WO2006134851A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2006134851A1
WO2006134851A1 PCT/JP2006/311709 JP2006311709W WO2006134851A1 WO 2006134851 A1 WO2006134851 A1 WO 2006134851A1 JP 2006311709 W JP2006311709 W JP 2006311709W WO 2006134851 A1 WO2006134851 A1 WO 2006134851A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
lithium
lithium composite
battery
active material
Prior art date
Application number
PCT/JP2006/311709
Other languages
English (en)
French (fr)
Inventor
Kensuke Nakura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800213092A priority Critical patent/CN101199065B/zh
Priority to US11/914,343 priority patent/US8673499B2/en
Publication of WO2006134851A1 publication Critical patent/WO2006134851A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery having excellent life characteristics.
  • Lithium ion secondary batteries which are representative of nonaqueous electrolyte secondary batteries, have a high energy density with high electromotive force, which has increased the demand for main power sources for mobile communication devices and portable electronic devices.
  • lithium ion secondary batteries on the market are lithium composite oxides mainly composed of cobalt as the positive electrode active material (for example, Li CoO (x is the charge / discharge of the battery).
  • Lithium complex oxides such as Li CoO and Li NiO are highly reactive and expensive.
  • Li NiO has higher reactivity with electrolyte in the charged state than Li CoO
  • lithium composite oxides such as Li CoO and Li NiO
  • the crystal structure is unstable when the Ni acid number is high. Therefore, when the charge / discharge cycle is repeated, the crystal structure gradually collapses, sufficient cycle characteristics cannot be obtained, and life characteristics deteriorate.
  • Patent Documents 1 to 5 In order to suppress the decomposition reaction of the electrolytic solution, it is possible to form a coating film made of a specific metal oxide on the surface of the positive electrode active material to suppress the decomposition reaction of the electrolytic solution involving the lithium composite oxide. It has been proposed (Patent Documents 1 to 5). Also, dissimilar elements are solidified in lithium composite oxides. It has also been proposed to stabilize the crystal structure of the lithium composite oxide and improve cycle characteristics and high-temperature storage characteristics (Patent Documents 6 to 8).
  • Patent Document 1 Japanese Patent No. 3543437
  • Patent Document 2 JP-A-11 317230
  • Patent Document 3 Japanese Patent Laid-Open No. 11-16566
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-196063
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-173775
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-111076
  • Patent Document 7 Japanese Patent Laid-Open No. 11-40154
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2002-15740
  • a general cycle life test is performed under conditions where the rest time after charging is short (for example, the rest time is 30 minutes). If the evaluation is performed under such conditions, the cycle life characteristics can be improved to some extent by the above-described technique proposed by Kama et al.
  • an object of the present invention is to improve intermittent cycle characteristics in a lithium ion secondary battery including a lithium composite oxide containing nickel as a main component as a positive electrode active material.
  • the present invention includes a chargeable / dischargeable positive electrode, a chargeable / dischargeable negative electrode, and a non-aqueous electrolyte
  • the positive electrode includes active material particles
  • the active material particles include a lithium composite oxide.
  • Lithium complex oxide is Li Ni Co Ca Mg MO (however, 0.85 ⁇ v ⁇ l. 25, v 1-wxyz wxyz 2
  • element M is At least one element selected from the group consisting of alkaline earth elements other than Co, Ca and Mg, transition elements, rare earth elements, II lb group elements and IVb group elements),
  • the element M includes at least one element Me selected from the group consisting of Mn, Al, B, W, Nb, Ta, In, Mo, Sn, Ti, Zr, and Y. Ca, Mg, and the element Me Group force to be selected At least one element Mc selected is distributed more in the surface layer than in the active material particles.
  • the group power consisting of Ca and Mg relates to a lithium ion secondary battery in which at least one element Mc selected is distributed more in the surface layer than in the active material particles.
  • the average particle diameter of the active material particles is preferably 10 ⁇ m or more.
  • the lithium composite oxide has a crystal structure of Li NiO, and Co, Ca, and Mg.
  • the present invention includes a form in which the surface layer portion of the active material particles has an element Md constituting a crystal structure different from that of the lithium composite oxide, and the element Md is the same element as the element Mc.
  • the element Md preferably constitutes an oxide having a crystal structure different from that of the lithium composite oxide.
  • the amount of element Md is preferably 2 mol% or less with respect to the lithium composite oxide.
  • the non-aqueous electrolyte preferably contains at least one selected from the group force consisting of beylene carbonate, butyl ethylene carbonate, phosphazene and fluorobenzene.
  • the intermittent cycle characteristics can be improved as compared with the related art.
  • the intermittent cycle characteristics are hardly improved by simply dissolving Co, Ca, and Mg in a lithium composite oxide containing nickel as a main component. Also, even if the element Mc is distributed more in the surface layer than in the active material particles, the intermittent cycle characteristics are hardly improved. On the other hand, various experiments have confirmed that the combination of these technologies dramatically improves the intermittent cycle characteristics.
  • the surface layer portion of the active material particles includes an element Md that forms a crystal structure different from that of the lithium composite oxide, and the element Md is the same element as the element Mc. is there. Due to various factors, the element Mc (that is, the element constituting the crystal structure of the lithium composite oxide) that is present in the surface layer of the active material particles has a different crystal structure from the element Md (that is, the lithium composite oxide). It may change to a constituent element). In some cases, the element Md present in the surface layer of the active material particles diffuses into the lithium composite oxide and changes to the element Mc. However, the element Mc dissolved in the lithium composite oxide and the lithium composite oxide The element Md, which forms a crystal structure different from that of the product, can be clearly distinguished by various analytical methods.
  • FIG. 1 is a longitudinal sectional view of a cylindrical lithium ion secondary battery according to an embodiment of the present invention.
  • the positive electrode according to the present invention will be described.
  • the positive electrode contains the following active material particles.
  • the active material particles include a lithium composite oxide containing nickel as a main component.
  • the form of the lithium composite oxide is not particularly limited.
  • the active material particles may be formed in a primary particle state, or the active material particles may be formed in a secondary particle state.
  • a plurality of active material particles may be aggregated to form secondary particles.
  • the average particle diameter of the active material particles is not particularly limited, but is preferably 10 to 30 m, for example, preferably 1 to 30 / ⁇ ⁇ .
  • the average particle size can be measured by, for example, a wet laser particle size distribution measuring device manufactured by Microtrack. 50% value (median value: D) in the volume-based particle size distribution
  • the lithium composite oxide has a general formula: Li Ni Co Ca Mg M O (however, 0.885 ⁇ v v 1-w-x-y-z w x y z 2
  • the element M is represented by an alkaline earth element other than Co, Ca and Mg, a transition element, a rare earth element, a group force consisting of nib group elements and IVb group elements).
  • the lithium composite oxide is selected from the group consisting of at least Mn, Al, B, W, Nb, Ta, In, Mo, Sn, Ti, Zr and Y as the element M Contains at least one element Me.
  • the element Me may be any one of Mn, Al, B, W, Nb, Ta, In, Mo, Sn, Ti, Zr, and Y, or two or more.
  • the element Me is an element that is actually contained in the lithium composite oxide.
  • Mn, Al, B, W, Nb, Ta, In, Mo, Sn, Ti, Zr, and Y listed as the element M are candidates for essential elements of the lithium composite oxide when 0 and z.
  • at least one element Mc for which a group force consisting of Ca, Mg, and element Me is also selected is distributed more in the surface layer than in the active material particles.
  • the lithium composite oxide has the general formula: Li Ni Co Ca Mg O (where v 1-w-x-y-z w x y 2
  • At least one element Mc selected from the group consisting of Ca and Mg is distributed more in the surface layer than in the active material particles.
  • the range of V representing the Li content increases or decreases depending on the charge / discharge of the battery.
  • the range of X in the fully discharged state or in the initial state (immediately after the synthesis of the lithium composite oxide) may be 0.85 ⁇ v ⁇ 1.25, but 0.93 ⁇ v ⁇ l. 1 is preferred.
  • Co is an essential component and gives an effect of reducing irreversible capacity to lithium complex oxides.
  • Ca and Mg are also essential components, and have an effect of improving the thermal stability of the lithium composite oxide.
  • the element Me has an effect of improving the thermal stability of the lithium composite oxide.
  • the element Me is further distributed in the surface layer portion of the active material particles, thereby giving the lithium composite oxide an effect of improving intermittent cycle characteristics. This effect is also manifested when a large amount of Ca or Mg is distributed in the surface layer of the active material particles.
  • the range of w representing the Co content may be 0 ⁇ w ⁇ 0.75.
  • the range of X representing the Ca content may be 0 ⁇ x ⁇ 0.1.
  • 0.00002 ⁇ x ⁇ 0.1. I like it 0.
  • Kx the amount of Ca becomes too large, making it difficult to achieve the high capacity that is typical of Ni-based active materials.
  • the range of y representing the Mg content may be 0 ⁇ y ⁇ 0.1.
  • 0.00002 ⁇ y ⁇ 0.1 Is more preferable 0. 0001 ⁇ y ⁇ 0. 05 or 0. 001 ⁇ x ⁇ 0. 005!
  • 0.1 ⁇ y the amount of Mg becomes too large, and it becomes difficult to realize a high capacity specific to an active material mainly composed of Ni.
  • the lithium composite oxide contains Mg and Ca as essential elements at the same time. The reason is not clear, but it is presumed that coexistence of Mg and Ca increases the effect of improving the stability of the lithium composite oxide crystals and improves the intermittent cycle characteristics. Since the ionic radii of Mg and Ca are close to the ionic radius of Ni, it is considered that they are easily replaced with Ni in the lithium composite oxide.
  • the range of z representing the content of the element M may be 0 ⁇ z ⁇ 0.5.
  • the power of 0.0001 ⁇ z ⁇ 0.4 is preferable, and the power of 0.001 ⁇ z ⁇ 0.35 is preferable. Even better! When 0.5 ⁇ z, the amount of element M becomes too large, and it becomes difficult to realize a high capacity peculiar to an active material mainly composed of Ni.
  • the lithium composite oxide represented by the above general formula can be synthesized by firing a raw material having a predetermined metal element ratio in an oxidizing atmosphere.
  • the raw materials include lithium, nickel, cobalt, calcium, magnesium, and the optional element M.
  • Raw materials are oxides, hydroxides, oxyhydroxides, carbonates, nitrates, and organic complex salts of each metal element Etc. These may be used alone or in combination of two or more.
  • the raw material preferably contains a solid solution containing a plurality of metal elements.
  • the solid solution containing a plurality of metal elements can be formed in any of oxides, hydroxides, oxyhydroxides, carbonates, nitrates, organic complex salts, and the like.
  • a solid solution containing Ni and Co, a solid solution containing Ni and element M, a solid solution containing Co and element M, and a solid solution containing Ni, Co and element M can be used.
  • the firing temperature of the raw material and the oxygen partial pressure of the oxidizing atmosphere depend on the composition of the raw material, the amount, the synthesis apparatus, and the like, but those skilled in the art can appropriately select appropriate conditions.
  • the present invention includes a form in which the surface layer portion of the active material particles has an element Md constituting a crystal structure different from that of the lithium composite oxide, and the element Md is the same element as the element Mc.
  • the element Md is a force element Md that is the same kind as the element Mc that is distributed in the surface layer of the active material particles.
  • the element Md is not dissolved in the lithium composite oxide.
  • the element Md mainly constitutes an oxide having a crystal structure different from that of the lithium composite oxide in the surface layer portion of the active material particles.
  • the element Mc contained in the lithium composite oxide is incorporated into the crystal structure of Li NiO.
  • the element Md is preferably deposited, attached or supported on the surface of the lithium composite oxide in the state of an oxide or a lithium-containing oxide.
  • the element Mc dissolved in the lithium composite oxide can be distinguished from the element Md, which has a different crystal structure from the lithium composite oxide, by various analytical methods including EPMA, XPS, and SIMS. It is.
  • the element Mc constituting the crystal structure of the lithium composite oxide and the element Md constituting a crystal structure different from the lithium composite oxide coexist.
  • the lithium-containing composite oxide is transformed into Ca, Mg, Mn, Al, B, W, Nb, Ta, In, Mo, Sn, Ti, Zr and It can be obtained by adding a raw material of at least one element selected from the group power consisting of Y and further firing.
  • Some of the elements added in the subsequent process are converted to element Md, which has a crystal structure different from that of the lithium composite oxide, while the rest are elements that dissolve in the lithium composite oxide. Is converted to According to such a method, the concentration of element Mc inevitably increases the active material. It becomes higher at the surface layer than in the interior of the particle. All of the elements added in the later process
  • the element Mc which dissolves in the lithium composite oxide, may be converted.
  • Sulfates, nitrates, carbonates, chlorides, hydroxides, oxides, alkoxides, and the like are preferably used as raw materials for elements to be added in the subsequent step. These may be used alone or in combination of two or more. Of these, it is particularly preferable to use sulfate, nitrate, salt or alkoxide in view of battery characteristics.
  • the amount of the element Md contained in the active material particles is preferably 2 mol% or less, more preferably 0.1 mol% or more and 1.5 mol% or less with respect to the lithium composite oxide.
  • the amount of elemental Md is 2.
  • the amount of element Md is preferably 2 mol% or less with respect to the lithium composite oxide.
  • element M is Mn, Al, B, W
  • a lithium composite oxide represented by at least one selected from the group consisting of Nb, Ta, In, Mo, Sn, Ti, Zr, and Y is prepared.
  • the method for preparing the lithium composite oxide is not particularly limited.
  • a lithium composite oxide can be synthesized by firing a raw material having a predetermined metal element ratio in an oxidizing atmosphere. The firing temperature, the oxygen partial pressure in the oxidizing atmosphere, and the like are appropriately selected according to the composition, amount of the raw material, the synthesis apparatus, and the like.
