WO2005042444A2 - 白金錯体及び発光素子 - Google Patents

白金錯体及び発光素子 Download PDF

Info

Publication number
WO2005042444A2
WO2005042444A2 PCT/JP2004/015889 JP2004015889W WO2005042444A2 WO 2005042444 A2 WO2005042444 A2 WO 2005042444A2 JP 2004015889 W JP2004015889 W JP 2004015889W WO 2005042444 A2 WO2005042444 A2 WO 2005042444A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
atom
represent
aryl
Prior art date
Application number
PCT/JP2004/015889
Other languages
English (en)
French (fr)
Other versions
WO2005042444A1 (ja
WO2005042444A3 (ja
Inventor
Hisanori Itoh
Yuji Nakayama
Takeshi Iwata
Yoshimasa Matsushima
Yoji Hori
Original Assignee
Takasago Perfumery Co Ltd
Hisanori Itoh
Yuji Nakayama
Takeshi Iwata
Yoshimasa Matsushima
Yoji Hori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Perfumery Co Ltd, Hisanori Itoh, Yuji Nakayama, Takeshi Iwata, Yoshimasa Matsushima, Yoji Hori filed Critical Takasago Perfumery Co Ltd
Priority to EP04817419.7A priority Critical patent/EP1683804B1/en
Priority to US10/578,237 priority patent/US7442797B2/en
Priority to JP2005515131A priority patent/JP4110173B2/ja
Publication of WO2005042444A1 publication Critical patent/WO2005042444A1/ja
Publication of WO2005042444A2 publication Critical patent/WO2005042444A2/ja
Publication of WO2005042444A3 publication Critical patent/WO2005042444A3/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/28Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a platinum complex useful as a material for a light-emitting element that can emit light by converting electric energy into light.
  • the platinum complex of the present invention is useful as a novel luminescent material that can be suitably used in fields such as display devices, displays, knock lights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signs, and interiors. .
  • organic EL element (Hereinafter abbreviated as "organic EL element”) is attracting attention as a promising next-generation display element because it can emit light with high luminance at low voltage.
  • Organic EL devices have a faster response speed and are self-luminous compared to conventionally used liquid crystals, so they do not require a backlight unlike conventional liquid crystals and must be able to form extremely thin flat panel displays. Is possible.
  • Such an organic EL element is a light emitting device utilizing an electric field emission phenomenon, and is similar in principle to an LED, but is characterized by using an organic compound as a light emitting material.
  • an organic EL device using such an organic compound as a light emitting material an organic EL device using a multilayer thin film by a vapor deposition method has been reported.
  • tris (8-hydroxyquinolinato O, N) aluminum (Alq) is used as an electron transport material, and a hole transport material (eg,
  • a phosphorescent material for the light emitting layer of the organic EL device.
  • Phosphorescence is emitted from a singlet excited state in a non- It is a luminescence phenomenon of the triplet excited state force generated by the radiative transition, and is known to exhibit higher quantum efficiency than the fluorescence luminescence that is the luminescence phenomenon from the singlet excited state! / Puru. It is expected that high luminous efficiency can be achieved by using an organic compound having such properties as a luminescent material.
  • an organic EL device using such a phosphorescent substance devices using various complexes containing iridium as a central metal have been developed to date, but in recent years, complexes using platinum as a central metal have also been developed. I'm going. Among them, an organic EL device using a red phosphorescent material is a platinum complex (2,3,7,8,12,13,17,18-year-old 21H, 23H-voluinato N, Devices using (N, N, N) platinum (II) (Pt (OEP)) for the light emitting layer have been reported (Patent Document 1).
  • platinum complex is a red phosphorescent substance with high color purity, its external quantum efficiency is about 4%, and further improvement in luminous efficiency is required. Also, it has been reported that an orthometallated platinum complex having a compound having an arylpyridine skeleton as a ligand and platinum as a central atom is useful as a phosphorescent material (Patent Document 2). A platinum complex having a ligand as a ligand has also been reported (Patent Document 3).
  • Patent Document 1 USP 6,303,238
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-181617
  • Patent Document 3 JP 2002-175884 A
  • An object of the present invention is to provide a novel platinum complex that is useful as a material for a light-emitting element having good light-emitting characteristics and light-emitting efficiency.
  • the present invention provides a new technology that can be used in various fields.
  • An object is to provide a regular light-emitting material.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a novel platinum complex having the following specific structure has excellent luminescent properties and luminous efficiency. It has arrived.
  • ring A, ring B, ring C and ring D each represent a nitrogen-containing heterocyclic ring, even if two of the rings have a substituent, and the remaining two rings are substituted
  • R 4 or R 5 may form a condensed ring.
  • X 1 , X 2 , X 3 and X 4 each represent a nitrogen atom coordinated to a platinum atom, and the remaining two represent a carbon atom or a nitrogen atom.
  • Q 1 , Q 2 and Q 3 each independently represent a divalent atom (group) or a bond, but Q ⁇ Q 2 and Q 3 do not simultaneously represent a bond. Any two of Z 3 and Z 4 represent a coordinate bond, and the other two represent a covalent bond, an oxygen atom or a sulfur atom. )
  • R 6 , R 7 , R 8 and R 9 are each independently an alkyl group, a halogenated alkyl group, an aralkyl group, an alkenyl group, an alkyl group, an aryl group, an amino group, a mono or di Alkylamino group, mono- or aralkylamino group, mono- or diarylamino group, alkoxy group, alkenyl group, aralkyloxy group, aryloxy group, heteroaryloxy group, acyl group, alkoxycarbyl group, aryloxy group Carboxyl group, acyloxy group, acylamino group, alkoxycarboxy-amino group, aryloxycarbo-amino group, aralkyloxycarbo-amino group, sulfo-amino group, sulfamoyl group, and sulfamoyl group , An alkylthio group, an aralkyl group,
  • a plurality of R 6 , R 8 and R 9 may be different from each other, and furthermore, R 6 groups, R 7 groups, R 8 groups, and R 9 groups may be combined to form a condensed ring structure .
  • Q ⁇ Q 2 and Q 3 are each independently — (CI ⁇ R 2 )-, -0 (CR'R 2 ) O—,-(O)
  • R 1 and R 2 in Q 1 Q 2 and Q 3 are each independently Stands for a hydrogen atom, an alkyl group, an aralkyl group, an aryl group or an alkoxy group
  • nl represents an integer of 13; n2 and n3 each independently represent an integer of 0 or 1; R 3 represents a hydrogen atom, an alkyl group, an aralkyl group or an aryl group, and R 3a represents an alkyl group, an aralkyl group or an aryl group.
  • R 4 and R 5 each independently represent an alkyl group, an aralkyl group or an aryl group.
  • Ra and Rb each independently represent a hydrogen atom, an alkyl group, an aralkyl group, an aryl group or a cyano group.
  • R 1 and R 2 , R 4 and R a and R b may be bonded to each other to form a ring which may contain a hetero atom in the ring together with the atom which is substituted.
  • X 1 , X 2 , X 3 and X 4 each represent a nitrogen atom in which two of them are coordinated to a platinum atom, and the other two represent carbon atoms; Any two of Z 3 and Z 4 represent a coordinate bond, and the other two represent a covalent bond, an oxygen atom or a sulfur atom.
  • the present invention provides a light-emitting element in which a light-emitting layer or a plurality of organic compound thin layers including a light-emitting layer is formed between a pair of electrodes, wherein at least one of the light-emitting elements has the general formula (1) or the general formula
  • the present invention relates to a light emitting device, which is a layer containing at least one platinum complex represented by (2).
  • the present invention provides a compound represented by the following general formula (3)
  • ring A, ring B, ring C and ring D each represent a nitrogen-containing heterocyclic ring, even if two of the rings have a substituent, and the remaining two rings are substituted
  • a ring may be formed, or a condensed ring may be formed by each ring and QQ 2 and Q 3 described below (provided that Q ⁇ Q 2 and Q 3 are each an oxygen atom and a sulfur atom O 1 , X 2 , X 3, and X 4 each represent a nitrogen atom coordinated to a platinum atom, and the other two represent a carbon atom or a nitrogen atom.
  • Q ⁇ Q 2 and Q 3 each independently is a divalent atom (Dan) or a bond, Q ⁇ Q 2 and Q 3 are not the arc represents a bond at the same time.
  • X 1 , X 2 , X 3 and X 4 are nitrogen atoms capable of coordinate bonding, there is no Z′H, Z 2 H, Z 3 H and Z 4 H bonded to them, and X 1 , x
  • z 1 zz 3 and z 4 bonded thereto represent a covalent bond, an oxygen atom or a sulfur atom
  • X 1 , X 2 , X 3 and X 4 In the case of nitrogen atoms that can be covalently bonded, zzz 3 and z 4 bonded to them represent a covalent bond.
  • R 6 , R 7 , R 8 and R 9 are each independently an alkyl group, a halogenated alkyl group, an aralkyl group, an alkenyl group, an alkyl group, an aryl group, an amino group, a mono or di Alkylamino group, mono- or aralkylamino group, mono- or diarylamino group, alkoxy group, alkenyl group, aralkyloxy group, aryloxy group, heteroaryloxy group, acyl group, alkoxycarbyl group, aryloxy group Carboxyl group, acyloxy group, acylamino group, alkoxycarboxy-amino group, aryloxycarbo-amino group, aralkyloxycarbo-amino group, sulfo-amino group, sulfamoyl group, and sulfamoyl group , Alkylthio, aralkylthi
  • m 1 , m 2 , m 3 and m 4 each represent the number of R 6 , R 7 , R 8 and R 9 , and each independently represent an integer of 0-3.
  • m 1 m 2 , m 3 and m 4 are integers of 2 or more, a plurality of R 6 , R 8 and R 9 may be different from each other, and furthermore, R 6 groups, R 7 groups, R 8 groups, and R 9 groups may be combined to form a condensed ring structure .
  • R 1 and R 2 in Q 1 Q 2 and Q 3 each independently represent a hydrogen atom, an alkyl group, an aralkyl group, an aryl group or an alkoxy group.
  • nl represents an integer of 13;
  • n2 and n3 each independently represent an integer of 0 or 1;
  • R 3 represents a hydrogen atom, an alkyl group, an aralkyl group or an aryl group, and
  • R 3a represents an alkyl group, an aralkyl group or an aryl group.
  • R 4 and R 5 each independently represent an alkyl group, an aralkyl group or an aryl group.
  • Ra and Rb each independently represent a hydrogen atom, an alkyl group, an aralkyl group, an aryl group or a cyano group.
  • R 1 and R 2 , R 4 and R 5 , and R a and R b are bonded to each other to form a ring which may contain a hetero atom in the ring together with the atom which each is substituted. May be.
  • X 1 , X 2 , X 3 and X 4 each represent a nitrogen atom coordinated to a platinum atom, two of which represent carbon atoms, and Z ⁇ Z 3 and Z 4 represent And any two of them represent a coordinate bond, and the other two represent a covalent bond, an oxygen atom or a sulfur atom.
  • H represents a hydrogen atom.
  • the platinum complex of the present invention is useful as a light emitting material, and in particular, can produce an EL device having high light emitting characteristics, high light emitting efficiency, and high durability as a material for organic EL.
  • FIG. 1 is a diagram showing a configuration example of an organic EL device using the platinum complex of the present invention.
  • Second electrode metal electrode, cathode
  • the platinum complex represented by the general formula (1) of the present invention is a platinum complex compound having a tetradentate ligand having ring A, ring B, ring C and ring D forces.
  • the nitrogen-containing heterocyclic ring which may have a substituent in ring A, ring B, ring C or ring D has at least one nitrogen atom And further contains one to three hetero atoms such as a nitrogen atom, an oxygen atom or a sulfur atom, and may have 5 to 8 members, preferably 5 or 6 members. And a monocyclic, polycyclic or fused cyclic heterocyclic ring.
  • the nitrogen atom of the nitrogen-containing heterocycle can be coordinated to a platinum atom.
  • Other rings forming a polycyclic group or a condensed cyclic group include the aforementioned heterocyclic groups and carbocyclic groups.
  • Preferred examples of the nitrogen-containing heterocycle include, for example, a pyridine ring, a diazine ring, a triazine ring, a diazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, a benzopyridine ring, a benzodiazine ring, a naphthyridine ring, and 2H-. And a pyrrole ring.
  • One or more hydrogen atoms on the nitrogen-containing heterocyclic ring in ring A, ring B, ring C, and ring D of the platinum complex represented by the general formula (1) may be substituted with a substituent.
  • a substituent is not particularly limited as long as it does not adversely affect light emission characteristics, but is preferably described later.
  • the groups described as R 6 , R 7 , R 8 and R 9 in the platinum complex represented by the general formula (2) can be mentioned.
  • ring A, ring B, ring C, and ring D each have a substituent, and may be a aryl ring or a heteroaryl.
  • the aryl group is a ring
  • examples of the aryl ring include a monocyclic, polycyclic, or fused cyclic carbocyclic group having 6 to 40 carbon atoms, preferably 6 to 30 carbon atoms, and more preferably 6 to 20 carbon atoms.
  • the heteroaryl ring may be a 5- to 8-membered, preferably 5- or 6-membered monocyclic or polycyclic, containing one to three hetero atoms such as a nitrogen atom, an oxygen atom or a sulfur atom.
  • a cyclic or fused cyclic heterocyclic group is exemplified. Examples of the other ring that forms the polycyclic or condensed cyclic form of the heterocyclic group include the aforementioned heterocyclic group and the aforementioned carbocyclic group.
  • Preferred aryl or heteroaryl rings include, for example, benzene ring, pyridine ring, diazine ring, triazine ring, pyrrole ring, diazole ring, furan ring, thiophene ring, naphthalene ring, benzopyridine ring, benzodiazine ring, benzofuran ring, benzothiophene. Ring.
  • One or more hydrogen atoms on the aryl or heteroaryl ring in ring A, ring B, ring C or ring D of the platinum complex represented by the general formula (1) may be substituted with a substituent.
  • a substituent is not particularly limited as long as it does not adversely affect the emission characteristics, but is preferably R 6 , R 7 , R 8 and R 6 in a platinum complex represented by the following general formula (2).
  • the groups described in R 9 can be mentioned.
  • the divalent atoms (groups) represented by QQ 2 and Q 3 exist as a spacer connecting the four ring groups, and specific examples thereof include, for example,-(CR′R 2 ) O (CR'R 2 )
  • R 1 and R 2 in (CR'R 2 ) and ⁇ ( ⁇ ⁇ 2 ) ⁇ — are each independently water
  • R 3 in NR 3 R 3a in BR 3a includes an alkyl group, an aralkyl group and an aryl group, and SiR 4 R 5 and 0 (SiR 4 R 5 )
  • RR 2 , R 3 , R 3a , R 4 , R 5 , R a and R b and the alkyl, aralkyl and aralkyl groups represented by RR 2 , R 3 , R 3a , R 3 , R 5 , R a and R b
  • Specific examples and the like are exactly the same as those of the alkyl group, the aralkyl group and the aryl group in the platinum complex represented by the following general formula (2)
  • the ring formed by R 1 and R 2 , R 4 and R 5 , and R a and R b together with the atom each of which is substituted with each other may include a hetero atom, and may have a 5- or 6-membered ring. Rings.
  • Specific rings include a cyclopentane ring, a cyclohexane ring, a tetrahydrofuran ring, a tetrahydropyran ring, a dioxolan ring, a dioxane ring, a furan ring, a pyran ring, a thiophene ring, a benzene ring, a tetrahydrosilole ring and a silole ring.
  • these rings include divalent spiro rings from the same atom, saturated rings of divalent groups from different atoms, aromatic rings and the like.
  • Preferred forms of the platinum complex of the present invention include, for example, a platinum complex represented by the above general formula (2).
  • examples of the alkyl group represented by R 6 , R 7 , R 8 , and R 9 include, for example, carbon atoms of 110, preferably carbon atoms of 110, more preferably carbon atoms of 110. And specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, and an n-hexyl group. And 2-ethylhexyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl and cyclohexyl.
  • halogenated alkyl group examples include groups in which one or more hydrogen atoms of the above-described alkyl group are halogen-substituted by a halogen atom such as a fluorine atom and a chlorine atom.
  • a halogen atom such as a fluorine atom and a chlorine atom.
  • Specific examples include a perfluoroalkyl group such as a trifluoromethyl group and a pentafluoroethyl group.
  • aralkyl group one or more hydrogen atoms of the above-mentioned alkyl group have the above-mentioned carbocyclic aryl group (the aryl group has a substituent such as the above-mentioned alkyl group, an alkoxyl group described later, and a halogen atom). May be substituted.).
  • Preferred aralkyl groups include optionally substituted aryl groups having 7 to 30, preferably 7 to 20, and more preferably 7 to 15 carbon atoms, and specific examples thereof include: Examples include a benzyl group, a 4-methylbenzyl group, a 4-methoxybenzyl group, and a 1-phenethyl group.
  • alkyl group a linear or branched alkyl group having 2 to 30 carbon atoms, preferably 2 to 20 carbon atoms, and more preferably 2 to 10 carbon atoms has one or more double bonds. And specific examples thereof include a butyl group, an aryl group, a 2-butenyl group, and a 3-pentenyl group.
  • alkynyl group examples include those having one or more triple bonds in a linear or branched alkyl group having 2 to 30 carbon atoms, preferably 2 to 20 carbon atoms, and more preferably 2 to 10 carbon atoms. Specific examples thereof include, for example, an ethyl group, a 1-propyl group and a 2-propyl group.
  • aryl group examples include an aryl group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms. Specific examples include, for example, a phenyl group, a tolyl group, a naphthyl group, And an anthral group.
  • the aryl group may have a substituent such as an alkyl group described above, an alkoxy group described below, or a halogen atom.
  • Examples of the mono- or dialkylamino group include an amino group in which one or two hydrogen atoms have been substituted with the above-described alkyl group, and specific examples include, for example, a methylamino group, a dimethylamino group, and a acetylamino group. And the like.
  • Examples of the mono or diaralkylamino group include an amino group in which one or two hydrogen atoms have been substituted by the above-mentioned aralkyl group.
  • Specific examples include a benzylamino group and a dibenzylamino group. Group, 1-phenyl-ethylamino group and the like.
  • One or two mono or diaryl amino groups may be used depending on the aryl group as described above. And specific examples thereof include a phenylamino group, a diphenylamino group, a ditolylamino group, and a phenylnaphthylamino group.
  • alkoxy group examples include a group in which an oxygen atom is bonded to the above-described alkyl group. Specific examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a tert-butoxy group. And 2-ethylhexyloxy group.
  • alkoxy group examples include a group in which an oxygen atom is bonded to the above-described alkoxy group, and specific examples include a benzyl group and an aryloxy group.
  • aralkyloxy group examples include groups in which an oxygen atom is bonded to the aralkyl group as described above, and specific examples include, for example, a benzyloxy group and a 1-phenethyloxy group.
  • the aryloxy group includes a group in which an oxygen atom is bonded to the aryl group as described above, and specific examples include, for example, a phenoxy group, a tolyloxy group, and a naphthyloxy group.
  • heteroaryloxy group examples include a group in which an oxygen atom is bonded to the heteroaryl group as described above. Specific examples include, for example, a 2-pyridyloxy group, a 2-virazyloxy group, a 2-pyrimidyloxy group, And a 2-quinolyloxy group.
  • acyl group may be straight-chain or branched! /,
  • an acyl group having 118 carbon atoms derived from a carboxylic acid such as an aliphatic carboxylic acid and an aromatic carboxylic acid is given as a specific example.
  • examples thereof include formyl group, acetyl group, propioyl group, butyryl group, bivaloyl group, pentanoyl group, hexanoyl group, lauroyl group, stearoyl group, benzoyl group, atalyloyl group and the like.
  • alkoxycarbonyl group examples include a linear, branched or cyclic alkoxycarbonyl group having 2 to 19 carbon atoms, such as a methoxycarbol group and an ethoxycarboxy group.
  • the aryloxycarbonyl group includes, for example, an aryloxycarbonyl group having 7 to 20 carbon atoms, and specific examples include, for example, a phenoxycarbonyl group, a naphthyloxycarbonyl group, and the like.
  • acyloxy group examples include carboxylic acid-derived acyloxy groups having 2 to 18 carbon atoms, and specific examples thereof include, for example, an acetoxy group, a propio-loxy group, a ptyryloxy group, a pivaloyloxy group, a pentanoyloxy group, Examples include a hexanoyloxy group, a radioyloxy group, a stearoyloxy group, a benzoyloxy group, and an atariloyloxy group.
  • acylamino group examples include an amino group in which one hydrogen atom of the amino group is replaced with the above-mentioned acyl group. Specific examples include, for example, a formylamino group, an acetylamino group, and a propioylamino group. Benzoylamino group, pentanoylamino group, hexanoylamino group, benzoylamino group and the like.
  • alkoxycarbo-amino group examples include an amino group in which one hydrogen atom of the amino group is substituted with the above-mentioned alkoxycarbonyl group, and specific examples include, for example, a methoxycarboamino group and an ethoxycarbo-amino group.
  • examples thereof include a lumino group, an n-propoxycarbo-lamino group, an n-butoxycarbo-lamino group, a tert-butoxycarbo-lamino group, a pentyloxycarbo-lamino group, and a hexyloxycarbo-lamino group.
  • aryloxycarbamino group examples include an amino group in which one hydrogen atom of the amino group is substituted with the above-mentioned aryloxycarbol group. Specific examples include, for example, And a carboxy-amino group.
  • aralkyloxycarbo-amino group examples include an amino group in which one hydrogen atom of the amino group is substituted with the above-mentioned aralkyloxycarbonyl group.
  • Specific examples include, for example, benzylo A xycarbol-amino group and the like.
  • sulfo-amino group examples include sulfonyl in which one hydrogen atom of an unsubstituted sulfo-amino group or amino group is bonded to the above-mentioned alkyl group, aryl group or aralkyl group.
  • examples thereof include an amino group substituted with a group, and specific examples include a methanesulfo-lamino group and a p-toluenesulfo-lamino group.
  • sulfamoyl group examples include an unsubstituted sulfamoyl group or a mono- or di-substituted sulfamoyl group in which at least one hydrogen atom on a nitrogen atom is substituted with the above-described alkyl group, aryl group or aralkyl group.
  • examples thereof include a sulfamoyl group, a methylsulfamoyl group, a dimethylsulfamoyl group, and a phenylsulfamoyl group.
  • Examples of the rubamoyl group include an unsubstituted rubamoyl group and a mono- or di-substituted rubamoyl group in which at least one hydrogen atom on a nitrogen atom is substituted with an alkyl group, an aryl group or an aralkyl group as described above.
  • a carbamoyl group, methyl carbamoyl group, a getylcarbamoyl group, a phenylcarbamoyl group and the like can be mentioned.
  • alkylthio group examples include a linear, branched, or cyclic alkylthio group, for example, an alkylthio group having 16 carbon atoms. Specific examples include, for example, a methylthio group, an ethylthio group, an n-propylthio group, Examples thereof include a 2-propylthio group, an n-butylthio group, a 2-butylthio group, an isobutylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, and a cyclohexylthio group.
  • aralkylthio group examples include groups in which a sulfur atom is bonded to the aralkyl group as described above, and specific examples include, for example, a benzylthio group and a 1-phenethylthio group.
  • Examples of the arylthio group include a group in which a sulfur atom is bonded to the aryl group as described above. Specific examples include, for example, a phenylthio group and a naphthylthio group.
  • Examples of the heteroaryl group include a group in which a sulfur atom is bonded to the heteroaryl group. Specific examples thereof include a pyridylthio group, a 2-benzimidazolylthio group, a 2-benzoxazolylthio group, and a 2-venthiazolyl group.
  • the sulfol group is, for example, a linear or branched alkyl group having 16 carbon atoms. And specific examples thereof include a methanesulfonyl group and an ethanesulfonyl group.
  • Examples of the arene sulfol group include an arene sulfol group having 6 to 12 carbon atoms, and specific examples thereof include a benzene sulfol group and a p-toluene sulfol group.
  • alkanesulfinyl group examples include a linear or branched alkanesulfiel group having 16 carbon atoms, and specific examples thereof include, for example, a methanesulfiel group and an ethanesulfiel group.
  • Examples of the arene sulfide group include an arene sulfide group having 6 to 12 carbon atoms, and specific examples include, for example, a benzene sulfide group and a p-toluene sulfide group.
  • ureido group examples include an unsubstituted ureido group and a ureido group in which at least one hydrogen atom bonded to two nitrogen atoms has been substituted with the above-mentioned alkyl group, aryl group or aralkyl group.
  • Specific examples include, for example, a ureido group, a methyl ureide group, a phenyl ureide group and the like.
  • Examples of the substituted phosphoric acid amide group include groups in which at least one hydrogen atom of a phosphoric acid amide group has been substituted with the above-described alkyl group, aryl group, aralkyl group, or the like.
  • An acid amide group, a phenylphosphoric acid amide group and the like can be mentioned.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a sulfo group is a SOH group
  • a hydroxamic acid group is a CO—NH—OH group
  • the ino group is a SO H group and the hydrazino group is an NH—NH group.
  • the heterocyclic group is a heteroaryl group as described above. And the like.
  • Examples of the trialkylsilyl group include a silyl group tri-substituted with an alkyl group as described above, and specific examples include, for example, a trimethylsilyl group and a tert-butyldimethylsilyl group.
  • Examples of the triarylsilyl group include a silyl group 3-substituted with the above aryl group, and specific examples include, for example, a trifurylsilyl group.
  • R 6 groups, R 7 groups, R 8 groups, and R 9 groups may be combined together to form a condensed ring structure. Further, R 6 and R 7 , R 6 and R 8 or / and R 7 and R 9 may together form a fused ring structure. Specific examples of the condensed ring include, for example, a phenanthrene ring, a fluorene 9-on ring, a 1,10 phenanthrene phosphorus ring, a 4,5-diazafluorene 9-on ring and the like.
  • n 3 and m 4 each represent the number of R 6 , R 8 and R 9 , and each independently represents an integer of 0-13. Also, when m 1 m 2 , m 3 and m 4 are integers of 2 or more, even if a plurality of R 6 , R 7 , R 8 and R 9 are the same, they are mutually! ⁇ is different!
  • the platinum complex (1) [or the platinum complex (2)] of the present invention comprises a complex precursor and a compound represented by the general formula (3) (hereinafter referred to as compound (3) Abbreviated as 3).) [Or a compound represented by the general formula (4) (hereinafter abbreviated as compound (4);)] in the presence of a suitable solvent, if necessary. It can be easily manufactured by reacting in an active gas atmosphere.
  • the complex precursor in Scheme 1 may be either an inorganic platinum compound or an organic platinum complex.
  • Preferred inorganic platinum compounds include PtY (Y represents a halogen atom.
  • M represents an alkali metal; the same applies hereinafter. Represented by Y
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkali metal represented by M examples include lithium, sodium, potassium and the like.
  • specific examples of the inorganic platinum compound include, for example, platinum chloride (11), platinum bromide (II), platinum (11), Sodium chloroplatinate (II), potassium salt chloroplatinate (II), potassium bromide (II) potassium, and the like.
  • organic platinum complex for example, the following general formula (5)
  • a non-conjugated jelly conjugate may be mentioned as one of the neutral ligands represented by J.
  • the Zhenyi conjugate is a cyclic non-conjugated Zhenyi conjugate, it may be any of monocyclic, polycyclic, condensed, and crosslinked.
  • n4 is 1.
  • the non-conjugated Zhenyi conjugate may be a non-conjugated Zhiyin conjugate which is substituted with a substituent, that is, a substituted non-conjugated diene compound.
  • the substituent is not particularly limited as long as it does not adversely affect the production method of the present invention, and examples thereof include the same substituents as those described in detail in the description of the platinum complex.
  • Can be Preferred examples of the non-conjugated diene compound include, for example, 1,5-cyclooctadiene, bicyclo [2,2,1] hepter 2,5-diene, 1,5 xadiene and the like.
  • Examples of neutral ligands other than non-conjugated diene compounds include monodentate neutral ligands, and more specifically, -tolyls such as acetonitrile or benzo-tolyl. And sulfides such as methyl sulfide, tertiary phosphines such as triphenylphosphine, tertiary amines such as pyridine, and monoenes such as ethylene. When J is one of these monodentate ligands, n4 is 2.
  • halogen atom represented by Y examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom and a bromine atom are particularly preferable.
  • platinum complex represented by the general formula (1) and the platinum complex represented by the general formula (2) in the present invention include, for example, the following compounds. Of course, it is not limited to these.
  • both compound (3) and compound (4) are collectively referred to as a tetradentate ligand.
  • the amount of the tetradentate ligand to be used is generally 0.5 to 20 equivalents, preferably 0.8 to 10 equivalents, more preferably 1.0 to 2.0 equivalents, based on the complex precursor.
  • the production method of the present invention is desirably performed in the presence of a solvent.
  • Preferred solvents are, for example, amides such as N, N-dimethylformamide, formamide, N, N-dimethylacetamide, cyano-containing compounds such as acetonitrile and benzo-tolyl, dichloromethane, 1,2-dichloroethane Halogenated hydrocarbons such as methane, chloroform, carbon tetrachloride, o-dichlorobenzene, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, cyclohexane, benzene, toluene, xylene Aromatic hydrocarbons, such as getyl ether, diisopropyl ether, tertbutyl methyl ether, dimethoxyethane, ethylene glycol getyl ether, tetrahydrofur
  • Polyhydric alcohols such as 1,2-propanediol and glycerin, esters such as methyl acetate, ethyl acetate, n-butyl acetate and methyl propionate, sulfoxides such as dimethyl sulfoxide, acetic acid, propionic acid and butyric acid Examples include carboxylic acids and water. These solvents may be used alone or in an appropriate combination of two or more. More preferred solvents include amides such as N, N-dimethylformamide and N, N-dimethylacetamide, cyano-containing compounds such as acetonitrile and benzo-tolyl, and aromatic compounds such as benzene, toluene and xylene.
  • esters such as methyl acetate, ethyl acetate, n-butyl acetate and methyl propionate
  • sulfoxides such as dimethyl sulfoxide
  • acetic acid propionic acid and butyric acid
  • Hydrocarbons such as ethylene glycol getyl ether, tetrahydrofuran, 1,4 dioxane, 1,3-dioxolane, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methanol, ethanol, 2-propanol, Alcohols such as n-butanol and 2-ethoxyethanol; polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-propanediol and glycerin; methyl acetate, ethyl acetate, n-butyl acetate and methyl propionate Such as esters, acetic acid, propionic acid, butyric acid Carboxylic acids, water and the like. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent to be used is not particularly limited as long as the reaction can proceed sufficiently, but a range of usually 1.1 to 200 times, preferably 1 to 50 times the volume of the complex precursor is appropriately selected.
  • the reaction temperature is usually 25-300. C, preferably 60-250. C, more preferably 80-200. The range of C is appropriately selected.
  • the reaction time varies depending on the reaction temperature and other reaction conditions such as the solvent and the base, and is appropriately selected from the range of usually 10 minutes to 72 hours, preferably 30 minutes to 48 hours, and more preferably 111 hours.
  • the platinum complex of the present invention can be obtained by performing post-treatment, isolation and purification as necessary.
  • the post-treatment method include, for example, extraction of a reaction product, filtration of a precipitate, crystallization by addition of a solvent, and evaporation of the solvent. It can be performed in combination.
  • the method for isolation and purification include column chromatography, recrystallization, sublimation, etc., which can be performed alone or in combination.
  • the compound (3) and the compound (4) are tetradentate ligands having two nitrogen atoms capable of coordinating to platinum metal and two sites capable of binding to platinum metal.
  • ring A, ring B, ring C, ring D, X 1 , X 2 , X 3 , X 4 , R 6 , R 7 , R 8 , R 9 , m 2 , m 3 and m 4 are exactly the same as those in the compound (1) and the compound (2) as described above.
  • Specific examples of the compound (3) and the compound (4) include the above-described specific examples of the platinum complex of the present invention. Except for platinum metal, one hydrogen atom is added to each atom covalently bonded to a platinum atom. Compounds.
  • the tetradentate ligand of the present invention can be synthesized by performing various coupling reactions of an aromatic compound known before the present application and other known reactions.
  • the coupling reaction used here includes, for example, aryl-amination and aryl etherification using a transition metal, a carbon-heteroatom bond formation reaction such as an Ullmann reaction, Grignard coupling, Negishi coupling, Suzuki coupling, etc. And a carbon bond formation reaction. Further, for example, it can be used after a condensation reaction such as esterification / silyl esterification or a reaction such as halogenation.
  • the synthesis method is completely different depending on the structure of the tetradentate ligand according to the present invention.
  • the following synthesis method is merely an example, and the tetradentate ligand according to the present invention is merely an example. Is not limited to this method.
  • the platinum complex (1) and the platinum complex (2) of the present invention are useful as a phosphorescent material in a light-emitting device, particularly an organic EL device. Next, a light emitting device using the platinum complex (1) and the platinum complex (2) of the present invention will be described.
  • the light-emitting element is not particularly limited as long as it uses the platinum complex of the present invention, such as a system, a driving method, and a usage form.
  • the light-emitting element utilizes light emission from the platinum complex, or the platinum complex is a charge transport material.
  • an organic EL element can be cited.
  • a light-emitting element containing the platinum complex of the present invention is a light-emitting element in which a light-emitting layer or a plurality of organic compound layers including a light-emitting layer is formed between a pair of electrodes as long as the light-emitting element contains at least one of the platinum complexes. At least one layer contains at least one of the platinum complexes.
  • the platinum complex may contain at least one kind, but may contain two or more kinds in an appropriate combination.
  • the method for forming the organic layer (organic compound layer) of the light-emitting device containing the platinum complex of the present invention is not particularly limited, but includes resistance heating evaporation, electron beam, sputtering, molecular lamination, coating, ink jetting, and the like. Method and the like, and resistance heating evaporation and a coating method are preferable in terms of characteristics and production.
  • the light-emitting device containing the platinum complex of the present invention is a device in which a light-emitting layer or a plurality of organic compound thin films including the light-emitting layer are formed between a pair of anode and cathode electrodes. , A hole transport layer, an electron injection layer, an electron transport layer, a protective layer, and the like. Each of these layers may have a different function. Various materials can be used for forming each layer.
  • the anode supplies holes to the hole injection layer, the hole transport layer, the light emitting layer, and the like.
  • a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof is used. It is preferably a material having a work function force of eV or more. Specific examples include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide (hereinafter, referred to as ITO), or metals such as gold, silver, chromium, and nickel, and conductive metals such as these.
  • conductive metal oxides inorganic conductive substances such as copper iodide and copper sulfide, organic conductive materials such as polyarline, polythiophene and polypyrrole, and laminates of these with ITO.
  • a conductive metal oxide particularly, productivity, high conductivity, transparent In terms of properties, ITO is preferred.
  • the thickness of the anode can be appropriately selected depending on the material, but is usually in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 1 ⁇ m, and more preferably 100 nm to 500 nm.
  • a layer formed on a soda lime glass, a non-alkali glass, a transparent resin substrate or the like is usually used.
  • glass it is preferable to use non-alkali glass in order to reduce ions dissolved from the glass.
  • soda lime glass it is preferable to use a soda lime glass coated with a noria such as silica.
  • the thickness of the substrate is not particularly limited as long as it is sufficient to maintain the mechanical strength, but when glass is used, the thickness is usually 0.2 mm or more, preferably 0.7 mm or more.
  • a variety of methods are used to produce the anode depending on the material.
  • methods such as electron beam method, sputtering method, resistance heating evaporation method, chemical reaction method (sol-gel method, etc.), and application of ITO dispersion
  • the film is formed.
  • the anode can be cleaned or otherwise treated to lower the drive voltage of the device and increase the luminous efficiency.
  • UV ozone treatment and plasma treatment are effective.
  • the cathode supplies electrons to the electron injection layer, the electron transport layer, the light-emitting layer, and the like. It is selected in consideration of gender.
  • metals, alloys, metal halides, metal oxides, electrically conductive compounds, or mixtures thereof can be used.
  • Specific examples include alkali metals such as lithium, sodium and potassium and fluorides thereof.
  • Alkaline earth metals such as magnesium and calcium and their fluorides, gold, silver, lead, aluminum, sodium-potassium alloys or their mixed metals, magnesium-silver alloys or their mixed metals, indium, ytterbium, etc.
  • Rare earth metals and the like preferably a material having a work function force of eV or less, more preferably aluminum, a lithium-aluminum alloy or a mixed metal thereof, a magnesium-silver alloy or a mixed metal thereof, or the like. No.
  • the cathode may have a laminated structure containing the above compound and mixture.
  • the thickness of the cathode can be appropriately selected depending on the material. The thickness is usually in the range of lOnm-, preferably 50 nm-1 ⁇ m, and more preferably lOOnm-1 ⁇ m.
  • Methods such as an electron beam method, a sputtering method, a resistance heating evaporation method, and a coating method are used, and a metal can be evaporated alone or two or more components can be evaporated simultaneously. Further, it is possible to form a pole with an alloy by simultaneously depositing a plurality of metals, or an alloy prepared in advance may be deposited. It is preferable that the cathode and anode have low sheet resistance.
  • the material of the light-emitting layer has a function of injecting electrons from the anode or the hole injection layer or the hole transport layer when an electric field is applied, and a function of providing a field of recombination of holes and electrons to emit light. Any material that can form a layer may be used.
  • carbazole derivatives for example, carbazole derivatives, benzoxazole derivatives, trifluoramine derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives , Coumarin derivative, Perylene derivative, Perinone derivative, Oxadiazole derivative, Aldazine derivative, Villaridine derivative, Cyclopentadiene derivative, Bisstyrylanthracene derivative, Quinacridone derivative, Pyromouth pyridine derivative, Thiadiazopyridine derivative, Styrylamine derivative, Aroma Dimethylidin compounds, organic borane derivatives, compounds represented by the general formula (3) or (4) of the present invention, metal complexes of 8-quinolinol derivatives ⁇ various metal complexes represented by rare earth complexes Poly (N- vinylcarbazole) derivatives, Porich
  • the polymer or oligomer compound may contain the platinum complex of the present invention as a partial structure.
  • the material of the light emitting layer is not limited to the above specific examples.
  • the light-emitting layer may have a single-layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the thickness of the light emitting layer is not particularly limited, it is usually in the range of lnm-5m, preferably 5nm-1m, more preferably lOnm-500 ⁇ m.
  • the method for forming the light-emitting layer is not particularly limited, but includes an electron beam method, a sputtering method, a resistance heating evaporation method, a molecular lamination method, a coating method (spin coating method, a casting method, a dip coating method, etc.), an inkjet method. And LB method, and preferably, resistance heating evaporation and coating method.
  • the material of the hole injection layer and the hole transport layer has any of a function of injecting holes from the anode, a function of transporting holes, and a function of blocking electrons injected from the cathode. It should just be something.
  • phorbazole derivatives include phorbazole derivatives, triazole derivatives, oxaziazole derivatives, oxazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, furylenediamine derivatives, arylamine derivatives, amino substituted chalcone derivatives, styryl anthracene Derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine conjugates, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, polysilane compounds, poly (N-bulcarbazole) derivatives Conductive polymer oligomers such as olefin-based copolymers, thiophene oligomers, and polythiophenes; organic silane derivatives; organic borane derivatives; phthalocyanine derivatives; The compound represented by the general
  • the thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually preferably in the range of lnm to 5 m, more preferably 5 nm to 1 m, and still more preferably lOnm to 500 nm. It is.
  • the hole injection layer and the hole transport layer may have a single layer structure composed of one or more of the above-mentioned materials, or a multilayer structure composed of a plurality of layers having the same composition or different compositions. good.
  • the hole injecting layer and the hole transporting layer can be formed by a vacuum evaporation method, an LB method, or a method in which the hole injecting and transporting agent is dissolved or dispersed in a solvent and coated (spin coating, casting, A method such as a dip coating method) or an ink jet method is used. In the case of the coating method, it can be dissolved or dispersed together with the resin component.
  • the resin component for example, polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-butylcarbazole) , Hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, butyl acetate, ABS resin, alkyd resin, epoxy resin, silicon resin and the like.
  • the resin component for example, polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-butylcarbazole) , Hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, butyl acetate, ABS resin, alkyd resin, epoxy resin, silicon resin and the like.
  • the material of the electron injecting layer and the electron transporting layer has any of a function of injecting electrons from a cathode, a function of transporting electrons, and a function of blocking holes injected from an anode. If it is good.
  • the on-dani potential is selected to be larger than the on-dye potential of the light emitting layer.
  • triazole derivatives examples include triazole derivatives, oxazole derivatives, polycyclic compounds, heteropolycyclic compounds such as bathocuproine, oxadiazole derivatives, fluorenone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, anthraquinone dimethane derivatives, anthrones Derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyryl virazine derivatives, acid anhydrides of aromatic tetracarboxylic acids such as naphthalenetetracarboxylic acid or perylenetetracarboxylic acid, metal complexes of phthalocyanine derivatives, 8-quinolinol derivatives ⁇ ⁇ metals
  • Various metal complexes typified by phthalocyanine, benzoxazole and benzothiazole as ligands, organic silane derivatives, organic borane derivatives, compounds represented by the general
  • the polymer or oligomer compound may contain the platinum complex of the present invention in a partial structure.
  • the materials of the electron injection layer and the electron transport layer are not limited to these.
  • the thickness of the electron injecting layer and the electron transporting layer is not particularly limited, but is usually in the range of lnm—5 ⁇ m, preferably 5 nm—: Lm, and more preferably lOnm— 500 nm.
  • the electron injecting layer and the electron transporting layer may have a single-layer structure composed of one or more of the above-mentioned materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the electron injection layer and the electron transport layer can be formed by a vacuum deposition method, an LB method, or a method in which the above hole injection / transport agent is dissolved or dispersed in a solvent and coated (spin coating, casting, dip coating, etc.). Etc.), and a method such as an ink jet method is used.
  • the coating method it can be dissolved or dispersed together with the resin component.
  • the resin component those exemplified for the hole injection layer and the hole transport layer can be applied.
  • any material may be used as long as it has a function of preventing a substance that promotes element deterioration such as moisture and oxygen from entering the element.
  • Specific examples include metals such as indium, tin, lead, gold, silver, copper, aluminum, titanium, nickel, magnesium oxide, silicon oxide, silicon oxide, aluminum aluminum oxide, germanium oxide, germanium oxide, and silicon oxide.
  • Metal oxides such as nickel, calcium oxide, calcium oxide, potassium iron, diiron trioxide, iron oxide trinitride, titanium oxide, and the like; Magnesium fluoride, lithium fluoride, aluminum fluoride, metal fluorides of calcium fluoride, polyethylene, polypropylene, polymethyl methacrylate, polyimide, polyurea, polytetrafluoronore ethylene, polychlorotrifnoreoethylene, polydichlorodiph Noreo ethylene, A copolymer obtained by copolymerizing a monomer mixture containing tetrafluoroethylene and at least one comonomer, a fluorinated copolymer having a cyclic structure in the copolymer main chain, a water-absorbing substance having a water absorption of 1% or more, and a water absorption 0.1% or less of a moisture-proof substance.
  • the method of forming the protective layer There is no particular limitation on the method of forming the protective layer.
  • vacuum evaporation, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency excitation) Ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, etc. can be applied.
  • GEMINI2000 type device manufactured by Varian
  • Example 1 2-aniline (131 mg) was used in place of 2-bromo-6-phenylaviridine (660 mg) and 2- (m-chlorophenyl) pyridine (600 mg) obtained in Reference Example 2. The reaction and post-treatment were carried out in exactly the same manner as in Example 1 except that aniline (140 mg) was used, to obtain the desired product as a solid.
  • Example 1 3,5-di (t-butyl) a-line (219 mg) was used instead of a-line (131 mg), and 2-bromo-6-phenylpyridine (660 mg) was added to 2-bromo-6-phenyl.
  • the reaction and post-treatment were carried out in exactly the same manner as in Example 1 except that rubilidine (500 mg) was used, to obtain the desired product as a solid (420 mg).
  • Example 2 N, N-bis (6-phenylpyridin-2-yl) — obtained in Example 5 instead of N, N bis (6-phenylpyridinyl-2) -arline (193 mg) — Bisbenzonitrile dichloroplatinum (II) (228 mg) was replaced with bisbenzonitrile dichloroplatinum ( ⁇ ) (504 mg) using 3,5-di (t-butyl) aline (546 mg). Except for this, the reaction and post-treatment were carried out in the same manner as in Example 2 to obtain the desired product as yellow crystals (451 mg).
  • Example 4 N, N-bis [3- (2-pyridyl) obtained in Example 7 was used instead of N, N-bis [3- (2-pyridyl) phenyl] farin (250 mg). Phenyl] -3,5-di (t-butyl) aline (248 mg) was used to replace potassium tetrachloroplatinate ( ⁇ ) (260 mg) with potassium tetrachloroporate (II) (306 mg). The reaction and post-treatment were carried out in the same manner as in Example 4 except for the above, to obtain the desired product as red crystals (124 mg).
  • the reaction solution was poured into a saturated aqueous solution of sodium chloride aqueous solution, the organic layer was separated, and the aqueous layer was extracted with toluene. The organic layers were combined and concentrated, and the obtained residue was purified by a silica gel column and recrystallization to give 1,1 bis (6-phenylpyridine-2-yl) methanol as a white powder (1.1 lg). Yield 61.2%.
  • Manganese dioxide (2.8 g, purity 90%) was added to a solution of 1,1-bis (6-phenylpyridinyl 2) methanol (1.0 Og, 3.0 mmol) obtained in Example 19 in methylene chloride (20 mL). %, 29.5 mmol) and stirred at room temperature for 1 hour.
  • the reaction solution was filtered using silica gel, the filtrate was concentrated, and the residue was purified by recrystallization to obtain 920 mg of 2,2'-carbylbis (6-phenylpyridine) as a white powder. Yield 92.7%.
  • reaction solution was added dropwise to an aqueous solution of saturated sodium chloride aqueous solution, the organic layer was separated, and the aqueous layer was extracted with toluene. The organic layer was combined and concentrated, and the obtained residue was purified by a silica gel column and recrystallization to obtain 445 mg of 1,1-bis (6-phenylpyridine-2-yl) ethylene as a white powder. Yield 89.3%.
  • Example 2 In the same manner as in Example 1, the desired product was obtained as a solid (905 mg) from 1-aminovirene (400 mg) and 2-bromo-6-phenylpyridin (906 mg).
  • the desired product was obtained as a solid glassy substance from (3-chlorophenyl) pyridine (555 mg) (6 olmg).
  • the target substance was converted into red crystals from Shiridani platinum ( ⁇ ) (230 mg) and N, N-bis [3- (2-pyridyl) phenyl] -2-biphenylamine (128 mg). (172 mg).
  • the target substance was red-colored from Shiridani platinum ( ⁇ ) (89 mg) and ⁇ , N-bis [5- (2-pyridyl) biphenyl-3-yl] furin (167 mg). Obtained as crystals (170 mg).
  • the target compound was obtained from Shiridani platinum (II) (lOlmg) and N, N-bis [3- (2-pyridyl) phenyl] 4-diphenylaminoaline (216 mg). Obtained as red crystals (131 mg).
  • the desired product was obtained as a white solid (132 mg) from 6,6 ′ jib-mouth 2,2 ′ viviridine (250 mg) and diphenylamine (296 mg).
  • the target compound was obtained as red crystals, in the form of Shiridani platinum (II) (70 mg) and 6,6′bis (diphenylamino) -2,2′-bipyridine (13011 ⁇ ). (87 mg).
  • the temperature was raised to 78 ° C., and the mixture was stirred for 1 day. After water addition, the mixture was extracted with toluene, and the solvent was distilled off to obtain a crude coupling product. Concentrated hydrochloric acid and pyridine were added to the obtained crude product, and the mixture was stirred at 180 ° C for 3 hours. After cooling, a 1 molZL sodium hydroxide aqueous solution was added, extracted with methylene chloride, and the solvent was distilled off to obtain a crude hydroxy compound. Pyridine was added to the obtained crude hydroxy compound, anhydrous acetic acid was added dropwise at room temperature, and the mixture was stirred for 24 hours. The reaction solution was purified by silica gel column chromatography after evaporating the solvent to obtain the desired product as a viscous oil (450 mg).
  • Example 2 In the same manner as in Example 1, a solid glassy substance was obtained from 3,5-diphenylamine (365 mg), 2-bromo-6- (2-pyridyl) pyridine (350 mg) and 2-bromomesitylene (296 mg). As a result, the desired product was obtained (133 mg).
  • Example 47 In the same manner as in Example 47, the desired platinum complex was obtained from platinum chloride and N, N-bis [3- (2-thiazolyl) phenyl] adiline in a yield of 27.3%.
  • the desired product was obtained as a solid glassy material (819 mg) from 4 n-butyractyl-lin (400 mg) and 2- (3-chlorophenol) pyridine (776 mg).
  • the target product was obtained as a solid glassy substance (364 mg) from arginine (88 mg) and 2- (3-chlorophenol) 4 t-butylpyridine (464 mg).
  • the target compound was converted into red crystals from Shiridani platinum ( ⁇ ) (179 mg) and N, N bis [3- (4-t-butylylidine-2-yl) phenyl] -arline (344 mg). (325 mg;).
  • anode (f) On a glass substrate (g), an anode (f), a hole transporting layer (e), a light emitting layer (d) that also has a host material and a doping material, a hole blocking layer (c), an electron transporting layer (b) and A cathode (a) is formed in order from the glass substrate (g) side, and a lead wire is connected to each of the anode (f) and the cathode (a). Then, a voltage can be applied between the anode (f) and the cathode (a)!
  • the anode (f) is an ITO film and is attached to a glass substrate (g).
  • the hole transport layer (e) is composed of the following compound (ex-NPD)
  • the light-emitting layer (d) containing the host material and the doped phosphorescent material is composed of the following compound (CBP)
  • the hole blocking layer (c) is composed of the following compound (BCP)
  • the electron transport layer (b) is composed of the following compound (Alq)
  • the cathode (a) is a layered structure in which Mg and Ag are vacuum co-deposited at a ratio of 10: 1 with a thickness of lOOnm, and then Ag is further vacuum-deposited to a thickness of lOnm, with the side force of the electron transport layer (b) in order.
  • ITO anode
  • a negative voltage was applied to the cathode (a) side of the obtained organic EL device, stable light emission was confirmed even at a very low voltage.
  • Example 69 An element having the same element structure as that of Example 69 and using the platinum complex obtained in Example 12 for the light-emitting layer (d) was produced.
  • Example 74 An element having the same element structure as that of Example 69 and using the platinum complex obtained in Example 8 for the light-emitting layer (d) was produced.
  • Example 74
  • Example 69 An element having the same element structure as that of Example 69 and using the platinum complex obtained in Example 26 for the light-emitting layer (d) was produced.
  • the device structure was the same as that of Example 69.
  • the platinum complex obtained in Example 28 was used for the light-emitting layer (d), and LiF was also used for the cathode (a).
  • Example 69 The device structure was the same as that of Example 69.
  • the platinum complex obtained in Example 34 was used for the light-emitting layer (d), and LiF was also used for the cathode (a).
  • the device structure was the same as that of Example 69.
  • the platinum complex (doped 6% by weight) obtained in Example 38 was used for the light-emitting layer (d), and the hole blocking layer (c) was BAlq.
  • an element composed of a laminate in which LiF was vacuum-deposited to a thickness of 0.5 nm and A1 to a thickness of 100 nm on the cathode (a) in order from the electron transport layer (b) side was fabricated.
  • BAlq is the following compound.
  • the light-emitting layer (d) had the same element structure as that of Example 69, and the platinum complex obtained in Example 44 ( Using a dope of 6% by weight), a device was fabricated in which a cathode (a) was sequentially deposited from the electron transporting layer (b) side with a thickness of 0.5 nm of LiF and a layer of A1 having a thickness of 100 nm under vacuum deposition.
  • the device structure was the same as that of Example 69.
  • the platinum complex obtained in Example 32 (doped 6% by weight) was used for the light emitting layer (d), and the BAlq was used for the hole blocking layer (c). Then, an element composed of a laminate in which LiF was vacuum-deposited to a thickness of 0.5 nm and A1 to a thickness of 100 nm on the cathode (a) in order from the electron transport layer (b) side was fabricated.
  • the device structure was the same as that of Example 69.
  • the platinum complex obtained in Example 42 (doped 6% by weight) was used for the light-emitting layer (d), and BAlq was used for the hole blocking layer (c).
  • an element composed of a laminate in which LiF was vacuum-deposited to a thickness of 0.5 nm and A1 to a thickness of 100 nm on the cathode (a) in order from the electron transport layer (b) side was fabricated.
  • the device structure was the same as that of Example 69.
  • the platinum complex obtained in Example 30 (doped 6% by weight) was used for the light-emitting layer (d), and the BAlq was used for the hole blocking layer (c).
  • an element composed of a laminate in which LiF was vacuum-deposited to a thickness of 0.5 nm and A1 to a thickness of 100 nm on the cathode (a) in order from the electron transport layer (b) side was fabricated.
  • the device structure was the same as that of Example 69.
  • the platinum complex (1% by weight of dope) obtained in Example 46 was used for the light emitting layer (d), and the electron transport layer (b) was used for the cathode (a). From the side, an element was formed by stacking LiF in a thickness of 0.5 nm and A1 in a thickness of 100 nm by vacuum evaporation.
  • the device structure was the same as that of Example 27.
  • the platinum complex (doped 6% by weight) obtained in Example 52 was used for the light emitting layer (d), and BAlq was used for the hole blocking layer (c).
  • an element composed of a laminate in which LiF was vacuum-deposited to a thickness of 0.5 nm and A1 to a thickness of 100 nm on the cathode (a) in order from the electron transport layer (b) side was fabricated.
  • Example 84 It has the same device structure as in Example 69, and uses BAlq and the platinum complex obtained in Example 4 for the light-emitting layer (d), and simultaneously performs vacuum deposition (dope 6% by weight) to perform hole blocking.
  • a layer (c) was formed using BAlq, and an element was formed by stacking LiF in a thickness of 0.5 nm and A1 in a thickness of 100 nm in vacuum on the cathode (a) in order from the electron transport layer (b).
  • the device structure was the same as that of Example 27.
  • the platinum complex obtained in Example 48 (dope 6% by weight) was used for the light emitting layer (d), and BAlq was used for the hole blocking layer (c).
  • an element composed of a stack in which LiF was vacuum-deposited on the cathode (a) in a thickness of 0.5 nm and A1 in a thickness of 100 nm in order from the electron transport layer (b) side was fabricated.

