WO2007108216A1 - 水系洗浄液を用いる洗浄装置 - Google Patents

水系洗浄液を用いる洗浄装置 Download PDF

Info

Publication number
WO2007108216A1
WO2007108216A1 PCT/JP2007/000250 JP2007000250W WO2007108216A1 WO 2007108216 A1 WO2007108216 A1 WO 2007108216A1 JP 2007000250 W JP2007000250 W JP 2007000250W WO 2007108216 A1 WO2007108216 A1 WO 2007108216A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
cleaning
cleaning liquid
heat exchanger
air
Prior art date
Application number
PCT/JP2007/000250
Other languages
English (en)
French (fr)
Inventor
Toshiyasu Hirokawa
Original Assignee
Takahashi Metal Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Metal Industries Co., Ltd. filed Critical Takahashi Metal Industries Co., Ltd.
Priority to JP2008506178A priority Critical patent/JP5223091B2/ja
Publication of WO2007108216A1 publication Critical patent/WO2007108216A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2230/00Other cleaning aspects applicable to all B08B range
    • B08B2230/01Cleaning with steam

Definitions

  • the present invention relates to a cleaning apparatus using an aqueous cleaning liquid, and more particularly to an energy saving technique of the cleaning apparatus.
  • a water-based cleaning apparatus sprays a hot water-based cleaning liquid onto an object to be cleaned or immerses the object to be cleaned in a high-temperature aqueous cleaning liquid to remove oil or foreign matter adhering to the object to be cleaned. Remove.
  • Patent Document 1 Japanese Patent Laid-Open No. 07-290007 ([0031], FIG. 1)
  • the first problem of such an aqueous cleaning apparatus is that a large amount of heat energy is required for heating and drying the cleaning liquid. This heat energy is almost never recovered and lost, and the heat of vaporization of the water vapor discharged from the exhaust of the cleaning device accounts for a large part.
  • the exhaust air volume of the exhaust system is preliminarily set to an optimum value. It is difficult to specify in The exhaust air volume is also adjusted with a damper provided in the exhaust duct, but it is not easy to find the optimal value of the exhaust air volume at the operation site.
  • the opening of the damper is often set to be larger than the value.
  • a second problem of the water-based cleaning apparatus is that even if the exhaust air volume can be adjusted to an appropriate amount, the dissipation of thermal energy due to the exhaust gas cannot be prevented.
  • the first cleaning device according to the present invention which has been made to solve the first problem, is a cleaning device using an aqueous cleaning liquid
  • a spray nozzle for spraying and cleaning a water-based cleaning liquid heated to the object to be cleaned
  • an air blow nozzle for sucking air inside the cleaning device and blowing off water adhering to the object to be cleaned
  • a differential pressure measuring means for measuring the differential pressure between the outside atmospheric pressure and the exhaust chamber pressure
  • a control means for controlling the exhaust air volume of the exhaust means based on the differential pressure data measured by the differential pressure measuring means.
  • the exhaust means exhausts air containing water vapor from an exhaust chamber provided in the article to be cleaned.
  • the transport means be a competitor type using a net. This will allow the spray nozzle and air blow nozzle to be It is possible to spray the cleaning liquid from above and below the object to be cleaned and to blow air.
  • a washing chamber with a spray nozzle and a draining chamber with an air blow nozzle are
  • the control of the exhaust air volume by the exhaust means can be performed by adjusting the rotational speed of the exhaust fan, or by adjusting the opening degree of the damper provided in the exhaust passage.
  • the control means desirably controls the pressure in the exhaust chamber to be lower by 0.1 Pa to 5 Pa than the outside air atmospheric pressure. Furthermore, the differential pressure is desirably 0.2 Pa to 2 Pa.
  • a cleaning apparatus includes transport means for transporting an object to be cleaned up and down and back and forth instead of the above-described net conveyor type transport means, and includes a heater and an ultrasonic generator for the object to be cleaned. You may employ
  • the place where the exhaust means exhausts the air in the cleaning device is the exhaust provided in the cleaning object take-out part instead of or in addition to the exhaust chamber provided in the cleaning object input part. Part.
  • the present invention which has been made to solve the second problem, is characterized in that the above-described cleaning device includes a heat pump mechanism that recovers the heat of the exhaust gas into the cleaning liquid.
  • the condensing means an expansion valve, or a stabilizer Between the tubes,
  • Temperature storage means for storing the next set temperature T 1 to Ding 4, and
  • the operation control means sets the operation ratio of the exhaust heat exchanger cooling means.
  • the operation control means sets the rotational speed R of the fan
  • A is a coefficient determined according to the cooling capacity of the fan and is a value between 0.1 and 1.0.
  • RO is the rated speed of the fan.
  • the operation control means controls the rotation speed of the motor continuously or stepwise. It may be.
  • the motor can change its rotational speed continuously or stepwise by inverter control or the like. Therefore, the motor may be decelerated when the temperature of the cleaning liquid approaches the target temperature, and stopped when the temperature reaches the target temperature.
  • the standard operating temperature is generally 50-60 ° C
  • the temperature may be set to 70 to 80 ° C.
  • the object to be cleaned may change color or oxidize at high temperatures, it may be 40. It may be about ° C.
  • the heat energy dissipated together with the exhaust gas is recovered by the evaporator, and the water-based cleaning liquid is heated in the condensing means by the recovered heat energy, thereby greatly dissipating the heat energy.
  • the heat energy dissipated together with the exhaust gas is recovered by the evaporator, and the water-based cleaning liquid is heated in the condensing means by the recovered heat energy, thereby greatly dissipating the heat energy.
  • the heat pump control means is provided with temperature storage means and operation control means, and the operation of the compression means and the exhaust heat exchanger cooling means is controlled as described above according to the temperature T of the cleaning liquid measured by the temperature measurement means.
  • the set temperatures T1 to D4 can be determined as follows.
  • TW ° C TW ° C
  • FIG. 1 is a schematic configuration diagram of a cleaning device in an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a cleaning chamber and a draining chamber of the cleaning device in the example of the present invention.
  • FIG. 3 is a schematic configuration diagram showing another method for controlling the exhaust air volume of the exhaust means in the embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram of another cleaning apparatus in an embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram showing another method for controlling the exhaust air volume of the exhaust means in the embodiment of the present invention.
  • FIG. 6 (a) is a schematic configuration diagram of a cleaning device combined with a heat pump in an example of the present invention.
  • FIG. 6 (b) is a schematic configuration diagram of a cleaning device combined with a heat pump in an example of the present invention.
  • FIG. 6 (c) is a schematic configuration diagram of a cleaning device combined with a heat pump in an example of the present invention.
  • FIG. 7 is a schematic configuration diagram of another heat pump in the embodiment of the present invention. Explanation of symbols
  • FIG. 1 is a schematic configuration diagram of a cleaning apparatus according to a first embodiment of the present invention
  • FIG. 2 is a detailed view of the cleaning chamber and draining chamber.
  • the cleaning device 1 of the first embodiment is a net conveyor transport type, and performs the steps of cleaning, draining, and drying while moving the article to be cleaned 5 by the transport net 70.
  • Exhaust chamber 1 0, 1st cleaning chamber 1 0 0, 1st drain chamber 1 1 0, 2nd cleaning chamber 2 0 0, 2nd drain The re-chamber 2 1 0 and the drying chamber 3 100 are arranged in this order. This configuration is an example, and the number and order of the cleaning chamber, draining chamber, and drying chamber may be different.
  • a differential pressure gauge 11 is provided in the exhaust chamber 10 to measure the difference in atmospheric pressure between the outside air pressure and the exhaust chamber.
  • the measurement data is transmitted to the control device 20, and the optimum exhaust air volume is calculated by the calculation device 21 included therein.
  • the calculated optimum exhaust air volume data is sent to the inverter 22 in the control device 20, and the inverter 22 controls the rotational speed of the exhaust fan 51 as the exhaust means based on the data.
  • the exhaust fan 51 is provided in the middle of an exhaust duct 50 provided between the exhaust chamber 10 and the outside of the cleaning device, and rotates so as to discharge the air in the exhaust chamber 10 to the outside. As a result, the air in the exhaust chamber is exhausted outside the cleaning device at an optimum flow rate.
  • a cleaning liquid tank 1001 is disposed below the first cleaning chamber 100, and a heater 1002 for heating the cleaning liquid is installed inside the cleaning liquid tank 1001.
  • the first cleaning liquid pipe extends upward from below the cleaning liquid tank 100, and the first cleaning liquid pipe extends from the top and bottom of the transfer network 70 in the first cleaning chamber 100 toward the transfer network 70.
  • a pump 103 is provided in the middle of the first cleaning liquid pipe.
  • Air blow nozzles 1 1 3 are arranged above and below the transfer net 70 in the first drain chamber 1 10.
  • the upper and lower air blow nozzles 1 1 3 are connected to a blower 1 1 1 which is a blowing means, and the intake side of the blower is opened into the first drain chamber 1 1 10 by an intake duct 1 1 2.
  • the air in the first drain chamber 1 1 0 is blown onto the object to be cleaned from above and below by the air blow nozzle 1 1 3, and water droplets of the cleaning liquid adhering to the object to be cleaned are removed in the first cleaning chamber 1 0 0. .
  • the object to be cleaned 5 on the transfer net 70 after passing through the first cleaning chamber 100 and the first draining chamber 1 1 0 passes through the second cleaning chamber 2 0 0 and the second draining chamber 2 1 0.
  • the structures and operations of the second cleaning chamber 200 and the second draining chamber 2 10 are the same as those of the first cleaning chamber 100 and the first draining chamber 110.
  • the air volume of the exhaust fan 51 that exhausts the air in the exhaust chamber 10 to the outside is such that the air pressure in the exhaust chamber 10 is higher than the atmospheric pressure of the outside air. It is important to control from 0.1 Pa to 5 Pa lower. If the differential pressure is less than 0.1 Pa, the water vapor filled in the cleaning chambers 100, 200 may pass through the exhaust chamber 10 and leak from the inlet 2. Further, the water vapor in the second cleaning chamber 200 flows into the second draining chamber 2 10 and the drying chamber 3 100, which causes a decrease in drying characteristics.
  • the differential pressure exceeds 5 Pa
  • the amount of air discharged from the exhaust chamber 10 increases, and a large amount of heat energy is dissipated to the outside along with the exhaust.
  • the outside air flowing in from the inlet 2 also increases, and the wind speed of the inflowing air increases, so that a part of the outside air passes through the exhaust chamber 10 and flows into the first cleaning chamber 100.
  • the cleaning liquid sprayed from the spray nozzle 10 4 is cooled, and the consumption rate increases as the operating rate of the heater 10 2 increases.
  • a more desirable range of the differential pressure is 0.2 to 2 Pa.
  • the control device 20 measures the differential pressure between the outside atmospheric pressure and the exhaust chamber 10, and when the differential pressure becomes less than 0.1 Pa (or less than 0.2 Pa), Increase the frequency of the inverter 22 to increase the rotation speed, and decrease the frequency of the inverter 22 to decrease the rotation speed of the exhaust fan 51 when the differential pressure exceeds 5 Pa (or 2 Pa). Control.
  • the differential pressure between the outside air pressure and the exhaust chamber 10 to always be in the range of 0.1 Pa to 5 Pa (or 0.2 Pa to 2 Pa)
  • the energy consumed by the cleaning device is minimized. be able to.
  • the air blow in the first drain chamber 110 and the second drain chamber 2 10 inhale the air inside the cleaning device and perform the air blow with the air.
  • air When air is blown by introducing outside air, it is necessary to exhaust more air than the air that has flowed into the cleaning device, increasing the exhaust air volume and increasing the heat energy dissipated with the exhaust.
  • the air inside the cleaning device If the air inside the cleaning device is sucked in and air is blown with this air, there is no need to increase the exhaust, and the increase in heat energy dissipation due to the exhaust can be prevented.
  • FIG. 3 is a schematic configuration diagram showing another method for controlling the exhaust air volume of the exhaust means according to the second embodiment of the present invention.
  • the differential pressure data measured by the differential pressure gauge 11 is processed by the calculation device 21 of the control device 20 as in the first embodiment.
  • an air volume adjusting damper mechanism 25 is provided on the outlet side of the exhaust fan 51 serving as an exhaust means. Air volume adjustment damper mechanism 2 5 Opening angle of internal damper 2 6 is adjusted by servo motor 2 4 with angle adjustment function.
  • the movement of the servo motor 24, that is, the opening angle of the damper 26, is controlled by the servo control unit 23 3 based on the command of the arithmetic unit 21.
  • FIG. 4 is a schematic configuration diagram of another cleaning apparatus according to the third embodiment of the present invention.
  • the cleaning device 4 of Example 3 is of an immersion ultrasonic type, and transports the article to be cleaned 5 by the front / rear transport mechanism 71 and the vertical transport mechanism 72, and performs the cleaning and draining processes.
  • a first cleaning chamber 100, a second cleaning chamber 200, and a draining chamber 110 are arranged in this order between the workpiece inlet 2 and the outlet 3.
  • the water-based cleaning liquid tanks 1 0 1 and 2 0 1 in the first cleaning chamber 1 0 0 and the second cleaning chamber 2 0 0 have heaters 1 0 2 and 2 0 2 and ultrasonic generators 1 0 5 and 2 0 5, respectively. It is provided.
  • the object to be cleaned 5 is first immersed in the cleaning liquid tank 10 1 by the vertical transport mechanism 7 2 in the first cleaning chamber 100 and heated to 50 to 60 ° C. by the heater 10 2. Is ultrasonically cleaned. When cleaning there is finished, it is pulled up by the upper / lower transfer mechanism 7 2, sent to the second cleaning chamber 2 0 0 by the front / rear transfer mechanism 7 1, and similarly soaked in the cleaning liquid tank 2 0 1 and subjected to ultrasonic waves. Washed. When the cleaning there is finished, the object to be cleaned is pulled up and transported to the draining chamber 110 by the front / rear transport mechanism 71. Here, air is blown to the object to be cleaned from the air blow nozzles 1 1 3 provided at the top and bottom, and the cleaning liquid is removed. The air from the air blow nozzle 1 1 3 is also sucked from an intake duct 1 1 2 provided in the cleaning device. Note that this configuration is an example, and the number and order of the cleaning chambers and draining chambers may be different.
  • An exhaust chamber 10 and an exhaust chamber 12 are respectively provided in the inlet 2 and the outlet 3 of the cleaning device, and exhaust for exhausting from the exhaust chambers 10 and 12 to the outside of the cleaning device 4 Ducks ⁇ 5 0 1 and 5 0 2 are connected.
  • An air volume adjusting damper mechanism 2 5 1 .2 5 2 is disposed in the middle of both exhaust ducts 5 0 1 and 5 0 2.
  • Dampers 2 6 1. 2 6 2 are provided inside the respective air volume adjustment damper mechanisms 2 5 1. 2 5 2.
  • the two exhaust ducts 50 1, 50 2 join in the middle to become one and open to the outside of the cleaning device 4, and an exhaust fan 51 as exhaust means is provided on the way.
  • FIG. 5 is a schematic configuration diagram showing a method for controlling the exhaust air volume of the exhaust means in the cleaning device of the third embodiment.
  • Differential pressure gauges 1 1 and 1 3 are installed in the exhaust chamber 10 on the inlet 2 side and the exhaust chamber 1 2 on the outlet 3 side, respectively, to measure the difference in atmospheric pressure between the outside air pressure and the exhaust chambers 10 and 12 To do.
  • the data measured by the differential pressure gauges 11 and 13 is transmitted to the control device 20, and the optimum air volume is calculated in the arithmetic device 21 in the data.
  • the calculated optimum air volume data is sent to the inverter 22, and the inverter 22 controls the rotational speed of the exhaust fan 51 based on the data.
  • the optimum air volume data is also sent to the servo control unit 2 3 1 and 2 3 2 in the control unit 20.
  • Both the servo control units 2 3 1 and 2 3 2 are equipped with the servo motor 2 4 1 , 2 4 2 is operated to adjust the intake air volume by adjusting the opening degree of the dampers 2 6 1 and 2 6 2 on the exhaust ducts 5 0 1 and 5 0 2.
  • the pressure inside the exhaust chamber 10 on the inlet 2 side and the exhaust chamber 12 on the outlet 3 side is 0.1 Pa from the atmospheric pressure outside. To 5Pa (or 0.2Pa to 2Pa) lower.
  • Fig. 6 (a) is a schematic configuration diagram of a cleaning device in combination with a heat pump, which is a fourth embodiment of the present invention.
  • the heat pump mechanism 600 of the cleaning apparatus of the present embodiment includes a compressor 601, which is a compression unit that compresses the vaporized heat medium, and a condenser that is a condensing unit that gives the heat of condensation of the liquefied heat medium to the cleaning liquid.
  • a compressor 601 which is a compression unit that compresses the vaporized heat medium
  • a condenser that is a condensing unit that gives the heat of condensation of the liquefied heat medium to the cleaning liquid.
  • 60 2 an expansion valve 60 3 for vaporizing the heat medium, and an evaporator 60 4 for supplying heat in the exhaust to the heat medium are connected in this order.
  • the cleaning liquid in the cleaning liquid tank 1 0 1 is sent to the condenser 60 2 by the circulation pump 6 0 5, heated by the heat of condensation of the heat medium, and returned to the cleaning liquid tank 1 0 1.
  • the heat medium passing through the condenser 60 2 passes through the expansion valve 60 3 and evaporates, reaches the evaporator 60 4, absorbs heat from the exhaust, and is compressed again by the compressor 60 1.
  • the exhaust blown from the exhaust fan 51 to the evaporator 60 4 gives heat to the heat medium in the evaporator 60 4 and is discharged out of the cleaning device.
  • the heat energy (mainly the heat of evaporation of the cleaning liquid) that has been dissipated outside the apparatus together with the exhaust gas is recovered by the evaporator 6 0 4 of the heat pump mechanism 600, and the cleaning liquid Can be reused for heating.
  • the thermal energy recovered from the exhaust also increases, so it is possible to construct a system with high thermal efficiency. Accordingly, it becomes possible to reduce the operating rate of the heater 102 that has been used for heating the cleaning liquid until now, and energy saving can be achieved as the entire cleaning apparatus.
  • the cleaning liquid from the condenser 60 2 can be used by turning it to a plurality of cleaning liquid tanks 101 and 109. This makes it possible to use the recovered heat more efficiently.
  • each cleaning liquid tank is used so that the cleaning liquid is used as a heat exchange medium through the following path. You may circulate between them. For example, first, place it on the inlet 2 side The cleaning liquid is sent from the cleaning liquid tank 1 0 1 to the heat pump mechanism 6 0 0. As a result, the cleaning liquid is heated by heat exchange in the heat pump mechanism 60. The cleaning liquid thus heated is sent to the heat exchanger 10 6 provided in the final cleaning liquid tank 10 9 disposed on the outlet 3 side, and the cleaning liquid stored in the final cleaning liquid tank 10 9 is heated by the heat.
  • the cleaning liquid that became the heat transfer medium is not passed through the intermediate cleaning liquid tank 1 0 8 sandwiched between the cleaning tank 1 0 1 on the inlet 2 side and the final cleaning liquid tank 1 0 9 on the outlet 3 side. Return the cleaning liquid tank to 1 0 1.
  • the cleaning liquid in the intermediate cleaning liquid tank 10 8 sandwiched between them is difficult to cool. As a result, it becomes easier to keep the temperature of all the cleaning liquid tanks constant, and the recovered heat can be used more efficiently.
  • a heat exchanger 1 is provided in the cleaning liquid tank 1 0 1 on the inlet 2 side by feeding the cleaning liquid from the final cleaning liquid tank 1 0 9 on the outlet 3 side to the heat pump 6 0 0. It may be returned to the original final cleaning liquid tank 1 0 9 via 06, and the number and order of cleaning chambers, heat exchangers and draining chambers may be different.
  • the case where three or more cleaning liquid tanks are provided in series simply means that the cleaning liquid tanks are arranged in series.
  • this embodiment can be combined with the configurations of Embodiments 1 to 3.
  • the effect of reducing the dissipation of heat energy from the washing machine was obtained by optimizing the exhaust air volume.
  • the necessary amount of exhaust is performed, the accompanying heat dissipation cannot be avoided. Therefore, by combining the present embodiment, it becomes possible to recover heat from the exhaust gas, and further energy saving can be performed.
  • expansion valve 60 3 constituting the heat pump mechanism 600 can be replaced with a cylindrical tube.
  • the heat pump control can be simplified and the cost can be reduced by using a capillary tube.
  • FIG. 7 is a schematic configuration diagram of another heat pump according to the fifth embodiment of the present invention.
  • the heat pump mechanism 600 according to the present embodiment is a compression means for compressing the vaporized heat medium.
  • a compressor 6 0 1, a condenser 6 0 2 which is a condensing means for giving the heat of condensation of the liquefied heat medium to the cleaning liquid, an exhaust heat exchanger 6 0 6, and an expansion valve 6 0 which vaporizes the heat medium 3 and an evaporator 60 4 that gives exhaust heat to the heat medium are connected in this order.
  • the exhaust heat exchanger 60 6 is provided with a cooling fan 60 7 as an exhaust heat exchanger cooling means adjacent to the exhaust heat exchanger 60 6 to cool the exhaust heat exchanger 60 06.
  • a temperature sensor (T) 6 0 8 is provided as means for measuring the feed water temperature of the cleaning liquid supplied to the condenser 60 2.
  • the expansion valve 60 3 can be replaced with a capillary tube.
  • the compressor 6 0 1 and the cooling fan 6 0 7 are controlled by the heat pump controller 6 0 9 based on the measurement data of the temperature sensor (T) 6 0 8.
  • the following four control temperature set values are stored in the single pump controller 6 0 9 as operation control conditions for the compressor 6 0 1 and the cooling fan 6 0 7.
  • T1 to Ding 4 are compared with the temperature T of the cleaning liquid supplied to the condenser, and the operation of the compressor 60 1 and the cooling fan 6 0 7 is controlled under the following conditions.
  • the compressor and the cooling fan are controlled based on the feed water temperature ⁇ to the condenser of the cleaning liquid.
  • the reason why the compressor is stopped when the feed water temperature ⁇ is lower than ⁇ 1 is to prevent troubles such as the temperature of the heat medium being too low and the piping being frozen.
  • ⁇ reaches ⁇ ⁇ 1 or more the compressor starts to recover heat from the exhaust.
  • ⁇ reaches a temperature range of ⁇ 3 or more and less than ⁇ 4 it is predicted that the amount of heat of the exhaust gas is excessive and the temperature of the cleaning liquid will be heated too much. Reduce the temperature of the medium.
  • intermittent operation is 1 second operation ⁇ alternate operation with 1 second stop. It is also possible to control by running at low speed using an inverter instead of intermittent operation.
  • the temperature of the heat medium is prevented from increasing by operating the cooling fan continuously or at a high speed. If the cooling fan is not operated when ⁇ becomes ⁇ 3 or ⁇ 4 or more, the temperature of the heat medium rises and the cleaning liquid temperature exceeds the preferable temperature range. By performing such control, the cleaning liquid can be stably heated by the heat pump.
  • A is a coefficient determined according to the cooling capacity of the fan and is a value between 0.1 and 1.0.
  • RO is the rated speed of the fan.
  • T1 to Ding4 are as follows when the reference operating temperature of the aqueous cleaning liquid of the cleaning device is TW ° C:
  • the cleaning device can be controlled stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

明 細 書
水系洗浄液を用いる洗浄装置
技術分野
[0001 ] 本発明は水系洗浄液を用いる洗浄装置、 特に、 洗浄装置の省エネルギー化 技術に関する。
背景技術
[0002] 従来、 機械部品等の洗浄については、 有機溶剤を用いる洗浄装置が多く使 用されていたが、 環境規制等によリ水系洗浄装置への転換が積極的に行われ ている。
[0003] 水系洗浄装置は、 高温にした水系の洗浄液を被洗浄物に噴射するか、 或い は被洗浄物を高温の水系洗浄液に浸漬して、 被洗浄物に付着した油や異物等 を除去する。
[0004] このような洗浄装置では、 洗浄中は洗浄装置内部に水蒸気が充満する。 こ の水蒸気は、 洗浄装置の被洗浄物投入口や取出口から漏れ出して作業環境を 悪化させ、 また、 水切り工程や乾燥工程における乾燥性能を低下させる原因 となる。 このため、 水系洗浄装置には、 通常、 内部の水蒸気を排気するため の排気装置が設けられている (特許文献 1 ) 。
[0005] 特許文献 1 :特開平 07-290007号公報 ([0031 ]、 図 1 )
発明の開示
発明が解決しょうとする課題
[0006] このような水系洗浄装置の第 1の問題は、 洗浄液の加熱や乾燥に多くの熱 エネルギーを必要とすることである。 この熱エネルギーはほとんど回収され ることがなく失われ、 中でも、 洗浄装置の排気から排出される水蒸気が持つ 蒸発熱はその大きな部分を占める。
[0007] 特に、 洗浄装置からの水蒸気の漏れ出し量を低減するため、 或いは洗浄装 置内部の湿度を低減させることを目的として、 排気風量を多くすると、 逃げ 出す熱エネルギーが多くなるばかリでなく、 外部の空気が洗浄装置内部へ大 量に流入することとなり、 水系洗浄液を冷却させてしまい、 熱エネルギーの 損失が更に増大する。
[0008] 更に、 洗浄装置の排気装置に接続される排気ダク卜はその直径、 長さ、 曲 がりの数等によって通風抵抗が変化するため、 排気装置の排気風量をあらか じめ最適な値に定めておくことは困難である。 また、 排気ダクトに設けたダ ンパ一等で排気風量を調節することも行われているが、 稼動現場において排 気風量の最適値を求めることは容易ではないため、 通常は、 排気量が最適値 よりも多めとなるようにダンパーの開度が設定されていることが多い。
[0009] 水系洗浄装置の第 2の問題は、 仮に排気風量が適正量に調整できたとして も、 この排気による熱エネルギーの散逸を防止することはできないというこ とである。
課題を解決するための手段
[0010] 前記第 1の問題を解決するために成された本発明に係る第 1の洗浄装置は 、 水系洗浄液を用いる洗浄装置において、
a) 被洗浄物を搬送する搬送手段と、
b) 被洗浄物に加温した水系洗浄液を噴射して洗浄するスプレーノズルと、 c) 洗浄装置内部の空気を吸気し、 被洗浄物に付着した水を吹き飛ばすエア ブローノズルと、
d) 洗浄装置の被洗浄物投入部に設けた排気室から洗浄装置内部の水蒸気を 含んだ空気を排気する排気手段と、
e) 外気大気圧と排気室の気圧の差圧を測定する差圧測定手段と、 f) 差圧測定手段によって測定された差圧データに基づいて排気手段の排気 風量を制御する制御手段と
を備えることを特徴とする。
[0011 ] ここで、 前記排気手段は、 水蒸気を含んだ空気を、 被洗浄物投入部に設け た排気室から排気することが望ましい。
[0012] 搬送手段としては、 ネットによるコンペャ式とすることが望ましい。 こう することにより、 スプレーノズル及びエアブローノズルをコンペャの上下に 設け、 被洗浄物の上下から洗浄液を噴射し、 エアーを吹き付けることができ るようになる。
[0013] スプレーノズルを備えた洗浄室及びエアブローノズルを備えた水切り室は
、 それぞれ複数設けることが望ましい。 これにより、 より確実な洗浄及び水 切りを行うことができるようになる。
[0014] 排気手段による排気風量の制御は、 排気ファンの回転数を調節することに より行うこともできるし、 排気通路に設けたダンバの開度を調節することに より行うこともできる。
[0015] そして、 制御手段は、 排気室の気圧を外気大気圧よリも 0. 1 Paから 5Pa低く なるように制御することが望ましい。 更には、 その差圧を 0. 2Paから 2Paとす ることが望ましい。
[0016] 本発明に係る洗浄装置は、 上記のネットコンべャ式の搬送手段の代わりに 被洗浄物を上下及び前後に搬送する搬送手段を備え、 被洗浄物をヒータ及び 超音波発生器を備えた洗浄タンクに浸漬することにより洗浄する方式を採用 するものであってもよい。
[0017] この場合、 排気手段が洗浄装置内の空気を排気する箇所は、 上記の被洗浄 物投入部に設けた排気室の代わりに、 或いはそれに加えて、 被洗浄物取出部 に設けた排気部であってもよい。
[0018] 上記第 2の問題を解決するために成された本発明は、 上記洗浄装置におい て、 排気の熱を洗浄液に回収するヒートポンプ機構を備えることを特徴とす る。
[0019] このヒー卜ポンプ機構は、
a) 排気手段中に設けた、 排気中の熱を熱媒体に与える蒸発器と、 b) 気化した熱媒体を圧縮して液化する圧縮手段と、
c) 液化した熱媒体の凝縮熱を洗浄液に与える凝縮手段と、
d) 熱媒体を気化する膨張弁またはキヤビラリチューブと
を備えるものとすることができる。
[0020] 更に、 この洗浄装置において、 前記凝縮手段と、 膨張弁またはキヤビラリ チューブの間に、
a) 排気熱交換器と、
b) 排気熱交換器を冷却する排気熱交換器冷却手段と、
c) 凝縮手段を流れる洗浄液の温度を測定する温度測定手段と、 d) 測定された洗浄液温度に応じて圧縮手段および排気熱交換器冷却手段を 制御するヒートポンプ制御手段と
を設けることが望ましい。
[0021] 更に、 前記ヒートポンプ制御手段に、
a) 次の設定温度 T 1〜丁 4を記憶する温度記憶手段と、
■圧縮手段運転開始温度 T 1
■排気熱交換器冷却手段間欠運転停止温度 T 2
•排気熱交換器冷却手段間欠運転開始温度 T 3
•排気熱交換器冷却手段連続運転開始温度 T 4
b) 温度測定手段で測定した洗浄液の温度 Tとこれらの設定温度 T 1〜丁 4 を比較して、
■ T<T 1のときに圧縮手段を停止し、
■ Τ 1≤Τのときに圧縮手段を運転し、
■ Τ3≤Τ<Τ4のときに排気熱交換器冷却手段を間欠運転し、
■ Τ4≤Τのときに排気熱交換器冷却手段を連続運転し、
■排気熱交換器冷却手段が運転を開始した後に Τ<Τ2となったときに排 気熱交換器冷却手段を停止する
運動制御手段と
を設けることが望ましい。
[0022] 前記温度記憶手段に記憶しておく設定温度 Τ 1〜丁 4は、 洗浄装置におけ る水系洗浄液の好ましい使用温度 (基準使用温度) を TW°Cとしたとき、
■ (TW-45) °C≤ T 1≤ (TW- 5) °C
■ (TW- 1 0) °C≤T 2≤ TW °C
■ (TW- 5) °C≤ T 3≤ (TW+ 5) °C ■ TW °C≤ T 4≤ (TW+ 1 0) °C
■ 0°C<T 1 <T 2<T 3<T 4
とすることが望ましい。
[0023] 或いは、
■ (TW- 20) °C≤ T 1≤ (TW- 5) °C
■ (TW- 1 0) °C≤T 2≤ TW °C
■ (TW- 5) °C≤ T 3≤ (TW+ 5) °C
■ TW °C≤ T 4≤ (TW+ 1 0) °C
■ 0°C<T 1 <T 2<T 3<T 4
としてもよい。
[0024] 前記排気熱交換器冷却手段の間欠運転に際しては、 前記運転制御手段は、 排気熱交換器冷却手段の運転比率を
{ (T-T 3) / (T 4— T 3) } X 1 00 %
とすることが望ましい。
[0025] また、 前記排気熱交換器冷却手段をファンとしたときには、 前記運転制御 手段はそのファンの回転数 Rを、
T<T 3のとき、 R=0
T 3≤T<T 4のとき、 R= (T-T 3) / (T 4— T 3) x Ax RO T 4≤Tのとき、 R=AX R0
(ただし、 Aはファンの冷却能力に応じて定める係数で、 0. 1〜 1. 0の 値。 ROはファンの定格回転数。 ) と制御することが望ましい。
[0026] また、 気化した熱媒体を圧縮して液化する前記圧縮手段がモータを用いた ものであるときには、 前記運転制御手段は、 そのモータの回転数を連続的又 は段階的な制御するようにしてもよい。 モータは、 インバータ制御等により 、 その回転数を連続的又は段階的に変化させることが可能である。 そこで、 洗浄液の温度が目標温度に近づけばモータを減速し、 目標温度に到達すれば 停止するようにしてもよい。
[0027] なお、 基準使用温度は一般的には 50〜60°Cとするが、 油の付着状態が ひどく、 洗浄対象物が高温に耐えうる場合には 7 0〜8 0 °Cとする場合があ リ、 逆に、 洗浄対象物が高温で変色したり酸化する恐れがある等の場合は 4 0 °C程度とする場合もある。
発明の効果
[0028] エアブローを外気導入で行うと、 洗浄装置内に送り込まれたエアブロー用 の空気以上に排気を行わないと洗浄室内部の水蒸気を含む空気が洗浄装置外 に漏れだしてしまう。 本発明に係る第 1の洗浄装置では、 エアブローの吸気 を洗浄装置内部から行うため、 水蒸気の漏れ出しを防止できると共に、 外気 によって洗浄装置内部が冷却されることがなくなる。 加えて、 外気大気圧と 排気室の気圧の差圧を測定することによって排気風量を調節するので、 運転 条件や排気ダク卜の形状が異なっても排気装置を常に最適な排気風量で運転 することができる。
[0029] 特に、 洗浄装置の排気室の気圧を外気大気圧よリも 0. 1 Paから 5Pa (望ましく は、 0. 2Pa〜2Pa)低くなるように排気装置の排気風量を調節することで、 乾燥 性や水蒸気の漏れ出し防止効果を損なわず、 最適な排気風量とすることがで さる。
[0030] 本発明に係る第 2の洗浄装置では、 排気と共に散逸する熱エネルギーを蒸 発器で回収し、 回収した熱エネルギーによって凝縮手段において水系洗浄液 の加熱を行うことで熱エネルギーの散逸を大幅に低減し、 熱エネルギーの再 利用を行う。
[0031 ] 更に、 ヒートポンプ制御手段に温度記憶手段及び運転制御手段を設け、 温 度測定手段で測定した洗浄液の温度 Tに応じて圧縮手段及び排気熱交換機冷 却手段の運転を上記のように制御することにより、 排気から回収する熱量が 多い場合に過剰な熱エネルギーを排気熱交換器冷却手段によって冷却するこ とができ、 洗浄液の温度調節が容易になり、 洗浄液の温度変動も低減するこ とができる。
[0032] 上記の設定温度 T 1〜丁 4は次のように定めることができる。 洗浄装置の 水系洗浄液の基準使用温度を TW°Cとしたとき、 ■ (TW-45) °C≤ T 1≤ (TW- 5) °C
■ (TW- 1 0) °C≤T 2≤ TW °C
■ (TW- 5) °C≤ T 3≤ (TW+ 5) °C
■ TW °C≤ T 4≤ (TW+ 1 0) °C
■ 0°C<T 1 <T 2<T 3<T 4
[0033] 又は、 洗浄装置の水系洗浄液の基準使用温度を TW°Cとしたとき、
■ (TW- 20) °C≤ T 1≤ (TW- 5) °C
■ (TW- 1 0) °C≤T 2≤ TW °C
■ (TW- 5) °C≤ T 3≤ (TW+ 5) °C
■ TW °C≤ T 4≤ (TW+ 1 0) °C
■ 0°C<T 1 <T 2<T 3<T 4
と設定してもよい。
図面の簡単な説明
[0034] [図 1]本発明の実施例における洗浄装置の概略構成図である。
[図 2]本発明の実施例における洗浄装置の洗浄室および水切り室の拡大図であ る。
[図 3]本発明の実施例における排気手段の排気風量を制御する別の方法を示す 概略構成図である。
[図 4]本発明の実施例における別の洗浄装置の概略構成図である。
[図 5]本発明の実施例における排気手段の排気風量を制御する別の方法を示す 概略構成図である。
[図 6(a)]本発明の実施例におけるヒートポンプを組み合わせた洗浄装置の概 略構成図である。
[図 6(b)]本発明の実施例におけるヒートポンプを組み合わせた洗浄装置の概 略構成図である。
[図 6(c)]本発明の実施例におけるヒートポンプを組み合わせた洗浄装置の概 略構成図である。
[図 7]本発明の実施例における別のヒートポンプの概略構成図である。 符号の説明
1 洗浄装置
2 投入口
3 取出口
4 洗浄装置
5 被洗浄物
1 0 排気室
1 1 差圧計
1 2 排気室
1 3 差圧計
2 0 制御手段
2 1 演算装置
2 2 インバーター
2 3 サーポコントロールユニット 2 4 サーポモーター
2 5 風量調整ダンパー
2 6 ダンパー
5 0 排気ダク卜
5 1 排気ファン
7 0 搬送ネット
1 前後搬送機構
7 2 上下搬送機構
1 0 0 第 1洗浄室
1 0 1 洗浄液タンク
1 0 2 ヒーター
1 0 3 ポンプ
1 0 4 スプレーノズル
1 0 5 超音波発生器 熱交換器
中間洗浄液タンク
最終洗浄液タンク
第 1水切リ室
送風機
エアブロー吸気ダク卜 エアブローノズル
第 2洗浄室
洗浄液タンク
超音波発生器
第 2水切リ室
最終洗浄室
サーポコントロールユニット サーポコントロールユニット サーポモーター
サーポモーター
風量調整ダンパー
風量調整ダンパー
ダンパー
ダンパー
乾燥室
吸気口
熱風ファン
熱風ヒーター
吹き出し口
排気ダク卜
排気ダク卜
ヒートポンプ機構 6 0 1 圧縮手段 (コンプレッサー)
6 0 2 凝縮手段 (凝縮器)
6 0 3 膨張弁 または キヤビラリチューブ
6 0 4 蒸発器
6 0 5 循環ポンプ
6 0 6 排気熱交換器
6 0 7 冷却ファン
6 0 8 給水温度測定手段 (温度センサ一) ( T )
6 0 9 ヒートポンプ制御装置
発明を実施するための最良の形態
[0036] 以下、 図面に基づき本発明の実施例を説明する。
実施例 1
[0037] 図 1は本発明の第 1の実施例である洗浄装置の概略構成図、 図 2はその洗 浄室および水切リ室の詳細図である。
実施例 1の洗浄装置 1はネットコンベア搬送式であり、 搬送ネッ卜 7 0に よって被洗浄物 5を移動しながら洗浄、 水切り、 乾燥の各工程を行うもので ある。 被洗浄物 5の搬送順に投入口 2から取出口 3の間に排気室 1 0、 第 1 洗浄室 1 0 0、 第 1水切リ室 1 1 0、 第 2洗浄室 2 0 0、 第 2水切リ室 2 1 0、 乾燥室 3 0 0の順に配置されて構成されている。 なお、 この構成は一例 であり、 洗浄室、 水切り室、 乾燥室の数や順序が異なっても構わない。
[0038] 排気室 1 0には差圧計 1 1が設けられ、 外気大気圧と排気室内の気圧差を 測定する。 測定データは制御装置 2 0に伝送され、 その中に含まれる演算装 置 2 1にて最適な排気風量が計算される。 算出された最適排気風量のデータ は制御装置 2 0内のインバーター 2 2に送られ、 インバーター 2 2はそのデ ータに基づき、 排気手段である排気ファン 5 1の回転数を制御する。 排気フ アン 5 1は、 排気室 1 0と洗浄装置の外部の間に設けられた排気ダク卜 5 0 の途上に設けられ、 排気室 1 0内の空気を外部に排出するように回転する。 これによリ、 排気室内の空気は最適流量で洗浄装置外に排気される。 [0039] 第 1洗浄室 1 0 0の下部には洗浄液タンク 1 0 1が配置され、 洗浄液タン ク 1 0 1の内部には洗浄液を加熱するためのヒーター 1 0 2が設置されてい る。 洗浄液タンク 1 0 1の下方からは第 1洗浄液配管が上方に延び、 第 1洗 浄液配管は第 1洗浄室 1 0 0内の搬送ネッ卜 7 0の上下から搬送ネッ卜 7 0 に向けて噴出するように配置されたスプレーノズル 1 0 4に接続されている 。 第 1洗浄液配管の途上にはポンプ 1 0 3が設けられている。 これにより、 ヒーター 1 0 2によって加熱された洗浄液タンク 1 0 1内の水系洗浄液はポ ンプ 1 0 3で送水され、 搬送ネッ卜 7 0の上下に配置されたスプレーノズル 1 0 4から搬送ネッ卜 7 0上の被洗浄物 5に噴射され、 集水ダク卜により洗 浄液タンク 1 0 1に戻る。
[0040] 第 1水切り室 1 1 0の搬送ネッ卜 7 0の上下にはエアブローノズル 1 1 3 が配置されている。 上下のエアブローノズル 1 1 3は送風手段である送風機 1 1 1に接続され、 送風機の吸気側は吸気ダク卜 1 1 2により第 1水切り室 1 1 0内に開口している。 これにより、 第 1水切り室 1 1 0内の空気がエア ブローノズル 1 1 3により上下から被洗浄物に吹き付けられ、 第 1洗浄室 1 0 0で被洗浄物に付着した洗浄液の水滴を除去する。
[0041 ] 第 1洗浄室 1 0 0及び第 1水切り室 1 1 0を通過した搬送ネット 7 0上の 被洗浄物 5は第 2洗浄室 2 0 0及び第 2水切リ室 2 1 0を通過するが、 これ ら第 2洗浄室 2 0 0及び第 2水切リ室 2 1 0の構造及び動作は第 1洗浄室 1 0 0及び第 1水切り室 1 1 0と同様である。
[0042] 第 1洗浄室 1 0 0、 第 1水切り室 1 1 0、 第 2洗浄室 2 0 0及び第 2水切 リ室 2 1 0を通過した搬送ネット 7 0上の被洗浄物は、 最後に乾燥室 3 0 0 に入る。 乾燥室 3 0 0内には、 上下から搬送ネット 7 0に対して噴出する吹 き出し口 3 0 4が設けられ、 そこには、 吸気口 3 0 1が乾燥室 3 0 0内部に 開口する配管が接続されている。 この配管には熱風ファン 3 0 2及び熱風ヒ 一ター 3 0 3が配設されており、 乾燥室 3 0 0内で吸引された空気が熱風ヒ 一ター 3 0 3により加熱され、 上下の吹き出し口 3 0 4より搬送ネッ卜 7 0 上の被洗浄物に吹き付けられる。 [0043] こうして洗浄及び乾燥された被洗浄物は、 洗浄装置の取出口 3から搬出さ れる。
[0044] 上記構成を有する本実施例の洗浄装置において、 排気室 1 0内の空気を外 部に排気する排気ファン 5 1の風量は、 排気室 1 0内の気圧が外気大気圧よ リも 0. 1 Paから 5Pa低くなるように制御することが重要である。 差圧が 0. 1 Pa未 満であると、 洗浄室 1 0 0、 2 0 0内に充満している水蒸気が排気室 1 0を 通過し、 投入口 2から漏れる可能性がある。 また、 第 2洗浄室 2 0 0の水蒸 気が第 2水切り室 2 1 0や乾燥室 3 0 0に流入し、 乾燥性が低下する原因と もなる。 一方、 差圧が 5Paを超えると、 排気室 1 0から排出される風量が増大 し、 排気と共に大量の熱エネルギーが外部に散逸することとなる。 また、 投 入口 2から流入する外気も増大し、 流入する空気の風速が大きくなるため、 外気の一部が排気室 1 0を通過して第 1洗浄室 1 0 0に流入する。 これによ リ、 スプレーノズル 1 0 4から噴射されている洗浄液が冷却されることとな リ、 ヒーター 1 0 2の稼働率が高くなつて消費エネルギーが増大する。 なお 、 その差圧の更に望ましい範囲は 0. 2〜2Paである。
[0045] 従って、 制御装置 2 0は、 外気大気圧と排気室 1 0の差圧を測定し、 差圧 が 0. 1 Pa未満 (又は 0. 2Pa未満)となったときには排気ファン 5 1の回転数を増 加させるようにインバーター 2 2の周波数を増加させ、 差圧が 5Pa (又は 2Pa) を超えるときには排気ファン 5 1の回転数を減少させるようにインバーター 2 2の周波数を減少させるように制御する。 こうして、 外気大気圧と排気室 1 0の差圧が常に 0. 1 Paから 5Paの範囲(又は 0. 2Paから 2Pa)となるように制御 することにより、 洗浄装置で消費するエネルギーを最も低くすることができ る。
[0046] また、 上記で説明した通り、 第 1水切リ室 1 1 0及び第 2水切リ室 2 1 0 におけるエアブローは洗浄装置内部の空気を吸気し、 その空気でエアブロー を行うことが望ましい。 外気を導入してエアブローを行うと、 洗浄装置内に 流入した空気以上の量の排気を行う必要があり、 排気風量が増加し、 排気に 伴って散逸する熱エネルギーも増大する。 それに対して、 上記実施例のよう に洗浄装置内部の空気を吸気し、 この空気でエアブローを行えば、 排気を増 加させる必要が無く、 排気による熱エネルギー散逸の増加を防止できる。 実施例 2
[0047] 図 3は本発明の第 2の実施例である、 排気手段の排気風量を制御する別の 方法を示す概略構成図である。
[0048] 差圧計 1 1によリ測定された差圧データが制御装置 2 0の演算装置 2 1で 処理されるのは実施例 1と同じである。 本実施例では、 排気風量を制御する ために、 排気手段である排気ファン 5 1の吹出側に風量調整ダンパー機構 2 5を設ける。 風量調整ダンパー機構 2 5内部のダンパー 2 6の開き角度は、 角度調節機能を持つサーポモーター 2 4で調節される。 サーポモーター 2 4 の動き、 すなわちダンパー 2 6の開き角度は、 演算装置 2 1の指令に基づき 、 サーポコントロールユニット 2 3により制御される。 ダンパー 2 6の開き 角度を調節することによって、 外気大気圧と排気室 1 0の差圧が常に 0. 1Paか ら 5Paの範囲内(又は 0. 2Paから 2Pa)となるように制御するのは、 実施例 1と同 じである。
実施例 3
[0049] 図 4は本発明の第 3実施例である別の洗浄装置の概略構成図である。
実施例 3の洗浄装置 4は浸漬超音波式のものであり、 前後搬送機構 7 1と 上下搬送機構 7 2によって被洗浄物 5を搬送し、 洗浄、 水切りの各工程を行 うものである。 被洗浄物の投入口 2と取出口 3の間に、 第 1洗浄室 1 0 0、 第 2洗浄室 2 0 0及び水切室 1 1 0がこの順に配置されて構成されている。 第 1洗浄室 1 0 0及び第 2洗浄室 2 0 0の水系洗浄液タンク 1 0 1、 2 0 1 には、 ヒーター 1 0 2、 2 0 2及び超音波発生器 1 0 5、 2 0 5が設けられ ている。 被洗浄物 5は、 まず第 1洗浄室 1 0 0において上下搬送機構 7 2に より洗浄液タンク 1 0 1内に浸漬され、 ヒーター 1 0 2で 5 0〜6 0°Cに加 熱された洗浄液内で超音波洗浄される。 そこにおける洗浄が終了したら、 上 下搬送機構 7 2で引き上げられ、 前後搬送機構 7 1により第 2洗浄室 2 0 0 に送られて、 同様に洗浄液タンク 2 0 1内に浸潰されて超音波洗浄される。 そこでの洗浄が終了すると、 被洗浄物は引き上げられ、 前後搬送機構 7 1に より水切り室 1 1 0に搬送される。 ここでは、 上下に設けられたエアブロー ノズル 1 1 3より被洗浄物にエアーが吹き付けられ、 洗浄液が除去される。 このエアブローノズル 1 1 3の空気も、 洗浄装置内に設けられた吸気ダク卜 1 1 2から吸引される。 なお、 この構成は一例であり、 洗浄室、 水切り室の 数や順序が異なっていても構わない。
[0050] 洗浄装置の投入口 2及び取出口 3にはそれぞれ排気室 1 0、 排気室 1 2が 設けられ、 これら排気室 1 0、 1 2からは洗浄装置 4の外部に排気するため の排気ダク卜 5 0 1、 5 0 2が接続されている。 これら両排気ダク卜 5 0 1 、 5 0 2の途上には、 それぞれ風量調整ダンパー機構 2 5 1 . 2 5 2が配設 されている。 各風量調整ダンパー機構 2 5 1 . 2 5 2の内部にはダンパー 2 6 1 . 2 6 2が設けられている。 両排気ダク卜 5 0 1、 5 0 2は途中で合流 して 1本となり本洗浄装置 4の外部に開口しているが、 その途上に排気手段 である排気ファン 5 1が設けられている。
実施例 4
[0051 ] 図 5は、 第 3実施例の洗浄装置における、 排気手段の排気風量を制御する 方法を示す概略構成図である。
投入口 2側の排気室 1 0と取出口 3側の排気室 1 2にはそれぞれ差圧計 1 1、 1 3が設けられ、 外気大気圧と排気室 1 0、 1 2内の気圧差を測定する 。 差圧計 1 1、 1 3により測定されたデータは制御装置 2 0に伝送され、 そ の中にある演算装置 2 1において最適な風量が計算される。 算出された最適 風量のデータはインバーター 2 2に送られ、 インバーター 2 2はそのデータ に基づき排気ファン 5 1の回転数を制御する。 また、 最適風量のデータは制 御装置 2 0内のサーポコントロールュニッ卜 2 3 1、 2 3 2にも送られ、 両 サーポコントロールユニット 2 3 1、 2 3 2は、 サーポモーター 2 4 1、 2 4 2を動作させることにより排気ダク卜 5 0 1、 5 0 2上のダンパー 2 6 1 、 2 6 2の開度を調節して吸気風量を調節する。 このとき、 投入口 2側の排 気室 1 0及び取出口 3側の排気室 1 2の内部の気圧が外気大気圧よりも 0. 1 Pa から 5Pa (又は 0. 2Paから 2Pa)低くなるように制御する。
実施例 5
[0052] 図 6 (a)は本発明の第 4の実施例である、 ヒートポンプを組み合わせた洗浄 装置の概略構成図である。 本実施例の洗浄装置のヒー卜ポンプ機構 6 0 0は 、 気化した熱媒体を圧縮する圧縮手段であるコンプレッサー 6 0 1と、 液化 した熱媒体の凝縮熱を洗浄液に与える凝縮手段である凝縮器 6 0 2と、 熱媒 体を気化する膨張弁 6 0 3と、 排気中の熱を熱媒体に与える蒸発器 6 0 4が この順に接続して構成されている。
[0053] コンプレッサー 6 0 1で圧縮された熱媒体は凝縮器 6 0 2に圧送される。
洗浄液タンク 1 0 1の洗浄液は循環ポンプ 6 0 5によって凝縮器 6 0 2に送 水され、 熱媒体の凝縮熱によって加熱されて洗浄液タンク 1 0 1に戻る。 凝 縮器 6 0 2を経由した熱媒体は膨張弁 6 0 3を通過して気化した後、 蒸発器 6 0 4に至り、 排気から熱を吸収して再びコンプレッサー 6 0 1で圧縮され る。 排気ファン 5 1から蒸発器 6 0 4に送風された排気は、 この蒸発器 6 0 4において熱媒体に熱を与え、 洗浄装置外に排出される。
[0054] 本実施例の洗浄装置では、 これまで排気と共に装置外に散逸していた熱ェ ネルギー (主に洗浄液の蒸発熱) がヒートポンプ機構 6 0 0の蒸発器 6 0 4 によって回収され、 洗浄液の加熱に再利用することができる。 洗浄液の蒸発 が多くなるほど排気から回収される熱エネルギーも増大するため、 熱効率の 良いシステムを構成することが可能である。 従って、 これまで洗浄液の加熱 に使用していたヒーター 1 0 2の稼働率を低減することが可能となり、 洗浄 装置全体として省エネルギーを達成することができる。
なお、 図 6 (b)に示すように、 凝縮器 6 0 2からの洗浄液は、 複数の洗浄液 槽 1 0 1、 1 0 9に回して使用することも可能である。 これにより、 回収さ れた熱をより効率よく使用することができるようになる。
[0055] さらに、 図 6 (c)に示すように、 洗浄液タンクが直列に 3槽以上設けられて いる場合は以下のような経路で洗浄液を熱交換の媒体として利用するように 、 各洗浄液タンク間を循環させてもよい。 例えば、 まず、 投入口 2側に配置 した洗浄液タンク 1 0 1から前記ヒー卜ポンプ機構 6 0 0に洗浄液を送液す る。 これにより洗浄液は、 ヒートポンプ機構 6 0 0にて熱交換により加熱さ れる。 こうして加熱された洗浄液を、 取出口 3側に配置した最終洗浄液タン ク 1 0 9に設けた熱交換器 1 0 6に送り、 その熱により最終洗浄液タンク 1 0 9に蓄えた洗浄液を加熱する。 熱媒体となった洗浄液はその後、 投入口 2 側の洗浄タンク 1 0 1と取出口 3側の最終洗浄液タンク 1 0 9の間に挟まれ た中間洗浄液タンク 1 0 8を経由せずに、 元の洗浄液タンク 1 0 1に戻す。 このようにして両端の洗浄液タンク 1 0 1と最終洗浄液タンク 1 0 9の洗浄 液のみを加熱することにより、 その間に挟まれている中間洗浄液タンク 1 0 8の洗浄液も冷めにくくなる。 その結果、 全ての洗浄液タンクの温度を一定 に保ちやすくなリ、 回収された熱をより効率よく使用することができるよう になる。 なおこの構成は一例であり、 取出口 3側の最終洗浄液タンク 1 0 9 から前記ヒー卜ポンプ 6 0 0に洗浄液を送水して投入口 2側の洗浄液タンク 1 0 1に設けた熱交換器 1 0 6を経由させ、 元の最終洗浄液タンク 1 0 9に 戻しても構わず、 洗浄室、 熱交換器、 水切り室の数や順序が異なっていても 構わない。 またここで洗浄液タンクが直列に 3槽以上設けられている場合と いうのは、 単に洗浄液タンクの配置が直列という意味である。
[0056] また、 本実施例は前記実施例 1から実施例 3の構成と組み合わせることが 可能である。 前記実施例では排気風量を最適化することにより洗浄機から熱 エネルギーの散逸を低減する効果を得たが、 必要な量の排気は行うため、 こ れに伴う熱の散逸は免れ得ない。 そこで、 本実施例を組み合わせることによ つて、 排気から熱を回収することが可能となり、 更なる省エネルギーを行う ことができる。
[0057] なお、 ヒートポンプ機構 6 0 0を構成する膨張弁 6 0 3はキヤビラリチュ ーブで代用することも可能である。 特に、 小型のヒートポンプであれば、 キ ャビラリチューブを用いることによってヒー卜ポンプ制御を簡略化すること が可能となり、 コストも低減できる。
[0058] 一方、 膨張弁 6 0 3を用いた場合は、 熱負荷状況に追随した制御が可能で あり、 比較的大型のシステムに適する。
実施例 6
[0059] 図 7は本発明の第 5の実施例である別のヒー卜ポンプの概略構成図である 本実施例のヒー卜ポンプ機構 6 0 0は、 気化した熱媒体を圧縮する圧縮手 段であるコンプレッサー 6 0 1と、 液化した熱媒体の凝縮熱を洗浄液に与え る凝縮手段である凝縮器 6 0 2と、 排気熱交換器 6 0 6と、 熱媒体を気化す る膨張弁 6 0 3と、 排気の熱を熱媒体に与える蒸発器 6 0 4がこの順に接続 して構成されている。 排気熱交換器 6 0 6には、 それに隣接して排気熱交換 器冷却手段としての冷却ファン 6 0 7が設置され、 排気熱交換器 6 0 6を空 冷する。 更に、 凝縮器 6 0 2に供給される洗浄液の給水温度測定手段として の温度センサー (T ) 6 0 8が設けられている。 なお、 膨張弁 6 0 3はキヤ ビラリチューブで代用することも可能である。
[0060] コンプレッサー 6 0 1と冷却ファン 6 0 7は温度センサー (T ) 6 0 8の 測定データに基づき、 ヒートポンプ制御装置 6 0 9によって制御される。 ヒ 一卜ポンプ制御装置 6 0 9にはコンプレッサー 6 0 1と冷却ファン 6 0 7の 運転制御条件として、 次の 4個の制御温度設定値が記憶されている。
■圧縮手段運転開始温度 T 1
■排気熱交換器冷却手段間欠運転停止温度 T 2
•排気熱交換器冷却手段間欠運転開始温度 T 3
•排気熱交換器冷却手段連続運転開始温度 T 4
これら T 1〜丁 4と凝縮器に供給される洗浄液の温度 Tとを比較し、 次の 条件でコンプレッサー 6 0 1と冷却ファン 6 0 7の運転制御を行う。
■ T < T 1のときにコンプレッサー (圧縮手段) を停止する。
■ Τ 1≤Τのときにコンプレッサー (圧縮手段) を運転する。
■ Τ 3≤Τ < Τ 4のときに冷却ファン (排気熱交換器冷却手段) を間欠運 転する。
■ Τ 4≤Τのときに冷却ファン (排気熱交換器冷却手段) を連続運転する ,冷却ファン (排気熱交換器冷却手段) が運転を開始した後に T<T 2と なったときに冷却ファン (排気熱交換器冷却手段) を停止する。
[0061 ] 本実施例では洗浄液の凝縮器への給水温度 Τに基づいてコンプレッサーと 冷却ファンを制御することとなる。
[0062] 給水温度 Τが Τ 1よりも低い温度でコンプレッサーを停止するのは、 熱媒 体温度が下がり過ぎて配管が凍結する等の支障がないようにするためである 。 そして、 Τが Τ 1以上となったときにコンプレッサーの運転を開始して排 気からの熱回収を行う。 その後、 Τが Τ 3以上 Τ 4未満の温度範囲に達した 場合、 排気の熱量が多く洗浄液の温度を加熱しすぎることが予測されるため 、 冷却ファンを間欠運転し、 排気熱交換器によって熱媒体の温度を下げる。 ここで間欠運転とは、 1秒運転■ 1秒停止の交互運転等である。 また、 間欠 運転ではなく、 ィンバーターを用いて低速で運転することで制御することも 可能である。
[0063] 更に、 給水温度 Τが Τ 4以上になったときには、 冷却ファンを連続運転ま たは高速運転することで、 熱媒体の温度上昇を防止する。 Τが Τ3または Τ 4以上になったときに冷却ファンを運転しなければ、 熱媒体の温度が上昇し 、 洗浄液温度が好ましい温度範囲を超えることとなってしまう。 この様な制 御を行うことで、 ヒー卜ポンプによる洗浄液の加熱を安定的に行うことがで さる。
[0064] この冷却ファン (排気熱交換器冷却手段) の間欠運転に際しては、 ファン の運転比率を
{ (Τ-Τ 3) / (Τ4— Τ3) } X 1 00 %
とすることが望ましい。
例えば、 T = 53°C、 T3 = 52°C、 T 4 = 55°Cとした場合、 ファンの 運転比率は
(53— 52) Z (55— 52) X 1 00%=33%
すなわち、 0. 67秒運転、 1. 33秒停止とすることが望ましい。 [0065] 或いは、 間欠運転するのではなく、 そのファンの回転数 Rを、 T<T 3のとき、 R=0
T 3≤T<T 4のとき、 R= (T-T 3) / (Τ 4— Τ 3) X Ax RO T 4≤Tのとき、 R=AX R0
(ただし、 Aはファンの冷却能力に応じて定める係数で、 0. 1〜 1. 0の 値。 ROはファンの定格回転数。 ) と連続的に制御するようにしてもよい。 この方がシステムとして安定し、 ファンやモータの寿命延長、 及び運転時の 騒音低減の効果がある。
[0066] 上記設定温度 T 1〜丁 4は、 洗浄装置の水系洗浄液の基準使用温度を TW °Cとしたとき、
(TW-45) °C≤ T 1≤ (TW- 5) °C
(TW- 1 0) °C≤T 2≤ TW °C
(TW- 5) °C≤ T 3≤ (TW+ 5) °C
TW °C≤ T 4≤ (TW+ 1 0) °C
0°C<T 1 <T 2<T 3<T 4
となるように設定すると、 洗浄装置を安定的に制御することができる。
[0067] さらに好ましくは、 T 1について、
(TW- 20) °C≤ T 1≤ (TW- 5) °C
と設定する。
[0068] 例えば、 洗浄装置の水系洗浄液の基準使用温度 TWを 55°Cとした場合、
1 0°C≤T 1≤50°C
45°C≤T 2≤ 55 °C
50°C≤T 3≤60°C
55°C≤T 4≤65°C
[0069] さらに好ましくは
35°C≤T 1≤50°C
45°C≤T 2≤ 55 °C
50°C≤T 3≤60°C 55°C≤T 4≤65°C と設定する。

Claims

請求の範囲
[1 ] a) 被洗浄物を搬送する搬送手段と、
b) 被洗浄物に加温した水系洗浄液を噴射して洗浄するスプレーノズルと、 c) 洗浄装置内部の空気を吸気し、 被洗浄物に付着した水を吹き飛ばすエア ブローノズルと、
d) 洗浄装置内部の水蒸気を含んだ空気を排気する排気手段と、 e) 外気大気圧と排気室の気圧の差圧を測定する差圧測定手段と、 f) 差圧測定手段によって測定された差圧データに基づいて排気手段の排気 風量を制御する制御手段と
を備えることを特徴とする、 水系洗浄液を用いた洗浄装置。
[2] 前記排気手段が、 洗浄装置の被洗浄物投入部に設けた排気室から排気する ことを特徴とする請求項 1に記載の洗浄装置。
[3] 前記搬送手段がネット状コンペャとなっており、 スプレーノズル及びエア ブローノズルが該ネッ卜状コンペャの上下に設けられていることを特徴とす る請求項 1又は 2に記載の洗浄装置。
[4] スプレーノズルが設けられた洗浄室、 及びエアブローノズルが設けられた 水切リ室がそれぞれ複数設けられていることを特徴とする請求項 1〜 3のい ずれかに記載の洗浄装置。
[5] 排気風量の調節を、 排気ファンの回転数により行うことを特徴とする請求 項 1〜 4のいずれかに記載の洗浄装置。
[6] 排気風量の調節を、 排気通路に設けたダンバの開度により行うことを特徴 とする請求項 1〜4のいずれかに記載の洗浄装置。
[7] 前記制御手段が、 排気室の気圧が外気大気圧よりも 0. "!〜 5Pa低くなるよう に排気手段の排気風量を制御することを特徴とする請求項 1〜 6のいずれか に記載の洗浄装置。
[8] 前記制御手段が、 排気室の気圧が外気大気圧よりも 0. 2〜2Pa低くなるよう に排気手段の排気風量を制御することを特徴とする請求項 1〜 6のいずれか に記載の洗浄装置。 a) 被洗浄物を上下及び前後に搬送する搬送手段と、
b) 水系洗浄液を保持する、 ヒーター及び超音波発生器を備えた洗浄液タン クと、
c) 洗浄装置内部の空気を吸気し、 被洗浄物に付着した水を吹き飛ばすエア ブローノズルと、
d) 洗浄装置内部の水蒸気を含んだ空気を排気する排気手段と、
e) 外気大気圧と排気室の気圧の差圧を測定する差圧測定手段と、
f) 差圧測定手段によって測定された差圧データに基づいて排気手段の排気 風量を制御する制御手段と
を備えることを特徴とする、 水系洗浄液を用いた洗浄装置。
前記排気手段が、 洗浄装置の被洗浄物投入部に設けた排気室から排気する ことを特徴とする請求項 9に記載の洗浄装置。
前記排気手段が、 洗浄装置の被洗浄物取出部に設けた排気室から排気する ことを特徴とする請求項 9又は 1 0に記載の洗浄装置。
排気風量の調節を、 排気ファンの回転数により行うことを特徴とする請求 項 9〜 1 1のいずれかに記載の洗浄装置。
排気風量の調節を、 排気通路に設けたダンバの開度により行うことを特徴 とする請求項 9〜 1 1のいずれかに記載の洗浄装置。
前記制御手段が、 排気室の気圧が外気大気圧よリも 0. 1〜5Pa低くなるよう に排気手段の排気風量を制御することを特徴とする請求項 9〜 1 3のいずれ かに記載の洗浄装置。
前記制御手段が、 排気室の気圧が外気大気圧よリも 0. 2〜2Pa低くなるよう に排気手段の排気風量を制御することを特徴とする請求項 9〜 1 3のいずれ かに記載の洗浄装置。
排気手段が、 排気の熱を洗浄液に回収するヒー卜ポンプ機構を備えること を特徴とする請求項 1〜 1 5のいずれかに記載の洗浄装置。
a) 被洗浄物を搬送する搬送手段と、
b) 水系洗浄液を保持する洗浄液タンクと、 C) 加温した水系洗浄液で被洗浄物を洗浄する洗浄手段と、 d) 洗浄装置内部の水蒸気を含んだ空気を排気する排気手段と、 e) 排気の熱を洗浄液に回収するヒートポンプ機構と
を備えることを特徴とする、 水系洗浄液を用いた洗浄装置。
[18] 前記ヒートポンプ機構が、
a) 排気手段中に設けた、 排気中の熱を熱媒体に与える蒸発器と、 b) 気化した熱媒体を圧縮して液化する圧縮手段と、
c) 液化した熱媒体の凝縮熱を洗浄液に与える凝縮手段と、
d) 熱媒体を気化する膨張弁またはキヤビラリチューブと
を備えることを特徴とする請求項 1 6又は 1 7に記載の洗浄装置。
[19] a) 洗浄液を保持するタンクが 2槽以上設けられており、
b) うち少なくとも 1槽の洗浄液タンクに熱交換器が設けられる一方、 他の 洗浄液タンクには熱交換器が設けられておらず、 熱交換器が設けられていな い洗浄液タンクから洗浄液を前記ヒー卜ポンプ機構に送液し、 前記ヒートポ ンプ機構にて加熱された洗浄液を熱交換器が設けられた洗浄液タンクの熱交 換器を経由して元の洗浄液タンクに戻す洗浄液循環機構を設けた
ことを特徴とする請求項 1 8に記載の洗浄装置。
[20] a) 洗浄液タンクが直列に 3槽以上設けられており、
b) それらの洗浄液タンクのうち一方の端に配置した洗浄液タンクに熱交換 器が設けられる一方、 他方の端に配置した洗浄液タンクには熱交換器が設け られておらず、 他方の端に配置した洗浄液タンクから洗浄液を前記ヒートポ ンプ機構に送液し、 前記ヒー卜ポンプ機構にて加熱された洗浄液を熱交換器 が設けられた洗浄液タンクの熱交換器を経由して元の洗浄液タンクに戻す洗 浄液循環機構を設けた
ことを特徴とする請求項 1 9に記載の洗浄装置。
[21 ] 前記凝縮手段と膨張弁またはキヤビラリチューブの間に、
a) 排気熱交換器と、
b) 排気熱交換器を冷却する排気熱交換器冷却手段と、 c) 凝縮手段を流れる洗浄液の温度を測定する温度測定手段と、
d) 測定された洗浄液温度に応じて圧縮手段および排気熱交換器冷却手段を 制御するヒートポンプ制御手段と
を備えることを特徴とする請求項 1 8〜 20のいずれかに記載の洗浄装置
[22] 前記ヒー卜ポンプ制御手段が、
a) 次の設定温度 T 1〜丁 4を記憶する温度記憶手段と、
■圧縮手段運転開始温度 T 1
■排気熱交換器冷却手段間欠運転停止温度 T 2
•排気熱交換器冷却手段間欠運転開始温度 T 3
•排気熱交換器冷却手段連続運転開始温度 T 4
b) 温度測定手段で測定した洗浄液の温度 Tとこれら設定温度 T 1〜丁 4を 比較して、
■ T<T 1のときに圧縮手段を停止し、
■ Τ 1≤Τのときに圧縮手段を運転し、
■ Τ3≤Τ<Τ4のときに排気熱交換器冷却手段を間欠運転し、
■ Τ4≤Τのときに排気熱交換器冷却手段を連続運転し、
■排気熱交換器冷却手段が運転を開始した後に Τ<Τ2となったときに排 気熱交換器冷却手段を停止する
運転制御手段と
を備えることを特徴とする請求項 21に記載の洗浄装置。
[23] 洗浄装置の水系洗浄液の基準使用温度を TW°Cとしたとき、 前記温度記憶 手段に記憶されている設定温度 T 1〜丁 4が、
■ (TW-45) °C≤ T 1≤ (TW- 5) °C
■ (TW- 1 0) °C≤T 2≤ TW °C
■ (TW- 5) °C≤ T 3≤ (TW+ 5) °C
■ TW °C≤ T 4≤ (TW+ 1 0) °C
■ 0°C<T 1 <T 2<T 3<T 4 であることを特徴とする請求項 22に記載の洗浄装置。
[24] 洗浄装置の水系洗浄液の基準使用温度を TW°Cとしたとき、 前記温度記憶 手段に記憶されている設定温度 T 1〜丁 4が、
■ (TW- 20) °C≤ T 1≤ (TW- 5) °C
■ (TW- 1 0) °C≤T 2≤ TW °C
■ (TW- 5) °C≤ T 3≤ (TW+ 5) °C
■ TW °C≤ T 4≤ (TW+ 1 0) °C
■ 0°C<T 1 <T 2<T 3<T 4
であることを特徴とする請求項 22に記載の洗浄装置。
[25] 前記運転制御手段が、 前記排気熱交換器冷却手段の間欠運転に際して排気 熱交換器冷却手段の運転比率を
{ (T-T 3) / (T 4— T 3) } X 1 00 %
とすることを特徴とする請求項 22〜 24のいずれかに記載の洗浄装置。
[26] 前記排気熱交換器冷却手段がファンであり、 前記運転制御手段がそのファ ンの回転数 Rを、
T<T 3のとき、 R=0
T 3≤T<T 4のとき、 R= (T-T 3) / (T 4— T 3) x Ax RO T 4≤Tのとき、 R=AX R0
(ただし、 Aはファンの冷却能力に応じて定める係数で、 0. 1〜 1. 0の 値。 ROはファンの定格回転数。 ) と制御することを特徴とする請求項 22 〜 25のいずれかに記載の洗浄装置。
[27] 前記圧縮手段がモータを用いており、 前記運転制御手段は該モータの回転 数を連続的又は段階的に制御すること特徴とする請求項 22〜 26のいずれ かに記載の洗浄装置。
PCT/JP2007/000250 2006-03-20 2007-03-19 水系洗浄液を用いる洗浄装置 WO2007108216A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506178A JP5223091B2 (ja) 2006-03-20 2007-03-19 水系洗浄液を用いる洗浄装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-076225 2006-03-20
JP2006076225 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007108216A1 true WO2007108216A1 (ja) 2007-09-27

Family

ID=38522252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000250 WO2007108216A1 (ja) 2006-03-20 2007-03-19 水系洗浄液を用いる洗浄装置

Country Status (4)

Country Link
JP (1) JP5223091B2 (ja)
KR (1) KR20080023681A (ja)
CN (1) CN101374609A (ja)
WO (1) WO2007108216A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022943A (ja) * 2008-07-18 2010-02-04 Mayekawa Mfg Co Ltd 洗びん方法及び洗びん機
JP2011516252A (ja) * 2008-04-09 2011-05-26 カーハーエス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ボトル等の容器の洗浄機
JP2011173068A (ja) * 2010-02-24 2011-09-08 Zeneral Heat Pump Kogyo Kk 洗浄液加熱装置
FR2958662A1 (fr) * 2010-04-09 2011-10-14 Durr Ecoclean Installation pour le traitement de surface de pieces manufacturees
JP2012086160A (ja) * 2010-10-20 2012-05-10 Kisamitsu Giken:Kk 洗浄機
JP2013141613A (ja) * 2012-01-06 2013-07-22 Toshiba Carrier Corp 産業用加熱装置
JP2014188031A (ja) * 2013-03-26 2014-10-06 Panasonic Corp 洗浄装置
CN110091012A (zh) * 2019-06-06 2019-08-06 海盐县海塘标准件厂 一种用于螺母攻丝机的上下料装置
WO2022244530A1 (ja) * 2021-05-19 2022-11-24 株式会社Screenホールディングス 基板処理システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108202036B (zh) * 2016-12-19 2023-10-03 本钢板材股份有限公司 一种清洗液加热方法
CN110921038B (zh) * 2019-12-17 2021-06-11 宁波市鄞州新茂粮油有限公司 一种具有除尘功能的贴标签装置及其使用方法
CN114289374A (zh) * 2021-12-01 2022-04-08 深圳市富诺依科技有限公司 零废水环保型钢网清洗工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126264A (ja) * 1992-10-19 1994-05-10 Shimada Phys & Chem Ind Co Ltd スピン洗浄乾燥装置
JPH07264814A (ja) * 1994-03-17 1995-10-13 Matsushita Electric Ind Co Ltd ブラシホルダ装置
JP2001112694A (ja) * 1999-10-18 2001-04-24 Mamia:Kk 食器類洗浄装置
JP2002210422A (ja) * 2001-01-16 2002-07-30 Sony Corp 被処理基板の洗浄処理装置と洗浄方法
JP2002270561A (ja) * 2001-03-14 2002-09-20 Ebara Corp 基板処理方法及びその装置
JP2003229404A (ja) * 2001-11-12 2003-08-15 Tokyo Electron Ltd 基板処理装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161419A (ja) * 1974-06-21 1975-12-27
JPS5828353B2 (ja) * 1981-02-16 1983-06-15 株式会社神戸製鋼所 金属帯の洗浄処理方法及びその装置
JPS62247091A (ja) * 1986-04-17 1987-10-28 Kemikooto:Kk 金属表面処理装置および処理方法
JPH03101877A (ja) * 1989-09-13 1991-04-26 Oogawara Kakoki Kk 物品の洗浄乾燥方法および装置
JPH0655114A (ja) * 1992-06-09 1994-03-01 Kanken Techno Kk 洗浄装置および洗浄方法
JP2653970B2 (ja) * 1993-12-08 1997-09-17 日本化工機工業株式会社 長材高速洗浄乾燥法およびライン装置
JPH07275814A (ja) * 1994-04-05 1995-10-24 Hitachi Home Tec Ltd 洗浄装置
JP3335006B2 (ja) * 1994-08-09 2002-10-15 株式会社トクヤマ 金属帯材の洗浄方法
JP3337565B2 (ja) * 1994-09-21 2002-10-21 株式会社トクヤマ 金属帯洗浄装置
JP3081485B2 (ja) * 1995-02-01 2000-08-28 株式会社日立製作所 洗浄装置
JPH08316614A (ja) * 1995-05-24 1996-11-29 Hitachi Ltd 洗浄装置
JPH0957001A (ja) * 1995-08-29 1997-03-04 Konica Corp ヒートポンプ方式蒸発濃縮装置
JPH09262401A (ja) * 1996-03-27 1997-10-07 Konica Corp ヒートポンプ方式蒸発濃縮装置
JP2002043272A (ja) * 2000-07-28 2002-02-08 Ebara Corp 基板洗浄装置及び基板処理装置
JP2002219429A (ja) * 2001-01-23 2002-08-06 Hitachi Electronics Eng Co Ltd 基板処理装置及び処理方法
JP2003233204A (ja) * 2002-02-07 2003-08-22 Sharp Corp 電子写真感光体の製造方法およびそれを用いた電子写真感光体
JP3970731B2 (ja) * 2002-09-25 2007-09-05 松下冷機株式会社 乾燥システム
JP4225813B2 (ja) * 2003-03-26 2009-02-18 島田理化工業株式会社 ガラス基板表面乾燥装置
JP4310577B2 (ja) * 2003-10-08 2009-08-12 財団法人阪大微生物病研究会 洗浄装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126264A (ja) * 1992-10-19 1994-05-10 Shimada Phys & Chem Ind Co Ltd スピン洗浄乾燥装置
JPH07264814A (ja) * 1994-03-17 1995-10-13 Matsushita Electric Ind Co Ltd ブラシホルダ装置
JP2001112694A (ja) * 1999-10-18 2001-04-24 Mamia:Kk 食器類洗浄装置
JP2002210422A (ja) * 2001-01-16 2002-07-30 Sony Corp 被処理基板の洗浄処理装置と洗浄方法
JP2002270561A (ja) * 2001-03-14 2002-09-20 Ebara Corp 基板処理方法及びその装置
JP2003229404A (ja) * 2001-11-12 2003-08-15 Tokyo Electron Ltd 基板処理装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516252A (ja) * 2008-04-09 2011-05-26 カーハーエス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ボトル等の容器の洗浄機
JP2010022943A (ja) * 2008-07-18 2010-02-04 Mayekawa Mfg Co Ltd 洗びん方法及び洗びん機
JP2011173068A (ja) * 2010-02-24 2011-09-08 Zeneral Heat Pump Kogyo Kk 洗浄液加熱装置
FR2958662A1 (fr) * 2010-04-09 2011-10-14 Durr Ecoclean Installation pour le traitement de surface de pieces manufacturees
JP2012086160A (ja) * 2010-10-20 2012-05-10 Kisamitsu Giken:Kk 洗浄機
JP2013141613A (ja) * 2012-01-06 2013-07-22 Toshiba Carrier Corp 産業用加熱装置
JP2014188031A (ja) * 2013-03-26 2014-10-06 Panasonic Corp 洗浄装置
CN110091012A (zh) * 2019-06-06 2019-08-06 海盐县海塘标准件厂 一种用于螺母攻丝机的上下料装置
WO2022244530A1 (ja) * 2021-05-19 2022-11-24 株式会社Screenホールディングス 基板処理システム

Also Published As

Publication number Publication date
KR20080023681A (ko) 2008-03-14
JPWO2007108216A1 (ja) 2009-08-06
CN101374609A (zh) 2009-02-25
JP5223091B2 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
WO2007108216A1 (ja) 水系洗浄液を用いる洗浄装置
CN103774402B (zh) 洗衣机
CN102822410B (zh) 干衣机
US9327323B2 (en) Method and a cleaning system for cleaning industrially produced components
JP2008533426A (ja) 遷臨界二酸化炭素冷蔵システムの凝縮水による熱伝達
WO2021237998A1 (zh) 一种循环干燥装置、消防水带干燥系统及方法
JP2007303756A (ja) 乾燥方法及び乾燥システム
CN106247787A (zh) 热泵烘干总系统以及热泵烘干循环总系统
JP7361375B2 (ja) 冷却装置の冷却方法
JP6518498B2 (ja) 洗濯乾燥機
KR100991843B1 (ko) 공기압축기 폐열 회수장치
CN206338969U (zh) 一种室内冷却和造雪二合一系统
CN104859293B (zh) 一种整体式印刷烘干机
JP2007285531A (ja) 熱交換チューブ、蒸発器、及びヒートポンプ
CN203837457U (zh) 新型回热节能型烘干除湿系统
CN106440504A (zh) 一种蒸发冷凝无油冷热水机组及其控制方法
KR102070685B1 (ko) 백연 저감 냉각탑 및 그 제어 방법
JPH09159298A (ja) 冷却装置
KR100416886B1 (ko) 일체식 냉방용 공기조화기의 증발식 응축장치
JP6605366B2 (ja) オイルフリー空気圧縮機
JPH11223357A (ja) 空気調和装置
CN106679211A (zh) 一种室内冷却和造雪二合一系统
KR20090102957A (ko) 차량용 냉방시스템의 성능향상 방법
JP4079693B2 (ja) 送風機構を備えた容器処理装置
JPH0650564A (ja) 冷暖房兼用一体型空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000562.4

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07736907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506178

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020077028853

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07736907

Country of ref document: EP

Kind code of ref document: A1