  • the prepared lithium composite oxide is loaded with a raw material of an element (surface coat element) that can be converted into the element Mc or Md.
  • the average particle size of the lithium composite oxide is not particularly limited, but is preferably 1 to 30 / ⁇ ⁇ , for example.
  • the raw material for the surface coat element contains at least one element selected from the group consisting of Ca, Mg, Mn, Al, B, W, Nb, Ta, In, Mo, Sn, Ti, Zr and Y. Out.
  • Raw materials for the surface coat element include sulfate, nitrate, carbonate, chloride, hydroxide, and oxide. , Alkoxide or the like is used.
  • the method for supporting the surface coating element material on the lithium composite oxide is not particularly limited. For example, it is preferable to dissolve or disperse the raw material of the surface coat element in the liquid component to prepare a solution or dispersion, mix this with the lithium composite oxide, and then remove the liquid component.
  • the liquid component for dissolving or dispersing the raw material of the surface coat element is not particularly limited, but ketones such as acetone and methyl ethyl ketone (MEK), ethers such as tetrahydrofuran (THF), alcohols such as ethanol, etc. Other organic solvents are preferred. Alkaline water having a pHIO to 14 can also be preferably used.
  • the temperature in the liquid is not particularly limited. However, for example, from the viewpoint of workability and manufacturing cost, it is preferable to control to 20 to 40 ° C.
  • the stirring time is not particularly limited, but for example, stirring for 3 hours is sufficient.
  • the method for removing the liquid component is not particularly limited, but for example, it is sufficient to dry it at a temperature of about 100 ° C. for about 2 hours.
  • the lithium composite oxide having a surface coat element supported on the surface is baked in an oxygen atmosphere at 650 to 750 ° C. for 2 to 24 hours, preferably about 6 hours.
  • the pressure in the oxygen atmosphere is preferably 101 to 50 KPa.
  • a positive electrode is formed using the active material particles.
  • the method for producing the positive electrode is not particularly limited. Generally, a positive electrode is produced in which a positive electrode mixture containing active material particles and a binder is supported on a belt-like positive electrode core material (positive electrode current collector). In addition, the positive electrode mixture can contain an additive such as a conductive material as an optional component. The positive electrode mixture is dispersed in a liquid component to prepare a paste, and the paste is applied to the core material and dried to support the positive electrode mixture on the core material.
  • thermoplastic resin examples include Polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene monohexafluoropropylene copolymer (FEP), tetrafluoroethylene par Fluoroalkyl buluene mono-terpolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, fluoridene fluoride-polychloroethylene copolymer, ethylene-tetrafluoro Oroethylene copolymer (ETFE), polychloroethylene (PCTFE), vinylidene fluoride pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene
  • the conductive material included in the positive electrode mixture may be any electron conductive material that is chemically stable in the battery.
  • natural graphite such as flake graphite
  • graphite such as artificial graphite
  • carbon black such as acetylene black, ketjen black
  • Conductive fibers, metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, organic conductive materials such as polyphenylene derivatives, fluorine Carbonized carbon or the like can be used. These may be used alone or in combination of two or more.
  • the addition amount of the conductive material is not particularly limited, but 1 to 50% by weight is preferable to 1 to 30% by weight and 2 to 15% by weight is more preferable to the active material particles contained in the positive electrode mixture. Is particularly preferred.
  • the positive electrode core material may be any electron conductor that is chemically stable in the battery.
  • a foil or sheet having strength such as aluminum, stainless steel, nickel, titanium, carbon, and conductive resin can be used.
  • aluminum foil, aluminum alloy foil and the like are preferable.
  • a layer of carbon or titanium is added, An oxide layer can also be formed. Unevenness can also be imparted to the surface of the foil or sheet. Nets, punching sheets, lath bodies, porous bodies, foams, fiber group molded bodies, and the like can also be used.
  • the thickness of the positive electrode core material is not particularly limited, but is, for example, in the range of 1 to 500 m.
  • the lithium ion secondary battery of the present invention is characterized in that it includes the positive electrode as described above, and other components are not particularly limited. Therefore, the following description does not limit the present invention.
  • the negative electrode capable of charging and discharging lithium includes, for example, a negative electrode core material that includes a negative electrode active material and a binder, and optionally includes a negative electrode mixture containing a conductive material and a thickener. Can be used. Such a negative electrode can be produced in the same manner as the positive electrode.
  • the negative electrode active material may be any material that can electrochemically charge and discharge lithium.
  • the lithium alloy is particularly preferably an alloy containing at least one selected from the group consisting of silicon, tin, aluminum, zinc and magnesium. It is more preferable that the metal oxide is hybridized with a carbon material in which an oxide containing silicon and an oxide containing tin are preferred.
  • the average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 30 / ⁇ ⁇ .
  • thermoplastic resin As the binder to be included in the negative electrode mixture, either thermoplastic resin or thermosetting resin may be used, but thermoplastic resin is preferable.
  • thermoplastic resins include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene monohexafluoropropylene copolymer.
  • FEP Tetrafluoroethylene perfluoroalkyl buluene mono-terpolymer
  • PFA Vinylidene fluoride-hexafluoropropylene copolymer
  • Bifluoride fluoride trifluoride trifluoride Fluoroethylene copolymer ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride pentafluoropropylene copolymer, propylene-tetrafluoro Fluoroethylene copolymer, Ethylene black trifluoroethylene copolymer (ECTFE), Polyvinylidene fluoride Safluoropropylene-tetrafluoroethylene copolymer, fluorinated vinylidene-perfluoromethylvinyl ether-tetrafluoroethylene copolymer, ethylene acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene
  • the conductive material included in the negative electrode mixture may be any electron-conductive material that is chemically stable in the battery.
  • natural graphite such as flake graphite
  • graphite such as artificial graphite
  • carbon black such as acetylene black, ketjen black
  • Conductive fibers, metal powders such as copper and nickel, organic conductive materials such as polyphenylene derivatives, and the like can be used. These may be used alone or in combination of two or more.
  • the amount of the conductive material added is not particularly limited, but is preferably 1 to 30% by weight, more preferably 1 to 10% by weight, based on the active material particles contained in the negative electrode mixture.
  • the negative electrode core material may be any electron conductor that is chemically stable in the battery.
  • a foil or sheet that has strength such as stainless steel, nickel, copper, titanium, carbon, and conductive resin can be used. Copper and copper alloys are particularly preferable.
  • a layer of carbon, titanium, nickel or the like or an oxide layer can be formed on the surface of the foil or sheet. Unevenness can also be imparted to the surface of the foil or sheet.
  • a net, a punching sheet, a lath body, a porous body, a foamed body, a fiber group molded body, and the like can also be used.
  • the thickness of the negative electrode core material is not particularly limited, but is, for example, in the range of 1 to 500 / ⁇ ⁇ .
  • non-aqueous electrolyte a non-aqueous solvent in which a lithium salt is dissolved is preferably used.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate ( ⁇ C), butylene carbonate (BC), dimethyl carbonate (DMC), jetinorecarbonate (DEC), ethinoremethinole.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate ( ⁇ C), butylene carbonate (BC), dimethyl carbonate (DMC), jetinorecarbonate (DEC), ethinoremethinole.
  • Chain carbonates such as carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate, ethyl propionate, ⁇ -petit oral ratatones, y-valerolatatatone Ratatons such as 1, 2-dimethoxyethane (DME), 1, 2 -Chain ethers such as diethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1, 3 dioxolane, formamide, Acetamide, dimethylformamide, dioxolane, acetonitrile, propyl-tolyl, nitromethane, ethyl monoglyme, triester phosphate, trimethoxymethane, dioxolane derivatives, sulfo
  • a mixed solvent of a cyclic carbonate and a chain carbonate or a mixed solvent of a cyclic carbonate, a chain force carbonate, and an aliphatic carboxylic acid ester is preferable.
  • LiCIO lithium salt dissolved in a non-aqueous solvent
  • LiB CI lower aliphatic lithium carboxylate, LiCl, LiBr, Lil, black mouth
  • lithium lithium tetraborate and lithium imide salts may be used alone or in combination of two or more, but at least LiPF
  • the amount of lithium salt dissolved in the non-aqueous solvent is not particularly limited.
  • the lithium salt concentration is preferably 0.2 to 2 molZL, more preferably 0.5 to 1.5 molZL.
  • additives can be added to the non-aqueous electrolyte for the purpose of improving the charge / discharge characteristics of the battery.
  • the additive for example, it is preferable to use at least one selected from the group power consisting of, for example, beylene carbonate, vinyl ethylene carbonate, phosphazene, and fluorobenzene.
  • An appropriate content of these additives is 0.5 to 20% by weight of the non-aqueous electrolyte.
  • a microporous thin film having a high ion permeability, a predetermined mechanical strength, and an insulating property is preferably used.
  • the microporous thin film preferably has a function of closing the pores at a certain temperature or higher and increasing the resistance.
  • polyolefins such as polypropylene and polyethylene having excellent organic solvent resistance and hydrophobic properties are preferably used. Sheets such as glass fibers, nonwoven fabrics, woven fabrics, etc. are also used.
  • the pore diameter of the separator is, for example, 0.01-1111.
  • the thickness of the separator is generally 10 to 300 m.
  • the separator porosity is generally 30-80%.
  • a nonaqueous electrolytic solution and a polymer electrolyte having a polymer material strength for holding the nonaqueous electrolytic solution can also be used as a separator integrated with a positive electrode or a negative electrode.
  • the polymer material can hold a non-aqueous electrolyte, but a copolymer of vinylidene fluoride and hexafluoropropylene is particularly preferred.
  • Nickel sulfate, cobalt sulfate, and aluminum sulfate were mixed so that the molar ratio of Ni atom, Co atom, and A1 atom was 80: 15: 4.96.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate.
  • the precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • Ni-Co-A1 coprecipitated hydroxide 3 kg was mixed with 784 g of lithium hydroxide, 0.49 g of calcium hydroxide, and 0.38 g of magnesium hydroxide, and the oxygen partial pressure was reduced. Baking was performed for 10 hours at a synthesis temperature of 750 ° C. in an atmosphere of 0.5 atm. As a result, Ni-Co-Mg-Ca-A1 lithium composite oxide (LiNi Co) with an average particle size of 12 ⁇ m containing A1 as element Me
  • First step 2 kg of the synthesized lithium complex oxide was dispersed in a solution in which pentaethoxytantalum was dissolved in 10 L of ethanol.
  • the amount of pentaethoxytantalum dissolved was 0.5 mol% with respect to the lithium composite oxide.
  • the ethanol solution in which the lithium composite oxide was dispersed was stirred at 25 ° C for 3 hours and then filtered, and the solid content was dried at 100 ° C for 2 hours.
  • a lithium composite oxide carrying tantalum (Ta) as a surface coating element on the surface was obtained.
  • the dried powder was pre-calcined at 300 ° C for 6 hours in a dry air atmosphere (humidity 19%, pressure lOlKPa).
  • the pre-fired powder was fired at 650 ° C. for 6 hours under a 100% oxygen atmosphere (pressure lOlKPa).
  • the Ta (element Mc) force dissolved in the lithium composite oxide is more distributed in the surface layer than in the active material particles.
  • the element map obtained by EPMA surface analysis of the active material particle cross section confirmed.
  • the active material particles (average particle diameter 12 m) 1 kg obtained, Kureha Chemical Co., Ltd. of PVDF # 132 0 (solid content 12 wt 0/0 of N- methyl - 2- pyrrolidone (NMP) solution) 0.
  • NMP N- methyl - 2- pyrrolidone
  • the mixture was stirred with a double-arm kneader to prepare a positive electrode mixture best.
  • This paste was applied to both sides of a 20 m thick aluminum foil, dried, and rolled to a total thickness of 160 m.
  • the obtained electrode plate is connected to a cylindrical 18650 battery case.
  • the positive electrode was obtained by slitting into a width that could be inserted into the case.
  • the positive electrode 5 and the negative electrode 6 were wound through a separator 7 to form a spiral electrode plate group.
  • a separator 7 a composite film of polyethylene and polypropylene (2300, 25 m thickness made by Selgard) was used.
  • a positive electrode lead 5a and a negative electrode lead 6a made of nickel were attached to the positive electrode 5 and the negative electrode 6, respectively.
  • An upper insulating plate 8a was disposed on the upper surface of the electrode plate group, and a lower insulating plate 8b was disposed on the lower surface.
  • Example Battery A1 The sealing plate 2 provided with the insulating gasket 3 around it was electrically connected to the positive electrode lead 5a, and the opening of the battery case 1 was sealed with the sealing plate 2. In this way, a cylindrical 18650 lithium secondary battery was completed. This is designated as Example Battery A1.
  • Battery A2 was produced in the same manner as Battery A1, except that the amount of pentaethoxytantalum dissolved in 10 L of ethanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • ethanol solution of pentaethoxytantalum is used in the first step of the synthesis of active material particles.
  • a battery A3 was produced in the same manner as the battery A1, except that a solution of aluminum (A1) triisopropoxide in 10 L of isopropanol was used instead of the liquid.
  • the amount of aluminum triisopropoxide was 0.5 mol% with respect to the lithium composite oxide.
  • Battery A4 was made in the same manner as Battery A3, except that the amount of aluminum triisopropoxide dissolved in 10 L of isopropanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • Battery A6 was made in the same manner as Battery A5, except that the amount of zirconium tetra-n-butoxide dissolved in 10 L of butanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • Battery A8 was made in the same manner as Battery A7, except that the amount of magnesium acetate dissolved in 1 L of ethanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • a battery A10 was produced in the same manner as the battery A9, except that the amount of indium nitrate dissolved in 1 L of ethanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • a battery A12 was produced in the same manner as the battery A1, except that the amount of tin sulfate dissolved in 10 g of distilled water was changed to 2. Omol% with respect to the lithium composite oxide.
  • a battery A13 was produced in the same manner as the battery All except that tin sulfate was changed to manganese sulfate (Mn).
  • Battery A14 was made in the same manner as Battery A12, except that tin sulfate was changed to manganese sulfate.
  • Battery A15 was made in the same manner as Battery All except that tin sulfate was changed to boric acid (B).
  • Battery A16 was made in the same manner as Battery A12, except that tin sulfate was changed to boric acid.
  • Battery A18 was made in the same manner as Battery A12, except that tin sulfate was changed to sodium tungstate.
  • a battery A19 was produced in the same manner as the battery All except that tin sulfate was changed to pentachloride-niobium (Nb).
  • Battery A20 was made in the same manner as Battery A12, except that tin sulfate was changed to pentachloride-niobium.
  • Battery A21 was made in the same manner as Battery All except that tin sulfate was changed to disodium molybdate dihydrate.
  • Battery A22 was made in the same manner as Battery A12, except that tin sulfate was changed to disodium molybdate dihydrate.
  • the discharge capacity after 500 cycles obtained with the first and second patterns is shown in Table 1A.
  • Nickel sulfate, cobalt sulfate, and aluminum sulfate were mixed so that the molar ratio of Ni atom, Co atom, and A1 atom was 80: 15: 4.98.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate.
  • the precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • 3 kg of the obtained Ni—Co—Al coprecipitated hydroxide was mixed with 784 g of lithium hydroxide and 0.49 g of calcium hydroxide, and in an atmosphere having an oxygen partial pressure of 0.5 atm. Firing was performed for 10 hours at a synthesis temperature of 750 ° C.
  • Ni—Co—Ca—A1 lithium composite oxide LiNi Co Ca Al O
  • Comparative example batteries al to a22 were produced in the same manner as Example batteries A1 to A22, respectively, except that they were used as raw materials for substance particles, and evaluated in the same manner as in Example 1. The results are shown in Table 1B.
  • Nickel sulfate, cobalt sulfate, and aluminum sulfate were mixed so that the molar ratio of Ni atom, Co atom, and Al atom was 80: 15: 4.98. 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution. Add 400 g of sodium hydroxide to the raw material solution to form a precipitate. Made. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • Ni—Co—A1 coprecipitated hydroxide 3 kg was mixed with 784 g of lithium hydroxide and 0.38 g of magnesium hydroxide, and in an atmosphere having an oxygen partial pressure of 0.5 atm. Baking for 10 hours at a synthesis temperature of 750 ° C. As a result, Ni—Co—Mg—A1 lithium complex oxide (LiNi Co Mg Al O) containing A1 as the element Me was obtained. This lithium composite oxide
  • Comparative Examples Batteries a23 to a44 were produced in the same manner as Example Batteries A1 to A22 except that was used as a raw material for the active material particles, and evaluated in the same manner as in Example 1. The results are shown in Table 1C.
  • Nickel sulfate, conol sulfate, aluminum sulfate and manganese sulfate were mixed so that the molar ratio of Ni atom, Co atom, Al atom and Mn atom was 80: 15: 3.96: 1. 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution. 400 g of sodium hydroxide was added to the raw material solution to form a precipitate. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated water oxide.
  • Ni-Co-Al-Mn coprecipitated hydroxide 784g of lithium hydroxide and lithium hydroxide, 0.49 g of calcium and 0.38 g of magnesium hydroxide were mixed and calcined at a synthesis temperature of 750 ° C. for 10 hours in an atmosphere having an oxygen partial pressure of 0.5 atm.
  • Ni—Co—Ca—Mg—Al—Mn lithium complex oxide LiNi Co C
  • This lithium composite oxide is used as a raw material for active material particles.
  • Example batteries Bl to B33 were prepared in the same manner as Example batteries A1 to A33, respectively, except for use in Example 1, and evaluated in the same manner as Example 1.
  • Nickel sulfate, conol sulfate, aluminum sulfate, and manganese sulfate were mixed so that the molar ratio of Ni atom, Co atom, A1 atom, and Mn atom was 80: 15: 4: 1.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate. Thoroughly wash the precipitate, dry it, and remove the coprecipitated hydroxide. Obtained.
  • Ni—Co—Al—Mn coprecipitated hydroxide was mixed with 784 g of lithium hydroxide, and in an atmosphere having an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C., Baked for 10 hours. As a result, Ni—Co—A1—Mn lithium composite oxide (LiNiCoAlMnO) containing A1 and Mn as element Me was obtained. This lithium composite oxide is used as a raw material for active material particles.
  • Comparative example batteries bl to b22 were produced in the same manner as in Example batteries B1 to B22, respectively, and evaluated in the same manner as in Example 1. The results are shown in Table 2B.
  • Nickel sulfate, conoleate sulfate, aluminum sulfate and niobium nitrate were mixed. 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution. 400 g of sodium hydroxide was added to the raw material solution to form a precipitate. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • This lithium composite oxide is used as a raw material for active material particles.
  • Example batteries Cl to C33 were produced in the same manner as Example batteries A1 to A33, respectively, except that they were used in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 3A.
  • Example battery cl c22 Nickel sulfate, conolate sulfate, aluminum sulfate, and niobium nitrate were mixed so that the molar ratio of Ni, Co, Al, and Nb atoms was 80: 15: 4: 1. 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution. 4 OOg of sodium hydroxide was added to the raw material solution to form a precipitate. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • Ni-Co-Al-Nb coprecipitated hydroxide 3 kg was mixed with 784 g of lithium hydroxide, and in an atmosphere having an oxygen partial pressure of 0.5 atm.
  • Ni—Co—Al—Nb lithium complex oxide containing Al and Nb as elemental Me LiNi Co A
  • Example batteries C1 to C22 comparative example batteries cl to c22 were prepared and evaluated in the same manner as Example 1. The results are shown in Table 3B.
  • Nickel sulfate, cobalt sulfate, and titanium sulfate were mixed so that the molar ratio of Ni atom, Co atom, and Ti atom was 75: 15: 9.96.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate.
  • the precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • Ni—Co—Ti coprecipitated hydroxide was mixed with 784 g of lithium hydroxide, 0.49 g of calcium hydroxide and 0.38 g of magnesium hydroxide and mixed with an oxygen partial pressure. Is 0.5 atm Baking for 10 hours at a synthesis temperature of 750 ° C in an atmosphere. As a result, Ni—Co—Ca—Mg—Ti lithium complex oxide containing Ti as element Me (LiNi Co Ca Mg Ti
  • Example batteries D1 to D33 were prepared in the same manner as the example batteries A1 to A33, and evaluated in the same manner as in Example 1. The results are shown in Table 4.
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed so that the molar ratio of Ni atom, Co atom, and Mn atom was 75: 15: 9.96.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • Ni—Co—Mn coprecipitated hydroxide was mixed with 784 g of lithium hydroxide, 0.49 g of calcium hydroxide, and 0.38 g of magnesium hydroxide and mixed with oxygen content. Firing was carried out for 10 hours at a synthesis temperature of 750 ° C. in an atmosphere where the pressure was 0.5 atm.
  • Ni-Co-Ca-Mg-Mn lithium composite oxide containing Ti as element Me LiNi Co Ca Mg Mn
  • Example batteries E1 to E33 were produced in the same manner as Example batteries A1 to A33, respectively, and evaluated in the same manner as in Example 1. The results are shown in Table 5.
  • Nickel sulfate, cobalt sulfate, and niobium nitrate were mixed so that the molar ratio of Ni atom, Co atom, and Nb atom was 75: 15: 9.96.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • Ni—Co—Nb coprecipitated hydroxide was mixed with 784 g of lithium hydroxide, 0.49 g of calcium hydroxide, and 0.38 g of magnesium hydroxide and mixed with oxygen content. Firing was carried out for 10 hours at a synthesis temperature of 750 ° C. in an atmosphere where the pressure was 0.5 atm.
  • Ni—Co—Ca—Mg—Nb lithium complex oxide containing Ti as element Me LiNi Co Ca Mg Nb
  • Example batteries F1 to F33 were produced in the same manner as Example batteries A1 to A33, and evaluated in the same manner as in Example 1. The results are shown in Table 6.
  • Nickel sulfate and cobalt sulfate were mixed so that the molar ratio of Ni atom to Co atom was 80:20. 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution. 400 g of sodium hydroxide was added to the raw material solution to form a precipitate. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide. [0122] 3 kg of the obtained Ni-Co coprecipitated hydrolyzed acid was mixed with 784 g of lithium hydroxide, and in an atmosphere with an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C for 10 hours. Baked. As a result, Ni—Co lithium composite oxide (LiNi Co 2 O 3) was obtained. Utilizing this lithium complex oxide
  • Comparative example batteries gl to g22 were prepared in the same manner as Example batteries A1 to A22, respectively, except that they were used as material particles, and evaluated in the same manner as Example 1. The results are shown in Table 7.
  • Nickel sulfate and magnesium sulfate were mixed so that the molar ratio of Ni atoms to Mg atoms was 80:20. 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution. 400 g of sodium hydroxide was added to the raw material solution to form a precipitate. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide. [0125] 3 kg of the obtained Ni-Mg co-precipitated hydrolyzed acid was mixed with 784 g of lithium hydroxide, and in an atmosphere with an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C for 10 hours. Baked. As a result, Ni—Mg lithium composite oxide (LiNi Mg 2 O 3) was obtained. This lithium composite oxide
  • each of the comparative batteries hi to! ⁇ 22 was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 8.
  • Nickel sulfate and calcium sulfate were mixed so that the molar ratio of Ni atom to Ca atom was 80:20. 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution. 400 g of sodium hydroxide was added to the raw material solution to form a precipitate. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide. [0128] 3 kg of the obtained Ni-Ca coprecipitated hydrolyzed acid was mixed with 784 g of lithium hydroxide, and in an atmosphere with an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C for 10 hours. Baked. As a result, Ni—Ca lithium composite oxide (LiNi Ca 2 O 3) was obtained. This lithium composite oxide
  • Comparative batteries il to i22 were produced in the same manner as Example batteries A1 to A22, respectively, except that they were used as raw materials for porous particles, and evaluated in the same manner as in Example 1. The results are shown in Table 9.
  • Nickel sulfate, cobalt sulfate, and magnesium sulfate were mixed so that the molar ratio of Ni atom, Co atom, and Mg atom was 80: 15: 5.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate.
  • the precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • 3 kg of the obtained Ni—Co—Mg coprecipitated hydroxide was mixed with 784 g of lithium hydroxide, and in an atmosphere having an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C., Baked for 10 hours. As a result, a Ni—Co—Mg lithium composite oxide (LiNi Co Mg O) was obtained.
  • Comparative example batteries jl to j22 were produced in the same manner as Example batteries A1 to A22, respectively, except that the composite oxide was used as a raw material for the active material particles, and evaluated in the same manner as in Example 1. The results are shown in Table 10.
  • Nickel sulfate, cobalt sulfate, and calcium sulfate were mixed so that the molar ratio of Ni atom, Co atom, and Ca atom was 80: 15: 5.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • Ni—Co—Ca coprecipitated hydroxide 3 kg was mixed with 784 g of lithium hydroxide, and in an atmosphere having an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C., Baked for 10 hours. As a result, Ni—Co—Ca lithium complex oxide (LiNi Co Ca 2 O 3) was obtained. This lithium compound
  • Comparative example batteries kl to k22 were produced in the same manner as Example batteries A1 to A22, respectively, except that the composite oxide was used as a raw material for the active material particles, and evaluated in the same manner as in Example 1. The results are shown in Table 11.
  • Nickel sulfate, magnesium sulfate, and calcium sulfate were mixed so that the molar ratio of Ni atom, Mg atom, and Ca atom was 80: 15: 5. Dissolve 3.2 kg of this mixture in 10 L of water. The raw material solution was obtained. 400 g of sodium hydroxide was added to the raw material solution to form a precipitate. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • Ni-Mg-Ca co-precipitated hydroxide 3 kg was mixed with 784 g of lithium hydroxide, and in an atmosphere having an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C, Baked for 10 hours. As a result, Ni—Mg—Ca lithium composite oxide (LiNi Mg Ca 2 O 3) was obtained. This lithium
  • Comparative example batteries 11 to 122 were produced in the same manner as in example batteries A1 to A22, respectively, except that the composite oxide was used as a raw material for the active material particles, and evaluated in the same manner as in example 1. The results are shown in Table 12.
  • a battery m2 was produced in the same manner as the battery A1, except that an isopropanol solution of diisopropoxyconolate was used instead of the ethanol solution of pentaethoxytantalum. Then, the evaluation was made in the same manner as in Example 1. The results are shown in Table 13.
  • a battery m3 was prepared in the same manner as the battery A1, except that an ethanol solution of ethoxystrontium was used instead of an ethanol solution of pentaethoxytantalum. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 13.
  • LiNi Co Ca Mg Al Mn O was used as the lithium composite oxide.
  • Batteries nl to n3 were prepared in the same manner as the batteries ml to m3 except for 0.8 0.15 0.0002 0.0002 0.0396 0.01 2 and evaluated in the same manner as in Example 1. The results are shown in Table 13.
  • batteries ol to o3 were prepared in the same manner as batteries ml to m3, and evaluated in the same manner as in Example 1. The results are shown in Table 13.
  • Batteries pl to p3 were produced in the same manner as the batteries ml to m3, and evaluated in the same manner as in Example 1. The results are shown in Table 14.
  • LiNi Co Ca Mg Mn O was used as the lithium composite oxide.
  • the batteries ql to q3 were prepared in the same manner as the batteries ml to m3, and evaluated in the same manner as in Example 1. The results are shown in Table 14.
  • Batteries rl to r3 were produced in the same manner as the batteries ml to m3, and evaluated in the same manner as in Example 1. The results are shown in Table 14.
  • the present invention is useful in a lithium ion secondary battery containing a lithium composite oxide containing nickel as a main component as a positive electrode active material. According to the present invention, it is possible to further improve the cycle characteristics when repeating an intermittent cycle (a charge / discharge cycle in which the rest time after charging is set longer) assuming actual use conditions. .
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited. Any shape such as a tongue shape, a sheet shape, a cylindrical shape, a flat shape, and a square shape may be used.
  • the form of the electrode plate group including the positive electrode, the negative electrode, and the separator may be a wound type or a laminated type.
  • the size of the battery may be small for a small portable device or large for an electric vehicle.
  • the lithium ion secondary battery of the present invention can be used as a power source for, for example, a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle, an electric vehicle, and a hybrid electric vehicle.
  • the application is not particularly limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウムイオン二次電池の正極は、LivNi1-w-x-y-zCowCaxMgyMzO2(0.85≦v≦1.25、0<w≦0.75、0<x≦0.1、0<y≦0.1、0≦z≦0.75、0<w+x+y+z≦0.80、元素Mは、Co、CaおよびMg以外の元素)で表されるリチウム複合酸化物を含む活物質粒子を含み、(i)0<zの場合、元素Mは、Mn、Al、B、W、Nb、Ta、In、Mo、Sn、Ti、ZrおよびYよりなる群から選択される少なくとも1種の元素Meを含み、Ca、Mgおよび元素Meよりなる群から選択される少なくとも1種の元素Mcが、活物質粒子の内部に比べ、表層部に多く分布し、(ii)0=zの場合、CaおよびMgよりなる群から選択される少なくとも1種の元素Mcが、活物質粒子の内部に比べ、表層部に多く分布する。