Description

明 細 書
白金錯体及び発光素子
技術分野
[0001] 本発明は、電気エネルギーを光に変換して発光できる発光素子用材料として有用 な白金錯体に関する。本発明の白金錯体は、表示素子、ディスプレイ、ノ ックライト、 電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア 等の分野に好適に使用できる新規発光材料として有用である。
背景技術
[0002] 今日、種々の表示素子に関する研究開発が活発であり、中でも有機電界発光素子
(以下、「有機 EL素子」と略す。)は、低電圧で高輝度の発光を得ることが出来る為、 有望な次世代の表示素子として注目を集めて!/、る。
有機 EL素子は、従来用いられてきた液晶に比べて応答速度が速ぐかつ自発光 であることから、従来の液晶のようにバックライトを必要とせず、極めて薄型のフラット パネルディスプレイを形成することが可能である。このような有機 EL素子は、電界発 光現象を利用した発光デバイスであり、原理的には LEDと同じであるが、発光材料と して有機化合物を使用して 、る点が特徴である。
このような有機化合物を発光材料として用いた有機 EL素子の例として、蒸着法によ る多層薄膜を利用した有機 EL素子が報告されている。例えば、トリス (8—ヒドロキシキ ノリナトー O, N)アルミニウム (Alq )を電子輸送材料として用い、正孔輸送材料 (例え
3
ば芳香族ァミン化合物など)と積層させることにより、従来の単層型素子に比べて発 光特性を大幅に向上させて!/、る。
そして、このような有機 EL素子を、近年、マルチカラーディスプレイへと適用する動 きが盛んに検討されているが、高機能なマルチカラーディスプレイを開発する為には 、光の三原色である赤色、緑色及び青色のそれぞれ各色の発光素子特性及びその 効率を向上させる必要がある。
[0003] 発光素子特性向上の手段として、有機 EL素子の発光層に燐光発光材料を利用す ることも提案されている。燐光発光は、一重項励起状態から項間交差と呼ばれる無放 射遷移によって生じる三重項励起状態力 の発光現象であり、一重項励起状態から の発光現象である蛍光発光に比べ高 ヽ量子効率を示すことが知られて!/ヽる。このよう な性質を示す有機化合物を発光材料として用いることで、高!ヽ発光効率が達成でき るものと期待される。
このような燐光発光物質を用いた有機 EL素子としては、現在までにイリジウムを中 心金属とした様々な錯体を用いる素子が開発されているが、近年は白金を中心金属 にした錯体の開発も進んでいる。その中で、赤色燐光発光材料を用いた有機 EL素 子としては、白金錯体である(2, 3, 7, 8, 12, 13, 17, 18—才クタェチノレ一 21H, 23 H—ボルフイナトー N, N, N, N)白金 (II) (Pt (OEP) )を発光層に用いた素子が報告 されている(特許文献 1)。
し力しながら、この白金錯体は色純度の高い赤色燐光発光物質であるもののその 外部量子効率は 4%程度であり、更なる発光効率の向上が求められている。また、ァ リールピリジン骨格を有する化合物を配位子とし、白金を中心原子とするオルトメタル 化白金錯体が燐光発光材料として有用であることが報告されており(特許文献 2)、ビ ァリール骨格ィ匕合物を配位子とする白金錯体も報告されて ヽる (特許文献 3)。
[0004] 以上のように、次世代表示素子の実用化に向けて種々の検討が盛んに行われて おり、その中でも燐光発光材料を用いた有機 EL素子は素子の特性向上といった観 点から特に脚光を浴びている。し力しながらその研究はまだ緒に就いたば力りであり 、素子の発光特性、発光効率、色純度及び構造の最適化など課題は数多い。これら の課題を解決するために、新規な燐光発光材料の開発、そして更に、その材料の効 率的な供給法の開発が望まれている。
[0005] 特許文献 1 :USP6, 303, 238号明細書
特許文献 2:特開 2001—181617号公報
特許文献 3 :特開 2002-175884号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、発光特性、発光効率が良好な発光素子用材料として有用である新規な 白金錯体を提供することを目的とする。また、本発明は、各種分野での利用可能な新 規な発光材料を提供することを目的とする。
課題を解決するための手段
本発明者らは上記目的を達成するために鋭意検討を重ねた結果、以下に示す特 定構造の新規な白金錯体が優れた発光特性及び発光効率を有することを見出し、 本発明を完成するに到った。
即ち、本発明は、下記一般式(1)
[化 1]
Figure imgf000006_0001
(式中、環 A、環 B、環 C及び環 Dは、この中の何れ力 2つの環が置換基を有していて もよ 、含窒素複素環を示し、残りの 2つの環は置換基を有して 、てもよ 、ァリール環 又はへテロアリール環を示し、環 Aと環 B、環 Aと環 C又は Z及び環 Bと環 Dとで縮合 環を形成していてもよぐまた、それぞれの環と後述する
Figure imgf000006_0002
R4又は R5とで 縮合環を形成していてもよい。 X1、 X2、 X3及び X4は、この中の何れか 2つが白金原 子に配位結合する窒素原子を示し、残りの 2つは炭素原子又は窒素原子を示す。 Q1 、 Q2及び Q3はそれぞれ独立して、二価の原子(団)又は結合手を示すが、 Q\ Q2及 び Q3が同時に結合手を表すことはない。
Figure imgf000006_0003
Z3及び Z4は、何れか 2つが配位結 合手を示し、残りの 2つは共有結合手、酸素原子又は硫黄原子を示す。 )
で表される白金錯体に関する。
また、本発明は、下記一般式 (2)
[化 2]
Figure imgf000007_0001
(式中、 R6、 R7、 R8及び R9は、それぞれ独立して、アルキル基、ハロゲンィ匕アルキル 基、ァラルキル基、アルケニル基、アルキ-ル基、ァリール基、アミノ基、モノ又はジァ ルキルアミノ基、モノ又はジァラルキルアミノ基、モノ又はジァリールアミノ基、アルコ キシ基、ァルケ-ルォキシ基、ァラルキルォキシ基、ァリールォキシ基、ヘテロァリー ルォキシ基、ァシル基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、ァシ ルォキシ基、ァシルァミノ基、アルコキシカルボ-ルァミノ基、ァリールォキシカルボ- ルァミノ基、ァラルキルォキシカルボ-ルァミノ基、スルホ -ルァミノ基、スルファモイ ル基、力ルバモイル基、アルキルチオ基、ァラルキルチオ基、ァリールチオ基、ヘテロ ァリールチオ基、アルカンスルホ-ル基、アレーンスルホ-ル基、アルカンスルフィ- ル基、アレーンスルフィエル基、ウレイド基、置換リン酸アミド基、ヒドロキシ基、メルカ ブト基、ハロゲン原子、シァノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基 、スルフィノ基、ヒドラジノ基、ヘテロ環基、トリアルキルシリル基又はトリアリールシリル 基を示し、 R6と R7、 R6と R8、又は/及び R7と R9とで縮合環を形成していてもよい。 m1 、 m2、 m3及び m4はそれぞれ R6
Figure imgf000007_0002
R8及び R9の数を示し、それぞれ独立して 0— 3 の整数を示す。また、 m1 m2、 m3及び m4が 2以上の整数の場合は、複数の R6
Figure imgf000007_0003
R8及び R9は互いに異なっていてもよぐ更には、 R6基同士、 R7基同士、 R8基同士、 R9基同士が一緒になつて縮合環構造を形成していてもよい。 Q\ Q2及び Q3は、そ れぞれ独立して、— (CI^R2) -, -0 (CR'R2) O—、― (O)
nl nl n2 c( = o) (o) —、酸素
n3 原子、硫黄原子、—NR3—、 BR3a、— S ( = 0)—、 -SO―、— 0 (SO ) 0—、— Si(R4R5)
2 2
-、 -OSi (R4R5) 0—、 -C ( = CRARB)―、又は結合手を示すが、 Q\ Q2及び Q3が同 時に結合手を示すことは無い。該 Q1 Q2及び Q3における R1及び R2は、それぞれ独 立して、水素原子、アルキル基、ァラルキル基、ァリール基又はアルコキシ基を示す
。 nlは 1一 3の整数を示し、 n2及び n3は、それぞれ独立して、 0又は 1の整数を示す 。 R3は水素原子、アルキル基、ァラルキル基又はァリール基を示し、 R3aはアルキル 基、ァラルキル基又はァリール基を示す。 R4及び R5は、それぞれ独立して、アルキル 基、ァラルキル基又はァリール基を示す。 Ra及び Rbは、それぞれ独立して、水素原 子、アルキル基、ァラルキル基、ァリール基又はシァノ基を示す。また、 R1と R2、 R4と Raと Rbとが互いに結合して各々が置換している原子と共に、環内にヘテロ原子 を含んでいてもよい環を形成していてもよい。 X1、 X2、 X3及び X4は、この中の何れか 2つが白金原子に配位結合する窒素原子を示し、残りの 2つは炭素原子を示し、
Figure imgf000008_0001
Z3及び Z4は、何れか 2つが配位結合手を示し、残りの 2つは共有結合手、酸素 原子又は硫黄原子を示す。 )
で表される上記白金錯体に関する。
[0009] 更に、本発明は、一対の電極間に発光層若しくは発光層を含む複数の有機化合 物薄層を形成した発光素子において、少なくとも一層が、前記の一般式(1)又は一 般式 (2)で表される白金錯体を少なくとも一種含有する層であることを特徴とする発 光素子に関する。
[0010] 更にまた、本発明は、下記一般式 (3)
[化 3]
Figure imgf000008_0002
(式中、環 A、環 B、環 C及び環 Dは、この中の何れ力 2つの環が置換基を有していて もよ 、含窒素複素環を示し、残りの 2つの環は置換基を有して 、てもよ 、ァリール環 又はへテロアリール環を示し、環 Aと環 B、環 Aと環 C又は Z及び環 Bと環 Dとで縮合 環を形成していてもよぐまた、それぞれの環と後述する Q Q2及び Q3とで縮合環を 形成していてもよい (ただし、 Q\ Q2及び Q3が酸素原子及び硫黄原子の場合を除く ) o X1、 X2、 X3及び X4はこの中の何れか 2つが白金原子に配位結合する窒素原子を 示し、残りの 2つは炭素原子又は窒素原子を示す。 Q\ Q2及び Q3はそれぞれ独立し て、二価の原子(団)又は結合手を示すが、 Q\ Q2及び Q3が同時に結合手を示すこ とはない。 X1、 X2、 X3及び X4が配位結合可能な窒素原子の場合、それらに結合する Z'H, Z2H、 Z3H及び Z4Hは存在せず、 X1、 x2、 X3及び X4が炭素原子の場合、それ らに結合する z1 z z3及び z4は共有結合手、酸素原子又は硫黄原子を示し、 X1、 X2、 X3及び X4が共有結合可能な窒素原子の場合、それらに結合する z z z3及 び z4は共有結合手を示す。 )
で表される化合物に関する。
また、本発明は、下記一般式 (4)
[化 4]
Figure imgf000009_0001
(式中、 R6、 R7、 R8及び R9は、それぞれ独立して、アルキル基、ハロゲンィ匕アルキル 基、ァラルキル基、アルケニル基、アルキ-ル基、ァリール基、アミノ基、モノ又はジァ ルキルアミノ基、モノ又はジァラルキルアミノ基、モノ又はジァリールアミノ基、アルコ キシ基、ァルケ-ルォキシ基、ァラルキルォキシ基、ァリールォキシ基、ヘテロァリー ルォキシ基、ァシル基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、ァシ ルォキシ基、ァシルァミノ基、アルコキシカルボ-ルァミノ基、ァリールォキシカルボ- ルァミノ基、ァラルキルォキシカルボ-ルァミノ基、スルホ -ルァミノ基、スルファモイ ル基、力ルバモイル基、アルキルチオ基、ァラルキルチオ基、ァリールチオ基、ヘテロ ァリールチオ基、アルカンスルホ-ル基、アレーンスルホ-ル基、アルカンスルフィ- ル基、アレーンスルフィエル基、ウレイド基、置換リン酸アミド基、ヒドロキシ基、メルカ ブト基、ハロゲン原子、シァノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基 、スルフィノ基、ヒドラジノ基、ヘテロ環基、トリアルキルシリル基又はトリアリールシリル 基を示し、 R6と R7、 R6と R8、又は/及び R7と R9とで縮合環を形成していてもよい。 m1 、 m2、 m3及び m4はそれぞれ R6、 R7、 R8及び R9の数を示し、それぞれ独立して 0— 3 の整数を示す。また、 m1 m2、 m3及び m4が 2以上の整数の場合は、複数の R6
Figure imgf000010_0001
R8及び R9は互いに異なっていてもよぐ更には、 R6基同士、 R7基同士、 R8基同士、 R9基同士が一緒になつて縮合環構造を形成していてもよい。 Q\ Q2及び Q3は、そ れぞれ独立して、— (CI^R2) -, -0 (CR'R2) O—、― (O) c( = o) (o) —、酸素
nl nl n2 n3 原子、硫黄原子、— NR3—、 BR3a、— S ( = 0)—、 -SO―、— 0 (SO ) 0—、— Si(R4R5)
2 2
-、 -OSi (R4R5) 0—、 -C ( = CRARB)―、又は結合手を示すが、 Q\ Q2及び Q3が同 時に結合手を示すことは無い。該 Q1 Q2及び Q3における R1及び R2は、それぞれ独 立して、水素原子、アルキル基、ァラルキル基、ァリール基又はアルコキシ基を示す 。 nlは 1一 3の整数を示し、 n2及び n3は、それぞれ独立して、 0又は 1の整数を示す 。 R3は水素原子、アルキル基、ァラルキル基又はァリール基を示し、 R3aはアルキル 基、ァラルキル基又はァリール基を示す。 R4及び R5は、それぞれ独立して、アルキル 基、ァラルキル基又はァリール基を示す。 Ra及び Rbは、それぞれ独立して、水素原 子、アルキル基、ァラルキル基、ァリール基又はシァノ基を示す。また、 R1と R2、 R4と R5、 Raと Rbとが互いに結合して各々が置換している原子と共に、環内にヘテロ原子 を含んでいてもよい環を形成していてもよい。 X1、 X2、 X3及び X4は、この中の何れか 2つが白金原子に配位結合する窒素原子を示し、残りの 2つは炭素原子を示し、 Z\ Z3及び Z4は、何れか 2つが配位結合手を示し、残りの 2つは共有結合手、酸素 原子又は硫黄原子を示す。 Hは水素原子を示す。 )
で表される上記化合物に関する。
発明の効果
本発明の白金錯体は発光材料として有用であり、特に有機 EL用材料として高発光 特性、高発光効率、高耐久性を有する EL素子を作製できる。 図面の簡単な説明
[0013] [図 1]本発明の白金錯体を用いた有機 EL素子の構成例を示す図である。
符号の説明
[0014] (a)第 2電極 (金属電極、陰極)
(b)電子輸送層
(c)正孔ブロック層
(d)発光層(ホスト材料とドープ材料)
(e)正孔輸送層
(f)第 1電極 (透明電極、陽極)
(g)ガラス基板
発明を実施するための最良の形態
[0015] 以下、本発明の白金錯体について詳細に説明する。
本発明の一般式(1)で表される白金錯体は、環 A、環 B、環 C及び環 D力 なる 4座 配位子を有する白金錯体化合物である。
本発明の一般式(1)で表される白金錯体において、環 A、環 B、環 C、環 Dにおける 置換基を有していてもよい含窒素複素環としては、少なくとも 1個の窒素原子を異種 原子として有する複素環であり、更に 1個一 3個の例えば窒素原子、酸素原子又は 硫黄原子からなる異種原子を含有して ヽてもよ ヽ 5— 8員、好ましくは 5又は 6員の単 環式、多環式又は縮合環式の複素環が挙げられる。当該含窒素複素環の窒素原子 は白金原子に配位することができるものである。多環式基や縮合環式基を形成する 他の環としては前記した複素環式基や炭素環式基などが挙げられる。
好ましい当該含窒素複素環としては、例えば、ピリジン環、ジァジン環、トリアジン環 、ジァゾール環、トリァゾール環、チアゾール環、チアジアゾール環、ォキサゾール環 、ォキサジァゾール環、ベンゾピリジン環、ベンゾジァジン環、ナフチリジン環、 2H- ピロール環などが挙げられる。
一般式(1)で表される白金錯体の環 A、環 B、環 C、環 Dにおける含窒素複素環上 の 1個以上の水素原子は、置換基で置換されていてもよい。このような置換基として は、発光特性に悪影響を与えない基であれば特に制限はないが、好ましくは後述す る一般式 (2)で表される白金錯体における R6、 R7、 R8及び R9で説明される基を挙げ ることがでさる。
[0016] 本発明の一般式(1)で表される白金錯体において、環 A、環 B、環 C、環 Dが置換 基を有して 、てもよぃァリ一ル環又はへテロァリール環である場合の当該ァリール環 としては、炭素数 6— 40、好ましくは炭素数 6— 30、更に好ましくは 6— 20の単環式、 多環式又は縮合環式の炭素環式基が挙げられる。また、当該へテロアリール環とし ては、 1個一 3個の例えば窒素原子、酸素原子又は硫黄原子からなる異種原子を含 有する、 5— 8員、好ましくは 5又は 6員の単環式、多環式又は縮合環式の複素環式 基が挙げられる。 当該複素環式基の多環式や縮合環式を形成する他の環としては 前記した複素環式基や前記した炭素環式基などが挙げられる。
好ましいァリール環又はへテロアリール環としては、例えば、ベンゼン環、ピリジン 環、ジァジン環、トリアジン環、ピロール環、ジァゾール環、フラン環、チォフェン環、 ナフタレン環、ベンゾピリジン環、ベンゾジァジン環、ベンゾフラン環、ベンゾチォフエ ン環などが挙げられる。
一般式(1)で表される白金錯体の環 A、環 B、環 C、環 Dにおけるァリール環又はへ テロアリール環上の 1個以上の水素原子は、置換基で置換されていてもよい。このよ うな置換基としては、発光特性に悪影響を与えない基であれば特に制限はないが、 好ましくは後述する一般式 (2)で表される白金錯体における R6、 R7、 R8及び R9で説 明される基を挙げることができる。
[0017] 続いて、一般式(1)において、 Q Q2、 Q3で示される二価の原子(団)について説 明する。
本発明において Q Q2、 Q3で示される二価の原子(団)は、 4個の環基をつなぐス ぺーサ一として存在し、その具体例としては、例えば、 -(CR'R2) O (CR'R2)
nl n
0- (O) C ( = 0) (Ο) -、酸素原子、硫黄原子、-NR3-、BR3A、-S ( = 0)-、
1 η2 η3
-SO―、— 0 (SO ) 0—、— Si (R4R5)—、— OSi(R4R5) 0—、— C (二 CRaRb)—等が挙
2 2
げられる。
(CR'R2) 及び ο(α^ 2)ο—における R1及び R2としては、それぞれ独立して水
nl
素原子、アルキル基、ァラルキル基又はァリール基が挙げられ、 NR3における R3とし ては、水素原子、アルキル基、ァラルキル基又はァリール基が挙げられ、 BR3aにおけ る R3aとしては、アルキル基、ァラルキル基及びァリール基が挙げられ、 SiR4R5及び 0 (SiR4R5) 0—における R4及び R5としては、それぞれ独立して、アルキル基、ァラル キル基又はァリール基が挙げられ、 C ( = CRaRb)—における Ra及び Rbとしては、水 素原子、アルキル基、ァラルキル基、ァリール基又はシァノ基が挙げられ、これら R R2、 R3、 R3a、 R4、 R5、 Ra及び Rbで示されるアルキル基、ァラルキル基及びァリール 基の具体例等は、後述する一般式 (2)で表される白金錯体におけるアルキル基、ァ ラルキル基及びァリール基の場合と全く同様である。
また、 R1と R2、 R4と R5、 Raと Rbとが互いに結合して各々が置換している原子と共に 形成される環としては、ヘテロ原子を含んでもよい 5又は 6員環が挙げられる。具体的 な環としては、シクロペンタン環、シクロへキサン環、テトラヒドロフラン環、テトラヒドロ ピラン環、ジォキソラン環、ジォキサン環、フラン環、ピラン環、チォフェン環、ベンゼ ン環、テトラヒドロシロール環及びシロール環等が挙げられる。また、これらの環は同 一原子からの二価基のスピロ環、異なる原子からの二価基の飽和環、芳香族環等も 含むものである。
なお、上記一般式(3)における環 A、環 B、環 C、環 D、 Q\ Q2、 Q3、 X1、 X2、 X3、 X z z2、 z3及び z4の定義及び具体例等は上記一般式(1)におけるそれらと全く同 じである。
本発明の白金錯体の好ま ヽ形態としては、例えば、上記一般式(2)で表される白 金錯体が挙げられる。
一般式(2)において、 R6、 R7、 R8、 R9で示されるアルキル基としては、例えば、炭素 数 1一 30、好ましくは炭素数 1一 20、より好ましくは炭素数 1一 10の直鎖状、分枝状 又は環状のアルキル基が挙げられ、具体例としては、例えば、メチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、 tert ブチル基、 n—へキシル基、 2— ェチルへキシル基、 n—ォクチル基、 n デシル基、 n—へキサデシル基、シクロプロピ ル基、シクロペンチル基、シクロへキシル基などが挙げられる。
ハロゲン化アルキル基としては、前記したアルキル基の 1個以上の水素原子がフッ 素原子、塩素原子等のハロゲン原子によりハロゲン置換された基が挙げられ、具体 的には、例えば、トリフルォロメチル基、ペンタフルォロェチル基等のパーフルォロア ルキル基等が挙げられる。
ァラルキル基としては、前記したアルキル基の 1個以上の水素原子が前記した炭素 環式ァリール基(当該ァリール基は、前記したアルキル基、後述するアルコキシル基 、ハロゲン原子などの置換基を有していてもよい。)で置換された基が挙げられる。好 ましいァラルキル基としては、置換基を有していてもよい、炭素数 7— 30、好ましくは 7— 20、より好ましくは 7— 15のァリール化アルキル基が挙げられ、具体例としては、 例えば、ベンジル基、 4 メチルベンジル基、 4ーメトキシベンジル基、 1 フエネチル基 などが挙げられる。
ァルケ-ル基としては、炭素数 2— 30、好ましくは炭素数 2— 20、より好ましくは炭 素数 2— 10の直鎖状又は分枝状のアルキル基に 1個以上の二重結合を有するもの が挙げられ、具体例としては、例えば、ビュル基、ァリル基、 2—ブテニル基、 3 ペン テニル基などが挙げられる。
アルキニル基としては、炭素数 2— 30、好ましくは炭素数 2— 20、より好ましくは炭 素数 2— 10の直鎖状又は分枝状のアルキル基に 1個以上の三重結合を有するもの が挙げられ、具体例としては、例えば、ェチュル基、 1 プロピ-ル基、 2—プロピ-ル 基等が挙げられる。
ァリール基としては、炭素数 6— 30、好ましくは炭素数 6— 20、より好ましくは炭素 数 6— 12のァリール基が挙げられ、具体例としては、例えば、フエニル基、トリル基、 ナフチル基、アントラ-ル基などが挙げられる。当該ァリール基は、前記したアルキル 基、後述するアルコキシ基、ハロゲン原子などの置換基を有していてもよい。
モノ又はジアルキルアミノ基としては、前記したようなアルキル基により、 1個又は 2 個の水素原子が置換されたァミノ基が挙げられ、具体例としては、例えば、メチルアミ ノ基、ジメチルァミノ基、ジェチルァミノ基などが挙げられる。
モノ又はジァラルキルアミノ基としては、前記したようなァラルキル基により、 1個又 は 2個の水素原子が置換されたァミノ基が挙げられ、具体例としては、例えば、ベン ジルァミノ基、ジベンジルァミノ基、 1—フエ-ルェチルァミノ基などが挙げられる。 モノ又はジァリールアミノ基としては、前記したようなァリール基により、 1個又は 2個 の水素原子が置換されたァミノ基が挙げられ、具体例としては、例えば、フエ-ルアミ ノ基、ジフエ-ルァミノ基、ジトリルアミノ基、フエ二ルナフチルァミノ基などが挙げられ る。
アルコキシ基としては、前記したようなアルキル基に酸素原子が結合した基が挙げ られ、具体例としては、例えば、メトキシ基、エトキシ基、 n プロポキシ基、イソプロボ キシ基、 n ブトキシ基、 tert ブトキシ基、 2—ェチルへキシルォキシ基などが挙げら れる。
ァルケ-ルォキシ基としては、前記したようなァルケ-ル基に酸素原子が結合した 基が挙げられ、具体例としては、例えば、ビュルォキシ基、ァリルォキシ基などが挙げ られる。
ァラルキルォキシ基としては、前記したようなァラルキル基に酸素原子が結合した 基が挙げられ、具体例としては、例えば、ベンジルォキシ基、 1 フエネチルォキシ基 などが挙げられる。
ァリールォキシ基としては、前記したようなァリール基に酸素原子が結合した基が挙 げられ、具体例としては、例えば、フエノキシ基、トリルォキシ基、ナフチルォキシ基な どが挙げられる。
ヘテロァリールォキシ基としては、前記したようなヘテロァリール基に酸素原子が結 合した基が挙げられ、具体例としては、例えば、 2—ピリジルォキシ基、 2—ビラジルォ キシ基、 2—ピリミジルォキシ基、 2—キノリルォキシ基などが挙げられる。
ァシル基としては、直鎖状でも分岐状でもよ!/、、例えば、脂肪族カルボン酸、芳香 族カルボン酸等のカルボン酸由来の炭素数 1一 18のァシル基が挙げられ、具体例と しては、例えば、ホルミル基、ァセチル基、プロピオ-ル基、ブチリル基、ビバロイル 基、ペンタノィル基、へキサノィル基、ラウロイル基、ステアロイル基、ベンゾィル基、 アタリロイル基等が挙げられる。
アルコキシカルボニル基としては、直鎖状でも分岐状でも或いは環状でもよい、例 えば炭素数 2— 19のアルコキシカルボ-ル基が挙げられ、具体例としては、例えば、 メトキシカルボ-ル基、エトキシカルボ-ル基、 n プロポキシカルボニル基、 2—プロ ポキシカルボ-ル基、 n ブトキシカルボ-ル基、 tert ブトキシカルボ-ル基、ペンチ ルォキシカルボ-ル基、へキシルォキシカルボ-ル基、 2—ェチルへキシルォキシ力 ルボニル基、ラウリルォキシカルボ-ル基、ステアリルォキシカルボ-ル基、シクロへ キシルォキシカルボニル基等が挙げられる。
ァリールォキシカルボ-ル基としては、例えば炭素数 7— 20のァリールォキシカル ボニル基が挙げられ、具体例としては、例えば、フエノキシカルボ-ル基、ナフチルォ キシカルボニル基等が挙げられる。
ァシルォキシ基としては、カルボン酸由来の例えば炭素数 2— 18のァシルォキシ 基が挙げられ、具体例としては、例えば、ァセトキシ基、プロピオ-ルォキシ基、プチ リルォキシ基、ピバロィルォキシ基、ペンタノィルォキシ基、へキサノィルォキシ基、ラ ゥロイルォキシ基、ステアロイルォキシ基、ベンゾィルォキシ基、アタリロイルォキシ基 等が挙げられる。
ァシルァミノ基としては、ァミノ基の 1個の水素原子が前記したようなァシル基で置 換されたァミノ基が挙げられ、具体例としては、例えば、ホルミルアミノ基、ァセチルァ ミノ基、プロピオ-ルァミノ基、ビバロイルァミノ基、ペンタノィルァミノ基、へキサノィル アミノ基、ベンゾィルァミノ基等が挙げられる。
アルコキシカルボ-ルァミノ基としては、ァミノ基の 1個の水素原子が前記したアル コキシカルボニル基で置換されたァミノ基が挙げられ、具体例としては、例えば、メト キシカルボ-ルァミノ基、エトキシカルボ-ルァミノ基、 n—プロポキシカルボ-ルァミノ 基、 n—ブトキシカルボ-ルァミノ基、 tert—ブトキシカルボ-ルァミノ基、ペンチルォキ シカルボ-ルァミノ基、へキシルォキシカルボ-ルァミノ基等が挙げられる。
ァリールォキシカルボ-ルァミノ基としては、ァミノ基の 1個の水素原子が前記した ァリールォキシカルボ-ル基で置換されたァミノ基が挙げられ、具体例としては、例え ば、フエ-ルォキシカルボ-ルァミノ基などが挙げられる。
ァラルキルォキシカルボ-ルァミノ基としては、ァミノ基の 1個の水素原子が前記し たァラルキルォキシカルボニル基で置換されたァミノ基が挙げられ、具体例としては、 例えば、ベンジルォキシカルボ-ルァミノ基等が挙げられる。
スルホ -ルァミノ基としては、無置換のスルホ -ルァミノ基又はアミノ基の 1個の水素 原子が前記したアルキル基、ァリール基又はァラルキル基などが結合したスルホニル 基で置換されたァミノ基が挙げられ、具体例としては、例えば、メタンスルホ -ルァミノ 基、 p—トルエンスルホ -ルァミノ基などが挙げられる。
スルファモイル基としては、無置換のスルファモイル基又は窒素原子上の少なくとも 1つの水素原子が前記したアルキル基、ァリール基又はァラルキル基などで置換さ れたモノ又はジ置換スルファモイル基が挙げられ、具体例としては、例えば、スルファ モイル基、メチルスルファモイル基、ジメチルスルファモイル基、フエ-ルスルファモイ ル基などが挙げられる。
力ルバモイル基としては、無置換の力ルバモイル基又は窒素原子上の少なくとも 1 つの水素原子が前記したようなアルキル基、ァリール基又はァラルキル基などで置換 されたモノ又はジ置換力ルバモイル基が挙げられ、例えば、力ルバモイル基、メチル 力ルバモイル基、ジェチルカルバモイル基、フエ-ルカルバモイル基などが挙げられ る。
アルキルチオ基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば炭素 数 1一 6のアルキルチオ基が挙げられ、具体例としては、例えば、メチルチオ基、ェチ ルチオ基、 n -プロピルチオ基、 2 -プロピルチオ基、 n -ブチルチオ基、 2 -ブチルチ ォ基、イソブチルチオ基、 tert—ブチルチオ基、ペンチルチオ基、へキシルチオ基、 シクロへキシルチオ基等が挙げられる。
ァラルキルチオ基としては、前記したようなァラルキル基に硫黄原子が結合した基 が挙げられ、具体例としては、例えば、ベンジルチオ基、 1 フエネチルチオ基などが 挙げられる。
ァリールチオ基としては、前記したようなァリール基に硫黄原子が結合した基が挙 げられ、具体例としては、例えば、フエ-ルチオ基、ナフチルチオ基などが挙げられる ヘテロァリールチオ基としては、前記したようなヘテロァリール基に硫黄原子が結合 した基が挙げられ、具体例としては、例えば、ピリジルチオ基、 2—べンズイミダゾリル チォ基、 2—べンズォキサゾリルチオ基、 2—べンズチアゾリルチオ基などが挙げられる アル力ンスルホ-ル基としては、例えば炭素数 1一 6の直鎖状又は分岐状のアル力 ンスルホ-ル基が挙げられ、具体例としては、例えば、メタンスルホ-ル基、エタンス ルホニル基などが挙げられる。
アレーンスルホ-ル基としては、例えば炭素数 6— 12のアレーンスルホ-ル基が挙 げられ、具体例としては、例えば、ベンゼンスルホ-ル基、 p トルエンスルホ -ル基 などが挙げられる。
アルカンスルフィニル基としては、例えば炭素数 1一 6の直鎖状又は分岐状のアル カンスルフィエル基が挙げられ、具体例としては、例えば、メタンスルフィエル基、エタ ンスルフィエル基などが挙げられる。
アレーンスルフィエル基としては、例えば炭素数 6— 12のアレーンスルフィエル基が 挙げられ、具体例としては、例えば、ベンゼンスルフィエル基、 p トルエンスルフィ- ル基などが挙げられる。
ウレイド基としては、無置換のウレイド基又は 2個の窒素原子に結合する水素原子 の少なくとも 1個の水素原子が前記したアルキル基、ァリール基又はァラルキル基な どで置換されたウレイド基が挙げられ、具体例としては、例えば、ウレイド基、メチルゥ レイド基、フエニルウレイド基などが挙げられる。
置換リン酸アミド基としては、リン酸アミド基の少なくとも 1個の水素原子が前記した アルキル基、ァリール基又はァラルキル基などで置換された基が挙げられ、具体例と しては、例えば、ジェチルリン酸アミド基、フエ-ルリン酸アミド基などが挙げられる。 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる スルホ基は SO H基であり、ヒドロキサム酸基は CO— NH— OH基であり、スルフ
3
イノ基は SO H基であり、ヒドラジノ基は NH— NH基である。
2 2
ヘテロ環基は、前記したようなヘテロァリール基であり、例えば、イミダゾリル基、ピリ ジル基、キノリル基、フリル基、チェ-ル基、ピペリジル基、モルホリノ基、ベンズォキ サゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。
トリアルキルシリル基としては、前記したようなアルキル基で 3置換されたシリル基が 挙げられ、具体例としては、例えば、トリメチルシリル基、 tert—ブチルジメチルシリル 基などが挙げられる。 トリアリールシリル基としては、前記したァリール基で 3置換されたシリル基が挙げら れ、具体例としては、例えば、トリフ -ルシリル基などが挙げられる。
これらの置換基は更に置換されていてもよい。また、 R6基同士、 R7基同士、 R8基同 士、 R9基同士が一緒になつて縮合環構造を形成してもよぐ更には、 R6と R7、 R6と R8 又は/及び R7と R9とが一緒になつて縮合環構造を形成して ヽてもよ ヽ。該縮合環の 具体例としては、例えばフエナンスレン環、フルオレン 9 オン環、 1, 10 フエナンス 口リン環、 4, 5—ジァザフルオレン 9 オン環等が挙げられる。
Figure imgf000019_0001
m3及び m4はそれぞれ R6、 R8及び R9の数を示し、それぞれ独立して 0 一 3の整数を示す。また、 m1 m2、 m3及び m4が 2以上の整数の場合は、複数の R6、 R7、 R8及び R9は同一であっても互!ヽに異なって!/、てもよ!/、。
[0023] なお、上記一般式(4)における 、 R7、 R8、 R9
Figure imgf000019_0002
Q2、 Q3、 X1 、 X2、 X3、 X4
Figure imgf000019_0003
Z3及び Z4の定義及び具体例等は上記一般式 (2)におけるそ れらと全く同じである。
[0024] 本発明の白金錯体(1) [或いは白金錯体(2) ]は、以下のスキーム 1に記載のように 、錯体前駆体と一般式 (3)で表される化合物 (以下、化合物 (3)と略記する。 ) [或い は一般式 (4)で表される化合物 (以下、化合物 (4)と略記する。;) ]とを、適当な溶媒 の存在下、必要に応じて不活性ガス雰囲気下で反応させることにより、容易に製造す ることがでさる。
[0025] [化 5]
<スキーム 1 >
錯体前駆体 +
Figure imgf000020_0001
—般式 ( 3 ) 一般式 ( 1 )
錯体前駆体
Figure imgf000020_0002
—般式( 4 ) —般式( 2 )
[0026] (スキーム 1中、環 Aゝ環 B、環 C、環 D、
Figure imgf000020_0003
Η、 Q1, Q2 、 Q3、 R6、 R7、 R8、 R9
Figure imgf000020_0004
m2、 m3及び m4は前記と同じである。 )
スキーム 1中の錯体前駆体としては、無機白金化合物或いは有機白金錯体の何れ でもよい。好ましい無機白金化合物としては PtY (Yはハロゲン原子を表す。以下同
2
様)及び M PtY (Mはアルカリ金属を表す。以下同様)が挙げられる。 Yで表される
2 4
