27は、制御信号に従ってポンプ21およびコントロール弁22を駆動させ、血圧測定動作を実行させる。
圧力センサ23は測定用空気袋13の内圧を検出し、検出信号を増幅器28に入力する。入力された圧力信号は増幅器28において所定振幅まで増幅され、A/D変換器29においてデジタル信号に変換された後にCPU40に入力される。CPU40は、圧力センサ23から得られた測定用空気袋13の内圧に基づいて所定の処理を実行し、その結果に応じてポンプ駆動回路26および弁駆動回路27に上記制御信号を出力する。また、CPU40は、圧力センサ23から得られた測定用空気袋13の内圧に基づいて血圧値を算出し、測定結果を表示器4に表示させるために出力する。
コントロール弁22は、測定用空気袋13内の空気の排出を制御する弁であり、CPU40からの制御信号に従った弁駆動回路27によってその開閉が制御される。その構成は本発明において特定の構成に限定されないが、具体例としては、特許第3107916号公報に記載されている流量コントロール弁や、WO98/34538国際公開公報に記載されている電動排気装置などの機構を採用することができる。
より具体的には、特許第3107916号公報に開示されている流量コントロール弁は、弾性部材で形成されたパッキンを介して流出口を開閉するための駆動軸を含み、駆動軸の駆動が制御されることで、パッキンが流出口に押付けられ、または流出口から離れて、流体の流出が制御される。さらに、流出口の端部は駆動軸の移動方向と直交する平坦面であり、パッキンの、流出口に対する面は駆動軸の移動方向と直交する平坦面であることが開示されている。パッキンの形状の具体例として、上記公報には、流出口に対する面が斜めにカットされた円筒形状が示されている。パッキンがこのような形状であるため、駆動軸が徐々に駆動しパッキンが流出口から離れて流出口が解放されたときに流出口が一挙に解放されることがなく、閉塞されていた空気がパッキンの斜めの角度に従って徐々に排気されることになる。
コントロール弁22が上記流量コントロール弁の機構を採用したものである場合、コントロール弁22は、弁駆動回路27で駆動が制御される、弾性部材で形成されたパッキンを介して流出口を開閉するための駆動軸を含む。パッキンの形状は、一例として流出口に対する面が斜めにカットされた円筒形状であり、弁駆動回路27によって駆動軸が測定用空気袋13の流出口から離れるように駆動した場合に、測定用空気袋13内の空気がパッキンの斜めの角度に従って徐々に排気される。なお、いうまでもなく、コントロール弁22はこのような形状に限定されるものではないが、上述のように、弁駆動回路27の制御で測定用空気袋13内の空気を徐々に排気することが可能な機構を備えることが好ましい。
図4は、コントロール弁22の開閉を制御するために弁駆動回路27で印加される制御電圧Vとコントロール弁22からの排気流量Qとの関係を示す図である。図4を参照して、これらの関係は、制御電圧Vが高いほどパッキンを介して駆動軸が測定用空気袋13の流出口に強く押付けられるためにコントロール弁22からの排気流量Qは少なく、制御電圧Vが低いとパッキンを介して駆動軸が測定用空気袋13の流出口に押付けられる力が小さくなるためにコントロール弁22からの排気流量Qが多い、という関係である。さらに、測定用空気袋13の内圧(カフ圧)P1〜P3がその順に高くなる関係である場合(P1<P2<P3)、図4に示されるように、所定の制御電圧Vにおける排気流量Qはカフ圧Pが高いほど多くなり、また、排気流量Qを所定流量とするためにはカフ圧Pが高いほど必要な制御電圧Vが高くなる、という関係であることが分かっている。図4に示された制御電圧Vとコントロール弁22からの排気流量Qとの関係より、カフ圧Pとコントロール弁22からの排気流量Qとの関係は、図5に示される関係であることが導き出される。詳しくは、図5を参照して、カフ圧Pが高くなるほどコントロール弁22からの排気流量Qは増加する。また、コントロール弁22の開閉を制御するための制御電圧V1〜V3がその順に高くなる関係である場合(V1<V2<V3)、所定のカフ圧Pにおいては、制御電圧Vが高いほどコントロール弁22からの排気流量Qは少なく、制御電圧Vが低いと排気流量Qが多い。
以降の説明では、図20を用いて説明されたように、ポンプ21の吐出流量Qを制御するための電圧(以下、ポンプ電圧)を最小電圧(min)として測定用空気袋13の内圧(カフ圧)をP1からP2まで加圧した時の吐出流量Qを吐出流量QMIN、ポンプ電圧を最大電圧(MAX)としてカフ圧をP1からP2まで加圧した時の吐出流量Qを吐出流量QMAXとしたときの、吐出流量QMINから吐出流量QMAXまでの範囲Hをポンプ21の「制御範囲」と称する。ポンプ21の制御範囲Hは、カフ圧を等加圧速度で加圧するようポンプ電圧で制御し得るポンプ21の吐出流量Qの範囲である。
また、カフ圧を加圧速度Vで加圧するために必要なポンプ21の吐出流量Qを、カフの「必要加圧流量」を称する。必要加圧流量は、上述のように、カフのサイズおよび測定部位のサイズが小さいほど少なく、カフのサイズおよび測定部位のサイズが大きくなると多くなる。
本実施の形態では、図20に示されたように、測定用空気袋13の容量(カフのサイズ)および測定部位のサイズにおける必要加圧流量がポンプ21の制御範囲Hよりも下に位置する場合、つまりカフのサイズおよび測定部位のサイズがカフ圧を等加圧速度で加圧するようポンプ電圧で制御可能な範囲よりも小さい場合において、上記ステップS1での等速加圧制御における制御方法である、カフ圧を予め設定されている目標の等加圧速度で加圧するように制御する制御方法について説明する。以降の説明で、予め設定されている目標の等加圧速度を「目標速度」と称する。
[制御方法1]
図6は、ステップS1での等速加圧制御における制御方法1を説明する図である。制御方法1は、ポンプ電圧を少なくとも最小電圧(min)として、カフ圧を目標速度で加圧するように、CPU40においてポンプ21の吐出流量Qおよびコントロール弁22からの排気流量を制御する方法である。カフ圧をP1からP2まで等加圧速度で加圧する時、カフ圧をP0からP1まで加圧する過程(過程I)においてカフの加圧速度を検出し、その速度が目標速度よりも速い場合には、制御方法1にかかる処理が実行される。
詳しくは、図6(A)は、制御方法1での、必要加圧流量Qとカフ圧Pとの関係を示している。図6(A)を参照して、制御方法1では、カフ圧をP0からP1まで加圧する過程(過程I)において、ポンプ21の吐出流量Qを下げるように、少なくとも最小電圧(min)となるようポンプ電圧を設定する。さらに、そのポンプ電圧の設定でもカフ圧の加圧速度が目標速度よりも速い場合はポンプの吐出流量が多く出過ぎているため、カフの必要加圧流量が設定されたポンプ電圧での吐出流量Qと一致するまで、コントロール弁22からエアを漏らす制御を行なう。この制御で、過程Iにおいてカフの等速加圧するための必要加圧流量が少なくとも最小電圧(min)のポンプ電圧でのポンプ21の吐出流量QMINにまで引き上げられる。
次に、カフ圧をP1からP2まで加圧する過程(過程II)において、カフの必要加圧流量が設定されたポンプ電圧のときのポンプ21の吐出流量と一致する(一致した状態を保持する)ように、所定量解放されているコントロール弁22を徐々に閉じてコントロール弁22からの排気流量を減らす方向に制御しつつ、設定されたポンプ電圧でカフ圧を加圧する。この制御で、過程IIにおいてカフ圧が等加圧速度で加圧される。
さらに制御方法1において、上記過程Iでコントロール弁22からの排気流量を制御する方法として、図6(B)に示される2つの方法(パターン1,パターン2)とが採用され得る。図6(B)は、制御方法1での、コントロール弁からの排気流量Qとカフ圧Pとの関係を示している。図6(B)を参照して、パターン1は、コントロール弁22を初期状態において少なくとも一部を解放しておき、そのときの排気流量Qから設定されたポンプ電圧での吐出流量Qと一致するまで排気流量を減少させるように、上記過程Iでコントロール弁22を閉じる方向に制御する方法である。パターン2は、コントロール弁22を初期状態において閉じておき、そのときの排気流量Q0から設定されたポンプ電圧での吐出流量Qと一致するまで排気流量を増加させるように、上記過程Iでコントロール弁22を解放する方向に制御する方法である。
なお、過程IIにおいてコントロール弁22が完全に閉じ、その時点以降のカフの必要加圧流量がポンプ21の制御範囲H内となる場合、つまり、過程IIにおいてある時点以降は、通常の、ポンプ電圧の制御のみでカフ圧を等加圧速度で加圧することが可能である場合には、図7(A)に示されるような制御が行なわれる。図7(A)は、制御方法1での、必要加圧流量Qとカフ圧Pとの関係を示している。カフ圧がPa(P1<Pa<P2)の時点でカフの必要加圧流量が設定された最小電圧(min)であるポンプ電圧での吐出流量QMINと一致したものとし、カフ圧がP1からP2まで加圧される過程IIのうちのP1からPaまで加圧される過程を過程II−1、PaからP2まで加圧される過程を過程II−2とする。
図7(B)は、制御方法1での、コントロール弁からの排気流量Qとカフ圧Pとの関係を示している。図7(B)を参照して、この場合、図7(B)に示されるように、過程II−1においてコントロール弁22が完全に閉じ、カフの必要加圧流量が吐出流量QMINと一致すると、コントロール弁22の制御を終了し、過程II−2において、ポンプ21の吐出流量Qがカフの必要加圧と一致するようにポンプ電圧を制御する。この制御で、過程II−2においてカフ圧が等加圧速度で加圧される。
図8は、上記ステップS1での等速加圧制御において制御方法1における制御を行なう場合の血圧計1での動作を示すフローチャートであって、図2のステップS1の詳細を表わしたフローチャートである。図8のフローチャートに示される処理は、上記過程Iにおいてコントロール弁22からの排気流量を上述のパターン2の方法で制御する場合、つまりコントロール弁22を初期状態において完全に閉じておき、上記過程Iにおいて開ける方向に制御する場合の処理である。図8のフローチャートに示される処理は、CPU40がメモリ部41に記憶されるプログラムを読出して実行し、図3に示される各部を制御することで実現される。
図8を参照して、血圧計1では、スイッチ3−1が押されると、始めに、ステップS11において、CPU40でコントロール弁22の制御電圧Yがコントロール弁22を完全に閉じる電圧値Y1に設定される。その後、ステップS13において、CPU40でポンプ電圧Xが最大電圧(MAX)に対して(少なくとも最小電圧(min)程度に)十分に低い初期電圧値X1に設定される。
次に、CPU40において、圧力センサ23からのセンサ信号に基づいてカフ圧の加圧速度を得、加圧速度が設定されている目標速度と一致しているか否か、およびポンプ電圧Xが最小電圧(min)に達しているか否かが判断される(ステップS15)。
ステップS15でCPU40においてこれらのいずれの条件も満たされていないと判断された場合(ステップS15でNO)、つまり、カフ圧の加圧速度が目標速度と一致しておらず、かつ、ポンプ電圧Xが最小電圧(min)に達していないことが判断されると、カフ圧の加圧速度が目標速度よりも早い場合には(ステップS17でYES)、CPU40において、ポンプ電圧Xを所定値(α1)分減少させるように設定されて(ステップS19)、再度、上記ステップS15の判断が実行される。一方、カフ圧の加圧速度が目標速度よりも遅い場合には(ステップS17でNO)、CPU40において、ポンプ電圧Xを所定値(α1)分増加させるように設定されて(ステップS21)、再度、上記ステップS15の判断が実行される。つまり、CPU40は、ポンプ電圧Xが最小電圧(min)に達するまで、またはカフ圧の加圧速度が目標速度と一致するまでは、カフ圧の加圧速度が目標速度よりも早い場合にはポンプ21の吐出流量を下げ、カフ圧の加圧速度が目標速度よりも遅い場合にはポンプ21の吐出流量を上げるよう制御する。ステップS15〜S21の処理は、CPU40においてステップS15で上記2条件のいずれか一方が満たされたことが判断されるまで繰返される。
上記ステップS19が繰返されて、ステップS15でCPU40においてポンプ電圧Xが最小電圧(min)に達したと判断されると(ステップS15でYES)、そのときにカフ圧の加圧速度が目標速度よりも早い場合には(ステップS23でNO,かつS25でYES)、カフ圧の加圧速度が目標速度と一致するまで、コントロール弁22の制御電圧Yを所定値(β1)分減少させる処理(ステップS27)、つまりコントロール弁22を開ける方向の制御が繰返される。一方、カフ圧の加圧速度が目標速度よりも遅い場合には(ステップS23でNO,かつS25でNO)、カフ圧の加圧速度が目標速度と一致するまで、コントロール弁22の制御電圧Yを所定値(β1)分増加させる処理(ステップS29)、つまりコントロール弁22を閉じる方向の制御が繰返される。なお、上記ステップS29の処理が繰返される中で、コントロール弁22の制御電圧Yが電圧値Y1に達したと判断されると(ステップS30でYES)、つまりコントロール弁22が完全に閉じたことが検出されると、ステップS15からの処理が繰返される。
ステップS15でCPU40においてカフ圧の加圧速度が目標速度に一致したことが判断されると(ステップS15でYES,かつS23でYES)、上記ステップS2の血圧測定が開始される。
上記ステップS15〜S30の処理およびステップS2の血圧測定は、血圧値が決定されるまで繰返され、決定すると(ステップS3でYES)、一連の動作が終了して測定が完了する。
図9は、上記ステップS1での等速加圧制御において制御方法1における制御を行なう場合の血圧計1での動作を示すフローチャートであって、図2のステップS1の詳細を表わしたフローチャートである。図9のフローチャートに示される処理は、上記過程Iにおいてコントロール弁22からの排気流量を上述のパターン1の方法で制御する場合、つまりコントロール弁22を初期状態において少なくとも一部を解放しておき、上記過程Iにおいて閉じる方向に制御する場合の処理である。図9のフローチャートに示される処理もまた血圧測定が開始されたときに実行される処理であって、CPU40がメモリ部41に記憶されるプログラムを読出して実行し、図3に示される各部を制御することで実現される。
図9を参照して、血圧計1では、スイッチ3−1が押されると、始めに、ステップS31において、CPU40でコントロール弁22の制御電圧Yがコントロール弁22の少なくとも一部を解放するような所定の電圧値Y2に設定され、コントロール弁22が解放される。その後、ステップS33において、CPU40でポンプ電圧Xが最大電圧(MAX)に対して(少なくとも最小電圧(min)程度に)十分に低い初期電圧値X1に設定される。
次に、CPU40において、その状態において圧力センサ23からのセンサ信号に基づいてカフ圧の加圧速度を得、加圧速度が設定されている目標速度と一致しているか否か、およびコントロール弁22の制御電圧Yがコントロール弁22を完全に閉じる電圧値Y1に達しているか否かが判断される(ステップS35)。
ステップS35でCPU40においてこれらのいずれの条件も満たされていないと判断された場合(ステップS35でNO)、つまり、カフ圧の加圧速度が目標速度と一致しておらず、かつ、コントロール弁22の制御電圧Yがコントロール弁22を完全に閉じる電圧値Y1に達していないことが判断されると、カフ圧の加圧速度が目標速度よりも早い場合には(ステップS37でYES)、CPU40において、コントロール弁22の制御電圧Yを所定値(α2)分減少させるように設定されて(ステップS39)、再度、上記ステップS35の判断が実行される。一方、カフ圧の加圧速度が目標速度よりも遅い場合には(ステップS37でNO)、CPU40において、コントロール弁22の制御電圧Yを所定値(α2)分増加させるように設定されて(ステップS41)、再度、上記ステップS5の判断が実行される。つまり、CPU40は、コントロール弁22が完全に閉じるまで、またはカフ圧の加圧速度が目標速度と一致するまでは、カフ圧の加圧速度が目標速度よりも早い場合にはコントロール弁22を少し開けてコントロール弁22からの排気流量を上げ、カフ圧の加圧速度が目標速度よりも遅い場合にはコントロール弁22を少し閉めてコントロール弁22からの排気流量を下げるよう制御する。ステップS35〜S41の処理は、CPU40においてステップS35で上記2条件のいずれか一方が満たされたことが判断されるまで繰返される。
上記ステップS41が繰返されて、ステップS35でCPU40においてコントロール弁22の制御電圧Yが電圧値Y1に達してコントロール弁22が完全に閉じたと判断されると(ステップS35でYES)、そのときにカフ圧の加圧速度が目標速度よりも早い場合には(ステップS43でNO,かつS45でYES)、カフ圧の加圧速度が目標速度と一致するまで、ポンプ電圧Xを所定値(β2)分減少させる処理(ステップS47)、つまりポンプ21の吐出流量を下げる方向の制御が繰返される。一方、カフ圧の加圧速度が目標速度よりも遅い場合には(ステップS43でNO,かつS45でNO)、カフ圧の加圧速度が目標速度と一致するまで、ポンプ電圧Xを所定値(β2)分増加させる処理(ステップS49)、つまりポンプ21の吐出流量を上げる方向の制御が繰返される。
ステップS35でCPU40においてカフ圧の加圧速度が目標速度に一致したことが判断されると(ステップS35でYES)、または上記処理が繰返されてステップS43でカフ圧の加圧速度が目標速度に一致したことが判断されると(ステップS43でYES)、上記ステップS2の血圧測定が開始される。
上記ステップS35〜S49の処理およびステップS2の血圧測定は、血圧値が決定されるまで繰返され、決定すると(ステップS3でYES)、一連の動作が終了して測定が完了する。
本実施の形態にかかる血圧計1のCPU40において、上記ステップS1で以上の制御方法1にかかる等速加圧制御が実行されることで、カフのサイズおよび測定部位のサイズが小さく、カフの必要加圧流量がポンプ電圧を最小電圧(min)とした時の吐出流量QMINよりも小さく、ポンプ電圧を最小電圧(min)としてもカフ圧を等加圧速度で加圧することができない場合であっても、コントロール弁22からの排気流量を制御することでカフの必要加圧流量が調整されて、カフ圧を等加圧速度で加圧することができる。その結果、カフのサイズおよび測定部位のサイズが小さい場合であっても、精度よく目標値の加圧速度で加圧することができる。
[制御方法2−1]
図10は、ステップS1での等速加圧制御における制御方法2−1を説明する図である。制御方法2−1は、ポンプ電圧を所定電圧値に設定し、設定したポンプ電圧でカフ圧を目標の等加圧速度で加圧するように、CPU40においてコントロール弁22からの排気流量を制御する方法である。カフ圧をP1からP2まで等加圧速度で加圧する時、カフ圧をP0からP1まで加圧する過程(過程I)においてカフの加圧速度を検出し、その速度が目標速度よりも速い場合には、上記ステップS1で制御方法2−1にかかる処理が実行される。
詳しくは、図10は、制御方法2−1での、必要加圧流量Qとカフ圧Pとの関係を示している。図10を参照して、制御方法2−1では、予めポンプ電圧が所定電圧値VSに設定される。以降の説明では、所定電圧値VSを「基本電圧VS」と称し、ポンプ電圧が基本電圧VSであるときのポンプ21の吐出流量を基本流量QSとする。カフ圧をP0からP1まで加圧する過程Iにおいて、カフの必要加圧流量が基本流量QSと一致するまで、コントロール弁22からの排気流量を制御する。この制御で、過程Iにおいてカフの必要加圧流量が基本流量QSまで引き上げられる。すなわち、過程Iにおいては、ポンプ流量を基本流量QSとし加圧速度Vで等速加圧できるように、コントロール弁22からカフ内の空気を漏らす制御を行なう。
次に、カフ圧をP1からP2まで加圧する過程IIにおいて、カフの必要加圧流量が基本流量QSと一致する(一致した状態を保持する)ように、所定量解放されているコントロール弁22を徐々に閉じてコントロール弁22からの排気流量を減らす方向に制御しつつ、設定されたポンプ電圧を基本電圧VSとしてカフ圧を加圧する。この制御で、過程IIにおいてカフ圧が等加圧速度で加圧される。
さらに制御方法2−1においても、上記過程Iでコントロール弁22からの排気流量を制御する方法として、図6(B)を用いて説明された2つの方法(パターン1,パターン2)とが採用され得る。
なお、カフのサイズおよび測定部位のサイズがカフの必要加圧流量が基本流量QS以上となる大きさであり、カフ圧の加圧速度が目標速度よりも遅い場合には、カフ圧を目標速度で加圧するよう、吐出流量QMINから吐出流量QMAXまでの制御範囲Hのうち、基本流量QSから吐出流量QMAXまでの制御範囲でポンプ電圧を制御する。
図11は、上記ステップS1での等速加圧制御において制御方法2−1における制御を行なう場合の血圧計1での動作を示すフローチャートであって、図2のステップS1の詳細を表わしたフローチャートである。図11のフローチャートに示される処理は、上記過程Iにおいてコントロール弁22からの排気流量を上述のパターン2の方法で制御する場合、つまりコントロール弁22を初期状態において完全に閉じておき、上記過程Iにおいて開ける方向に制御する場合の処理である。図11のフローチャートに示される処理もまた、CPU40がメモリ部41に記憶されるプログラムを読出して実行し、図3に示される各部を制御することで実現される。
図11を参照して、始めに、ステップS61において、CPU40でコントロール弁22の制御電圧Yがコントロール弁22を完全に閉じる電圧値Y1に設定される。その後、ステップS63において、CPU40でポンプ電圧Xが予め設定されている基本電圧値VSに設定される。
次に、CPU40において、圧力センサ23からのセンサ信号に基づいてカフ圧の加圧速度を得、加圧速度が設定されている目標速度と一致しているか否かが判断される(ステップS65)。
ステップS65でCPU40においてカフ圧の加圧速度が目標速度と一致していないと判断された場合(ステップS65でNO)、カフ圧の加圧速度が目標速度よりも早い場合には(ステップS67でYES)、CPU40において、カフ圧の加圧速度が目標速度と一致するまで、コントロール弁22の制御電圧Yを所定値(β3)分減少させる処理(ステップS69)、つまりコントロール弁22を開ける方向の制御が繰返される。一方、カフ圧の加圧速度が目標速度よりも遅い場合には(ステップS67でNO)、カフ圧の加圧速度が目標速度と一致するまで、コントロール弁22の制御電圧Yを所定値(β3)分増加させる処理(ステップS71)、つまりコントロール弁22を閉じる方向の制御が繰返される。
ステップS65でCPU40においてカフ圧の加圧速度が目標速度に一致したことが判断されると(ステップS65でYES)、上記ステップSの血圧測定が開始される。
図11に示された上記ステップS1における等速加圧制御もまた、上記ステップS2でカフを等速加圧しながら血圧測定している間、ステップS3で血圧値が決定されて血圧測定動作が終了するまで繰返される。
本実施の形態にかかる血圧計1のCPU40において、上記ステップS1で以上の制御方法2−1にかかる等速加圧制御が実行されることで、ポンプ21としてポンプ電圧の制御範囲の狭いポンプを採用しても、カフのサイズおよび測定部位のサイズが小さく、速度Vで等速加圧するためのカフの必要加圧流量がポンプ電圧を最小電圧(min)とした時の吐出流量QMINよりも小さく、ポンプ電圧を最小電圧(min)としてもカフ圧を等加圧速度で加圧することができない場合にも、コントロール弁22からの排気流量を制御することでカフの必要加圧流量が調整されて、カフ圧を等加圧速度で加圧することができる。
ポンプで吐出流量を制御し、カフのサイズおよび測定部位のサイズの異なったカフを等速加圧するためには、ポンプに使用するモータの回転数が低速から高速まで制御でき、しかも低速でも負荷トルクに影響されにくい特殊なモータが必要となる。そのためコストが高くなってしまう。しかしながら、本実施の形態にかかる血圧計1ではモータの回転数の幅が大きく必要とされないため、比較的安価なモータを採用することができる。その結果、血圧計の低価格化、ポンプの小型化および軽量化を図ることができる。
なお、制御方法2−1においても、図7(A)に示されたように、過程IIにおいてコントロール弁22が完全に閉じ、その時点以降のカフの必要加圧流量が制御範囲Hのうちの基本流量QSから最大電圧(MAX)のときの吐出流量QMAXの範囲となる場合、図9のフローチャートに示されたように、その時点以降はポンプ電圧を調整してポンプ21の吐出流量を制御することで、カフ圧を目標速度で加圧することができる。
[制御方法2−2]
さらに、制御方法2−1の変形例として、上記ステップS1で図12に示される制御方法2−2の等速加圧制御を行なうこともできる。図12は、制御方法2−2での、必要加圧流量Qとカフ圧Pとの関係を示している。図12を参照して、制御方法2−2においては、図13に示されるような予め定められたカフのサイズとポンプ電圧の設定値との対応関係よりカフのサイズに応じてポンプ電圧が基本電圧VSに設定される。以降は、制御方法2−1と同様に、カフ圧をP0からP1まで加圧する過程Iにおいて、カフの必要加圧流量がカフのサイズに応じて設定された基本電圧VSに対応する基本流量QSと一致するまで、コントロール弁22からの排気流量を制御する。
図13に示されたようなカフのサイズとポンプ電圧の設定値との対応関係は、たとえばテーブル形式のデータとして予めメモリ部41に記憶されているものとする。またはその他の形式のデータであってもよい。
制御方法2−2にかかるの等速加圧制御では、上記過程Iにおいて検出されるカフの加圧速度よりカフのサイズが検出され、CPU40において、図13に示された対応関係を参照することでカフのサイズに応じた基本電圧VSが設定される。または、操作部3にカフサイズボタン等のカフのサイズを選択する手段が含まれて、CPU40において、ユーザによる操作に基づいた操作部3からの操作信号に応じて設定されるものであってもよいし、予めいずれかの基本電圧VSにデフォルト設定されており、上述のようなユーザ操作等に基づいた操作部3からの操作信号に従って変更されるものであってもよい。
また、カフ圧をP0からP1まで加圧する過程Iにおいて、初期の加圧速度を検出する際に、加圧速度を検知することでカフサイズを判定し、数段階用意されているポンプ電圧の中から、判定されたカフサイズに応じたポンプ電圧が設定されるようにしてもよい。
また、腕帯5に備えられる、腕帯5を測定部位に巻付ける際に終端を固定する部分であるジャック(不図示)にカフサイズを検知する手段として、たとえば凸構造を設けてもよい。そして、上記手段によってカフサイズを検知し、上述のように、数段階用意されているポンプ電圧の中から、検知されたカフサイズに応じたポンプ電圧が設定されるようにしてもよい。
ポンプ電圧が設定された後のコントロール弁22からの排気流量の制御については、図11に示された制御方法2における制御と同様である。
本実施の形態にかかる血圧計1のCPU40において、上記ステップS1で以上の制御方法2−2にかかる等速加圧制御が実行されることで、カフのサイズおよび測定部位のサイズが大きい場合にはポンプ電圧が高い基本電圧VS1に設定され、カフの必要加圧流量がそのときのポンプ21の基本流量QS1よりも低い場合には、基本流量QS1にカフの必要加圧流量が一致するようにコントロール弁22からの排気流量が制御される。また、カフのサイズおよび測定部位のサイズが標準である場合にはポンプ電圧が中程度の基本電圧VS2に設定され、カフの必要加圧流量がそのときのポンプ21の基本流量QS2よりも低い場合には、基本流量QS2にカフの必要加圧流量が一致するようにコントロール弁22からの排気流量が制御される。また、カフのサイズおよび測定部位のサイズが小さい場合にはポンプ電圧が低い基本電圧VS3に設定され、カフの必要加圧流量がそのときのポンプ21の基本流量QS3よりも低い場合には、基本流量QS3にカフの必要加圧流量が一致するようにコントロール弁22からの排気流量が制御される。その結果、カフのサイズおよび測定部位のサイズが様々な場合であってもそのサイズに応じてポンプ基本電圧が設定されているため、等速加圧させるためのコントロール弁の制御範囲は制御方法2−1でのコントロール弁の制御範囲より狭い範囲とすることができる。そのため、制御方法2−1よりも等速加圧制御が容易で、加圧速度精度も向上する。
[第2の実施の形態]
図14は、第2の実施の形態にかかる血圧計1の、計測用空気袋13の内圧の加減圧を制御し血圧測定するための機能構成の具体例を示すブロック図である。
図14を参照して、第2の実施の形態にかかる血圧計1は、図3に示された第1の実施の形態にかかる血圧計1のコントロール弁22に換えて、測定用エアー系20に急速排気弁31および微速排気弁32を含む。
急速排気弁31は測定用空気袋13内の空気の排出を制御する弁であり、CPU40からの制御信号に従った弁駆動回路27によってその開閉が制御される。主に血圧測定の終了時など、急速排気弁31が解放されることで測定用空気袋13内の空気が急速に排気される。
微速排気弁32はゴム弁などであって、その具体的な構成は本発明において特定の構成に限定されない。具体例としては、特開昭61−272033号公報に記載されている微速排気弁や、特公平6−85764号公報に記載されている気体流通弁などの機構を採用することができる。
より具体的には、特開昭61−272033号公報に記載されている微速排気弁は、中空構造を有する調整部を含み、調整部には外部と中駆とを連通するスリットが設けられており、さらにスリットを貫通してピンが設けられている。この構成によってピンによりスリットの開口量が排気圧に応じて変化する。
図15は、微速排気弁32からの排気流量Qとカフ圧P(測定用空気袋13内圧)との関係を示す図である。図15を参照して、これらの関係は、カフ圧Pが高いほど微速排気弁32のスリットの開口量が小さくなって排気流量Qが少なく、カフ圧Pが低いほど微速排気弁32のスリットの開口量が大きくなって排気流量Qが多い、という関係である。
図15に示されたように、測定用エアー系20に微速排気弁32が含まれることで、測定用空気袋13内の空気がカフ圧に応じた流量分排気される。そのため、図16の実線に示された微速排気弁32で排気されないとき加圧速度Vで等速加圧するためのカフの必要加圧流量は、微速排気弁32が含まれると微速排気弁から漏れる流量分が加算され、図16において点線で示されるように微速排気弁32が含まれないときに比べて全体的に多くなり、特に、カフ圧が低いほど多くなる。
図16は、第2の実施の形態にかかる血圧計1での、必要加圧流量Qとカフ圧Pとの関係を示している。図16を参照して、本実施の形態にかかる血圧計1の測定用エアー系20に微速排気弁32が含まれる構成であることによって、特に、カフのサイズおよび測定部位のサイズが小さく、カフの必要加圧流量がポンプ電圧を最小電圧(min)とした時の吐出流量QMINよりも小さく、ポンプ電圧を最小電圧(min)としてもカフ圧を等加圧速度で加圧することができない場合に、加圧速度Vで等速加圧するためのカフの必要加圧流量が引き上げられて制御範囲H内となり、カフ圧を等加圧速度で加圧することができる。その結果、カフのサイズおよび測定部位のサイズが小さい場合であっても、カフ圧を加圧する過程のカフ圧変動の振幅変化に基づいて血圧を算出する方式において、精度よく血圧を測定することができる。
なお、第2の実施の形態にかかる血圧計1の上記構成は、変形例として、図17に示されるように、微速排気弁32は測定用エアー系20に含まれずに、計測用空気袋13に接続される構成であってもよい。また、特定のサイズの小さなカフ(測定用空気袋13)にのみ微速排気弁32が接続される構成であってもよい。具体的には、上述のように第2の実施の形態にかかる血圧計1の構成は特にカフのサイズおよび測定部位のサイズが小さい場合に好適なため、サイズの小さなカフにのみ微速排気弁32が接続される構成であってもよい。さらに、微速排気弁32を着脱可能な構成として、測定部位のサイズに応じて、具体的には腕周が小さい場合に微速排気弁32を接続するようにしてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
血圧計1の外観の具体例を示す斜視図である。 第1の実施の形態にかかる血圧計1での動作を示すフローチャートである。 第1の実施の形態にかかる血圧計1の機能構成の具体例を示すブロック図である。 制御電圧Vとコントロール弁22からの排気流量Qとの関係を示す図である。 カフ圧Pとコントロール弁22からの排気流量Qとの関係を示す図である。 ステップSの等速加圧制御における制御方法1を説明する図である。 ステップSの等速加圧制御における制御方法1を説明する図である。 等速加圧制御で制御方法1の等速加圧制御を行なう場合の血圧計1での動作を示すフローチャートである。 等速加圧制御で制御方法1の等速加圧制御を行なう場合の血圧計1での動作を示すフローチャートである。 ステップSの等速加圧制御における制御方法2−1を説明する図である。 等速加圧制御で制御方法2−1の等速加圧制御を行なう場合の血圧計1での動作を示すフローチャートである。 ステップSの等速加圧制御における制御方法2−2を説明する図である。 カフのサイズとポンプ電圧の設定値との対応関係の具体例を示す図である。 第2の実施の形態にかかる血圧計1の機能構成の具体例を示すブロック図である。 微速排気弁32からの排気流量Qとカフ圧Pとの関係を示す図である。 第2の実施の形態におけるカフの必要加圧流量と制御範囲Hとの関係を説明する図である。 第2の実施の形態の変形例にかかる血圧計1の機能構成の具体例を示すブロック図である。 カフコンプライアンスCpとカフ圧Pとの関係、およびカフコンプライアンスCpと測定部位(腕)のサイズ(腕周)や、カフのサイズ(容積)などとの関係を示す図である。 カフの必要加圧流量Qとカフ圧Pとの関係を示す図である。 カフの必要加圧流量Qと制御範囲Hとの関係を示す図である。
符号の説明
1 血圧計、2 本体、3 操作部、4 表示器、5 腕帯、10 エア管、13 測定用空気袋、20 測定用エアー系、21 ポンプ、22 コントロール弁、23 圧力センサ、26 ポンプ駆動回路、27 弁駆動回路、28 増幅器、29 A/D変換器、31 急速排気弁、32 微速排気弁、40 CPU、41 メモリ部。

Claims (10)

  1. 測定用流体袋と、
    前記測定用流体袋に流体を供給する供給手段と、
    前記測定用流体袋から流体を排出する排出手段と、
    前記測定用流体袋の内圧を測定するセンサと、
    前記測定用流体袋を測定部位に固定する固定手段と、
    前記測定部位に固定された前記測定用流体袋に前記供給手段で前記流体を供給する過程において、前記測定用流体袋の内圧が設定された加圧速度で変化するときに前記センサで得られる前記測定用流体袋の内圧に基づいて、血圧を算出する算出手段と
    前記供給手段における前記流体の供給量を制御する供給制御手段とを備え、
    前記排出手段は、
    前記測定用流体袋から前記流体を排出するための弁と、
    前記弁の開閉を制御して前記弁からの前記流体の排出量を制御する排出制御手段とを含み、
    前記排出手段は、前記測定用流体袋に前記供給手段で前記流体を供給する過程において、前記測定用流体袋の内圧変化に応じた流量の前記流体を前記測定用流体袋から排出し、
    前記供給制御手段は、前記測定用流体袋に前記供給手段で前記流体を供給する過程において前記センサで得られる前記測定用流体袋の内圧の加圧速度と前記設定された加圧速度とが一致しないときに、それらを一致させるように前記供給手段での前記流体の供給量を増減させる制御を行ない、
    前記排出制御手段は、前記供給手段での前記流体の供給量が前記供給制御手段によって制御可能な供給量の下限に達しても前記測定用流体袋の内圧の加圧速度と前記設定された加圧速度とが一致しないときに、それらを一致させるように前記弁からの前記流体の排出量を増減させる制御を行なう、血圧測定装置。
  2. 前記排出制御手段は、
    前記測定用流体袋の内圧の加圧速度が前記設定された加圧速度よりも遅いときには、前記弁を閉じる方向に制御して前記弁からの前記流体の排出量を減少させる前記制御を行ない、
    前記制御によって前記弁からの前記流体の排出量がなくなったときには、前記制御を終了し、
    前記供給制御手段は、前記測定用流体袋の内圧の加圧速度と前記設定された加圧速度とを一致させるように前記供給手段での前記流体の供給量を増加させる前記制御を行なう、請求項に記載の血圧測定装置。
  3. 前記供給手段における前記流体の供給量を制御する供給制御手段をさらに含み、
    前記排出制御手段は、
    前記測定用流体袋の内圧の加圧速度が前記設定された加圧速度よりも遅いときには、前記弁を閉じる方向に制御して前記弁からの前記流体の排出量を減少させる前記制御を行ない、
    前記制御によって前記弁からの前記流体の排出量がなくなったときには、前記制御を終了し、
    前記供給制御手段は、前記測定用流体袋の内圧の加圧速度と前記設定された加圧速度とを一致させるように前記供給手段での前記流体の供給量を増減させる制御を行なう、請求項に記載の血圧測定装置。
  4. 前記測定用流体袋に前記供給手段で前記流体を供給する際の供給量の初期値を設定する設定手段をさらに含む、請求項に記載の血圧測定装置。
  5. 前記設定手段は、前記供給量の初期値を、前記測定用流体袋の容積との対応関係に応じて設定する、請求項に記載の血圧測定装置。
  6. 前記設定手段は、前記供給量の初期値を、前記測定用流体袋の内圧の加圧速度に応じて初期設定する、請求項に記載の血圧測定装置。
  7. 前記設定手段は前記測定用流体袋の容積を検出する手段を含み、
    前記供給量の初期値を、前記測定用流体袋の容積との対応関係に応じて設定する、請求項に記載の血圧測定装置。
  8. 前記排出制御手段は、
    前記測定用流体袋に前記供給手段で前記流体を供給する過程の初期状態において前記弁を閉じて前記測定用流体袋から前記流体を排出しないように制御し、
    前記過程において、前記測定用流体袋の内圧の加圧速度と前記設定された加圧速度とが一致するように、前記弁からの前記流体の排出量を増加させる制御を行なう、請求項に記載の血圧測定装置。
  9. 前記排出制御手段は、
    前記測定用流体袋に前記供給手段で前記流体を供給する過程の初期状態において前記弁を開いて前記測定用流体袋から前記流体を所定量排出し、
    前記過程において、前記測定用流体袋の内圧の加圧速度と前記設定された加圧速度とが一致するように、前記弁を閉じる方向に制御し、前記流体の排出量を減少させる制御を行なう、請求項に記載の血圧測定装置。
  10. 前記排出手段はコントロール弁を含む、請求項1に記載の血圧測定装置。
JP2007071234A 2007-03-19 2007-03-19 血圧測定装置 Active JP4798031B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007071234A JP4798031B2 (ja) 2007-03-19 2007-03-19 血圧測定装置
PCT/JP2007/071774 WO2008114474A1 (ja) 2007-03-19 2007-11-09 精度よく血圧測定することができる血圧測定装置
TW97109420A TWI437975B (zh) 2007-03-19 2008-03-18 能精確測定血壓之血壓測定裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071234A JP4798031B2 (ja) 2007-03-19 2007-03-19 血圧測定装置

Publications (3)

Publication Number Publication Date
JP2008228916A JP2008228916A (ja) 2008-10-02
JP2008228916A5 JP2008228916A5 (ja) 2010-03-18
JP4798031B2 true JP4798031B2 (ja) 2011-10-19

Family

ID=39765593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071234A Active JP4798031B2 (ja) 2007-03-19 2007-03-19 血圧測定装置

Country Status (3)

Country Link
JP (1) JP4798031B2 (ja)
TW (1) TWI437975B (ja)
WO (1) WO2008114474A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009003801T5 (de) * 2008-12-26 2014-01-16 Omron Healthcare Co., Ltd. Elektronisches Blutdruckmessgerät und Verfahren zur Blutdruckmessung
CN102160779A (zh) * 2010-02-22 2011-08-24 深圳市金科威实业有限公司 向无创血压测量设备的袖带充气的方法及装置
CN102198000B (zh) * 2010-03-25 2013-08-28 吉易高科股份有限公司 高精确度血压计及血压量测方法
JP5864118B2 (ja) * 2011-03-29 2016-02-17 フクダ電子株式会社 血圧計
EP3456252A1 (en) * 2017-09-14 2019-03-20 Koninklijke Philips N.V. Inflation apparatus for an inflation-based non-invasive blood pressure monitor and a method of operating the same
EP3456253A1 (en) * 2017-09-14 2019-03-20 Koninklijke Philips N.V. Inflation apparatus for an inflation-based non-invasive blood pressure monitor and a method of operating the same
EP3628217A1 (en) * 2018-09-26 2020-04-01 Koninklijke Philips N.V. Apparatus for use with a wearable cuff
CN112057065B (zh) * 2019-06-10 2022-09-02 华为技术有限公司 一种血压测量方法及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149122A (ja) * 1984-12-21 1986-07-07 コーリン電子株式会社 血圧測定装置
US4969466A (en) * 1988-09-15 1990-11-13 Spacelabs, Inc. Inflation rate control circuit for blood pressure cuffs
JP3726650B2 (ja) * 2000-07-26 2005-12-14 松下電工株式会社 血圧計

Also Published As

Publication number Publication date
TWI437975B (zh) 2014-05-21
JP2008228916A (ja) 2008-10-02
TW200843698A (en) 2008-11-16
WO2008114474A1 (ja) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4798031B2 (ja) 血圧測定装置
JP4325639B2 (ja) 血圧測定装置
KR100661385B1 (ko) 전자 혈압계 및 혈압 측정 방법
EP1958566B1 (en) Blood pressure measuring apparatus enabling accurate blood pressure measurement
JP4470876B2 (ja) 電子血圧計
JP5811766B2 (ja) 電子血圧計
JP5223566B2 (ja) 血圧情報測定装置
CN103025231A (zh) 电子血压计
CN103841883A (zh) 电子血压计
WO2018150750A1 (ja) 血圧情報測定装置
WO2018150751A1 (ja) 血圧情報測定装置
JP5233967B2 (ja) 血圧測定装置
JP5228619B2 (ja) 血圧測定装置
CN100488446C (zh) 智能型加压控制装置
JP5228620B2 (ja) 血圧測定装置
JP3002596B2 (ja) 圧脈波検出装置
JP5169482B2 (ja) 血圧測定装置
JP3002598B2 (ja) 圧脈波検出装置
JPH06319707A (ja) 電子血圧計
JPS61122841A (ja) カフ圧力制御装置
JP6136111B2 (ja) 血圧測定装置
JP5366704B2 (ja) 生体情報計測装置
JP2024043197A (ja) 血圧計、および血圧測定方法
JP3124623B2 (ja) 電子血圧計
JP2002136488A (ja) 電子血圧計

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150