Description

明 細 書
リチウムイオン二次電池
技術分野
[0001] 本発明は、寿命特性に優れたリチウムイオン二次電池に関する。
背景技術
[0002] 非水電解液二次電池を代表するリチウムイオン二次電池は、起電力が高ぐ高エネ ルギー密度であるため、移動体通信機器や携帯電子機器の主電源としての需要が 拡大している。現在、市販されているリチウムイオン二次電池の大半は、正極活物質 としてコバルトを主成分とするリチウム複合酸ィ匕物(例えば Li CoO (xは電池の充放
2
電によって変化する))を用いている。しかし、コノ レトを主成分とするリチウム複合酸 化物は、原料に用いるコバルト化合物の価格が高いため、コスト削減が難しい。
[0003] 低コストィ匕を図る観点から、リチウムコノ レト酸ィ匕物の代替品となる種々の正極活物 質の研究開発がなされている。特に、ニッケルを主成分とするリチウム複合酸化物( 例えば Li NiO (xは電池の充放電によって変化する) )の研究が精力的に行われて
2
いる。
[0004] 低コストィ匕だけでなぐリチウムイオン二次電池の信頼性を高めることも重要である。
Li CoOや Li NiOなどのリチウム複合酸ィ匕物は、充電時に、反応性の高い高価数 2 2
状態の Co4+や Ni4+を含む。このことに起因して、高温環境下では、リチウム複合酸ィ匕 物が関与する電解液の分解反応が促進され、電池内でガスが発生し、寿命特性が 低下する。充電状態における電解液との反応性は、 Li CoOよりも Li NiOの方が高
2 2 いことが知られている。また、 Li CoOや Li NiOなどのリチウム複合酸化物は、 Coや
2 2
Niの酸ィ匕数が高い状態では、結晶構造が不安定である。よって、充放電サイクルを 繰り返すと、結晶構造が徐々に崩れてしまい、十分なサイクル特性が得られず、寿命 特性が低下する。
[0005] 電解液の分解反応を抑制するために、正極活物質の表面に特定の金属酸化物か らなる被膜を形成し、リチウム複合酸化物が関与する電解液の分解反応を抑制する ことが提案されている(特許文献 1〜5)。また、リチウム複合酸ィ匕物に異種元素を固 溶させること〖こより、リチウム複合酸化物の結晶構造を安定化させ、サイクル特性や高 温保存特性を向上させることも提案されて!ヽる (特許文献 6〜8)。
[0006] 特許文献 1:特許第 3543437号公報
特許文献 2 :特開平 11 317230号公報
特許文献 3:特開平 11― 16566号公報
特許文献 4:特開 2001— 196063号公報
特許文献 5 :特開 2003— 173775号公報
特許文献 6:特開 2004 - 111076号公報
特許文献 7:特開平 11—40154号公報
特許文献 8:特開 2002— 15740号公報
発明の開示
発明が解決しょうとする課題
[0007] 上述のように、ガス発生を抑制し、サイクル特性や高温保存特性を改善する提案は 多くなされている力 これらの技術には、以下のような改善すべき点がある。
リチウムイオン二次電池の多くは、各種携帯機器に使用される。各種携帯機器は、 常に、電池の充電後、直ちに使用されるわけではない。電池が長期間、充電状態の ままで維持され、その後に放電される場合も多い。しかし、電池のサイクル寿命特性 は、一般的に、このような実際の使用条件とは異なる条件で評価されているのが実情 である。
[0008] 例えば、一般的なサイクル寿命試験は、充電後のレスト (休止)時間の短!ヽ条件 (た とえば、レスト時間 30分)で行われている。このような条件で評価を行う場合であれば 、従来カゝら提案されている上記技術により、ある程度までサイクル寿命特性の向上を 図ることができる。
[0009] しかし、実際の使用条件を想定して、間欠サイクル (充電後のレスト時間を長く設定 した充放電サイクル)を繰り返す場合は別である。例えばレスト時間が 720分のサイク ル寿命試験を行うと、上記のいずれの技術によっても、十分な寿命特性が得られな い場合がある。すなわち、従来のリチウムイオン二次電池には、間欠サイクル特性の 改善と 、う課題が残されて 、る。 課題を解決するための手段
[0010] 本発明は、上記を鑑み、ニッケルを主成分とするリチウム複合酸化物を正極活物質 として含むリチウムイオン二次電池において、間欠サイクル特性を高めることを目的と する。
[0011] すなわち、本発明は、充放電可能な正極、充放電可能な負極、および、非水電解 液を有し、正極は、活物質粒子を含み、活物質粒子は、リチウム複合酸化物を含み、 リチウム複合酸化物は、 Li Ni Co Ca Mg M O (ただし、 0. 85≤v≤l. 25、 v 1-w-x-y-z w x y z 2
0<w≤0. 75, 0<x≤0. 1, 0<y≤0. 1, 0≤z≤0. 5, 0<w+x+y+z≤0. 80 、元素 Mは、 Co、 Caおよび Mg以外のアルカリ土類元素、遷移元素、希土類元素、 II lb族元素および IVb族元素よりなる群力 選択される少なくとも 1種の元素)で表され、
(i) 0< zの場合、
元素 Mは、 Mn、 Al、 B、 W、 Nb、 Ta、 In、 Mo、 Sn、 Ti、 Zrおよび Yよりなる群から 選択される少なくとも 1種の元素 Meを少なくとも含み、 Ca、 Mgおよび元素 Meよりな る群力 選択される少なくとも 1種の元素 Mcが、活物質粒子の内部に比べ、表層部 に多く分布しており、
(ii) 0 = zの場合、
Caおよび Mgよりなる群力 選択される少なくとも 1種の元素 Mcが、活物質粒子の 内部に比べ、表層部に多く分布している、リチウムイオン二次電池に関する。
[0012] 活物質粒子の平均粒径は、 10 μ m以上であることが好まし 、。
前記リチウム複合酸ィ匕物は、 Li NiOの結晶構造を有し、かつ、 Co、 Caおよび Mg
2
を必須成分として含み、元素 Mを任意成分として含む固溶体である。すなわち、 Li N iOの結晶構造のうち、 Niサイトの一部は、 Co、 Caおよび Mgにより置換されており、
2
固溶体が元素 Mを含む場合には、さらに、元素 Mにより置換されている。
[0013] 本発明は、活物質粒子の表層部が、リチウム複合酸ィ匕物とは異なる結晶構造を構 成する元素 Mdを有し、元素 Mdが元素 Mcと同じ元素である形態を含む。活物質粒 子の表層部において、元素 Mdは、リチウム複合酸化物とは異なる結晶構造を有する 酸ィ匕物を構成していることが好ましい。元素 Mdの量は、リチウム複合酸化物に対して 、 2mol%以下であることが好ましい。 [0014] 非水電解液は、ビ-レンカーボネート、ビュルエチレンカーボネート、フォスファゼン およびフルォロベンゼンよりなる群力 選択される少なくとも 1種を含むことが好ましい
発明の効果
[0015] 本発明によれば、ニッケルを主成分とするリチウム複合酸化物を正極活物質として 含むリチウムイオン二次電池において、間欠サイクル特性を従来よりも高めることがで きる。
ニッケルを主成分とするリチウム複合酸化物に、少なくとも Co、 Caおよび Mgを固溶 させ、さらに、元素 Mcを活物質粒子の内部に比べ、表層部に多く分布させることによ り、間欠サイクル特性が飛躍的に向上する理由は、現時点では、現象論的にしか把 握できていない。
[0016] しかし、ニッケルを主成分とするリチウム複合酸化物に、 Co、 Caおよび Mgを固溶さ せただけでは、間欠サイクル特性は、ほとんど向上しない。また、元素 Mcを活物質粒 子の内部に比べ、表層部に多く分布させただけでも、間欠サイクル特性は、ほとんど 向上しない。一方、これらの技術を組み合わせると、間欠サイクル特性が劇的に向上 することが、種々の実験により確認されている。
[0017] ニッケルを主成分とするリチウム複合酸化物に、 Coのみ、 Mgのみ、 Caのみ、 Coと C aのみ、 Coと Mgのみ、 Caと Mgのみ、を固溶させた場合にも、間欠サイクル特性は、 ほとんど向上しないことが見出されている。さらに、元素 Mc以外の元素を活物質粒 子の内部に比べ、表層部に多く分布させたとしても、間欠サイクル特性は、ほとんど 向上しな!、ことも見出されて!/、る。
[0018] 本発明の典型的な形態においては、活物質粒子の表層部が、リチウム複合酸化物 とは異なる結晶構造を構成する元素 Mdを含んでおり、元素 Mdは元素 Mcと同じ元 素である。様々な要因により、活物質粒子の表層部に多く存在する元素 Mc (すなわ ちリチウム複合酸化物の結晶構造を構成する元素)は、元素 Md (すなわちリチウム複 合酸化物とは異なる結晶構造を構成する元素)に変化する場合がある。活物質粒子 の表層部に存在する元素 Mdが、リチウム複合酸化物に拡散して、元素 Mcに変化す る場合もある。ただし、リチウム複合酸ィ匕物に固溶した元素 Mcと、リチウム複合酸ィ匕 物とは異なる結晶構造を構成する元素 Mdとは、様々な分析方法により、明確に区別 することが可能である。
[0019] 元素 Mdが、どのような状態で活物質粒子の表層部に含有されているかを明確に分 析することは、現時点では困難である。ただし、元素 Mdが、リチウム複合酸化物とは 結晶構造の異なる酸ィ匕物もしくはリチウム含有酸化物の状態で存在することは、様々 な分析手法で確認することができる。分析手法としては、 EPMA (電子線マイクロア ナライザ: Electron Probe Micro-Analysis)による元素マッピング、 XPS (X線光電子 分光分析: X- rayPhotoelectron Spectroscopy)による化学結合状態の解析、 SIMS ( 二次ィ才ン質愈分 ^Π": Secondary IonizationMass Spectroscopy)による表面糸且成分 等が挙げられる。
図面の簡単な説明
[0020] [図 1]本発明の実施例に係る円筒形リチウムイオン二次電池の縦断面図である。
発明を実施するための最良の形態
[0021] 本発明に係る正極について説明する。正極には、以下のような活物質粒子が含ま れている。
活物質粒子は、ニッケルを主成分とするリチウム複合酸化物を含む。リチウム複合 酸ィ匕物の形態は特に限定されな 、が、例えば一次粒子の状態で活物質粒子を構成 する場合と、二次粒子の状態で活物質粒子を構成する場合がある。複数の活物質粒 子が凝集して、二次粒子を形成していてもよい。活物質粒子の平均粒径は、特に限 定されないが、例えば 1〜30 /ζ πιが好ましぐ 10〜30 mが特に好ましい。平均粒 径は、例えばマイクロトラック社製の湿式レーザー粒度分布測定装置等により測定す ることができる。体積基準の粒度分布における 50%値 (メディアン値: D )を、活物質
50
粒子の平均粒径と見なすことができる。
[0022] リチウム複合酸化物は、一般式: Li Ni Co Ca Mg M O (ただし、 0. 85≤v v 1-w-x-y-z w x y z 2
≤1. 25, 0<w≤0. 75, 0< x≤0. 1, 0<y≤0. 1, 0≤z≤0. 5、 0く w+x+y+ z≤0. 80、元素 Mは、 Co、 Caおよび Mg以外のアルカリ土類元素、遷移元素、希土 類元素、 nib族元素および IVb族元素よりなる群力 選択される少なくとも 1種の元素) で表される。 [0023] 0< zの場合、リチウム複合酸化物は、元素 Mとして、少なくとも、 Mn、 Al、 B、 W、 N b、 Ta、 In、 Mo、 Sn、 Ti、 Zrおよび Yよりなる群から選択される少なくとも 1種の元素 Meを含む。元素 Meは、 Mn、 Al、 B、 W、 Nb、 Ta、 In、 Mo、 Sn、 Ti、 Zrおよび Yの いずれか 1種でもよぐ 2種以上でもよい。元素 Meは、実際にリチウム複合酸化物に 含まれている元素である。元素 Mとして列挙した Mn、 Al、 B、 W、 Nb、 Ta、 In、 Mo、 Sn、 Ti、 Zrおよび Yは、 0く zの場合に、リチウム複合酸化物の必須元素の候補とな る。 0く zの場合、 Ca、 Mgおよび元素 Meよりなる群力も選択される少なくとも 1種の 元素 Mcは、活物質粒子の内部よりも、表層部に多く分布している。
[0024] 0 = zの場合、リチウム複合酸化物は、一般式: Li Ni Co Ca Mg O (ただし、 v 1-w-x-y-z w x y 2
0. 85≤v≤l. 25, 0<w≤0. 75, 0<x≤0. 1, 0<y≤0. 1, 0<w+x+y≤0. 8 0)で表される。この場合、 Caおよび Mgよりなる群カゝら選択される少なくとも 1種の元 素 Mcが、活物質粒子の内部よりも、表層部に多く分布している。
ここで、 Li含有量を表す Vの範囲は、電池の充放電により増減する。完全放電状態 もしくは初期状態 (リチウム複合酸ィ匕物の合成直後)における Xの範囲は、 0. 85≤v ≤1. 25であればよいが、 0. 93≤v≤l. 1が好ましい。 Coは、必須成分であり、リチ ゥム複合酸ィ匕物に不可逆容量低減の効果を与える。 Caおよび Mgも、必須成分であ り、リチウム複合酸ィ匕物に熱安定性向上の効果を与える。元素 Meは、リチウム複合 酸ィ匕物に熱安定性向上の効果を与える。元素 Meは、更に、活物質粒子の表層部に 多く分布することで、リチウム複合酸化物に間欠サイクル特性向上の効果を与える。 この効果は、 Caや Mgが活物質粒子の表層部に多く分布する場合にも発現する。
[0025] Co含有量を表す wの範囲は、 0<w≤0. 75であればよい。ただし、十分な不可逆 容量低減の効果を得る観点からは、 0. 05≤w≤0. 25であることが好ましぐ 0. 08 ≤w≤0. 20であることが更に好ましい。 0. 75く wになると、 Co量が多くなり過ぎて、 低コスト化のメリットがなくなる。 Niを主成分とする活物質に特有の高容量を実現する ことも困難になる。
[0026] Ca含有量を表す Xの範囲は、 0<x≤0. 1であればよい。ただし、リチウム複合酸化 物に十分な熱安定性向上の効果を与え、更に、リチウム複合酸ィ匕物に間欠サイクル 特性向上の効果を与える観点からは、 0. 00002≤x≤0. 1であることが好ましぐ 0. 0001≤x≤0. 05もしくは 0. 001≤x≤0. 005であること力 ^更に好まし!/、。 0. Kx になると、 Ca量が多くなり過ぎて、 Niを主成分とする活物質に特有の高容量を実現 することが困難になる。
[0027] Mg含有量を表す yの範囲は、 0<y≤0. 1であればよい。ただし、リチウム複合酸 化物に十分な熱安定性向上の効果を与え、更に、リチウム複合酸化物に間欠サイク ル特性向上の効果を与える観点からは、 0. 00002≤y≤0. 1であることが好ましぐ 0. 0001≤y≤0. 05もしくは 0. 001≤x≤0. 005であること力更に好まし!/、。 0. 1 <yになると、 Mg量が多くなり過ぎて、 Niを主成分とする活物質に特有の高容量を実 現することが困難になる。
[0028] リチウム複合酸化物は、 Mgと Caとを同時に必須元素として含む。理由は定かでは ないが、 Mgと Caとを共存させることにより、リチウム複合酸ィ匕物の結晶の安定性を向 上させる効果が高められ、間欠サイクル特性が向上すると推測される。 Mgおよび Ca のイオン半径は、 Niのイオン半径に近いため、リチウム複合酸化物の Niと置換され やすいと考えられる。
[0029] 元素 Mの含有量を表す zの範囲は、 0≤z≤0. 5であればよい。ただし、リチウム複 合酸ィ匕物に間欠サイクル特性向上の効果を与える観点からは、 0. 0001≤z≤0. 4 であること力好ましく、 0. 001≤z≤0. 35であること力更に好まし!/、。 0. 5< zになる と、元素 Mの量が多くなり過ぎて、 Niを主成分とする活物質に特有の高容量を実現 することが困難になる。
[0030] リチウム複合酸ィ匕物における Liおよび Ni以外の金属元素の含有量は、 0<w+x + y + z≤0. 80を満たせば、よ!/、。ただ、し、 0. 05≤w+x+y+z≤0. 5であること力好ま しく、 0. l≤w+x+y+z≤0. 35であることが更に好ましい。 0. 8く w+x+y+zに なると、 Li以外の金属に占める Niの割合力 20原子%未満になり、望むべき容量が 得られなくなる。
[0031] 上記一般式で表されるリチウム複合酸化物は、所定の金属元素比を有する原料を 酸化雰囲気中で焼成することにより、合成することができる。原料には、リチウム、 -ッ ケル、コバルト、カルシウム、マグネシウム、任意成分である元素 Mが含まれる。原料 は、各金属元素の酸化物、水酸化物、ォキシ水酸化物、炭酸塩、硝酸塩、有機錯塩 などを含む。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
[0032] リチウム複合酸化物の合成を容易にする観点力 は、原料が複数の金属元素を含 有する固溶体を含むことが好ましい。複数の金属元素を含む固溶体は、酸化物、水 酸化物、ォキシ水酸化物、炭酸塩、硝酸塩、有機錯塩などの何れにおいても形成可 能である。例えば Niと Coを含む固溶体、 Niと元素 Mを含む固溶体、 Coと元素 Mを 含む固溶体、 Niと Coと元素 Mを含む固溶体などを用いることができる。
[0033] 原料の焼成温度と酸化雰囲気の酸素分圧は、原料の組成、量、合成装置などに依 存するが、当業者であれば適宜適切な条件を選択可能である。
[0034] 本発明は、活物質粒子の表層部が、リチウム複合酸ィ匕物とは異なる結晶構造を構 成する元素 Mdを有し、元素 Mdが元素 Mcと同じ元素である形態を含む。元素 Mdは 、活物質粒子の表層部に多く分布する元素 Mcと同種である力 元素 Mdは、リチウム 複合酸ィ匕物に固溶しているわけではない。元素 Mdは、活物質粒子の表層部におい て、主に、リチウム複合酸化物とは異なる結晶構造を有する酸化物を構成している。 一方、リチウム複合酸ィ匕物に含まれる元素 Mcは、 Li NiOの結晶構造に組み込まれ
2
ており、固溶体を形成している。
元素 Mdは、酸化物もしくはリチウム含有酸化物の状態で、リチウム複合酸化物の 表面に析出し、もしくは付着し、もしくは担持されていることが好ましい。リチウム複合 酸化物に固溶した元素 Mcと、リチウム複合酸化物とは異なる結晶構造を構成する元 素 Mdとは、 EPMA、 XPS、 SIMSを始めとする様々な分析手法により、区別すること が可能である。
[0035] 活物質粒子の表層部には、リチウム複合酸化物の結晶構造を構成する元素 Mcと、 リチウム複合酸ィ匕物とは異なる結晶構造を構成する元素 Mdとが共存して 、る。この ような状態は、例えば、リチウム複合酸化物を合成した後、リチウム含有複合酸化物 に、 Ca、 Mg、 Mn、 Al、 B、 W、 Nb、 Ta、 In, Mo、 Sn、 Ti、 Zrおよび Yよりなる群力ら 選択される少なくとも 1種の元素の原料を添加して、更に焼成することにより得ること ができる。後の工程で添加した元素の一部は、リチウム複合酸ィ匕物とは異なる結晶構 造を構成する元素 Mdに変換されるが、残りは、リチウム複合酸化物中に固溶する元 素 Mcに変換される。このような方法によれば、元素 Mcの濃度は、必然的に、活物質 粒子の内部に比べ、表層部で高くなる。なお、後の工程で添加した元素のすべてが
、リチウム複合酸化物中に固溶する元素 Mcに変換されてもょ 、。
[0036] 後の工程で添加する元素の原料には、硫酸塩、硝酸塩、炭酸塩、塩化物、水酸ィ匕 物、酸化物、アルコキシドなどが好ましく用いられる。これらは単独で用いてもよぐ 2 種以上を組み合わせて用いてもよい。これらのうちでは、電池特性上、硫酸塩、硝酸 塩、塩ィ匕物もしくはアルコキシドを用いることが特に好まし 、。
[0037] 活物質粒子に含まれる元素 Mdの量は、リチウム複合酸化物に対して、 2mol%以 下が好ましぐ 0. lmol%以上、 1. 5mol%以下が更に好ましい。元素 Mdの量が 2.
Omol%を超えると、活物質粒子の表面の多くが反応に寄与しない酸ィ匕物で覆われ てしまう場合がある。よって、良好な電池反応を維持する観点から、元素 Mdの量は、 リチウム複合酸化物に対して、 2mol%以下が好ましい。
[0038] 次に、正極の製造法の一例(0< zの場合)について説明する。
(i)第 1ステップ
一般式 Li Ni Co Ca Mg M O (ただし、 0. 85≤v≤l . 25, 0<w≤0. 75、 v 1-w-x-y-z w x y z 2
0<x≤0. 1, 0<y≤0. 1, 0≤z≤0. 5, 0<w+x+y+z≤0. 78、元素 Mは、 Mn 、 Al、 B、 W、 Nb、 Ta、 In、 Mo、 Sn、 Ti、 Zrおよび Yよりなる群から選択される少なく とも 1種)で表されるリチウム複合酸化物を調製する。リチウム複合酸化物の調製方法 は特に限定されない。例えば、所定の金属元素比を有する原料を酸化雰囲気中で 焼成することにより、リチウム複合酸化物を合成することができる。焼成温度、酸化雰 囲気における酸素分圧などは、原料の組成、量、合成装置などに応じて適宜選択さ れる。
[0039] (ii)第 2ステップ
調製したリチウム複合酸化物に、元素 Mcもしくは Mdに変換される元素(表面コート 元素)の原料を担持させる。その際、リチウム複合酸ィ匕物の平均粒径は、特に限定さ れないが、例えば 1〜30 /ζ πιが好ましい。表面コート元素の原料は、 Ca、 Mg、 Mn、 Al、 B、 W、 Nb、 Ta、 In、 Mo、 Sn、 Ti、 Zrおよび Yよりなる群から選択される少なくと も 1種の元素を含んで!/、る。
[0040] 表面コート元素の原料には、硫酸塩、硝酸塩、炭酸塩、塩化物、水酸化物、酸ィ匕物 、アルコキシドなどを用いる。表面コート元素の原料をリチウム複合酸化物に担持させ る方法は、特に限定されない。例えば、表面コート元素の原料を、液状成分に溶解も しくは分散させて、溶液もしくは分散液を調製し、これをリチウム複合酸化物と混合し たのち、液状成分を除去することが好ましい。
[0041] 表面コート元素の原料を溶解もしくは分散させる液状成分は、特に限定されないが 、アセトン、メチルェチルケトン(MEK)などのケトン類、テトラヒドロフラン(THF)など のエーテル類、エタノール等のアルコール類、その他の有機溶媒が好ましい。 pHIO 〜14のアルカリ水も好ましく用いることができる。
[0042] 得られた溶液もしくは分散液に、リチウム複合酸化物を投入し、攪拌する際、液中 の温度は、特に限定されない。ただし、例えば作業性や製造コストの観点から、 20〜 40°Cに制御することが好ましい。攪拌時間は、特に限定されないが、例えば 3時間も 攪拌すれば十分である。液状成分の除去方法も、特に限定されないが、例えば 100 °C程度の温度で 2時間ほど乾燥させれば十分である。
[0043] (iii)第 3ステップ
表面に表面コート元素を担持させたリチウム複合酸ィ匕物を、 650〜750°Cで、 2〜2 4時間、好ましくは 6時間ほど、酸素雰囲気下で焼成する。酸素雰囲気の圧力は 101 〜50KPaが好ましい。この焼成により、表面コート元素は、リチウム複合酸化物中に 固溶する元素 Mcもしくはリチウム複合酸ィ匕物とは異なる結晶構造を構成する元素 M dに変換される。
[0044] (iv)第 4ステップ
活物質粒子を用いて、正極を形成する。正極の作製方法は、特に限定されない。 一般的には、活物質粒子と結着剤とを含む正極合剤を、帯状の正極芯材 (正極集電 体)に担持させた正極が作製される。正極合剤には、他に、導電材などの添加剤を 任意成分として含ませることができる。正極合剤を液状成分に分散させてペーストを 調製し、ペーストを芯材に塗工し、乾燥させることにより、正極合剤を芯材に担持させ ることがでさる。
[0045] 正極合剤に含ませる結着剤には、熱可塑性榭脂および熱硬化性榭脂の何れを用 いてもよいが、熱可塑性榭脂が好ましい。このような熱可塑性榭脂としては、例えば ポリエチレン、ポリプロピレン、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リ デン(PVDF)、スチレンブタジエンゴム、テトラフルォロエチレン一へキサフルォロプ ロピレン共重合体(FEP)、テトラフルォロエチレン パーフルォロアルキルビュルェ 一テル共重合体(PFA)、フッ化ビ-リデン一へキサフルォロプロピレン共重合体、フ ッ化ビ-リデンークロ口トリフルォロエチレン共重合体、エチレンーテトラフルォロェチ レン共重合体(ETFE)、ポリクロ口トリフルォロエチレン(PCTFE)、フッ化ビ-リデン ペンタフルォロプロピレン共重合体、プロピレンーテトラフルォロエチレン共重合体 、エチレン クロ口トリフルォロエチレン共重合体(ECTFE)、フッ化ビ-リデン一へキ サフルォロプロピレンーテトラフルォロエチレン共重合体、フッ化ビ-リデンーパーフ ルォロメチルビ-ルエーテルーテトラフルォロエチレン共重合体、エチレン アクリル 酸共重合体、エチレンーメタクリル酸共重合体、エチレン アクリル酸メチル共重合 体、エチレンーメタクリル酸メチル共重合体などが挙げられる。これらは単独で用いて もよぐ 2種以上を組み合わせて用いてもよい。これらは Naイオンなどによる架橋体で あってもよい。
[0046] 正極合剤に含ませる導電材は、電池内で化学的に安定な電子伝導性材料であれ ば何でもよい。例えば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などの黒鉛類、ァセ チレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブ ラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などの導電性 繊維類、アルミニウム等の金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウイ スカ一類、酸化チタンなどの導電性金属酸化物、ポリフエ-レン誘導体などの有機導 電性材料、フッ化カーボンなどを用いることができる。これらは単独で用いてもよぐ 2 種以上を組み合わせて用いてもよい。導電材の添加量は、特に限定されないが、正 極合剤に含まれる活物質粒子に対して、 1〜50重量%が好ましぐ 1〜30重量%が 更に好ましぐ 2〜15重量%が特に好ましい。
[0047] 正極芯材 (正極集電体)は、電池内で化学的に安定な電子伝導体であれば何でも よい。例えば、アルミニウム、ステンレス鋼、ニッケル、チタン、炭素、導電性榭脂など 力もなる箔もしくはシートを用いることができる。特にアルミニウム箔、アルミニウム合金 箔等が好ましい。箔もしくはシートの表面には、カーボンやチタンの層を付与したり、 酸ィ匕物層を形成したりすることもできる。箔もしくはシートの表面に凹凸を付与するこ ともできる。ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体など を用いることもできる。正極芯材の厚みは、特に限定されないが、例えば 1〜500 mの範囲内である。
[0048] 次に、本発明のリチウムイオン二次電池の正極以外の構成要素について説明する 。ただし、本発明のリチウムイオン二次電池は、上記のような正極を含む点に特徴を 有し、その他の構成要素は特に限定されない。よって、以下の記載は、本発明を限 定するものではない。
[0049] リチウムを充放電可能な負極には、例えば、負極活物質と結着剤を含み、任意成 分として導電材ゃ増粘剤を含む負極合剤を負極芯材に担持させたものを用いること ができる。このような負極は、正極と同様の方法で作製することができる。
[0050] 負極活物質は、リチウムを電気化学的に充放電し得る材料であればよい。例えば、 黒鉛類、難黒鉛ィ匕性炭素材料、リチウム合金、金属酸ィ匕物などを用いることができる 。リチウム合金は、特にケィ素、スズ、アルミニウム、亜鉛およびマグネシウムよりなる 群カゝら選ばれる少なくとも 1種を含む合金が好ましい。金属酸ィ匕物としては、珪素を 含有する酸化物、錫を含有する酸化物が好ましぐ炭素材料とハイブリッド化すると更 に好ましい。負極活物質の平均粒径は、特に限定されないが、 1〜30 /ζ πιであること が好ましい。
[0051] 負極合剤に含ませる結着剤には、熱可塑性榭脂および熱硬化性榭脂の何れを用 いてもよいが、熱可塑性榭脂が好ましい。このような熱可塑性榭脂としては、例えば ポリエチレン、ポリプロピレン、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リ デン(PVDF)、スチレンブタジエンゴム、テトラフルォロエチレン一へキサフルォロプ ロピレン共重合体(FEP)、テトラフルォロエチレン パーフルォロアルキルビュルェ 一テル共重合体(PFA)、フッ化ビ-リデン一へキサフルォロプロピレン共重合体、フ ッ化ビ-リデンークロ口トリフルォロエチレン共重合体、エチレンーテトラフルォロェチ レン共重合体(ETFE)、ポリクロ口トリフルォロエチレン(PCTFE)、フッ化ビ-リデン ペンタフルォロプロピレン共重合体、プロピレンーテトラフルォロエチレン共重合体 、エチレン クロ口トリフルォロエチレン共重合体(ECTFE)、フッ化ビ-リデン一へキ サフルォロプロピレンーテトラフルォロエチレン共重合体、フッ化ビ-リデンーパーフ ルォロメチルビ-ルエーテルーテトラフルォロエチレン共重合体、エチレン アクリル 酸共重合体、エチレンーメタクリル酸共重合体、エチレン アクリル酸メチル共重合 体、エチレンーメタクリル酸メチル共重合体などが挙げられる。これらは単独で用いて もよぐ 2種以上を組み合わせて用いてもよい。これらは Naイオンなどによる架橋体で あってもよい。
[0052] 負極合剤に含ませる導電材は、電池内で化学的に安定な電子伝導性材料であれ ば何でもよい。例えば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などの黒鉛類、ァセ チレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブ ラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などの導電性 繊維類、銅、ニッケル等の金属粉末類、ポリフエ-レン誘導体などの有機導電性材料 などを用いることができる。これらは単独で用いてもよぐ 2種以上を組み合わせて用 いてもよい。導電材の添加量は、特に限定されないが、負極合剤に含まれる活物質 粒子に対して、 1〜30重量%が好ましぐ 1〜10重量%が更に好ましい。
[0053] 負極芯材 (負極集電体)は、電池内でィ匕学的に安定な電子伝導体であれば何でも よい。例えば、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性榭脂など力もなる箔 もしくはシートを用いることができる。特に銅や銅合金が好ましい。箔もしくはシートの 表面には、カーボン、チタン、ニッケルなどの層を付与したり、酸化物層を形成したり することもできる。箔もしくはシートの表面に凹凸を付与することもできる。ネット、パン チングシート、ラス体、多孔質体、発泡体、繊維群成形体などを用いることもできる。 負極芯材の厚みは、特に限定されないが、例えば 1〜500 /ζ πιの範囲内である。
[0054] 非水電解液には、リチウム塩を溶解した非水溶媒が好ましく用いられる。
非水溶媒としては、例えばエチレンカーボネート (EC)、プロピレンカーボネート(Ρ C)、ブチレンカーボネート(BC)などの環状カーボネート類、ジメチルカーボネート( DMC)、ジェチノレカーボネート (DEC)、ェチノレメチノレカーボネート (EMC)、ジプロ ピルカーボネート(DPC)などの鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロ ピオン酸メチル、プロピオン酸ェチルなどの脂肪族カルボン酸エステル類、 γ—プチ 口ラタトン、 y—バレロラタトン等のラタトン類、 1, 2—ジメトキシェタン(DME)、 1, 2 ージエトキシェタン(DEE)、エトキシメトキシェタン(EME)等の鎖状エーテル類、テ トラヒドロフラン、 2—メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキ シド、 1, 3 ジォキソラン、ホルムアミド、ァセトアミド、ジメチルホルムアミド、ジォキソ ラン、ァセトニトリル、プロピル-トリル、ニトロメタン、ェチルモノグライム、リン酸トリエス テル、トリメトキシメタン、ジォキソラン誘導体、スルホラン、メチルスルホラン、 1, 3 ジ メチルー 2 イミダゾリジノン、 3—メチルー 2 ォキサゾリジノン、プロピレンカーボネ ート誘導体、テトラヒドロフラン誘導体、ェチルエーテル、 1, 3 プロパンサルトン、ァ -ソール、ジメチルスルホキシド、 N—メチル 2—ピロリドンを用いることができる。こ れらは単独で用いてもよいが、 2種以上を混合して用いることが好ましい。なかでも環 状カーボネートと鎖状カーボネートとの混合溶媒、または、環状カーボネートと鎖状力 ーボネートと脂肪族カルボン酸エステルとの混合溶媒が好ましい。
[0055] 非水溶媒に溶解するリチウム塩としては、例えば LiCIO
4、 LiBF
4、 LiPF
6、 LiAlCl
4
、 LiSbF、 LiSCN、 LiCl、 LiCF SO、 LiCF CO、 Li(CF SO )、 LiAsF、 LiN (
6 3 3 3 2 3 2 2 6
CF SO )、 LiB CI 、低級脂肪族カルボン酸リチウム、 LiCl、 LiBr、 Lil、クロ口ボラ
3 2 2 10 10
ンリチウム、四フエ-ルホウ酸リチウム、リチウムイミド塩等を挙げることができる。これら は単独で用いてもよぐ 2種以上を組み合わせて用いてもよいが、少なくとも LiPFを
6 用いることが好ましい。リチウム塩の非水溶媒に対する溶解量は、特に限定されない 。ただし、リチウム塩濃度は 0. 2〜2molZLが好ましぐ 0. 5〜1. 5molZLが更に 好ましい。
[0056] 非水電解液には、電池の充放電特性を改良する目的で、種々の添加剤を添加す ることができる。添加剤としては、例えばビ-レンカーボネート、ビニルエチレンカーボ ネート、フォスファゼンおよびフルォロベンゼンよりなる群力 選択される少なくとも 1 種を用いることが好ましい。これらの添加剤の含有量は、非水電解液の 0. 5〜20重 量%が適量である。
[0057] 他にも種々の添加剤、例えばトリェチルフォスファイト、トリエタノールァミン、環状ェ 一テル、エチレンジァミン、 n—グライム、ピリジン、へキサリン酸トリアミド、ニトロベン ゼン誘導体、クラウンエーテル類、第四級アンモ-ゥム塩、エチレングリコールジアル キルエーテル等を用いることができる。 [0058] 正極と負極との間には、セパレータを介在させる必要がある。
セパレータは、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性であ る微多孔性薄膜が好ましく用いられる。微多孔性薄膜は、一定温度以上で孔を閉塞 し、抵抗を上昇させる機能を持つことが好ましい。微多孔性薄膜の材質は、耐有機溶 剤性に優れ、疎水性を有するポリプロピレン、ポリエチレンなどのポリオレフインが好 ましく用いられる。ガラス繊維などカゝら作製されたシート、不織布、織布なども用いら れる。セパレータの孔径は、例えば 0. 01〜1 111である。セパレータの厚みは、一般 的には 10〜300 mである。セパレータの空孔率は、一般的には 30〜80%である。
[0059] 非水電解液およびこれを保持するポリマー材料力もなるポリマー電解質を、セパレ ータとして正極もしくは負極と一体ィ匕させて用いることもできる。ポリマー材料は、非水 電解液を保持できるものであればょ 、が、特にフッ化ビ-リデンとへキサフルォロプロ ピレンとの共重合体が好まし 、。
次に、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例 に限定されるものではない。
[0060] [実施例 1]
《実施例電池 Al》
(1)リチウム複合酸化物の合成
Ni原子と Co原子と A1原子とのモル比が 80 : 15 :4. 96になるように、硫酸ニッケル と硫酸コバルトと硫酸アルミニウムとを混合した。この混合物 3. 2kgを、 10Lの水に溶 解させて、原料溶液を得た。原料溶液に、水酸化ナトリウムを 400g加えて、沈殿を生 成させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0061] 得られた Ni— Co— A1共沈水酸化物 3kgに、水酸化リチウム 784gと、水酸化カル シゥム 0. 49gと、水酸ィ匕マグネシウム 0. 38gとを混合し、酸素分圧が 0. 5気圧である 雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、元素 Meとして A1 を含む平均粒径 12 μ mの Ni— Co— Mg— Ca— A1リチウム複合酸化物(LiNi Co
0.8 0.
Ca Mg Al O )を得た。
15 0.0002 0.0002 0.0496 2
[0062] (2)活物質粒子の合成
〉第 1ステップ エタノール 10L中にペンタエトキシタンタルを溶解させた溶液に、合成されたリチウ ム複合酸ィ匕物 2kgを分散させた。ペンタエトキシタンタルの溶解量は、リチウム複合 酸化物に対して 0. 5mol%とした。リチウム複合酸ィ匕物を分散させたエタノール溶液 を、 25°Cで 3時間攪拌した後、ろ過し、固形分を 100°Cで 2時間乾燥させた。その結 果、表面コート元素としてタンタル (Ta)を表面に担持したリチウム複合酸化物が得ら れた。
[0063] く ii〉第 2ステップ
乾燥後の粉末を、 300°Cで 6時間、乾燥空気雰囲気 (湿度 19%、圧力 lOlKPa) 下で予備焼成した。
続いて、予備焼成後の粉末を、 650°Cで 6時間、酸素 100%雰囲気 (圧力 lOlKPa) 下で本焼成した。
最後に、本焼成後の粉末を、 400°Cで、酸素 100%雰囲気 (圧力 lOlKPa)下で、 4 時間アニーリングした。
この焼成により、リチウム複合酸ィ匕物に固溶した Ta (元素 Mc)を含み、かつ、リチウム 複合酸化物とは結晶構造の異なる酸化物を構成する Ta (元素 Md)を含む表層部を 有する活物質粒子が得られた。
結晶構造の異なる Taの存在は、 XPS、 EMPA、 ICP発光分析等により確認した。以 下の実施例においても、同様に、活物質粒子中の元素 Mdの存在は XPS、 EMPA、 ICP発光分析等により確認した。
リチウム複合酸ィ匕物に固溶した Ta (元素 Mc)力 活物質粒子の内部に比べ、表層部 に多く分布して ヽることも、活物質粒子断面の EPMA面分析で得られる元素マップ により確認した。
[0064] (3)正極の作製
得られた活物質粒子 (平均粒径 12 m) 1kgを、呉羽化学 (株)製の PVDF # 132 0 (固形分 12重量0 /0の N—メチル— 2—ピロリドン(NMP)溶液) 0. 5kg、アセチレン ブラック 40g、および、適量の NMPとともに、双腕式練合機にて攪拌し、正極合剤べ 一ストを調製した。このペーストを厚さ 20 mのアルミニウム箔の両面に塗布し、乾燥 し、総厚が 160 mとなるように圧延した。得られた極板を、円筒型 18650の電池ケ ースに挿入可能な幅にスリットし、正極を得た。
[0065] (4)負極の作製
人造黒鉛 3kgを、 日本ゼオン (株)製の BM— 400B (固形分 40重量%の変性スチ レン ブタジエンゴムの分散液) 200g、カノレボキシメチノレセノレロース(CMC) 50g、 および、適量の水とともに、双腕式練合機にて攪拌し、負極合剤ペーストを調製した 。このペーストを厚さ 12 μ mの銅箔の両面に塗布し、乾燥し、総厚が 160 μ mとなる ように圧延した。得られた極板を、円筒型 18650の電池ケースに挿入可能な幅にスリ ットし、負極を得た。
[0066] (5)電池の組立
図 1のように、正極 5と負極 6とを、セパレータ 7を介して捲回し、渦巻状の極板群を 構成した。セパレータ 7には、ポリエチレンとポリプロピレンとの複合フィルム(セルガ ード (株)製の 2300、厚さ 25 m)を用いた。
[0067] 正極 5および負極 6には、それぞれニッケル製の正極リード 5aおよび負極リード 6a を取り付けた。この極板群の上面に上部絶縁板 8a、下面に下部絶縁板 8bを配して、 電池ケース 1内に挿入し、さらに 5gの非水電解液を電池ケース 1内に注液した。
[0068] 非水電解液は、エチレンカーボネートとメチルェチルカーボネートとを体積比 10: 3 0で混合し、得られた混合溶媒に、ビ-レンカーボネート 2重量0 /0、ビュルエチレン力 ーボネート 2重量%、フルォロベンゼン 5重量%ぉよびフォスファゼン 5重量%を添加 し、更に、 LiPFを 1. 5molZLの濃度で溶解させることにより調製した。
6
[0069] 周囲に絶縁ガスケット 3を配した封口板 2と、正極リード 5aとを導通させ、電池ケース 1の開口部を封口板 2で封口した。こうして、円筒型 18650のリチウム二次電池を完 成させた。これを実施例電池 A1とする。
[0070] 《実施例電池 A2》
エタノール 10L中に溶解させるペンタエトキシタンタルの量を、リチウム複合酸化物 に対して 2. Omol%に変更したこと以外、電池 A1と同様にして、電池 A2を作製した
[0071] 《実施例電池 A3》
活物質粒子の合成の第 1ステップにお 、て、ペンタエトキシタンタルのエタノール溶 液の代わりに、イソプロパノール 10L中にアルミニウム (A1)トリイソプロポキシドを溶解 させた溶液を用いたこと以外、電池 A1と同様にして、電池 A3を作製した。アルミ-ゥ ムトリイソプロボキシドの量は、リチウム複合酸化物に対して 0. 5mol%とした。
[0072] 《実施例電池 A4》
イソプロパノール 10L中に溶解させるアルミニウムトリイソプロポキシドの量を、リチウ ム複合酸化物に対して 2. Omol%に変更したこと以外、電池 A3と同様にして、電池 A4を作製した。
[0073] 《実施例電池 5》
活物質粒子の合成の第 1ステップにお 、て、ペンタエトキシタンタルのエタノール溶 液の代わりに、ブタノール 10L中にジルコニウム(Zr)テトラ— n—ブトキシドを溶解さ せた溶液を用いたこと以外、電池 A1と同様にして、電池 A5を作製した。ジルコユウ ムテトラー n—ブトキシドの量は、リチウム複合酸化物に対して 0. 5mol%とした。
[0074] 《実施例電池 A6》
ブタノール 10L中に溶解させるジルコニウムテトラー n—ブトキシドの量を、リチウム 複合酸化物に対して 2. Omol%に変更したこと以外、電池 A5と同様にして、電池 A6 を作製した。
[0075] 《実施例電池 A7》
活物質粒子の合成の第 1ステップにお 、て、ペンタエトキシタンタルのエタノール溶 液の代わりに、エタノール 1L中に酢酸マグネシウム(Mg)を溶解させた溶液を用いた こと以外、電池 A1と同様にして、電池 A7を作製した。酢酸マグネシウムの量は、リチ ゥム複合酸化物に対して 0. 5mol%とした。
[0076] 《実施例電池 A8》
エタノール 1L中に溶解させる酢酸マグネシウムの量を、リチウム複合酸化物に対し て 2. Omol%に変更したこと以外、電池 A7と同様にして、電池 A8を作製した。
[0077] 《実施例電池 A9》
活物質粒子の合成の第 1ステップにお 、て、ペンタエトキシタンタルのエタノール溶 液の代わりに、エタノール 1L中に硝酸インジウム (In)を溶解させた溶液を用いたこと 以外、電池 A1と同様にして、電池 A9を作製した。硝酸インジウムの量は、リチウム複 合酸化物に対して 0. 5mol%とした。
[0078] 《実施例電池 A10》
エタノール 1L中に溶解させる硝酸インジウムの量を、リチウム複合酸化物に対して 2. Omol%に変更したこと以外、電池 A9と同様にして、電池 A10を作製した。
[0079] 《実施例電池 Al l》
活物質粒子の合成の第 1ステップにお 、て、ペンタエトキシタンタルのエタノール溶 液の代わりに、 pH13の水酸ィ匕ナトリウム水溶液 1L中にリチウム複合酸ィ匕物 2kgを分 散させた。得られた分散液に、 lOOgの蒸留水に硫酸すず (Sn)を溶解させた水溶液 を 10分間かけて滴下し、その後、 100°Cで 3時間攪拌した。硫酸すずの量は、リチウ ム複合酸化物に対して 0. 5mol%とした。上記以外、電池 A1と同様にして、電池 A1 1を作製した。
[0080] 《実施例電池 A12》
蒸留水 lOOgに溶解させる硫酸すずの量を、リチウム複合酸化物に対して 2. Omol %に変更したこと以外、電池 Al lと同様にして、電池 A12を作製した。
[0081] 《実施例電池 A13》
硫酸すずを硫酸マンガン (Mn)に変更したこと以外、電池 Al lと同様にして、電池 A13を作製した。
[0082] 《実施例電池 A14》
硫酸すずを硫酸マンガンに変更したこと以外、電池 A12と同様にして、電池 A14を 作製した。
[0083] 《実施例電池 A15》
硫酸すずを硼酸 (B)に変更したこと以外、電池 Al lと同様にして、電池 A15を作製 した。
[0084] 《実施例電池 A16》
硫酸すずを硼酸に変更したこと以外、電池 A12と同様にして、電池 A16を作製した
[0085] 《実施例電池 A17》
硫酸すずをタングステン (W)酸ナトリウムに変更したこと以外、電池 Al lと同様にし て、電池 Al 7を作製した。
[0086] 《実施例電池 A18》
硫酸すずをタングステン酸ナトリウムに変更したこと以外、電池 A12と同様にして、 電池 A18を作製した。
[0087] 《実施例電池 A19》
硫酸すずを五塩ィ匕ニオブ (Nb)に変更したこと以外、電池 Al lと同様にして、電池 A19を作製した。
[0088] 《実施例電池 A20》
硫酸すずを五塩ィ匕ニオブに変更したこと以外、電池 A12と同様にして、電池 A20 を作製した。
[0089] 《実施例電池 A21》
硫酸すずをモリブデン酸ニナトリウム二水和物に変更したこと以外、電池 Al lと同 様にして、電池 A21を作製した。
[0090] 《実施例電池 A22》
硫酸すずをモリブデン酸ニナトリウム二水和物に変更したこと以外、電池 A12と同 様にして、電池 A22を作製した。
[0091] 《実施例電池 A23〜33》
リチウム複合酸化物に対する、ペンタエトキシタンタル、アルミニウムトリイソプロポキ シド、ジルコニウムテトラー n—ブトキシド、酢酸マグネシウム、硝酸インジウム、硫酸す ず、硫酸マンガン、硼酸、タングステン酸ナトリウム、五塩化ニオブおよびモリブデン 酸ニナトリウム二水和物の量を、それぞれ 2. 5mol%としたこと以外、電池 1A、 3A、 5A、 7A、 9A、 11 A, 13A、 15 A, 17A、 19Aおよび 21Aと同様にして、電池 A23 〜A33を作製した。
[0092] [評価 1]
(放電特性)
各電池について 2度の慣らし充放電を行い、その後、 40°C環境下で 2日間保存し た。その後、各電池について、以下の 2パターンのサイクルを繰り返した。ただし、電 池の設計容量を lCmAhとする。 第 1パターン (通常のサイクル試験)
(1)定電流充電(45°C) : 0. 7CmA (終止電圧 4. 2V)
(2)定電圧充電(45°C) :4. 2V (終止電流 0. 05CmA)
(3)充電レスト (45°C): 30分
(4)定電流放電(45°C): lCmA (終止電圧 3V)
(5)放電レスト (45°C) : 30分
第 2パターン (間欠サイクル試験)
(1)定電流充電(45°C) : 0. 7CmA (終止電圧 4. 2V)
(2)定電圧充電(45°C) :4. 2V (終止電流 0. 05CmA)
(3)充電レスト (45°C): 720分
(4)定電流放電(45°C): lCmA (終止電圧 3V)
(5)放電レスト (45°C) : 720分
第 1および第 2パターンで得られた 500サイクル後の放電容量を表 1Aに示す。
[表 1A]
Figure imgf000024_0001
《比較例電池 al〜a22》
Ni原子と Co原子と A1原子とのモル比が 80 : 15 :4. 98になるように、硫酸ニッケル と硫酸コバルトと硫酸アルミニウムとを混合した。この混合物 3. 2kgを、 10Lの水に溶 解させて、原料溶液を得た。原料溶液に、水酸化ナトリウムを 400g加えて、沈殿を生 成させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。 [0095] 得られた Ni— Co— Al共沈水酸化物 3kgに、水酸化リチウム 784gと、水酸化カル シゥム 0. 49gとを混合し、酸素分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温 度で、 10時間焼成した。その結果、元素 Meとして A1を含む Ni— Co— Ca— A1リチウ ム複合酸化物 (LiNi Co Ca Al O )を得た。このリチウム複合酸ィ匕物を活
0.8 0.15 0.0002 0.0498 2
物質粒子の原料に用いたこと以外、実施例電池 A1〜A22と同様にして、それぞれ 比較例電池 al〜a22を作製し、実施例 1と同様に評価した。結果を表 1Bに示す。
[0096] [表 1B]
Figure imgf000025_0001
《比較例電池 a23〜a44》
Ni原子と Co原子と Al原子とのモル比が 80 : 15 :4. 98になるように、硫酸ニッケル と硫酸コバルトと硫酸アルミニウムとを混合した。この混合物 3. 2kgを、 10Lの水に溶 解させて、原料溶液を得た。原料溶液に、水酸化ナトリウムを 400g加えて、沈殿を生 成させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0098] 得られた Ni— Co— A1共沈水酸化物 3kgに、水酸化リチウム 784gと、水酸化マグ ネシゥム 0. 38gとを混合し、酸素分圧が 0. 5気圧である雰囲気中で、 750°Cの合成 温度で、 10時間焼成した。その結果、元素 Meとして A1を含む Ni— Co— Mg— A1リ チウム複合酸化物 (LiNi Co Mg Al O )を得た。このリチウム複合酸化物
0.8 0.15 0.0002 0.0498 2
を活物質粒子の原料に用いたこと以外、実施例電池 A1〜A22と同様にして、それ ぞれ比較例電池 a23〜a44を作製し、実施例 1と同様に評価した。結果を表 1Cに示 す。
[0099] [表 1C]
Figure imgf000027_0001
[0100] [実施例 2]
《実施例電池 B1〜B33》
Ni原子と Co原子と Al原子と Mn原子とのモル比が 80 :15:3.96:1になるように、 硫酸ニッケルと硫酸コノ レトと硫酸アルミニウムと硫酸マンガンとを混合した。この混 合物 3.2kgを、 10Lの水に溶解させて、原料溶液を得た。原料溶液に、水酸化ナトリ ゥムを 400g加えて、沈殿を生成させた。沈殿を十分に水洗し、乾燥させ、共沈水酸 化物を得た。
[0101] 得られた Ni— Co— Al— Mn共沈水酸化物 3kgに、水酸ィ匕リチウム 784gと、水酸化 カルシウム 0. 49gと、水酸化マグネシウム 0. 38gとを混合し、酸素分圧が 0. 5気圧 である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、元素 Meとし てAlとMnを含むNi—Co— Ca— Mg—Al—Mnリチゥム複合酸化物(LiNi Co C
0.8 0.15 a Mg Al Mn O )を得た。このリチウム複合酸化物を活物質粒子の原料
0.0002 0.0002 0.0396 0.01 2
に用いたこと以外、実施例電池 A1〜A33と同様にして、それぞれ実施例電池 Bl〜 B33を作製し、実施例 1と同様に評価
した。結果を表 2Aに示す。
[表 2A]
Figure imgf000029_0001
《比較例電池 bl〜b22》
Ni原子と Co原子と A1原子と Mn原子とのモル比が 80 : 15 :4 : 1になるように、硫酸 ニッケルと硫酸コノ レトと硫酸アルミニウムと硫酸マンガンとを混合した。この混合物 3 . 2kgを、 10Lの水に溶解させて、原料溶液を得た。原料溶液に、水酸化ナトリウムを 400g加えて、沈殿を生成させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を 得た。
[0104] 得られた Ni— Co— Al— Mn共沈水酸化物 3kgに、水酸化リチウム 784gを混合し、 酸素分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。 その結果、元素 Meとして A1と Mnを含む Ni— Co— A1— Mnリチウム複合酸化物(Li Ni Co Al Mn O )を得た。このリチウム複合酸ィ匕物を活物質粒子の原料に用
0.8 0.15 0.04 0.01 2
いたこと以外、実施例電池 B1〜B22と同様にして、それぞれ比較例電池 bl〜b22 を作製し、実施例 1と同様に評価した。結果を表 2Bに示す。
[0105] [表 2B]
Figure imgf000030_0001
[実施例 3]
《実施例電池 C1〜C33》
Ni原子と Co原子と Al原子と Nb原子とのモル比が 80 : 15 : 3. 96 : 1になるように、 硫酸ニッケルと硫酸コノ レトと硫酸アルミニウムと硝酸ニオブとを混合した。この混合 物 3. 2kgを、 10Lの水に溶解させて、原料溶液を得た。原料溶液に、水酸化ナトリウ ムを 400g加えて、沈殿を生成させた。沈殿を十分に水洗し、乾燥させ、共沈水酸ィ匕 物を得た。
[0107] 得られた Ni— Co— Al— Nb共沈水酸化物 3kgに、水酸ィ匕リチウム 784gと、水酸化 カルシウム 0. 49gと、水酸化マグネシウム 0. 38gとを混合し、酸素分圧が 0. 5気圧 である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、元素 Meとし てAlとNbを含むNi—Co— Ca— Mg—Al—Nbリチゥム複合酸化物(LiNi Co C
0.8 0.15 a Mg Al Nb O )を得た。このリチウム複合酸化物を活物質粒子の原料
0.0002 0.0002 0.0396 0.01 2
に用いたこと以外、実施例電池 A1〜A33と同様にして、それぞれ実施例電池 Cl〜 C33を作製し、実施例 1と同様に評価した。結果を表 3Aに示す。
[0108] [表 3A]
Figure imgf000032_0001
例電池 cl c22》 Ni原子と Co原子と Al原子と Nb原子とのモル比が 80 : 15 :4 : 1になるように、硫酸 ニッケルと硫酸コノ レトと硫酸アルミニウムと硝酸ニオブとを混合した。この混合物 3. 2kgを、 10Lの水に溶解させて、原料溶液を得た。原料溶液に、水酸化ナトリウムを 4 OOg加えて、沈殿を生成させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得 た。
[0110] 得られた Ni— Co— Al— Nb共沈水酸化物 3kgに、水酸化リチウム 784gを混合し、 酸素分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成して、 元素MeとしてAlとNbを含むNi—Co—Al—Nbリチゥム複合酸化物(LiNi Co A
0.8 0.15
1 Nb O )を得た。このリチウム複合酸ィ匕物を活物質粒子の原料に用いたこと以外
0.04 0.01 2
、実施例電池 C1〜C22と同様にして、それぞれ比較例電池 cl〜c22を作製し、実 施例 1と同様に評価した。結果を表 3Bに示す。
[0111] [表 3B]
Figure imgf000034_0001
[0112] [実施例 4]
《実施例電池 D1〜D33》
Ni原子と Co原子と Ti原子とのモル比が 75 : 15 : 9. 96になるように、硫酸ニッケルと 硫酸コバルトと硫酸チタンとを混合した。この混合物 3. 2kgを、 10Lの水に溶解させ て、原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成させ た。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0113] 得られた Ni— Co— Ti共沈水酸化物 3kgに、水酸化リチウム 784gと、水酸化カルシ ゥム 0. 49gと、水酸ィ匕マグネシウム 0. 38gとを混合し、酸素分圧が 0. 5気圧である 雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、元素 Meとして Tiを 含むNi— Co— Ca— Mg—Tiリチゥム複合酸化物(LiNi Co Ca Mg Ti
0.75 0.15 0.0002 0.0002 0.09
O )を得た。このリチウム複合酸ィ匕物を活物質粒子の原料に用いたこと以外、実施
96 2
例電池 A1〜A33と同様にして、それぞれ実施例電池 D1〜D33を作製し、実施例 1 と同様に評価した。結果を表 4に示す。
[表 4]
Figure imgf000036_0001
[実施例 5]
《実施例電池 E1 E33》
Ni原子と Co原子と Mn原子とのモル比が 75 :15 :9.96になるように、硫酸ニッケル と硫酸コバルトと硫酸マンガンとを混合した。この混合物 3.2kgを、 10Lの水に溶解 させて、原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成 させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0116] 得られた Ni— Co— Mn共沈水酸化物 3kgに、水酸ィ匕リチウム 784gと、水酸化カル シゥム 0. 49gと、水酸ィ匕マグネシウム 0. 38gとを混合し、酸素分圧が 0. 5気圧である 雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、元素 Meとして Tiを 含む Ni— Co— Ca— Mg— Mnリチウム複合酸化物(LiNi Co Ca Mg Mn
0.75 0.15 0.0002 0.0002
O )を得た。このリチウム複合酸ィ匕物を活物質粒子の原料に用いたこと以外、実
0.0996 2
施例電池 A1〜A33と同様にして、それぞれ実施例電池 E1〜E33を作製し、実施例 1と同様に評価した。結果を表 5に示す。
[0117] [表 5]
Figure imgf000038_0001
[実施例 6]
《実施例電池 F1〜F33》
Ni原子と Co原子と Nb原子とのモル比が 75 : 15 : 9. 96になるように、硫酸ニッケル と硫酸コバルトと硝酸ニオブとを混合した。この混合物 3. 2kgを、 10Lの水に溶解さ せて、原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成さ せた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0119] 得られた Ni— Co— Nb共沈水酸化物 3kgに、水酸ィ匕リチウム 784gと、水酸化カル シゥム 0. 49gと、水酸ィ匕マグネシウム 0. 38gとを混合し、酸素分圧が 0. 5気圧である 雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、元素 Meとして Tiを 含むNi— Co— Ca— Mg— Nbリチゥム複合酸化物(LiNi Co Ca Mg Nb
0.75 0.15 0.0002 0.0002 0
O )を得た。このリチウム複合酸ィ匕物を活物質粒子の原料に用いたこと以外、実
.0996 2
施例電池 A1〜A33と同様にして、それぞれ実施例電池 F1〜F33を作製し、実施例 1と同様に評価した。結果を表 6に示す。
[0120] [表 6]
Figure imgf000040_0001
《比較例電池 gl g22》
Ni原子と Co原子とのモル比が 80 : 20になるように、硫酸ニッケルと硫酸コバルトと を混合した。この混合物 3. 2kgを、 10Lの水に溶解させて、原料溶液を得た。原料 溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成させた。沈殿を十分に水洗し、 乾燥させ、共沈水酸化物を得た。 [0122] 得られた Ni— Co共沈水酸ィ匕物 3kgに、水酸化リチウム 784gを混合し、酸素分圧 が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、 Ni— Coリチウム複合酸化物 (LiNi Co O )を得た。このリチウム複合酸ィ匕物を活
0.8 0.2 2
物質粒子の原料に用いたこと以外、実施例電池 A1〜A22と同様にして、それぞれ 比較例電池 gl〜g22を作製し、実施例 1と同様に評価した。結果を表 7に示す。
[0123] [表 7]
Figure imgf000041_0001
[0124] 《比較例電池 hl〜h22》
Ni原子と Mg原子とのモル比が 80: 20になるように、硫酸ニッケルと硫酸マグネシゥ ムとを混合した。この混合物 3. 2kgを、 10Lの水に溶解させて、原料溶液を得た。原 料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成させた。沈殿を十分に水洗し 、乾燥させ、共沈水酸化物を得た。 [0125] 得られた Ni-Mg共沈水酸ィ匕物 3kgに、水酸化リチウム 784gを混合し、酸素分圧 が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、 Ni— Mgリチウム複合酸化物 (LiNi Mg O )を得た。このリチウム複合酸化物を活
0.8 0.2 2
物質粒子の原料に用いたこと以外、実施例電池 A1〜A22と同様にして、それぞれ 比較例電池 hi〜! ι22を作製し、実施例 1と同様に評価した。結果を表 8に示す。
[0126] [表 8]
Figure imgf000042_0001
[0127] 《比較例電池 il〜i22》
Ni原子と Ca原子とのモル比が 80: 20になるように、硫酸ニッケルと硫酸カルシウム とを混合した。この混合物 3. 2kgを、 10Lの水に溶解させて、原料溶液を得た。原料 溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成させた。沈殿を十分に水洗し、 乾燥させ、共沈水酸化物を得た。 [0128] 得られた Ni-Ca共沈水酸ィ匕物 3kgに、水酸化リチウム 784gを混合し、酸素分圧 が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結果、 Ni— Caリチウム複合酸化物 (LiNi Ca O )を得た。このリチウム複合酸ィ匕物を活物
0.8 0.2 2
質粒子の原料に用いたこと以外、実施例電池 A1〜A22と同様にして、それぞれ比 較例電池 il〜i22を作製し、実施例 1と同様に評価した。結果を表 9に示す。
[0129] [表 9]
Figure imgf000043_0001
《比較例電池 j l〜j22》
Ni原子と Co原子と Mg原子とのモル比が 80 : 15 : 5になるように、硫酸ニッケルと硫 酸コバルトと硫酸マグネシウムとを混合した。この混合物 3. 2kgを、 10Lの水に溶解 させて、原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成 させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。 [0131] 得られた Ni— Co— Mg共沈水酸ィ匕物 3kgに、水酸化リチウム 784gを混合し、酸素 分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結 果、 Ni— Co— Mgリチウム複合酸化物(LiNi Co Mg O )を得た。このリチウム
0.8 0.15 0.05 2
複合酸化物を活物質粒子の原料に用いたこと以外、実施例電池 A1〜A22と同様に して、それぞれ比較例電池 j l〜j22を作製し、実施例 1と同様に評価した。結果を表 10に示す。
[0132] [表 10]
Figure imgf000044_0001
《比較例電池 kl〜k22》
Ni原子と Co原子と Ca原子とのモル比が 80 : 15 : 5になるように、硫酸ニッケルと硫 酸コバルトと硫酸カルシウムとを混合した。この混合物 3. 2kgを、 10Lの水に溶解さ せて、原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成さ せた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0134] 得られた Ni— Co— Ca共沈水酸ィ匕物 3kgに、水酸化リチウム 784gを混合し、酸素 分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結 果、 Ni— Co— Caリチウム複合酸ィ匕物(LiNi Co Ca O )を得た。このリチウム複
0.8 0.15 0.05 2
合酸化物を活物質粒子の原料に用いたこと以外、実施例電池 A1〜A22と同様にし て、それぞれ比較例電池 kl〜k22を作製し、実施例 1と同様に評価した。結果を表 1 1に示す。
[0135] [表 11]
Figure imgf000045_0001
《比較例電池 11〜122》
Ni原子と Mg原子と Ca原子とのモル比が 80 : 15 : 5になるように、硫酸ニッケルと硫 酸マグネシウムと硫酸カルシウムとを混合した。この混合物 3. 2kgを、 10Lの水に溶 解させて、原料溶液を得た。原料溶液に、水酸化ナトリウムを 400g加えて、沈殿を生 成させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0137] 得られた Ni— Mg— Ca共沈水酸ィ匕物 3kgに、水酸化リチウム 784gを混合し、酸素 分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結 果、 Ni— Mg— Caリチウム複合酸化物(LiNi Mg Ca O )を得た。このリチウム
0.8 0.15 0.05 2
複合酸化物を活物質粒子の原料に用いたこと以外、実施例電池 A1〜A22と同様に して、それぞれ比較例電池 11〜122を作製し、実施例 1と同様に評価した。結果を表 12に示す。
[0138] [表 12]
Figure imgf000046_0001
[0139] 《比較例電池 ml〜m3》 活物質粒子の合成の第 1ステップにお 、て、ペンタエトキシタンタルのエタノール溶 液の代わりに、バナジウムトリエトキシドォキシドのエタノール溶液を用いたこと以外、 電池 A1と同様にして、電池 mlを作製し、実施例 1と同様に評価した。結果を表 13に 示す。
活物質粒子の合成の第 1ステップにお 、て、ペンタエトキシタンタルのエタノール溶 液の代わりに、ジイソプロポキシコノ レトのイソプロパノール溶液を用いたこと以外、 電池 A1と同様にして、電池 m2を作製し、実施例 1と同様に評価した。結果を表 13に 示す。
活物質粒子の合成の第 1ステップにお 、て、ペンタエトキシタンタルのエタノール溶 液の代わりに、ジェトキシストロンチウムのエタノール溶液を用いたこと以外、電池 A1 と同様にして、電池 m3を作製し、実施例 1と同様に評価した。結果を表 13に示す。
[0140] 《比較例電池 nl〜n3》
リチウム複合酸化物として、 LiNi Co Ca Mg Al Mn Oを用いたこ
0.8 0.15 0.0002 0.0002 0.0396 0.01 2 と以外、電池 ml〜m3と同様にして、電池 nl〜n3を作製し、実施例 1と同様に評価 した。結果を表 13に示す。
[0141] 《比較例電池 ol〜o3》
リチウム複合酸化物として、 LiNi Co Ca Mg Al Nb Oを用いたこと
0.8 0.15 0.0002 0.0002 0.0396 0.01 2
以外、電池 ml〜m3と同様にして、電池 ol〜o3を作製し、実施例 1と同様に評価し た。結果を表 13に示す。
[0142] 《比較例電池 pl〜p3》
リチウム複合酸ィ匕物として、 LiNi Co Ca Mg Ti Oを用いたこと以外
0.75 0.15 0.0002 0.0002 0.0996 2
、電池 ml〜m3と同様にして、電池 pl〜p3を作製し、実施例 1と同様に評価した。結 果を表 14に示す。
[0143] 《比較例電池 ql〜q3》
リチウム複合酸化物として、 LiNi Co Ca Mg Mn Oを用いたこと以
0.75 0.15 0.0002 0.0002 0.0996 2
外、電池 ml〜m3と同様にして、電池 ql〜q3を作製し、実施例 1と同様に評価した。 結果を表 14に示す。
[0144] 《比較例電池 rl〜r3》 リチウム複合酸化物として、 LiNi Co Ca Mg Nb Oを用いたこと以外
0.75 0.15 0.0002 0.0002 0.0996 2
、電池 ml〜m3と同様にして、電池 rl〜r3を作製し、実施例 1と同様に評価した。結 果を表 14に示す。
13]
Figure imgf000048_0001
[表 14]
Figure imgf000049_0001
[0147] なお、上記共沈水酸化物の代わりに、様々な原料を用いて合成したリチウム複合酸 化物についても評価を行った力 これらの説明は省略する。
産業上の利用可能性
[0148] 本発明は、ニッケルを主成分とするリチウム複合酸化物を正極活物質として含むリ チウムイオン二次電池において有用である。本発明によれば、実際の使用条件を想 定して、間欠サイクル (充電後のレスト時間を長く設定した充放電サイクル)を繰り返 す場合のサイクル特性を、従来よりも更に高めることができる。
[0149] 本発明のリチウムイオン二次電池の形状は、特に限定されず、例えばコイン型、ボ タン型、シート型、円筒型、偏平型、角型などの何れの形状でもよい。正極、負極お よびセパレータカもなる極板群の形態は、捲回型でも積層型でもよい。電池の大きさ は、小型携帯機器などに用いる小型でも電気自動車等に用いる大型でもよい。本発 明のリチウムイオン二次電池は、例えば携帯情報端末、携帯電子機器、家庭用小型 電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等の電源に用い ることができる。ただし、用途は特に限定されない。

Claims

請求の範囲
[1] 充放電可能な正極、充放電可能な負極、および、非水電解液を有し、
前記正極は、活物質粒子を含み、
前記活物質粒子は、リチウム複合酸化物を含み、
前記リチウム複合酸化物は、 Li Ni Co Ca Mg M O (ただし、 0. 85≤v≤ 1 v 1-w-x-y-z w x y z 2
. 25, 0<w≤0. 75, 0<x≤0. 1, 0<y≤0. 1, 0≤z≤0. 5, 0<w+x+y+z≤ 0. 80、元素 Mは、 Co、 Caおよび Mg以外のアルカリ土類元素、遷移元素、希土類 元素、 Illb族元素および IVb族元素よりなる群力 選択される少なくとも 1種の元素)で 表され、
(i) 0< zの場合、
元素 Mは、 Mn、 Al、 B、 W、 Nb、 Ta、 In、 Mo、 Sn、 Ti、 Zrおよび Yよりなる群から 選択される少なくとも 1種の元素 Meを含み、
Ca、 Mgおよび元素 Meよりなる群から選択される少なくとも 1種の元素 Mcが、前記 活物質粒子の内部に比べ、表層部に多く分布しており、
(ii) 0 = zの場合、
Caおよび Mgよりなる群力 選択される少なくとも 1種の元素 Mcが、前記活物質粒 子の内部に比べ、表層部に多く分布している、リチウムイオン二次電池。
[2] 前記活物質粒子の表層部が、前記リチウム複合酸化物とは異なる結晶構造を構成 する元素 Mdを有し、元素 Mdは元素 Mcと同じ元素である、請求項 1記載のリチウム イオン二次電池。
[3] 前記活物質粒子の平均粒径が、 10 μ m以上である、請求項 1記載のリチウムィォ ン二次電池。
[4] 0< zの場合、前記リチウム複合酸化物が、 Li NiOの結晶構造において、 Niサイト
2
を、 Co、 Ca、 Mgおよび元素 Mにより置換した固溶体である、請求項 1記載のリチウム イオン二次電池。
[5] 前記表層部において、元素 Mdが、前記リチウム複合酸化物とは異なる結晶構造を 有する酸化物を構成して!/ヽる、請求項 2記載のリチウムイオン二次電池。
[6] 元素 Mdの量が、前記リチウム複合酸ィ匕物に対して、 2mol%以下である、請求項 2 記載のリチウムイオン二次電池。
前記非水電解液が、ビニレンカーボネート、ビニルエチレンカーボネート、フォスフ ァゼンおよびフルォロベンゼンよりなる群力 選択される少なくとも 1種を含む、請求 項 1記載のリチウムイオン二次電池。
PCT/JP2006/311709 2005-06-16 2006-06-12 リチウムイオン二次電池 WO2006134851A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800213092A CN101199065B (zh) 2005-06-16 2006-06-12 锂离子二次电池
US11/914,343 US8673499B2 (en) 2005-06-16 2006-06-12 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005176514A JP5153060B2 (ja) 2005-06-16 2005-06-16 リチウムイオン二次電池
JP2005-176514 2005-06-16

Publications (1)

Publication Number Publication Date
WO2006134851A1 true WO2006134851A1 (ja) 2006-12-21

Family

ID=37532213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311709 WO2006134851A1 (ja) 2005-06-16 2006-06-12 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US8673499B2 (ja)
JP (1) JP5153060B2 (ja)
KR (1) KR100975191B1 (ja)
CN (1) CN101199065B (ja)
WO (1) WO2006134851A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092182A1 (ja) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 非水電解質二次電池

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
JP5389620B2 (ja) 2009-11-27 2014-01-15 株式会社日立製作所 リチウムイオン二次電池用正極材料およびそれを用いたリチウムイオン二次電池
KR101492754B1 (ko) 2010-09-17 2015-02-11 도요타지도샤가부시키가이샤 리튬 이온 2차 전지
JP5532330B2 (ja) * 2010-09-21 2014-06-25 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP5598726B2 (ja) * 2011-05-31 2014-10-01 トヨタ自動車株式会社 リチウム二次電池
JP5641362B2 (ja) * 2011-12-26 2014-12-17 トヨタ自動車株式会社 正極活物質の製造方法
JP6017978B2 (ja) 2013-01-24 2016-11-02 トヨタ自動車株式会社 正極活物質及び該活物質を用いたリチウム二次電池
CN103227322B (zh) * 2013-04-18 2015-05-13 秦皇岛科维克科技有限公司 一种四元锂离子电池正极材料及制备方法
KR102041586B1 (ko) 2013-06-14 2019-11-06 삼성에스디아이 주식회사 리튬 이차 전지
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
KR102473532B1 (ko) 2015-12-31 2022-12-05 삼성전자주식회사 양극 활물질 및 상기 양극 활물질을 채용한 양극과 리튬 전지
JP2017130412A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープ及びコートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130413A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
JP2017130409A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープ及びコートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
CN109476688B (zh) 2016-04-01 2022-03-11 诺姆斯技术公司 包含磷的改性离子液体
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102402388B1 (ko) * 2017-04-28 2022-05-26 삼성에스디아이 주식회사 양극 활물질, 이를 채용한 양극과 리튬 이차 전지, 및 상기 양극 활물질의 제조방법
KR102638417B1 (ko) 2017-07-17 2024-02-19 놈스 테크놀로지스, 인크. 인 함유 전해질
KR102165118B1 (ko) 2017-10-26 2020-10-14 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
JP6744880B2 (ja) * 2018-02-06 2020-08-19 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
EP3667780A4 (en) * 2018-03-21 2021-06-02 Lionano (Zhejiang) Inc. TERNARY NICKEL-COBALT-ALUMINUM MATERIAL FOR ANODE OF LITHIUM-ION BATTERY, MANUFACTURING METHOD FOR THEREOF, AND APPLICATION OF IT, AND LITHIUM-ION BATTERY
EP3889111A4 (en) * 2018-11-28 2022-02-09 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES, METHOD OF PRODUCTION OF POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
EP3990391B1 (en) * 2019-06-28 2023-08-09 Basf Se Lithium nickel oxide particulate material, method for its manufacture and use
US20210288321A1 (en) * 2020-03-13 2021-09-16 Global Graphene Group, Inc. Lithium multiple metal oxide-based cathode active materials for lithium secondary batteries
US11837729B2 (en) * 2020-03-19 2023-12-05 Global Graphene Group, Inc. Conducting polymer network-protected cathode active materials for lithium secondary batteries
WO2021241075A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021241077A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
WO2022044489A1 (ja) * 2020-08-25 2022-03-03 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
JPWO2022138031A1 (ja) * 2020-12-25 2022-06-30
WO2022190852A1 (ja) * 2021-03-08 2022-09-15 三洋電機株式会社 非水電解質二次電池
CN117043990A (zh) * 2021-04-01 2023-11-10 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
CA3234403A1 (en) * 2021-10-12 2023-04-20 Philipp KURZHALS Manufacture of electrode active materials, and electrode active materials
CN114122519A (zh) * 2021-11-23 2022-03-01 东莞新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置
WO2023209474A1 (ja) * 2022-04-25 2023-11-02 株式会社半導体エネルギー研究所 正極活物質、リチウムイオン電池、電子機器、および車両
WO2024004676A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004686A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024052785A1 (ja) * 2022-09-09 2024-03-14 株式会社半導体エネルギー研究所 電池、電子機器、及び車両

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917430A (ja) * 1994-11-09 1997-01-17 Toray Ind Inc 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池
JPH09274917A (ja) * 1996-04-04 1997-10-21 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JPH1021958A (ja) * 1996-07-04 1998-01-23 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池
JPH10255795A (ja) * 1997-03-10 1998-09-25 Sanyo Electric Co Ltd 非水電解質電池
JPH1116566A (ja) * 1997-06-20 1999-01-22 Hitachi Ltd 電 池
JPH11317230A (ja) * 1998-02-10 1999-11-16 Samsung Display Devices Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP2001196063A (ja) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd 非水二次電池用活物質およびこれを用いた非水二次電池
JP2003173775A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005093414A (ja) * 2003-03-10 2005-04-07 Sanyo Electric Co Ltd リチウム電池
JP2005135895A (ja) * 2003-10-29 2005-05-26 Samsung Sdi Co Ltd 効率的な性能を有するリチウム電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2162456C (en) * 1994-11-09 2008-07-08 Keijiro Takanishi Cathode material, method of preparing it and nonaqueous solvent type secondary battery having a cathode comprising it
US5631105A (en) 1995-05-26 1997-05-20 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
JP3543437B2 (ja) 1995-07-24 2004-07-14 ソニー株式会社 正極活物質及びこの正極活物質を用いた非水電解質二次電池
JP3290355B2 (ja) * 1996-07-12 2002-06-10 株式会社田中化学研究所 リチウムイオン二次電池用のリチウム含有複合酸化物及びその製造法
JP4016453B2 (ja) 1997-07-18 2007-12-05 株式会社日立製作所 電極及びこれを用いた電池
KR100277796B1 (ko) 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
KR100309769B1 (ko) 1999-06-17 2001-11-01 김순택 리튬 이차 전지용 양극 활물질과 그 제조 방법
US6730435B1 (en) 1999-10-26 2004-05-04 Sumitomo Chemical Company, Limited Active material for non-aqueous secondary battery, and non-aqueous secondary battery using the same
JP4052810B2 (ja) 2000-04-26 2008-02-27 三菱化学株式会社 リチウム二次電池
JP2002075367A (ja) 2000-09-04 2002-03-15 Mitsui Chemicals Inc リチウム電池用正極活物質、その製法およびそれを用いた二次電池
KR20020070495A (ko) 2000-11-20 2002-09-09 쥬오 덴끼 고교 가부시키가이샤 비수성 전해질 2차 전지와 그 양극활성 물질
JP4092950B2 (ja) * 2001-05-17 2008-05-28 三菱化学株式会社 リチウムニッケルマンガン複合酸化物の製造方法
US6921609B2 (en) * 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
US6855461B2 (en) * 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JP4674423B2 (ja) * 2001-07-19 2011-04-20 三菱化学株式会社 層状リチウムニッケルマンガン複合酸化物粉体の製造方法
JP2004111076A (ja) 2002-09-13 2004-04-08 Sony Corp 正極活物質及び非水電解質二次電池
US7504180B2 (en) * 2002-09-25 2009-03-17 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JP4703111B2 (ja) * 2003-11-17 2011-06-15 パナソニック株式会社 非水電解質二次電池
KR100789081B1 (ko) * 2003-11-17 2007-12-26 마쯔시다덴기산교 가부시키가이샤 비수전해액 2차전지
JP2005251716A (ja) 2004-02-05 2005-09-15 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917430A (ja) * 1994-11-09 1997-01-17 Toray Ind Inc 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池
JPH09274917A (ja) * 1996-04-04 1997-10-21 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JPH1021958A (ja) * 1996-07-04 1998-01-23 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池
JPH10255795A (ja) * 1997-03-10 1998-09-25 Sanyo Electric Co Ltd 非水電解質電池
JPH1116566A (ja) * 1997-06-20 1999-01-22 Hitachi Ltd 電 池
JPH11317230A (ja) * 1998-02-10 1999-11-16 Samsung Display Devices Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP2001196063A (ja) * 1999-10-26 2001-07-19 Sumitomo Chem Co Ltd 非水二次電池用活物質およびこれを用いた非水二次電池
JP2003173775A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005093414A (ja) * 2003-03-10 2005-04-07 Sanyo Electric Co Ltd リチウム電池
JP2005135895A (ja) * 2003-10-29 2005-05-26 Samsung Sdi Co Ltd 効率的な性能を有するリチウム電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092182A1 (ja) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
CN101199065B (zh) 2010-12-08
KR100975191B1 (ko) 2010-08-10
US20090081548A1 (en) 2009-03-26
JP2006351378A (ja) 2006-12-28
CN101199065A (zh) 2008-06-11
JP5153060B2 (ja) 2013-02-27
US8673499B2 (en) 2014-03-18
KR20080015034A (ko) 2008-02-15

Similar Documents

Publication Publication Date Title
JP5153060B2 (ja) リチウムイオン二次電池
JP5260821B2 (ja) リチウムイオン二次電池
JP5085856B2 (ja) リチウムイオン二次電池
JP4824349B2 (ja) リチウムイオン二次電池
JP5128779B2 (ja) リチウムイオン二次電池
JP5079247B2 (ja) リチウムイオン二次電池およびその製造法
JP6662564B2 (ja) 負極活物質、それを備えたリチウム電池、及び該負極活物質の製造方法
JP5808073B2 (ja) 正極活物質及びこれを採用した正極とリチウム電池
JP5534595B2 (ja) リチウム二次電池用正極およびリチウム二次電池
JP4877898B2 (ja) 非水電解質二次電池
JP2007188878A (ja) リチウムイオン二次電池
KR102273772B1 (ko) 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
JP5079291B2 (ja) 非水電解質二次電池
US20150016024A1 (en) Cathode active material having core-shell structure and producing method thereof
JP5556844B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
KR20180044285A (ko) 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수계 전해질 이차 전지
JP6481907B2 (ja) リチウム鉄マンガン系複合酸化物、それを用いたリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
US9685657B2 (en) Composite precursor, composite prepared therefrom, a method of preparing a composite precursor and a composite, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
CN109964345B (zh) 非水电解质二次电池用正极及非水电解质二次电池
JP2012221953A (ja) 負極活物質、その製造方法及びこれを含むリチウム二次電池
WO1998054768A1 (fr) Electrode pour cellules electrolytiques non aqueuses
KR101588362B1 (ko) 코어-쉘 구조의 양극 활물질 및 이의 제조방법
JP7097540B2 (ja) リチウムイオン二次電池用リチウムマンガン系複合酸化物及びその製造方法、並びにそれを用いた正極材料、正極及びリチウムイオン二次電池
US20150236346A1 (en) Positive electrode active material, preparing method thereof, positive electrode including the same, and lithium secondary battery including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021309.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11914343

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077030971

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06766571

Country of ref document: EP

Kind code of ref document: A1