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ る。 Mで表されるアルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられる 無機白金化合物の具体例としては、例えば、塩化白金 (11)、臭化白金 (II) ,ヨウィ匕 白金 (11)、塩ィ匕白金酸 (II)ナトリウム、塩ィ匕白金酸 (II)カリウム、臭化白金酸 (II)力リウ ム等が挙げられる。
[0027] 好ま 、有機白金錯体としては、例えば下記一般式(5)
Pt Q) Y (5)
n4 2
(式中、 Jは中性配位子を示し、 n4は 1又は 2を表す。 Yは前記と同じ。 ) で表される有機白金錯体が挙げられる。
一般式(5)にお 、て、 Jで表される中性配位子の一つとしては非共役ジェンィ匕合物 が挙げられ、該ジェンィ匕合物は環状でも非環状でもよぐ非共役ジェンィ匕合物が環 状非共役ジェンィ匕合物である場合には、単環状、多環状、縮環状、架橋環状の何れ であってもよい。 Jが非共役ジェン化合物の場合は、 n4は 1である。また、非共役ジ ェンィ匕合物は、置換基で置換された非共役ジヱンィ匕合物、即ち置換非共役ジェン 化合物でもよい。前記置換基は、本発明の製造方法に悪影響を与えない置換基で あれば特に限定されないが、例えば、上記白金錯体の説明で詳述した置換基と同様 の基が該置換基の例として挙げられる。好ま U、非共役ジェン化合物の具体例とし ては、例えば、 1, 5—シクロォクタジェン、ビシクロ [2, 2, 1]ヘプター 2, 5—ジェン、 1 , 5 キサジェン等が挙げられる。
[0028] また、非共役ジェン化合物以外の中性配位子としては、単座配位性の中性配位子 が挙げられ、より具体的にはァセトニトリル又はべンゾ-トリルなどの-トリル類、ジェ チルスルフイド等のスルフイド類、トリフエ-ルホスフィン等の 3級ホスフィン類、ピリジン 等の 3級ァミン類、エチレン等のモノエン類等が挙げられる。 Jがこれら単座配位子で ある場合は n4は 2である。
Yで表されるハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子等 が挙げられ、特に塩素原子及び臭素原子が好ましい。
[0029] 本発明における、一般式(1)で表される白金錯体及び一般式 (2)で表される白金 錯体の具体例としては、例えば下記に示すィ匕合物等が挙げられるが、勿論これらに 限定されるものではない。
[化 6]
Figure imgf000022_0001
[ ]
Figure imgf000023_0001
Figure imgf000024_0001
[0030] 次に、本発明に係る白金錯体の製造法について説明する。なお、便宜上、化合物( 3)及び化合物 (4)の両者をまとめて四座配位子と呼称する。
四座配位子の使用量は、錯体前駆体に対して通常 0. 5— 20当量、好ましくは 0. 8 一 10当量、より好ましくは 1. 0-2. 0当量である。
[0031] 本発明の製造法は溶媒の存在下で行うことが望ましい。好ましい溶媒としては、例 えば、 N, N—ジメチルホルムアミド、ホルムアミド、 N, N—ジメチルァセトアミド等のアミ ド類、ァセトニトリル、ベンゾ-トリル等の含シァノ有機化合物類、ジクロロメタン、 1, 2 ージクロロェタン、クロ口ホルム、四塩化炭素、 o—ジクロ口ベンゼン等のハロゲン化炭 化水素類、ペンタン、へキサン、ヘプタン、オクタン、デカン、シクロへキサン等の脂肪 族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジェチルエー テル、ジイソプロピルエーテル、 tert ブチルメチルエーテル、ジメトキシェタン、ェチ レングリコールジェチルエーテル、テトラヒドロフラン、 1, 4 ジォキサン、 1, 3 ジォキ ソラン等のエーテル類、アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロ へキサノン等のケトン類、メタノール、エタノール、 2—プロパノール、 n—ブタノール、 2 エトキシエタノール等のアルコール類、エチレングリコール、プロピレングリコール、
1, 2—プロパンジオール、グリセリン等の多価アルコール類、酢酸メチル、酢酸ェチル 、酢酸 n—ブチル、プロピオン酸メチル等のエステル類、ジメチルスルホキシド等のス ルホキシド類、酢酸、プロピオン酸、酪酸等のカルボン酸類、水等が挙げられる。これ ら溶媒は、夫々単独で用いても二種以上適宜組み合わせて用いてもよい。より好まし い溶媒としては、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド等のアミド 類、ァセトニトリル、ベンゾ-トリル等の含シァノ有機化合物類、ベンゼン、トルエン、 キシレン等の芳香族炭化水素類、エチレングリコールジェチルエーテル、テトラヒドロ フラン、 1, 4 ジォキサン、 1, 3—ジォキソラン等のエーテル類、アセトン、メチルェチ ルケトン、メチルイソブチルケトン等のケトン類、メタノール、エタノール、 2—プロパノー ル、 n—ブタノール、 2—エトキシエタノール等のアルコール類、エチレングリコール、プ ロピレングリコール、 1, 2—プロパンジオール、グリセリン等の多価アルコール類、酢 酸メチル、酢酸ェチル、酢酸 n—ブチル、プロピオン酸メチル等のエステル類、酢酸、 プロピオン酸、酪酸等のカルボン酸類、水等が挙げられる。これら溶媒は夫々単独で 用いても二種以上適宜組み合わせて用いてもょ 、。
溶媒の使用量は反応が十分に進行できる量であれば特に制限はないが、錯体前 駆体に対して通常 1一 200倍容量、好ましくは 1一 50倍容量の範囲力も適宜選択さ れる。
[0032] 反応温度は、通常 25— 300。C、好ましくは 60— 250。C、より好ましくは 80— 200。C の範囲カゝら適宜選択される。
反応時間は、反応温度その他溶媒や塩基といった反応条件により自ずから異なる 力 通常 10分一 72時間、好ましくは 30分一 48時間、より好ましくは 1一 12時間の範 囲から適宜選択される。
[0033] 反応後は、必要に応じて後処理、単離及び精製を行うことにより本発明の白金錯体 を得ることが出来る。後処理の方法としては、例えば、反応物の抽出、沈殿物の濾過 、溶媒の添加による晶析、溶媒の留去等が挙げられ、これら後処理を単独で或いは 併用して行うことができる。単離及び精製の方法としては、例えば、カラムクロマトダラ フィ一、再結晶、昇華等が挙げられ、これらを単独で或いは併用して行うことができる
[0034] 続いて、化合物(3)又は化合物 (4)で示される四座配位子について説明する。
化合物(3)及びィ匕合物 (4)は、白金金属に配位可能な二つの窒素原子と、白金金 属に結合可能な箇所を二つ有する四座配位子である。一般式 (3)及び一般式 (4) における、環 A、環 B、環 C、環 D、 X1、 X2、 X3、 X4
Figure imgf000026_0001
R6 、 R7、 R8、 R9
Figure imgf000026_0002
m2、 m3及び m4については、先に述べた通り化合物(1)、化合物( 2)におけるそれらと全く同じである。
化合物(3)及び化合物 (4)の具体例としては、前記した本発明における白金錯体 の具体例力 白金金属を除き、白金原子に共有結合していた原子に水素原子を各 々 1つずつ加えた化合物が挙げられる。
[0035] 本発明の四座配位子は、本件出願前公知の芳香族化合物の様々なカップリング反 応及びその他の公知の反応を行うことにより合成することができる。ここで用いられる カップリング反応としては、例えば、遷移金属を用いるァリールアミノ化及びァリール エーテル化、ウルマン反応等の炭素一へテロ原子結合生成反応、グリニヤーカツプリ ング、根岸カップリング、鈴木カップリング等の炭素 炭素結合生成反応等が挙げら れる。また、例えば、エステル化ゃシリルエステル化等の縮合反応、ハロゲンィ匕等の 反応ち用いることができる。
以下に、本発明の四座配位子の製造法の一例を示す力 四座配位子の構造によ つて合成法は全く異なるので、下記合成法は単なる一例であって、本発明の四座配 位子の製造法はこの方法に限定されるものではない。
[化 9]
Figure imgf000026_0003
[0036] 本発明の白金錯体(1)及び白金錯体 (2)は発光素子、特に有機 EL素子における 燐光発光材料として有用である。 [0037] 次に、本発明の白金錯体(1)及び白金錯体 (2)を用いた発光素子について説明 する。
発光素子は、本発明の白金錯体を利用する素子であればシステム、駆動方法、利 用形態など特に問わないが、該白金錯体からの発光を利用するもの、又は該白金錯 体を電荷輸送材料として利用するものが好まし ヽ。代表的な発光素子としては有機 E L素子を挙げることが出来る。
本発明の白金錯体を含有する発光素子は、該白金錯体の少なくとも一種を含有し ていればよぐ一対の電極間に発光層若しくは発光層を含む複数の有機化合物層を 形成した発光素子において、少なくとも一層に該白金錯体の少なくとも一種を含有す る。前記白金錯体は、少なくとも一種を含有していればよいが、二種以上適宜組み合 わせて含有させてもよい。
[0038] 本発明の白金錯体を含有する発光素子の有機層 (有機化合物層)の形成方法とし ては、特に限定されないが、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層 法、コーティング法、インクジヱット法などの方法が挙げられ、特性面、製造面で抵抗 加熱蒸着、コーティング法が好ましい。
本発明の白金錯体を含有する発光素子は陽極、陰極の一対の電極間に発光層若 しくは発光層を含む複数の有機化合物薄膜を形成した素子であり、発光層の他、正 孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有していても良ぐ またこれらの各層はそれぞれ他の機能を備えた物であつても良い。各層の形成には それぞれ種々の材料を用いることが出来る。
[0039] 陽極は正孔注入層、正孔輸送層、発光層などに正孔を供給するものであり、金属、 合金、金属酸化物、電気伝導性化合物、又はこれらの混合物などを用いることができ 、好ましくは仕事関数力 eV以上の材料である。具体例としては酸化スズ、酸化亜鉛 、酸化インジウム、酸化インジウムスズ (以下、 ITOとする。)等の導電性金属酸化物、 或いは金、銀、クロム、ニッケル等の金属、更にこれらの金属と導電性金属酸化物と の混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリア-リン、ポリ チォフェン、ポリピロールなどの有機導電性材料、及びこれらと ITOとの積層物など が挙げられ、好ましくは、導電性金属酸化物であり、特に、生産性、高導電性、透明 性などの点カゝら ITOが好ま ヽ。陽極の膜厚は材料により適宜選択可能であるが、 通常 10nm— 5 μ mの範囲が好ましぐより好ましくは 50nm— 1 μ mであり、更に好ま しくは 1 OOnm— 500nmである。
陽極は通常、ソーダライムガラス、無アルカリガラス、透明榭脂基板などの上に層形 成したものが用いられる。ガラスを用いる場合、その材質については、ガラスからの溶 出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダラ ィムガラスを用いる場合、シリカなどのノ リアコートを施したものを使用することが好ま しい。基板の厚みは、機械的強度を保つのに十分であれば特に制限はないが、ガラ スを用いる場合には、通常 0. 2mm以上、好ましくは 0. 7mm以上のものを用いる。 陽極の作製には材料によって種々の方法が用いられる力 たとえば ITOの場合、電 子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法 (ゾルーゲル法など)、 I TO分散物の塗布などの方法で膜形成される。陽極は洗浄その他の処理により、素 子の駆動電圧を下げ、発光効率を高めることも可能である。例えば ITOの場合、 UV オゾン処理、プラズマ処理などが効果的である。
陰極は電子注入層、電子輸送層、発光層などに電子を供給するものであり、電子 注入層、電子輸送層、発光層などの負極と隣接する層との密着性やイオンィ匕ポテン シャル、安定性等を考慮して選ばれる。陰極の材料としては金属、合金、金属ハロゲ ン化物、金属酸化物、電気伝導性化合物、又はこれらの混合物を用いる事ができ、 具体例としてはリチウム、ナトリウム、カリウムといったアルカリ金属及びその弗化物、 マグネシウム、カルシウムといったアルカリ土類金属及びその弗化物、金、銀、鉛、ァ ルミ-ゥム、ナトリウム-カリウム合金又はそれらの混合金属、マグネシウム-銀合金又 はそれらの混合金属、インジウム、イッテルビウム等の希土類金属等が挙げられ、好 ましくは仕事関数力 eV以下の材料であり、より好ましくはアルミニウム、リチウムーァ ルミ-ゥム合金又はそれらの混合金属、マグネシウム 銀合金又はそれらの混合金 属等が挙げられる。
陰極は、上記化合物及び混合物を含む積層構造を取ることも出来る。陰極の膜厚 は材料により適宜選択可能である力 通常 lOnm— の範囲が好ましぐより好ま しくは 50nm— 1 μ mであり、更に好ましくは lOOnm— 1 μ mである。陰極の作製には 電子ビーム法、スパッタリング法、抵抗加熱蒸着法、コーティング法等の方法が用い られ、金属を単体で蒸着させることも、二成分以上を同時に蒸着させることも出来る。 更に、複数の金属を同時に蒸着させて合金で極を形成させることも可能であり、また 予め調製した合金を蒸着させても良い。陰極及び陽極のシート抵抗は低い方が好ま しい。
発光層の材料は、電界印加時に陽極又は正孔注入層、正孔輸送層から電子を注 入することが出来る機能、正孔と電子の再結合の場を提供して発光させる機能を有 する層を形成することが出来るものであれば何でも良い。例えば、力ルバゾール誘導 体、ベンゾォキサゾール誘導体、トリフ -ルァミン誘導体、ベンゾイミダゾール誘導 体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフ ニル誘導体、ジフヱ -ルブタジエン誘導体、テトラフエ-ルブタジエン誘導体、ナフタルイミド誘導体、クマ リン誘導体、ペリレン誘導体、ペリノン誘導体、ォキサジァゾール誘導体、アルダジン 誘導体、ビラリジン誘導体、シクロペンタジェン誘導体、ビススチリルアントラセン誘導 体、キナクリドン誘導体、ピロ口ピリジン誘導体、チアジアゾピリジン誘導体、スチリル ァミン誘導体、芳香族ジメチリディン化合物、有機ボラン誘導体、本発明の一般式 (3 )又は (4)で表される化合物、 8—キノリノール誘導体の金属錯体ゃ希土類錯体に代 表される各種金属錯体、ポリ(N—ビニルカルバゾール)誘導体等、ポリチォフェン、ポ リフエ-レン、ポリフエ-レンビ-レン等のポリマー又はオリゴマー化合物、有機シラン 誘導体、本発明の白金錯体等が挙げられる。ポリマー又はオリゴマー化合物には本 発明の白金錯体が部分構造として含まれていても良い。発光層の材料は上述した具 体例に限定されるものではない。発光層は上述した材料の一種又は二種以上力 成 る単層構造であっても良 ヽし、同一組成又は異種組成の複数層からなる多層構造で あっても良い。発光層の膜厚は特に限定されるものではないが、通常 lnm— 5 m の範囲が好ましぐより好ましくは 5nm— 1 mであり、更に好ましくは lOnm— 500η mである。発光層の作製方法としては、特に限定されるものではないが、電子ビーム 法、スパッタリング法、抵抗加熱蒸着法、分子積層法、コーティング法 (スピンコート法 、キャスト法、ディップコート法等)、インクジェット法、 LB法等の方法が挙げられ、好ま しくは抵抗加熱蒸着、コーティング法が挙げられる。 [0042] 正孔注入層、正孔輸送層の材料は、陽極から正孔を注入する機能、正孔を輸送す る機能、陰極から注入された電子を障壁する機能の何れかを有して 、るものであれ ば良い。具体例としては、力ルバゾール誘導体、トリァゾール誘導体、ォキサジァゾ ール誘導体、ォキサゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導 体、ピラゾリン誘導体、ピラゾロン誘導体、フ 二レンジァミン誘導体、ァリールァミン 誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルォレノン誘導 体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミンィ匕 合物、スチリルァミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、 ポリシラン系化合物、ポリ (N—ビュルカルバゾール)誘導体、ァ-リン系共重合体、チ ォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、有機シラン誘導体 、有機ボラン誘導体、フタロシアニン誘導体、本発明の一般式 (3)又は (4)で表され る化合物、本発明の白金錯体等が挙げられるが、これらに限定されるものではない。 正孔注入層、正孔輸送層の膜厚は特に限定されるものではないが、通常 lnm— 5 mの範囲が好ましぐより好ましくは 5nm— 1 mであり、更に好ましくは lOnm— 500 nmである。正孔注入層、正孔輸送層は上述した材料の一種又は二種以上カゝら成る 単層構造であっても良 、し、同一組成又は異種組成の複数層からなる多層構造であ つても良い。正孔注入層、正孔輸送層の作製方法としては、真空蒸着法や LB法、前 記の正孔注入輸送剤を溶媒に溶解又は分散させてコーティングする方法 (スピンコ ート法、キャスト法、ディップコート法等)、インクジェット法等の方法が用いられる。コ 一ティング法の場合、榭脂成分と共に溶解又は分散させることが出来る。榭脂成分と しては、例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレ ート、ポリブチルメタタリレート、ポリエステル、ポリスルホン、ポリフエ-レンォキシド、ポ リブタジエン、ポリ (N-ビュルカルバゾール)、炭化水素榭脂、ケトン樹脂、フエノキシ 榭脂、ポリアミド、ェチルセルロース、酢酸ビュル、 ABS榭脂、アルキド榭脂、ェポキ シ榭脂、シリコン榭脂などが挙げられる。
[0043] 電子注入層、電子輸送層の材料は、陰極から電子を注入する機能、電子を輸送す る機能、陽極から注入された正孔を障壁する機能の何れかを有して 、るものであれ ば良 、。陽極から注入された正孔を障壁する機能を有する正孔ブロッキング層のィ オンィ匕ポテンシャルは、発光層のイオンィ匕ポテンシャルよりも大き 、ものを選択する。 具体例としては、トリァゾール誘導体、ォキサゾール誘導体、多環系化合物、バソク プロイン等のへテロ多環系化合物、ォキサジァゾール誘導体、フルォレノン誘導体、 ジフエ二ルキノン誘導体、チォピランジオキシド誘導体、アントラキノンジメタン誘導体 、アントロン誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジスチリ ルビラジン誘導体、ナフタレンテトラカルボン酸又はペリレンテトラカルボン酸等の芳 香族テトラカルボン酸の酸無水物、フタロシアニン誘導体、 8—キノリノール誘導体の 金属錯体ゃメタルフタロシアニン、ベンゾォキサゾールやべンゾチアゾールを配位子 とする金属錯体に代表される各種金属錯体、有機シラン誘導体、有機ボラン誘導体 、本発明の一般式(3)又は (4)で表される化合物、ポリ(N—ビニルカルバゾール)誘 導体、ポリチォフェン、ポリフエ-レン、ポリフエ-レンビ-レン等のポリマー又はオリゴ マー化合物、本発明の白金錯体等が挙げられる。ポリマー又はオリゴマー化合物に は、本発明の白金錯体が部分構造で含まれていても良い。電子注入層、電子輸送 層の材料はこれらに限定されるものではない。電子注入層、電子輸送層の膜厚は特 に限定されるものではないが、通常 lnm— 5 μ mの範囲が好ましぐより好ましくは 5n m—: L mであり、更に好ましくは lOnm— 500nmである。電子注入層、電子輸送層 は上述した材料の一種又は二種以上力も成る単層構造であっても良いし、同一組成 又は異種組成の複数層からなる多層構造であっても良い。電子注入層、電子輸送層 の形成方法としては、真空蒸着法や LB法、前記の正孔注入輸送剤を溶媒に溶解又 は分散させてコーティングする方法 (スピンコート法、キャスト法、ディップコート法等) 、インクジェット法等の方法が用いられる。コーティング法の場合、榭脂成分と共に溶 解又は分散することが出来、榭脂成分としては正孔注入層及び正孔輸送層の場合 に例示したものが適用できる。
保護層の材料としては水分や酸素等の素子劣化を促進するものが素子内に入るこ とを抑止する機能を有しているものであれば良い。具体例としては、インジウム、錫、 鉛、金、銀、銅、アルミニウム、チタン、ニッケル等の金属、酸化マグネシウム、酸ィ匕珪 素、三酸ィ匕ニアルミニウム、酸ィ匕ゲルマニウム、酸ィ匕ニッケル、酸ィ匕カルシウム、酸ィ匕 ノ リウム、三酸化二鉄、三酸ィ匕ニイッテルビウム、酸化チタンなどの金属酸化物、弗 化マグネシウム、弗化リチウム、弗化アルミニウム、弗化カルシウムの金属弗化物、ポ リエチレン、ポリプロピレン、ポリメチルメタタリレート、ポリイミド、ポリウレア、ポリテトラ フノレオ口エチレン、ポリクロロトリフノレオ口エチレン、ポリジクロロジフノレオ口エチレン、ク
Figure imgf000032_0001
テトラフルォロェ チレンと少なくとも一種のコモノマーとを含むモノマー混合物を共重合させて得られる 共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率 1%以上の 吸水性物質、吸水率 0. 1%以下の防湿性物質等が挙げられる。保護層の形成方法 についても特に限定はなぐ例えば真空蒸着法、スパッタリング法、反応性スパッタリ ング法、 MBE (分子線ェピタキシ)法、クラスターイオンビーム法、イオンプレーティン グ法、プラズマ重合法 (高周波励起イオンプレーティング法)、プラズマ CVD法、レー ザ一 CVD法、熱 CVD法、ガスソース CVD法、コーティング法等の方法が適用できる
[0045] なお、特願 2003— 374861明細書に記載された内容を、本明細書に全て取り込む
[0046] 以下、本発明について参考例及び実施例を挙げて詳細に説明する力 本発明はこ れらによって何ら限定されるものではない。なお、参考例及び実施例中において物 性の測定に用いた装置は以下の通りである。
1)ェ!! NMR ^ベクトル: DRX— 500型装置(ブルカー社製)
又は GEMINI2000型装置(バリアン社製)
内部標準物質:テトラメチルシラン
2)吸収スペクトル解析: V— 550 (JASCO製)
3)発光スペクトル解析: F— 4500 (日立製)
[0047] 参考例 1 2—ブロモー 6 フエ-ルビリジンの合成
[化 10]
Figure imgf000032_0002
文献 (J. Org. Chem. 2003, 68, 4918—4992)の記載に準じて操作を行った。 窒素雰囲気下、ジメチルァミノエタノール(2. 1ml)及び 2 フエ-ルビリジン(2. 17 g)のへキサン溶液を 78°Cまで冷却し、これに n ブチルリチウムのへキサン溶液(1. 6M、 26. 5ml)を滴下し、滴下後 0°Cまで昇温して 2時間攪拌した。続いて、臭素(2 . 5ml)のトルエン溶液を 0°Cでカ卩え、同温で更に 2時間攪拌を行った。その後、室温 で一日攪拌を行った。チォ硫酸ナトリウム水溶液で残存臭素の中和を行い、トルエン により抽出し、抽出溶媒を留去して、残渣をシリカゲルカラムクロマトグラフィーにて精 製し、 目的の白色固体を得た(1. 30g)。
— NMR(CDC1 ) : 7. 39-7. 53 (m, 4H) , 7. 55—7. 71 (m, 2H) , 7. 96—8.
3
02 (m, 2H;)。
実施例 1
Ν,. Ν ビス (6 フエ-ルビリジン 2 ィル)ァ-リンの合成
[化 11]
Figure imgf000033_0001
文献 (Angew. Chem. Int. Ed, 2003, 42, 2051— 2053)の記載に準じて行つ た。
窒素雰囲気下、 π—ァリルパラジウムクロリドダイマー(3. 9mg)及びトリー t ブチル ホスフィンの 10重量0 /0へキサン溶液 43mg (トリー t ブチルホスフィンの量として 4. 3 mg相当)、 o—キシレン 10mLをカ卩えて室温で攪拌した。次いで、ナトリウム t ブトキシ ド(272mg)、ァ-リン( 13 lmg)及び参考例例 1で得た 2 ブロモ—6—フエ-ルビリジ ン(660mg)をカ卩え、 120°Cにて 1日撹拌した。放冷後、加水し、トルエン抽出した後 、溶媒を留去して、残渣をシリカゲルカラムクロマトグラフィーにより精製し、 目的の固 体物質を得た(510mg)。
— NMR(CDC1 ) : 7. 04 (d, J = 8. OHz, 2H) , 7. 22—7. 48 (m, 13H) , 7. 6
3
3 (t, J = 8. OHz, 2H) , 7. 84—7. 89 (m, 4H)。
実施例 2 [0049] 白余錯体の合成
[化 12]
Figure imgf000034_0001
アルゴン雰囲気下、ビスべンゾ-トリルジクロロ白金(Π) (228mg)及び実施例 1で 得た N, N ビス(6 フエ-ルビリジン 2 ィル)ァ-リン (193mg)を混合し、 o キシレ ン 10mLを加えて 150°Cにて 1日攪拌を行った。放冷後、加水し、塩化メチレンで抽 出を行い、シリカゲルカラムクロマトグラフィーにて精製して目的の黄色結晶を得た(1 72mg) 0
— NMR(CDC1 ) : 6. 43 (d, J = 8. 4Hz, 2H) , 7. 18—7. 26 (m, 2H) , 7. 39
3
—7. 50 (m, 4H) , 7. 57—7. 82 (m, 9H) , 8. 24—8. 56 (m, 2H)。
[0050] 参考例 2 2— (m—クロロフヱ-ル)ピリジンの合成
[化 13]
Figure imgf000034_0002
文献 (J. Am. Chem. Soc. 1991, U3, 8521— 8522)の記載に準じて行った。 lOOmLオートクレーブに( -ァセチルシクロペンタジェ -ル) (1, 5—シクロォクタジ ェン)コバルト(144mg)、 m クロ口べンゾ-トリル(1. 80g)及び o—キシレンを仕込み 、アセチレンを充填して 150°Cにて反応を行った。放冷後、加水し、トルエン抽出後、 シリカゲルカラムクロマトグラフィーにより精製して目的物を油状物質として得た(2. 3 7g)。
— NMR(CDC1 ) : 7. 22-7. 30 (m、 1H) , 7. 37—7. 41 (m, 2H) , 7. 66—7.
3
88 (m, 2H) , 7. 83—7. 89 (m, 1H) , 8. 01 (t, J = 1. 4Hz, 1H) , 8. 69—8. 72 (m, 1H)。 実施例 3
[0051] N. N—ビス「3— (2—ピリジル)フエニル Ίァ-リンの合成
[化 14]
Figure imgf000035_0001
実施例 1にお 、て、 2—ブロモ—6—フエ-ルビリジン(660mg)の代りに参考例 2で得 た 2—(m—クロ口フエニル)ピリジン(600mg)を用い、ァニリン(131mg)をァニリン(1 40mg)に代えた以外は実施例 1と全く同様にして反応及び後処理を行ない、 目的物 を固体として得た。
— NMR(CDC1 ) : 7. 02 (tt, J= l. 6, 7. 2Hz, 1H) , 7. 15—7. 31 (m, 8H) ,
3
7. 37 (t, J= 8. OHz, 2H) , 7. 57—7. 76 (m, 8H) , 8. 61—8. 65 (m, 2H)。 実施例 4
[0052] 白余锆体の合成
[化 15]
Figure imgf000035_0002
文献(Organometallics, Voll8, No 17, 3337— 3341)の記載に準じて行った。 アルゴン雰囲気下、テトラクロ口白金酸カリウム (II) (260mg)及び実施例 3で得た N , N—ビス [3— (2—ピリジル)フエ-ル]ァ-リン (250mg)を混合し、酢酸を加えて 140 °Cにて 3日間攪拌を行った。加水後、塩化メチレンで抽出を行い、溶媒を留去後、残 渣をシリカゲルカラムクロマトグラフィーにて精製し、 目的物を赤色結晶として得た (4 Omg)。
— NMR(CDC1 ) : 6. 20—6. 45 (m, 2H) , 7. 02 (t, J = 7. 6Hz, 2H) , 7. 34— 7. 65 (m, 9H) , 7. 85—8. 01 (m, 4H) , 8. 93—8. 97 (m, 2H)。
実施例 5
N. N ビス(6 フ 二ルビリジン 2 ィル)—3. 5—ジ(tーブチル)ァニリンの合成 [化 16]
Figure imgf000036_0001
実施例 1において、ァ-リン(131mg)の代りに 3, 5—ジ(tーブチル)ァ-リン(219m g)を用い、 2 ブロモ—6 フエ-ルビリジン(660mg)を 2—ブロモ—6 フエ-ルビリジ ン(500mg)に代えた以外は実施例 1と全く同様にして反応及び後処理を行ない、 目 的物を固体として得た (420mg)。
— NMR(CDC1 ) : 1. 30 (s, 18H) , 7. 15—7. 41 (m, 11H) , 7. 62 (t, J =
3
8. 0Hz, 2H) , 7. 87-7. 92 (m, 4H)。
実施例 6
白余錯体の合成
[化 17]
Figure imgf000036_0002
実施例 2において、 N, N ビス(6 フエ-ルビリジン 2 ィル)ァ-リン (193mg)の 代りに実施例 5で得た N, N—ビス(6—フエ-ルビリジン— 2 ィル)—3, 5—ジ(tーブチ ル)ァ-リン (546mg)を用い、ビスべンゾ-トリルジクロロ白金(II) (228mg)をビスべ ンゾニトリルジクロロ白金 (Π) (504mg)に代えた以外は実施例 2と全く同様にして反応 及び後処理を行ない、 目的物を黄色結晶として得た (451mg)。
— NMR(CDC1 ) : 1. 38 (s, 18H) , 6. 45 (d, J = 8. 1Hz, 2H) , 7. 20—7. 24 (m, 4H), 7.45 (m, 2H), 7.66(t, J=l.7Hz, 1H), 7.70—7.73 (m, 2H) 7.80(dd, J = 7.7, 1.1Hz, 2H), 8.32—8.50 (m, 2H)。
実施例 7
N. N—ビス「3— (2—ピリジル)フエニル Ί— 3.5—ジ(tーブチル)ァニリンの合成
[化 18]
Figure imgf000037_0001
実施例 3において、ァ-リン(140mg)の代りに 3, 5—ジ(tーブチル)ァ-リン(309m g)を用いた以外は実施例 3と全く同様にして反応及び後処理を行な!/、、 目的物を固 体として得た(613mg)。
— NMR(CDC1 ) :1.24 (s, 18H), 7.01—7.26 (m, 7H), 7.35(t, J = 8.0
3
Hz, 2H), 7.56-7.78 (m, 8H), 8.62—8.64 (m, 2H)。
実施例 8
白 Φ錯体の合成
[化 19]
Figure imgf000037_0002
実施例 4において、 N, N—ビス [3— (2—ピリジル)フエ-ル]ァ-リン (250mg)の代り に実施例 7で得た N, N—ビス [3— (2—ピリジル)フエ-ル]— 3, 5—ジ(tーブチル)ァ- リン (248mg)を用い、テトラクロ口白金酸カリウム (Π) (260mg)をテトラクロ口白金酸力 リウム (II) (306mg)に代えた以外は実施例 4と全く同様にして反応及び後処理を行な い、 目的物を赤色結晶として得た(124mg)。
— NMR(CDC1 ) :1.36(s, 18H), 6.28—6.40 (m, 2H), 7.01—7.26 (m, 4H) , 7. 34-7. 39 (m, 4H) , 7. 35 (t, J= l. 8Hz, 1H) , 7. 86—8. 00 (m, 4) 8. 91-9. 00 (m, 2H)。
[0057] 参考例 3 6 ブロモ—2, 2,一ビビリジンの合成
[化 20]
Figure imgf000038_0001
文献(Organic Synthesis, Vol.78, p53)記載の方法に準じて行った。 窒素雰囲気下、ブロモピリジン(0. 5g)及び THF5mLの溶液を 78°Cに冷却し、 n ブチルリチウムのへキサン溶液(1. 57M, 2ml)を滴下し、滴下後 0°Cにて 3時間攪 拌した。続いて、塩化亜鉛 (3. 15g)の THF溶液を滴下し、滴下後 3時間攪拌を行つ た。続いて、 2. 6 ジブロモピリジン(0. 75g)及びテトラキス (トリフエ-ルホスフィン)パ ラジウム(146mg)を室温でカ卩え、続いて一日還流を行った。加水後、トルエンで抽 出し、溶媒を留去した後、シリカゲルカラムクロマトグラフィーで精製し、 目的物を白色 固体として得た (0. 5g)。
— NMR(CDC1 ) : 7. 26-7. 36 (m, 1H) , 7. 49 (d, J = 7. 8Hz, 1H) , 7. 67 (
3
t, J = 7. 6Hz, 1H) , 7. 82 (t, J = 7. 8Hz, 1H) , 8. 36—8. 43 (m, 2H) , 8. 65— 8. 68 (m, 1H)。
[0058] 参考例 4 2—(3 ブロモフエ-ル)ピリジンの合成
[化 21]
Figure imgf000038_0002
2—ブロモピジジン(2. 5g、 15. 8mmol)、 3—ブロモフエノール(5. 5g、 31. 6mmol )及び炭酸カリウム(2. 2g、 15. 8mmol)の混合物を 200°Cにて 3時間攪拌した。反 応液を冷却した後、 ImolZL水酸ィ匕ナトリウム水溶液を加え、塩化メチレンにて抽出 した。有機層を濃縮して得られた残渣をカラムクロマトグラフィー及び再結晶にて精製 し、 2— (3 ブロモフエ-ル) ピリジンを淡褐色結晶として 2. 9g得た。収率 73. 2%。 参考例 5 (2—ブロモー 6—フエ-ルチオ)ピリジンの合成
[化 22]
Figure imgf000039_0001
2, 6 ジブロモピリジン(5. Og、 21. lmmol)のテトラヒドロフラン(15mL)溶液に、 イソプロピルマグネシウムクロリド 'テトラヒドロフラン溶液(11. 6mL、 2. OM、 23. 2m mol)を加え、室温で 6時間攪拌した。この反応液にトリェチルァミン(2. 9mL、 21. 1 mmol)及びジフエ-ルジスルフイド(5. 5g、 25. 3mmol、 1. 2当量)を順次加え、室 温で 12時間攪拌した。反応液を飽和塩ィ匕アンモ-ゥム水溶液に注ぎ、ジェチルエー テルで抽出した。有機層を濃縮して得られた残渣をカラムクロマトグラフィーにより精 製し、(2 ブロモ—6 フエ-ルチオピリジン)を褐色のオイルとして 2. 8g得た。収率 4 9. 9%
— NMR(CDC1 ) : 6. 71 (dd, J= l . 0, 7. 6Hz, 1H) , 7. 16 (dd, J = 0. 8, 7.
3
6 Hz, 1H) , 7. 27 (t, J = 7. 7Hz, 1H) , 7. 38—7. 51 (m, 3H) , 7. 54—7. 66 ( m, 2H) 0
参考例 6 2—ブロモー 6 フエ-ルビリジンの合成
[化 23]
Figure imgf000039_0002
n—ブチルリチウム-へキサン溶液(150mL、 1. 58M、 237. Ommol)に、 N, N—ジ メチルアミノエタノール(12. OmL、 118. 5mmol)のへキサン(70mL)溶液を 5°Cで 30分力けて滴下した。次いで、 2 フエ-ルビリジン(8. 5mL、 59. 3mmol)のへキ サン(10mL)溶液を 5°Cで 20分かけて滴下した。この反応液を 5°Cで 1時間攪拌し、 2 リチォ 6 フエ-ルビリジン ·へキサン溶液を調製した。 1, 2 ジブロモ— 1, 1, 2, 2—テトラフルォロェタン(17. 6mL、 148. 3mmol)のテト ラヒドロフラン(200mL)溶液を 78°Cに冷却し、これに上で得た 2 リチォ 6 フエ- ルビリジン 'へキサン溶液を 30分かけて滴下した。この反応液を 78°Cで 1時間攪拌 した後、飽和塩化アンモ-ゥム水溶液に注ぎ、有機層を分取した後、水層を更にへ キサンで抽出した。有機層を合わせてこれを濃縮し、得られた残渣をカラムクロマトグ ラフィー及び再結晶により精製して、 2 プロモー 6 フエ二ルビリジンを白色結晶として 12. Og得た。収率 86. 4%。
— NMR(CDC1 ) : 7. 38—7. 53 (m, 4H) , 7. 60 (t, J = 7. 6Hz, 1H) , 7. 69 (
3
dd, J= l. 0, 7. 6Hz, 1H) , 7. 95—8. 04 (m, 2H)。
参考例 7 2—ヒドロキシー 6 フエ-ルビリジンの合成
[化 24]
Figure imgf000040_0001
2 クロ口— 6—メトキシピリジン(4. 4mL、 37. Ommol)、 1, 3 ビス(ジフエ二ノレホス フイノ)プロパンニッケル (Π)クロリド(228mg)及びジェチルエーテル(40mL)の混合 物に、フエ-ルマグネシウムブロミド 'エーテル溶液(12. 3mL、 3. 0M、 37. Ommol )のエーテル (30mL)希釈液を室温で 30分かけて滴下した。この反応液を還流条件 で 1時間攪拌した後、飽和塩化アンモ-ゥム水溶液に注ぎ、有機層を分取した後、水 層を更に塩化メチレンで抽出した。有機層を合わせてこれを濃縮し、得られた残渣を シリカゲル濾過して、粗 2—メトキシー 6 フエ-ルビリジンを薄黄色のオイルとして 7. 0 g 7こ o
ピリジン(30. OmL、 370. Ommol)に濃塩酸(30. 8mL、 370. Ommol)をカロえ、 内温が 180°Cになるまで水分を留去しながら加熱した。反応液を 120°Cに冷却した 後に、上で得た粗 2—メトキシ -6-フ -ルビリジン(7. Og)を加え、 180°Cで 1時間攪 拌した。反応液を冷却し、 ImolZL水酸ィ匕ナトリウム水溶液を加え、塩化メチレンで 抽出を行った。有機層を濃縮して得られた残渣を再結晶にて精製し、 2—ヒドロキシー 6—フエ-ルビリジンを白色結晶として 5.2g得た。収率 82.1%。
— NMR(CDC1 ) :6.50 (dd, J=l.0, 8. OHz, 1H), 6.54 (dd, J=l.0, 8.
3
OHz, 1H), 7.42-7.58 (m, 4H), 7.64—7.75 (m, 2H), 11.72(brs, 1H)。 参考例 8 2— (3—ヒドロキシフエ-ル)ピリジンの合成
[化 25]
Figure imgf000041_0001
2—ブロモピリジン(5. OmL、 52.4mmol)、 1, 3—ビス(ジフエ-ルホスフイノ)プロ パンニッケル (Π)クロリド(284mg)及びジェチルエーテル(lOOmL)の混合物に、 3— メトキシフエ-ルマグネシウムブロミド 'テトラヒドロフラン溶液(52.4mL、 1. OM、 52 .4mmol)を室温で 1時間かけて滴下した。反応液を飽和塩化アンモ-ゥム水溶液 に注ぎ、トルエンで抽出した。有機層を濃縮して得られた残渣をカラムクロマトグラフィ 一にて精製し、 2— (3—メトキシフエ-ル)ピリジンを無色のオイルとして 9.4g得た。 ピリジン(42.4mレ 524. Ommol)に濃塩酸(43.7mレ 524. Ommol)を加え、 内温が 180°Cになるまで水分を留去しながら加熱した。反応液を 120°Cに冷却した 後に、上で得た 2— (3-メトキシフヱ-ル)ピリジン(9.4g)を加え、 180°Cで 3時間攪 拌した。反応液を冷却し、 ImolZL水酸ィ匕ナトリウム水溶液を加え、塩化メチレンで 抽出を行った。有機層を濃縮して得られた残渣を再結晶にて精製し、 2— (3—ヒドロキ シフエニル)ピリジンを白色粉末として 6.9g得た。収率 76.9%。
— NMR(CDC1 ) :2.20(brs, 1H), 6.81(ddd, J=l.2, 2.6, 7.8Hz, 1H)
3
, 7.14-7.36 (m, 2H), 7.33(dt, J = 7.6, 1.6Hz, 1H), 7.49(t, J = 2. OH z, 1H), 7.70(dt, J=l.8, 8.2Hz, 1H), 8.59(ddd, J = 0.8, 1.6, 5.0)。 実施例 9
2—フエ二ルー 6—「3— (2—ピリジルォキシ)フエニル Ίピリジンの合成
[化 26]
Figure imgf000042_0001
2— (3—ブロモフエ-ル) ピリジン(1. 0g、4. Ommol)のテトラヒドロフラン(30mL) 溶液を 78°Cに冷却し、 n ブチルリチウム'へキサン溶液(2. 8mL、 1. 58M、 4. 4 mmol)を 5分かけて滴下した。反応液を 78°Cで 1時間攪拌した後、塩化亜鉛'テト ラヒドロフラン溶液(9. 2mL、0. 52M、4. 8mmol)を 78°Cで 20分かけて滴下し、 その後 30分かけて室温まで昇温した。次いで、テトラキス(トリフエ-ルホスフィン)パ ラジウム(46mg)及び 2—ブロモー 6—フエ-ルビリジン(936mg、 4. Ommol)を順次 加え、還流条件下 18時間攪拌した。反応液をエチレンジァミン四酢酸(1. 4g、 4. 8 mmol) Z水(30mL) Z飽和炭酸水素ナトリウム水溶液 (35mL)の混合溶液に注ぎ 、有機層を分取した後、水層を更に塩化メチレンで抽出した。有機層を合わせてこれ を濃縮し、得られた残渣をカラムクロマトグラフィーにて精製し、 2—フエ-ルー 6— [3—( 2—ピリジルォキシ)フエニル]ピリジンを淡黄色の粘凋なオイルとして 1. Og得た。収率 77. 1%。
— NMR(CDC1 ) : 6. 92-7. 06 (m, 2H) , 7. 16—7. 26 (m, 1H) , 7. 36—7.
3
58 (m, 4H) , 7. 64—7. 86 (m, 4H) , 7. 94—8. 04 (m, 2H) , 8. 08—8. 18 (m, 2H) , 8. 23 (ddd, J = 0. 6, 2. 0, 5. OHz, 1H)。
実施例 10
2^2 ' ォキシビス (6 フ 二ルビリジン)の合成
[化 27]
Figure imgf000043_0001
2—ヒドロキシー 6—フエ-ルビリジン(1. Og、 5. 8mmol)、 2—ブロモ—6—フエ-ルピリ ジン(1. 4g、 5. 8mmol)及び炭酸カリウム(807mg、 5. 8mmol)の混合物を 200。C で 8時間攪拌した。反応液を室温に冷却した後、 ImolZLの水酸ィ匕ナトリウム水溶液 を加え、塩化メチレンで抽出を行った。有機層を濃縮して得られた残渣をカラムクロ マトグラフィ一にて精製し、 2, 2'—ォキシビス(6—フエニルピリジン)を無色の結晶とし て 1. 3g得た。収率 68. 6%。
— NMR(CDC1 ) : 7. 07 (d, J = 8. OHz, 2H) , 7. 30—7. 46 (m, 6H) , 7. 56 (
3
d, J = 8. OHz, 2H) , 7. 80 (t, J = 8. OHz, 2H) , 7. 88—8. 0 (m, 4H)。
実施例 11
2—フエ二ルー 6— (3—ピリジルフエノキシ)ピリジンの合成
[化 28]
Figure imgf000043_0002
2— (3—ヒドロキシフエ-ル)ピリジン(1. 0g、 5. 8mmol)、 2—ブロモ— 6—フエ-ルビ リジン(1. 3g、 5. 6mmol)及び炭酸カリウム(576mg、 4. 2mmol)の混合物を 200 °Cで 8時間攪拌した。反応物を室温に冷却した後、 ImolZL水酸ィ匕ナトリウム水溶液 を加え、塩化メチレンで抽出を行った。有機層を濃縮して得られた残渣をカラムクロ マトグラフィ一にて精製し、 2—フエ-ルー 6— (3—ピリジルフエノキシ)ピリジンを白色の 固体として 1. 3g得た。収率 72. 1%。
— NMR(CDC1 ) : 6. 83 (dd, J=0. 8, 8. OHz, 1H) , 7. 16—7. 45 (m, 5H) , 7.45-7.58 (m, 2H), 7.68—7.80 (m, 3H), 7.84 (m, 4H), 8.69(dt, J =4.6, 1.6Hz, 1H)。
実施例 12
「2.2'—ォキシビス(6 フ ニルピリジナト) C. N. N. C,白余の合成
[化 29]
Figure imgf000044_0001
ビス(ベンゾ-トリル)塩化白金(100mg、 0.212mmol)及び実施例 10で得た 2, 2 ,一ォキシビス(6 フエ-ルビリジン)(69mg、 0.212mmol)の混合物にキシレン(20 mL)を加え、還流条件下で 3時間攪拌した。反応液を濾過して得られた残渣をカラム クロマトグラフィー及び再結晶にて精製し、 [2, 2 '—才キシビス(6 フエ-ルピリジナト )-C, N, N, C]白金を黄色粉末として 77mg得た。収率 70.2%。
— NMR(CD C1 ) :7.23(ddd, J=l.2, 7.2, 7.8Hz, 2H), 7.37(dd, J = 0
2 2
.9, 8.2Hz, 2H), 7.42(ddd, J=l.4, 7.2, 7.6Hz, 2H), 7.78(dd, J = 0. 9, 7.8Hz, 2H), 7.82(dd, J=l.4, 7.8Hz, 2H), 8.13 (dd, 7.8, 8.2Hz, 2H), 8.31(ddd, J=l.2, 7.6, 25. O(H-Pt), 2H)。
参考例 9 6 フエ-ルー 2, 2,一ビビリジンの合成
[化 30]
Figure imgf000044_0002
2, 2,一ビビリジン(5.0g、 32. Ommol)及びジェチルエーテル(50mL)の混合物 に、フエ-ルリチウム 'シクロへキサン/ジェチルエーテル溶液(40.9mL、 38.4m mol)を 5°Cで 15分かけて滴下した。この反応液を室温で 2時間攪拌した後、水に注 ぎ、有機層を分取した後、水層を更に塩化メチレンで抽出した。有機層を合わせてこ れを濃縮し、得られた残渣をアセトン(50mL)で希釈し、過マンガン酸カリウム'ァセト ン飽和溶液 ( 120mL)を加えて室温で 1時間攪拌した。得られた反応液をセライト濾 過した後に濃縮し、残渣をカラムクロマトグラフィー及び再結晶により精製し、 6—フエ 二ルー 2, 2' ビビリジンを白色結晶として 4. 2g得た。収率 55. 4%。
— NMR (CDC1 ) : 7. 33 (ddd, J= l . 4, 4. 8, 7. 6Hz, 1H) , 7. 38—7. 58 (m
3
, 3H) , 7. 74-7. 96 (m, 3H) , 8. 10—8. 22 (m, 2H) , 8. 38 (dd, J= l . 0, 7. 6 Hz, 1H) , 8. 61-8. 74 (m, 2H)。
実施例 13
6— (2—メトキシフエ-ル)—6 ' フエ-ルー 2. 2 ' ビビリジンの合成
[化 31]
Figure imgf000045_0001
金属リチウム(660mg、 94. 9mmol)及びジェチルエーテル(25mL)の混合物に 、 2—ブロモア-ノール(5. 6mL、 45. 2mmol)のジェチルエーテル(25mL)溶液を 室温で 30分かけて滴下した。この反応液を還流条件で 1時間攪拌し、 2—メトキシフエ 二ルリチウム ·エーテル溶液を調製した。
参考例 9で得た 6—フエ-ルー 2, 2,一ビビリジン(7. 0g、 30. lmmol)のジェチルェ 一テル (40mL)溶液を 5。Cに冷却し、これに上で得た 2—メトキシフエ二ルリチウム ·ェ 一テル溶液を 20分かけて滴下した。この反応液を室温で 18時間攪拌した後、飽和 塩ィ匕アンモ-ゥム水溶液に注ぎ、有機層を分取した後、水層を更に塩化メチレンで 抽出した。有機層を合わせてこれを濃縮し、得られた残渣に過マンガン酸カリウム'ァ セトン飽和溶液 (400mL)を加えて室温で 30分間攪拌した。反応液を濾過した後に 濃縮し、残渣をカラムクロマトグラフィー及び再結晶により精製し、 6— (2—メトキシフエ -ル) 6,一フエ-ルー 2, 2' ビビリジンを淡黄色結晶として 3. lg得た。収率 30.4
%。
— NMR(CDC1 ) :3.90 (s, 3H), 7.04(d, J = 8.2Hz, 1H), 7.14(dt, J=l
3
.2, 7.6Hz, 1H), 7.34—7.58 (m, 4H), 7.72—8.00 (m, 4H), 8.04(dd, J =1.8, 7.4Hz, 1H), 8.12—8.22 (m, 2H), 8.50—8.62 (m, 2H)。
実施例 14
2-し 6 ' フエ-ルー 2._2,一ビビリジン 6 ィル)フ ノールの合成
[化 32]
Figure imgf000046_0001
ピリジン(14.3mL、 177.2mmol)に濃塩酸(14.8mL、 177.2mmol)を加え、 内温が 180°Cになるまで水分を留去しながら加熱した。反応液を 120°Cに冷却した 後、実施例 13で得た 6— (2—メトキシフエ-ル)— 6,—フエ-ルー 2, 2,一ビビリジン(3. 0g、 8.9mmol)をカ卩え、 180°Cで 2時間攪拌した。反応液を冷却し、 ImolZL水酸 化ナトリウム水溶液を加え、塩化メチレンで抽出した。有機層を濃縮して得られた残 渣をカラムクロマトグラフィー及び再結晶にて精製し、 2— (6' フエ-ルー 2, 2'—ビピ リジン 6 ィル)フエノールを黄色結晶として 2.7g得た。収率 93.9%。
— NMR(CDC1 ) :6.97(ddd, J=l.4, 7.2, 8.4Hz, 1H), 7.09(dd, J=l
3
.4, 8.4 Hz, 1H), 7.36(ddd, J=l.6, 7.4, 8.4Hz, 1H), 7.42—7.60 (m , 3H), 7.78—8.08 (m, 5H), 8.10—8.22 (m, 3H), 8.53(dd, J=l.8, 7.0 Hz, 1H), 14.29 (s, 1H)。
実施例 15
6—し 2—ァセヒ シフエ-ル_)— 6,—フエ-ルー 2」 2' ビビリジンの合成
[化 33]
Figure imgf000047_0001
実施例 14で得た 2—(6,一フエ-ルー 2, 2,一ビビリジンー6—ィル)フエノール(1. 0g、 3. lmmol)のピリジン(20mL)溶液に無水酢酸(580 レ 6. 2mmol)を滴下し、室 温で 24時間攪拌した。反応液力も溶媒を留去して得られた残渣をカラムクロマトダラ フィー及び再結晶にて精製し、 6— (2—ァセトキシフエ-ル)— 6,一フエ-ルー 2, 2,ービ ピリジンを白色結晶として 1. 05g得た。収率 93. 0%。
— NMR(CDC1 ) : 2. 11 (s, 3H) , 7. 21 (dd, J = 2. 0, 7. 6Hz, 1H) , 7. 34—
3
7. 62 (m, 6H) , 7. 74—7. 98 (m, 4H) , 8. 12—8. 24 (m, 2H) , 8. 47 (dd, J= l . 0, 7. 6Hz, 1H) , 8. 64 (dd, J= l. 0, 7. 9Hz, 1H)。
実施例 16
「2— (6,一フエ二ルー 2. 2,一ビビリジン一 6—ィル)フエノラ一トー C. N. N. ΟΊ白余の合 成
[化 34]
Figure imgf000047_0002
[ (1, 2, 5, 6- 7? )-1, 5—へキサジェ -ル]二塩化白金(100mg、 0. 287mmol) 、実施例 15で得た 6— (2—ァセトキシフエ-ル)— 6,―フエ-ルー 2, 2,一ビビリジン(11 6mg、 0. 316mmol)及び 2—エトキシエタノール(5mL)の混合物を還流条件で 3時 間攪拌した。反応液を室温まで冷却し、水酸ィ匕カリウム(24mg、 0. 431mmol)をカロ え、還流条件で 3時間攪拌した。反応液から溶媒を留去し、得られた残渣をカラムク 口マトグラフィー及び再結晶にて精製し、 [2— (6' フエ-ルー 2, 2' ビビリジン 6—ィ ル)フエノラ一トー C, N, N, O]白金を橙色結晶として 67mg得た。収率 45. 1%。
[0072] 参考例 10 2—メチルー 6 フエ-ルビリジンの合成
[化 35]
Figure imgf000048_0001
2 ブロモ—6 メチルピリジン(10. Og、 58. lmmol)、 1, 3 ビス(ジフエ-ルホスフ イノ)プロパンニッケル(Π)クロリド(315mg、 1. Omol%)及びジェチルエーテル(100 mL)の混合物に、フエ-ルマグネシウムブロミド 'ジェチルエーテル溶液(21. 3mL、 3. 0M、 63. 9mmol)のジェチルエーテル(40mL)希釈液を 30分かけて滴下し、還 流条件で更に 2時間攪拌した。反応液を飽和塩ィ匕アンモ-ゥム水溶液に注ぎ、有機 層を分取した後、水層を塩化メチレンで抽出した。有機層を合わせてこれを濃縮し、 得られた残渣をシリカゲルカラムにて精製して、 2—メチルー 6 フエ-ルビリジンを淡 黄色のオイルとして 8. 6g得た。収率 87. 5%。
— NMR(CDC1 ) : 2. 64 (s, 3H) , 7. 10 (d, 7. 2Hz, 1H) , 7. 36—7. 56 (m,
3
4H) , 7. 63 (t, J = 7. 7Hz, 1H) , 7. 96—8. 04 (m, 2H)。
実施例 17
[0073] ビス (6 フエ-ルビリジン 2 ィル)ェタンの合成
[化 36]
Figure imgf000048_0002
ジイソプロピルアミン(1. OmL、 7. lmmol)のテトラヒドロフラン(8mL)溶液を 5°C に冷却し、 n ブチルリチウム'へキサン溶液(4. lmL、 1. 58M、 6. 5mmol)を 10分 かけて滴下し、リチウムジイソプロピルアミド 'テトラヒドロフラン溶液を調製した。
参考例 10で得た 2—メチルー 6 フエ-ルビリジン(1. Og、 5.9mmol)のテトラヒドロ フラン(12mL)溶液を 78°Cに冷却し、リチウムジイソプロピルアミド 'テトラヒドロフラ ン溶液を 15分かけて滴下した。反応液を 78°Cで更に 1時間攪拌した後、 1, 2—ジ ブロモェタン(510 L、 5.9mmol、 1当量)のテトラヒドロフラン(10mL)溶液を 10 分かけて滴下し、 40分かけて 0°Cまで昇温した。反応液を飽和塩ィ匕アンモ-ゥム水 溶液に注ぎ、有機層を分取した後、水層をトルエンで抽出した。有機層を合わせてこ れを濃縮し、得られた残渣をシリカゲルカラム及び再結晶により精製して、 1, 2—ビス (6 フエ-ルビリジン 2 ィル)エタンを白色の粉末として 646mg得た。収率 65.1% — NMR(CDC1 ) :3.41 (s, 4H), 7. ll(dd, J=l.2, 7.2Hz, 2H), 7.34—
3
7.68 (m, 10H), 7.98—8.08 (m, 4H)。
実施例 18
「1.2 ビス(6 フエニルピリジナト—2 ィル)エタンー C. N. N. Cl白金の合成
[化 37]
Figure imgf000049_0001
ビス(ベンゾ-トリル)塩化白金(280mg、 0.594mmol)及び実施例 17で得た 1, 2 —ビス(6—フエ-ルビリジン 2 ィル)ェタン(200mg、 0.594mmol)の混合物にキ シレン (60mL)を加え、還流条件下で 8時間攪拌した。反応液を濃縮して得られた残 渣をシリカゲルカラム及び再結晶にて精製し、 [1, 2 ビス(6 フエニルピリジナトー 2— ィル)エタンー C, N, N, C]白金を黄色粉末として 186mg得た。収率 59.1%。
— NMR(CD C1 ) :3.36 (s, 4H), 7.06(dd, J=l.4, 7.2Hz, 2H), 7.11
2 2
(dt, J=l.2, 7.6Hz, 2H), 7.18(dt, J=l.4, 7.6Hz, 2H), 7.55(dd, J=l .4, 7.6Hz, 2H), 7.69 (dd, J=l.4, 8. OHz, 2H), 7.74(dd, J = 7.2, 8.0 Hz, 2H), 7.87(ddd, J=l.2, 7.6, 27.1 (jH"Pt) , 2H)。 [0075] 参考例 11 2 ホルミル 6 フエ-ルビリジンの合成
[化 38]
Figure imgf000050_0001
n ブチルリチウム'へキサン溶液(266mL、 1. 58M、 420. Ommol)に、 N, N—ジ メチルアミノエタノール(21. OmL、 210. Ommol)のへキサン(150mL)溶液を 5°C で 1時間かけて滴下した。次いで、 2 フエ-ルビリジン(15. OmL、 105. Ommol)の へキサン(15mL)溶液を 5°Cで 20分かけて滴下した。この反応液を 5°Cで 1時間攪 拌し、 2 リチォ 6 フエ-ルビリジン'へキサン溶液を調製した。 N, N—ジメチルホル ムアミド(20. OmL、 262. 5mmol)のテトラヒドロフラン(400mL)溶液を 78°Cに冷 却し、これに先に調製した 2 リチォ 6 フエ-ルビリジン'へキサン溶液を 40分かけ て滴下した。この反応液を 78°Cで 1時間攪拌した後、 ImolZLの塩酸に注ぎ、有 機層を分取した後、水層を塩化メチレンで抽出した。有機層を合わせて濃縮し、得ら れた残渣をシリカゲルカラム及び蒸留により精製して、 2 ホルミル 6 フエニルピリジ ンを淡黄色のオイルとして 17. lg得た。収率 88. 9%。
— NMR(CDC1 ) : 7. 42-7. 58 (m, 3H) , 7. 88—8. 00 (m, 3H) , 8. 05—8.
3
14 (m, 2H) , 10. 18 (s, 1H)。
実施例 19
[0076] 1^1 ビス (6 フエ-ルビリジン 2 ィル)メタノールの合成
[化 39]
Figure imgf000050_0002
2 ブロモ—6—フエ-ルビリジン(1. 3g、5. 5mmol)のテトラヒドロフラン(20mL)溶 液を 78°Cに冷却し、 n ブチルリチウム'へキサン溶液(3. 5mL、 1. 58M、 5. 6m mol)を 20分かけて滴下した。反応液を 78°Cにて更に 1時間攪拌した後、上記参 考例 11で得た 2 ホルミル 6—フエ-ルビリジン(1. Og、 5. 5mmol)のテトラヒドロフ ラン(5mL)溶液を 10分かけて滴下し、 30分かけて 0°Cまで昇温した。反応液を飽和 塩ィ匕アンモ-ゥム水溶液に注ぎ、有機層を分取した後、水層をトルエンで抽出した。 有機層を合わせて濃縮し、得られた残渣をシリカゲルカラム及び再結晶により精製し て、 1, 1 ビス(6—フエ-ルビリジン 2 ィル)メタノールを白色の粉末として 1. lg得 た。収率 61. 2%。
— NMR(CDC1 ) : 6. 05 (d, J=4. 6Hz, 1H) , 6. 22 (d, J=4. 6Hz, 1H) , 7.
3
40-7. 80 (m, 12H) , 8. 02—8. 12 (m, 4 H)。
実施例 20
[0077] 2. 2 ' カルボニルビス(6 フ 二ルビリジン)の合成
[化 40]
Figure imgf000051_0001
実施例 19で得た 1, 1—ビス(6—フエ-ルビリジン 2 ィル)メタノール(1. Og、 3. 0 mmol)の塩化メチレン(20mL)溶液に、二酸化マンガン(2. 8g、純度 90%、 29. 5 mmol)を加え、室温で 1時間攪拌した。反応液をシリカゲルを用いて濾過し、濾液を 濃縮して、残渣を再結晶により精製し、 2, 2' カルボ-ルビス(6 フエ-ルビリジン) を白色粉末として 920mg得た。収率 92. 7%。
— NMR(CDC1 ) : 7. 38—7. 48 (m, 6H) , 7. 94—8. 14 (m, 10H
3 )。
実施例 21
[0078] 「2. 2,一カルボ二ルビス(6 フ ニルピリジナト) C. N. N. Cl白余の合成
[化 41]
Figure imgf000052_0001
ビス(ベンゾ-トリル)塩化白金(140mg、 0. 297mmol)及び実施例 20で得た 2, 2 ,一カルボ-ルビス(6 フエ-ルビリジン)(100mg、 0. 297mmol)の混合物にキシレ ン(30mL)を加え、還流条件下で 10時間攪拌した。反応液を濾過して得られた残渣 をシリカゲルカラム及び再結晶にて精製し、 [2, 2' カルボ-ルビス(6 フエ-ルピリ ジナト) C, N, N, C]白金を赤色粉末として 120mg得た。収率 76. 3%。
実施例 22
1._1 ビス [6 フエ-ルビリ_ジン 2—ィル _)エチレンの合成
[化 42]
Figure imgf000052_0002
メチルトリフエ-ルホスホ-ゥムブロミド(584mg、 1. 6mmol)のテトラヒドロフラン(8 mL)溶液を 5°Cに冷却し、カリウム t ブトキシド(201mg、 1. 8mmol)を加え、 5°Cで 1時間攪拌した。次いで、 2, 2,一カルボ-ルビス(6 フエ-ルビリジン)(500mg、 1. 5mmol)のテトラヒドロフラン (8mL)溶液を滴下し、室温で 12時間攪拌した。反応液 を飽和塩ィ匕アンモ-ゥム水溶液に滴下し、有機層を分取した後、水層をトルエンで抽 出した。有機層を合わせて濃縮し、得られた残渣をシリカゲルカラム及び再結晶によ り精製して、 1, 1 ビス(6 フエ二ルビリジン 2 ィル)エチレンを白色粉末として 445 mg得た。収率 89. 3%。
— NMR(CDC1 ) : 6. 31 (s, 2H) , 7. 36—7. 52 (m, 8H) , 7. 68—7. 80 (m, 4
3
H) , 8. 04—8. 12 (m, 4H)。 実施例 23
N^. N ビス「3—(2 ピリジル)フエニル Ίメシチルァミンの合成
[化 43]
Figure imgf000053_0001
実施例 1と同様にして、メシチルァ-リン(509mg)及び 2—(3 クロ口フエ-ル)ピリ ジン(1. 5g)より目的物を固体として得た(942mg)。
— NMR(CDC1 ) : 2. 07 (s, 6H) , 2. 36 (s, 3Η
3 ), 6. 91-7. 38 (m, 8Η), 7.
51—7. 80 (m, 8Η) , 8. 60—8. 68 (m, 2H)。
実施例 24
[0081] N. N ビス(6 フエ二ルビリジン 2 ィル)—1ーピレニルァミンの合成
[化 44]
Figure imgf000053_0002
実施例 1と同様にして、 1 アミノビレン (400mg)及び 2 ブロモ—6—フエ-ルビリジ ン(906mg)より目的物を固体として得た(905mg)。
— NMR(CDC1 ) : 7. 02 (d, J = 8. 2Hz, 2H) , 7. 20—7. 32 (m, 6H) , 7. 38 (
3
d, J = 7. 2Hz, 2H) , 7. 58 (t, J = 8. 0Hz, 2H) , 7. 74—7. 85 (m, 3H) , 7. 93— 8. 31 (m, 10H)。
実施例 25
[0082] 白合錯体の合成
[化 45]
Figure imgf000054_0001
実施例 12と同様にして、ビスべンゾ-トリルジクロロ白金 (II) (180mg)及び N, N—ビ ス(6 フエ-ルビリジン 2 ィル) 1ーピレニルァミン (200mg)より、 目的物を黄色結晶 として得た(190mg)。
— NMR(CD CI ) :6.24—6.38 (m, 2H), 7.16—7.27 (m, 2H), 7.45 (t, J
2 2
=7. OHz, 2H), 7.51—7.66 (m, 4H), 7.82—7.89 (m, 3H), 8.05—8.51 ( m, 10H)。
実施例 26
白余锆体の合成
[化 46]
Figure imgf000054_0002
ベンゾ-トリル中に N, N ビス [3— (2—ピリジル)フエ-ル]メシチルァミン(471mg) 及び塩ィ匕白金 (II) (284mg)を加え、還流下で 5時間攪拌を行った。放冷後、ベンゾ 二トリルを留去し、加水後、塩化メチレンで抽出した。抽出液を濃縮して塩化メチレン を留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製して目的物を 赤色結晶として得た(328mg)。
— NMR(CDC1 ) :1.84 (s, 6H), 2.42 (m, 3H), 6. 17—6.27 (m, 2H), 6.
3
99—7.03 (m, 2H), 7.12(s, 2H), 7.36—7.43 (m, 4H), 7.90—8.01 (m, 4 H), 8.95-8.97 (m, 2H)。
実施例 27
N. N ビス「3— (2 ピリジル)フエニル Ί 4— (9H—カルバゾールー 9 ィル)ァニリンの [化 47]
Figure imgf000055_0001
[0085] 実施例 1と同様にして、 p— (9H—力ルバゾールー 9 ィル)ァニリン(360mg)及び 2—
(3—クロ口フエニル)ピリジン(555mg)より、固体一ガラス状物として目的物を得た(6 olmg)。
実施例 28
[0086] 白金錯体の合成
[化 48]
Figure imgf000055_0002
実施例 26と同様にして、塩ィ匕白金 (Π) (169mg)及び N, N-ビス [3- (2-ピリジル) フエ-ル] 4一(9H—力ルバゾールー 9 ィル)ァニリン(400mg)より、 目的物を赤色結 晶として得た(262mg)。
— NMR(CD CI ) δ : 6. 35—6. 68 (m, 2Η) , 7. 04 (t, J = 7. 6 Hz, 2H) , 7
2 2
. 26-7. 98 (m, 18H) , 8. 12 (d, J = 7. 7Hz, 2H) , 8. 88—8. 94 (m, 2H) . 実施例 29
[0087] N. N ビス「3— ( 2 ピリジル)フエ-ル 1—2—ビフエ-ルアミンの合成
[化 49]
Figure imgf000055_0003
実施例 1と同様にして、 2—ビフエ-ルァミン (423mg)及び 2— (3-クロ口フエ-ル)ピ リジン(lg)より、固体一ガラス状物として目的物を得た (230mg)。
— NMR(CDC1 ) δ : 6. 88-7. 52 (m, 21H) , 7. 61—7. 72 (m, 2H) , 8. 58—
3
8. 63 (m, 2H)。
実施例 30
[0088] 白余錯体の合成
[化 50]
Figure imgf000056_0001
実施例 26と同様にして、塩ィ匕白金 (Π) (230mg)及び N, N—ビス [3— (2—ピリジル) フエ二ル]— 2—ビフエニルァミン(128mg)より、 目的物を赤色結晶として得た(172mg )。
— NMR(DMSO— d ) δ : 6. 15-6. 21 (m 7. 8Hz, 2H)
6 , 2Η) , 6. 94 (t, J=
, 7. 02-7. 68 (m, 13H) , 8. 01—8. 21 (m, 2H) , 9. 03-9. 10 (m, 2H)。
実施例 31
N—ビス「5— (2—ピリジル)ビフエ-ルー 3—ィル 1ァニリンの合成
[化 51]
Figure imgf000056_0002
実施例 1と同様にして、ァ-リン(27. lmg)及び 2— (3—フエ二ルー 5—クロ口フエニル )ピリジン(1781118)ょり、固体一ガラス状物として目的物を得た(167mg)。
— NMR(CDC1 ) δ : 7. 15—8. 03 (m, 27H) , 8. 65—8. 69 (m, 2H)。
3
実施例 32
[0090] 白余錯体の合成 [化 52]
Figure imgf000057_0001
実施例 26と同様にして、塩ィ匕白金 (Π) (89mg)及び Ν, N ビス [5— (2 ピリジル)ビ フエ-ルー 3 ィル]ァ-リン(167mg)より、 目的物を赤色結晶として得た(170mg)。
— NMR(DMSO— d ) δ : 7. 28—7. 77 (m, 21H) , 8. 05—8. 21 (m, 2H) , 8.
6
40—8. 51 (m, 2H) , 9. 10—9. 19 (m, 2H)。
実施例 33
N. N ビス「3— (2 ピリジル)フエ-ル Ί 4ージフエ-ルアミノア-リンの合成
[化 53]
Figure imgf000057_0002
実施例 1と同様にして、 4— (N, N—ジフエ-ルァミノ)ァ-リン(300mg)及び 2— (3— クロ口フエ-ル)ピリジン(300mg)より、固体一ガラス状物として目的物を得た(218m g)。
実施例 34
白余锆体の合成
Figure imgf000057_0003
実施例 26と同様にして、塩ィ匕白金(II) (lOlmg)及び N, N-ビス [3- (2-ピリジル) フエ-ル] 4ージフエ-ルアミノア-リン(216mg)より、 目的物を赤色結晶として得た ( 131mg)。
— NMR(CD CI ) δ : 6. 48 (d, J = 8. 8Hz, 2H) , 7. 04—7. 50 (m, 20H) , 7
2 2
. 76—8. l l (m, 4H) , 8. 81—9. 01 (m, 2H)。
実施例 35
6. 6,一ビス(ジフエニルアミ/ )—2. 2,一ビビリジンの合成
[化 55]
Figure imgf000058_0001
実施例 1と同様にして、 6, 6' ジブ口モー 2, 2' ビビリジン(250mg)及びジフエ- ルァミン(296mg)より、白色固体として目的物を得た(132mg)。
— NMR(CDC1 ) δ : 6. 64 (d, J = 8. 0 Hz, 2H) , 7. 09—7. 54 (m, 24H)
3 実施例 36
白 Φ錯体の合成
[化 56]
Figure imgf000058_0002
実施例 26と同様にして、塩ィ匕白金(II) (70mg)及び 6, 6' ビス(ジフエ-ルァミノ) —2, 2'—ビピリジン(13011^)ょり、赤色結晶として目的物を得た(87mg)。
— NMR(CD CI ) δ : 6. 50—6. 53 (m, 2Η) , 6. 76-6. 82 (m, 6H) , 7. 50— 7. 59 (m, 8H) , 7. 65—7. 70 (m, 8H)。
実施例 37
N. N ビス「6— (2. 4—ジフルオロフェ -ル)ピリジン 2—ィル Ίァ-リンの合成
[化 57]
Figure imgf000059_0001
窒素気流下、トルエン中に酢酸パラジウム (4. 8mg)及びトリ t ブチルホスフィン(1 0重量%へキサン溶液、 0. 086mL)を加え、しばらく撹拌した。続いて、炭酸ナトリウ ム(313mg)、 2, 4ージフルオロフェ-ルホウ酸(445mg)及び N, N ビス [ (6—トリフ ルォロメタンスルホ -ルォキシ)ピリジン 2 ィル]ァ-リン(686mg)を加え、 100°C で 1日撹拌した。加水後、有機層を抽出し、シリカゲルカラムクロマトグラフィーにより 精製して、固体一ガラス状物として目的物を得た (504mg)。
— NMR(CDC1 ) δ : 6. 78-6. 91 (m, 4H) , 7. 03 (d, J = 8. 2Hz, 2H) , 7. 2
3
6-7. 48 (m, 7H) , 7. 59—7. 82 (m, 4H)。
実施例 38
白余锆体の合成
[化 58]
Figure imgf000059_0002
実施例 2と同様にして、ビスべンゾ-トリルジクロロ白金(II) (406mg)及び N, N—ビ ス [6— (2, 4—ジフルオロフェ -ル)ピリジン 2 ィル]ァ-リン(404)より黄色結晶とし て目的物を得た (434mg)。
— NMR(DMSO— d ) δ : 6. 66 (d, J = 8. 2Hz, 2H) , 6. 98—7. 05 (m, 2H) , 7.51-7.85 (m, 7H), 7.99(d, J = 8.2Hz, 2H), 8.08(t, J = 7.8Hz, 2H)( 実施例 39
6— (9H—カルバゾールー 9 ィル)—6 '—ジフエ-ルアミノ— 2.2 '—ビビリジンの合成 [化 59]
Figure imgf000060_0001
実施例 1と同様にして、 6, 6' ジブ口モー 2, 2' ビビリジン(500mg)、ジフエ-ル ァミン(269mg)及び力ルバゾール(266mg)より得られた反応物を、シリカゲルカラ ムクロマトグラフィーによる精製を行 、白色固体として目的物を得た( 195mg)。
— NMR(CDC1 ) δ :6.78 (d, J = 9.2Hz, IH), 7.19—7.63 (m, 16H), 7.
3
89—8.02 (m, 5H), 8.13(d, J = 8.4Hz, 2H)。
実施例 40
白余锆体の合成
[化 60]
Figure imgf000060_0002
実施例 26と同様にして、塩ィ匕白金(Π) (163mg)及び 6— (9H—力ルバゾールー 9— ィル )—6'—ジフエニルアミノー 2, 2' ビビリジン(300mg)より赤色結晶として目的物 を得た(200mg)。
— NMR(DMSO— d ) δ :6.50—6.58 (m, IH), 6.79—6.84 (m, 2H), 6.9
6
4(d, J = 9. OHz, IH), 7.20—7.29 (m, IH), 7.39—7.90 (m, 10H), 8.00— 8.65 (m, 7H)0
実施例 41 [0099] 6— (3—ァセトキシチォフェン 2 ィル) -6 ' フエ二ルー 2. 2 ' ビビリジンの合成
[化 61]
Figure imgf000061_0001
窒素気流下、 3—メトキシチォフェン(297mg)の THF (5mL)溶液を 78°Cに冷却 し、 n-ブチルリチウム(1. 57Mへキサン溶液、 1. 7mL)を滴下した。滴下後、 1時間 撹拌し、塩ィ匕亜鉛(370mg)をカ卩え、徐々に 30°Cまで昇温した。続いて、 6—フエ-ル —6,—トリフルォロメタンスルホ -ルォキシー 2, 2,一ビビリジン(790mg)、酢酸パラジ ゥム(9. 7mg)及びトリフエ-ルホスフィン(0. Ol lg)を加え、 78°Cに昇温して 1日撹 拌した。加水後、トルエンで抽出し、溶媒を留去してカップリング粗生成物を得た。得 られた粗生成物に濃塩酸及びピリジンを加え、 180°Cで 3時間撹拌した。冷却後、 1 molZL水酸ィ匕ナトリウム水溶液を加え、塩化メチレンで抽出し、溶媒を留去すること によって粗ヒドロキシ体を得た。得られた粗ヒドロキシ体にピリジンをカ卩え、室温で無 水酢酸を滴下して 24時間撹拌した。反応溶液力も溶媒を留去してシリカゲルカラムク 口マトグラフィ一により精製し、粘凋な油状物として目的物を得た (450mg)。
— NMR(CDC1 ) δ : 2. 40 (s, 3H) , 7. 06 (d, J = 5. 4Hz, 2H) , 7. 18—7. 5
3
4 (m, 4H) , 7. 74—8. 00 (m, 4H) , 8. 13—8. 21 (m, 2H) , 8. 51 (t, J = 7. 6Hz , 2H) 0
実施例 42
[0100] 白余锆体の合成
[化 62]
Figure imgf000062_0001
窒素気流下、ビス(ベンゾ-トリル)ジクロロ白金(II) (259mg)、 6— (3—ァセトキシチ ォフェン 2 ィル)—6,—フエ-ルー 2, 2,一ビビリジン(225mg)及び 2 エトキシェタノ ールの混合物を 150°Cで 1日撹拌した。加水後、塩化メチレンで抽出し、シリカゲル カラムクロマトグラフィーで精製することによって橙色固体として目的物を得た(190m — NMR(DMSO— d ) δ :6.93(d, J = 7.6Hz, 1H), 7.08—7.44 (m, 3H),
6
7.69-7.78 (m, 2H), 7.94—8.34 (m, 6H)。
実施例 43
3.3' ビス( 2 ピリジノレ才キシ)ビフエ二ノレの合成
[化 63]
Figure imgf000062_0002
3, 3,—ビフエノール(1.0g、 5.4mmol)、 2—ブロモピリジン(1.3mL、 13.5mmo 1)及び炭酸カリウム(1. lg、8. lmmol)の混合物を窒素雰囲気下、 200°Cで 4時間 反応させた。反応物を室温にまで冷却後に塩化メチレン及び水を加え、抽出を行つ た後に有機層をまとめて濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィ 一及び晶析にて精製し、 3, 3' ビス(2 ピリジルォキシ)ビフエ-ルを白色の粉末と して 1. lg得た。収率 59.8%。
— NMR(CDC1 ) δ :6.93(d, J = 8.6Hz, 2H), 6.96—7.05 (m, 2H), 7.1
3
2(dt, J=6.4, 2.6Hz, 2H), 7.33—7.52 (m, 6H), 7.69(ddd, J = 2.0, 7.4 , 8.4Hz, 2H), 8.21(dd, J = 2.0, 5.2Hz, 2H)。 実施例 44
[0102] 白余錯体の合成
[化 64]
Figure imgf000063_0001
塩ィ匕白金(391mg、 1. 47mmol)及び 3, 3,一ビス(2—ピリジルォキシ)ビフエ-ル( 500mg、 1. 47mmol)を、ベンゾ-トリル(40mL)中還流条件で 3時間反応させた。 反応液力 溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー及び晶 析にて精製し、白金錯体を黄色の粉末として 540mg得た。収率 68. 9%。
— NMR(CD C1 ) δ : 6. 85 (dd, J= l. 0, 8. OHz, 2H) , 7. 00 (dd, J = 7. 4,
2 2
8. OHz, 2H) , 7. 09 (ddd, J= l. 4, 6. 0, 7. 2Hz, 2H) , 7. 21 (dd, J= l. 0, 7 . 2Hz, 2H) , 7. 36 (ddd, J = 0. 5, 1. 4, 8. 5Hz, 2H) , 7. 95 (ddd, J = 2. 0, 7 . 2, 8. 5Hz, 2H;)。
実施例 45
[0103] ルボ-ルビス [3- (2 ピリジル)ベンゼン Ίの合成
[化 65]
Figure imgf000063_0002
窒素雰囲気下、テトラヒドロフラン(20mL)を 70°Cに冷却し、 tーブチルリチウム ·η —ペンタン溶液(17. 8mL、 1. 60N、 28. 5mmol)を 15分力、けて滴下した。次いで、 2—ブロモピリジン(1. 2mL、 12. 9mmol)のテトラヒドロフラン(5mL)溶液を 15分か けて滴下した。 70°Cで 30分攪拌した後、塩ィ匕亜鉛'テトラヒドロフラン溶液(31. 8m L、 0. 50M、 15. 9mmol)を 10分かけて滴下した。その後、 1時間かけて室温にま で昇温し、テトラキス(トリフエ-ルホスフィン)パラジウム(203mg)及び 3, 3,一ジブ口 モベンゾフエノン(2. 0g、 5. 88mmol)を順次カ卩え、還流条件にて 18時間攪拌した 。反応液をエチレンジァミン四酢酸(7. Og) Z飽和炭酸水素ナトリウム水溶液(210m L)の混合溶液に注ぎ、トルエンで抽出した後に有機層をまとめて濃縮した。残渣をシ リカゲルカラムクロマトグラフィー及び再結晶にて精製し、カルボ-ルビス [3— (2 ピリ ジル)ベンゼン]を白色の粉末として 1. 5g得た。収率 75. 8%。
— NMR(CDC1 ) δ : 7. 22-7. 34 (m, 2H) , 7. 62 (dt, J = 0. 4, 7. 8Hz, 2H
3
) , 7. 74-7. 84 (m, 4H) , 7. 88 (dt, J = 7. 8, 1. 4Hz, 2H) , 8. 30 (ddd, J= l. 4, 1. 8, 7. 6Hz, 2H) , 8. 45 (t, J= l. 6Hz, 2H) , 8. 71 (dt, J=4. 4, 1. 6Hz , 2H) 0
実施例 46
[0104] 白余錯体の合成
[化 66]
Figure imgf000064_0001
塩ィ匕白金(395mg、 1. 49mmol)及びカルボ-ルビス [3— (2 ピリジル)ベンゼン] (500mg、 1. 49mmol)をべンゾ-トリル (40mL)中で還流下 3時間反応し、析出し た沈殿を濾取した後昇華にて精製し、白金錯体を黄色の粉末として 600mg得た。収 率 76. 1%。
Mass Spectrum (EI) :m/z = 529 (M+)
実施例 47
[0105] (a) N メシチルー N— 2—「6— (2 ピリジル)ピリジン 2—ィル 1—3. 5—ジフエニルァニリ ンの合成 [化 67]
Figure imgf000065_0001
実施例 1と同様にして、 3, 5—ジフエ二ルァ-リン(365mg)、 2 ブロモ—6— (2 ピリ ジル)ピリジン(350mg)及び 2—ブロモメシチレン(296mg)より、固体一ガラス状物と して目的物を得た(133mg)。
— NMR(CDCl) δ :2.25 (s, 6H), 2.36 (s, 3H), 6.69(d, J=l.6Hz, 2
3
H), 6.89-6.96 (m, 4H), 7.17(t, J=l.5Hz, 1H), 7.24—7.61 (m, 15H)
(b)白余錯体の合成
[化 68]
Figure imgf000065_0002
実施例 26と同様にして、塩ィ匕白金 (Π) (68mg)及び N メシチルー N— 2— [6— (2—ピ リジル)ピリジン 2 ィル]—3, 5—ジフエ二ルァ-リン(133mg)より、 目的物を赤色結 晶として得た (60mg)。
— NMR(DMSO— d ) δ :1.92 (s, 6Η), 2.49 (s, 3H), 6. 18(d, J=l.6H
6
z, 1H), 6.65(d, J = 8.2Hz, 1H), 6.91—7.02 (m, 2H), 7.31—7.84 (m, 1 OH), 7.97-8. 13 (m, 2H), 8.24(d, J = 7.0Hz, 1H), 8.42(dt, J=l.6, 8 . 2Hz, 1H), 8. 78(d, J = 8. 0Hz, 1H), 9. 62(d, J = 5. 7Hz, 1H)( 実施例 48
(a) N. N—ビス「3— (2—チアゾリル)フ ニル Ίァニリンの合成
[化 69]
Figure imgf000066_0001
実施例 47と同様にして、ァ-リン及び 2— (3—クロ口フエ-ル)チアゾールから N, N -ビス [3— (2—チアゾリル)フエ-ル]ァ-リンを白色の粉末として収率 96. 3%で得た
H NMR(CDCl ) δ :7. 06(tt, J=l.4, 7. 2Hz, 1H), 7. 12—7. 21 (m, 4H
3
), 7. 24-7. 39 (m, 8H), 7. 60(ddd, J=l. 0, 1. 6, 7. 8Hz, 2H), 7. 75 (t, J =2. 0Hz, 2H), 7. 81(d, J = 3. 4Hz, 2H)。
(b)白 Φ錯体の合成
[化 70]
Figure imgf000066_0002
実施例 47と同様にして、塩化白金及び N, N—ビス [3—(2—チアゾリル)フエ-ル]ァ 二リンから目的の白金錯体を収率 27. 3%で得た。
¾ NMR(CD CI ) δ :6. 18(ddd, J=l. 0, 8. 5, 18.4Hz, 2H), 6. 92 (dd,
2 2
J = 7. 3, 8.4Hz, 2H), 7. 21 (dd, J = 0. 8, 7. 2Hz, 2H), 7. 28—7. 33 (m, 2 H), 7.49(d, J = 3. 5Hz, 2H), 7. 52(tt, J=l. 2, 7. 2Hz, 1H), 7. 64—7. 6 8(m, 2H), 8.02 (d, 2H)
実施例 49
[0107] ルボ-ルビス [3— (4 t ブチルピリジン 2 ィル)ベンゼン Ίの合成
[化 71]
Figure imgf000067_0001
2 ブロモピリジンを 2—ブロモー 4 t ブチルピリジンとした以外は実施例 45と同様 に反応を行 、、カルボ-ルビス [3— (4 t ブチルピリジン— 2 ィル)ベンゼン]をァモ ルファス状の固体として収率 75.0%で得た。
— NMR(CDC1 ) δ :1.36 (s, 18H), 7.27(dd, J=l.6, 5.4Hz, 2H), 7.6
3
0(t, J = 7.6Hz, 2H), 7.72—7.78 (m, 2H), 7.86(d, J = 7.8Hz, 2H), 8.2 6(d, J = 7.8Hz, 2H), 8.44 (s, 2H), 8.60(d, J = 5.4Hz, 2H)。
実施例 50
[0108] 白余锆体の合成
[化 72]
Figure imgf000067_0002
カルボ-ルビス [3— (2—ピリジル)ベンゼン]をカルボ-ルビス [3 (4 t ブチルピリ ジン- 2—ィル)ベンゼン]に変更した以外は実施例 46と同様に反応を行い、反応液 を濃縮して得られた残渣をカラム及び晶析にて精製することで、白金錯体を黄色の 粉末として収率 46.8%で得た。 NMR(CDC1 ) δ :1.42(s, 18H), 7.16—7.28 (m, 4H), 7.66—7.76 (
3
m, 4H), 8.27(ddt, J = l.0, 7.6, 12.8Hz, 2H), 8.52(d, J = 6.0Hz, 2H)
実施例 51
N . N ビス「 3— ( 2 ピリジル)フエニル 1 4 n—ォクチルァユリンの合成
[化 73]
Figure imgf000068_0001
実施例 1と同様にして、 4 n—才クチルァ-リン (400mg)及び 2— (3 クロ口フエ- ル)ピリジン(776mg)より、固体一ガラス状物として目的物を得た(819mg)。
実施例 52
白余錯体の合成
[化 74]
Figure imgf000068_0002
実施例 26と同様にして、塩化白金 (Π) (212mg)及び N, N ビス [3— (2 ピリジル [9 ]
ベ ^ / -ェ L -ェ ( fi — — ε」 [mo]
°{UZ 'ZUZ '9 '9 Ί ' 0 ·Ι=Γ'ΡΡΡ)69 ·8 '(HZ <S)ZI ·8 ' (UZ 'ΖΗ ·ΐ '8 ·Ζ = Γ Ρ)66 ' L '(Η
)08 'Z-99 ' L '(ΗΖ 'ΖΗΖ Ί ' · = Γ'^Ρ)Ο ' L ' (UZ 'ΖΗ9 'L = i"\)L ' L ' (UZ 'ΖΗ ·8 '9 ' ' 'Ζ = ί'ννν)\Ζ ' L '(Η9 <S)Z9 ·0: 9 (¾00) H N-H,
Figure imgf000069_0001
Figure imgf000069_0002
°(HS 'ra)Qi -6-90 ·6 '(HZ <ZH0 'S = ['P)OZ ·8 '(HZ '^)01 ·8
-90 ·8 '(HZ 'ZHS ·8 = Γ'Ρ)09 ' L '(HZ <ZH0 ·Ζ = ΓΡ)69 ' L '(HZ '^)91 ' L
-VI ' L '(HZ '^) 6 '9-S6 '9 '(HZ '^)ZZ '9—80 '9(Η2 'ΖΗ ·Ζ = Γ ) Z ' Z '{UZl '^)ZL Ί- Ζ Ί '(HS ) 68 Ό— 98 '0: 9 ( Ρ— OS VCI)丽 Ν— Ητ
Figure imgf000069_0003
、6)T(Sra60 )ベ fi- u— ― [ -ェ (
688ST0/l700Zdf/X3d 99 ひ o/sooz OA [8 ^ ]
99 m
°(HS 'ZH9 · =
Γ'Ρ)99 ·8 '(HZ 's)Q2 ·8 '(HZ 'ΖΗ9 Ί Ό '8=Γ '^Ρ)ΖΟ ·8 '(Η ^UZ ·8 =
Γ'1)68 Ί '(Η9 '^)08 - -99 ' L '(Η '^)99 Ί-Z ' L '(Η2 'ΖΗ Ί 'Ο Ί
Ί '(ΗΖ 'ΖΗΟ 'Ζ '8 Έ ' ·χ=Γ'ΡΡΡ)6Ι 'じ' 9 Αつ αつ)丽 Ν— Ητ
Figure imgf000070_0001
[zz ]
^ ^ :^ -H6-[ -nr : / l;-2)-sj -6 Έ [επο]
°(ΗΖ '9 = Γ 'P Jq)99 ·8 '(HZ 'S)OZ ·8 '(HZ <ZH8 ' L Ό Ί = f 'ρρ)εχ ·8 '(Η8ΐ 'ra)g ·ζ-εε ' L '(HZ 's ^ )8i 'じ' 9 (εΐつ αつ) ΉΙ ΙΝ— ΗΤ
Figure imgf000070_0002
688ST0/tO0Zdf/X3d Z9 附ひ 0/SOOZ OAV
Figure imgf000071_0001
H-NMR(CDC1 ) δ :7.15(ddd, J=l.2, 4.8, 7.4Hz, 2H), 7.27—7.44 (
3
m, 8H), 7.45-7.56 (m, 4H), 7.64(dt, J=l.8, 7.8Hz, 2H), 7.74—7.8 4(m, 4H), 7.88(dt, J = 7.2, 1.8Hz, 2H), 8.61 (d, J=4.6Hz, 2H)。
実施例 57
(a) N. N ビス「3— (4— t ブチルピリジン 2 ィル)フ ニル Ίァニリンの合成
[化 79]
Figure imgf000071_0002
実施例 1と同様にして、ァ-リン(88mg)及び 2— (3—クロ口フエ-ル) 4 t ブチル ピリジン (464mg)より、固体一ガラス状物として目的物を得た(364mg)。
— NMR(CDC1 ) δ :1.31 (s, 18H), 7.15—7.40 (m, 10H), 7.58—7.79
3
(m, 7H), 8.52(d, J = 5.4Hz, 2H)。
(b)白 錯体の Hfe
[化 80]
Figure imgf000072_0001
実施例 26と同様にして、塩ィ匕白金(Π) (179mg)及び N, N ビス [3— (4 tーブチ ルビリジン 2 ィル)フエニル]ァ-リン(344mg)より、 目的物を赤色結晶として得た( 325mg;)。
— NMR(DMSO— d ) δ :1.14 (s, 18H), 6.09(d, J = 8.4Hz, 2H), 6.89
6
-6.99 (m, 2H), 7.25—7.78 (m, 9H), 8.13 (br, 2H), 8.97—9.02 (m, 2H
)。
実施例 58
6—ジフエニルァミノ— 6,一フエ二ルー 2. _2,一ビヒ: _リジン
[化 81]
Figure imgf000072_0002
H— NMR(CDC1 ) δ :6.75 (dd, J=0.6, 8.2Hz, IH), 7.12—7.55 (m, 13
3
H), 7.60(t, J = 7.9Hz, IH), 7.66—7.78 (m, 2H), 7.95(dd, J = 2.4, 6. 2Hz, IH), 8.08-8.20 (m, 3H;)。
実施例 59
6—し 9H— ルバゾール 9ーィ ikI—6,—フエ-ル— 2 2,—ビピ 2ジン °(HI 'ra)Q -8- 9 ·8 '(HI
'ΖΗ9 ·ΐ=Γ )6 ·8 '(HI 'ZHO ·8 ' ·1!=Γ Ρ) ) ·8 '(HI 'ΖΗΟ ·8 ' Ί =
Γ 'W)16 ' L '(HI ·8 Ό 'Z = ['W) L ' L '(HI 'ΖΗΟ ·8 ' Ί=Γ '^Ρ)89
' L '(Η ΐ ^)89 'Ζ-εΐ Ί '(ΗΙ 'ΖΗΟ ·8 = ΓΡ)89 ·9: 9 (¾00) H N-H,
Figure imgf000073_0001
[ε ]
Figure imgf000073_0002
[8Π0]
09 mm
°(HI 'ZH8
' L Ό Ί=Γ 'ΡΡ)Ζ9 ·8 '(HI 'ZH9 ' L ' ·ΐ=ΓΡΡ)9 ·8 '(Η '^)92 '8-21 •8 '(HI 'ZH8 · = Γ'¾60 ·8 ' (UZ 'ΖΗΟ '8 = Γ 'Ρ)Ζ6 ' L '(ΗΙ 'ΖΗ8 Ί = ί"\ )16 ' L '(HI 'ZH8 ' L 'Ζ ·χ=Γ'ΡΡ)Ι8 ' L '(ΗΙ 'ΖΗΟ ·8 Ό Ί=Γ 'ΡΡ)89 ' L '( Η9 '^)29 'L-Z ' L ' (UZ 'ΖΗ9 ' L 'Ζ ·ΐ=Γ Ρ)9ε ' 9 (¾00) H N-H,
Figure imgf000073_0003
688ST0/l700Zdf/X3d 01 ひ o/sooz OA 実施例 61
[0119] 2 フエノキシ 6— 13- ( 2 ピリジルォキシ)フエ-ル Ίピリジン
[化 84]
Figure imgf000074_0001
NMR(CDC1 ) δ :6.77(dd, J=0.6, 8. OHz, IH), 6.90(dt, J = 8.2, 0
3
.8Hz, IH), 7.00(ddd, J=l.0, 5.2, 7.4Hz, IH), 7.10—7.24 (m, 4H), 7.30-7.50 (m, 4H), 7.62—7.80 (m, 4H), 8.20(ddd, J = 0.8, 2.0, 5.2
Hz, 1H)。
実施例 62
3^3 ' ビス「N フエ二ルー N—(2—ピリジル)ァミノ 1ビフエニル
[化 85]
Figure imgf000074_0002
NMR(CDC1 ) δ :6.72-6.84 (m, 4H), 7.08—7.38 (m, 18H), 7.44 (
3
ddd, J = 2.0, 7.4, 8.4Hz, 2H), 8.18-8.26 (m, 2H)。
実施例 63
[0121] 2—ジフエ二ルァミノ— 6— {3—「N フエ二/レー N— (2—ピリジル)ァミノ 1フエ-ル}ピリジン [88^ ]
^— ェ (ϊ -ェ — 9 A ( — 6— /— 、 一 H6 ) -9
9 m
°(HS ¾)εθ ·8— 6 ' L '(HI 'ΖΗ9 Ί)£9 ' L '(Η 9 '^)99 Ί-9£ ' L '(HOI '^) Z ·Ζ— 96 ·9 '(HI 'ΖΗΟ ·8 '9 Ό = Γ'ΡΡ)Ι6 ·9 '(HI 'ZH9 ·Ζ = Γ'Ρ)89 ·9 '(ΗΙ 'ΖΗΟ ·8 = ΓΡ)ε ·9: 9 (\θαθ)ΉΜΚ-ΗΎ
Figure imgf000075_0001
[ 8^ ] / 一ェ — S—ベ ィ ェ — 9 / — S—ベ; ^ίϊ / -ェ — 9
°(HI 'ZH9 ' '9 ·Ι=Γ'ΡΡ)ε2 •8 '(HI 'ZH8 ·Ι=Γ'¾Ο ' L '(HI 'ΖΗΟ ·8 = ΓΡ)09 ' L '(HOS '^)09 'Ζ-Ο 0 ' L '(HZ 'm) 8 '9-OZ ·9 '(HI '^UZ ·8 = ΓΡ)09 ·9: 9 (¾00) HPVN-HT
Figure imgf000075_0002
[9 ]
688ST0/l700Zdf/X3d ZL ひ o/sooz OA [06 ]
Lべ^ A ( / — 6— /— ^/ , ― H6 )— 9」 、^^— , Z 'Z [ Z10]
°(HZ 'ms
Figure imgf000076_0001
·ζ-εο ' L
(HZ 'ΖΗ8 ·Ζ = ΓΡ) ·9 '(Η2 'ΖΗ8 ·Ζ = ΓΡ)9ε ·9: 9 ( lOQO)
Figure imgf000076_0002
[68 ]
99
°(Η9 'ra)0X ·8-Ζ
6 ' L '(ΗΙ 'ΖΗ9 · = Γ )Τ8 ' L ' (ΗΖ 'ΖΗ '8 = Γ 'Ρ)8Ζ ' L '(ΗΙ 'ΖΗ9 'Ζ = Γ ' P)S9 'Ζ '(Η 'ra)gg -£S£ 'Ζ '(Η9 '^)^3 'Z-86 ·9: 9 (¾00) ΗΜΝ-Η,
Figure imgf000076_0003
688ST0/tO0idf/X3d εζ ひ o/sooz OAV
Figure imgf000077_0001
H-NMR(CDC1 ) δ :7.08—7.24 (m, 10H), 7.44(d, J = 7.8Hz, 2H), 7.
3
75-7.84 (m, 4H), 7.97(t, J = 7.8Hz, 2H), 7.98—8.08 (m, 4H)。
実施例 68
N—ビス「3—(2—ピリジルォキシ)フエ-ルユア二 2;ン
[化 91]
Figure imgf000077_0002
H— NMR(CDC1 ) δ :6.77(ddd, J=l.0, 2.4, 8. OHz, 2H), 6.85(dt, J =
3
0.6, 8.8Hz, 2H), 6.86—7.08 (m, 7H), 7.14—7.32 (m, 6H), 7.64(ddd , J = 2.0, 7.2, 8.4Hz, 2H), 8. 18(ddd, J = 0.8, 2.0, 5. OHz, 2H)。
実施例 69
図 lに示す構成の有機 EL素子を作製した。
ガラス基板 (g)上に、陽極 (f)、正孔輸送層(e)、ホスト材料とドープ材料力もなる発 光層(d)、正孔ブロック層(c)、電子輸送層 (b)及び陰極 (a)とが、ガラス基板 (g)側 から順に形成されて構成されており、陽極 (f)と陰極 (a)には、それぞれリード線が接 続されて陽極 (f)と陰極 (a)との間に電圧を印加できるようになって!/、る。
陽極 (f)は ITO膜であり、ガラス基板 (g)に被着されている。
正孔輸送層 (e)は、下記化合物( ex -NPD)
[化 92]
Figure imgf000078_0001
を用い、真空蒸着法にて陽極 (f)上に 40nmの厚さで形成した。
ホスト材料とドープしたリン光発光材料を含む発光層(d)は、下記化合物 (CBP) [化 93]
Figure imgf000078_0002
及び実施例 2で得られた白金錯体の両者を用い、同時に真空蒸着 (ドープ 3重量%) を行い、正孔輸送層 (e)上に 35nmの厚さで形成した。
正孔ブロッキング層(c)は、下記化合物(BCP)
[化 94]
Figure imgf000078_0003
を用い、真空蒸着法にて発光層(d)上に lOnmの厚さで形成した。
電子輸送層 (b)は下記化合物 (Alq )
3
[化 95]
Figure imgf000079_0001
を用い、真空蒸着法にて正孔ブロッキング層(c)上に 35nmの厚さで形成した。 陰極 (a)は、電子輸送層(b)側力も順に、 Mgと Agを 10: 1の比率で lOOnmの厚さ で真空共蒸着した後、 Agを更に lOnmの厚さで真空蒸着した積層体により構成した 得られた有機 EL素子の陽極 (ITO) (f)側にプラス、陰極 (a)側にマイナスの電圧を 印加したところ、非常に低い電圧力も安定な発光が確認された。輝度 lOOcdZm2に おいて、素子の外部量子効率は 4. 2 (%)、発光効率は 5. 3 (lmZW)と極めて高効 率であった。更に、発光層(d)に用いた本発明化合物に起因する非常に色純度の高 い緑色発光が得られ、輝度 lOOcdZm2における CIE色度点は(X, y) =0. 32, 0. 5 5であった。
実施例 70
[0128] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 6で得られた白金錯体を 用いた素子を作成した。
実施例 71
[0129] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 4で得られた白金錯体を 用いた素子を作成した。
実施例 72
[0130] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 12で得られた白金錯体 を用いた素子を作成した。
実施例 73
[0131] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 8で得られた白金錯体を 用いた素子を作成した。 実施例 74
[0132] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 26で得られた白金錯体 を用いた素子を作製した。
実施例 75
[0133] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 28で得られた白金錯体 を用い、陰極(a)に電子輸送層(b)側力も順に LiFを 0. 5nm、 A1を lOOnmの厚さで 真空蒸着した積層体により構成した素子を作製した。
実施例 76
[0134] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 34で得られた白金錯体 を用い、陰極(a)に電子輸送層(b)側力も順に LiFを 0. 5nm、 A1を lOOnmの厚さで 真空蒸着した積層体により構成した素子を作製した。
実施例 77
[0135] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 38で得られた白金錯体( ドープ 6重量%)を用い、正孔ブロッキング層(c)は BAlqを用い、陰極 (a)に電子輸 送層(b)側から順に LiFを 0. 5nm、 A1を lOOnmの厚さで真空蒸着した積層体により 構成した素子を作製した。なお、 BAlqとは以下の化合物である。
[化 96]
Figure imgf000080_0001
実施例 78
[0136] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 44で得られた白金錯体 ( ドープ 6重量%)を用い、陰極 (a)に電子輸送層(b)側から順に LiFを 0. 5nm、 A1を lOOnmの厚さで真空蒸着した積層体により構成した素子を作製した。
実施例 79
[0137] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 32で得られた白金錯体( ドープ 6重量%)を用い、正孔ブロッキング層(c)は BAlqを用い、陰極 (a)に電子輸 送層(b)側から順に LiFを 0. 5nm、 A1を lOOnmの厚さで真空蒸着した積層体により 構成した素子を作製した。
実施例 80
[0138] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 42で得られた白金錯体( ドープ 6重量%)を用い、正孔ブロッキング層(c)は BAlqを用い、陰極 (a)に電子輸 送層(b)側から順に LiFを 0. 5nm、 A1を lOOnmの厚さで真空蒸着した積層体により 構成した素子を作製した。
実施例 81
[0139] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 30で得られた白金錯体( ドープ 6重量%)を用い、正孔ブロッキング層(c)は BAlqを用い、陰極 (a)に電子輸 送層(b)側から順に LiFを 0. 5nm、 A1を lOOnmの厚さで真空蒸着した積層体により 構成した素子を作製した。
実施例 82
[0140] 実施例 69と同様の素子構造を有し、発光層(d)に実施例 46で得られた白金錯体( ドープ 1重量%)を用い、陰極 (a)に電子輸送層(b)側から順に LiFを 0. 5nm、 A1を lOOnmの厚さで真空蒸着した積層体により構成した素子を作製した。
実施例 83
[0141] 実施例 27と同様の素子構造を有し、発光層(d)に実施例 52で得られた白金錯体( ドープ 6重量%)を用い、正孔ブロッキング層(c)は BAlqを用い、陰極 (a)に電子輸 送層(b)側から順に LiFを 0. 5nm、 A1を lOOnmの厚さで真空蒸着した積層体により 構成した素子を作製した。
実施例 84 [0142] 実施例 69と同様の素子構造を有し、発光層(d)に BAlq及び実施例 4で得られた 白金錯体を用い、同時に真空蒸着 (ドープ 6重量%)を行い、正孔ブロッキング層(c) は BAlqを用い、陰極(a)に電子輸送層(b)側から順に LiFを 0.5nm、 A1を lOOnm の厚さで真空蒸着した積層体により構成した素子を作製した。
実施例 85
[0143] 実施例 27と同様の素子構造を有し、発光層(d)に実施例 48で得られた白金錯体( ドープ 6重量%)を用い、正孔ブロッキング層(c)は BAlqを用い、陰極 (a)に電子輸 送層(b)側から順に LiFを 0.5nm、 A1を lOOnmの厚さで真空蒸着した積層体により 構成した素子を作製した。
[0144] 以下に上記実施例で作成した素子評価の結果を示す。
[表 1]
実施例 E Lピーク C I E色度点 外部量子効率 (%) 発光効率 ( 1 m/W)
1, n m (x、 y)
@ 100 c d/m2 @ 1 00 c d/m2 @ 100 c d /m 2
70 5 10. 6 0. 32、 0. 59 1. 2 1. 1
71 61 0. 0 0. 63、 0. 36 10. 5 6. 7
72 51 0. 0 0. 35、 0. 59 5. 3 5. 0
73 6 1 9. 8 0. 66、 0. 34 10. 1 4. 8
74 6 14. 6 0. 64、 0. 35 7. 8 3. 5
75 605. 5 0. 62、 0. 37 7. 6 4. 6
76 6 1 3. 2 0. 64、 0. 35 5. 9 3. 1
77 492. 5 0. 36、 0. 49 4. 1 3. 8
78 505. 5 0. 3 1、 0. 5 1 1. 2 1. 3
79 623. 3 0. 67、 0. 33 9. 3 3. 6
80 594. 7 0. 52、 0. 44 1. 4 0. 8
8 1 6 1 0. 0 0. 64、 0. 36 10. 6 5. 9
82 501. 2 0. 27、 0. 58 5. 1 5. 6
83 6 18. 4 0. 64、 0. 36 9. 2 4. 6
84 6 10. 0 0. 64、 0. 36 1 0. 6 5. 9
85 635. 0 0. 67、 0. 32 7. 1 4. 7

Claims

請求の範囲
[1] 下記一般式(1)
[化 97]
Figure imgf000083_0001
(式中、環 A、環 B、環 C及び環 Dは、この中の何れ力 2つの環が置換基を有していて もよ 、含窒素複素環を示し、残りの 2つの環は置換基を有して 、てもよ 、ァリール環 又はへテロアリール環を示し、環 Aと環 B、環 Aと環 C又は Z及び環 Bと環 Dとで縮合 環を形成していてもよぐまた、
Figure imgf000083_0002
R2、 R3、 R4又は R5とで 縮合環を形成していてもよい。 X1、 X2、 X3及び X4は、この中の何れか 2つが白金原 子に配位結合する窒素原子を示し、残りの 2つは炭素原子又は窒素原子を示す。 Q1 、 Q2及び Q3はそれぞれ独立して、二価の原子(団)又は結合手を示すが、 Q\ Q2及 び Q3が同時に結合手を表すことはない。
Figure imgf000083_0003
Z3及び Z4は、何れか 2つが配位結 合手を示し、残りの 2つは共有結合手、酸素原子又は硫黄原子を示す。 )
で表される白金錯体。
[2] 一般式(1)において、 Q Q2、 Q3で示される二価の原子(団)が、 - (CR'R2) ―、
nl
-O CCR'R2) 0-、— (O) C ( = 0) (O) -、酸素原子、硫黄原子、 -NR3-、 BR3A
nl n2 n3
、 一 S ( = 0)—、 -SO―、 一 0 (SO ) 0—、 一 Si (R4R5)—、 一 OSi(R4R5) 0—又は一 C (=
2 2
CRARB)— (但し、 R1及び R2は、それぞれ独立して、水素原子、アルキル基、ァラルキ ル基、ァリール基又はアルコキシ基を示す。 nlは 1一 3の整数を示し、 n2及び n3は、 それぞれ独立して、 0又は 1の整数を示す。 R3は水素原子、アルキル基、ァラルキル 基又はァリール基を示し、 R3aはアルキル基、ァラルキル基又はァリール基を示す。 R 4及び R5は、それぞれ独立して、アルキル基、ァラルキル基又はァリール基を示す。 R a及び Rbは、それぞれ独立して、水素原子、アルキル基、ァラルキル基、ァリール基又 はシァノ基を示す。また、 R1と R2、 R4と R5、 Raと Rbとが互いに結合して各々が置換し ている原子と共に、環内にヘテロ原子を含んでいてもよい環を形成していてもよい。 ) である、請求項 1に記載の白金錯体。
[3] 一般式(1)で表される化合物の環 A、環 B、環 C及び環 Dの中の何れか 2つの環が 、置換基を有していてもよい 5員環又は 6員環の含窒素複素環であり、該環に 5又は 6員環の芳香族炭化水素環又は芳香族複素環が 1又は 2個縮合して縮合環を形成 していてもよい含窒素複素環である、請求項 1又は 2に記載の白金錯体。
[4] 一般式(1)で表される化合物の環 A、環 B、環 C及び環 Dの中の何れか 2つの環が 、それぞれ置換基を有していてもよい、ピリジン環、ジァジン環、トリアジン環、ピロ一 ル環、ジァゾール環、トリァゾール環、チアゾール環、チアジアゾール環、ォキサゾー ル環、ォキサジァゾール環、ベンゾピリジン環、ベンゾジァジン環、及びべンゾピロ一 ル環カもなる群より選ばれる、置換基を有していてもよい含窒素複素環である、請求 項 1一 3の何れかに記載の白金錯体。
[5] 一般式(1)で表される化合物の環 A、環 B、環 C及び環 Dの中の何れか 2つの環が 置換基を有して 、てもよ 、含窒素複素環であり、残りの 2つの環が置換基を有して ヽ てもよ!/ヽ6員環の芳香族炭化水素環又は芳香族複素環、或 、は 5員環の芳香族複 素環であって、該環に 5又は 6員環の芳香族炭化水素環又は芳香族複素環が 1又は 2個縮合して縮合環を形成して 、てもよ 、ァリール環又はへテロアリール環である、 請求項 1一 4の何れかに記載の白金錯体。
[6] 一般式(1)で表される化合物の環 A、環 B、環 C及び環 Dの中の何れか 2つの環が 置換基を有していてもよい含窒素複素環であり、残りの 2つの環がそれぞれ置換基を 有していてもよい、ベンゼン環、ピリジン環、ジァジン環、トリアジン環、ピロール環、ジ ァゾール環、フラン環、チォフェン環、ォキサゾール環及びチアゾール環力 なる群 より選ばれる、置換基を有していてもよいァリール環又はへテロアリール環、又はこれ らの環に 5又は 6員環の芳香族炭化水素環又は芳香族複素環が 1又は 2個縮合して 形成された縮合環である、請求項 1一 5の何れかに記載の白金錯体。
[7] 下記一般式 (2) [化 98]
Figure imgf000085_0001
(式中、 R6、 R7、 R8及び R9は、それぞれ独立して、アルキル基、ハロゲンィ匕アルキル 基、ァラルキル基、アルケニル基、アルキ-ル基、ァリール基、アミノ基、モノ又はジァ ルキルアミノ基、モノ又はジァラルキルアミノ基、モノ又はジァリールアミノ基、アルコ キシ基、ァルケ-ルォキシ基、ァラルキルォキシ基、ァリールォキシ基、ヘテロァリー ルォキシ基、ァシル基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、ァシ ルォキシ基、ァシルァミノ基、アルコキシカルボ-ルァミノ基、ァリールォキシカルボ- ルァミノ基、ァラルキルォキシカルボ-ルァミノ基、スルホ -ルァミノ基、スルファモイ ル基、力ルバモイル基、アルキルチオ基、ァラルキルチオ基、ァリールチオ基、ヘテロ ァリールチオ基、アルカンスルホ-ル基、アレーンスルホ-ル基、アルカンスルフィ- ル基、アレーンスルフィエル基、ウレイド基、置換リン酸アミド基、ヒドロキシ基、メルカ ブト基、ハロゲン原子、シァノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基 、スルフィノ基、ヒドラジノ基、ヘテロ環基、トリアルキルシリル基又はトリアリールシリル 基を示し、 R6と R7、 R6と R8、又は/及び R7と R9とで縮合環を形成していてもよい。 m1 、 m2、 m3及び m4はそれぞれ R6
Figure imgf000085_0002
R8及び R9の数を示し、それぞれ独立して 0— 3 の整数を示す。また、 m1 m2、 m3及び m4が 2以上の整数の場合は、複数の R6
Figure imgf000085_0003
R8及び R9は互いに異なっていてもよぐ更には、 R6基同士、 R7基同士、 R8基同士、 R9基同士が一緒になつて縮合環構造を形成していてもよい。 Q\ Q2及び Q3は、そ れぞれ独立して、— (CI^R2) -, -0 (CR'R2) O—、― (O)
l n2 c( = o) (o) —、酸素 nl n n3 原子、硫黄原子、—NR3—、 BR3a、— S ( = 0)—、 -SO―、— 0 (SO ) 0—、— Si(R4R5)
2 2
-、 -OSi (R4R5) 0—、 -C ( = CRARB)―、又は結合手を示すが、 Q\ Q2及び Q3が同 時に結合手を示すことは無い。該 Q1 Q2及び Q3における R1及び R2は、それぞれ独 立して、水素原子、アルキル基、ァラルキル基、ァリール基又はアルコキシ基を示す 。 nlは 1一 3の整数を示し、 n2及び n3は、それぞれ独立して、 0又は 1の整数を示す 。 R3は水素原子、アルキル基、ァラルキル基又はァリール基を示し、 R3aはアルキル 基、ァラルキル基又はァリール基を示す。 R4及び R5は、それぞれ独立して、アルキル 基、ァラルキル基又はァリール基を示す。 Ra及び Rbは、それぞれ独立して、水素原 子、アルキル基、ァラルキル基、ァリール基又はシァノ基を示す。また、 R1と R2、 R4と Raと Rbとが互いに結合して各々が置換している原子と共に、環内にヘテロ原子 を含んでいてもよい環を形成していてもよい。 X1、 X2、 X3及び X4は、この中の何れか 2つが白金原子に配位結合する窒素原子を示し、残りの 2つは炭素原子を示し、
Figure imgf000086_0001
Z3及び Z4は、何れか 2つが配位結合手を示し、残りの 2つは共有結合手、酸素 原子又は硫黄原子を示す。 )
で表される請求項 1に記載の白金錯体。
[8] 一対の電極間に発光層若しくは発光層を含む複数の有機化合物薄層を形成した 発光素子において、少なくとも一層が、前記の一般式(1)又は一般式 (2)で表される 白金錯体を少なくとも一種含有する層であることを特徴とする発光素子。
[9] 発光素子が有機電界発光素子である請求項 8に記載の発光素子。
[10] 少なくとも一層に含有される白金錯体が、有機電界発光素子の発光層におけるド 一ビング材料として作用し得るものである請求項 8又は 9に記載の発光素子。
[11] 下記一般式 (3)
[化 99]
Figure imgf000086_0002
(式中、環 A、環 B、環 C及び環 Dは、この中の何れ力 2つの環が置換基を有していて もよ 、含窒素複素環を示し、残りの 2つの環は置換基を有して 、てもよ 、ァリール環 又はへテロアリール環を示し、環 Aと環 B、環 Aと環 C又は Z及び環 Bと環 Dとで縮合 環を形成していてもよぐまた、それぞれの環と後述する Q Q2及び Q3とで縮合環を 形成していてもよい (ただし、 Q\ Q2及び Q3が酸素原子及び硫黄原子の場合を除く ) o X1、 X2、 X3及び X4はこの中の何れか 2つが白金原子に配位結合する窒素原子を 示し、残りの 2つは炭素原子又は窒素原子を示す。 Q\ Q2及び Q3はそれぞれ独立し て、二価の原子(団)又は結合手を示すが、 Q\ Q2及び Q3が同時に結合手を示すこ とはない。 X1、 X2、 X3及び X4が配位結合可能な窒素原子の場合、それらに結合する Z'H, Z2H、 Z3H及び Z4Hは存在せず、 X1、 X2、 X3及び X4が炭素原子の場合、それ らに結合する z1 z z3及び z4は共有結合手、酸素原子又は硫黄原子を示し、 X1、 X2、 X3及び X4が共有結合可能な窒素原子の場合、それらに結合する z z z3及 び z4は共有結合手を示す。)で表される化合物。
[12] 一般式 (3)において、 Q\ Q2、 Q3で示される二価の原子(団)が、それぞれ独立し て、 (CR 2) - -O CCR'R2) O - (O) C ( =O) (O) 酸素原子、硫黄原 nl nl n2 n3
子、 NR3—、 BR3a、— S ( = 0)—、 -SO―、— 0 (SO ) 0—、— Si (R4R5)—、— OSi(R4
2 2
) 0—又はーじ(=0^ ー(伹し、 R1及び R2は、それぞれ独立して、水素原子、ァ ルキル基、ァラルキル基、ァリール基又はアルコキシ基を示す。 nlは 1一 3の整数を 示し、 n2及び n3は、それぞれ独立して、 0又は 1の整数を示す。 R3は水素原子、ァ ルキル基、ァラルキル基又はァリール基を示し、 R3Aはアルキル基、ァラルキル基又 はァリール基を示す。 R4及び R5は、それぞれ独立して、アルキル基、ァラルキル基又 はァリール基を示す。 RA及び RBは、それぞれ独立して、水素原子、アルキル基、ァラ ルキル基、ァリール基又はシァノ基を示す。また、 R1と R2、 と 、 RAと RBとが互いに 結合して各々が置換して 、る原子と共に、環内にヘテロ原子を含んで 、てもよ 、環を 形成していてもよい。)である、請求項 11に記載の化合物。
[13] 一般式(3)で表される化合物の環 A、環 B、環 C及び環 Dの中の何れか 2つの環が 、置換基を有していてもよい 5員環又は 6員環の含窒素複素環であり、該環に 5又は 6員環の芳香族炭化水素環又は芳香族複素環が 1又は 2個縮合して縮合環を形成 して 、てもよ 、含窒素複素環である、請求項 11又は 12に記載の化合物。
[14] 一般式(3)で表される化合物の環 A、環 B、環 C及び環 Dの中の何れか 2つの環が 、それぞれ置換基を有していてもよい、ピリジン環、ジァジン環、トリアジン環、ピロ一 ル環、ジァゾール環、トリァゾール環、チアゾール環、チアジアゾール環、ォキサゾー ル環、ォキサジァゾール環、ベンゾピリジン環、ベンゾジァジン環、及びべンゾピロ一 ル環カもなる群より選ばれる、置換基を有していてもよい含窒素複素環である、請求 項 11一 13の何れかに記載の化合物。
[15] 一般式(3)で表される化合物の環 A、環 B、環 C及び環 Dの中の何れか 2つの環が 置換基を有して 、てもよ 、含窒素複素環であり、残りの 2つの環が置換基を有して ヽ てもよ!/ヽ6員環の芳香族炭化水素環又は芳香族複素環、或 、は 5員環の芳香族複 素環であって、該環に 5又は 6員環の芳香族炭化水素環又は芳香族複素環が 1又は 2個縮合して縮合環を形成して 、てもよ 、ァリール環又はへテロアリール環である、 請求項 11一 14の何れかに記載の化合物。
[16] 一般式(3)で表される化合物の環 A、環 B、環 C及び環 Dの中の何れか 2つの環が 置換基を有していてもよい含窒素複素環であり、残りの 2つの環がそれぞれ置換基を 有していてもよい、ベンゼン環、ピリジン環、ジァジン環、トリアジン環、ピロール環、ジ ァゾール環、フラン環、チォフェン環、ォキサゾール環及びチアゾール環力 なる群 より選ばれる、置換基を有していてもよいァリール環又はへテロアリール環、又はこれ らの環に 5又は 6員環の芳香族炭化水素環又は芳香族複素環が 1又は 2個縮合して 形成された縮合環である、請求項 11一 15の何れかに記載の化合物。
[17] 下記一般式 (4)
[化 100]
Figure imgf000089_0001
(式中、 R6、 R7、 R8及び R9は、それぞれ独立して、アルキル基、ハロゲンィ匕アルキル 基、ァラルキル基、アルケニル基、アルキ-ル基、ァリール基、アミノ基、モノ又はジァ ルキルアミノ基、モノ又はジァラルキルアミノ基、モノ又はジァリールアミノ基、アルコ キシ基、ァルケ-ルォキシ基、ァラルキルォキシ基、ァリールォキシ基、ヘテロァリー ルォキシ基、ァシル基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、ァシ ルォキシ基、ァシルァミノ基、アルコキシカルボ-ルァミノ基、ァリールォキシカルボ- ルァミノ基、ァラルキルォキシカルボ-ルァミノ基、スルホ -ルァミノ基、スルファモイ ル基、力ルバモイル基、アルキルチオ基、ァラルキルチオ基、ァリールチオ基、ヘテロ ァリールチオ基、アルカンスルホ-ル基、アレーンスルホ-ル基、アルカンスルフィ- ル基、アレーンスルフィエル基、ウレイド基、置換リン酸アミド基、ヒドロキシ基、メルカ ブト基、ハロゲン原子、シァノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基 、スルフィノ基、ヒドラジノ基、ヘテロ環基、トリアルキルシリル基又はトリアリールシリル 基を示し、 R6と R7、 R6と R8、又は/及び R7と R9とで縮合環を形成していてもよい。 m1 、 m2、 m3及び m4はそれぞれ R6
Figure imgf000089_0002
R8及び R9の数を示し、それぞれ独立して 0— 3 の整数を示す。また、 m1 m2、 m3及び m4が 2以上の整数の場合は、複数の R6
Figure imgf000089_0003
R8及び R9は互いに異なっていてもよぐ更には、 R6基同士、 R7基同士、 R8基同士、 R9基同士が一緒になつて縮合環構造を形成していてもよい。 Q\ Q2及び Q3は、そ れぞれ独立して、— (CI^R2) -, -0 (CR'R2) O—、― (O) c( = o) (o) —、酸素
nl nl n2 n3 原子、硫黄原子、— NR3—、 BR3a、— S ( = 0)—、 -SO―、— 0 (SO ) 0—、— Si(R4R5)
2 2
-、 -OSi (R4R5) 0—、 -C ( = CRARB)―、又は結合手を示すが、 Q\ Q2及び Q3が同 時に結合手を示すことは無い。該 Q1 Q2及び Q3における R1及び R2は、それぞれ独 立して、水素原子、アルキル基、ァラルキル基、ァリール基又はアルコキシ基を示す
。 nlは 1一 3の整数を示し、 n2及び n3は、それぞれ独立して、 0又は 1の整数を示す 。 R3は水素原子、アルキル基、ァラルキル基又はァリール基を示し、 R3aはアルキル 基、ァラルキル基又はァリール基を示す。 R4及び R5は、それぞれ独立して、アルキル 基、ァラルキル基又はァリール基を示す。 Ra及び Rbは、それぞれ独立して、水素原 子、アルキル基、ァラルキル基、ァリール基又はシァノ基を示す。また、 R1と R2、 R4と Raと Rbとが互いに結合して各々が置換している原子と共に、環内にヘテロ原子 を含んでいてもよい環を形成していてもよい。 X1、 X2、 X3及び X4は、この中の何れか 2つが白金原子に配位結合する窒素原子を示し、残りの 2つは炭素原子を示し、
Figure imgf000090_0001
Z3及び Z4は、何れか 2つが配位結合手を示し、残りの 2つは共有結合手、酸素 原子又は硫黄原子を示す。 Hは水素原子を示す。 )
で表される請求項 10に記載の化合物。
PCT/JP2004/015889 2003-11-04 2004-10-27 白金錯体及び発光素子 WO2005042444A2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04817419.7A EP1683804B1 (en) 2003-11-04 2004-10-27 Platinum complex and luminescent element
US10/578,237 US7442797B2 (en) 2003-11-04 2004-10-27 Platinum complex and light emitting device
JP2005515131A JP4110173B2 (ja) 2003-11-04 2004-10-27 白金錯体及び発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-374861 2003-11-04
JP2003374861 2003-11-04

Publications (3)

Publication Number Publication Date
WO2005042444A1 WO2005042444A1 (ja) 2005-05-12
WO2005042444A2 true WO2005042444A2 (ja) 2005-05-12
WO2005042444A3 WO2005042444A3 (ja) 2005-06-23

Family

ID=34544228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015889 WO2005042444A2 (ja) 2003-11-04 2004-10-27 白金錯体及び発光素子

Country Status (7)

Country Link
US (1) US7442797B2 (ja)
EP (1) EP1683804B1 (ja)
JP (1) JP4110173B2 (ja)
KR (1) KR101044087B1 (ja)
CN (1) CN100445294C (ja)
TW (1) TWI316540B (ja)
WO (1) WO2005042444A2 (ja)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317516A (ja) * 2004-03-31 2005-11-10 Fuji Photo Film Co Ltd 有機電界発光素子
JP2005327526A (ja) * 2004-05-13 2005-11-24 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006093665A (ja) * 2004-08-26 2006-04-06 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006193573A (ja) * 2005-01-12 2006-07-27 Sumitomo Chemical Co Ltd 白色led用金属錯体蛍光体
GB2423518A (en) * 2005-02-28 2006-08-30 Takasago Perfumery Co Ltd Platinum complex and light-emitting device
JP2006290988A (ja) * 2005-04-08 2006-10-26 Takasago Internatl Corp 良溶解性イリジウム錯体及び有機el素子
WO2006115299A1 (en) * 2005-04-25 2006-11-02 Fujifilm Corporation Organic electroluminescent device
JP2006313796A (ja) * 2005-05-06 2006-11-16 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006332622A (ja) * 2005-04-25 2006-12-07 Fujifilm Holdings Corp 有機電界発光素子
JP2006332620A (ja) * 2005-04-25 2006-12-07 Fujifilm Holdings Corp 有機電界発光素子
JP2006344891A (ja) * 2005-06-10 2006-12-21 Fujifilm Holdings Corp 有機電界発光素子
WO2007018067A1 (ja) * 2005-08-05 2007-02-15 Idemitsu Kosan Co., Ltd. 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007034985A1 (en) * 2005-09-21 2007-03-29 Fujifilm Corporation Organic electroluminescent device
JP2007519614A (ja) * 2003-10-30 2007-07-19 メルク パテント ゲーエムベーハー 二座(Bipodal)配位子を有する金属錯体
JPWO2005112520A1 (ja) * 2004-05-18 2008-03-27 日本放送協会 発光素子
EP2031037A1 (en) 2007-08-29 2009-03-04 Fujifilm Corporation Organic electroluminescence device
EP2096690A2 (en) 2008-02-28 2009-09-02 FUJIFILM Corporation Organic electroluminescence device
JP2009267245A (ja) * 2008-04-28 2009-11-12 Fujifilm Corp 有機電界発光素子
JP2009283913A (ja) * 2008-04-24 2009-12-03 Fujifilm Corp 有機電界発光素子
JP2009283891A (ja) * 2008-04-22 2009-12-03 Fujifilm Corp 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物
JP2010062577A (ja) * 2003-06-02 2010-03-18 Fujifilm Corp 有機電界発光素子及び錯体化合物
JP2010093294A (ja) * 2010-01-15 2010-04-22 Fujifilm Corp 有機電界発光素子
DE102008057051A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057050A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US7732606B2 (en) 2004-09-27 2010-06-08 Fujifilm Corporation Light-emitting device
US7736755B2 (en) * 2005-04-25 2010-06-15 Fujifilm Corporation Organic electroluminescent device
JP2010135819A (ja) * 2008-04-24 2010-06-17 Fujifilm Corp 有機電界発光素子
US7758971B2 (en) * 2005-04-25 2010-07-20 Fujifilm Corporation Organic electroluminescent device
JP2010161368A (ja) * 2010-01-07 2010-07-22 Fujifilm Corp 発光素子
US7771845B2 (en) 2005-03-14 2010-08-10 Fujifilm Corporation Organic electroluminescent device
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP2010239140A (ja) * 2010-05-28 2010-10-21 Fujifilm Corp 有機電界発光素子
WO2011013626A1 (ja) 2009-07-31 2011-02-03 富士フイルム株式会社 有機デバイス用蒸着材料及び有機デバイスの製造方法
JP2011504525A (ja) * 2007-11-15 2011-02-10 日東電工株式会社 発光素子および発光組成物
JP2011049563A (ja) * 2010-08-30 2011-03-10 Fujifilm Corp 発光素子
DE102009042693A1 (de) 2009-09-23 2011-03-24 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
US7947383B2 (en) 2004-09-22 2011-05-24 Fujifilm Corporation Organic electroluminescent device
US20110263615A1 (en) * 2007-04-02 2011-10-27 Gatti Mcarthur Silvia Pyridine and pyrimidine derivatives as mglur2 antagonists
WO2011137431A2 (en) * 2010-04-30 2011-11-03 Arizona Board Of Regents For And On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
WO2011137429A2 (en) * 2010-04-30 2011-11-03 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US8187729B2 (en) 2007-09-14 2012-05-29 Fujifilm Corporation Organic electroluminescence device
US8206839B2 (en) 2005-10-04 2012-06-26 Fujifilm Corporation Organic electroluminescent element
US8257838B2 (en) 2003-05-09 2012-09-04 Fujifilm Corporation Organic electroluminescent device and platinum compound
US8273467B2 (en) 2006-02-28 2012-09-25 Fujifilm Corporation Organic electroluminescent device
WO2012163471A1 (de) 2011-06-03 2012-12-06 Merck Patent Gmbh Metallkomplexe
JP5125502B2 (ja) * 2005-03-16 2013-01-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子
JP2013023500A (ja) * 2011-07-25 2013-02-04 Universal Display Corp 四座配位白金錯体
WO2013020631A1 (de) 2011-08-10 2013-02-14 Merck Patent Gmbh Metallkomplexe
JP2013062513A (ja) * 2012-10-12 2013-04-04 Udc Ireland Ltd 有機電界発光素子
WO2013080798A1 (ja) 2011-11-30 2013-06-06 富士フイルム株式会社 光拡散性転写材料、光拡散層の形成方法、有機電界発光装置、及び有機電界発光装置の製造方法
WO2013107487A1 (en) 2012-01-16 2013-07-25 Merck Patent Gmbh Organic metal complexes
WO2014015936A1 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Ligands and their preparation
US8721922B2 (en) 2008-10-13 2014-05-13 Nitto Denko Corporation Printable light-emitting compositions
JP2014143422A (ja) * 2014-02-19 2014-08-07 Udc Ireland Ltd 有機電界発光素子
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
JP2016506414A (ja) * 2013-01-03 2016-03-03 メルク パテント ゲーエムベーハー 電子素子のための材料
US9425415B2 (en) 2011-02-18 2016-08-23 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
JP2017039715A (ja) * 2015-08-18 2017-02-23 三星電子株式会社Samsung Electronics Co.,Ltd. 有機金属化合物及びそれを含む有機発光素子
JP2017508845A (ja) * 2014-04-03 2017-03-30 ヴァーシテック・リミテッドVersitech Limited Oled用途向けの白金(ii)エミッター
US9617291B2 (en) 2015-06-03 2017-04-11 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9947881B2 (en) 2013-10-14 2018-04-17 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
JP2018184397A (ja) * 2017-04-25 2018-11-22 三星電子株式会社Samsung Electronics Co.,Ltd. 有機金属化合物及びそれを含んだ有機発光素子並びにそれを含んだ診断用組成物
CN108948096A (zh) * 2018-08-02 2018-12-07 浙江工业大学 基于联苯基的四齿环金属铂配合物及其应用
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
JP2019043951A (ja) * 2017-09-05 2019-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. 有機金属化合物及びそれを含む有機発光素子並びにそれを含む診断用組成物
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US10566566B2 (en) 2016-09-27 2020-02-18 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnosis composition including the organometallic compound
US10793546B2 (en) 2014-08-15 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US10964897B2 (en) 2014-07-28 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10995108B2 (en) 2012-10-26 2021-05-04 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
JP2021518404A (ja) * 2018-03-19 2021-08-02 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 金属錯体
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
JP2022509173A (ja) * 2018-12-28 2022-01-20 広東阿格蕾雅光電材料有限公司 N^n^c^o型四座白金(ii)錯体の製造及び使用
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460952B2 (ja) * 2003-06-02 2010-05-12 富士フイルム株式会社 有機電界発光素子及び錯体化合物
US7579093B2 (en) * 2004-09-17 2009-08-25 Fujifilm Corporation Organic electroluminescent device
KR102103062B1 (ko) 2006-02-10 2020-04-22 유니버셜 디스플레이 코포레이션 시클로금속화 이미다조[1,2-f]페난트리딘 및 디이미다조[1,2-a:1',2'-c]퀴나졸린 리간드, 및 이의 등전자성 및 벤즈고리화된 유사체의 금속 착체
US20100084967A1 (en) * 2007-03-28 2010-04-08 Fujifilm Corporation Organic electroluminescent device
JP4579320B2 (ja) * 2007-09-14 2010-11-10 富士フイルム株式会社 有機電界発光素子
CN101567425B (zh) * 2008-04-22 2012-10-24 富士胶片株式会社 有机电致发光装置、新型铂络合物和能够作为其配体的新型化合物
CN101486901B (zh) * 2009-02-17 2012-07-18 中国科学院上海微系统与信息技术研究所 对卤代烃有传感功能的铂中心的发光材料、方法及应用
JP5604505B2 (ja) 2009-04-06 2014-10-08 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ 四配位白金錯体の合成およびそれらの発光デバイスへの応用
KR20110049244A (ko) * 2009-11-04 2011-05-12 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
US8288187B2 (en) 2010-01-20 2012-10-16 Universal Display Corporation Electroluminescent devices for lighting applications
US8877353B2 (en) * 2010-07-21 2014-11-04 Versitech Limited Platinum (II) tetradentate ONCN complexes for organic light-emitting diode applications
DE102010031914A1 (de) * 2010-07-22 2012-01-26 Merck Patent Gmbh Carbodiimid-Leuchtstoffe
WO2012016074A1 (en) * 2010-07-29 2012-02-02 University Of Southern California Co-deposition methods for the fabrication of organic optoelectronic devices
CN115448957A (zh) 2011-02-23 2022-12-09 通用显示公司 新型的四齿铂络合物
US8957217B2 (en) 2011-05-31 2015-02-17 The University Of Hong Kong Phosphorescent material, their preparations and applications
US9783564B2 (en) 2011-07-25 2017-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US8772485B2 (en) * 2011-12-09 2014-07-08 The University Of Hong Kong Palladium complexes for organic light-emitting diodes
EP2791105B1 (de) 2011-12-12 2020-03-18 Merck Patent GmbH Verbindungen für elektronische vorrichtungen
KR102012047B1 (ko) 2012-01-06 2019-08-19 유니버셜 디스플레이 코포레이션 효율이 큰 인광 물질
US9386657B2 (en) 2012-03-15 2016-07-05 Universal Display Corporation Organic Electroluminescent materials and devices
CN104245714B (zh) * 2012-04-12 2017-09-26 港大科桥有限公司 供oled应用的铂(ii)络合物
US9540329B2 (en) 2012-07-19 2017-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US9312505B2 (en) * 2012-09-25 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
US9196860B2 (en) 2012-12-04 2015-11-24 Universal Display Corporation Compounds for triplet-triplet annihilation upconversion
US8716484B1 (en) 2012-12-05 2014-05-06 Universal Display Corporation Hole transporting materials with twisted aryl groups
US9653691B2 (en) 2012-12-12 2017-05-16 Universal Display Corporation Phosphorescence-sensitizing fluorescence material system
US8933239B1 (en) 2013-07-16 2015-01-13 Dow Global Technologies Llc Bis(aryl)acetal compounds
US8962779B2 (en) 2013-07-16 2015-02-24 Dow Global Technologies Llc Method of forming polyaryl polymers
US9410016B2 (en) 2013-07-16 2016-08-09 Dow Global Technologies Llc Aromatic polyacetals and articles comprising them
US9063420B2 (en) 2013-07-16 2015-06-23 Rohm And Haas Electronic Materials Llc Photoresist composition, coated substrate, and method of forming electronic device
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US9224963B2 (en) 2013-12-09 2015-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Stable emitters
US10135008B2 (en) 2014-01-07 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
KR102237823B1 (ko) 2014-07-09 2021-04-08 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
KR102344885B1 (ko) 2015-01-09 2021-12-29 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
CN105884810A (zh) * 2015-01-26 2016-08-24 上海和辉光电有限公司 一种化合物及包含该化合物的材料、有机电致发光器件
US10144867B2 (en) 2015-02-13 2018-12-04 Universal Display Corporation Organic electroluminescent materials and devices
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
KR102429871B1 (ko) 2015-03-13 2022-08-05 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
US11672167B2 (en) 2015-03-13 2023-06-06 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
CN106432317A (zh) * 2015-08-06 2017-02-22 上海和辉光电有限公司 一种硅杂螺芴衍生物及其应用
US20170047532A1 (en) 2015-08-13 2017-02-16 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnosis composition including the organometallic compound
KR102613048B1 (ko) * 2015-08-18 2023-12-15 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US11011711B2 (en) 2016-02-11 2021-05-18 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnosis composition incluidng the organometallic compound
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) * 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) * 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3266790B1 (en) * 2016-07-05 2019-11-06 Samsung Electronics Co., Ltd Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
KR20180023297A (ko) * 2016-08-25 2018-03-07 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10400003B2 (en) * 2016-11-18 2019-09-03 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US11053268B2 (en) 2017-01-20 2021-07-06 Universal Display Corporation Organic electroluminescent materials and devices
KR20180097372A (ko) * 2017-02-23 2018-08-31 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
KR102429875B1 (ko) * 2017-04-21 2022-08-05 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
KR20180137311A (ko) * 2017-06-16 2018-12-27 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US20180370999A1 (en) 2017-06-23 2018-12-27 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11957044B2 (en) 2017-09-05 2024-04-09 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
KR102637104B1 (ko) * 2017-11-08 2024-02-15 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
KR102518722B1 (ko) 2017-11-21 2023-04-07 삼성디스플레이 주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US20190352322A1 (en) * 2018-05-18 2019-11-21 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, diagnostic composition including the organometallic compound
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
CN111269711A (zh) * 2018-12-04 2020-06-12 香港大学 过渡金属发光配合物和使用方法
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
CN109503667B (zh) * 2018-12-28 2020-09-08 西安交通大学 三配体协同增强聚集诱导发光有机金属铂配合物发光材料
KR20200085400A (ko) 2019-01-04 2020-07-15 삼성디스플레이 주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
KR20210073250A (ko) * 2019-12-10 2021-06-18 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
CN112979709B (zh) * 2019-12-16 2022-09-02 广东阿格蕾雅光电材料有限公司 一种金属配合物及其应用
CN113024606B (zh) * 2019-12-24 2023-04-18 广东阿格蕾雅光电材料有限公司 一种o^c^n^n型四齿铂(ii)配合物、制备方法及其应用
CN113121500B (zh) * 2019-12-30 2022-03-08 江苏三月科技股份有限公司 一种作为oled掺杂材料的磷光铂配合物及其应用
CN113121605B (zh) * 2019-12-30 2022-12-02 江苏三月科技股份有限公司 一种红色有机电致磷光铂配合物及其在oled器件上的应用
CN113121508B (zh) * 2019-12-30 2022-05-13 江苏三月科技股份有限公司 一种含金属铂的有机电致发光材料及其应用
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
DE102020110305A1 (de) * 2020-04-15 2021-10-21 Bundesanstalt Für Materialforschung Und -Prüfung Verwendung von d8-Metallkomplexverbindungen mit Liganden-kontrollierten Aggregations- und Lumineszenzeigenschaften
EP4157265A4 (en) * 2020-05-27 2023-11-22 The Penn State Research Foundation ANTIBACTERIAL COMPOUNDS
KR20210156385A (ko) * 2020-06-17 2021-12-27 삼성디스플레이 주식회사 유기금속 화합물, 이를 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
KR20220014443A (ko) * 2020-07-27 2022-02-07 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN116235646A (zh) 2020-09-18 2023-06-06 三星显示有限公司 有机电致发光器件
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
KR102284600B1 (ko) 2021-01-28 2021-08-02 (주)랩토 유기 금속 착물 및 이를 포함한 유기 전계발광 소자
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
CN113234106B (zh) * 2021-06-04 2022-11-04 北京八亿时空液晶科技股份有限公司 一种四齿环金属配合物及有机发光装置
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610503B2 (ja) * 1988-11-15 1997-05-14 キヤノン株式会社 電子写真感光体
GB0007002D0 (en) * 2000-03-22 2000-05-10 Borealis Polymers Oy Catalysts
JP4788078B2 (ja) * 2000-09-20 2011-10-05 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料および表示装置
US7569692B2 (en) * 2003-06-02 2009-08-04 Fujifilm Corporation Organic electroluminescent devices and metal complex compounds
JP4460952B2 (ja) * 2003-06-02 2010-05-12 富士フイルム株式会社 有機電界発光素子及び錯体化合物
DE10350722A1 (de) 2003-10-30 2005-05-25 Covion Organic Semiconductors Gmbh Metallkomplexe
JP4773109B2 (ja) * 2005-02-28 2011-09-14 高砂香料工業株式会社 白金錯体及び発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP1683804A4

Cited By (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257838B2 (en) 2003-05-09 2012-09-04 Fujifilm Corporation Organic electroluminescent device and platinum compound
US8609259B2 (en) 2003-05-09 2013-12-17 Udc Ireland Limited Organic electroluminescent device and platinum compound
JP2010118670A (ja) * 2003-06-02 2010-05-27 Fujifilm Corp 有機電界発光素子及び錯体化合物
US8940415B2 (en) 2003-06-02 2015-01-27 Udc Ireland Limited Organic electroluminescent devices and metal complex compounds
EP3211057B1 (en) 2003-06-02 2019-11-27 UDC Ireland Limited Organic electroluminescent devices and metal complex compounds
US11393989B2 (en) 2003-06-02 2022-07-19 Udc Ireland Limited Organic electroluminescent devices and metal complex compounds
US10396299B2 (en) 2003-06-02 2019-08-27 Udc Ireland Limited Organic electroluminescent devices and metal complex compounds
US10153444B2 (en) 2003-06-02 2018-12-11 Udc Ireland Limited Organic electroluminescent devices and metal complex compounds
JP2010062577A (ja) * 2003-06-02 2010-03-18 Fujifilm Corp 有機電界発光素子及び錯体化合物
EP3623444B1 (en) 2003-06-02 2021-05-26 UDC Ireland Limited Organic electroluminescent devices and metal complex compounds
US8211553B2 (en) 2003-06-02 2012-07-03 Fujifilm Corporation Organic electroluminescent devices and metal complex compounds
JP2007519614A (ja) * 2003-10-30 2007-07-19 メルク パテント ゲーエムベーハー 二座(Bipodal)配位子を有する金属錯体
JP2005317516A (ja) * 2004-03-31 2005-11-10 Fuji Photo Film Co Ltd 有機電界発光素子
JP2005327526A (ja) * 2004-05-13 2005-11-24 Fuji Photo Film Co Ltd 有機電界発光素子
JP5008974B2 (ja) * 2004-05-18 2012-08-22 日本放送協会 発光素子
JPWO2005112520A1 (ja) * 2004-05-18 2008-03-27 日本放送協会 発光素子
JP2006093665A (ja) * 2004-08-26 2006-04-06 Fuji Photo Film Co Ltd 有機電界発光素子
US7947383B2 (en) 2004-09-22 2011-05-24 Fujifilm Corporation Organic electroluminescent device
US7732606B2 (en) 2004-09-27 2010-06-08 Fujifilm Corporation Light-emitting device
US8202631B2 (en) 2004-09-27 2012-06-19 Fujifilm Corporation Light-emitting device
JP2006193573A (ja) * 2005-01-12 2006-07-27 Sumitomo Chemical Co Ltd 白色led用金属錯体蛍光体
GB2423518A (en) * 2005-02-28 2006-08-30 Takasago Perfumery Co Ltd Platinum complex and light-emitting device
JP2006232784A (ja) * 2005-02-28 2006-09-07 Takasago Internatl Corp 白金錯体及び発光素子
US7771845B2 (en) 2005-03-14 2010-08-10 Fujifilm Corporation Organic electroluminescent device
JP5125502B2 (ja) * 2005-03-16 2013-01-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子
JP2006290988A (ja) * 2005-04-08 2006-10-26 Takasago Internatl Corp 良溶解性イリジウム錯体及び有機el素子
US7736755B2 (en) * 2005-04-25 2010-06-15 Fujifilm Corporation Organic electroluminescent device
WO2006115299A1 (en) * 2005-04-25 2006-11-02 Fujifilm Corporation Organic electroluminescent device
US7758971B2 (en) * 2005-04-25 2010-07-20 Fujifilm Corporation Organic electroluminescent device
JP2006332622A (ja) * 2005-04-25 2006-12-07 Fujifilm Holdings Corp 有機電界発光素子
JP2006332620A (ja) * 2005-04-25 2006-12-07 Fujifilm Holdings Corp 有機電界発光素子
US8092925B2 (en) 2005-04-25 2012-01-10 Fujifilm Corporation Organic electroluminescent device
JP2006313796A (ja) * 2005-05-06 2006-11-16 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006344891A (ja) * 2005-06-10 2006-12-21 Fujifilm Holdings Corp 有機電界発光素子
WO2007018067A1 (ja) * 2005-08-05 2007-02-15 Idemitsu Kosan Co., Ltd. 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007034985A1 (en) * 2005-09-21 2007-03-29 Fujifilm Corporation Organic electroluminescent device
US8206839B2 (en) 2005-10-04 2012-06-26 Fujifilm Corporation Organic electroluminescent element
US8273467B2 (en) 2006-02-28 2012-09-25 Fujifilm Corporation Organic electroluminescent device
US8415380B2 (en) * 2007-04-02 2013-04-09 Hoffmann-La Roche Inc. Pyridine and pyrimidine derivatives as MGLUR2 antagonists
US20110263615A1 (en) * 2007-04-02 2011-10-27 Gatti Mcarthur Silvia Pyridine and pyrimidine derivatives as mglur2 antagonists
EP2031037A1 (en) 2007-08-29 2009-03-04 Fujifilm Corporation Organic electroluminescence device
US8187729B2 (en) 2007-09-14 2012-05-29 Fujifilm Corporation Organic electroluminescence device
JP2011504525A (ja) * 2007-11-15 2011-02-10 日東電工株式会社 発光素子および発光組成物
EP2096690A2 (en) 2008-02-28 2009-09-02 FUJIFILM Corporation Organic electroluminescence device
US8216698B2 (en) 2008-04-22 2012-07-10 Fujifilm Corporation Organic electroluminescence device, novel platinum complex compound and novel compound capable of being a ligand thereof
JP2009283891A (ja) * 2008-04-22 2009-12-03 Fujifilm Corp 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物
US8153278B2 (en) 2008-04-24 2012-04-10 Fujifilm Corporation Organic electroluminescence device
JP2009283913A (ja) * 2008-04-24 2009-12-03 Fujifilm Corp 有機電界発光素子
JP2010135819A (ja) * 2008-04-24 2010-06-17 Fujifilm Corp 有機電界発光素子
JP2009267245A (ja) * 2008-04-28 2009-11-12 Fujifilm Corp 有機電界発光素子
US8721922B2 (en) 2008-10-13 2014-05-13 Nitto Denko Corporation Printable light-emitting compositions
US8597798B2 (en) 2008-11-13 2013-12-03 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102008057051A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP2012508699A (ja) * 2008-11-13 2012-04-12 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用材料
DE102008057050A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US9085579B2 (en) 2009-03-13 2015-07-21 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011013626A1 (ja) 2009-07-31 2011-02-03 富士フイルム株式会社 有機デバイス用蒸着材料及び有機デバイスの製造方法
WO2011035836A1 (de) 2009-09-23 2011-03-31 Merck Patent Gmbh Materialien für elektronische vorrichtungen
DE102009042693A1 (de) 2009-09-23 2011-03-24 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
JP2010161368A (ja) * 2010-01-07 2010-07-22 Fujifilm Corp 発光素子
JP2010093294A (ja) * 2010-01-15 2010-04-22 Fujifilm Corp 有機電界発光素子
WO2011137431A3 (en) * 2010-04-30 2012-04-12 Arizona Board Of Regents For And On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
US10263197B2 (en) 2010-04-30 2019-04-16 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9755163B2 (en) 2010-04-30 2017-09-05 Arizona Board Of Regents Acting For Or On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US10727422B2 (en) 2010-04-30 2020-07-28 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
WO2011137431A2 (en) * 2010-04-30 2011-11-03 Arizona Board Of Regents For And On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
US9382273B2 (en) 2010-04-30 2016-07-05 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
WO2011137429A2 (en) * 2010-04-30 2011-11-03 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9324957B2 (en) 2010-04-30 2016-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
WO2011137429A3 (en) * 2010-04-30 2012-04-05 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
JP2010239140A (ja) * 2010-05-28 2010-10-21 Fujifilm Corp 有機電界発光素子
JP2011049563A (ja) * 2010-08-30 2011-03-10 Fujifilm Corp 発光素子
US9425415B2 (en) 2011-02-18 2016-08-23 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US9711742B2 (en) 2011-02-18 2017-07-18 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US11121328B2 (en) 2011-05-26 2021-09-14 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9698359B2 (en) 2011-05-26 2017-07-04 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US10804476B2 (en) 2011-05-26 2020-10-13 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
JP2014520096A (ja) * 2011-06-03 2014-08-21 メルク パテント ゲーエムベーハー 金属錯体
US10103340B2 (en) 2011-06-03 2018-10-16 Merck Patent Gmbh Metal complexes
WO2012163471A1 (de) 2011-06-03 2012-12-06 Merck Patent Gmbh Metallkomplexe
JP2019196403A (ja) * 2011-07-25 2019-11-14 ユニバーサル ディスプレイ コーポレイション 四座配位白金錯体
JP2013023500A (ja) * 2011-07-25 2013-02-04 Universal Display Corp 四座配位白金錯体
WO2013020631A1 (de) 2011-08-10 2013-02-14 Merck Patent Gmbh Metallkomplexe
WO2013080798A1 (ja) 2011-11-30 2013-06-06 富士フイルム株式会社 光拡散性転写材料、光拡散層の形成方法、有機電界発光装置、及び有機電界発光装置の製造方法
WO2013107487A1 (en) 2012-01-16 2013-07-25 Merck Patent Gmbh Organic metal complexes
US10403833B2 (en) 2012-01-16 2019-09-03 Merck Patent Gmbh Organic metal complexes
US9748502B2 (en) 2012-01-16 2017-08-29 Merck Patent Gmbh Organic metal complexes
JP2015509918A (ja) * 2012-01-16 2015-04-02 メルク パテント ゲーエムベーハー 有機金属錯体
US9682958B2 (en) 2012-07-23 2017-06-20 Merck Patent Gmbh Ligands and their preparation
JP2015525775A (ja) * 2012-07-23 2015-09-07 メルク パテント ゲーエムベーハー リガンドおよびその製造方法
WO2014015936A1 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Ligands and their preparation
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
US11114626B2 (en) 2012-09-24 2021-09-07 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US10622571B2 (en) 2012-09-24 2020-04-14 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
JP2013062513A (ja) * 2012-10-12 2013-04-04 Udc Ireland Ltd 有機電界発光素子
US10995108B2 (en) 2012-10-26 2021-05-04 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
JP2016506414A (ja) * 2013-01-03 2016-03-03 メルク パテント ゲーエムベーハー 電子素子のための材料
US9899614B2 (en) 2013-06-10 2018-02-20 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US10211414B2 (en) 2013-06-10 2019-02-19 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
JP2022121471A (ja) * 2013-10-14 2022-08-19 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティー 白金錯体およびデバイス
US11189808B2 (en) 2013-10-14 2021-11-30 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US10566553B2 (en) 2013-10-14 2020-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
JP2020196736A (ja) * 2013-10-14 2020-12-10 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University 白金錯体およびデバイス
US9947881B2 (en) 2013-10-14 2018-04-17 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US10937976B2 (en) 2014-01-07 2021-03-02 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US11930698B2 (en) 2014-01-07 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
JP2014143422A (ja) * 2014-02-19 2014-08-07 Udc Ireland Ltd 有機電界発光素子
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
JP2017508845A (ja) * 2014-04-03 2017-03-30 ヴァーシテック・リミテッドVersitech Limited Oled用途向けの白金(ii)エミッター
US11011712B2 (en) 2014-06-02 2021-05-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US11839144B2 (en) 2014-06-02 2023-12-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US10886478B2 (en) 2014-07-24 2021-01-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US10964897B2 (en) 2014-07-28 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US11145830B2 (en) 2014-07-29 2021-10-12 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US10790457B2 (en) 2014-07-29 2020-09-29 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US10793546B2 (en) 2014-08-15 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US10294417B2 (en) 2014-08-22 2019-05-21 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDS
US10745615B2 (en) 2014-08-22 2020-08-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11795387B2 (en) 2014-08-22 2023-10-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11339324B2 (en) 2014-08-22 2022-05-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11856840B2 (en) 2014-11-10 2023-12-26 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10944064B2 (en) 2014-11-10 2021-03-09 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US11653560B2 (en) 2014-11-10 2023-05-16 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10056564B2 (en) 2015-06-02 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9617291B2 (en) 2015-06-03 2017-04-11 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11472827B2 (en) 2015-06-03 2022-10-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US10836785B2 (en) 2015-06-03 2020-11-17 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US10930865B2 (en) 2015-08-04 2021-02-23 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
JP2017039715A (ja) * 2015-08-18 2017-02-23 三星電子株式会社Samsung Electronics Co.,Ltd. 有機金属化合物及びそれを含む有機発光素子
US11211571B2 (en) 2015-08-18 2021-12-28 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10566554B2 (en) 2016-08-22 2020-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10566566B2 (en) 2016-09-27 2020-02-18 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnosis composition including the organometallic compound
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
JP2018184397A (ja) * 2017-04-25 2018-11-22 三星電子株式会社Samsung Electronics Co.,Ltd. 有機金属化合物及びそれを含んだ有機発光素子並びにそれを含んだ診断用組成物
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11063228B2 (en) 2017-05-19 2021-07-13 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
JP2019043951A (ja) * 2017-09-05 2019-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. 有機金属化合物及びそれを含む有機発光素子並びにそれを含む診断用組成物
JP7344634B2 (ja) 2017-09-05 2023-09-14 三星電子株式会社 有機金属化合物及びそれを含む有機発光素子並びにそれを含む診断用組成物
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US11917903B2 (en) 2018-03-19 2024-02-27 Udc Ireland Limited Metal complexes
JP2021518404A (ja) * 2018-03-19 2021-08-02 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 金属錯体
CN108948096A (zh) * 2018-08-02 2018-12-07 浙江工业大学 基于联苯基的四齿环金属铂配合物及其应用
JP2022509173A (ja) * 2018-12-28 2022-01-20 広東阿格蕾雅光電材料有限公司 N^n^c^o型四座白金(ii)錯体の製造及び使用
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes

Also Published As

Publication number Publication date
TW200528535A (en) 2005-09-01
US7442797B2 (en) 2008-10-28
CN100445294C (zh) 2008-12-24
WO2005042444A3 (ja) 2005-06-23
US20070103060A1 (en) 2007-05-10
KR101044087B1 (ko) 2011-06-27
EP1683804B1 (en) 2013-07-31
EP1683804A2 (en) 2006-07-26
JPWO2005042444A1 (ja) 2007-04-26
JP4110173B2 (ja) 2008-07-02
CN1875026A (zh) 2006-12-06
TWI316540B (en) 2009-11-01
EP1683804A4 (en) 2009-04-01
KR20060115371A (ko) 2006-11-08

Similar Documents

Publication Publication Date Title
WO2005042444A2 (ja) 白金錯体及び発光素子
KR102531325B1 (ko) 신규한 헤테로렙틱 이리듐 복합체
JP6574872B2 (ja) ドーパントとしてのヘテロレプティックイリジウム錯体
JP6426676B2 (ja) 新規有機発光材料
JP4773109B2 (ja) 白金錯体及び発光素子
TWI699369B (zh) 磷光物質
US10079349B2 (en) Organic electroluminescent materials and devices
TWI485228B (zh) Organic electroluminescent elements
TWI568740B (zh) 磷光雜配位苯基苯并咪唑摻雜物及新合成方法
JPWO2004039781A1 (ja) 白金錯体
TW201404864A (zh) 新穎的矽烷化金屬錯合物
JPWO2004039914A1 (ja) 発光素子
JP2007266598A (ja) 有機電界発光素子
JP5753658B2 (ja) 電荷輸送材料及び有機電界発光素子
CN113166176A (zh) 化合物及包含其的有机发光元件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031799.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515131

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067008160

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007103060

Country of ref document: US

Ref document number: 10578237

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004817419

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004817419

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067008160

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10578237

Country of ref document: US