WO2007114244A1 - 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置 - Google Patents

有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置 Download PDF

Info

Publication number
WO2007114244A1
WO2007114244A1 PCT/JP2007/056848 JP2007056848W WO2007114244A1 WO 2007114244 A1 WO2007114244 A1 WO 2007114244A1 JP 2007056848 W JP2007056848 W JP 2007056848W WO 2007114244 A1 WO2007114244 A1 WO 2007114244A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
group
compound
layer
reactive
Prior art date
Application number
PCT/JP2007/056848
Other languages
English (en)
French (fr)
Inventor
Tatsuo Tanaka
Hideo Taka
Hiroshi Kita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to EP07740286.5A priority Critical patent/EP2001065B1/en
Priority to US12/294,814 priority patent/US7897962B2/en
Priority to JP2008508608A priority patent/JP5463668B2/ja
Publication of WO2007114244A1 publication Critical patent/WO2007114244A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Definitions

  • the present invention relates to an organic electoluminescence element, a lighting device, and a display device.
  • ELD electoric luminescence display
  • inorganic electoluminescence devices and organic electroluminescence devices (hereinafter also referred to as organic EL devices).
  • organic EL devices Inorganic eletroluminescence elements have been used as planar light sources, but in order to drive the light emitting elements, an alternating high voltage is required.
  • an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode.
  • excitons Is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Since it is a self-emitting type, it has a wide viewing angle, and since it is a thin-film type completely solid element with high visibility, it is attracting attention from the viewpoints of space saving and portability.
  • Patent No. 309379 6 discloses a technique for doping a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the device.
  • — 264692 discloses a device having an organic light-emitting layer in which 8-hydroxyquinoline aluminum complex is a host compound and doped with a small amount of phosphor.
  • JP-A-3-255190 discloses An element having an organic light-emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and doped with a quinacridone dye is known.
  • the organic EL element is an all-solid element composed of an organic material film having a thickness of only about 0.1 ⁇ m between the electrodes, and its emission is relatively 2V to 20V. Because it can be achieved at a low voltage, it is a promising technology for next-generation flat displays and lighting.
  • organic EL elements are based on a light-emitting phenomenon utilizing the deactivation of organic materials from the excited state to the ground state, blue, blue-green, etc.
  • a high voltage is required to excite the large gap.
  • the excited state itself is located at a high level, the lifetime tends to be shorter than that of green or red light emission, which is greatly damaged when returning to the ground state, and in particular, light emission from the triplet excited state. This tendency becomes remarkable in phosphorescence emission using the.
  • a method in which the polymerization reaction is performed by irradiation with ultraviolet rays or heat at the time of forming the organic layer before laminating the cathode see, for example, Patent Document 2
  • a material having a bull group at the terminal of the phosphorescent dopant e.g., a production method in which AIBN (azoisobutyl thiol-tolyl) as a radical generator is added to a mixture of comonomers having a vinyl group to cause a polymerization reaction during film formation (see, for example, Patent Document 3), in the same layer.
  • a method for producing a Diels-Alder reaction between the two molecules to crosslink see, for example, Patent Document 4).
  • the above-described technique is a method of completing the polymerization reaction at the time of film formation or immediately after film formation (before attaching the cathode), but also has a practical viewpoint power of improving the durability of the organic EL element. However, this is insufficient, and there is a need for further technology for improving the durability of elements.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-271166
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-297882
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-73666
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-86371
  • the present invention has been made in view of the above problems, and its purpose is
  • An object of the present invention is to provide an organic EL element, a lighting device, and a display device that exhibit high luminous efficiency and have a long lifetime.
  • the organic layer is characterized in that the concentration of the reactive organic compound in the organic layer is decreased with respect to the concentration before energization due to energization with a current density of 01 mAZcm 2 to 10,000 mAZcm 2. Electroreminescence element.
  • the reactive organic compound has a plurality of reactive substituents.
  • the organic electoluminescence device according to any one of 1 to 3,
  • the concentration of the reactive organic compound in the organic layer is reduced with respect to the concentration before energization when the emission luminance is reduced to 90% of the initial luminance by the energization.
  • the concentration (M90) force of the reactive organic compound is 0.1 molZm 3 to 10 molZm 3.
  • the glass transition point Tg (90%) of the organic layer at the time when the emission luminance decreases to 90% of the initial luminance and the glass transition point Tg (initial) before the start of energization are expressed by the following formula (1)
  • the glass transition point Tg (50%) of the organic layer at the time when the emission luminance is reduced to 50% of the initial luminance and the glass transition point Tg (initial) before the start of energization are expressed by the following equation (2)
  • An illuminating device comprising the organic electoluminescence device according to any one of 1 to 13 above.
  • a display device comprising the organic electoluminescence device according to any one of 1 to 13.
  • an organic EL element and a lighting device exhibiting high luminous efficiency and having a long lifetime And a display device could be provided.
  • FIG. 1 shows a schematic configuration diagram of an organic EL full-color display device.
  • the organic electoluminescence device (also referred to as an organic EL device) of the present invention has the configuration described in any one of claims 1 to 7 of the claims.
  • an organic electroluminescence device (organic EL device) having a high external quantum efficiency and a long device lifetime (improved robustness) was obtained.
  • the present invention succeeded in obtaining a high-luminance display device and lighting device equipped with the organic EL element.
  • the organic EL device of the present invention has at least one organic layer containing a reactive organic compound, and the device may have other organic layers as constituent layers. Although the details of the fabrication will be described later, it may be fabricated by a conventionally known coating method or a method such as a vapor deposition method. Be formed.
  • the present inventors have examined the coating process in which curing and coating are repeated! (Also referred to as in the film) consciously reactive organic compounds (both unreacted monomers, compounds having reactive groups, etc.) are left (if any remain), and a device is prepared and said compound We investigated the relationship between the residual and device performance.
  • the reactive organic compound is an unreacted polymerizable monomer or the like
  • the polymerization reaction is advanced by an active radical or the like generated during use of the device, and the network polymer by the organic molecule is used.
  • Tg glass transition point
  • the emission wavelength of the organic EL device can be changed, deterioration of a specific wavelength can be suppressed, etc. It was also possible to become possible.
  • the reactive organic compound according to the present invention all of the functional compounds included in the constituent layers of the organic EL device (described in detail later) serve as the core of the reactive compound.
  • a compound can be used.
  • the reactive substituent preferably includes, for example, the partial structure shown below.
  • the lower layer is preferably not dissolved in the upper layer coating solution by degreasing the lower layer and degrading the solvent solubility.
  • An upper layer can be applied.
  • the lower layer is completely resorbed, and the reactive organic compound is left in the lower layer as in the present invention, thereby significantly improving the function of the device as described above. It is an unexpected discovery, and it is preferable not only to have a functional effect on the device, but also to have a reactive compound remaining, so that the device manufacturing process can be compared to the conventional manufacturing process. It has also been found that there is a process advantage that can be simplified.
  • the reactive organic compound in the organic layer is activated by the start of energization of the organic EL element of the present invention.
  • “reducing the concentration of the reactive organic compound” means that a reaction (such as a crosslinking reaction or a polymerization reaction) is caused by energizing the device. It represents that the concentration of the reactive organic compound is lowered by proceeding.
  • the concentration decrease due to energization is analyzed by performing analysis in the depth direction of the organic layer containing the reactive organic compound. I can do it.
  • the distribution of double bonds is measured, but there are several means for measuring the distribution of double bonds.
  • microscopic infrared spectroscopic analysis, Raman spectroscopic analysis, or double bonds are labeled with a labeling reagent that reacts specifically with double bonds and has specific elements, and is used for electron probe microanalyzer, X-ray photoelectron spectroscopy.
  • preferable analytical means include a method of measuring the distribution of the labeling element with an apparatus, an Auger electron spectrometer, a time-of-flight secondary ion mass spectrometer, and the like.
  • the reactive organic compound that can be used as the host compound is represented by the following general formula (1).
  • B represents the reactive substituent
  • A represents a partial structure having a function as a host compound.
  • the A preferably has a partial structure represented by the following general formula (la) or general formula (lb). Furthermore, as the partial structure represented by the general formula (la), a partial structure represented by the following general formula (lc) is preferably used.
  • Arl, Ar2, and Ar3 each represent an aromatic hydrocarbon ring or an aromatic heterocycle
  • X represents NR ', 0, S, same' or 30 ⁇ , '.
  • R ′ and R ′′ each represent a hydrogen atom or a substituent.
  • the aromatic hydrocarbon rings represented by Arl, Ar2, and Ar3 are benzene ring, biphenyl ring, and naphthalene ring, respectively.
  • These rings may further have a substituent represented by R ′ and R ′′ described later.
  • examples of the aromatic heterocycle represented by Arl, Ar2, and Ar3 include a furan ring, a dibenzofuran ring, a thiophene ring, Oki Sazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring , Benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthy
  • each of the substituents represented by R, R ′′ represents an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, Hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, aryl) Group, 1 probe group, 2 buturel group, 1, 3 butadiene gel group, 2-pentyl group, isoprobel group, etc.), alkyl group (eg, etulyl group, propargyl group, etc.) , Aromatic hydrocarbon group (also called aromatic carbocyclic group,
  • arylsulfol group or heteroarylsulfol group eg, phenylsulfol group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.
  • amino group eg, amino group, ethylamino group
  • halogen atom eg, fluorine atom, chlorine atom, bromine atom
  • fluorocarbon group eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl
  • pentafluorophenyl group cyano group, nitro group, hydroxy group, mercapto group, silyl
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • the constituent layers of the organic EL device of the present invention will be described.
  • preferred specific examples of the layer structure of the organic EL element are shown below. The present invention is not limited to these.
  • the maximum emission wavelength of the blue light emitting layer is 430 ⁇ !
  • the green light emitting layer that is preferred at ⁇ 480 nm has a maximum emission wavelength of 510 nm to 550 nm, and the red emission layer has a maximum emission wavelength of 600 ⁇ !
  • a monochromatic light emitting layer in the range of ⁇ 640 nm is preferred, and a display device using these is preferred.
  • a white light emitting layer may be formed by laminating at least three of these light emitting layers.
  • a non-light emitting intermediate layer may be provided between the light emitting layers. It is preferable that the organic EL element of the present invention is a lighting device using these, which is preferably a white light emitting layer.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode, an electron transport layer, or a hole transport layer, and the light emitting portion is within the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, but it can prevent the film from being homogenous, applying an unnecessary high voltage during light emission, and improving the stability of the emitted color with respect to the drive current. From the viewpoint, it is preferable to adjust to a range of 2 ⁇ to 5 / ⁇ ⁇ , more preferably to a range of 2 nm to 200 nm, and particularly preferably ⁇ ! It is in the range of ⁇ 20nm.
  • a light emitting dopant or a host compound described later is formed by a known thin film method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can be formed.
  • the light-emitting layer of the organic EL device of the present invention may contain a light-emitting host compound and at least one light-emitting dopant (such as a phosphorescent dopant (also referred to as a phosphorescent dopant) or a fluorescent dopant). preferable.
  • a light-emitting host compound such as a phosphorescent dopant (also referred to as a phosphorescent dopant) or a fluorescent dopant.
  • a phosphorescent dopant also referred to as a phosphorescent dopant
  • a fluorescent dopant a fluorescent dopant
  • the host compound used in the present invention will be described.
  • the host compound is a compound having a mass ratio of 20% or more in the compound contained in the light emitting layer and phosphorescence at room temperature (25 ° C).
  • Luminescence phosphorescence is defined as a compound with a quantum yield of less than 0.1.
  • the phosphorescence quantum yield is less than 0.01.
  • the mass ratio in the layer is preferably 20% or more.
  • host compound known host compounds may be used singly or in combination. By using a plurality of types of host compounds, it is possible to adjust the movement of electric charges, and the organic EL device can be made highly efficient. In addition, by using a plurality of kinds of light emitting dopants described later, it becomes possible to mix different light emission, thereby obtaining any light emission color.
  • the light emitting host used in the present invention is a low molecular weight compound having a polymerizable group such as a bur group or an epoxy group, which may be a conventionally known low molecular compound or a high molecular compound having a repeating unit.
  • a compound (evaporation polymerizable light-emitting host) is also acceptable.
  • Known host compounds that may be used in combination have a hole transporting ability and an electron transporting ability, prevent the emission of longer wavelengths, and have a high Tg (glass transition temperature). Compounds are preferred.
  • the light-emitting dopant according to the present invention will be described.
  • a fluorescent dopant also referred to as a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like
  • the viewpoint of obtaining an organic EL element with higher luminous efficiency is the light emitting dopant used in the light emitting layer or light emitting unit of the organic EL element of the present invention (sometimes simply referred to as a light emitting material).
  • the phosphorescent dopant according to the present invention will be described.
  • the phosphorescent dopant according to the present invention is a compound in which emission of excited triplet force is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C).
  • a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Phosphorescence quantum yield in solution can be measured using various solvents
  • the phosphorescence dopant according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent.
  • the phosphorescent dopant emits light in two types in principle. One is the recombination of carriers on the host compound in which carriers are transported, resulting in the generation of an excited state of the host compound.
  • the energy transfer type is to obtain light emission from the phosphorescent dopant by transferring the energy of the phosphorescent dopant to the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, and recombination of carriers occurs on the phosphorescent dopant and causes phosphorescence. It is a carrier trap type in which light emission from the optical dopant can be obtained.
  • the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
  • the phosphorescent dopant can be appropriately selected and used as a known medium used for the light emitting layer of the organic EL device.
  • the phosphorescent dopant according to the present invention is preferably a complex compound containing a metal of group 8 to LO in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound ( Platinum complex compounds), rare earth complexes, most preferred
  • V ⁇ is an iridium compound.
  • Rh-1 Rh-2 Rh-3 [0112] (Fluorescent dopant (also fluorescent compound)!
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the injection layer is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. Hey.
  • the injection layer is a layer provided between the electrode and the organic layer in order to lower the drive voltage and improve the light emission luminance.
  • the organic EL element and the forefront of its industrialization June 30, 1998) (Published by ES Co., Ltd.) ”, Chapter 2“ Chapter 2 Electrode Materials ”(pages 123-166) in detail, the hole injection layer (anode buffer layer) and electron injection layer (cathode buffer layer) There is.
  • anode buffer layer (hole injection layer) The details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9260062, JP-A-8-288069 and the like.
  • a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, a polymer buffer layer using a conductive polymer such as polyarene (emeraldine) or polythiophene Etc.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium Metal buffer layer typified by aluminum, etc. Alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, acid salt typified by acid aluminum One thing buffer is one example.
  • the buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 5 m, although it depends on the desired material. [0118] ⁇ Blocking layer: hole blocking layer, electron blocking layer ⁇
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A-11 204258, 11-204359, and “Organic EL device and the forefront of its industrialization” (published by NTS Corporation on November 30, 1998). There is a hole blocking layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and has a hole blocking material force that has a function of transporting electrons and has a very small ability to transport holes, and transports electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Further, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer preferably contains the azacarbazole derivative mentioned as the above-mentioned host compound.
  • the light emitting layer having the longest emission maximum wavelength is closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more with respect to the host compound of the shortest wave emitting layer. Better!/,.
  • the ionic potential is defined by the energy required to release an electron at the HOMO (highest occupied molecular orbital) level of a compound to the vacuum level, and can be obtained by the following method, for example.
  • Gaussian98 (Gaussian98, Revision A. ⁇ 1.4, MJ Frisch, et al, Lraussian, Inc., Pittsburg h PA, 2002.)
  • the ionization potential can be calculated by rounding off the second decimal place of the value (eV unit converted value) calculated by structural optimization using B3LYPZ6-31G * as a keyword. The background to this calculated value is valid. This is because the correlation between the calculated value obtained by the method and the experimental value is high.
  • the ion potential can also be obtained by a direct measurement method using photoelectron spectroscopy.
  • a method known as ultraviolet photoelectron spectroscopy using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and has a function of transporting holes while having a material force with extremely small ability to transport electrons, thereby transporting holes.
  • the probability of recombination of electrons and holes can be improved.
  • the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 ⁇ ! ⁇ 100 nm, more preferably 5 ⁇ ! ⁇ 30nm.
  • the hole transport layer is a hole transport material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, violazoline derivatives and pyrazolone derivatives, fluorenedamine derivatives, arylene amine derivatives, amino substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Differ I N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-l triaminophenol) propane; 1, 1 —Bis (4 di-l-triaminophenol) cyclohexane; N, N, N ′, N ′ —Tetra-p-tolyl-1,4,4′-diaminobiphenyl; 1, 1 Bis (4 di-l-tri-laminophenol) 4-phenolic oral hexane; bis (4-dimethylamino-2-methylphenol) phenylmethane; bis (4-di-p-triaminophenol) phenolmethane; N, N '— diphenyl N, N
  • No. 5,061,569 for example, 4, 4 ′ bis [N— (1-naphthyl) N phenolamino] biphenyl- 4, 4 ', A "—Tris [? ⁇ — (3-methylphenol-) in which three triphenylamine units described in JP-A-4 308688 are connected in a starburst type.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • Inorganic compounds such as P-type-Si and p-type-SiC can also be used as the hole injection material and hole transport material.
  • the hole transport layer is formed by thin-filming the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • LB method
  • a hole transport layer having a high p property doped with impurities can be used. Examples thereof are described in JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. Can be listed.
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • An electron transport layer may be provided as a single layer or multiple layers.
  • an electron transport material also serving as a hole blocking material
  • Any material can be selected from conventionally known compounds as long as it has a function of transmitting electrons injected from the electrode to the light-emitting layer.
  • Examples include fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, strength rubodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom
  • quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dive mouth) 8 quinolinol) aluminum, tris (2methyl 8quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Metal complexes replacing Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • One or metal phthalocyanine, or those having a terminal substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, n-type-Si, n-type-SiC, etc.
  • Inorganic semiconductors can also be used as electron transport materials.
  • the electron transport layer is obtained by thin-filming the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • LB method LB method.
  • the electron transport layer may have a single layer structure that can be one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities may be used. Examples thereof are described in JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, Appl. Phys., 95, 5773 (2004), etc. The thing which was done is mentioned.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (4 eV or more) is preferably used.
  • an electrode substance include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (IT 0), SnO, and ZnO.
  • IDIXO In O—ZnO
  • Electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by a single photolithography method. A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • a wet film formation method such as a printing method or a coating method can also be used.
  • the transmittance should be greater than 10%.
  • the sheet resistance as the anode is preferably several hundred ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium Z aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum -Um (Al O)
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ . ⁇ 5 m, preferably 50 nm to 200 nm.
  • the light emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode After producing a film with a thickness of ⁇ 20 nm, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the anode. It is possible to produce a device in which both cathodes are transparent.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. Or opaque. Support substrate side The plate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellose diacetate, cenorelose triacetate, cenorelose acetate butyrate, and cenolate mouthpiece.
  • Cellulose esters such as Sacetate Propionate (CAP), Cellulose Acetate Phthalate (TAC), Cellulose Nitrate or Derivatives , Polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyethersulfone (PES), polyester
  • any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming the barrier film is not particularly limited, for example, vacuum deposition, sputtering , Reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, laser CVD, thermal CVD, coating, etc. Force that can be used The method using an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferred.
  • Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, non-transparent resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts light emitted from an organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • sealing means used in the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • the sealing member may be a concave plate shape or a flat plate shape as long as it is disposed so as to cover the display region of the organic EL element. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate 'film, a metal plate' film and the like.
  • the glass plate include soda-lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum power, and one or more metal or alloy power selected. .
  • the ability to form a thin film element also has the power of polymer film, metal film.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 X 10 _3 mlZ (m 2 '24h'MPa) or less, and a method according to JIS K 7129-1992.
  • the measured water vapor transmission rate (25 ⁇ 0.5 ° C, relative humidity (90 ⁇ 2)% RH) is preferably less than l X 10 _3 gZ (m 2 '24h).
  • Sand blasting, chemical etching, or the like is used to process the sealing member into a concave shape.
  • an adhesive such as a photocuring and thermosetting adhesive having a reactive bur group of an acrylic acid-based oligomer or a methacrylic acid-based oligomer, or a moisture-curing type adhesive such as 2 cyanoacrylate.
  • a photocuring and thermosetting adhesive having a reactive bur group of an acrylic acid-based oligomer or a methacrylic acid-based oligomer, or a moisture-curing type adhesive such as 2 cyanoacrylate.
  • heat- and chemical-curing type two-component mixing
  • epoxy type can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the adhesive can be hardened up to a room temperature force of 80 ° C. Further, a desiccant may be dispersed in the adhesive. A commercially available dispenser may be used to apply the adhesive to the sealing part, or it may be printed like screen printing!
  • the electrode and the organic layer may be coated on the outer side of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer may be formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, etc. can be used.
  • the method for forming these films is not particularly limited, for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method.
  • Plasma CVD method, laser C VD method, thermal CVD method, coating method, etc. can be used.
  • Examples of the hygroscopic compound include metal oxides (for example, acid sodium, acid potassium, acid calcium, barium oxide, magnesium oxide, acid aluminum, etc.), sulfate (For example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.), metal halides (for example, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, nordium iodide) , Magnesium iodide, etc.), perchloric acids (for example, barium perchlorate, magnesium perchlorate, etc.) and the like, and sulfates, metal halides and perchloric acids are preferably anhydrous salts. Used.
  • metal oxides for example, acid sodium, acid potassium, acid calcium, barium oxide, magnesium oxide, acid aluminum, etc.
  • sulfate for example, sodium sulfate, calcium sulfate
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate.
  • a material that can be used for this the same glass plate, polymer plate 'film, metal plate' film, etc. that are used for the sealing can be used. It is preferable to use a polymer film.
  • the organic EL element emits light inside the layer with a refractive index higher than that of air (refractive index is about 1.7 to 2.1), and only about 15% to 20% of the light generated in the light emitting layer can be extracted. It is generally said that there is nothing. This is because light incident on the interface (transparent substrate-air interface) at an angle ⁇ greater than the critical angle causes total reflection and cannot be extracted outside the device. This is because light undergoes total reflection with the substrate, the light is a transparent electrode, and is guided through the light emitting layer. As a result, the light escapes in the direction of the element side surface.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435) ), And a method for improving efficiency by providing the substrate with a light condensing property (JP-A 63-31) 4795), a method of forming a reflective surface on the side surface of the element (Japanese Unexamined Patent Publication No. 1-220394), a flat layer having an intermediate refractive index is introduced between the substrate and the light emitter, and an antireflection film is formed.
  • a forming method Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter can be suitably used.
  • a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the present invention can obtain an element having higher brightness or durability.
  • the low refractive index layer examples include air-mouthed gel, porous silica, magnesium fluoride, fluorine-based polymer, and the like. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (inside the transparent substrate or transparent electrode). Let's take it out It is a life.
  • the introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so a general one-dimensional diffraction grating having a periodic refractive index distribution only in one direction diffracts only light traveling in a specific direction. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. .
  • the period of the diffraction grating is preferably about 1Z2 to about 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention can be processed on a light extraction side of a substrate, for example, by providing a microlens array-like structure, or combined with a so-called condensing sheet, in a specific direction, for example, on the device light emitting surface.
  • a specific direction for example, on the device light emitting surface.
  • the brightness in a specific direction can be increased.
  • quadrangular pyramids are arranged two-dimensionally on the light extraction side of the substrate so that one side is 30 ⁇ m and the apex angle is 90 degrees.
  • One side is 10 / z m ⁇ : LOO / z m is preferred. If it is smaller than this, the effect of diffraction is generated, and if the color is too large, the thickness becomes thick, which is not preferable.
  • the light condensing sheet for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3EM may be used.
  • the shape of the prism sheet for example, the base material may be formed with stripes having a vertex angle of 90 degrees and a pitch of 50 111, a shape with rounded vertex angles, and a random pitch. It may be a changed shape or other shapes.
  • a light diffusing plate 'film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a desired electrode material for example, a thin film having a material force for an anode is 1 ⁇ m or less, preferably ⁇ !
  • An anode is formed by a method such as vapor deposition or sputtering so that a film thickness of ⁇ 200 nm is obtained.
  • vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as mentioned above.
  • film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, and halogenated carbonization such as dichlorobenzene. Hydrogen, aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used. Moreover, as a dispersion method, it can disperse
  • dispersion methods such as an ultrasonic wave, high shear force dispersion
  • a thin film that also has a material force for the cathode is formed thereon by 1 ⁇ m or less, preferably by a method such as vapor deposition or sputtering so that the film thickness is in the range of 50 nm to 200 nm.
  • the order of preparation may be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode may be formed in this order.
  • the multicolored color thus obtained
  • a direct current voltage is applied to the display device, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity.
  • An alternating voltage may be applied.
  • the AC waveform to be applied is arbitrary.
  • the organic EL element of the present invention can be used as a display device, a display, and various light sources.
  • light sources include lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, Examples include, but are not limited to, a light source of an optical sensor, but it can be effectively used particularly as a backlight of a liquid crystal display device and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or in the production of an element that may be patterned on the entire layer, a conventionally known method Method can be used.
  • a 40 nm-thick emission layer was provided by co-evaporation on the hole transport layer at 0.2 nmZ seconds and 0.012 nm / second.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing BCP was energized and heated, and deposited on the light emitting layer at a deposition rate of 0. InmZ seconds to provide a hole blocking layer having a thickness of lOnm.
  • An electron transport layer having a thickness of 40 nm was further deposited on the hole blocking layer at m / second.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the decrease in concentration from the start of energization of the device was analyzed for the example compound 48, which is a reactive organic compound according to the present invention, as follows.
  • Organic EL device A-1 is a device after application of 2.5 mAZcm 2 constant current for 1 000 hours at 23 ° C in a dry nitrogen gas atmosphere, and the device is applied after 4000 hours under the same conditions.
  • Is A-3 [0204] The concentration of Exemplified Compound 48 in each of the hole transport layers of Organic EL devices A-1, A-2 and A-3 is measured by a method of measuring the distribution of vinyl groups in Exemplified Compound 48. Asked. Here, the distribution of the double bond of the vinyl group can be obtained by the following means.
  • the organic EL element samples 1 to 3 were diagonally cut with a Cycus NN04 type manufactured by Daiblauintes. Cutting was performed at an enlargement ratio of 500 times, and an analysis area of a hole transport layer having a width of 20 ⁇ m was obtained. Next, the double bond remaining in the hole transport layer was labeled on the cut surface by bromine addition. Regarding the sample after labeling, the elemental composition distribution on the surface of the cutting surface was measured using an X-ray photoelectron spectrometer ULVAC-FAI QuanteraSXM to obtain the elemental composition distribution on the surface of the cutting surface.
  • ITO substrate 100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45)
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of ⁇ NPD is placed in a molybdenum resistance heating boat, and the host compound and the host compound are placed in another molybdenum resistance heating boat.
  • the heating boat containing CBP and Ir-1 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.2 nmZ second and 0.012 nm / second, respectively, A light emitting layer with a thickness of 40 nm was provided.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the heating boat containing BCP was energized and heated, and deposited on the light emitting layer at a deposition rate of 0. InmZ seconds to provide a hole blocking layer having a thickness of lOnm.
  • the heating boat containing Alq was further heated by energization, and the deposition rate was 0.1 nm.
  • An electron transport layer having a thickness of 40 nm was further deposited on the hole blocking layer at a rate of / sec.
  • the substrate temperature during vapor deposition was room temperature.
  • Organic EL devices 1-2 to 1-5 were prepared in the same manner as in the manufacture of organic EL device 1-1, except that CBP and Ir-1 in the light emitting layer were replaced with the compounds shown in Table 1.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiance meter CS-1000 manufactured by Ko-Force Minolta was used in the same manner.
  • the time required for the luminance to drop to half of the luminance immediately after the start of light emission is measured, and this is used as the half-life time ( ⁇ 0.5). It was used as an index.
  • a spectral radiance meter CS-1000 manufactured by Ko-Force Minolta was used.
  • Organic EL element 2-1 was produced in the same manner as in the production of organic EL element 1-1, except that Ir-1 was changed to Ir-9. Also, organic EL element 2 2 2-5 was prepared in the same manner as organic EL element 1-2, except that organic compounds 1-1 and Ir-1 in organic EL element 1-2 were replaced as shown in Table 2. .
  • An organic EL element 3-1 was produced in the same manner as in the production of the organic EL element 1-1 of Example 2, except that Ir-1 was changed to Ir-12.
  • Organic EL devices 3-2 to 3-5 were prepared in the same manner except that Exemplified compounds 1-1 and Ir-1 of organic EL device 1-2 were replaced with M (Table 3).
  • Organic EL devices 4-1 to 4-3 were prepared in the same manner as in the production of organic EL device 3-1 of Example 4, except that the compounds were changed to the compounds shown in Table 4.
  • ITO substrate 100 mm X 100 mm X I. 1 mm thick ITO (Indium Toxide) filmed on lOOnm substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45) was patterned, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was attached to a commercially available spin coater, and a solution obtained by dissolving Exemplified Compound 4 1 (60 mg) in 10 ml of toluene was spin-coated (film thickness of about 40 nm) and ultraviolet light under conditions of 1000 rpm and 30 seconds. After irradiation for 30 seconds, vacuum drying was performed at 60 ° C. for 1 hour to form a hole transport layer.
  • This substrate was fixed to the substrate holder of the vacuum deposition apparatus, and 200 mg of Alq was placed in a molybdenum resistance heating boat and attached to the vacuum deposition apparatus. Pressure in the vacuum tank was reduced to 4 X 10- 4 Pa
  • the heating boat containing Alq is further energized and heated, and the deposition rate is 0.
  • An electron transport layer having a thickness of 40 nm was further formed by vapor deposition on the hole blocking layer at Inm / second.
  • the substrate temperature during vapor deposition was room temperature.
  • This element was driven at a constant current of 2000 cdZm 2 and light emission could be confirmed.
  • Figure 1 shows a schematic configuration diagram of an organic EL full-color display device. After patterning at a pitch of 100 ⁇ m on a substrate (NH45 manufactured by NH Techno Glass) with an ITO transparent electrode (102) formed on an ITO transparent electrode (102) on a glass substrate 101 as an anode, an ITO transparent electrode is formed on the glass substrate. In the meantime, a non-photosensitive polyimide partition wall 103 (width 20 ⁇ m, thickness 2.0 m) was formed by photolithography.
  • a hole injection layer composition having the following composition was discharged and injected between polyimide barrier ribs on the ITO electrode using an ink jet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 30 seconds, 60 ° C, 10 ° C.
  • a hole injection layer 104 having a film thickness of 40 nm was produced by a drying treatment for 30 minutes.
  • the fabricated organic EL devices exhibited blue, green, and red light emission by applying voltage to the respective electrodes, which proved to be usable as a full-color display device.
  • compound 2-- to 2-10 was used in place of Ir-1, Ir-12, Ir-9, and compound 1-1 or compound 1-3-1-10 was used in place of compound] 2. It was also proved that organic EL devices can be used as full-color display devices as well.
  • a ITO substrate 100 mm X 100 mm X I. 1 mm thick ITO (Indium Toxide) filmed on lOOnm substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45) was patterned, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate is attached to a commercially available spin coater, and a solution obtained by dissolving Compound 4-8 (60 mg) in 10 ml of toluene is spin-coated (film thickness of about 40 nm) and irradiated with ultraviolet light for 30 seconds under conditions of 1000 rpm and 30 seconds. Then, it was vacuum dried at 60 ° C. for 1 hour to form a hole transport layer.
  • this substrate was fixed to a substrate holder of a vacuum vapor deposition apparatus, and 200 mg of Alq was placed in a molybdenum resistance-mouth heat boat and attached to the vacuum vapor deposition apparatus. Set the vacuum chamber to 4 X 10— 4 Pa.
  • the heating boat containing Alq was energized and heated, and the deposition rate was 0.1 nm.
  • Evaporation was performed on the electron transport layer in Z seconds, and an electron transport layer having a thickness of 40 nm was further provided.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • An organic EL element 6-1 was prepared.
  • ITO substrate 100 mm X 100 mm X I. 1 mm
  • ITO indium tin oxide
  • lOOnm-coated substrate ⁇ Techno Glass Co., Ltd. 45-45
  • the provided transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was transferred to a nitrogen atmosphere, and 20 mg of reactive organic compound 4 was deposited on the hole transport layer.
  • a solution of 11 in 51111 toluene was formed by spin coating under conditions of 2000 to 111 for 30 seconds. Further, UV irradiation (100 W UVA) was performed for 10 seconds so that the reactive organic compound 4-11 remained, and photopolymerization / crosslinking was performed to form a second hole transport layer having a thickness of 30 nm. The amount (also referred to as concentration) of the reactive organic compound 4-11 in the layer was determined by the method described later.
  • the time when the initial brightness decreased by 10% is the same as in element 1 (90).
  • the time when the initial luminance was reduced by 50% was defined as device 1 (50), and the Tg of the hole transport layer was measured by the following method.
  • the three organic EL element samples were obliquely cut with a CYCUS NN04 type manufactured by Daibrowintes. Cutting was performed at an enlargement ratio of 500 times, and an analysis area of a 15-m wide hole transport layer was obtained.
  • a Tg (glass transition point) of the hole transport layer region was measured by combining an atomic force microscope with a thermal probe of a heater / temperature detector.
  • Tg (90%) Glass transition point of hole transport layer at 90% of initial luminance
  • Tg (50%) Glass transition point of hole transport layer at 50% of initial luminance
  • Tg (initial) Glass transition point of the hole transport layer of the device before the start of energization
  • Organic EL element 2 was prepared in exactly the same manner as organic EL element 1. Exactly the same as for organic EL element 1, after calculating the remaining reactive organic compound amount in element 2 (90) at the point when it decreased by 10% from the initial luminance, UV irradiation was performed for 60 seconds to leave the remaining reactivity. Organic compounds disappeared.
  • This device was further applied at a constant current of 2.5 mAZcm 2 , and the amount of the remaining reactive organic compound was calculated using device 2 (50) as the time point when the initial luminance decreased by 50%.
  • the Seiana ⁇ transmission layer was a second hole transporting layer to 30nm deposited TPD .
  • Ir-1 was co-deposited so as to be doped with 6% by mass with respect to tBu-PBD and tBu-PBD, thereby forming a light emitting layer having a film thickness of 50 nm.
  • a cathode was formed by vapor-depositing 10 nm of calcium as a cathode buffer layer and 110 ⁇ m of aluminum as a cathode, whereby an organic EL device 3 was produced.
  • the amount of the remaining reactive organic compound was calculated in the same manner as in the organic EL device 1, with the time when the initial luminance decreased by 10% and 50% as the devices 3 (90) and (50), respectively.
  • PEDOTZPSS polystyrene sulfonate
  • This substrate was transferred to a nitrogen atmosphere, and a solution obtained by dissolving 20 mg of the reactive organic compound 4-11 in 51111 toluene on the hole transport layer was spin-coated under conditions of 2000 to 111 for 30 seconds. To form a film. Further, UV irradiation (lOOW UVA) was performed for 15 seconds so that the reactive organic compound 4-11 remained, and photopolymerization / crosslinking was performed to form a second hole transport layer having a thickness of 30 nm.
  • lOOW UVA UV irradiation
  • a 25 nm electron transport layer was formed.
  • FIG. 1 shows a schematic configuration diagram of an organic EL full-color display device.
  • Glass substrate as anode 10
  • ITO transparent electrode (102) lOOnm (NH Techno Glass NA45)
  • a partition 103 made of conductive polyimide was formed by photolithography.
  • a hole injection layer composition having the following composition was discharged and injected between polyimide barrier ribs on the ITO electrode using an ink jet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 30 seconds, 60 ° C, 10 ° C.
  • a hole injection layer 104 having a film thickness of 40 nm was produced by a drying treatment for 30 minutes.
  • each light emitting layer (105B, 105G, 105R).
  • Al (106) was vacuum-deposited as a cathode so as to cover the light emitting layer 105, and an organic EL device was produced.
  • the fabricated organic EL devices exhibited blue, green, and red light emission by applying voltage to each electrode, which proved to be usable as a full-color display device.
  • a white light-emitting organic EL device was obtained in the same manner as in the organic EL device 6 of Example 10, except that the compound 2-2 used in the light-emitting composition was changed to a mixture of 2-2, 2 5 and 2-9. 6W (white) was produced.
  • the non-light-emitting surface was covered with a glass case to obtain a lighting device.
  • the illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.
  • ITO substrate 100 mm X 100 mm X I. 1 mm
  • ITO indium tin oxide
  • lOOnm-coated substrate ⁇ Techno Glass Co., Ltd. 45-45
  • the provided transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was transferred to a nitrogen atmosphere, and a solution of 20 mg of Compound 4-11 dissolved in 5 ml of toluene was formed on the hole transport layer by spin coating at 2000 rpm for 30 seconds. Further, UV irradiation (100 W UVA) was performed for 15 seconds so that unreacted 4-11 remained, and photopolymerization / crosslinking was performed to form a second hole transport layer having a thickness of 30 nm. The amount of unreacted 4-11 was determined by the analytical method described later.
  • the three organic EL element samples were obliquely cut with a Dyblawintes Cycus NN04 type. Cutting was performed with an enlargement ratio of 500 times, and an analysis area of a hole transport layer having a width of 15 ⁇ m was obtained. Next, the double bond remaining in the hole transport layer was labeled on the cut surface by bromine addition. Regarding the sample after labeling, the elemental composition distribution on the surface of the cutting surface was measured using an X-ray photoelectron spectrometer ULVAC-FAI QuanteraSXM to obtain the elemental composition distribution on the surface of the cutting surface. From this elemental analysis result, the amount of the remaining reactive organic compound was calculated. The results are shown in Table 7.
  • Organic EL device 2 was fabricated in exactly the same manner as organic EL device 1. The obtained device was exactly the same as the organic EL device 1, and when the amount of the reactive organic compound remaining in the device 2 (M90) was calculated at the time when the initial luminance decreased by 10%, UV irradiation was performed for 60 seconds, The remaining reactive organic compounds were lost. The device was further applied with a constant current of 2.5 mAZcm 2 , and the amount of reactive organic compounds remaining was calculated with device 2 (M70) at the point when the initial luminance decreased 30%.
  • Ir-1 was co-evaporated so as to be doped with tBu-PBD and 6% to form a light emitting layer having a thickness of 50 nm. Further, a cathode was formed by vapor-depositing 10 nm of calcium as a cathode buffer layer and 1 lOnm of aluminum as an anode, and an organic EL device 3 was produced.
  • the amount of the remaining reactive organic compound was calculated in the same manner as in the organic EL device 1, with 10% and 30% reduction from the initial luminance as the devices 3 (M90) and (M70), respectively.
  • the obtained device was exactly the same as the organic EL device 1, and the amount of the reactive organic compound remaining was defined as the device (M90) and the device (M70) when the initial luminance decreased by 10% and 30%, respectively. Was calculated.
  • the organic EL device of the present invention has achieved a long lifetime, and the amount of the reactive organic compound decreased over time. It can be seen that the device showing the progress of the construction has a long life. In particular, the longer the layer reconstruction progressed over time, the more it was possible to suppress the blocking deterioration and realize a long-life device.
  • This substrate was transferred to a nitrogen atmosphere, and 5 ml of 20 mg of compound 4-11 was placed on the hole transport layer.
  • a solution of this in toluene was formed by spin coating under the condition of 2000 i: pm for 30 seconds. Further, irradiation with 11 $ for 15 seconds (100 ⁇ UVA) was performed so that unreacted 4-11 remained, and photopolymerization / crosslinking was performed to form a second hole transport layer having a thickness of 30 nm.
  • a film was formed by spin coating under a condition of 30 seconds, and UV irradiation (100 W UVA) was performed for 30 seconds to form an electron transport layer having a film thickness of 25 nm.
  • Figure 1 shows a schematic configuration diagram of an organic EL full-color display device. After patterning at a pitch of 100 ⁇ m on a substrate (NH45 manufactured by NH Techno Glass) with an ITO transparent electrode (102) formed on an ITO transparent electrode (102) on a glass substrate 101 as an anode, an ITO transparent electrode is formed on the glass substrate. In the meantime, a non-photosensitive polyimide partition wall 103 (width 20 ⁇ m, thickness 2.0 m) was formed by photolithography.
  • a hole injection layer composition having the following composition was discharged and injected between polyimide barrier ribs on the ITO electrode using an ink jet head (manufactured by Epson Corporation; MJ800C), irradiated with ultraviolet light for 30 seconds, 60 ° C, 10 ° C.
  • a hole injection layer 104 having a film thickness of 40 nm was produced by a drying treatment for 30 minutes.
  • the fabricated organic EL devices exhibited blue, green, and red light emission by applying voltage to the respective electrodes, which proved to be usable as a full-color display device.
  • a white light-emitting organic EL device was obtained in the same manner as in the organic EL device 6 of Example 13, except that the compound 2-2 used in the light-emitting composition was changed to a mixture of 2-2, 2 5 and 2-9. 6W (white) was produced.
  • the non-light-emitting surface was covered with a glass case to obtain a lighting device.
  • the illuminating device could be used as a thin illuminating device that emits white light with high luminous efficiency and long emission life.

Abstract

 本発明は、高い発光効率を示し、且つ、長寿命である有機EL素子、照明装置およびディスプレイ装置を提供する。

Description

明 細 書
有機エレクト口ルミネッセンス素子、照明装置及びディスプレイ装置 技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、照明装置及びディスプレイ装置に関 する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(ELD)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス素子や有 機エレクト口ルミネッセンス素子(以下、有機 EL素子ともいう)が挙げられる。無機エレ タトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させ るためには交流の高電圧が必要である。
[0003] 一方、有機 EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ 構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子 (ェ キシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光 ·燐光)を利用し て発光する素子であり、数 V〜数十 V程度の電圧で発光が可能であり、更に自己発 光型であるために視野角に富み、視認性が高ぐ薄膜型の完全固体素子であるため に省スペース、携帯性等の観点から注目されて 、る。
[0004] 今後の実用化に向けた有機 EL素子の開発としては、更に低消費電力で、効率よく 高輝度に発光する有機 EL素子が望まれているわけであり、例えば、特許第 309379 6号公報には、スチルベン誘導体、ジスチリルァリーレン誘導体またはトリススチリルァ リーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を 達成する技術が開示され、特開昭 63— 264692号公報には、 8—ヒドロキシキノリン アルミニウム錯体をホストイ匕合物として、これに微量の蛍光体をドープした有機発光 層を有する素子が開示されており、特開平 3— 255190号公報には、 8—ヒドロキシキ ノリンアルミニウム錯体をホストイ匕合物として、これにキナクリドン系色素をドープした 有機発光層を有する素子等が知られている。
[0005] 上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、 一重項励起子と三重項励起子の生成比が 1: 3であるため発光性励起種の生成確率 が 25%であることと、光の取り出し効率が約 20%であるため、外部取り出し量子効率 ( η ext)の限界は 5%とされている。
[0006] ところ力 M. A. Baldo et al. , nature, 395卷、 151〜154ページ(1998年) により、プリンストン大より、励起三重項からのリン光発光を用いる有機 EL素子の報告 力 Sされて以来、 M. A. Baldo et al. , nature, 403卷、 17号、 750〜753ページ( 2000年)、米国特許第 6, 097, 147号明細書により、室温で燐光を示す材料の研 究が活発になってきている。
[0007] 更に、最近発見されたリン光発光を利用する有機 EL素子では、以前の蛍光発光を 利用する素子に比べ原理的に約 4倍の発光効率が実現可能であることから、その材 料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている 。例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123卷、 4304ページ(2 001年)には、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討が なされている。
[0008] また、有機 EL素子は、電極と電極の間を厚さわずか 0. 1 μ m程度の有機材料の膜 で構成するオールソリッド素子であり、なおかつその発光が 2V〜20V程度の比較的 低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されて いる技術である。
[0009] し力しながら、有機 EL素子は、その発光機構が有機材料の励起状態から基底状態 への失活を利用した発光現象をもとにするものであることから、青色や青緑色等の波 長が短い領域を発光させるには、バンドギャップを大きくする必要があり、従ってその 大きなギャップを励起させるために高 、電圧が必要になる。
[0010] 更に、励起状態自体が高いレベルに位置することから基底状態に戻る際のダメー ジが大きぐ緑色や赤色の発光に比べ寿命が短くなる傾向にあり、特に三重項励起 状態からの発光を利用するリン光発光ではその傾向が顕著となる。
[0011] 上記のような問題点を解決する手段としては、種々の技術があるが、例えば、有機 エレクト口ルミネッセンス素子の構成層を製膜した後に、高分子量化するという技術が あり、分子内にビニル基を 2つ有する 2官能性のトリフ ニルァミン誘導体が記載され ており、その化合物を製膜した後に紫外線照射により 3次元架橋されたポリマーを形 成する(例えば、特許文献 1参照。)、 2つ以上のビニル基を有する材料を複数の層 に添加する技術が開示され、重合反応は、陰極を積層する前の有機層製膜時点で 紫外線や熱の照射で行う方法 (例えば、特許文献 2参照。)、リン光ドーパントの末端 にビュル基を有する材料と同様にビニル基を有するコモノマーの混合物にラジカル 発生剤である AIBN (ァゾイソプチ口-トリル)を添加して製膜時に重合反応を進行さ せる製造方法 (例えば、特許文献 3参照。)、同一層内の 2分子間でディールスアル ダー反応を起こさせて架橋させる製造方法 (例えば、特許文献 4参照。)等が挙げら れる。
[0012] 上記の技術は、 Vヽずれも製膜時または製膜直後(陰極を付ける前)に重合反応を 完結させる方法であるが、有機 EL素子の耐久性向上という実用上の観点力もは、ま だ、不十分であり、更なる素子の耐久性向上技術が求められている。
特許文献 1:特開平 5— 271166号公報
特許文献 2:特開 2001— 297882号公報
特許文献 3:特開 2003 - 73666号公報
特許文献 4:特開 2003— 86371号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明は、上記課題を鑑みてなされたものであり、その目的は
本発明の目的は、高い発光効率を示し、且つ、長寿命である有機 EL素子、照明装 置およびディスプレイ装置を提供することである。
課題を解決するための手段
[0014] 本発明の上記目的は、下記構成により達成された。
[0015] 1.支持基板上に少なくとも陽極、陰極を有し、該陽極と該陰極間に少なくとも 1層 の反応性有機化合物を含有する有機層を有する有機エレクト口ルミネッセンス素子に おいて、
0. 01mAZcm2〜10000mAZcm2の電流密度の通電により、該有機層中の該反 応性有機化合物の濃度が通電前の濃度に対して低下していることを特徴とする有機 エレクトロノレミネッセンス素子。
[0016] 2.前記電流密度が 0. 01mAZcm2〜1000mAZcm2であることを特徴とする前 記 1に記載の有機エレクト口ルミネッセンス素子。
[0017] 3.前記反応性有機化合物が重合性モノマーであることを特徴とする前記 1または 2 に記載の有機エレクト口ルミネッセンス素子。
[0018] 4.前記反応性有機化合物が複数の反応性置換基を有することを特徴とする前記 1
〜3のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0019] 5.前記反応性有機化合物の反応により架橋構造が形成されることを特徴とする前 記 1〜4のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0020] 6.前記反応性置換基が下記で示される部分構造を含むことを特徴とする前記 4ま たは 5に記載の有機エレクト口ルミネッセンス素子。
[0021] [化 1]
Figure imgf000005_0001
[0022] 7.前記有機層の少なくとも 1層がりん光性発光化合物を含有することを特徴とする 前記 1〜6のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0023] 8.前記通電により発光輝度が初期輝度の 90%まで低下した時点で、有機層中の 該反応性有機化合物の濃度が通電前の濃度に対して低下していることを特徴とする 前記 1〜7のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0024] 9.前記発光輝度が初期輝度の 90%まで低下した時点で、前記反応性有機化合 物の濃度(M90)力 0. lmolZm3〜10molZm3であることを特徴とする前記 1〜8 のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0025] 10.前記発光輝度が初期輝度の 70%まで低下した時点での、前記反応性有機化 合物の濃度 (M70)と、前記発光輝度が初期輝度の 90%まで低下した時点での前 記反応性有機化合物の濃度 (M90)との比 ΔΜ (M70/M90)が下記式(1)を満た すことを特徴とする前記 1〜9のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子。
[0026] 式(1)
0. 1≤ΔΜ< 1. 0
11.前記発光輝度が初期輝度の 90%まで低下した時点における該有機層のガラ ス転移点 Tg (90%)と、通電開始前のガラス転移点 Tg (初期)とが、下記式(1)を満 たすことを特徴とする前記 1〜10のいずれ力 1項に記載の有機エレクト口ルミネッセン ス素子。
[0027] 式(1)
1. 03≤(Tg (90%) ZTg (初期))≤1. 20
12.前記発光輝度が初期輝度の 50%まで低下した時点における該有機層のガラ ス転移点 Tg (50%)と、通電開始前のガラス転移点 Tg (初期)とが、下記式 (2)を満 たすことを特徴とする前記 1〜: L 1のいずれ力 1項に記載の有機エレクト口ルミネッセン ス素子。
[0028] 式(2)
1. 04≤(Tg (90%) ZTg (初期))≤1. 20
13.前記 Tg (90%)と前記 Tg (50%)が、下記式 (3)を満たすことを特徴とする前 記 12に記載の有機エレクト口ルミネッセンス素子。
[0029] 式(3)
1. 00< (Tg (50%) /Tg (90%) )≤l. 05
14.前記 1〜13のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を具備 することを特徴とする照明装置。
[0030] 15.前記 1〜13のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を具備 することを特徴とするディスプレイ装置。
発明の効果
[0031] 本発明により、高い発光効率を示し、且つ、長寿命である有機 EL素子、照明装置 およびディスプレイ装置を提供することができた。
図面の簡単な説明
[0032] [図 1]有機 ELフルカラー表示装置の概略構成図を示す。
符号の説明
[0033] 101 ガラス基板
102 ITO透明電極
103 隔壁
104 正孔注入層
105B, 105G, 105R 発光層
発明を実施するための最良の形態
[0034] 本発明の有機エレクト口ルミネッセンス素子(有機 EL素子ともいう)においては、請 求の範囲第 1項〜請求の範囲第 7項のいずれか 1項に記載の構成を有することによ り、外部量子効率が高ぐ且つ、素子寿命の長い(堅牢性向上)有機エレクトロルミネ ッセンス素子 (有機 EL素子)を得ることが出来た。また、前記有機 EL素子を具備した 、高輝度のディスプレイ装置、照明装置を得ることにも併せて成功した。
[0035] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0036] 《反応性有機化合物を含有する有機層》
本発明に係る、反応性有機化合物を含有する有機層につ!ヽて説明する。
[0037] 本発明の有機 EL素子は、少なくとも 1層の反応性有機化合物を含有する有機層を 有するが、該素子としては、その他の有機層を構成層として有してよぐまた、有機層 の作製は、詳細は後述するが、従来公知の塗布方法を用いてもよぐ蒸着法等の方 法で作製してもよぐ更には、塗布方法と蒸着方法が混在した手法で構成層が形成 されてちょい。
[0038] 本発明者等は、上記のような従来公知の有機 EL素子の問題点を種々開発、検討 する中で、下記のような発見をした。
[0039] ここでは、一例として、塗布による有機層の形成工程をとりあげ、本発明者等が本願 発明に至った経緯を説明する。
[0040] 本発明者等は、硬化ど塗布を繰返す塗布工程を検討して!/ヽる中で、塗設した層中( 膜中ともいう)に意識的に反応性有機化合物 (未反応のモノマー、反応性の基を有す る化合物等とも 、う)を残した (残留したとも ヽぅ)素子を作製し、前記化合物の残留と 素子性能との関連について検討した。
[0041] その結果、有機層中に反応性有機化合物が残留していると、素子に通電すること により、該反応性有機化合物の濃度が低下することにより、本発明者等の望むべき 方向に素子性能を制御できる可能性があることがわ力つた。
[0042] 具体的には、例えば、反応性有機化合物が、未反応の重合性モノマー等の場合に は、素子の使用中に発生する活性ラジカル等により重合反応を進行させ、有機分子 によるネットワークポリマーを形成させ、構成層の Tg (ガラス転移点)調整による素子 劣化の抑制等の効果が得られることがわ力つた。
[0043] また、素子使用中の活性ラジカルを用いて分子の共役系の切断または生成を伴う 反応を調整することにより、有機 EL素子の発光波長を変えたり、特定波長の劣化を 抑制すること等も可能になることがわ力つた。
[0044] 本発明に係る反応性有機化合物としては、有機 EL素子の構成層(後に詳細に説 明する)に含まれる機能性ィ匕合物の全てが反応性ィ匕合物の母核として適用可能であ る。例えば、後述する発光層中のホストイ匕合物や、発光ドーパント等や、正孔輸送材 料、電子輸送材料等を母核として有し、該母核に反応性置換基が置換したような化 合物が使用可能である。
[0045] 上記の反応性置換基としては、例えば、以下に示す部分構造を含むことが好ま 、
[0046] [化 2]
Z、 ~ = — NH, — OH — SH
Figure imgf000008_0001
[0047] 一方、製造面では、例えば、塗布で積層する工程の場合では、下層が上層の塗布 液に溶解しないことが好ましぐ下層を榭脂ィ匕し溶剤溶解性を劣化させることで、上 層塗布を可能とすることができる。従来公知の技術では、前記下層を完全に榭脂ィ匕 してしまい、本願発明のように、反応性有機化合物を下層に残留させることにより、上 記のような、素子の機能向上に著しい効果が得られるということは、予想できない発 見であり、また、素子の機能上の効果のみならず、反応性化合物が残留した状態が むしろ好ましいので、従来の製造工程とくらべて、素子の製造工程を簡略ィ匕できると いう工程上のメリットもあることが併せて判明した。
[0048] 《通電により有機層中の反応性有機化合物の濃度が低下する》
本発明に係る、少なくとも 1層の反応性有機化合物を含有する有機層 (有機化合物 層ともいう)中においては、本発明の有機 EL素子の通電開始により、有機層中にお ける反応性有機化合物の濃度が低下することが特徴であり、ここで、『反応性有機化 合物の濃度が低下する』とは、素子に通電することにより、反応 (架橋反応、重合反応 等が挙げられる)が進行することにより、前記反応性有機化合物の濃度が低下するこ とを表す。
[0049] 《反応性有機化合物が濃度の低下を分析する手段》
本発明に係る反応性有機化合物の有機層中での濃度低下を分析する手段にっ ヽ て説明する。
[0050] 有機層中での反応性有機化合物の濃度低下を分析する手段としては、反応性有 機化合物を含有する有機層の深さ方向の分析を行うことにより、通電による濃度低下 を分析することが出来る。
[0051] 例えば、有機層の深さ方向の反応性有機化合物として、ビュル基置換のモノマー をとりあげて説明すると、ビニル基の 2重結合の分布を以下の様な分析手法で測定 することによって層中の濃度分析することが出来る。
[0052] まず、一般的な微小領域分析手法にて分析が可能な程度の分析面積を確保する 必要があるが、そのためには薄膜を斜めに切削するのが有効な手段である。斜めに 切削することで表面に垂直に断面を作製した場合と比較して、 1/cos θ ( Θは表面 法線力も切削面の角度を引いた値)だけ面積が拡大される。 [0053] 一例を挙げれば当業界で一般的に用いられているウルトラミクロトームを用いてガラ スナイフの刃を傾けて切削する方法やダイブラウインテス社製サイカス NN04型を用 V、て斜めに切削した面を作製する方法を挙げることができる。
[0054] 分析面積が確保出来た後に、 2重結合の分布を計測することとなるが、 2重結合の 分布を計測する手段はいくつか考えられる。例えば、顕微赤外分光分析やラマン分 光分析あるいは 2重結合に特異的に反応し、かつ特異な元素を有する標識試薬にて 2重結合を標識化し、電子線プローブマイクロアナライザー、 X線光電子分光装置、 ォージェ電子分光装置、飛行時間型二次イオン質量分析装置などで標識元素の分 布を計測する方法等が好ましい分析手段として挙げられる。
[0055] 有機 EL素子に通電を行った際の、反応性有機化合物の有機層中での濃度低下 の具体的な分析例は、後述する実施例において説明する。
[0056] 《ホスト化合物として適用可能な反応性有機化合物》
本発明に係る反応性有機化合物の中で、ホスト化合物として用いられる化合物に ついて説明する。
[0057] ホストィヒ合物として用いることのできる反応性有機化合物は、下記一般式(1)で表さ れる。
[0058] 一般式(1)
A-B
式中、 Bは、前記の反応性置換基を表し、 Aは、ホスト化合物としての機能を有する 部分構造を表す。
[0059] 本発明においては、前記 Aとしては、下記一般式(la)または一般式(lb)で表され る部分構造を有することが好ましい。更に、前記一般式(la)で表される部分構造とし ては、下記一般式(lc)で表される部分構造が好ましく用いられる。
[0060] [化 3] 一般式 (1a)
Figure imgf000011_0001
[0061] 式中、 Arl、 Ar2、 Ar3は、各々芳香族炭化水素環または芳香族複素環を表し、 X は、 NR'、 0、 S、じ 'または30^, 'を表す。 R'、 R "は、各々水素原子または置 換基を表す。
[0062] 一般式(la)、一般式(lb)、一般式(lc)において、 Arl、 Ar2、 Ar3で各々表され る芳香族炭化水素環としては、ベンゼン環、ビフエ二ル環、ナフタレン環、ァズレン環 、アントラセン環、フエナントレン環、ピレン環、タリセン環、ナフタセン環、トリフエ-レ ン環、 o—テルフエ-ル環、 m—テルフエ-ル環、 p—テルフエ-ル環、ァセナフテン 環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリ レン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等 が挙げられる。これらの環は更に、後述する R'、 R "で表される置換基を有していても よい。
[0063] 一般式(la)、一般式(lb)、一般式(lc)において、 Arl、 Ar2、 Ar3で各々表され る芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チォフェン環、ォキ サゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジ ン環、ベンゾイミダゾール環、ォキサジァゾール環、トリァゾール環、イミダゾール環、 ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環 、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環、キナゾリン環、シンノ リン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、力ルバゾール環、力 ルポリン環、ジァザ力ルバゾール環 (カルボリン環を構成する炭化水素環の炭素原子 の一つが更に窒素原子で置換されて ヽる環を示す)等が挙げられる。これらの環は 更に後述する R'、 R"で表される置換基を有していてもよい。
一般式(lb)の Xにおいて、 R,、 R "で、各々表される置換基としては、アルキル基( 例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 tert ブチル基、ペンチ ル基、へキシル基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデ シル基等)、シクロアルキル基 (例えば、シクロペンチル基、シクロへキシル基等)、ァ ルケ-ル基(例えば、ビニル基、ァリル基、 1 プロべ-ル基、 2 ブテュル基、 1, 3 ブタジェ-ル基、 2—ペンテ-ル基、イソプロべ-ル基等)、アルキ-ル基(例えば 、ェチュル基、プロパルギル基等)、芳香族炭化水素基 (芳香族炭素環基、ァリール 基等ともいい、例えば、フエ-ル基、 p クロ口フエ二ル基、メシチル基、トリル基、キシ リル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテュル基、フルォレニル 基、フエナントリル基、インデュル基、ピレニル基、ビフヱ-リル基等)、芳香族複素環 基 (例えば、フリル基、チェニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ビラ ジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリ-ル 基、カルバゾリル基、カルボリニル基、ジァザカルバゾリル基(前記カルボリ-ル基の カルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示 す)、フタラジュル基等)、複素環基 (例えば、ピロリジル基、イミダゾリジル基、モルホ リル基、ォキサゾリジル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、プロピ ルォキシ基、ペンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ドデシルォ キシ基等)、シクロアルコキシ基 (例えば、シクロペンチルォキシ基、シクロへキシルォ キシ基等)、ァリールォキシ基 (例えば、フエノキシ基、ナフチルォキシ基等)、アルキ ルチオ基(例えば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペンチルチオ基 、へキシルチオ基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基 (例 えば、シクロペンチルチオ基、シクロへキシルチオ基等)、ァリールチオ基 (例えば、フ ェニルチオ基、ナフチルチオ基等)、アルコキシカルボ-ル基 (例えば、メチルォキシ カルボ-ル基、ェチルォキシカルボ-ル基、ブチルォキシカルボ-ル基、ォクチルォ キシカルボ-ル基、ドデシルォキシカルボ-ル基等)、ァリールォキシカルボ-ル基( 例えば、フエ-ルォキシカルボ-ル基、ナフチルォキシカルボ-ル基等)、スルファモ ィル基(例えば、アミノスルホ -ル基、メチルアミノスルホ -ル基、ジメチルアミノスルホ -ル基、ブチルアミノスルホ -ル基、へキシルアミノスルホ -ル基、シクロへキシルアミ ノスルホ -ル基、ォクチルアミノスルホ -ル基、ドデシルアミノスルホ-ル基、フエ-ル アミノスルホ -ル基、ナフチルアミノスルホ -ル基、 2—ピリジルアミノスルホ -ル基等) 、ァシル基(例えば、ァセチル基、ェチルカルボ-ル基、プロピルカルボ-ル基、ペン チルカルボ-ル基、シクロへキシルカルボ-ル基、ォクチルカルポ-ル基、 2—ェチ ルへキシルカルボ-ル基、ドデシルカルポ-ル基、フヱ-ルカルボ-ル基、ナフチル カルボニル基、ピリジルカルボ-ル基等)、ァシルォキシ基 (例えば、ァセチルォキシ 基、ェチルカルボニルォキシ基、ブチルカルボニルォキシ基、ォクチルカルボニルォ キシ基、ドデシルカルボニルォキシ基、フエ-ルカルポニルォキシ基等)、アミド基 (例 えば、メチルカルボ-ルァミノ基、ェチルカルボ-ルァミノ基、ジメチルカルボ-ルアミ ノ基、プロピルカルボ-ルァミノ基、ペンチルカルボ-ルァミノ基、シクロへキシルカル ボ-ルァミノ基、 2—ェチルへキシルカルボ-ルァミノ基、ォクチルカルボ-ルァミノ 基、ドデシルカルボ-ルァミノ基、フヱ-ルカルポ-ルァミノ基、ナフチルカルボ-ル アミノ基等)、力ルバモイル基 (例えば、ァミノカルボニル基、メチルァミノカルボ-ル 基、ジメチルァミノカルボ-ル基、プロピルアミノカルボ-ル基、ペンチルァミノカルボ -ル基、シクロへキシルァミノカルボ-ル基、ォクチルァミノカルボ-ル基、 2—ェチル へキシルァミノカルボ-ル基、ドデシルァミノカルボ-ル基、フエ-ルァミノカルボ-ル 基、ナフチルァミノカルボニル基、 2—ピリジルァミノカルボ-ル基等)、ウレイド基 (例 えば、メチルウレイド基、ェチルウレイド基、ペンチルゥレイド基、シクロへキシルゥレイ ド基、ォクチルゥレイド基、ドデシルウレイド基、フエニルウレイド基ナフチルウレイド基 、 2—ピリジルアミノウレイド基等)、スルフィエル基(例えば、メチルスルフィエル基、ェ チルスルフィ-ル基、ブチルスルフィ-ル基、シクロへキシルスルフィ-ル基、 2—ェ チルへキシルスルフィ-ル基、ドデシルスルフィ-ル基、フヱニルスルフィ-ル基、ナ フチルスルフィ-ル基、 2—ピリジルスルフィエル基等)、アルキルスルホ -ル基(例え ば、メチルスルホ -ル基、ェチルスルホ -ル基、ブチルスルホ -ル基、シクロへキシ ルスルホ-ル基、 2—ェチルへキシルスルホ -ル基、ドデシルスルホ -ル基等)、ァリ 一ルスルホ -ル基またはへテロアリールスルホ -ル基(例えば、フエ-ルスルホ-ル 基、ナフチルスルホニル基、 2—ピリジルスルホニル基等)、アミノ基 (例えば、アミノ基 、ェチルァミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチルァミノ基、 2—ェ チルへキシルァミノ基、ドデシルァミノ基、ァ-リノ基、ナフチルァミノ基、 2—ピリジル アミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭 化水素基(例えば、フルォロメチル基、トリフルォロメチル基、ペンタフルォロェチル 基、ペンタフルオロフェ-ル基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シ リル基 (例えば、トリメチルシリル基、トリイソプロビルシリル基、トリフエ-ルシリル基、フ ェニルジェチルシリル基等)、ホスホノ基等が挙げられる。
[0065] これらの置換基は、上記の置換基によってさらに置換されて 、てもよ 、。また、これ らの置換基は複数が互 、に結合して環を形成して 、てもよ 、。
[0066] 以下、ホスト化合物として適用可能な反応性有機化合物の具体例を示すが、本発 明はこれらに限定されない。
[0067] [化 4]
[S^ ] [8900]
Figure imgf000015_0001
[9^ ] [6900]
Figure imgf000016_0001
[OZOO]
Figure imgf000017_0001
動 OAV
Figure imgf000018_0001
[0071] (ホスト化合物以外の反応性有機化合物の具体例)
また、上記のホスト化合物以外の反応性有機化合物の具体例を示すが、本発明は これらに限定されない。
[0072] [化 8]
Figure imgf000019_0001
Figure imgf000019_0002
8l789S0/.00Zdf/X3d 81· 動 OAV
Figure imgf000020_0001
[0074] [化 10]
Figure imgf000021_0001
]
Figure imgf000021_0002
[0076] [化 12]
Figure imgf000022_0001
[0077] [化 13]
[fl^ [8Z00]
Figure imgf000023_0001
8l789S0/.00Zdf/X3d zz [3ΐ^ ] [6Ζ00]
Figure imgf000024_0001
Figure imgf000025_0001
[0080] [化 16]
ίίΐ^] [1800]
Figure imgf000026_0001
89S0/L00Zd£/13d 92 動 0 OAV
Figure imgf000027_0001
[0082] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層について説明する。本発明において、有機 EL素 子の層構成の好ましい具体例を以下に示す力 本発明はこれらに限定されない。
[0083] (i)陽極 Z発光層 電子輸送層 Z陰極 (ii)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極
(iii)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(iv)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
(v)陽極 Z陽極バッファ一層 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
本発明の有機 EL素子においては、青色発光層の発光極大波長は 430ηπ!〜 480 nmにあるものが好ましぐ緑色発光層は発光極大波長が 510nm〜550nm、赤色発 光層は発光極大波長が 600ηπ!〜 640nmの範囲にある単色発光層であることが好 ましぐこれらを用いた表示装置であることが好ましい。また、これらの少なくとも 3層の 発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光 性の中間層を有して 、てもよ 、。本発明の有機 EL素子としては白色発光層であるこ とが好ましぐこれらを用いた照明装置であることが好ましい。
[0084] 本発明の有機 EL素子を構成する各層につ ヽて説明する。
[0085] 《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層カゝら注入されてくる 電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であつ ても発光層と隣接層との界面であってもよ 、。
[0086] 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高 電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点 から、 2ηπι〜5 /ζ πιの範囲に調整することが好ましぐさらに好ましくは 2nm〜200n mの範囲に調整され、特に好ましくは、 ΙΟηπ!〜 20nmの範囲である。
[0087] 発光層の作製には、後述する発光ドーパントやホストイ匕合物を、例えば、真空蒸着 法、スピンコート法、キャスト法、 LB法、インクジェット法等の公知の薄膜ィ匕法により製 膜して形成することができる。
[0088] 本発明の有機 EL素子の発光層には、発光ホスト化合物と、発光ドーパント(リン光 ドーパント (リン光発光性ドーパントともいう)や蛍光ドーパント等)の少なくとも 1種類と を含有することが好ましい。 [0089] (ホスト化合物 (発光ホスト等とも 、う) )
本発明に用いられるホストイ匕合物にっ 、て説明する。
[0090] ここで、本発明においてホストイ匕合物とは、発光層に含有される化合物の内でその 層中での質量比が 20%以上であり、且つ室温(25°C)においてリン光発光のリン光 量子収率が、 0. 1未満の化合物と定義される。好ましくはリン光量子収率が 0. 01未 満である。また、発光層に含有される化合物の中で、その層中での質量比が 20%以 上であることが好ましい。
[0091] ホストイ匕合物としては、公知のホストイ匕合物を単独で用いてもよぐまたは複数種併 用して用いてもよい。ホストイ匕合物を複数種用いることで、電荷の移動を調整すること が可能であり、有機 EL素子を高効率ィ匕することができる。また、後述する発光ドーパ ントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発 光色を得ることができる。
[0092] また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り 返し単位をもつ高分子化合物でもよぐビュル基やエポキシ基のような重合性基を有 する低分子化合物 (蒸着重合性発光ホスト)でも良 ヽ。
[0093] 併用してもよい公知のホストイ匕合物としては、正孔輸送能、電子輸送能を有しつつ 、且つ発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好 ましい。
[0094] 公知のホストイ匕合物の具体例としては、以下の文献に記載されている化合物が挙 げられる。
[0095] 特開 2001— 257076号公報、同 2002— 308855号公報、同 2001— 313179号 公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2002— 334786 号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号 公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2002— 334789 号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 10544 5号公報、同 2002— 343568号公報、同 2002— 141173号公報、同 2002— 352 957号公報、同 2002— 203683号公報、同 2002— 363227号公報、同 2002— 2 31453号公報、同 2003— 3165号公報、同 2002— 234888号公報、同 2003— 2 7048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002— 302516号公報、同 2002 — 305083号公報、同 2002— 305084号公報、同 2002— 308837号公報等。
[0096] (発光ドーパント)
本発明に係る発光ドーパントにっ 、て説明する。
[0097] 本発明に係る発光ドーパントとしては、蛍光ドーパント (蛍光性ィ匕合物とも 、う)、リン 光ドーパント (リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用い ることができるが、より発光効率の高い有機 EL素子を得る観点力 は、本発明の有 機 EL素子の発光層や発光ユニットに使用される発光ドーパント (単に、発光材料とい うこともある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含 有することが好ましい。
[0098] (リン光ドーパント)
本発明に係るリン光ドーパントにっ 、て説明する。
[0099] 本発明に係るリン光ドーパントは、励起三重項力 の発光が観測される化合物であ り、具体的には、室温 (25°C)にてリン光発光する化合物であり、リン光量子収率が、 25°Cにおいて 0. 01以上の化合物であると定義される力 好ましいリン光量子収率 は 0. 1以上である。
[0100] 上記リン光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸 善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用 いて測定できる力 本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおい て上記リン光量子収率 (0. 01以上)が達成されればょ 、。
[0101] リン光ドーパントの発光は原理としては 2種挙げられ、一つはキャリアが輸送される ホストイ匕合物上でキャリアの再結合が起こってホストイ匕合物の励起状態が生成し、こ のエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得る というエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ド 一パント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキ ャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態の エネルギーはホストイ匕合物の励起状態のエネルギーよりも低いことが条件である。 [0102] リン光ドーパントは、有機 EL素子の発光層に使用される公知のものの中力 適宜 選択して用いることができる。
[0103] 本発明に係るリン光ドーパントとしては、好ましくは元素の周期表で 8〜: LO族の金属 を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合 物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好まし
Vヽのはイリジウム化合物である。
[0104] 以下に、リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれ らに限定されない。これらの化合物は、例えば、 Inorg. Chem. 40卷、 1704〜171
1に記載の方法等により合成できる。
[0105] [化 18]
Figure imgf000032_0001
[0106] [化 19]
Figure imgf000033_0001
[0107] [化 20] [ΐ^ ] [8010]
Figure imgf000034_0001
5レ一 ·》Ι
8l789S0/.00Zdf/X3d SS 動 OAV
Figure imgf000035_0001
[0109] [化 22]
Figure imgf000036_0001
[0110] [化 23]
Pd-1 Pd-2 Pd-3
Figure imgf000036_0002
[0111] [化 24]
Rh-1 Rh-2 Rh-3
Figure imgf000036_0003
[0112] (蛍光ドーパント (蛍光性ィ匕合物とも!、う) )
蛍光ドーパント (蛍光性ィ匕合物)としては、クマリン系色素、ピラン系色素、シァニン 系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素、 フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチル ベン系色素、ポリチオフ ン系色素、または希土類錯体系蛍光体等が挙げられる。
[0113] 次に、本発明の有機 EL素子の構成層として用いられる、注入層、阻止層、電子輸 送層等について説明する。
[0114] 《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてちょい。
[0115] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ'ティー ·ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0116] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる
[0117] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロン チウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表される アルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸ィヒアルミニウムに代表される酸ィヒ物バッファ一層等が挙げ られる。上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよる がその膜厚は 0. lnm〜5 mの範囲が好ましい。 [0118] 《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けら れるものである。例えば、特開平 11 204258号公報、同 11— 204359号公報、及 び「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ'ティー ·エス社発行) 」の 237頁等に記載されて 、る正孔阻止(ホールブロック)層がある。
[0119] 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい正孔阻止材料力 なり、電子を輸送しつ つ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、 後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用い ることがでさる。
[0120] 本発明の有機 EL素子の正孔阻止層は、発光層に隣接して設けられていることが好 ましい。
[0121] 正孔阻止層には、前述のホストイ匕合物として挙げたァザカルバゾール誘導体を含 有することが好ましい。
[0122] また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、そ の発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好 ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔 阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に 含有される化合物の 50質量%以上が、前記最短波発光層のホスト化合物に対しそ のイオン化ポテンシャルが 0. 3eV以上大き!/、ことが好まし!/、。
[0123] イオンィ匕ポテンシャルは化合物の HOMO (最高被占分子軌道)レベルにある電子 を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような 方法により求めることができる。
[0124] (1)米国 Gaussian社製の分子軌道計算用ソフトウェアである Gaussian98 (Gauss ian98、 Revision A. 丄 1. 4, M. J. Frisch, et al, Lraussian, Inc. , Pittsburg h PA, 2002. )を用い、キーワードとして B3LYPZ6— 31G *を用いて構造最適 化を行うことにより算出した値 (eV単位換算値)の小数点第 2位を四捨五入した値とし てイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手 法で求めた計算値と実験値の相関が高いためである。
[0125] (2)イオンィ匕ポテンシャルは光電子分光法で直接測定する方法により求めることも できる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC— 1」を 用いて、あるいは紫外光電子分光として知られて 、る方法を好適に用いることができ る。
[0126] 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。
[0127] また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることがで きる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは 3ηπ!〜 100 nmであり、更に好ましくは 5ηπ!〜 30nmである。
[0128] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料力 なり、広い意味で 正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数 層設けることができる。
[0129] 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の 、ずれかを有す るものであり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体 、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ビラ ゾリン誘導体及びピラゾロン誘導体、フ -レンジァミン誘導体、ァリールァミン誘導 体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、 フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリ ン系共重合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げら れる。
[0130] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第 3級ァミン化合物及びスチリルアミン化合物、特に芳香族第 3級アミンィ匕合 物を用いることが好ましい。
[0131] 芳香族第 3級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1 , 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1 , 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0132] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。また、 P型— Si、 p型— SiC等の無機化合物も正 孔注入材料、正孔輸送材料として使用することができる。
[0133] また、特開平 11— 251067号公報、 J. Huang et. al.著文献 (Applied Physic s Letters 80 (2002) , p. 139)に記載されているような、所謂 p型正孔輸送材料 を用いることもできる。本発明においては、より高効率の発光素子が得られることから これらの材料を用いることが好まし!/、。
[0134] 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は 5nm〜5 μ m程度、好ましくは 5nm〜200nmである。この正孔輸送層は上記材料の 1種または 2種以上力もなる一層構造であってもよ 、。
[0135] また、不純物をドープした p性の高い正孔輸送層を用いることもできる。その例とし ては、特開平 4— 297076号公報、特開 2000— 196140号公報、同 2001— 1021 75号公報の各公報、 J. Appl. Phys. , 95, 5773 (2004)等に記載されたものが挙 げられる。
[0136] 本発明においては、このような ρ性の高い正孔輸送層を用いることが、より低消費電 力の素子を作製することができるため好ましい。
[0137] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けるこ とがでさる。
[0138] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、陰 極より注入された電子を発光層に伝達する機能を有していればよぐその材料として は従来公知の化合物の中から任意のものを選択して用いることができ、例えば、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、力 ルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導 体、ォキサジァゾール誘導体等が挙げられる。更に上記ォキサジァゾール誘導体に ぉ 、て、ォキサジァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導 体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電 子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、ま たはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
[0139] また 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ-ゥ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリ 一もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等 で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光 層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いること 力 Sできるし、正孔注入層、正孔輸送層と同様に n型— Si、 n型— SiC等の無機半導体 も電子輸送材料として用いることができる。
[0140] 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。電子輸送層の膜厚については特に制限はないが、通常は
5nm〜5 μ m程度、好ましくは 5ηπ!〜 200nmである。電子輸送層は上記材料の 1種 または 2種以上力もなる一層構造であってもよ 、。
[0141] また、不純物をドープした n性の高い電子輸送層を用いることもできる。その例とし ては、特開平 4— 297076号公報、同 10— 270172号公報、特開 2000— 196140 号公報、同 2001— 102175号公報、 Appl. Phys. , 95, 5773 (2004)等に記載 されたものが挙げられる。
[0142] 本発明においては、このような η性の高い電子輸送層を用いることがより低消費電 力の素子を作製することができるため好ましい。
[0143] 《陽極》
有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。こ のような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォキシド (IT 0)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O—ZnO)
2 2 3 等非晶質で透明導電膜を作製可能な材料を用いてもよ!ヽ。陽極はこれらの電極物 質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィ一法で所 望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要としない場 合は(100 μ m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状の マスクを介してパターンを形成してもよい。あるいは、有機導電性ィ匕合物のように塗布 可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いる こともできる。この陽極より発光を取り出す場合には、透過率を 10%より大きくすること が望ましぐまた陽極としてのシート抵抗は数百 Ω Ζ口以下が好ましい。更に膜厚は 材料にもよるが、通常 10nm〜1000nm、好ましくは 10nm〜200nmの範囲で選ば れる。
[0144] 《陰極》
一方、陰極としては仕事関数の小さ ヽ (4eV以下)金属 (電子注入性金属と称する) 、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。 このような電極物質の具体例としては、ナトリウム、ナトリウム一カリウム合金、マグネシ ゥム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグネシウム Z アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミ- ゥム (Al O )
2 3混合物、インジウム、リチウム Zアルミニウム混合物、希土類金属等が挙 げられる。これらの中で、電子注入性及び酸ィ匕等に対する耐久性の点から、電子注 入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、 例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )
2 3混合物、リチウム Zァ ルミ-ゥム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着や スパッタリング等の方法により薄膜を形成させることにより、作製することができる。ま た、陰極としてのシート抵抗は数百 Ω Ζ口以下が好ましぐ膜厚は通常 ΙΟηπ!〜 5 m、好ましくは 50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させるため 、有機 EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発 光輝度が向上し好都合である。
[0145] また、陰極に上記金属を Inn!〜 20nmの膜厚で作製した後に、陽極の説明で挙げ た導電性透明材料をその上に作製することで、透明または半透明の陰極を作製する ことができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製す ることがでさる。
[0146] 《支持基板》
本発明の有機 EL素子に用いることのできる支持基板 (以下、基体、基板、基材、支 持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなぐまた透 明であっても不透明であってもよい。支持基板側力 光を取り出す場合には、支持基 板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス 、石英、透明榭脂フィルムを挙げることができる。特に好ましい支持基板は、有機 EL 素子にフレキシブル性を与えることが可能な榭脂フィルムである。
[0147] 榭脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セル口 ースジアセテート、セノレローストリアセテート、セノレロースアセテートブチレート、セノレ口 ースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セル ロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩ィ匕ビユリ デン、ポリビュルアルコール、ポリエチレンビュルアルコール、シンジォタクティックポ リスチレン、ポリカーボネート、ノルボルネン榭脂、ポリメチルペンテン、ポリエーテルケ トン、ポリイミド、ポリエーテルスルホン(PES)、ポリフエ-レ
ンスルフイド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド 、フッ素榭脂、ナイロン、ポリメチルメタタリレート、アクリルあるいはポリアリレート類、ァ 一トン (商品名 JSR社製)ある ヽはァペル (商品名三井化学社製) 、つたシクロォレ フィン系榭脂等を挙げられる。
[0148] 榭脂フィルムの表面には、無機物、有機物の被膜またはその両者のノヽイブリツド被 膜が形成されていてもよぐ JIS K 7129— 1992に準拠した方法で測定された、水 蒸気透過度(25 ±0. 5°C、相対湿度(90± 2) %RH)が 0. 01gZ (m2' 24h)以下の ノ リア性フィルムであることが好ましぐ更には、 JIS K 7126— 1987に準拠した方 法で測定された酸素透過度が、 10_3mlZ (m2' 24h'MPa)以下、水蒸気透過度が 、 10_5g/ (m2' 24h)以下の高ノ リア性フィルムであることが好ましい。
[0149] バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入 を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸化珪素、窒化 珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と 有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積 層順については特に制限はないが、両者を交互に複数回積層させることが好ましい
[0150] バリア膜の形成方法については特に限定はなぐ例えば、真空蒸着法、スパッタリ ング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、 イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法 、レーザー CVD法、熱 CVD法、コーティング法等を用いることができる力 特開 200 4— 68143号公報に記載されているような大気圧プラズマ重合法によるものが特に 好ましい。
[0151] 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムゃ不 透明榭脂基板、セラミック製の基板等が挙げられる。
[0152] 本発明の有機 EL素子の発光の室温における外部取り出し効率は、 1%以上である ことが好ましぐより好ましくは 5%以上である。ここに、外部取り出し量子効率(%) = 有機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 100である。
[0153] また、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機 EL素子から の発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよ ヽ。色 変換フィルターを用いる場合においては、有機 EL素子の発光の λ maxは 480nm以 下が好ましい。
[0154] 《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接 着剤で接着する方法を挙げることができる。
[0155] 封止部材としては、有機 EL素子の表示領域を覆うように配置されておればよぐ凹 板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
[0156] 具体的には、ガラス板、ポリマー板'フィルム、金属板'フィルム等が挙げられる。ガ ラス板としては、特にソーダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス 、アルミノケィ酸ガラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等を挙げる ことができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレ フタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板 としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チ タン、モリブテン、シリコン、ゲルマニウム及びタンタル力 なる群力 選ばれる一種以 上の金属または合金力もなるものが挙げられる。
[0157] 本発明においては、素子を薄膜ィ匕できるということ力もポリマーフィルム、金属フィル ムを好ましく使用することができる。更には、ポリマーフィルムは、 JIS K 7126- 19 87に準拠した方法で測定された酸素透過度が 1 X 10_3mlZ (m2' 24h'MPa)以下 、JIS K 7129— 1992に準拠した方法で測定された、水蒸気透過度(25±0. 5°C 、相対湿度(90± 2) %RH)が、 l X 10_3gZ (m2' 24h)以下のものであることが好ま しい。
[0158] 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使 われる。
[0159] 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応 性ビュル基を有する光硬化及び熱硬化型接着剤、 2 シァノアクリル酸エステル等 の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学 硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステ ル、ポリオレフインを挙げることができる。また、カチオン硬化タイプの紫外線硬化型 エポキシ榭脂接着剤を挙げることができる。
[0160] なお、有機 EL素子が熱処理により劣化する場合があるので、室温力 80°Cまでに 接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいても よい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリ ーン印刷のように印刷してもよ!/、。
[0161] また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆 し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にで きる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらす ものの浸入を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸ィ匕 珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これ ら無機層と有機材料カゝらなる層の積層構造を持たせることが好ましい。これらの膜の 形成方法については、特に限定はなぐ例えば真空蒸着法、スパッタリング法、反応 性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレー ティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法、レーザー C VD法、熱 CVD法、コーティング法等を用いることができる。
[0162] 封止部材と有機 EL素子の表示領域との間隙には、気相及び液相では、窒素、ァ ルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入 することが好ましい。また真空とすることも可能である。また、内部に吸湿性ィ匕合物を 封人することちでさる。
[0163] 吸湿性ィ匕合物としては、例えば、金属酸化物(例えば、酸ィ匕ナトリウム、酸ィ匕カリウム 、酸ィ匕カルシウム、酸化バリウム、酸化マグネシウム、酸ィ匕アルミニウム等)、硫酸塩( 例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属 ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タ ンタル、臭化セリウム、臭化マグネシウム、沃化ノ リウム、沃化マグネシウム等)、過塩 素酸類 (例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸 塩、金属ハロゲン化物及び過塩素酸類にぉ 、ては無水塩が好適に用いられる。
[0164] 《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルム の外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよ い。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずし も高くないため、このような保護膜、保護板を設けることが好ましい。これに使用するこ とができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板'フィル ム、金属板'フィルム等を用いることができる力 軽量且つ薄膜ィ匕ということからポリマ 一フィルムを用いることが好まし 、。
[0165] 《光取り出し》
有機 EL素子は空気よりも屈折率の高い (屈折率が 1. 7〜2. 1程度)層の内部で発 光し、発光層で発生した光のうち 15%から 20%程度の光しか取り出せないことがー 般的に言われている。これは、臨界角以上の角度 Θで界面 (透明基板と空気との界 面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明 電極な 、し発光層と透明基板との間で光が全反射を起こし、光が透明電極な 、し発 光層を導波し、結果として光が素子側面方向に逃げるためである。
[0166] この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸 を形成し、透明基板と空気界面での全反射を防ぐ方法 (米国特許第 4, 774, 435号 明細書)、基板に集光性を持たせることにより効率を向上させる方法 (特開昭 63— 31 4795号公報)、素子の側面等に反射面を形成する方法 (特開平 1— 220394号公 報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成 する方法 (特開昭 62— 172691号公報)、基板と発光体の間に基板よりも低屈折率 を持つ平坦層を導入する方法 (特開 2001— 202827号公報)、基板、透明電極層 や発光層のいずれかの層間 (含む、基板と外界間)に回折格子を形成する方法 (特 開平 11― 283751号公報)等がある。
[0167] 本発明においては、これらの方法を本発明の有機 EL素子と組み合わせて用いるこ とができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方 法、あるいは基板、透明電極層や発光層のいずれかの層間 (含む、基板と外界間) に回折格子を形成する方法を好適に用いることができる。
[0168] 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優 れた素子を得ることができる。
[0169] 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成する と、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が 高くなる。
[0170] 低屈折率層としては、例えば、エア口ゲル、多孔質シリカ、フッ化マグネシウム、フッ 素系ポリマー等が挙げられる。透明基板の屈折率は一般に 1. 5〜1. 7程度であるの で、低屈折率層は屈折率がおよそ 1. 5以下であることが好ましい。また、更に 1. 35 以下であることが好ましい。
[0171] また、低屈折率媒質の厚みは媒質中の波長の 2倍以上となるのが望ましい。これは 低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波 が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
[0172] 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光 取り出し効率の向上効果が高 、と 、う特徴がある。この方法は回折格子が 1次の回 折や 2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の 向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全 反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中 (透明基 板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そう とするちのである。
[0173] 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは 発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周 期的な屈折率分布を持っている一般的な 1次元回折格子では、特定の方向に進む 光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分 布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り 出し効率が上がる。
[0174] 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中 (透 明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が 望ましい。
[0175] このとき、回折格子の周期は媒質中の光の波長の約 1Z2〜3倍程度が好ましい。
[0176] 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、 2 次元的に配列が繰り返されることが好ましい。
[0177] 《集光シート》
本発明の有機 EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の 構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特 定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の 輝度を高めることができる。
[0178] マイクロレンズアレイの例としては、基板の光取り出し側に一辺が 30 μ mでその頂 角が 90度となるような四角錐を 2次元に配列する。一辺は 10 /z m〜: LOO /z mが好ま しい。これより小さくなると回折の効果が発生して色付ぐ大きすぎると厚みが厚くなり 好ましくない。
[0179] 集光シートとしては、例えば、液晶表示装置の LEDバックライトで実用化されている ものを用いることが可能である。このようなシートとして、例えば、住友スリーェム社製 輝度上昇フィルム (BEF)等を用いることができる。プリズムシートの形状としては、例 えば、基材に頂角 90度、ピッチ 50 111の 状のストライプが形成されたものであって もよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の 形状であってもよい。 [0180] また、発光素子からの光放射角を制御するために、光拡散板'フィルムを集光シー トと併用してもよい。例えば、(株)きもと製拡散フィルム (ライトアップ)等を用いること ができる。
[0181] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極からなる有機 EL素子の作製法を説明 する。
[0182] まず適当な基体上に所望の電極物質、例えば、陽極用物質力 なる薄膜を 1 μ m 以下、好ましくは ΙΟηπ!〜 200nmの膜厚になるように、蒸着やスパッタリング等の方 法により形成させ陽極を作製する。
[0183] 次に、この上に有機 EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸 送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
[0184] これら各層の形成方法としては、前記の如く蒸着法、ウエットプロセス (スピンコート 法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすぐ且 つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジ エツト法、印刷法等の塗布法による成膜が好ま U、。
[0185] 本発明に係る有機 EL材料を溶解または分散する液媒体としては、例えば、メチル ェチルケトン、シクロへキサノン等のケトン類、酢酸ェチル等の脂肪酸エステル類、ジ クロ口ベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロへ キシルベンゼン等の芳香族炭化水素類、シクロへキサン、デカリン、ドデカン等の脂 肪族炭化水素類、 DMF、 DMSO等の有機溶媒を用いることができる。また分散方 法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散すること ができる。
[0186] これらの層を形成後、その上に陰極用物質力もなる薄膜を 1 μ m以下、好ましくは、 50nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法 により形成させ、陰極を設けることにより所望の有機 EL素子が得られる。
[0187] また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、 正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の 表示装置に、直流電圧を印加する場合には陽極を +、陰極を一の極性として電圧 2 〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、 印加する交流の波形は任意でょ 、。
[0188] 《用途》
本発明の有機 EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いる ことができる。発光光源として、例えば、照明装置 (家庭用照明、車内照明)、時計や 液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光 源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するもの ではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用 いることがでさる。
[0189] 本発明の有機 EL素子においては、必要に応じ成膜時にメタルマスクやインクジエツ トプリンティング法等でパターユングを施してもよい。パターユングする場合は、電極 のみをパターユングしてもよいし、電極と発光層をパターユングしてもよいし、素子全 層をパターユングしてもよぐ素子の作製においては、従来公知の方法を用いること ができる。
[0190] 本発明の有機 EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハ ンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108頁の図 4. 16におい て、分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)で測定した結果を C IE色度座標に当てはめたときの色で決定される。
[0191] また、本発明の有機 EL素子が白色素子の場合には、白色とは、 2度視野角正面輝 度を上記方法により測定した際に、 lOOOCdZm2での CIE1931表色系における色 度力 ¾ =0. 33±0. 07、 Y=0. 33±0. 1の領域内にあることを言う。
実施例
[0192] 以下、実施例により本発明を説明するが、本発明の実施態様はこれらに限定され ない。
[0193] また、以下に実施例で使用する化合物の構造を示す。
[0194] [化 25]
Figure imgf000052_0001
[0195] [化 26]
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0003
実施例 1
《有機 EL素子 A— 1の作製》
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボ ートに例示化合物 4 8を 200mg入れ、別のモリブデン製抵抗加熱ボートにホストイ匕 合物として CBPを 200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン (BCP)を 200mg入れ、別のモリブデン製抵抗加熱ボートに Ir 1を lOOmg入れ、更 に別のモリブデン製抵抗加熱ボートに Alqを 200mg入れ、真空蒸着装置に取付け
3
た。
[0197] 次いで、真空槽を 4 X 10—4Paまで減圧した後、例示化合物 4— 8の入った前記加熱 ボートに通電して加熱し、蒸着速度 0. InmZ秒で透明支持基板に蒸着し、膜厚 40 nmの正孔輸送層を設けた。
[0198] 更に、 CBPと Ir— 1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度
0. 2nmZ秒、 0. 012nm/秒で前記正孔輸送層上に共蒸着して、膜厚 40nmの発 光層を設けた。なお、蒸着時の基板温度は室温であった。
[0199] 更に、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZ秒で 前記発光層の上に蒸着して膜厚 lOnmの正孔阻止層を設けた。
[0200] その上に、更に、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. In
3
m/秒で前記正孔阻止層の上に蒸着して更に膜厚 40nmの電子輸送層を設けた。 なお、蒸着時の基板温度は室温であった。
[0201] 引き続きフッ化リチウム 0. 5nm及びアルミニウム 11 Onmを蒸着して陰極を形成し、 有機 EL素子 1— 1を作製した。
[0202] 《反応性有機化合物の濃度低下の分析》
得られた有機 EL素子 A—1において、本発明に係る反応性有機化合物である、例 示化合物 4 8につ 、て、素子への通電開始からの濃度低下を下記のように分析し た。
[0203] 有機 EL素子 A— 1に、 23°C、乾燥窒素ガス雰囲気下で 2. 5mAZcm2定電流を 1 000時間印加後の素子を A— 2とし、同条件で 4000時間印加後の素子を A— 3とし [0204] 有機 EL素子 A— 1、 A— 2及び A— 3の各正孔輸送層中における、例示化合物 4 8の濃度の測定は、例示化合物 4 8のビニル基の分布を測定する方法により求めた 。ここで、ビニル基の二重結合の分布は以下の手段により求めることができる。
[0205] 分析面積を確保するため、ダイブラウインテス社製サイカス NN04型にて、有機 EL 素子サンプル 1から 3の斜め切削を行った。拡大倍率を 500倍とし、切削を行い、 20 μ m幅の正孔輸送層の分析面積を得た。ついでこの切削面について臭素付加法に より、正孔輸送層中に残存する二重結合を標識ィ匕した。標識ィ匕後の試料について X 線光電子分光装置アルバックフアイ製 QuanteraSXMを用いて切削面表面の元素 組成分布を計測し、切削面表面の元素組成分布を得た。
測定結果を以下に示す。
[0206] 有機 EL素子 通電時間 C Br N
(炭素原子) (臭素原子) (窒素原子)
A— 1 (通電前) 0 80. 19 15. 91 3. 90
A— 2 (通電後) 1000 84. 96 10. 92 4. 12
A— 3 (通電後) 4000 90. 06 5. 58 4. 36
測定結果から、通電時間とともに正孔輸送層中の例示化合物 4 8の残量が減少 していることが分析から明らかであり、例示化合物 4 8が素子への通電により、正孔 輸送層中にお ヽて、重合反応や架橋反応等を起こして ヽる事が判る。
[0207] 尚、実施例 2以降の有機 EL素子中の反応性有機化合物についても、実施例 1の 例示化合物 4— 8と同様な濃度低下を確認することができた。
[0208] 実施例 2
《有機 EL素子 1—1の作製》
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボ ートに α NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物と して CBPを 200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP )を 200mg入れ、別のモリブデン製抵抗加熱ボートに Ir—lを lOOmg入れ、更に別 のモリブデン製抵抗加熱ボートに Alqを 200mg入れ、真空蒸着装置に取付けた。
3
[0209] 次!、で、真空槽を 4 X 10— 4Paまで減圧した後、 a NPDの入った前記加熱ボート に通電して加熱し、蒸着速度 0. InmZ秒で透明支持基板に蒸着し、膜厚 40nmの 正孔輸送層を設けた。
[0210] 更に、 CBPと Ir— 1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度 0. 2nmZ秒、 0. 012nm/秒で前記正孔輸送層上に共蒸着して、膜厚 40nmの発 光層を設けた。なお、蒸着時の基板温度は室温であった。
[0211] 更に、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZ秒で 前記発光層の上に蒸着して膜厚 lOnmの正孔阻止層を設けた。
その上に、更に、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm
3
/秒で前記正孔阻止層の上に蒸着して更に膜厚 40nmの電子輸送層を設けた。な お、蒸着時の基板温度は室温であった。
[0212] 引き続きフッ化リチウム 0. 5nm及びアルミニウム 11 Onmを蒸着して陰極を形成し、 有機 EL素子 1— 1を作製した。
[0213] 《有機 EL素子 1 2〜1 5の作製》
有機 EL素子 1—1の作製において、発光層の CBPと Ir—lを表 1に示すィ匕合物に 置き換えた以外は同様にして、有機 EL素子 1— 2〜1— 5を作製した。
[0214] 《有機 EL素子 1 1〜1 5の評価》
以下のようにして作製した有機 EL素子 1 1〜1 5の評価を行 、、その結果を表
1に示す。
[0215] (外部取りだし量子効率)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に 分光放射輝度計 CS - 1000 (コ-力ミノルタ製)を用いた。
[0216] 表 1の外部取りだし量子効率の測定結果は、有機 EL素子 1— 1の測定値を 100と した時の相対値で表した。 [0217] (寿命)
2.5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0.5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。
[0218] 得られた結果を下記の表 1に示す。ここで、表 1の寿命の測定結果は、有機 EL素 子 1 1を 100とした時の相対値で表した。
[0219] [表 1]
Figure imgf000057_0001
[0220] 表 1から、反応性有機化合物を含有する有機層を設けた、本発明の有機 EL素子は
、外部取り出し量子効率が高く且つ、長寿命化が達成されていることが分力つた。
[0221] 実施例 3
《有機 EL素子 2— 1 2— 5の作製》
有機 EL素子 1—1の作製において、 Ir— 1を Ir— 9に変更した以外は同様にして、 有機 EL素子 2—1を作製した。また、有機 EL素子 1— 2の例示化合物 1— 1と Ir— 1 を表 2に示すように置き換えた以外は有機 EL素子 1—2と同じ方法で有機 EL素子 2 2 2— 5を作製した。
[0222] 得られた各素子について、実施例 2に記載と同様の評価を行い表 2の結果を得た。
[0223] [表 2] 有機 EL素子 化合物 外部取り出し量子効率 ¾f 参 考
2— 1 C BP Ir- 9 100 100 比較例
1— 1 lr— 9 109 210 本 ¾明
1— 1 2— 5 115 288 本発明
2 -4 1 - 2 Ir- 9 113 231 本発明
2 -5 1 - 2 2 -5 119 329 本発明 [0224] 表 2から、反応性有機化合物を含有する有機層を設けた、本発明の有機 EL素子は
、外部取り出し量子効率が高く且つ、長寿命化が達成されていることが分力つた。
[0225] 実施例 4
《有機 EL素子 3— 1〜3— 5の作製》
実施例 2の有機 EL素子 1— 1の作製にぉ 、て、 Ir— 1を Ir— 12に変更した以外は 同様にして、有機 EL素子 3—1を作製した。また、有機 EL素子 1—2の例示化合物 1 — 1と Ir— 1を表 3に示すようM (に置き換えた以外は同様にして、有機 EL素子 3— 2〜3 —5を作製した。 00
[0226] 得られた各素子について、実施例 2に記載と同様の評価を行い表 3の結果を得た。
[0227] [表 3]
Figure imgf000058_0001
[0228] 表 3から、反応性有機化合物を含有する有機層を設けた、本発明の有機 EL素子は
、外部取り出し量子効率が高く且つ、長寿命化が達成されていることが分力つた。
[0229] 実施例 5
《有機 EL素子 4 1〜4 3の作製》
実施例 4の有機 EL素子 3— 1の作製において、化合物を表 4に記載の化合物に変 更した以外は同様にして、有機 EL素子 4— 1〜4— 3を作製した。
[0230] 得られた各素子について、実施例 2に記載と同様の評価を行い表 4の結果を得た。
[0231] [表 4] 有機 EL素子 化合物 外部取り出し量子効率 お八
卩 参 考
4 - 1 1 - 18H I r— 15 100 100 比 較
4 - 2 1 -18 I r一 15 102 202 本発明
4 - 3 1一 18 104 230 本発明 [0232] 表 4から、反応性有機化合物を含有する有機層を設けた、本発明の有機 EL素子は
、外部取り出し量子効率が高く且つ、長寿命化が達成されていることが分力つた。
[0233] 実施例 6
《有機 EL素子 5—1の作製》
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。
[0234] この基板を市販のスピンコータに取り付け、例示化合物 4 1 (60mg)をトルエン 10 mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート(膜厚約 40nm) 、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し、正孔輸送層とした。
[0235] 次いで、例示化合物 1 2 (60mg)と例示化合物 2— 7 (3. Omg)とをトルエン 6ml に溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコートし (膜厚約 60nm) 、紫外光を 30秒照射した後、 60°Cで 1時間真空乾燥し発光層とした。
[0236] 更に、例示化合物 3— 1 (20mg)をトルエン 10mlに溶解した溶液を用い、 lOOOrp m、 30秒の条件下、スピンコート (膜厚約 10nm)、紫外光を 30秒照射した後、 60°C で 1時間真空乾燥し、正孔阻止層を設けた。
[0237] この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボート に Alqを 200mg入れ、真空蒸着装置に取付けた。真空槽を 4 X 10— 4Paまで減圧し
3
た後、その上に、更に、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0
3
. Inm/秒で前記正孔阻止層の上に蒸着して更に膜厚 40nmの電子輸送層を設け た。
[0238] なお、蒸着時の基板温度は室温であった。
[0239] 引き続きフッ化リチウム 0. 5nm及びアルミニウム 11 Onmを蒸着して陰極を形成し、 有機 EL素子 5— 1を作製した。
[0240] この素子を 2000cdZm2で定電流駆動させ、発光を確認することができた。
[0241] 例示化合物 4—1の代りに 4— 7あるいは 4—10、例示化合物 1—2の代りに 1—3ま たは 1 5、例示化合物 2— 7の代りに 2— 2、 2— 6、例示化合物 3— 1の代りに 3— 6 または 3 - 9を用いた場合にも発光を確認することができた。
[0242] 比較として、例示化合物 4 1の代りに α— NPD、例示化合物 1 2の代りに CBP 、例示化合物 2— 7の代りに Ir 1、例示化合物 3— 1の代りに BCPを用いて有機 EL 素子の作製を試みたが、有機 EL素子を形成することはできな力つた。
[0243] 実施例 7
《有機 ELフルカラー表示装置の作製》
図 1は有機 ELフルカラー表示装置の概略構成図を示す。陽極としてガラス基板 10 1上に ITO透明電極(102)を lOOnm製膜した基板 (NHテクノグラス社製 NA45)に 100 μ mのピッチでパターユングを行った後、このガラス基板上で ITO透明電極の間 に非感光性ポリイミドの隔壁 103 (幅 20 μ m、厚さ 2. 0 m)をフォトリソグラフィ一で 形成させた。 ITO電極上ポリイミド隔壁の間に下記組成の正孔注入層組成物を、イン クジェットヘッド (エプソン社製; MJ800C)を用いて吐出注入し、紫外光を 30秒間照 射し、 60°C、 10分間の乾燥処理により膜厚 40nmの正孔注入層 104を作製した。
[0244] この正孔注入層上に、各々下記の青色発光層組成物、緑色発光層組成物、赤色 発光層組成物を同様にインクジェットヘッドを使用して吐出注入し、紫外光を 30秒間 照射し、 60°C、 10分間乾燥処理し、それぞれの発光層(105B, 105G, 105R)を形 成させた。最後に発光層 105を覆うように、陰極として Al (106)を真空蒸着して有機 EL素子を作製した。
[0245] 作製した有機 EL素子はそれぞれの電極に電圧を印加することにより各々青色、緑 色、赤色の発光を示し、フルカラー表示装置として利用できることがわ力つた。
[0246] (正孔注入層組成物)
化合物 4 8 20質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエ-ル 50質量部
(青色発光層組成物)
化合物 1 2 0. 7質量部
Ir— 12 0. 04質量部
シクロへキシノレベンゼン 50質量部 イソプロピルビフエニル 50質量部 (緑色発光層組成物)
化合物 1 2 0. 7質量部
Ir- 1 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
(赤色発光層組成物)
化合物 1 2 0. 7質量部
Ir- 9 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
また、 Ir— 1、 Ir— 12、 Ir— 9の代りに化合物 2- -〜 2— 10を、化合物] 2の代り に化合物 1— 1または化合物 1— 3〜1— 10を用いて作製した有機 EL素子でも、同 様にフルカラー表示装置として利用できることがわ力つた。
[0247] 実施例 8
《有機 EL素子 6— 1の作製》:白色発光有機 EL素子
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この基板を市販 のスピンコータに取り付け、化合物 4— 8 (60mg)をトルエン 10mlに溶解した溶液を 用い、 1000rpm、 30秒の条件下、スピンコート (膜厚約 40nm)、紫外光を 30秒間照 射し、 60°Cで 1時間真空乾燥し、正孔輸送層とした。
[0248] 次に、化合物1 2 (601118)、化合物2— 5 (3. 01118)、化合物2— 7 (3. Omg)をト ルェン 6mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコートし (膜厚 約 40nm)、紫外光を 30秒間照射した後、 60°Cで 1時間真空乾燥し、発光層とした。
[0249] 更に、化合物 3— 1 (20mg)をトルエン 6mlに溶解した溶液を用い、 1000rpm、 30 秒の条件下、スピンコートし (膜厚約 lOnm)、紫外光を 30秒間照射し、 60°Cで 1時 間真空乾燥し、正孔阻止層を設けた。
[0250] 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗力口 熱ボートに Alqを 200mg入れ、真空蒸着装置に取り付けた。真空槽を 4 X 10— 4Paま
3
で減圧した後、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm
3
Z秒で前記電子輸送層の上に蒸着して、更に膜厚 40nmの電子輸送層を設けた。 なお、蒸着時の基板温度は室温であった。
[0251] 引き続き、フッ化リチウム 0. 5nm及びアルミニウム 11 Onmを蒸着して陰極を形成し
、有機 EL素子 6—1を作製した。
[0252] この素子に通電したところほぼ白色の光が得られ、照明装置として使用出来ること が判った。尚、例示の他の化合物に置き換えても同様に白色の発光が得られること が判った。
[0253] 実施例 9
《有機 EL素子 1の作製》
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0254] この透明支持基板上に、ポリ(3, 4—エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOTZPSSゝ Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの正孔輸送層を設けた。
[0255] この基板を窒素雰囲気下に移し、正孔輸送層上に、 20mgの反応性有機化合物 4
11を51111のトルェンに溶解した溶液を2000卬111、 30秒の条件下、スピンコート法 により製膜した。さらに、反応性有機化合物 4—11が残存するように、 10秒間 UVを 照射(100W UVA)し、光重合'架橋を行い、膜厚 30nmの第二正孔輸送層とした 。また、層中の反応性有機化合物 4— 11の量 (濃度ともいう)は、後述の方法によって 決定した。
[0256] この第二正孔輸送層上に、 tBu— PBD30mgと 1. 5mgの Ir— 1とをジクロ口べンゼ ン 3mlに溶解した溶液を、 2000rpm、 30秒の条件下、スピンコート法により製膜し、 60度で 1時間真空乾燥し、膜厚 50nmの発光層とした。
[0257] これを真空蒸着装置に取付け、次 、で、真空槽を 4 X 10— 4Paまで減圧し、陰極バッ ファー層としてカルシウム lOnm及び陰極としてアルミニウム l lOnmを蒸着して陰極 を形成し、有機 EL素子 1を作製した。
[0258] 《有機 EL素子 1の Tg (ガラス転移点)変化の測定》
有機 EL素子 1に、 23°C、乾燥窒素ガス雰囲気下で 2. 5mAZcm2定電流を印加 後、初期輝度より 10%減少した時点 (初期輝度 90%)を素子 1 (90)、同条件で初期 輝度より 50%減少した時点 (初期輝度 50%)を素子 1 (50)とし、以下の方法により、 正孔輸送層の Tgを測定した。分析面積を確保するため、ダイブラウインテス社製サイ カス NN04型にて、前記 3つの有機 EL素子サンプルの斜め切削を行った。拡大倍 率を 500倍とし、切削を行い、 15 m幅の正孔輸送層の分析面積を得た。
[0259] ついで、原子間力顕微鏡にヒーター兼温度検出器のサーマルプローブを組み合わ せて、正孔輸送層領域の Tg (ガラス転移点)を測定した。
[0260] また、表 5での各数値は以下に示す通りである。
[0261] Tg (90%) =初期輝度の 90%時点での正孔輸送層のガラス転移点
Tg (50%) =初期輝度の 50%時点での正孔輸送層のガラス転移点
Tg (初期) =通電開始前の素子の正孔輸送層のガラス転移点
△Tg (90%) = (Tg (90%) ZTg (初期))
△Tg (50%) = (Tg (50%) ZTg (初期))
《有機 EL素子 2の作製と有機 EL素子 2の反応性有機化合物の濃度低下の分析》 有機 EL素子 1と全く同様にして、有機 EL素子 2を作製した。有機 EL素子 1と全く同 様にして、初期輝度より 10%減少した時点を素子 2 (90)の残存する反応性有機化 合物量を算出した後、 60秒間 UVを照射し、残存する反応性有機化合物を消失させ た。
[0262] この素子をさらに 2. 5mAZcm2定電流で印加し、初期輝度より 50%減少した時点 を素子 2 (50)として、残存する反応性有機化合物量を算出した。
[0263] 《有機 EL素子 3の作製と有機 EL素子 3の反応性有機化合物の濃度低下の分析》 陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0264] この透明支持基板上に、ポリ(3, 4—エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOTZPSSゝ Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの正孔輸送層を設けた。
[0265] これを真空蒸着装置に取付け、次 、で、真空槽を 4 X 10— 4Paまで減圧し、正孔輸 送層上に、 TPDを 30nm蒸着して第二正孔輸送層とした。この第二正孔輸送層上に 、 tBu— PBDと tBu— PBDに対して 6質量%ドープとなるように Ir— 1を共蒸着し、膜 厚 50nmの発光層とした。
[0266] さらに、陰極バッファ一層としてカルシウム 10nm及び陰極としてアルミニウム 110η mを蒸着して陰極を形成し、有機 EL素子 3を作製した。
[0267] 有機 EL素子 1と全く同様にして、初期輝度より 10%、 50%減少した時点をそれぞ れ素子 3 (90)、 (50)として、残存する反応性有機化合物量を算出した。
[0268] 《有機 EL素子 4の作製と有機 EL素子 4の反応性有機化合物の濃度低下の分析》 有機 EL素子 1の作製において、第二正孔輸送層製膜時の UV照射時間を 90秒と した以外は同様にして、有機 EL素子 4を作製した。
[0269] 有機 EL素子 1と全く同様にして、初期輝度より 10%、 50%減少した時点をそれぞ れ素子 3 (90)、 (50)として、残存する反応性有機化合物量を算出した。
[0270] また、素子 2〜素子 4の各々の ATg (90%)、 ATg (50%)については、素子 1の場 合と全く同様にして測定した。測定結果は表 5に示す。
[0271] 《有機 EL素子 1〜5の寿命評価》
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。表 5の寿命の測定結果は、有機 EL素子 4を 100とした時の相対値で表し た。得られた結果を表 5に示す。
[0272] [表 5]
Figure imgf000065_0001
[0273] 表 5から、経時的な Tg増加(裏返すとネットワーク化に伴う層の再構築の進展)を示 す素子では、寿命が向上していることが判る。
[0274] 実施例 10
《有機 EL素子 5の作製と有機 EL素子 5の反応性有機化合物の濃度低下の分析》 陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ— 45)にパターニングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0275] この透明支持基板上に、ポリ(3, 4一エチレンジォキシチォフェン)一ポリスチレンス ノレホネート(PEDOTZPSS、: Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの正孔輸送層を設けた。
[0276] この基板を窒素雰囲気下に移し、正孔輸送層上に、 20mgの反応性有機化合物 4 ー11を51111のトルェンに溶解した溶液を2000卬111、 30秒の条件下、スピンコート法 により製膜した。さらに、反応性有機化合物 4一 11が残存するように、 15秒間 UVを 照射(lOOW UVA)し、光重合'架橋を行い、膜厚 30nmの第二正孔輸送層とした
[0277] この第二正孔輸送層上に、 30mgの化合物 1一 2と 1. 5mgの化合物 2— 2とをトル ェン 3mlに溶解した溶液を、 2000rpm、 30秒の条件下、スピンコート法により製膜し 、 15秒間 UVを照射(lOOW UVA)し、さらに 100°Cで 10分間加熱を行い、膜厚 5 Onmの発光層とした。 [0278] さらに、 lOmgの化合物 3— 11をトルエン 3mlに溶解した溶液を、 500rpm、 30秒 の条件下、スピンコート法により製膜し、 30秒間 UVを照射(100W UVA)し、膜厚
25nmの電子輸送層とした。
[0279] これを真空蒸着装置に取付け、次 、で、真空槽を 4 X 10— 4Paまで減圧し、陰極バッ ファー層としてフッ化リチウム 1. Onm及び陰極としてアルミニウム l lOnmを蒸着して 陰極を形成し、有機 EL素子 5を作製した。反応有機物の濃度の決定は、有機 EL素 子 1と全く同様にして行った。
[0280] 《有機 EL素子 6の作製と有機 EL素子 6の反応性有機化合物の濃度低下の分析》 有機 EL素子 5の作製において、第二正孔輸送層、発光層、電子輸送層の製膜時 の UV照射時間を 60秒とした以外は同様にして、有機 EL素子 6を作製した。また、反 応有機物の濃度の決定は有機 EL素子 5と全く同様に行った。
[0281] 得られた有機 EL素子 5、 6の第二正孔輸送層、発光層、電子輸送層の各々につい て、素子の通電開始前、初期輝度 90%、初期輝度 50%での時点でのガラス転移点 の測定を行った。また、素子の寿命については、実施例 9と同様に評価した。得られ た結果を表 6に示す。
[0282] [表 6]
Figure imgf000067_0001
[0283] 表 6から、塗布積層した場合においても、実施例 9と同様に、経時的な Tgの増加( 裏返すとネットワーク化に伴う層の再構築の進展)を示す、本発明の素子では、素子 寿命の向上効果が得られた。
[0284] 実施例 11
《有機 ELフルカラー表示装置の作製》
図 1は有機 ELフルカラー表示装置の概略構成図を示す。陽極としてガラス基板 10 1上に ITO透明電極(102)を lOOnm製膜した基板 (NHテクノグラス社製 NA45)に 100 μ mのピッチでパターユングを行った後、このガラス基板上で ITO透明電極の間 に非感光性ポリイミドの隔壁 103 (幅 20 μ m、厚さ 2. 0 m)をフォトリソグラフィ一で 形成させた。 ITO電極上ポリイミド隔壁の間に下記組成の正孔注入層組成物を、イン クジェットヘッド (エプソン社製; MJ800C)を用いて吐出注入し、紫外光を 30秒間照 射し、 60°C、 10分間の乾燥処理により膜厚 40nmの正孔注入層 104を作製した。
[0285] この正孔注入層上に、各々下記の青色発光層組成物、緑色発光層組成物、赤色 発光層組成物を同様にインクジェットヘッドを使用して吐出注入し、紫外光を 30秒間 照射し、 60°C、 10分間乾燥処理し、それぞれの発光層(105B, 105G, 105R)を形 成させた。最後に発光層 105を覆うように、陰極として Al (106)を真空蒸着して有機 EL素子を作製した。
[0286] 作製した有機 EL素子はそれぞれの電極に電圧を印加することにより各々青色、緑 色、赤色の発光を示し、フルカラー表示装置として利用できることがわ力つた。
[0287] (正孔注入層組成物)
化合物 4 11 20質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
(青色発光層組成物)
化合物 3— 11 0. 7質量部
化合物 2— 9 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
(緑色発光層組成物)
化合物 3— 11 0. 7質量部
化合物 2— 2 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
(赤色発光層組成物) 化合物 3— 11 0. 7質量部
化合物 2— 5 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
実施例 12
《有機 EL白色照明装置の作製》
実施例 10の有機 EL素子 6において、発光組成物に用いたィ匕合物 2— 2を 2— 2, 2 5、 2— 9の混合物に変更した以外は同様にして、白色発光有機 EL素子 6W (白色 )を作製した。得られた有機 EL素子 6Wを評価するに際しては、非発光面をガラスケ ースで覆い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光 を発する薄型の照明装置として使用することができた。
[0288] 実施例 13
《有機 EL素子 1の作製》
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0289] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOTZPSSゝ Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの正孔輸送層を設けた。
[0290] この基板を窒素雰囲気下に移し、正孔輸送層上に、 20mgの化合物 4— 11を 5ml のトルエンに溶解した溶液を 2000rpm、 30秒の条件下、スピンコート法により製膜し た。さらに、未反応の 4—11が残存するように、 15秒間 UVを照射(100W UVA)し 、光重合'架橋を行い、膜厚 30nmの第二正孔輸送層とした。また未反応の 4— 11の 量は、後述する分析方法により決定した。
[0291] この第二正孔輸送層上に、 tBu— PBD30mgと 1. 5mgの Ir— 1とをジクロ口べンゼ ン 3mlに溶解した溶液を、 2000rpm、 30秒の条件下、スピンコート法により製膜し、 60度で 1時間真空乾燥し、膜厚 50nmの発光層とした。
[0292] これを真空蒸着装置に取付け、次 、で、真空槽を 4 X 10— 4Paまで減圧し、陰極バッ ファー層としてカルシウム lOnm及び陰極としてアルミニウム l lOnmを蒸着して陰極 を形成し、有機 EL素子 1を作製した。
[0293] 《有機 EL素子 1の反応性有機化合物の濃度低下の分析》
得られた有機 EL素子 1において、本発明に係る反応性有機化合物である、例示化 合物 4 11につ 、て、経時的な減少 (濃度低下とも!、う)を下記のように分析した。
[0294] 有機 EL素子 1に、 23°C、乾燥窒素ガス雰囲気下で 2. 5mAZcm2定電流を印加 後、初期輝度より 10%減少した時点 (初期輝度 90%)を素子 1 (M90)、同条件で初 期輝度より 30%減少した時点 (初期輝度 70%)を素子 1 (M70)とし、以下の方法に より、残存する反応性有機化合物量を決定した。
[0295] 有機 EL素子 1、 1 (M90)及び 1 (M70)の例示化合物 4 11の濃度の測定は、例 示化合物 4— 11のビニル基の分布を測定する方法により求めた。ここで、ビュル基の 二重結合の分布は以下の手段により求めることができる。
[0296] 分析面積を確保するため、ダイブラウインテス社製サイカス NN04型にて、前記 3つ の有機 EL素子サンプルの斜め切削を行った。拡大倍率を 500倍とし、切削を行い、 15 μ m幅の正孔輸送層の分析面積を得た。ついでこの切削面について臭素付加法 により、正孔輸送層中に残存する二重結合を標識ィ匕した。標識ィ匕後の試料について X線光電子分光装置アルバックフアイ製 QuanteraSXMを用いて切削面表面の元 素組成分布を計測し、切削面表面の元素組成分布を得た。この元素分析結果より、 残存する反応性有機化合物量を算出した。結果を表 7に示す。
[0297] 《有機 EL素子 2の作製と有機 EL素子 2中の反応性有機化合物の濃度低下の分析 )>
有機 EL素子 1と全く同様にして、有機 EL素子 2を作製した。得られた素子を有機 E L素子 1と全く同様にして、初期輝度より 10%減少した時点を素子 2 (M90)の残存す る反応性有機化合物量を算出した後、 60秒間 UVを照射し、残存する反応性有機化 合物を消失させた。この素子をさらに 2. 5mAZcm2定電流で印加し、初期輝度より 3 0%減少した時点を素子 2 (M70)として、残存する反応性有機化合物量を算出した [0298] 《有機 EL素子 3の作製と有機 EL素子 3の反応性有機化合物の濃度低下の分析》 陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0299] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOTZPSSゝ Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの正孔輸送層を設けた。
[0300] これを真空蒸着装置に取付け、次 、で、真空槽を 4 X 10— 4Paまで減圧し、正孔輸 送層上に、 TPDを 30nm蒸着して第二正孔輸送層とした。
[0301] この第二正孔輸送層上に、 tBu— PBDと 6%ドープとなるように Ir— 1を共蒸着し、 膜厚 50nmの発光層とした。さらに、陰極バッファ一層としてカルシウム 10nm及び陰 極としてアルミニウム 1 lOnmを蒸着して陰極を形成し、有機 EL素子 3を作製した。
[0302] 有機 EL素子 1と全く同様にして、初期輝度より 10%、 30%減少した時点をそれぞ れ素子 3 (M90)、(M70)として、残存する反応性有機化合物量を算出した。
[0303] 《有機 EL素子 4の作製と有機 EL素子 4の反応性有機化合物の濃度低下の分析》 有機 EL素子 1の作製において、第二正孔輸送層製膜時の UV照射時間を 30秒と した以外は同様にして、有機 EL素子 4を作製した。
[0304] 有機 EL素子 1と全く同様にして、初期輝度より 10%、 30%減少した時点をそれぞ れ素子 3 (M90)、(M70)として、残存する反応性有機化合物量を算出した。
[0305] 《有機 EL素子 5の作製と有機 EL素子 5の反応性有機化合物の濃度低下の分析》 有機 EL素子 1の作製において、第二正孔輸送層製膜時の光重合'架橋条件を U
V照射を 30秒間行った後、 100°Cで 30分間加熱を行った以外は同様にして、有機 E
L素子 4を作製した。
[0306] 得られた素子を有機 EL素子 1と全く同様にして、初期輝度より 10%、 30%減少し た時点をそれぞれ素子 (M90)、素子 (M70)として、残存する反応性有機化合物量 を算出した。
[0307] 《有機 EL素子 1〜5の寿命評価》
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお測定には分光放射輝度計 CS— 1000 (コ-力ミノルタ製 )を用いた。表 7の寿命の測定結果は、有機 EL素子 4を 100とした時の相対値で表し た。得られた結果を表 7に示す。
[0308] [表 7]
Figure imgf000072_0001
[0309] 表 7から、本発明の有機 EL素子は、長寿命化が達成されていることが明らかであり 、反応性有機化合物の量の経時的な減少 (裏返すとネットワーク化に伴う層の再構 築の進展)を示す素子では、長寿命化されていることがわかる。特に、層の再構築が 経時的にゆっくり進行する程、阻止劣化を抑制でき長寿命な素子を実現できた。
[0310] 実施例 14
《有機 EL素子 6の作製と有機 EL素子 6の反応性有機化合物の濃度低下の分析》 陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0311] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOTZPSSゝ Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの正孔輸送層を設けた。
[0312] この基板を窒素雰囲気下に移し、正孔輸送層上に、 20mgの化合物 4— 11を 5ml のトルエンに溶解した溶液を 2000i:pm、 30秒の条件下、スピンコート法により製膜し た。さらに、未反応の 4— 11が残存するように、 15秒間11¥を照射(100\ UVA)し 、光重合'架橋を行い、膜厚 30nmの第二正孔輸送層とした。
[0313] この第二正孔輸送層上に、 30mgの化合物 1 2と 1. 5mgの化合物 2— 2とをトル ェン 3mlに溶解した溶液を、 2000i:pm、 30秒の条件下、スピンコート法により製膜し 、 ^秒間!; を照射 ^^1^ UVA)し、さらに 100°Cで 10分間加熱を行い、膜厚 5 Onmの発光層とした。
[0314] さら〖こ、 10mgの化合物 3—1をテトラヒドロフラン 3mlに溶解した溶液を、 500rpm、
30秒の条件下、スピンコート法により製膜し、 30秒間 UVを照射(100W UVA)し、 膜厚 25nmの電子輸送層とした。
[0315] これを真空蒸着装置に取付け、次 、で、真空槽を 4 X 10— 4Paまで減圧し、陰極バッ ファー層としてフッ化リチウム 1. Onm及び陰極としてアルミニウム l lOnmを蒸着して 陰極を形成し、有機 EL素子 6を作製した。反応性有機化合物の層中の濃度の決定 は、実施例 13に記載の方法と同様に行った。
[0316] 《有機 EL素子 7の作製と有機 EL素子 7の反応性有機化合物の濃度低下の分析》 有機 EL素子 6の作製において、第二正孔輸送層、発光層、電子輸送層の製膜時 の UV照射時間を 60秒とした以外は同様にして、有機 EL素子 7を作製した。
[0317] また、反応性有機化合物の濃度の測定は、実施例 13に記載の方法と同様に行つ た。
[0318] 上記で得た有機 EL素子 6、 7の各々について、実施例 13に記載と同様に、発光寿 命の評価を行った。表 8寿命の測定結果は、有機 EL素子 7を 100とした時の相対値 で表した。得られた結果を表 8に示す。
[0319] [表 8] 第二正孔輪送層 発光層 電子輸送層
残存モノマー量 残存モノマ一量
素子 残存モノマ一量
(mo l m3) 寿命
(raclZra3) (mo l/
M90 M70 Δ Μ M90 M70 Δ Μ M9Q M70 Δ Μ
素子 6 0.100 0.050 0.5 0.106 0.067 0.6 0.081 0.032 0.4 800 本発明 素子 7 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 100 比較例 [0320] 表 8から、塗布積層した場合においても、実施例 13と同様な傾向が見られ、反応性 有機化合物の量の経時的な減少 (裏返すとネットワーク化に伴う層の再構築の進展) を示す素子では、寿命が向上していることが明らかである。
[0321] 実施例 15
《有機 ELフルカラー表示装置の作製》
図 1は有機 ELフルカラー表示装置の概略構成図を示す。陽極としてガラス基板 10 1上に ITO透明電極(102)を lOOnm製膜した基板 (NHテクノグラス社製 NA45)に 100 μ mのピッチでパターユングを行った後、このガラス基板上で ITO透明電極の間 に非感光性ポリイミドの隔壁 103 (幅 20 μ m、厚さ 2. 0 m)をフォトリソグラフィ一で 形成させた。 ITO電極上ポリイミド隔壁の間に下記組成の正孔注入層組成物を、イン クジェットヘッド (エプソン社製; MJ800C)を用いて吐出注入し、紫外光を 30秒間照 射し、 60°C、 10分間の乾燥処理により膜厚 40nmの正孔注入層 104を作製した。
[0322] この正孔注入層上に、各々下記の青色発光層組成物、緑色発光層組成物、赤色 発光層組成物を同様にインクジェットヘッドを使用して吐出注入し、紫外光を 30秒間 照射し、 60°C、 10分間乾燥処理し、それぞれの発光層(105B, 105G, 105R)を形 成させた。最後に発光層 105を覆うように、陰極として Al (106)を真空蒸着して有機 EL素子を作製した。
[0323] 作製した有機 EL素子はそれぞれの電極に電圧を印加することにより各々青色、緑 色、赤色の発光を示し、フルカラー表示装置として利用できることがわ力つた。
[0324] (正孔注入層組成物)
化合物 4 11 20質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
(青色発光層組成物)
化合物 1 2 0. 7質量部
化合物 2— 9 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部 (緑色発光層組成物)
化合物 1 2 0. 7質量部
化合物 2— 2 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
(赤色発光層組成物)
化合物 1 2 0. 7質量部
化合物 2— 5 0. 04質量部
シクロへキシノレベンゼン 50質量部
イソプロピルビフエニル 50質量部
実施例 16《有機 EL白色照明装置の作製》
実施例 13の有機 EL素子 6において、発光組成物に用いたィ匕合物 2— 2を 2— 2, 2 5、 2— 9の混合物に変更した以外は同様にして、白色発光有機 EL素子 6W (白色 )を作製した。得られた有機 EL素子 6Wを評価するに際しては、非発光面をガラスケ ースで覆い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光 を発する薄型の照明装置として使用することができた。

Claims

請求の範囲
[1] 支持基板上に少なくとも陽極、陰極を有し、該陽極と該陰極間に少なくとも 1層の反 応性有機化合物を含有する有機層を有する有機エレクト口ルミネッセンス素子におい て、
0. 01mAZcm2〜10000mAZcm2の電流密度の通電により、該有機層中の該反 応性有機化合物の濃度が通電前の濃度に対して低下していることを特徴とする有機 エレクトロノレミネッセンス素子。
[2] 前記電流密度が 0. 01mAZcm2〜1000mAZcm2であることを特徴とする請求の 範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
[3] 前記反応性有機化合物が重合性モノマーであることを特徴とする請求の範囲第 1項 または請求の範囲第 2項に記載の有機エレクト口ルミネッセンス素子。
[4] 前記反応性有機化合物が複数の反応性置換基を有することを特徴とする請求の範 囲第 1項〜請求の範囲第 3項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子。
[5] 前記反応性有機化合物の反応により架橋構造が形成されることを特徴とする請求の 範囲第 1項〜請求の範囲第 4項のいずれか 1項に記載の有機エレクト口ルミネッセン ス素子。
[6] 前記反応性置換基が下記で示される部分構造を含むことを特徴とする請求の範囲 第 4項または請求の範囲第 5項に記載の有機エレクト口ルミネッセンス素子。
[化 1]
Figure imgf000076_0001
[7] 前記有機層の少なくとも 1層がりん光性発光化合物を含有することを特徴とする請求 の範囲第 1項〜請求の範囲第 6項のいずれか 1項に記載の有機エレクト口ルミネッセ ンス素子。
[8] 前記通電により発光輝度が初期輝度の 90%まで低下した時点で、有機層中の該反 応性有機化合物の濃度が通電前の濃度に対して低下していることを特徴とする請求 の範囲第 1項〜請求の範囲第 7項のいずれか 1項に記載の有機エレクト口ルミネッセ ンス素子。
[9] 前記発光輝度が初期輝度の 90%まで低下した時点で、前記反応性有機化合物の 濃度 (M90)が、 0. lmol/m3〜: LOmol/m3であることを特徴とする請求の範囲第 1 項〜請求の範囲第 8項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。
[10] 前記発光輝度が初期輝度の 70%まで低下した時点での、前記反応性有機化合物 の濃度 (M70)と、前記発光輝度が初期輝度の 90%まで低下した時点での前記反 応性有機化合物の濃度 (M90)との比 ΔΜ (M70/M90)が下記式(1)を満たすこ とを特徴とする請求の範囲第 1項〜請求の範囲第 9項のいずれ力 1項に記載の有機 エレクトロノレミネッセンス素子。
式 (1)
0. 1≤ΔΜ< 1. 0
[11] 前記発光輝度が初期輝度の 90%まで低下した時点における該有機層のガラス転移 点 Tg (90%)と、通電開始前のガラス転移点 Tg (初期)とが、下記式(1)を満たすこと を特徴とする請求の範囲第 1項〜請求の範囲第 10項のいずれか 1項に記載の有機 エレクトロノレミネッセンス素子。
式 (1)
1. 03≤(Tg (90%) ZTg (初期))≤1. 20
[12] 前記発光輝度が初期輝度の 50%まで低下した時点における該有機層のガラス転移 点 Tg (50%)と、通電開始前のガラス転移点 Tg (初期)とが、下記式 (2)を満たすこと を特徴とする請求の範囲第 1項〜請求の範囲第 11項のいずれか 1項に記載の有機 エレクトロノレミネッセンス素子。
式 (2)
1. 04≤(Tg (90%) ZTg (初期))≤1. 20
[13] 前記 Tg (90%)と前記 Tg (50%)が、下記式 (3)を満たすことを特徴とする請求の範 囲第 12項に記載の有機エレクト口ルミネッセンス素子。
式 (3)
1. 00 < (Tg (50%) /Tg (90%) )≤ 1. 05
[14] 請求の範囲第 1項〜請求の範囲第 13項のいずれか 1項に記載の有機エレクト口ルミ ネッセンス素子を具備することを特徴とする照明装置。
[15] 請求の範囲第 1項〜請求の範囲第 13項のいずれか 1項に記載の有機エレクト口ルミ ネッセンス素子を具備することを特徴とするディスプレイ装置。
PCT/JP2007/056848 2006-03-30 2007-03-29 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置 WO2007114244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07740286.5A EP2001065B1 (en) 2006-03-30 2007-03-29 Organic electroluminescent device, illuminating device and display device
US12/294,814 US7897962B2 (en) 2006-03-30 2007-03-29 Organic electroluminescence device, lighting device, and display having a reactive organic compound
JP2008508608A JP5463668B2 (ja) 2006-03-30 2007-03-29 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-093432 2006-03-30
JP2006093432 2006-03-30
JP2006-097403 2006-03-31
JP2006-097404 2006-03-31
JP2006097403 2006-03-31
JP2006097404 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114244A1 true WO2007114244A1 (ja) 2007-10-11

Family

ID=38563512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056848 WO2007114244A1 (ja) 2006-03-30 2007-03-29 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置

Country Status (4)

Country Link
US (1) US7897962B2 (ja)
EP (2) EP3093898B1 (ja)
JP (2) JP5463668B2 (ja)
WO (1) WO2007114244A1 (ja)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063850A1 (ja) * 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. 有機エレクトロニクス素子の製造方法
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
US8192672B2 (en) * 2008-11-27 2012-06-05 Commissariat A L'energie Atomique Method for producing a retention matrix comprising a functional liquid
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
JP2014504430A (ja) * 2010-12-17 2014-02-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光有機エレクトロニクス装置及びその製造方法
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
JP2014527037A (ja) * 2011-07-11 2014-10-09 メルク パテント ゲーエムベーハー 有機エレクトロルミッセンス素子のための化合物
JP5611938B2 (ja) * 2009-03-09 2014-10-22 昭和電工株式会社 有機発光素子材料、ならびに有機発光素子およびその製造方法
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
JP2016167570A (ja) * 2015-03-10 2016-09-15 日立化成株式会社 有機発光素子
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
KR20160148528A (ko) 2014-04-25 2016-12-26 스미또모 가가꾸 가부시키가이샤 발광 소자
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
WO2018198975A1 (ja) * 2017-04-27 2018-11-01 住友化学株式会社 発光素子
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI323047B (en) * 2006-11-28 2010-04-01 Univ Nat Taiwan The method for forming electronic devices by using protection layers
JP5560155B2 (ja) * 2010-09-30 2014-07-23 富士フイルム株式会社 組成物、並びに、該組成物を用いた膜、電荷輸送層、有機電界発光素子、及び電荷輸送層の形成方法
US9929353B2 (en) * 2014-04-02 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
DE102016111062A1 (de) * 2016-06-16 2017-12-21 Merck Patent Gmbh Vernetzende p-Dotanden zur p-Dotierung organischer Lochleiter
CN112409418B (zh) * 2020-12-11 2022-11-29 北京八亿时空液晶科技股份有限公司 在有机电致发光装置中作为磷光发射体的化合物及其应用

Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172691A (ja) 1986-01-24 1987-07-29 株式会社小松製作所 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPS63264692A (ja) 1987-03-02 1988-11-01 イーストマン・コダック・カンパニー 改良薄膜発光帯をもつ電場発光デバイス
JPS63314795A (ja) 1987-06-18 1988-12-22 Komatsu Ltd 薄膜el素子
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH03255190A (ja) 1990-01-22 1991-11-14 Pioneer Electron Corp 電界発光素子
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0527A (ja) 1991-06-21 1993-01-08 Nakano Vinegar Co Ltd 樹木の生育促進方法
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JPH08288069A (ja) 1995-04-07 1996-11-01 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH0945478A (ja) * 1995-02-01 1997-02-14 Sumitomo Chem Co Ltd 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11204258A (ja) 1998-01-09 1999-07-30 Sony Corp 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JPH11283751A (ja) 1998-03-27 1999-10-15 Nec Corp 有機エレクトロルミネッセンス素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP3093796B2 (ja) 1992-08-28 2000-10-03 出光興産株式会社 電荷注入補助材及びそれを含有する有機エレクトロルミネッセンス素子
JP2001000029A (ja) 1999-06-23 2001-01-09 Mitsubishi Agricult Mach Co Ltd コンバインのナローガイド
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001202827A (ja) 1999-11-10 2001-07-27 Matsushita Electric Works Ltd 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ
JP2001257076A (ja) 2000-03-13 2001-09-21 Tdk Corp 有機el素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP2001357977A (ja) 2000-06-12 2001-12-26 Fuji Photo Film Co Ltd 有機電界発光素子
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
JP2002075645A (ja) 2000-08-29 2002-03-15 Semiconductor Energy Lab Co Ltd 発光装置
JP2002105445A (ja) 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 有機発光素子材料及びそれを用いた有機発光素子
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP2002203683A (ja) 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2002231453A (ja) 2000-11-30 2002-08-16 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002234888A (ja) 2001-02-09 2002-08-23 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP2002260861A (ja) 2001-01-02 2002-09-13 Eastman Kodak Co 有機発光デバイス
JP2002280183A (ja) 2000-12-28 2002-09-27 Toshiba Corp 有機el素子および表示装置
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002305084A (ja) 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002319491A (ja) 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334789A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002338579A (ja) 2001-03-16 2002-11-27 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2003000007A (ja) 2001-06-21 2003-01-07 Mitsubishi Agricult Mach Co Ltd 移植機
JP2003000008A (ja) 2001-06-25 2003-01-07 Iseki & Co Ltd 苗植機
JP2003003165A (ja) 2001-06-25 2003-01-08 Showa Denko Kk 有機発光素子および発光材料
JP2003027048A (ja) 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2003231453A (ja) 2002-02-08 2003-08-19 Daihatsu Motor Co Ltd 車両の乗員移動阻止構造
JP2003272843A (ja) * 2002-03-19 2003-09-26 Fujitsu Ltd 有機電界発光素子の形成方法および有機電界発光ディスプレイ装置の製造方法
JP2004068143A (ja) 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
JP2006019678A (ja) * 2004-06-02 2006-01-19 Dainippon Printing Co Ltd 有機電子デバイス、及び有機電子デバイスの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190126A (ja) * 1989-01-18 1990-07-26 Lion Corp ペット動物用吸収シート
JPH0696860A (ja) * 1992-09-11 1994-04-08 Toshiba Corp 有機el素子
TW334474B (en) 1995-02-01 1998-06-21 Sumitomo Kagaku Kk Method for making a polymeric fluorescent substrate and organic electrolumninescent element
JPH11135258A (ja) * 1997-10-27 1999-05-21 Casio Comput Co Ltd 電界発光素子の製造方法
JP3652488B2 (ja) * 1997-12-18 2005-05-25 Tdk株式会社 樹脂パッケージの製造方法
JP2004002351A (ja) * 2002-03-27 2004-01-08 Tdk Corp 有機el素子
JP2004103401A (ja) * 2002-09-10 2004-04-02 Konica Minolta Holdings Inc 素子および該素子の製造方法
JP2004115587A (ja) * 2002-09-24 2004-04-15 Dainippon Printing Co Ltd 高分子蛍光体、その製造方法および有機エレクトロルミネッセンス素子
US7179147B2 (en) * 2003-04-24 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electroluminescent device
US7063994B2 (en) * 2003-07-11 2006-06-20 Organic Vision Inc. Organic semiconductor devices and methods of fabrication including forming two parts with polymerisable groups and bonding the parts
WO2005049548A1 (en) * 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds
JP5008974B2 (ja) * 2004-05-18 2012-08-22 日本放送協会 発光素子
US8026510B2 (en) 2004-10-20 2011-09-27 Dai Nippon Printing Co., Ltd. Organic electronic device and method for producing the same

Patent Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172691A (ja) 1986-01-24 1987-07-29 株式会社小松製作所 薄膜el素子
JPS63264692A (ja) 1987-03-02 1988-11-01 イーストマン・コダック・カンパニー 改良薄膜発光帯をもつ電場発光デバイス
JPS63314795A (ja) 1987-06-18 1988-12-22 Komatsu Ltd 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
JPH03255190A (ja) 1990-01-22 1991-11-14 Pioneer Electron Corp 電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0527A (ja) 1991-06-21 1993-01-08 Nakano Vinegar Co Ltd 樹木の生育促進方法
JP3093796B2 (ja) 1992-08-28 2000-10-03 出光興産株式会社 電荷注入補助材及びそれを含有する有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JPH0945478A (ja) * 1995-02-01 1997-02-14 Sumitomo Chem Co Ltd 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
JPH08288069A (ja) 1995-04-07 1996-11-01 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11204258A (ja) 1998-01-09 1999-07-30 Sony Corp 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JPH11283751A (ja) 1998-03-27 1999-10-15 Nec Corp 有機エレクトロルミネッセンス素子
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2001000029A (ja) 1999-06-23 2001-01-09 Mitsubishi Agricult Mach Co Ltd コンバインのナローガイド
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001202827A (ja) 1999-11-10 2001-07-27 Matsushita Electric Works Ltd 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ
JP2001257076A (ja) 2000-03-13 2001-09-21 Tdk Corp 有機el素子
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP2001357977A (ja) 2000-06-12 2001-12-26 Fuji Photo Film Co Ltd 有機電界発光素子
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP2002319491A (ja) 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2002075645A (ja) 2000-08-29 2002-03-15 Semiconductor Energy Lab Co Ltd 発光装置
JP2002105445A (ja) 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 有機発光素子材料及びそれを用いた有機発光素子
JP2002203683A (ja) 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2002231453A (ja) 2000-11-30 2002-08-16 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002305084A (ja) 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP2002280183A (ja) 2000-12-28 2002-09-27 Toshiba Corp 有機el素子および表示装置
JP2002260861A (ja) 2001-01-02 2002-09-13 Eastman Kodak Co 有機発光デバイス
JP2002234888A (ja) 2001-02-09 2002-08-23 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334789A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002338579A (ja) 2001-03-16 2002-11-27 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2003000007A (ja) 2001-06-21 2003-01-07 Mitsubishi Agricult Mach Co Ltd 移植機
JP2003000008A (ja) 2001-06-25 2003-01-07 Iseki & Co Ltd 苗植機
JP2003003165A (ja) 2001-06-25 2003-01-08 Showa Denko Kk 有機発光素子および発光材料
JP2003027048A (ja) 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2003231453A (ja) 2002-02-08 2003-08-19 Daihatsu Motor Co Ltd 車両の乗員移動阻止構造
JP2003272843A (ja) * 2002-03-19 2003-09-26 Fujitsu Ltd 有機電界発光素子の形成方法および有機電界発光ディスプレイ装置の製造方法
JP2004068143A (ja) 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
JP2006019678A (ja) * 2004-06-02 2006-01-19 Dainippon Printing Co Ltd 有機電子デバイス、及び有機電子デバイスの製造方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Denkyoku Zairyo", NTS CO., article "Yuki EL Soshi To Sono Kogyoka Saizensen", pages: 123 - 166
"Shinpen Shikisai Kagaku Handbook", 1985, TOKYO UNIV. SHUPPANKAI, pages: 108
"Spectroscopy II", vol. 7, 1992, MARUZEN, article "Jikken Kagaku Koza", pages: 398
"Yuki EL Soshi To Sono Kogyoka Saizensen", 30 November 1998, N.T.S. CO.
INORG. CHEM., vol. 40, pages 1704 - 1711
J. APPL. PHYS., vol. 95, 2004, pages 5773
J. HUANG ET AL., APPLIED PHYSICS LETTERS, vol. 80, 2002, pages 139
M. A. BALDO ET AL., NATURE, vol. 395, 1998, pages 151 - 154
M. A. BALDO ET AL., NATURE, vol. 403, no. 17, 1998, pages 750 - 753
S. LAMANSKY ET AL., J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
See also references of EP2001065A4

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063850A1 (ja) * 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. 有機エレクトロニクス素子の製造方法
US8569087B2 (en) 2007-11-12 2013-10-29 Konica Minolta Holdings, Inc. Method for manufacturing organic electronic element
JP5402642B2 (ja) * 2007-11-12 2014-01-29 コニカミノルタ株式会社 有機エレクトロニクス素子の製造方法
US8192672B2 (en) * 2008-11-27 2012-06-05 Commissariat A L'energie Atomique Method for producing a retention matrix comprising a functional liquid
JP5611938B2 (ja) * 2009-03-09 2014-10-22 昭和電工株式会社 有機発光素子材料、ならびに有機発光素子およびその製造方法
US11189806B2 (en) 2009-10-28 2021-11-30 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US11871654B2 (en) 2009-10-28 2024-01-09 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
US10090476B2 (en) 2009-12-14 2018-10-02 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US11444254B2 (en) 2009-12-14 2022-09-13 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US11839140B2 (en) 2009-12-14 2023-12-05 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US10916716B2 (en) 2009-12-14 2021-02-09 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
JP2014504430A (ja) * 2010-12-17 2014-02-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光有機エレクトロニクス装置及びその製造方法
KR101930411B1 (ko) 2010-12-17 2018-12-18 오스람 오엘이디 게엠베하 방사선 방출 유기 전자 장치 및 이와 같은 장치를 제조하기 위한 방법
US9735397B2 (en) 2010-12-17 2017-08-15 Osram Oled Gmbh Radiation-emitting organic-electronic device and method for the production thereof
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
JP2014527037A (ja) * 2011-07-11 2014-10-09 メルク パテント ゲーエムベーハー 有機エレクトロルミッセンス素子のための化合物
US9583717B2 (en) 2011-07-11 2017-02-28 Merck Patent Gmbh Compounds for organic electroluminescent devices
EP3133079A1 (en) 2012-07-19 2017-02-22 UDC Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3266789A1 (en) 2013-07-02 2018-01-10 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3608329A1 (en) 2013-07-02 2020-02-12 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
EP3916822A1 (en) 2013-12-20 2021-12-01 UDC Ireland Limited Highly efficient oled devices with very short decay times
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
KR20160148528A (ko) 2014-04-25 2016-12-26 스미또모 가가꾸 가부시키가이샤 발광 소자
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
WO2016097983A1 (en) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds)
WO2016125110A1 (en) 2015-02-06 2016-08-11 Idemitsu Kosan Co., Ltd. Bisimidazolodiazocines
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
JP2016167570A (ja) * 2015-03-10 2016-09-15 日立化成株式会社 有機発光素子
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016157113A1 (en) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP4060757A1 (en) 2015-06-03 2022-09-21 UDC Ireland Limited Highly efficient oled devices with very short decay times
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
KR20200003387A (ko) * 2017-04-27 2020-01-09 스미또모 가가꾸 가부시키가이샤 발광 소자
CN110546781B (zh) * 2017-04-27 2022-05-10 住友化学株式会社 发光元件
CN110546781A (zh) * 2017-04-27 2019-12-06 住友化学株式会社 发光元件
KR102468541B1 (ko) 2017-04-27 2022-11-21 스미또모 가가꾸 가부시키가이샤 발광 소자
US11588119B2 (en) 2017-04-27 2023-02-21 Sumitomo Chemical Company, Limited Light emitting device
JPWO2018198975A1 (ja) * 2017-04-27 2019-06-27 住友化学株式会社 発光素子
WO2018198975A1 (ja) * 2017-04-27 2018-11-01 住友化学株式会社 発光素子

Also Published As

Publication number Publication date
US7897962B2 (en) 2011-03-01
JPWO2007114244A1 (ja) 2009-08-13
JP2013225678A (ja) 2013-10-31
JP5648710B2 (ja) 2015-01-07
US20100108991A1 (en) 2010-05-06
JP5463668B2 (ja) 2014-04-09
EP2001065B1 (en) 2016-11-09
EP3093898B1 (en) 2017-12-13
EP2001065A4 (en) 2011-09-14
EP2001065A1 (en) 2008-12-10
EP3093898A1 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2007114244A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置
JP5790833B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5256485B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5293875B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5151031B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5835061B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置
WO2007077810A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007119816A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008072596A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007132886A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007123111A1 (ja) 化合物、該化合物を含む有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置
WO2007029461A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法、該有機エレクトロルミネッセンス素子を有する表示装置及び照明装置
JP5783290B2 (ja) 有機エレクトロルミネッセンス素子材料
JP2014099645A (ja) 有機エレクトロルミネッセンス素子
JP2010118381A (ja) 白色有機エレクトロルミネッセンス素子、表示装置、照明装置
JP5186757B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5849867B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007043321A1 (ja) 有機エレクトロルミネッセンス素子、液晶表示装置及び照明装置
WO2006095553A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、液晶表示装置及び照明装置
WO2006090568A1 (ja) 有機エレクトロルミネッセンス素子、発光パネル、液晶表示装置及び照明装置
US9379347B2 (en) Organic electroluminescence element
JP6197650B2 (ja) 有機el素子
JP2006351837A (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置
JP2007005444A (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置
JP2006351838A (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008508608

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2007740286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12294814

Country of ref document: US

Ref document number: 2007740286

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE