WO2007111076A1 - Feuille barrière transparente et procédé de production de feuille barrière transparente - Google Patents

Feuille barrière transparente et procédé de production de feuille barrière transparente Download PDF

Info

Publication number
WO2007111076A1
WO2007111076A1 PCT/JP2007/053906 JP2007053906W WO2007111076A1 WO 2007111076 A1 WO2007111076 A1 WO 2007111076A1 JP 2007053906 W JP2007053906 W JP 2007053906W WO 2007111076 A1 WO2007111076 A1 WO 2007111076A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
thin film
film layer
organic thin
barrier sheet
Prior art date
Application number
PCT/JP2007/053906
Other languages
English (en)
Japanese (ja)
Inventor
Toshihisa Takeyama
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to EP20070737586 priority Critical patent/EP2000298A1/fr
Priority to JP2008507401A priority patent/JPWO2007111076A1/ja
Publication of WO2007111076A1 publication Critical patent/WO2007111076A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to a transparent barrier sheet for packaging used in the field of packaging foods, pharmaceuticals, etc., or a transparent noria sheet used for electronic device-related members, and a method for producing the same.
  • packaging materials used for packaging foods and pharmaceuticals have been required to be transparent in order to confirm the contents, and to maintain the functions and properties of the packaged items.
  • the ability to prevent the influence of permeating oxygen, water vapor, and other gases that alter the contents is required to have gas noria properties.
  • a packaging material using a metal foil or the like having a metal power such as aluminum as a gas noria layer has been used.
  • the packaging material using the metal foil, etc. which has the above-mentioned metallic strength as a gas barrier layer, is not affected by temperature and humidity! There were many problems such as being unable to confirm this, and being unable to use a metal detector during the inspection.
  • a transparent vapor deposition film of a metal oxide such as an oxide silicon or aluminum oxide is provided on one side of a plastic film.
  • a transparent barrier material having a component power has been developed and proposed.
  • these transparent inorganic films have a certain level of flexibility and flexibility, cracks will occur and the gas noriality Will fall.
  • a laminate in which a vapor-deposited layer made of an inorganic oxide is formed on a substrate and a resin thin film layer formed by polymerizing a vinyl polymerizable monomer is formed for the transparent barrier material of the present invention.
  • At least one surface of a base material that also has a transparent plastic material strength is provided with an acid aluminum, an acid key.
  • a vapor-deposited thin film layer made of an inorganic oxide such as silicon or magnesium oxide is provided, and further a polymerizable monomer, oligomer or mixture thereof having a polymerized portion such as an attalylate group, a metatalylate group or a vinyl group.
  • Gasuno rear transparent laminate vacuum deposited cured coating layer is provided at least comprising any force (corresponding to the transparent Roh rear of materials of the present invention) are known (e.g., see Patent Document 2.) 0
  • the shrinkage ratio after polymerization is larger than that before polymerization obtained by crosslinking monomers having radical polymerizable unsaturated double bonds described in Patent Document 1 and Patent Document 2, and transparent
  • the adhesive sheet may be curled, or depending on the monomer used, the surface may be uneven due to monomer layer separation.
  • the organic thin film layer to be formed is hard, the bending resistance is insufficient, so that there is a case where the deterioration of the noria due to the crack occurs.
  • At least one surface of a substrate that also has a transparent plastic material strength is provided with a vapor deposition thin film layer having an inorganic acid strength such as acid aluminum and acid cage, on which an amino acid is deposited by vapor deposition polymerization.
  • transparent barrier material having a poly urine Motomaku by crosslinking with a compound having a compound Ishishianeto group having a group is known (e.g., see Patent Document 3.) 0
  • Patent Document 3 The polyurea film obtained by cross-linking a compound having an amino group and a compound having an isocyanate group generally has high heat resistance as a base sheet because it is cross-linked at a high temperature. It had the disadvantage of being unusable.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-276115
  • Patent Document 2 JP-A-2005-178010
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-300273
  • the present invention has been made in view of the above situation, and its purpose is at least on a substrate.
  • a transparent barrier sheet having a high gas barrier property and a method for producing the transparent barrier sheet having excellent bending resistance and having a single transparent inorganic thin film layer and at least one transparent organic thin film layer can be used. Is to provide.
  • a transparent noria sheet having at least one transparent inorganic thin film layer and at least one transparent organic thin film layer on a substrate, wherein the transparent organic thin film layer is at least in the molecule.
  • a transparent barrier sheet characterized by being a thin film formed by crosslinking a first compound having three isocyanate groups and a second compound having at least two hydroxyl groups in the molecule.
  • Equation (1) 41 ⁇ (TX S) / 1000 ⁇ 460
  • the transparent organic thin film layer has at least three isocyanate groups in the molecule.
  • a substrate On a substrate, it has at least one transparent inorganic thin film layer and at least one transparent organic thin film layer, has excellent bending resistance, can be used for general-purpose transparent substrates, and has high gas barrier properties. It was possible to provide a noria sheet and a method for manufacturing the same, and the use conditions of the transparent barrier sheet were expanded, and the use application could be expanded.
  • FIG. 1 is a schematic cross-sectional view showing an example of a layer structure of a transparent barrier sheet of the present invention.
  • FIG. 2 is a schematic process flow diagram for producing a transparent noria sheet of the present invention.
  • FIGS. 1 and 2 An embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this. Is not to be done.
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of the transparent noria sheet of the present invention.
  • the transparent barrier sheet shown in FIG. 1 (a) will be described.
  • la indicates a transparent barrier sheet.
  • the transparent noria sheet la has a structure in which a transparent inorganic thin film layer 102 and a transparent organic thin film layer 103 are laminated on a base material 101 in this order.
  • FIG. 1 (b) The transparent barrier sheet shown in FIG. 1 (b) will be described.
  • Reference numeral 104 denotes a transparent primer layer provided between the substrate 101 and the transparent inorganic thin film layer 102.
  • the transparent primer layer 104 may be a single layer or a plurality of layers of two or more if necessary.
  • the transparent barrier sheet shown in FIG. 1 (c) will be described.
  • lc indicates a transparent barrier sheet.
  • the transparent noria sheet lc has a structure in which two units are laminated on a transparent primer layer 104 provided on a substrate 101 when the transparent inorganic thin film layer 102 and the transparent organic thin film layer 103 are one unit. It has become.
  • the number of units to be laminated on the transparent primer layer 104 provided on the substrate 101 is preferably at least 2 units in consideration of gas nore property and bending resistance under high temperature and high humidity. Is 2 units or more and 10 units or less, more preferably 2 units or more and 5 units or less. By laminating at least 2 units, it becomes possible to further improve the noria property and bending resistance under high temperature and high humidity.
  • the transparent noria sheet shown in FIG. 1 (d) will be described.
  • Id indicates a transparent barrier sheet.
  • the transparent barrier sheet Id is configured to have the configuration shown in FIG. 104 ′ represents a transparent primer layer, 102 ′ represents a transparent inorganic thin film layer, and 103 ′ represents a transparent organic thin film layer.
  • the other symbols have the same meaning as in Fig. 1 (a).
  • the transparent noria sheet shown in FIG. 1 (e) will be described.
  • le indicates a transparent barrier sheet.
  • the transparent noria sheet le has a layer structure in which the transparent inorganic thin film layer 102 is laminated on the transparent organic thin film layer 103 of the transparent noria sheet lb shown in FIG. 1 (b). In this figure By using the layer structure shown, it is possible to further improve the gas nooricity.
  • Fig. 1 (a) to Fig. 1 (e) by laminating a transparent inorganic thin film layer and a transparent organic thin film layer in this order on the substrate, in order to ensure barrier properties when external stress is applied. It is possible to prevent defects such as cracks in the transparent inorganic thin film layer laminated on the substrate.
  • the transparent barrier sheet of the present invention cannot be generally defined by the confirmation of contents or the use of an optical member or the like, but the total light transmittance normally defined by JIS K7105 is 50 to The range is 95%.
  • the transparent barrier sheet of the present invention has a structure having at least one transparent inorganic thin film layer and at least one transparent organic thin film layer on a substrate as shown in the figure.
  • the thickness of the substrate 101 is the workability, handleability, practicality, application, etc. when forming the transparent primer layer, transparent inorganic thin film layer, and transparent organic thin film layer.
  • the range of 6-400 ⁇ m is preferable, especially 25 to: LOO ⁇ m is preferable
  • the transparent barrier sheet of the present invention is used for an electronic device such as a liquid crystal display element, a dye-type solar cell, an organic or inorganic EL, an electronic paper, or a fuel cell
  • the appropriate thickness is selected according to various applications.
  • the thickness of the transparent primer layer 104 is 0.05 m or more 5. O / z m or less, and further 0.1-2.
  • the preferred range is 0 ⁇ m! /.
  • the thickness of the transparent inorganic thin film layer 102 is preferably set to lOnm or more and 1 OOOnm or less, more preferably 20nm or more and lOOOnm or less in consideration of gas noria and gas noria!
  • the thickness of the transparent organic thin film layer 103 is preferably 50 nm or more and 5. ⁇ m or less, and more preferably 50 nm or more and 2.0 m or less in consideration of smoothness, bending resistance, and the like.
  • the transparent organic thin film layer that is the outermost layer is the inner layer.
  • the maximum thickness of the inner transparent organic thin film layer is Rl and the thickness of the outermost transparent organic thin film layer is R2, 1 ⁇ R2ZR1 ⁇ 10 It is preferable to satisfy the relationship.
  • the thickness of the transparent organic thin film layer other than the outermost transparent organic thin film layer is lOnm or more and lOOOnm or less, preferably 20 nm or more and 500 nm or less, in order to have bending resistance.
  • the thickness of the outermost transparent organic thin film layer is 50 nm or more and 2. O / zm or less, preferably 50 nm or more and 1. O / zm or less in consideration of scratch resistance.
  • any transparent thermoplastic resin material can be used without particular limitation. I can do it.
  • the resin material include polyester-based resins such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefin-based resins such as polyethylene and polypropylene, styrene-based resins such as polystyrene and acrylonitrile-styrene copolymer, Acrylic resins such as methyl metatalylate and methacrylic acid / maleic acid copolymer, cellulose resins such as triacetyl cellulose, chlorinated resin such as polychlorinated bur resin, polyimide, fluorinated polyimide, polyether imide, etc.
  • PET polyethylene terephthalate
  • polyethylene naphthalate polyolefin-based resins
  • polyolefin-based resins such as polyethylene and polypropylene
  • styrene-based resins such as polystyrene and acrylonitrile-
  • Amide-based resins such as nylon 6, nylon 66, nylon 66, MXD nylon 6, etc., bisphenol A, bisphenol Z or 1,1-bis (4-hydroxyphenol) 3, 3, 5 Trimethylcyclohexane is a polycarbonate resin, fluorine resin Polyarylate ⁇ , Porie Terusuruhon ⁇ , polysulfone resins, polyether ether ketone resins, alicyclic poly Orefin or copolymers alicyclic polyolefin ⁇ etc. cycloaliphatic Orefuin can ani gel.
  • the base material may be either stretched or unstretched and may have mechanical strength and dimensional stability as long as it does not impair the object of the present invention.
  • polyethylene terephthalate or polyethylene naphthalate arbitrarily stretched in the biaxial direction is preferred for applications where the thickness of the base sheet is thin, and when the thickness of the base sheet is relatively thick
  • Polyester terephthalate such as polyethylene terephthalate and polyethylene naphthalate, polyarylate resin, polyethersulfone resin, polycarbonate resin, alicyclic polyolefin resin, etc. are dimensional stability, chemical resistance and heat resistance. From the viewpoint of sex.
  • additives may be added to the base material in the present invention as long as it does not impair the effects of the present invention as necessary.
  • additives include plasticizers and dyes and pigments.
  • band Examples thereof include an antistatic agent, an ultraviolet absorber, an antioxidant, inorganic fine particles, a peeling accelerator, a leveling agent, an inorganic layered silicate compound and a lubricant.
  • the substrate may be a simple substance of the above-mentioned thermoplastic resin, or may be selected and used in a timely manner as a multilayer structure in which thermoplastic resins having different properties are stacked.
  • the transparent primer layer according to the present invention is installed as necessary in order to improve the smoothness and adhesiveness of the base sheet when laminating the transparent inorganic thin film layer.
  • Examples of the transparent primer layer include the following resin materials.
  • Examples of the above-mentioned resins include polyester-based resins, urethane-based resins, acrylic-based resins, styrene-based resins, cellulose-based resins, polyvinylacetal-based resins, and salt vinyl resins. Examples thereof include rosin and the like, which can be selected and used in a timely manner.
  • Examples of the metal alkoxide include metal alkoxides with alcohol such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, and examples of the metal include metals such as silicon, titanium, and zirconium.
  • UV curable resins or electron beam curable resins include compounds having unsaturated double bonds in the molecule such as styrene monomers and (meth) acrylic monomers, as well as oxetal groups and oxsilane groups.
  • Cationic polymerizable compounds having an alkenyl ether group, an allene ether group, a ketene acetal group, a tetrahydrofuran group, an oxepan group, a monocyclic acetal group, a bicyclic acetal group, a rataton group, a cyclic orthoester group or a cyclic carbonate group.
  • thermosetting resin what is called thermosetting resin such as phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester, alkyd resin, etc., which are generally widely used.
  • thermosetting resin such as phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester, alkyd resin, etc.
  • the material used for the transparent inorganic thin film layer according to the present invention is gas-nore and can be used without particular limitation as long as it is transparent.
  • Si, Al, In, Sn, Zn, Mg Oxide or nitride containing one or more of Ca, K, Sn, Na, B, Ti, Pb, Zr, Y, In, Ce, Ta, etc. I can do it.
  • those having a clear absorption maximum wavelength in the visible range are preferred.
  • examples of inorganic oxides include silicon (Si), aluminum (A1), zinc (Zn), magnesium (Mg), calcium (Ca), potassium (K), tin (
  • Use metal oxides such as Sn), sodium (Na), fluorine (B), titanium (Ti), lead (Pb), zirconium (Zr), yttrium (Y), indium (In) I can do it.
  • the notation of metal oxide is, for example, MOx such as SiOx, A10x, MgOx (wherein, M represents a metal element, and the value of each has a different range depending on the metal element. ).
  • the range of the above X values is 0 ⁇ x ⁇ 2 for silicon (Si), 0 ⁇ 1.5 for aluminum (A1), 0 ⁇ 1, zinc (Zn), magnesium ( Mg) 0 ⁇ 1, calcium (Ca) 0 ⁇ 1, potassium (K) 0 ⁇ x ⁇ 0.5, tin (Sn) 0 ⁇ x ⁇ 2, sodium (Na) 0 ⁇ x ⁇ 0.5, boron (B) 0 ⁇ 1, 5, titanium (Ti) 0 ⁇ x ⁇ 2, lead (Pb) 0 ⁇ 1, zirconium (Zr) 0 ⁇ X ⁇ 2, Yttrium (Y) can take values in the range of 0 ⁇ X ⁇ 1.5, and Indium (In) ⁇ x ⁇ 1.
  • the values of silicon (Si) and aluminum (A1) it is preferable from the viewpoint of the barrier property of acid and silicon (SiOx) as 1.0 ⁇ x ⁇ 2.0, and as acid and aluminum (AlOx) as 0.5. ⁇ x ⁇ l. It is more preferable to use a value in the range of 5.
  • inorganic nitride is preferred as nitride nitride. Further, as a mixture thereof, nitride nitride is preferred.
  • oxynitride nitride is expressed as SiOxNy
  • the ratio of X and y is an oxygen-rich film when importance is placed on improving adhesion, and 1 ⁇ ⁇ 2, 0 ⁇ y ⁇ l If it is important to improve the water vapor barrier property, it is preferable to use a nitrogen-rich film with 0 ⁇ x ⁇ 0.8 and 0.8 ⁇ y ⁇ l.3! / ⁇ .
  • the transparent organic thin film layer according to the present invention is a thin film formed by crosslinking a first compound having at least three isocyanate groups in a molecule and a second compound having at least two hydroxyl groups in the molecule. It is characterized by being formed of layers.
  • Examples of the first compound include trimer adducts such as hexamethylene diisocyanate 3 mol adduct, 2,4-tolylene diisocyanate 3 mol adduct, etc. Raise However, in the present invention, since an organic thin film is formed by vapor deposition together with a compound having at least two hydroxyl groups in the molecule described later, the leveling property after film formation and easiness of vapor deposition are considered. A compound having a relatively small molecular weight is preferred.
  • the first compound having three or more isocyanate groups in such a molecule in particular, there are three or more molecules in the molecule which is 30% by mass or more and 65% by mass or less in the compound with which the isocyanate group occupies.
  • a compound having an isocyanate group is preferred.
  • the compound having at least two hydroxyl groups in the molecule can be used without any particular limitation.
  • at least an aliphatic alcoholic hydroxyl group is contained in the molecule.
  • examples of such compounds in which two compounds are more preferable include diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 2,2-dimethyl-1,3 propanediol, 2,2 Jetyl 1,3 Propanediol, 2-Butyl-2 Ethyl 1,3 Propanediol, 1,2 Butanediol, 1,4 Butanediol, Polytetramethylene glycol, 1,5 Pentanediol, 2 Methyl 1,2,4 Pentane Diol, 3-methyl-1,5 pentanediol, 1 , 6 hexanediol, 2 ethyl 1,3 hexane
  • a compound having two or more alcoholic hydroxyl groups in it for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, polytetramethylene glycol, etc.
  • examples include alcohol modified with alcohol.
  • These compounds having at least two hydroxyl groups in the molecule may be used singly or in combination of two or more.
  • the molecular weight of the compound having at least two hydroxyl groups in the molecule is preferably set to a molecular weight of 100 or more and 2000 or less in consideration of leveling properties after vapor deposition and easy deposition.
  • the above compound is preferably a compound having at least three hydroxyl groups in the molecule because it can be more three-dimensionally crosslinked.
  • a known organometallic compound such as tin or lead as a urethane forming catalyst at the same time.
  • the transparent noria sheet of the present invention requires functional layers such as an antistatic layer, an adhesive layer, a conductive layer, an antireflection layer, an ultraviolet ray prevention layer, and a near infrared ray prevention layer in addition to the essential layers described above.
  • functional layers such as an antistatic layer, an adhesive layer, a conductive layer, an antireflection layer, an ultraviolet ray prevention layer, and a near infrared ray prevention layer in addition to the essential layers described above.
  • the position of laminating may be selected as appropriate.
  • FIG. 2 is a schematic process flow diagram for producing the transparent noria sheet of the present invention.
  • the process for producing the transparent barrier sheet of the present invention includes a base material supplying process, a primer layer forming process, a drying process, a transparent inorganic layer forming process, a transparent organic layer forming process, and a recovery process. have.
  • the primer layer is not formed, for example, in the case of the transparent sheet having the layer structure shown in FIG. 1 (a), it is possible to proceed to the substrate supplying process force and the transparent inorganic layer forming process.
  • a base material prepared using the above-described thermoplastic resin material is supplied.
  • the transparent primer coat layer forming components described above are mixed, or dissolved or dispersed in a solvent as necessary to prepare a transparent primer coating.
  • a layer forming composition is prepared, and a transparent primer coat layer is laminated on the substrate.
  • dispersion is required when forming a coating solution for forming a transparent primer, a two-roll mill, a three-roll mill, a ball mill, a pebble mill, a cobol mill, a tron mill, a sand mill, a sand grinder, a Sqegvari attritor, a high-speed impeller Dispersers, high-speed stone mills, high-speed impact mills, dispersers, high-speed mixers, homogenizers, ultrasonic dispersers, open-to-one, continuous-to-one, etc. I can do it.
  • Solvents used for dissolution as required include water, ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethyl alcohol, n-propyl alcohol or isopropyl alcohol.
  • Alcohols such as heptane cyclohexane, aromatics such as toluene xylene, polyglycols such as ethylene glycol diethylene glycol, ether alcohols such as ethylene glycol monomethyl ether, tetrahydrofuran, Examples include ethers such as 1,3-dioxolane or 1,4-dioxane, and halogen-containing compounds such as dichloromethane and chloroform.
  • a mouth-and-mouth coating method for example, a mouth-and-mouth coating method, a gravure-and-mouth coating method, a direct-gravure-and-mouth coating method Method, air coater coating method, rod coating method, kiss roll coating method, squeeze roll coating method, reno-slow nore coating method, curtain flow coating method, fountain method, transfer coating method, spray coat method, dip coat method
  • a transparent primer coat layer can be laminated on the substrate by coating by a coating method such as other, followed by drying by heating, and further by performing an aging treatment or the like. Further, after drying, if necessary, a crosslinking reaction may be carried out.
  • a metal alkoxide, an ultraviolet curable resin, an electron beam curable resin, a thermosetting resin, etc. laminated without solvent or coated with a solvent diluted, dried and cured can be suitably used. .
  • the surface of the substrate is subjected to flame treatment, ozone treatment, glow discharge treatment, corona discharge treatment, plasma treatment, vacuum It is preferable to apply the coating solution for forming the transparent primer layer after performing at least one surface treatment selected from ultraviolet irradiation treatment, electron beam irradiation treatment and radiation irradiation treatment.
  • at least one surface treatment selected from ultraviolet irradiation treatment, electron beam irradiation treatment and radiation irradiation treatment.
  • the transparent primer layer forming component is the same as the transparent organic thin film layer forming component, a method of laminating the transparent organic thin film layer described later is used as a method for forming the transparent primer layer on the surface of the substrate. Also good.
  • a transparent inorganic thin film layer is formed and laminated on the transparent primer layer formed on the base material using the above-described materials.
  • the method for forming the transparent inorganic thin film layer to be laminated on the transparent primer layer is not particularly limited.
  • film formation by vacuum deposition, film formation by sputtering, film formation by ion plating, and reactive plasma vapor deposition Film formation, film formation by electron cyclotron resonance plasma, film formation by plasma chemical vapor deposition, film formation by thermal chemical vapor deposition, film formation by photochemical vapor deposition, film formation by catalytic chemical vapor deposition
  • the catalyst that can provide a film having a good surface smoothness with relatively few irregularities on the surface of the transparent inorganic thin film layer formed therein.
  • the film is formed by at least one film formation method using chemical vapor deposition (cat-CVD), reactive plasma deposition (RPD), or electron cyclotron resonance (ECR) plasma film formation. Door is preferable.
  • catalytic chemical vapor deposition method and film forming apparatus include, for example, JP-A-2002-69644, 2002-69646, 2002-299259, 2004-212160, The materials described in 2004-217966, 2004-292877, 2004-315899, 2005-179693, etc. can be used in a timely manner or modified into a form suitable for the purpose of the present invention.
  • reactive plasma vapor deposition and film forming apparatuses include, for example, JP-A-2001-262323, 2001-295031, 2001-348660, 2001-348662, 2002-30426, 2002-53950, 2002-60929, 2002-115049, 2002-180240, 2002-217131, 2002-249871, 2003-105526, 2004-
  • the ones described in 76025, 2005-34831, etc. can be used in a timely manner or modified into a form suitable for the purpose of the present invention.
  • a transparent organic thin film layer is formed and laminated on the transparent inorganic thin film layer laminated on the transparent primer layer in the transparent inorganic thin film layer forming step.
  • the method for forming the transparent organic thin film layer laminated on the transparent inorganic thin film layer uses the coating method used to form the above-described transparent primer layer and the vapor deposition method used to form the transparent inorganic thin film layer.
  • a transparent inorganic thin film is formed by vapor deposition of a compound having at least three isocyanate groups in the molecule (first compound) and a compound having at least two hydroxyl groups in the molecule (second compound).
  • first compound a compound having at least three isocyanate groups in the molecule
  • second compound a compound having at least two hydroxyl groups in the molecule
  • a transparent organic thin film layer can be formed by performing a crosslinking reaction by heating. Since the heating temperature varies depending on the types of the first compound and the second compound to be used, it is preferable to determine the temperature appropriately.
  • the deposition conditions may be set individually for each compound, or the crosslinking reaction proceeds during the deposition film formation. If there is no problem even if the vapor deposition rates of the above-mentioned compounds are slightly different, set the vapor deposition conditions by mixing them as a composition.
  • Specific methods and film forming apparatuses of the above-described vapor deposition method include, for example, JP-A-2-284485, JP-A-5-125520, JP-A-5-177163, JP-A-5-311399, and JP-A-5-339389.
  • the maximum temperature reached by the base material sheet when forming the transparent organic thin film layer and the transparent inorganic thin film layer is set.
  • T [K] and film formation time are set to S [seconds]
  • the maximum temperature reached by the base sheet when forming the transparent organic thin film layer and the transparent inorganic thin film layer is T [K] and the film formation time is S [second].
  • the film forming conditions of each single layer are shown. Further, the film formation time referred to here represents the film formation time at a point where the base sheet is present.
  • Equation (1) 41 ⁇ (TX S) / 1000 ⁇ 460
  • the maximum temperature reached by the base sheet when forming the transparent organic thin film layer and the transparent inorganic thin film layer is set for the purpose of preventing thermal deformation of the base material.
  • T [K] is preferably 283 to 383 mm, more preferably 293 to 333 mm.
  • the ultimate temperature ⁇ [ ⁇ ] of the substrate falls within the range of the following formula (3) when the glass transition temperature Tg [K] of the resin used for the substrate is used.
  • Equation (3) 54 ⁇ T / Tg ⁇ 0. 98
  • a transparent barrier sheet (FIG. 1 (b)) in which a primer layer, a transparent inorganic thin film layer, and a transparent organic thin film layer are laminated in this order on the substrate is collected.
  • the transparent noria sheet shown in FIG. 1 (a) can be manufactured under the same conditions as the transparent noria sheet shown in FIG. 1 (b) except that the primer layer forming step is not used.
  • the transparent noria sheet shown in Fig. 1 (e) after the transparent organic thin film layer is formed, the transparent inorganic thin film layer is formed again to form the transparent inorganic thin film layer on the transparent organic thin film layer. Manufacturing Is possible.
  • the transparent inorganic thin film layer and the transparent organic thin film layer are again formed in the transparent inorganic thin film layer forming step. It can be manufactured by sequentially laminating transparent organic thin film layers in the thin film layer forming step.
  • the transparent noria sheet shown in Fig. 1 (d) after forming the layer structure of the transparent barrier sheet shown in Fig. 1 (c), the transparent primer layer is again formed on the opposite side of the substrate by the same method. And a transparent inorganic thin film layer and a transparent organic thin film layer can be sequentially laminated.
  • the substrate used in the production flow shown in this figure can be a sheet-like sheet film or a roll-like film, and a transparent noria sheet can be produced.
  • the transparent primer layer, the transparent inorganic thin film layer, and the transparent organic thin film layer are preferably performed by batch processing. However, if the film formation conditions of the transparent inorganic thin film layer and the transparent organic thin film layer match, it is possible to continuously laminate the transparent inorganic thin film layer and the transparent organic thin film layer using a band-shaped film wound in a roll shape. is there.
  • an antistatic layer an adhesive layer, a conductive layer, an antireflection layer, an ultraviolet ray prevention layer, a near infrared ray prevention layer, etc., which are installed as necessary in addition to the essential layers described above.
  • the functional layer can be laminated by appropriately selecting the method for forming the transparent primer layer, the transparent inorganic thin film layer, or the transparent organic thin film layer described above.
  • the transparent barrier sheet of the present invention will be further described with specific examples.
  • this invention is not limited to a following example.
  • a polyethersulfone film [Sumitomo Bakelite Co., Ltd., Sumilite FS 1 5300] having a thickness of 100 ⁇ m was prepared.
  • the glass transition temperature Tg [K] was 496K.
  • a transparent inorganic thin film layer made of a silicon nitride oxide film was formed using silicon as a solid target.
  • Table 1 shows the film formation time S, film thickness, and maximum substrate temperature T [K], (TX S) ZlOOO for each transparent inorganic thin film layer.
  • the maximum temperature of the substrate during film formation was determined by attaching a thermolabel to the surface of the substrate and confirming the film after completion of film formation, thereby determining the maximum temperature T [K] of the substrate.
  • the film thickness of the transparent Ariake inorganic thin film layer is a value measured with a spectroscopic ellipsometer (manufactured by Otsuka Electronics Co., Ltd., spectroscopic ellipsometer FE-5000).
  • the formed transparent inorganic thin layer is laminated substrate, after set in a vacuum chamber at a condition like placing the cold plate 10 ° C on the back, was evacuated vacuum chamber to 10- 4 Pa stand,
  • the first compound having an isocyanate group shown below and the second compound having a hydroxyl group shown below are put in separate containers, and resistance heating of each container is started at 40 ° C.
  • evaporation of impurities is completed.
  • the deposition shutter was opened and the film formation time was changed, and deposition polymerization was performed on the transparent inorganic thin film layer to form a transparent organic thin film layer to produce a transparent barrier sheet.
  • the maximum temperature reached at the time of forming the transparent organic thin film layer was determined by attaching a thermolabel on the surface of the film and confirming it after forming the thin film layer, thereby obtaining the maximum temperature T [K] at which the substrate sheet was reached.
  • the thickness of the transparent Ariake organic thin film layer is a value measured with a spectroscopic ellipsometer (manufactured by Otsuka Electronics Co., Ltd., spectroscopic ellipsometer FE-5000).
  • Produced Sample No. 1—A to l—F Light transmittance in accordance with JIS K7105 (Suga Test Instruments Co., Ltd., Haze Computer HGM-2B) was 83 to 88%.
  • a transparent noria sheet for comparison was prepared using the same base material as Sample No. 1A by the method shown below and designated No. 1-R.
  • an oxygen layer is used as the inorganic layer, and a bifunctional di-octapenta-ger diatari as the organic layer Rate “Uncured resin added with 1 part by mass of a photopolymerization initiator [Ciba 'Specialty' Chemicals: Irgacure 907] in 100 parts by mass.
  • a photopolymerization initiator [Ciba 'Specialty' Chemicals: Irgacure 907] in 100 parts by mass.
  • N- 1 2 isocyanate ethyl 2, 6—diisocyanate power proate
  • Table 1 shows the results of evaluating the oxygen permeability, water vapor permeability, and bending resistance of the obtained sample Nos. 1-A to R-R as gas barrier properties by the following methods.
  • the oxygen transmission rate is ml, m 2 '24hr' 25. C is shown.
  • the water vapor transmission rate is g / m 2 '24hr' 25 ° C.
  • a stretched polyethylene terephthalate film [Toyobo Co., Ltd., Cosmo Shine A-4300] was prepared.
  • a transparent noria sheet was prepared on the substrate sheet with a transparent elastomer layer by forming the transparent inorganic thin film layer A and the transparent organic thin film layer B shown in 1) and 2) below in the laminated form shown in Table 2.
  • No. 2—A to 2-D were prepared.
  • C indicates a base sheet with a transparent blur layer.
  • ECR plasma deposition system [Entech ER-1200, manufactured by ENT-T-Ahfty Co., Ltd.] is used with a 10 ° C cooling plate placed on the back side of the prepared substrate C with a single layer of transparent elastomer.
  • the deposition conditions are microwave power of 500 W, RF power of 500 W, deposition pressure of 0.09 Pa, introduction gas conditions of argon flow rate of 40 sccm, and nitrogen gas flow rate of 0.5 SC cm.
  • a transparent inorganic thin film layer A made of a silicon nitride film was formed.
  • Table 2 shows the film thickness of the transparent inorganic thin film layer obtained at that time, the film formation time, and the maximum temperature T [K] at which the substrate sheet reached during film formation. Note that the maximum temperature ⁇ [ ⁇ ] reached the base sheet was evaluated in the same manner as in Example 1.
  • the formed transparent inorganic thin layer is laminated substrate, after set in a vacuum chamber at a condition like placing the cold plate 10 ° C on the back, was evacuated vacuum chamber to 10- 4 Pa stand,
  • the compound having an isocyanate group and the compound having a hydroxyl group used in Example 1 were put in separate containers, and resistance heating was started at 40 ° C. for each container. After raising the temperature to 2, the deposition shutter was opened, and a transparent organic thin film layer was formed by vapor deposition on the transparent inorganic thin film layer.
  • Table 1 shows the film thickness of the transparent organic thin film layer obtained at that time, the film formation time, and the maximum temperature T [K] at which the substrate sheet reached during film formation.
  • a transparent organic thin film layer E was formed up to the same transparent organic thin film layer E as Comparative Sample No. 1-R of Example 1 except that the same base material as Sample No. 2-A was used.
  • transparent inorganic thin film layer D made of 60 nm silicon oxide by electron beam evaporation method and lOOOnm transparent organic thin film layer E made by organic vapor deposition method are the same as in Comparative Example 1 so as to have the laminated form shown in Table 2.
  • a transparent noria sheet No. 2-R for comparison is produced by laminating by the above method. Made. Transparent noria sheet No. 2-R produced by the above-described method was evaluated for barrier properties and bending resistance by the same evaluation method as in Example 1. The results obtained are also shown in Table 2.
  • Table 2 shows the results of evaluating the oxygen permeability, water vapor permeability, and bending resistance as gas barrier properties in the same manner as in Example 1 for the obtained Sample Nos. 2-A to 2-R.
  • the oxygen permeability is mlZm 2 '24hr' 25 ° C.
  • the water vapor transmission rate is gZm 2 '24hr' 25 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

L'invention concerne une feuille barrière transparente dans laquelle au moins une couche mince inorganique transparente et au moins une couche mince organique transparente sont disposées sur une base. Ladite feuille barrière transparente est caractérisée en ce que la couche mince organique transparente est formée par réticulation d'un premier composé présentant au moins trois groupes isocyanates sur une molécule et d'un second composé présentant au moins deux groupes hydroxyles dans une molécule. Ladite feuille barrière transparente présente une résistance à la flexion excellente et des propriétés de barrière contre les gaz élevées, et une base transparente d'usage général peut être utilisée. L'invention concerne également un procédé de production de ladite feuille barrière transparente.
PCT/JP2007/053906 2006-03-24 2007-03-01 Feuille barrière transparente et procédé de production de feuille barrière transparente WO2007111076A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20070737586 EP2000298A1 (fr) 2006-03-24 2007-03-01 Feuille barrière transparente et procédé de production de feuille barrière transparente
JP2008507401A JPWO2007111076A1 (ja) 2006-03-24 2007-03-01 透明バリア性シートおよび透明バリア性シートの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006082437 2006-03-24
JP2006-082437 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007111076A1 true WO2007111076A1 (fr) 2007-10-04

Family

ID=38533821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053906 WO2007111076A1 (fr) 2006-03-24 2007-03-01 Feuille barrière transparente et procédé de production de feuille barrière transparente

Country Status (4)

Country Link
US (1) US20070224428A1 (fr)
EP (1) EP2000298A1 (fr)
JP (1) JPWO2007111076A1 (fr)
WO (1) WO2007111076A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133000A (ja) * 2007-10-30 2009-06-18 Fujifilm Corp シリコン窒化物膜及びそれを用いたガスバリア膜、薄膜素子
JP2014118417A (ja) * 2012-12-13 2014-06-30 Kojima Press Industry Co Ltd ポリユリア及びその製造方法並びにコンデンサ素子及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281986B2 (ja) * 2009-08-26 2013-09-04 富士フイルム株式会社 積層フィルムおよび複合フィルム
JPWO2012020771A1 (ja) * 2010-08-13 2013-10-28 旭硝子株式会社 積層体および積層体の製造方法
WO2012147571A1 (fr) * 2011-04-27 2012-11-01 旭硝子株式会社 Procédé de production d'un stratifié
CN104106148A (zh) * 2012-02-10 2014-10-15 阿科玛股份有限公司 用于柔性薄膜光伏和发光二极管装置的耐候复合物
CN109267039B (zh) * 2018-10-24 2019-11-29 江苏菲沃泰纳米科技有限公司 一种聚氨酯纳米涂层及其制备方法

Citations (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284485A (ja) 1989-04-26 1990-11-21 Ulvac Corp 有機圧電焦電体膜の形成方法
JPH03197682A (ja) 1989-09-27 1991-08-29 Ashida:Kk Ecrプラズマcvd装置
JPH04216628A (ja) 1990-02-27 1992-08-06 American Teleph & Telegr Co <Att> Ecrプラズマ堆積方法
JPH04257224A (ja) 1991-02-12 1992-09-11 Fuji Electric Co Ltd 絶縁膜の形成方法
JPH04311036A (ja) 1991-04-09 1992-11-02 Fuji Electric Co Ltd 絶縁膜形成方法
JPH059742A (ja) 1991-07-01 1993-01-19 Nippon Telegr & Teleph Corp <Ntt> プラズマ処理装置及び装置構成方法
JPH0570955A (ja) 1991-09-12 1993-03-23 Osaka Gas Co Ltd 薄膜形成方法
JPH0590247A (ja) 1991-09-26 1993-04-09 G T C:Kk 絶縁膜を形成する方法および装置
JPH05117867A (ja) 1991-09-02 1993-05-14 Fuji Electric Co Ltd 酸化シリコン膜の製造方法および製造装置
JPH05125520A (ja) 1991-11-06 1993-05-21 Ulvac Japan Ltd 多層膜の形成装置
JPH05129281A (ja) 1991-10-31 1993-05-25 Fujitsu Ltd 半導体装置の製造方法
JPH05171435A (ja) 1991-12-19 1993-07-09 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成装置
JPH05177163A (ja) 1991-12-27 1993-07-20 Ulvac Japan Ltd 合成樹脂被膜の形成方法
JPH05311399A (ja) 1992-05-12 1993-11-22 Ulvac Japan Ltd 有機焦電圧電体の形成方法
JPH05339389A (ja) 1992-05-26 1993-12-21 Agency Of Ind Science & Technol 高分子膜の形成方法
JPH06116409A (ja) 1991-10-25 1994-04-26 Matsushita Electric Ind Co Ltd 合成樹脂被膜の形成方法
JPH06244175A (ja) 1993-02-16 1994-09-02 Fuji Electric Co Ltd 絶縁膜の製造方法および製造装置
JPH06280000A (ja) 1993-03-24 1994-10-04 Japan Steel Works Ltd:The プラズマ表面処理方法および装置
JPH06316757A (ja) 1993-04-28 1994-11-15 Kawasaki Heavy Ind Ltd 紫外レーザーによる有機多層膜製造方法
JPH0726023A (ja) 1993-07-14 1995-01-27 Furukawa Electric Co Ltd:The 有機高分子薄膜の作製方法
JPH07209863A (ja) 1994-01-20 1995-08-11 Ulvac Japan Ltd パターン形成方法
JPH07263359A (ja) 1994-03-25 1995-10-13 Sumitomo Metal Ind Ltd 薄膜の形成方法
JPH07335575A (ja) 1994-06-14 1995-12-22 Nippon Steel Corp 薄膜の製造方法
JPH0878333A (ja) 1994-09-07 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> 膜形成用プラズマ装置
JPH08503099A (ja) 1992-08-21 1996-04-02 バッテル・メモリアル・インスティチュート 液体モノマー類の真空付着及び硬化
JPH0917598A (ja) 1995-06-29 1997-01-17 Nippon Telegr & Teleph Corp <Ntt> Ecrプラズマ加工装置およびecrプラズマ生成方法
JPH09143681A (ja) 1995-11-14 1997-06-03 Ulvac Japan Ltd 高分子薄膜の形成方法
JPH09249851A (ja) 1996-03-15 1997-09-22 Ulvac Japan Ltd 高分子薄膜の低比誘電率化方法及び層間絶縁膜の形成方法
JPH09272703A (ja) 1996-04-05 1997-10-21 Ulvac Japan Ltd 有機化合物用蒸発源及びこれを用いた蒸着重合装置
JPH09279332A (ja) 1996-04-15 1997-10-28 Ulvac Japan Ltd 有機化合物モノマーの精製方法
JPH09278805A (ja) 1996-04-12 1997-10-28 Ulvac Japan Ltd 蒸着重合方法
JPH09326389A (ja) 1996-06-05 1997-12-16 Ulvac Japan Ltd 耐湿性絶縁膜の形成方法及び層間絶縁膜の形成方法
JPH1092800A (ja) 1996-09-12 1998-04-10 Ulvac Japan Ltd 蒸発源および蒸発源を備えた真空処理室、有機化合物膜の成膜方法
JPH10168559A (ja) 1996-12-06 1998-06-23 Ulvac Japan Ltd 有機薄膜形成装置及び有機材料の再利用方法
JPH10289902A (ja) 1997-04-11 1998-10-27 Ulvac Japan Ltd 成膜装置
JPH11172418A (ja) 1997-12-12 1999-06-29 Ulvac Corp 成膜装置
JP2000087224A (ja) 1998-09-11 2000-03-28 Ulvac Japan Ltd 成膜装置
JP2000127186A (ja) 1998-10-28 2000-05-09 Matsushita Electric Ind Co Ltd 樹脂薄膜の製造方法
JP2000348971A (ja) 1999-06-04 2000-12-15 Matsushita Electric Ind Co Ltd 積層体の製造方法及び積層体の製造装置
JP2001261867A (ja) 2000-03-14 2001-09-26 Dainippon Printing Co Ltd 連続式蒸着重合法
JP2001262323A (ja) 2000-03-23 2001-09-26 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2001295031A (ja) 2000-04-14 2001-10-26 Sumitomo Heavy Ind Ltd 成膜装置及び方法
JP2001348662A (ja) 2000-06-05 2001-12-18 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2001348660A (ja) 2000-06-06 2001-12-18 Sumitomo Heavy Ind Ltd 成膜装置及び方法
JP2002030426A (ja) 2000-07-07 2002-01-31 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2002053950A (ja) 2000-08-07 2002-02-19 Sumitomo Heavy Ind Ltd 絶縁体基板への成膜方法及び成膜装置
JP2002060929A (ja) 2000-08-10 2002-02-28 Sumitomo Heavy Ind Ltd Ito膜の成膜方法及び成膜装置
JP2002069646A (ja) 2000-09-01 2002-03-08 Sony Corp 薄膜製造方法
JP2002069644A (ja) 2000-08-29 2002-03-08 Sony Corp 薄膜製造装置および薄膜製造方法
JP2002115049A (ja) 2001-08-31 2002-04-19 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2002178435A (ja) * 2000-12-14 2002-06-26 Tohcello Co Ltd 積層体
JP2002180240A (ja) 2000-12-20 2002-06-26 Sumitomo Heavy Ind Ltd 成膜装置
JP2002217131A (ja) 2001-01-17 2002-08-02 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2002249871A (ja) 2001-02-22 2002-09-06 Sumitomo Heavy Ind Ltd 成膜装置
JP2002275619A (ja) 2001-03-16 2002-09-25 Mitsui Chemicals Inc 有機高分子薄膜の製造装置および有機高分子薄膜の作製方法
JP2002299259A (ja) 2001-03-30 2002-10-11 Kyocera Corp 薄膜形成方法
JP2003003250A (ja) 2001-06-22 2003-01-08 Alps Electric Co Ltd 真空蒸着重合装置及びこれを用いた有機被膜の形成方法
JP2003105526A (ja) 2001-09-26 2003-04-09 Sumitomo Heavy Ind Ltd 珪素化合物膜の成膜方法
JP2003129236A (ja) 2001-10-24 2003-05-08 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成装置
JP2003191370A (ja) * 2001-12-26 2003-07-08 Sumitomo Bakelite Co Ltd 水蒸気バリア性プラスチックフィルム及びこれを用いたエレクトロルミネッセンス用ディスプレイ基板
JP2003276115A (ja) 2002-03-26 2003-09-30 Dainippon Printing Co Ltd 積層体およびその製造方法
JP2003300273A (ja) 2002-04-10 2003-10-21 Ulvac Japan Ltd 表面処理方法及び真空表面処理装置
JP2003303698A (ja) 2002-04-09 2003-10-24 Ntt Afty Corp Ecrプラズマ源およびecrプラズマ装置
JP2003335880A (ja) 2001-12-26 2003-11-28 Sumitomo Bakelite Co Ltd 有機層の形成方法及びガスバリア性プラスチックフィルム
JP2004076025A (ja) 2002-08-09 2004-03-11 Sumitomo Heavy Ind Ltd 酸化亜鉛薄膜およびその成膜方法
JP2004160836A (ja) * 2002-11-13 2004-06-10 Mitsui Chemicals Inc ガスバリアフィルムの製造方法
JP2004211160A (ja) 2002-12-27 2004-07-29 Mitsui Chemicals Inc 化学蒸着方法および装置
JP2004217966A (ja) 2003-01-10 2004-08-05 Mitsui Chemicals Inc ガスバリア膜形成方法および装置
JP2004292877A (ja) 2003-03-26 2004-10-21 Ishikawa Seisakusho Ltd 窒化シリコン膜及びその製造方法
JP2004315899A (ja) 2003-04-16 2004-11-11 Mitsui Chemicals Inc ガスバリア膜形成方法
JP2005014483A (ja) 2003-06-27 2005-01-20 Toppan Printing Co Ltd 積層体の製造方法
JP2005034831A (ja) 2003-07-01 2005-02-10 Sumitomo Heavy Ind Ltd バリア多層膜及びその製造方法
JP2005035204A (ja) * 2003-07-17 2005-02-10 Oike Ind Co Ltd 透明導電ガスバリアフィルム
JP2005178010A (ja) 2003-12-16 2005-07-07 Toppan Printing Co Ltd ガスバリア透明積層体
JP2005179693A (ja) 2003-12-16 2005-07-07 Material Design Factory:Kk Si系有機・無機ハイブリッド膜の形成方法
JP2005246716A (ja) * 2004-03-03 2005-09-15 Fuji Photo Film Co Ltd ガスバリア性積層フィルムおよび該フィルムを用いた画像表示素子
JP2005307222A (ja) 2004-04-16 2005-11-04 Nippon Telegr & Teleph Corp <Ntt> 酸窒化シリコン膜の形成方法及び形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3850475T2 (de) * 1987-11-18 1994-10-27 Zeneca Ltd Wässrige Polyurethan Dispersionen.
JP4381742B2 (ja) * 2002-08-01 2009-12-09 セントラル硝子株式会社 防曇性膜及びその形成方法並びに防曇性膜形成用塗布剤
US7297414B2 (en) * 2003-09-30 2007-11-20 Fujifilm Corporation Gas barrier film and method for producing the same
EP2065178B1 (fr) * 2006-09-22 2014-06-25 Toray Industries, Inc. Film barrière aux gaz

Patent Citations (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284485A (ja) 1989-04-26 1990-11-21 Ulvac Corp 有機圧電焦電体膜の形成方法
JPH03197682A (ja) 1989-09-27 1991-08-29 Ashida:Kk Ecrプラズマcvd装置
JPH04216628A (ja) 1990-02-27 1992-08-06 American Teleph & Telegr Co <Att> Ecrプラズマ堆積方法
JPH04257224A (ja) 1991-02-12 1992-09-11 Fuji Electric Co Ltd 絶縁膜の形成方法
JPH04311036A (ja) 1991-04-09 1992-11-02 Fuji Electric Co Ltd 絶縁膜形成方法
JPH059742A (ja) 1991-07-01 1993-01-19 Nippon Telegr & Teleph Corp <Ntt> プラズマ処理装置及び装置構成方法
JPH05117867A (ja) 1991-09-02 1993-05-14 Fuji Electric Co Ltd 酸化シリコン膜の製造方法および製造装置
JPH0570955A (ja) 1991-09-12 1993-03-23 Osaka Gas Co Ltd 薄膜形成方法
JPH0590247A (ja) 1991-09-26 1993-04-09 G T C:Kk 絶縁膜を形成する方法および装置
JPH06116409A (ja) 1991-10-25 1994-04-26 Matsushita Electric Ind Co Ltd 合成樹脂被膜の形成方法
JPH05129281A (ja) 1991-10-31 1993-05-25 Fujitsu Ltd 半導体装置の製造方法
JPH05125520A (ja) 1991-11-06 1993-05-21 Ulvac Japan Ltd 多層膜の形成装置
JPH05171435A (ja) 1991-12-19 1993-07-09 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成装置
JPH05177163A (ja) 1991-12-27 1993-07-20 Ulvac Japan Ltd 合成樹脂被膜の形成方法
JPH05311399A (ja) 1992-05-12 1993-11-22 Ulvac Japan Ltd 有機焦電圧電体の形成方法
JPH05339389A (ja) 1992-05-26 1993-12-21 Agency Of Ind Science & Technol 高分子膜の形成方法
JPH08503099A (ja) 1992-08-21 1996-04-02 バッテル・メモリアル・インスティチュート 液体モノマー類の真空付着及び硬化
JPH06244175A (ja) 1993-02-16 1994-09-02 Fuji Electric Co Ltd 絶縁膜の製造方法および製造装置
JPH06280000A (ja) 1993-03-24 1994-10-04 Japan Steel Works Ltd:The プラズマ表面処理方法および装置
JPH06316757A (ja) 1993-04-28 1994-11-15 Kawasaki Heavy Ind Ltd 紫外レーザーによる有機多層膜製造方法
JPH0726023A (ja) 1993-07-14 1995-01-27 Furukawa Electric Co Ltd:The 有機高分子薄膜の作製方法
JPH07209863A (ja) 1994-01-20 1995-08-11 Ulvac Japan Ltd パターン形成方法
JPH07263359A (ja) 1994-03-25 1995-10-13 Sumitomo Metal Ind Ltd 薄膜の形成方法
JPH07335575A (ja) 1994-06-14 1995-12-22 Nippon Steel Corp 薄膜の製造方法
JPH0878333A (ja) 1994-09-07 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> 膜形成用プラズマ装置
JPH0917598A (ja) 1995-06-29 1997-01-17 Nippon Telegr & Teleph Corp <Ntt> Ecrプラズマ加工装置およびecrプラズマ生成方法
JPH09143681A (ja) 1995-11-14 1997-06-03 Ulvac Japan Ltd 高分子薄膜の形成方法
JPH09249851A (ja) 1996-03-15 1997-09-22 Ulvac Japan Ltd 高分子薄膜の低比誘電率化方法及び層間絶縁膜の形成方法
JPH09272703A (ja) 1996-04-05 1997-10-21 Ulvac Japan Ltd 有機化合物用蒸発源及びこれを用いた蒸着重合装置
JPH09278805A (ja) 1996-04-12 1997-10-28 Ulvac Japan Ltd 蒸着重合方法
JPH09279332A (ja) 1996-04-15 1997-10-28 Ulvac Japan Ltd 有機化合物モノマーの精製方法
JPH09326389A (ja) 1996-06-05 1997-12-16 Ulvac Japan Ltd 耐湿性絶縁膜の形成方法及び層間絶縁膜の形成方法
JPH1092800A (ja) 1996-09-12 1998-04-10 Ulvac Japan Ltd 蒸発源および蒸発源を備えた真空処理室、有機化合物膜の成膜方法
JPH10168559A (ja) 1996-12-06 1998-06-23 Ulvac Japan Ltd 有機薄膜形成装置及び有機材料の再利用方法
JPH10289902A (ja) 1997-04-11 1998-10-27 Ulvac Japan Ltd 成膜装置
JPH11172418A (ja) 1997-12-12 1999-06-29 Ulvac Corp 成膜装置
JP2000087224A (ja) 1998-09-11 2000-03-28 Ulvac Japan Ltd 成膜装置
JP2000127186A (ja) 1998-10-28 2000-05-09 Matsushita Electric Ind Co Ltd 樹脂薄膜の製造方法
JP2000348971A (ja) 1999-06-04 2000-12-15 Matsushita Electric Ind Co Ltd 積層体の製造方法及び積層体の製造装置
JP2001261867A (ja) 2000-03-14 2001-09-26 Dainippon Printing Co Ltd 連続式蒸着重合法
JP2001262323A (ja) 2000-03-23 2001-09-26 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2001295031A (ja) 2000-04-14 2001-10-26 Sumitomo Heavy Ind Ltd 成膜装置及び方法
JP2001348662A (ja) 2000-06-05 2001-12-18 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2001348660A (ja) 2000-06-06 2001-12-18 Sumitomo Heavy Ind Ltd 成膜装置及び方法
JP2002030426A (ja) 2000-07-07 2002-01-31 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2002053950A (ja) 2000-08-07 2002-02-19 Sumitomo Heavy Ind Ltd 絶縁体基板への成膜方法及び成膜装置
JP2002060929A (ja) 2000-08-10 2002-02-28 Sumitomo Heavy Ind Ltd Ito膜の成膜方法及び成膜装置
JP2002069644A (ja) 2000-08-29 2002-03-08 Sony Corp 薄膜製造装置および薄膜製造方法
JP2002069646A (ja) 2000-09-01 2002-03-08 Sony Corp 薄膜製造方法
JP2002178435A (ja) * 2000-12-14 2002-06-26 Tohcello Co Ltd 積層体
JP2002180240A (ja) 2000-12-20 2002-06-26 Sumitomo Heavy Ind Ltd 成膜装置
JP2002217131A (ja) 2001-01-17 2002-08-02 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2002249871A (ja) 2001-02-22 2002-09-06 Sumitomo Heavy Ind Ltd 成膜装置
JP2002275619A (ja) 2001-03-16 2002-09-25 Mitsui Chemicals Inc 有機高分子薄膜の製造装置および有機高分子薄膜の作製方法
JP2002299259A (ja) 2001-03-30 2002-10-11 Kyocera Corp 薄膜形成方法
JP2003003250A (ja) 2001-06-22 2003-01-08 Alps Electric Co Ltd 真空蒸着重合装置及びこれを用いた有機被膜の形成方法
JP2002115049A (ja) 2001-08-31 2002-04-19 Sumitomo Heavy Ind Ltd 成膜方法及び装置
JP2003105526A (ja) 2001-09-26 2003-04-09 Sumitomo Heavy Ind Ltd 珪素化合物膜の成膜方法
JP2003129236A (ja) 2001-10-24 2003-05-08 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成装置
JP2003191370A (ja) * 2001-12-26 2003-07-08 Sumitomo Bakelite Co Ltd 水蒸気バリア性プラスチックフィルム及びこれを用いたエレクトロルミネッセンス用ディスプレイ基板
JP2003335880A (ja) 2001-12-26 2003-11-28 Sumitomo Bakelite Co Ltd 有機層の形成方法及びガスバリア性プラスチックフィルム
JP2003276115A (ja) 2002-03-26 2003-09-30 Dainippon Printing Co Ltd 積層体およびその製造方法
JP2003303698A (ja) 2002-04-09 2003-10-24 Ntt Afty Corp Ecrプラズマ源およびecrプラズマ装置
JP2003300273A (ja) 2002-04-10 2003-10-21 Ulvac Japan Ltd 表面処理方法及び真空表面処理装置
JP2004076025A (ja) 2002-08-09 2004-03-11 Sumitomo Heavy Ind Ltd 酸化亜鉛薄膜およびその成膜方法
JP2004160836A (ja) * 2002-11-13 2004-06-10 Mitsui Chemicals Inc ガスバリアフィルムの製造方法
JP2004211160A (ja) 2002-12-27 2004-07-29 Mitsui Chemicals Inc 化学蒸着方法および装置
JP2004217966A (ja) 2003-01-10 2004-08-05 Mitsui Chemicals Inc ガスバリア膜形成方法および装置
JP2004292877A (ja) 2003-03-26 2004-10-21 Ishikawa Seisakusho Ltd 窒化シリコン膜及びその製造方法
JP2004315899A (ja) 2003-04-16 2004-11-11 Mitsui Chemicals Inc ガスバリア膜形成方法
JP2005014483A (ja) 2003-06-27 2005-01-20 Toppan Printing Co Ltd 積層体の製造方法
JP2005034831A (ja) 2003-07-01 2005-02-10 Sumitomo Heavy Ind Ltd バリア多層膜及びその製造方法
JP2005035204A (ja) * 2003-07-17 2005-02-10 Oike Ind Co Ltd 透明導電ガスバリアフィルム
JP2005178010A (ja) 2003-12-16 2005-07-07 Toppan Printing Co Ltd ガスバリア透明積層体
JP2005179693A (ja) 2003-12-16 2005-07-07 Material Design Factory:Kk Si系有機・無機ハイブリッド膜の形成方法
JP2005246716A (ja) * 2004-03-03 2005-09-15 Fuji Photo Film Co Ltd ガスバリア性積層フィルムおよび該フィルムを用いた画像表示素子
JP2005307222A (ja) 2004-04-16 2005-11-04 Nippon Telegr & Teleph Corp <Ntt> 酸窒化シリコン膜の形成方法及び形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TATSUO ASAGI: "Hakumaku Sakusei no Kiso", March 1996, NIKKAN KOGYO SHINBUN SHA

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133000A (ja) * 2007-10-30 2009-06-18 Fujifilm Corp シリコン窒化物膜及びそれを用いたガスバリア膜、薄膜素子
JP2014118417A (ja) * 2012-12-13 2014-06-30 Kojima Press Industry Co Ltd ポリユリア及びその製造方法並びにコンデンサ素子及びその製造方法

Also Published As

Publication number Publication date
JPWO2007111076A1 (ja) 2009-08-06
EP2000298A1 (fr) 2008-12-10
US20070224428A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
US9507056B2 (en) Laminated polyester film
US8197946B2 (en) Barrier laminate, barrier film substrate, methods for producing them, and device
WO2005100014A1 (fr) Film multicouche transparent de protection contre le gaz
WO2007111076A1 (fr) Feuille barrière transparente et procédé de production de feuille barrière transparente
US9523000B2 (en) Polyester film
US20130122285A1 (en) Laminated polyester film
JP4536417B2 (ja) ガスバリア性フィルム
WO2007111092A1 (fr) Feuille de barriere transparente et son procede de production
EP2769841A1 (fr) Film de revêtement
JP5743846B2 (ja) 積層ポリエステルフィルム
JP5520275B2 (ja) 積層ポリエステルフィルム
JP5679946B2 (ja) 積層ポリエステルフィルム
WO2010082581A1 (fr) Article d&#39;isolation thermique, procédé pour produire un article d&#39;isolation thermique et élément de construction
JP5778724B2 (ja) 積層ポリエステルフィルム
JP7137282B2 (ja) ガスバリアフィルム用基材、ガスバリアフィルム、電子デバイス用部材、及び電子デバイス
JP5753129B2 (ja) 積層ポリエステルフィルム
JP2016026933A (ja) 積層ポリエステルフィルム
JP5819506B2 (ja) 積層ポリエステルフィルム
JP5730961B2 (ja) 積層ポリエステルフィルム
JP7456178B2 (ja) ガスバリア性積層体およびその製造方法
WO2007111074A1 (fr) Feuille barrière transparente et procédé de production de feuille barrière
JP2024083356A (ja) ガスバリア性積層体
WO2011132541A1 (fr) Film polyester stratifié
JP5364140B2 (ja) 積層ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008507401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007737586

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE