WO2011013626A1 - 有機デバイス用蒸着材料及び有機デバイスの製造方法 - Google Patents

有機デバイス用蒸着材料及び有機デバイスの製造方法 Download PDF

Info

Publication number
WO2011013626A1
WO2011013626A1 PCT/JP2010/062538 JP2010062538W WO2011013626A1 WO 2011013626 A1 WO2011013626 A1 WO 2011013626A1 JP 2010062538 W JP2010062538 W JP 2010062538W WO 2011013626 A1 WO2011013626 A1 WO 2011013626A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
vapor deposition
layer
deposition material
production example
Prior art date
Application number
PCT/JP2010/062538
Other languages
English (en)
French (fr)
Inventor
誠之 林
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020127004448A priority Critical patent/KR101235776B1/ko
Priority to CN2010800331451A priority patent/CN102473854B/zh
Priority to EP10804372A priority patent/EP2461387A4/en
Priority to US13/387,982 priority patent/US20120135239A1/en
Publication of WO2011013626A1 publication Critical patent/WO2011013626A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a vapor deposition material for organic devices used for organic devices such as organic electroluminescent elements, organic thin film solar cells, and organic field effect transistors, and a method for producing an organic device using the vapor deposition material for organic devices.
  • the organic device generally includes a thin film on which a deposition material containing the organic compound is deposited, and the performance of the manufactured organic device is affected by the deposition rate of the deposition material for organic devices.
  • the vapor deposition material for organic devices For this reason, some prior art is examined about the vapor deposition material for organic devices. For example, when depositing an organic material layer using an organic vapor deposition material, it has been proposed to use a pellet-shaped material having a gas content of 1 mol% or less as the organic vapor deposition material (see Patent Document 1). However, the proposed pellet-shaped organic vapor deposition material is obtained by solidifying a particulate organic vapor deposition material into a certain shape, and has a problem that it is large in size and difficult to heat during vapor deposition.
  • the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention is excellent in deposition rate stability, can uniformly form a film containing an organic compound having a large area, and reduces the variation in performance of the organic device. It aims at providing the manufacturing method of the organic device using this vapor deposition material for organic devices.
  • Means for solving the problems are as follows. That is, ⁇ 1> A vapor deposition material used for manufacturing an organic device having an average particle size represented by D50% of 10 ⁇ m to 200 ⁇ m and a uniformity represented by D60% diameter / D10% diameter of 1. It is a vapor deposition material for organic devices, characterized in that it is 0 to 4.0. ⁇ 2> The vapor deposition material for organic devices according to ⁇ 1>, which contains either an organic compound or an inorganic oxide. ⁇ 3> The vapor deposition material for organic devices according to any one of ⁇ 1> to ⁇ 2>, which is used for forming at least one organic layer disposed between a pair of electrodes in an organic electroluminescent element.
  • ⁇ 4> The vapor deposition material for organic devices according to ⁇ 3>, wherein the organic layer is a light emitting layer.
  • the vapor deposition material for organic devices according to ⁇ 4> including any of an Ir complex and a Pt complex.
  • ⁇ 6> A method for producing an organic device comprising a step of forming an organic layer by vapor deposition of the vapor deposition material for organic devices according to any one of ⁇ 1> to ⁇ 5> by a flash vapor deposition method. . ⁇ 7> An organic device manufactured by the method for manufacturing an organic device according to ⁇ 6>.
  • the said various conventional problems can be solved, the said objective can be achieved, it is excellent in stability of vapor deposition rate, and forms the vapor deposition film containing the organic compound of a large area uniformly.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of an organic electroluminescent element.
  • FIG. 2 is a graph showing time-luminance change characteristics of the organic electroluminescent device.
  • the vapor deposition material for an organic device of the present invention is a vapor deposition material used for manufacturing an organic device, and has an average particle diameter represented by D50% of 10 ⁇ m to 200 ⁇ m and represented by D60% diameter / D10% diameter.
  • the homogeneity is 1.0 to 4.0 and is preferably purified by sublimation.
  • the average particle size represented by D50% is 10 ⁇ m to 200 ⁇ m, preferably 20 ⁇ m to 180 ⁇ m, more preferably 40 ⁇ m to 150 ⁇ m, and particularly preferably 50 ⁇ m to 120 ⁇ m.
  • the average particle diameter represented by D50% is less than 10 ⁇ m, a stable deposition rate cannot be maintained due to the generation of static electricity due to the association between particles or the increase in contact between particles. A change in the amount of falling particles per hour becomes large and a stable deposition rate may not be maintained.
  • the D50% indicates an average particle diameter when the large side and the small side are equal when the powder is divided into two from a certain particle size.
  • the average particle diameter represented by D50% can be determined by reading the value of 50% of the passing percentage or cumulative percentage from the grain size curve.
  • the sample is sieved and the percentage by weight of the sample is used to determine how many ⁇ m of the sieve have passed. Examples thereof include a plotting method and a cumulative distribution measurement method using a laser diffraction particle size analyzer.
  • the uniformity represented by the D60% diameter / D10% diameter is 1.0 to 4.0, preferably 1.0 to 3.5. 0 to 3.2 is more preferable, and 1.0 to 3.0 is particularly preferable. If the uniformity is less than 1.0, it cannot be achieved in principle, and if it exceeds 4.0, the change in the amount of falling particles per unit time becomes large, and a stable deposition rate cannot be maintained. is there.
  • the D60% diameter indicates the particle size when the passing percentage or cumulative percentage is 60% in the particle size curve, and the D10% diameter is the grain size when the passing percentage or cumulative percentage is 10% in the particle size curve. Indicates the diameter.
  • the method for measuring the uniformity represented by the D60% diameter / D10% diameter is not particularly limited, and examples thereof include a screening method and a laser diffraction particle size analyzer.
  • the particle size at which the percentage or cumulative percentage is 60% and the particle diameter at 10% are read and the ratio is calculated to obtain a value of uniformity.
  • the method for producing the vapor deposition material for organic devices having the average particle size and the uniformity is not particularly limited and can be appropriately selected according to the purpose. For example, after pulverizing with a pulverizer, a desired opening is obtained. The method of manufacturing the vapor deposition material for organic devices by which the said average particle diameter and uniformity were adjusted by sieving with the mesh which has is mentioned.
  • Flash vapor deposition method is preferable. Since the vapor deposition material for organic devices is excellent in the stability of the vapor deposition rate, a highly reliable vapor deposition film can be obtained even if the vapor deposition rate is raised, and stable vapor deposition can be performed for a long time. According to the above flash vapor deposition method, a vapor deposition material that is easily decomposed by heating for a long time can be stably deposited continuously without being decomposed. In addition, an inorganic oxide forms a film that is close to the composition ratio of the vapor deposition material. can do. In addition, about the flash vapor deposition method, all the matters described in the organic device manufacturing method described later can be applied.
  • the vapor deposition material for organic devices is not particularly limited as long as it satisfies the average particle diameter and the uniformity, and can be appropriately selected according to the purpose.
  • examples thereof include organic compounds and inorganic oxides.
  • a luminescent material, a host material, a dopant material, etc. are mentioned, and those that have been purified by sublimation are preferred.
  • sublimation purification is a purification method that separates impurities and target substances using the difference in sublimation temperatures of compounds.
  • the aspect of sublimation purification is not particularly limited.
  • the form of the sublimation purification apparatus may be appropriately selected according to the production scale, the production environment, and the like.
  • the purity of the obtained target product can be improved by flowing the gas and strictly controlling the temperature.
  • limiting in particular as said organic compound Although it can select suitably according to the objective, It is preferable that it is a mixture of two types of organic compounds.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and two or more kinds may be mixed.
  • the luminescent dopant has an ionization potential difference ( ⁇ Ip) and an electron affinity difference ( ⁇ Ea) of 1.2 eV> ⁇ Ip> 0.2 eV and / or 1.2 eV> ⁇ Ea with the host compound.
  • ⁇ Ip ionization potential difference
  • ⁇ Ea electron affinity difference
  • a dopant satisfying a relationship of> 0.2 eV is preferable from the viewpoint of driving durability.
  • the content of the light-emitting dopant in the light-emitting layer is preferably 0.1% by mass to 50% by mass with respect to the total mass of the compound generally forming the light-emitting layer in the light-emitting layer, and has durability and external quantum efficiency. In view of the above, 1% by mass to 50% by mass is more preferable, and 2% by mass to 40% by mass is even more preferable.
  • the complex containing a transition metal atom or a lanthanoid atom, etc. are mentioned.
  • the transition metal atom is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, gold, silver, copper, and platinum. . Among these, rhenium, iridium, and platinum are preferable, and iridium and platinum are particularly preferable.
  • Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press 1987, H.C. Listed by Yersin, "Photochemistry and Photophysics of Coordination Compounds", published by Springer-Verlag, 1987, Akio Yamamoto, “Organic Metal Chemistry-Fundamentals and Applications-,” published by Yukabosha 1982, etc. It is done.
  • the complex may have one transition metal atom in the compound or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.
  • Examples of the phosphorescent material include, for example, US Pat. No. 6,303,238, US Pat. No. 6,097,147, WO00 / 57676, WO00 / 70655, WO01 / 08230, WO01 / 39234, WO01. / 41512 pamphlet, WO02 / 02714 pamphlet, WO02 / 15645 pamphlet, WO02 / 44189 pamphlet, WO05 / 19373 pamphlet, WO2004 / 108857 pamphlet, WO2005 / 042444 pamphlet, WO2005 / 042550 pamphlet, JP2001. -247859, JP-2002-302671, 2002-117978, 2003 No.
  • JP-A No. 2002-235076 JP-A No. 2003-123982, JP-A No. 2002-170684, EP No. 12111257, JP-A No. 2002-226495, JP-A No. 2002-234894, JP-A-2001-247859, JP-A-2001-298470, JP-A-2002-173675, JP-A-2002-203678, JP-A-2002-203679, JP-A-2004-357791, JP-A-2006 Phosphorescent light emission described in JP-A No.
  • Each of the complexes is preferably a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond, and has a luminous efficiency, organic device driving durability, and chromaticity. From the viewpoint of the above, a complex containing a tridentate or higher polydentate ligand is more preferable.
  • the fluorescent material is not particularly limited and can be appropriately selected according to the purpose.
  • the host material is preferably a charge transport material.
  • the host material may be one type or two or more types.
  • As the charge transport material a hole transportable host material excellent in hole transportability and an electron transportable host material excellent in electron transportability can be used.
  • the hole transporting host material is not particularly limited and may be appropriately selected depending on the purpose.
  • indole derivatives carbazole derivatives, aromatic tertiary amine compounds, and thiophene derivatives are preferable, those having a carbazole group in the molecule are more preferable, and compounds having a t-butyl-substituted carbazole group are particularly preferable.
  • the electron transporting host material is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Canocyanines or derivatives thereof others
  • a metal complex compound is preferable from the viewpoint of durability, and a metal complex having a ligand having at least one nitrogen atom, oxygen atom, or sulfur atom coordinated to a metal is more preferable.
  • the metal complex compound include JP-A No. 2002-235076, JP-A No. 2004-214179, JP-A No. 2004-221106, JP-A No. 2004-221105, JP-A No. 2004-221068, and JP-A No. 2004-221068. Examples thereof include compounds described in JP 2004-327313 A and the like.
  • Examples of the hole transporting host material and the electron transporting host material that can be used in the present invention include the following compounds and deuterated compounds thereof, but are not limited thereto.
  • an organic compound with an electron-accepting property it can be used also with an inorganic compound or an organic compound.
  • the inorganic compound include metal halides and metal oxides.
  • the metal halide include ferric chloride, aluminum chloride, gallium chloride, indium chloride, and antimony pentachloride.
  • the metal oxide include vanadium pentoxide, molybdenum trioxide (MoO 3 ), and the like.
  • the organic compound include compounds having a nitro group, halogen, cyano group, trifluoromethyl group or the like as a substituent; quinone compounds, acid anhydride compounds, fullerenes, and the like.
  • the electron donating dopant is not particularly limited as long as it has an electron donating property and has a property of reducing an organic compound, and includes an alkali metal such as Li, an alkaline earth metal such as Mg, and a rare earth metal. Suitable examples include metals and reducing organic compounds. As the metal, a metal having a work function of 4.2 eV or less can be preferably used. Specifically, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, Cs, La, Sm, Gd , Yb and the like. Examples of the reducing organic compound include nitrogen-containing compounds, sulfur-containing compounds, and phosphorus-containing compounds.
  • examples of the hole blocking material include aluminum complexes such as BAlq, triazole derivatives, and phenanthroline derivatives such as BCP.
  • the method for producing an organic device of the present invention includes a step of forming the organic layer by vapor deposition of the vapor deposition material for an organic device of the present invention by a flash vapor deposition method, and includes other steps as necessary.
  • the flash vapor deposition method is a vapor deposition method for forming a film while continuously supplying vapor deposition material powder to a vapor deposition source heating unit, and has an advantage that the composition of the vapor deposition material can be prevented from being disassembled and the material can be prevented from being decomposed by heating for a long time. Have.
  • the pressure at the time of flash vapor deposition is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 10 ⁇ 1 Pa to 10 ⁇ 8 Pa is preferable, and 10 ⁇ 3 Pa to 10 ⁇ 7 Pa is more preferable. 10 ⁇ 4 Pa to 10 ⁇ 6 Pa is particularly preferable.
  • the pressure is 10 is less than -8 Pa, may it can prevent contamination of impurities or unintended gas is low must productivity to spend a few days with only vacuum, 10 -1 Pa If it exceeds, the probability of vaporized vapor deposition material reaching the substrate is lowered, and the material utilization efficiency may be extremely lowered.
  • an inert carrier gas such as nitrogen or argon may be introduced in order to control the flow of vaporized vapor deposition material from the flash vapor deposition source to the substrate.
  • the heating temperature at the time of flash vapor deposition is not particularly limited and can be appropriately selected depending on the vapor deposition material.
  • the vapor deposition rate in the flash vapor deposition is not particularly limited and can be appropriately selected according to the purpose.
  • 0.01 nm / s to 10 nm / s is preferable, and 0.1 nm / s to 5 nm / s is more preferable.
  • 0.5 nm / s to 2 nm / s is particularly preferable.
  • the unit of nm / s may be expressed by the unit of ⁇ / s (0.1 nm / s).
  • the deposition rate stable width represented by v min ⁇ v max (nm / s) is not particularly limited, but is preferably 0 nm / s to 0.3 nm / s, for example, 0 nm / S to 0.2 nm / s is more preferable, and 0 nm / s to 0.1 nm / s is particularly preferable.
  • the deposition rate stability width exceeds 0.3 nm / s, production stability, yield, device performance and the like may be deteriorated.
  • the other steps are not particularly limited and may be appropriately selected depending on the purpose, and include steps carried out in the production of known organic devices.
  • the vapor deposition material for organic devices it is excellent in stability of vapor deposition rate, can uniformly form a film containing an organic compound of a large area, and can reduce variations in performance of the organic device. Therefore, it can be suitably used for organic devices such as organic electroluminescent elements, organic thin film solar cells, and organic field effect transistors.
  • the organic electroluminescent element is required to have high luminance as the luminance decreases with time.
  • the conventional organic electroluminescence device an initial decrease in which the luminance exponentially decreases with time is observed, and a large decrease in luminance is confirmed at an early stage (see FIG. 2).
  • the initial decrease can be suppressed (see FIG. 2).
  • the organic electroluminescent element includes at least one organic layer between a pair of electrodes, and the organic layer is formed of the vapor deposition material for organic devices of the present invention.
  • the configuration of the organic layer is not particularly limited and may be appropriately selected depending on the purpose.
  • the light-emitting layer receives holes from an anode, a hole injection layer, or a hole transport layer when an electric field is applied, receives electrons from a cathode, an electron injection layer, or an electron transport layer, and recombines holes and electrons. It is a layer having a function of providing a field to emit light.
  • the light emitting layer may include the light emitting material and include the host material. That is, the light emitting layer may be composed of only the light emitting material, or may be a mixed layer of the host material and the light emitting material. Furthermore, the light emitting layer may contain a material that does not have charge transporting properties and does not emit light.
  • the thickness of the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 nm to 500 nm, more preferably 3 nm to 200 nm, and further preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. preferable.
  • the said light emitting layer may be 1 layer, or may be two or more layers, and each layer may light-emit with a different luminescent color.
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the hole injection layer and the hole transport layer are formed by including materials such as the hole transporting host material and the electron accepting dopant.
  • the thicknesses of the hole injection layer and the hole transport layer are not particularly limited and may be appropriately selected depending on the intended purpose, but are preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and further preferably 10 nm to 100 nm. preferable.
  • the hole injection layer and the hole transport layer may have a single layer structure made of one or more materials, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron transport layer includes a material such as the electron transport host material and the electron donating dopant.
  • the thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
  • the thickness of the electron injection layer is preferably from 0.1 nm to 200 nm, more preferably from 0.2 nm to 100 nm, and even more preferably from 0.5 nm to 50 nm.
  • the electron injection layer and the electron transport layer may have a single layer structure made of one or more materials, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • the hole blocking layer is formed including the hole blocking material.
  • the thickness of the hole blocking layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and 10 nm to 100 nm. More preferably.
  • the hole blocking layer may have a single layer structure made of one or two or more materials, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side, and is usually provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the electron blocking layer includes the hole transport dopant and the like.
  • the thickness of the electron blocking layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm. Further, the electron blocking layer may have a single layer structure made of one or more materials, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the organic electroluminescent element includes an anode and a cathode as a pair of electrodes.
  • at least one of the anode and the cathode is preferably transparent.
  • the anode only needs to have a function as an electrode for supplying holes to the organic layer
  • the cathode only needs to have a function as an electrode for injecting electrons into the organic layer.
  • it can select suitably from well-known electrode materials. Suitable examples of the material constituting the electrode include metals, alloys, metal oxides, conductive compounds, and mixtures thereof.
  • the material constituting the anode examples include tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • Conductive metal oxides metals such as gold, silver, chromium and nickel; mixtures or laminates of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; polyaniline, polythiophene, Organic conductive materials such as polypyrrole; or a laminate of these and ITO.
  • conductive metal oxides are preferable, and ITO is particularly preferable in terms of productivity, high conductivity, transparency, and the like.
  • the material constituting the cathode examples include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, Examples thereof include lithium-aluminum alloys, magnesium-silver alloys, rare earth metals such as indium and ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection. Among these, alkali metals and alkaline earth metals are preferable from the viewpoint of electron injection properties, and materials mainly composed of aluminum are preferable from the viewpoint of excellent storage stability.
  • alkali metals and alkaline earth metals are preferable from the viewpoint of electron injection properties
  • materials mainly composed of aluminum are preferable from the viewpoint of excellent storage stability.
  • the material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum). Alloy).
  • the method for forming the electrode is not particularly limited and can be performed according to a known method.
  • a wet method such as a printing method or a coating method
  • a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method
  • Examples include chemical methods such as CVD and plasma CVD.
  • CVD chemical methods
  • it can be formed on the substrate in accordance with an appropriately selected method in consideration of suitability with the material constituting the electrode.
  • ITO is selected as the anode material
  • it can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.
  • a metal or the like is selected as the cathode material, one or more of them can be formed simultaneously or sequentially according to a sputtering method or the like.
  • patterning when forming the electrode, it may be performed by chemical etching such as photolithography, or may be performed by physical etching using a laser or the like. It may be performed by sputtering or the like, or may be performed by a lift-off method or a printing method.
  • the organic electroluminescent element of the present invention is preferably provided on a substrate, and may be provided in such a manner that the electrode and the substrate are in direct contact with each other, or may be provided in an intermediate layer. .
  • substrate There is no restriction
  • the inorganic material include yttria-stabilized zirconia (YSZ) and glass (such as alkali-free glass and soda lime glass).
  • the polyester resin include polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate.
  • the organic material include polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene).
  • the shape, structure, size and the like of the substrate are not particularly limited, and can be appropriately selected according to the use, purpose, etc. of the light emitting element.
  • the shape of the substrate is preferably a plate shape.
  • the structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members. .
  • the substrate may be transparent or opaque, and if transparent, it may be colorless and transparent or colored and transparent.
  • the substrate may be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
  • a moisture permeation preventing layer gas barrier layer
  • examples of the material of the moisture permeation preventive layer (gas barrier layer) include inorganic substances such as silicon nitride and silicon oxide.
  • the moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.
  • a protective layer, a sealing container, a resin sealing layer, a sealing adhesive etc. are mentioned.
  • the protective layer, the sealing container, the resin sealing layer, the sealing adhesive, and the like are not particularly limited and may be appropriately selected depending on the purpose.
  • JP 2009-152572 A The matters described in can be applied.
  • FIG. 1 is a schematic view showing an example of a layer structure of the organic electroluminescent element.
  • the organic electroluminescent element 10 includes an anode 2 (for example, an ITO electrode) formed on a glass substrate 1, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, It has a layer structure in which an electron injection layer 7 and a cathode 8 (for example, an Al—Li electrode) are laminated in this order.
  • the anode 2 (for example, ITO electrode) and the cathode 8 for example, Al—Li electrode) are connected to each other via a power source.
  • the organic electroluminescence device obtains light emission by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Can do.
  • the organic electroluminescence device can be applied to an active matrix by a thin film transistor (TFT).
  • TFT thin film transistor
  • As the active layer of the thin film transistor amorphous silicon, high temperature polysilicon, low temperature polysilicon, microcrystalline silicon, oxide semiconductor, organic semiconductor, carbon nanotube, or the like can be used.
  • the thin film transistors described in WO 2005/088726, JP-A-2006-165529, US Patent Application Publication No. 2008 / 0237598A1, and the like can be applied to the organic electroluminescent device of the present invention.
  • the organic electroluminescent element is not particularly limited, and the light extraction efficiency can be improved by various known devices. For example, processing the substrate surface shape (for example, forming a fine uneven pattern), controlling the refractive index of the organic layer such as the substrate, ITO layer, light emitting layer, etc., the thickness of the organic layer such as the substrate, ITO layer, light emitting layer, etc. It is possible to improve the light extraction efficiency and the external quantum efficiency by controlling the above.
  • the light extraction method from the organic electroluminescence device of the present invention may be a top emission method or a bottom emission method.
  • the organic electroluminescent device may have a resonator structure.
  • a multilayer film mirror made of a plurality of laminated films having different refractive indexes, a transparent or translucent electrode, a light emitting layer, and a metal electrode are superimposed on a transparent substrate.
  • the light generated in the light emitting layer resonates and resonates between the multilayer mirror and the metal electrode as a reflection plate (first embodiment).
  • a transparent or semi-transparent electrode and a metal electrode function as a reflecting plate on the transparent substrate, respectively, and light generated in the light emitting layer repeats reflection and resonates between them.
  • the optical path length determined from the effective refractive index of the two reflectors and the refractive index and thickness of each layer between the reflectors is adjusted to the optimum value to obtain the desired resonant wavelength. Is done.
  • the calculation formula in the case of the first aspect is described in JP-A-9-180883.
  • the calculation formula in the case of the second aspect is described in Japanese Patent Application Laid-Open No. 2004-127795.
  • the organic electroluminescent element of the present invention is not particularly limited and can be appropriately selected depending on the purpose.
  • the display element, display, backlight, electrophotography, illumination light source, recording light source, exposure light source, reading light source, label It can be suitably used for signboards, interiors, optical communications, and the like.
  • the organic EL display can be a full color type, as described in the three primary colors (blue (B) and green).
  • the planar light source of a desired luminescent color can be obtained by using combining the organic electroluminescent element of the different luminescent color obtained by the said method.
  • a white light-emitting light source combining blue and yellow light-emitting elements, a white light-emitting light source combining blue, green, and red light-emitting elements can be used.
  • the prepared powder having an average particle size of about 1,500 ⁇ m to about 1 ⁇ m is sieved stepwise using the following mesh with openings of 1,520 ⁇ m to 1 ⁇ m.
  • the vapor deposition materials for organic devices in Examples 1 to 6 and Comparative Examples 1 to 7 having average particle diameter (D50%) and uniformity (D60% diameter / D10% diameter) shown in Table 1 below were produced. . -Opening 1,520 ⁇ m ⁇ Opening 20 ⁇ m Stainless steel mesh (Semitech) -Opening from 15 ⁇ m to 1 ⁇ m opening Nylon mesh (Semitec, NYTAL)
  • the average particle diameter (D50%) and uniformity (D60% diameter / D10% diameter) of the vapor deposition materials for organic devices in Examples 1 to 6 and Comparative Examples 1 to 7 are measured by a laser diffraction scattering particle size analyzer (Nikkiso). This was carried out using Microtrac MT3000II). The results are shown in Table 1 below.
  • a vapor deposition apparatus manufactured by Tokki Co., Ltd.
  • the vapor deposition rate of the vapor deposition material for organic devices deposited on the quartz resonator was measured with a film thickness monitor (ULTM, CRTM-9000), and the minimum and maximum values of the vapor deposition rate in a stable state were recorded. .
  • the evaluation of the deposition rate stability was performed by taking the difference between the minimum value and the maximum value of the measured deposition rate and evaluating the difference according to the following criteria. The results are shown in Table 1 below. ⁇ Evaluation criteria for deposition rate stability> ⁇ : 2 ⁇ / s or less ⁇ : Over 2 ⁇ / s, 3 ⁇ / s or less ⁇ : Over 3 ⁇ / s
  • ITO Indium Tin Oxide
  • ⁇ -NPD Bis [N- (1-naphthyl) -N-pheny] benzidine
  • the positive hole transport material 1 which consists of following structural formula was vapor-deposited so that thickness might be set to 3 nm, and the 2nd positive hole transport layer was formed.
  • the compound (A) prepared in Example 1 is used as a host material, and as a guest material, Ir (ppy) (tris) which is 10% by mass of the phosphorescent material with respect to the host material.
  • Ir (ppy) (tris) which is 10% by mass of the phosphorescent material with respect to the host material.
  • a light emitting layer doped with (2-phenylpyridine) -iridium) was deposited to a thickness of 30 nm to form a light emitting layer.
  • BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum (III)) is deposited as an electron transporting layer so as to have a thickness of 30 nm. A transport layer was formed.
  • LiF was deposited on the electron transport layer so as to have a thickness of 1 nm.
  • a mask patterned for the cathode (a mask having a light emitting area of 2 mm ⁇ 2 mm) was placed, and metal aluminum was deposited to a thickness of 100 nm to form a cathode.
  • the laminate prepared as described above is placed in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable sealing adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Stopped. Thus, the organic electroluminescent element of Example 1 was produced.
  • the present invention was carried out except that the vapor deposition material for organic devices using the compound (A) in Examples 2 to 6 and Comparative Examples 1 to 7 having different average particle sizes and uniformity as the host material of the light emitting layer was used.
  • organic electroluminescent elements in Examples 2 to 6 and Comparative Examples 1 to 7 were produced.
  • ⁇ / s shown in Table 1 represents 0.1 nm / s.
  • ⁇ / s shown in Table 2 represents 0.1 nm / s.
  • ⁇ / s shown in Table 3 represents 0.1 nm / s.
  • Production Example 4 Examples 13 to 15 and Comparative Examples 16 to 19
  • Production Example 1 instead of pulverizing the compound (A) as a host material, commercially available molybdenum trioxide having a particle size of about 0.5 ⁇ m to 900 ⁇ m (MoO 3 , manufactured by Furuuchi Chemical Co., Ltd.)
  • MoO 3 molybdenum trioxide having a particle size of about 0.5 ⁇ m to 900 ⁇ m
  • the vapor deposition materials for organic devices in Examples 13 to 15 and Comparative Examples 16 to 19 shown in Table 4 were produced in the same manner as in Production Example 1 except that the diameter was appropriately selected (Production Example 4).
  • ⁇ / s shown in Table 4 represents 0.1 nm / s.
  • ⁇ / s shown in Table 5 represents 0.1 nm / s.
  • ⁇ / s shown in Table 6 represents 0.1 nm / s.
  • ⁇ / s shown in Table 7 represents 0.1 nm / s.
  • ⁇ / s shown in Table 8 represents 0.1 nm / s. From Table 8, it can be seen that if the sublimation purification is not performed, the deposition rate stability is poor even if the particle size and uniformity are within the range, and sublimation purification is performed to remove impurities in the material. It was found that not only can the initial decrease be suppressed, but also the deposition rate is stabilized and the film formation uniformity is improved.
  • ⁇ / s shown in Table 9 represents 0.1 nm / s. From Table 9, if sublimation purification was not performed, it was found that the deposition rate stability was poor even if the particle size and uniformity were within the range, and sublimation purification was performed to remove impurities in the material. It was found that not only can the initial decrease be suppressed, but also the deposition rate is stabilized and the film formation uniformity is improved.
  • ⁇ / s shown in Table 10 represents 0.1 nm / s. From Table 10, it was found that the material in which the particle size and the degree of uniformity are defined may be a single material or a mixture of a plurality of materials.
  • ⁇ / s shown in Table 11 represents 0.1 nm / s. From Table 11, it was found that the material in which the particle size and the degree of uniformity are defined may be a single material or a mixture of a plurality of materials.
  • the organic device vapor deposition material and the organic device production method using the organic device vapor deposition material of the present invention it is possible to uniformly form a film containing an organic compound having a large area with excellent vapor deposition rate stability.
  • a method for producing an organic device using the organic device vapor deposition material, which can reduce variations in the performance of the organic device, and an organic electroluminescent element and an organic thin film solar It is suitably used in the field of manufacturing organic devices such as batteries and organic field effect transistors.

Abstract

 有機デバイスの製造に用いられる蒸着材料であって、D50%で表される平均粒径が10μm~200μmであり、かつD60%径/D10%径で表される均一度が1.0~4.0である有機デバイス用蒸着材料を提供する。

Description

有機デバイス用蒸着材料及び有機デバイスの製造方法
 本発明は、有機電界発光素子、有機薄膜太陽電池、有機電界効果トランジスタ等の有機デバイスに用いられる有機デバイス用蒸着材料及び該有機デバイス用蒸着材料を用いた有機デバイスの製造方法に関する。
 有機電界発光素子をはじめ、有機化合物を用いた種々の有機デバイスが実用化に向けて、検討されている。該有機デバイスは、一般に前記有機化合物を含む蒸着材料を蒸着させた薄膜を含んで構成され、有機デバイス用蒸着材料の蒸着速度によって、製造される有機デバイスの性能が影響を受ける。
 このため、有機デバイス用蒸着材料について、幾つかの先行技術が検討されている。
 例えば、有機蒸着材料を用いて有機物層を蒸着するにあたって、有機蒸着材料として、ガス含有率を1mol%以下としたペレット状の材料を用いることが提案されている(特許文献1参照)。
 しかし、前記提案のペレット状の有機蒸着材料は、粒子状の有機蒸着材料を一定の形状に固化させたものであり、サイズが大きく、蒸着の際の加熱を実施しづらいという問題がある。
 また、ペレット状の有機蒸着材料を昇華性有機材料粉末と熱伝導性非昇華性材料粉末との混合物を団結させて形成する方法が提案されている(特許文献2参照)。
 しかし、この提案では、熱伝導性非昇華性材料粉末を含むペレット状の有機蒸着材料においても、前記蒸着の際の加熱を実施しづらいという問題を大きく改善することはできず、安定した蒸着速度での蒸着を行うことができないという問題がある。蒸着速度がバラツクと、有機デバイスの素子性能にバラツキが生じるとともに、大面積の有機層を成膜する際に、膜厚のバラツキが大きく、歩留まり低下の原因となるという問題がある。
特開平11-92915号公報 特開2003-115381号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、蒸着速度の安定性に優れ、大面積の有機化合物を含む膜を均一に成膜することができるとともに、有機デバイスの性能がバラつくことを低減させる有機デバイス用蒸着材料及び該有機デバイス用蒸着材料を用いた有機デバイスの製造方法を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 有機デバイスの製造に用いられる蒸着材料であって、D50%で表される平均粒径が10μm~200μmであり、かつ、D60%径/D10%径で表される均一度が1.0~4.0であることを特徴とする有機デバイス用蒸着材料である。
 <2> 有機化合物及び無機酸化物のいずれかを含有する前記<1>に記載の有機デバイス用蒸着材料である。
 <3> 有機電界発光素子における一対の電極間に配される少なくとも一つの有機層の形成に用いられる前記<1>から<2>のいずれかに記載の有機デバイス用蒸着材料である。
 <4> 有機層が発光層である前記<3>に記載の有機デバイス用蒸着材料である。
 <5> Ir錯体及びPt錯体のいずれかを含む前記<4>に記載の有機デバイス用蒸着材料である。
 <6> 前記<1>から<5>のいずれかに記載の有機デバイス用蒸着材料をフラッシュ蒸着法により蒸着させて有機層を形成する工程を含むことを特徴とする有機デバイスの製造方法である。
 <7> 前記<6>に記載の有機デバイスの製造方法により製造されたことを特徴とする有機デバイスである。
 本発明によれば、従来の前記諸問題を解決することができ、前記目的を達成することができ、蒸着速度の安定性に優れ、大面積の有機化合物を含む蒸着膜を均一に成膜することができるとともに、有機デバイスの性能がバラツクことを低減させる有機デバイス用蒸着材料及び該有機デバイス用蒸着材料を用いた有機デバイスの製造方法を提供することができる。
図1は、有機電界発光素子の構成例を示す断面図である。 図2は、有機電界発光素子の時間-輝度変化特性を示すグラフである。
(有機デバイス用蒸着材料)
 本発明の有機デバイス用蒸着材料は、有機デバイスの製造に用いられる蒸着材料であって、D50%で表される平均粒径が10μm~200μmであり、かつ、D60%径/D10%径で表される均一度が1.0~4.0であり、昇華精製されたものが好ましい。
 前記D50%で表される平均粒径は、10μm~200μmであり、20μm~180μmが好ましく、40μm~150μmがより好ましく、50μm~120μmが特に好ましい。
 前記D50%で表される平均粒径が、10μm未満であると、粒子同士の会合や粒子同士の接触の増大による静電気の発生などにより安定した蒸着速度を維持できず、200μmを超えると、単位時間当たりの粒子の落下量の変化が大きくなりやはり安定した蒸着速度を維持できないことがある。
 なお、前記D50%は、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量となるときの平均粒径を示す。
 前記D50%で表される平均粒径(以下、単に「平均粒径」ともいう。)は、粒度曲線から通過百分率もしくは累積百分率の50%の値を読み取ることにより決定できる。粒度曲線の作成は、特に制限はないが、例えば試料をふるいにかけて、試料の重量百分率で目開き何μmのふるいを何%通過したか調べ、横軸に目開き径、縦軸に通過百分率をプロットする方法やレーザー回折粒度分析計用いて累積分布測定を行う方法等が挙げられる。
 前記D60%径/D10%径で表される均一度(以下、単に「均一度」ともいう。)は、1.0~4.0であり、1.0~3.5が好ましく、1.0~3.2がより好ましく、1.0~3.0が特に好ましい。
 前記均一度が、1.0未満であると、原理的に達成できず、4.0を超えると、単位時間当たりの粒子の落下量の変化が大きくなりやはり安定した蒸着速度を維持できないことがある。
 なお、前記D60%径は、粒度曲線において通過百分率もしくは累積百分率が60%になるときの粒径を示し、前記D10%径は、粒度曲線において通過百分率もしくは累積百分率が10%になるときの粒径を示す。
 前記D60%径/D10%径で表される均一度の測定方法としては、特に制限はなく、例えば、ふるい分けによる方法やレーザー回折粒度分析計による測定方法等が挙げられ、作成した粒度曲線から通過百分率もしくは累積百分率が60%となる粒径と10%になる粒径を読み取りその比を計算して均一度の値を得ることができる。
 前記平均粒径及び均一度を有する有機デバイス用蒸着材料の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、粉砕装置で粉砕した後、所望の目開きを有するメッシュにより篩いをかけることにより、前記平均粒径及び均一度が調整された有機デバイス用蒸着材料を製造する方法が挙げられる。
 前記有機デバイス用蒸着材料の蒸着方法としては、特に制限はなく、抵抗加熱法、フラッシュ蒸着法等が挙げられるが、フラッシュ蒸着法が好ましい。前記有機デバイス用蒸着材料は、蒸着速度の安定性に優れることから、蒸着速度を挙げても信頼性の高い蒸着膜が得られ、また、長時間安定した蒸着を行うことができる。
 前記フラッシュ蒸着法によると、長時間の加熱により分解しやすい蒸着材料でも、分解させることなく安定して連続蒸着することができ、また無機酸化物では蒸着材料の組成比に近い状態の膜を作製することができる。なお、フラッシュ蒸着法については、後述の有機デバイスの製造方法において説明するすべての事項を適用することができる。
 前記有機デバイス用蒸着材料としては、前記平均粒径及び前記均一度を満たすものであれれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機化合物及び無機酸化物が挙げられ、例えば、発光材料、ホスト材料、ドーパント材料等が挙げられ、昇華精製されたものが好ましい。
 ここで、昇華精製とは、化合物の昇華温度の差を用いて、不純物と目的物とを分離する精製法である。昇華精製の態様については、特に限定されない。製造規模や製造環境などに応じて、適宜、昇華精製装置の形態が選択されればよい。ガスをフローし、温度調節を厳密に行うことによって、得られる目的物の純度が向上しうる。
 前記有機化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、2種の有機化合物の混合物であることが好ましい。
-発光材料-
 前記発光材料は、蛍光発光材料でも燐光発光材料であってもよく、2種以上が混合されていてもよい。
 前記発光性ドーパントは、ホスト化合物との間で、イオン化ポテンシャルの差(ΔIp)と電子親和力の差(ΔEa)が、1.2eV>△Ip>0.2eV、及び/又は1.2eV>△Ea>0.2eVの関係を満たすドーパントであることが、駆動耐久性の観点で好ましい。
 前記発光層中の発光性ドーパントの含有量は、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%~50質量%が好ましく、耐久性、外部量子効率の観点から1質量%~50質量%がより好ましく、2質量%~40質量%が更に好ましい。
--燐光発光材料--
 前記燐光発光材料としては、特に制限はなく、目的に応じて適宜選択することができ、遷移金属原子又はランタノイド原子を含む錯体、などが挙げられる。
 前記遷移金属原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えばルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、金、銀、銅、白金、などが挙げられる。これらの中でも、レニウム、イリジウム、白金が好ましく、イリジウム、白金が特に好ましい。
 前記錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry, Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer-Verlag社1987年発行、山本明夫著「有機金属化学-基礎と応用-」裳華房社1982年発行等に記載の配位子、などが挙げられる。
 前記錯体は、化合物中に遷移金属原子を1つ有してもよいし、2つ以上有するいわゆる複核錯体であってもよい。なお、異種の金属原子を同時に含有していてもよい。
 前記燐光発光材料としては、例えば、米国特許第6303238号明細書、米国特許第6097147号明細書、WO00/57676号パンフレット、WO00/70655号パンフレット、WO01/08230号パンフレット、WO01/39234号パンフレット、WO01/41512号パンフレット、WO02/02714号パンフレット、WO02/15645号パンフレット、WO02/44189号パンフレット、WO05/19373号パンフレット、WO2004/108857号パンフレット、WO2005/042444号パンフレット、WO2005/042550号パンフレット、特開2001-247859号公報、特開2002-302671号公報、特開2002-117978号公報、特開2003-133074号公報、特開2002-235076号公報、特開2003-123982号公報、特開2002-170684号公報、EP1211257号明細書、特開2002-226495号公報、特開2002-234894号公報、特開2001-247859号公報、特開2001-298470号公報、特開2002-173674号公報、特開2002-203678号公報、特開2002-203679号公報、特開2004-357791号公報、特開2006-93542号公報、特開2006-261623号公報、特開2006-256999号公報、特開2007-19462号公報、特開2007-84635号公報、特開2007-96259号公報等に記載の燐光発光化合物などが挙げられる。
 これらの中でも、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、Ce錯体等の錯体が好ましく、Ir錯体、Pt錯体が特に好ましい。
 前記各錯体としては、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましく、発光効率、有機デバイスの駆動耐久性、色度等の観点から、3座以上の多座配位子を含む錯体がより好ましい。
 前記Ir錯体及び前記Pt錯体の好ましい化合物の例を以下に例示する。

Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
--蛍光発光材料--
 前記蛍光発光材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(例えばアントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、又はペンタセン等)、8-キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、又はこれらの誘導体、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-ホスト材料-
 前記ホスト材料は、電荷輸送材料であることが好ましい。該ホスト材料は1種であっても2種以上であってもよい。
 前記電荷輸送材料としては、正孔輸送性に優れる正孔輸送性ホスト材料、及び電子輸送性に優れる電子輸送性ホスト材料を用いることができる。
--正孔輸送性ホスト材料--
 前記正孔輸送性ホスト材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、又はそれらの誘導体、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、インドール誘導体、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体が好ましく、分子内にカルバゾール基を有するものがより好ましく、t-ブチル置換カルバゾール基を有する化合物が特に好ましい。
--電子輸送性ホスト材料--
 前記電子輸送性ホスト材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ-ル、オキサゾール、オキサジアゾール、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物;フタロシアニン又はこれらの誘導体(他の環と縮合環を形成してもよい)、8-キノリノ-ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ-ルやベンゾチアゾ-ルを配位子とする金属錯体に代表される各種金属錯体、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、耐久性の点から金属錯体化合物が好ましく、金属に配位する少なくとも1つの窒素原子又は酸素原子又は硫黄原子を有する配位子をもつ金属錯体がより好ましい。
 前記金属錯体化合物としては、例えば特開2002-235076号公報、特開2004-214179号公報、特開2004-221062号公報、特開2004-221065号公報、特開2004-221068号公報、特開2004-327313号公報等に記載の化合物、などが挙げられる。
 本発明に用いることができる正孔輸送性ホスト材料及び電子輸送性ホスト材料としては、以下の化合物、及びこれらの重水素化体を挙げることができるが、これらに限定されるものではない。

Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
-ドーパント材料-
 前記ドーパント材料としては、特に制限はなく、目的に応じて適宜選択することができ、電子受容性ドーパントでも、電子供与性ドーパントでもよい。
 前記電子受容性ドーパントとしては、特に制限はなく、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
 前記無機化合物としては、例えば、ハロゲン化金属、金属酸化物などが挙げられる。
 前記ハロゲン化金属としては、例えば、塩化第二鉄、塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどが挙げられる。
 前記金属酸化物としては、例えば、五酸化バナジウム、三酸化モリブデン(MoO)などが挙げられる。
 前記有機化合物としては、例えば置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基等を有する化合物;キノン系化合物、酸無水物系化合物、フラーレン、などが挙げられる。
 前記電子供与性ドーパントとしては、特に制限はなく、電子供与性で有機化合物を還元する性質を有していればよく、Li等のアルカリ金属、Mg等のアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に挙げられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、Ybなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。
 また、正孔ブロック材料として、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
(有機デバイスの製造方法)
 本発明の有機デバイスの製造方法は、前記本発明の有機デバイス用蒸着材料をフラッシュ蒸着法により蒸着させて有機層を形成する工程を含み、必要に応じたその他の工程を含む。
 前記フラッシュ蒸着法とは、蒸着源加熱部に蒸着材料粉末を連続的に供給しながら成膜する蒸着方法であり、蒸着材料の組成ズレや長時間加熱による材料の分解を防ぐことができる利点を有する。
 前記フラッシュ蒸着時における圧力としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、10-1Pa~10-8Paが好ましく、10-3Pa~10-7Paがより好ましく、10-4Pa~10-6Paが特に好ましい。
 前記圧力が、10-8Pa未満であると、不純物や意図せぬガスなどの混入を防ぐことができるが真空引きだけで数日間費やす必要があり生産性が低いことがあり、10-1Paを超えると、気化した蒸着材料の基板への到達確率が下がり材料利用効率が極端に低下してしまうことがある。また、フラッシュ蒸着源から基板までの気化した蒸着材料の流れを制御するために、窒素やアルゴンなどの不活性なキャリアガスを導入してもよい。
 前記フラッシュ蒸着時における加熱温度としては、特に制限はなく、蒸着材料に応じて適宜選択することができる。
 前記フラッシュ蒸着における蒸着速度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.01nm/s~10nm/sが好ましく、0.1nm/s~5nm/sがより好ましく、0.5nm/s~2nm/sが特に好ましい。
 前記蒸着速度が、0.01nm/s未満であると、成膜に時間がかかり生産性が低くなることがあり、10nm/sを超えると、蒸着速度の安定や膜厚制御が難しくなることがある。
 なお、本明細書において、nm/sの単位をÅ/sの単位(0.1nm/s)で表すことがある。
 前記フラッシュ蒸着における蒸着速度に関し、該蒸着速度をv(nm/s)に設定したときの、最も遅い実測の蒸着速度をvmin(nm/s)とし、最も速い実測の蒸着速度をvmax(nm/s)としたとき、vmin-vmax(nm/s)で表される蒸着速度安定幅としては、特に制限はないが、例えば、0nm/s~0.3nm/sが好ましく、0nm/s~0.2nm/sがより好ましく、0nm/s~0.1nm/sが特に好ましい。
 前記蒸着速度安定幅が、0.3nm/sを超えると、製造安定性、歩留まり、デバイス性能などの悪化を引き起こすことがある。
 前記その他の工程としては、特に制限はなく目的に応じて適宜選択することができ、公知の有機デバイスの製造において実施される工程を挙げることができる。
 前記有機デバイス用蒸着材料によれば、蒸着速度の安定性に優れ、大面積の有機化合物を含む膜を均一に成膜することができるとともに、有機デバイスの性能がバラつくことを低減させることができるため、有機電界発光素子、有機薄膜太陽電池、有機電界効果トランジスタ等の有機デバイスに好適に用いることができる。
 前記有機デバイスの中でも有機電界発光素子に好適に用いることができる。
 一般に、有機電界発光素子は、時間の経過とともに輝度の低下が確認され、高輝度性が求められる。特に、従来の有機電界発光素子においては、輝度が時間の経過とともに指数対数的に低下する初期低下が見られ、早期に大きな輝度の低下が確認される(図2参照)。これは、有機電界発光素子の品質上大きな問題となっている。
 しかしながら、本発明の有機デバイス用蒸着材料を用いて有機層が形成された有機電界発光素子において、前記初期低下を抑えることができる(図2参照)。
 この理由としては、蒸着速度の変動幅が大きいと、特に発光層においてゲスト濃度とホスト濃度の混合比が設定値から外れるため期待される耐久性が得られないが、本発明の製造方法を用いて安定で厳密な蒸着速度制御することにより歩留まりよく高性能な有機デバイスを製造することが可能となる。
 以下では、本発明の有機デバイス用蒸着材料を用いて製造される有機デバイスの好ましい態様として、有機電界発光素子を説明する。
(有機電界発光素子)
 前記有機電界発光素子は、一対の電極間に、少なくとも一つの有機層を含み、該有機層は、前記本発明の有機デバイス用蒸着材料により形成される。
 前記有機層の構成としては、特に制限はなく、目的に応じて適宜選択することができ、発光層、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔ブロック層、及び電子ブロック層を含み、必要に応じてその他の層を含んでなる。
<発光層>
 前記発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
 前記発光層は、前記発光材料を含み、前記ホスト材料を含むものであってもよい。即ち、該発光層としては、前記発光材料のみで構成されていてもよいし、前記ホスト材料と前記発光材料の混合層でもよい。
 更に、前記発光層中に電荷輸送性を有さず、発光しない材料を含んでいてもよい。
 前記発光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、2nm~500nmが好ましく、外部量子効率の観点から、3nm~200nmがより好ましく、5nm~100nmが更に好ましい。また、前記発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
<正孔注入層、正孔輸送層>
 前記正孔注入層及び正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
 前記正孔注入層及び正孔輸送層としては、前記正孔輸送性ホスト材料、前記電子受容性ドーパント等の材料を含み形成される。
 前記正孔注入層及び正孔輸送層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~500nmが好ましく、5nm~200nmがより好ましく、10nm~100nmが更に好ましい。
 前記正孔注入層及び正孔輸送層は、1種又は2種以上の材料からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<電子注入層、電子輸送層>
 前記電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。
 前記電子輸送層としては、前記電子輸送性ホスト材料、前記電子供与性ドーパント等の材料を含み形成される。
 前記電子注入層、電子輸送層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
 前記電子輸送層の厚みとしては、1nm~500nmであることが好ましく、5nm~200nmであることがより好ましく、10nm~100nmであることが更に好ましい。
 また、電子注入層の厚みとしては、0.1nm~200nmであることが好ましく、0.2nm~100nmであることがより好ましく、0.5nm~50nmであることが更に好ましい。
 前記電子注入層、電子輸送層は、1種又は2種以上の材料からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<正孔ブロック層>
 前記正孔ブロック層は、陽極側から前記発光層に輸送された正孔が、陰極側に通り抜けることを防止する機能を有する層である。前記発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
 前記正孔ブロック層としては、前記正孔ブロック性材料を含み形成される。
 前記正孔ブロック層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 前記正孔ブロック層は、1種又は2種以上の材料からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<電子ブロック層>
 前記電子ブロック層は、陰極側から前記発光層に輸送された電子が陽極側に通り抜けることを防止する機能を有する層であり、通常、前記発光層と陽極側で隣接する有機層として設けられる。
 前記電子ブロック層としては、前記正孔輸送ドーパント等を含み形成される。
 前記電子ブロック層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~500nmが好ましく、5nm~200nmがより好ましく、10nm~100nmが更に好ましい。また電子ブロック層は、1種又は2種以上の材料からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<電極>
 前記有機電界発光素子は、一対の電極として陽極と陰極とを含む。前記有機電界発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は透明であることが好ましい。通常、陽極は有機層に正孔を供給する電極としての機能を有していればよく、陰極は有機層に電子を注入する電極としての機能を有していればよい。
 前記電極としては、その形状、構造、大きさ等については特に制限はなく、有機電界発光素子の用途、目的に応じて公知の電極材料の中から適宜選択することができる。
 前記電極を構成する材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物などが好適に挙げられる。
-陽極-
 前記陽極を構成する材料としては、例えば、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これらの金属と導電性金属酸化物との混合物又は積層物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;又はこれらとITOとの積層物などが挙げられる。これらの中でも、導電性金属酸化物が好ましく、生産性、高導電性、透明性等の点からはITOが特に好ましい。
-陰極-
 前記陰極を構成する材料としては、例えば、アルカリ金属(例えばLi、Na、K、Cs等)、アルカリ土類金属(例えばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム-カリウム合金、リチウム-アルミニウム合金、マグネシウム-銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
 これらの中でも、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
 前記アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%~10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム-アルミニウム合金、マグネシウム-アルミニウム合金など)をいう。
 前記電極の形成方法については、特に制限はなく、公知の方法に従って行うことができ、例えば印刷方式、コーティング方式等の湿式方式;真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式;CVD、プラズマCVD法等の化学的方式、などが挙げられる。これらの中でも、前記電極を構成する材料との適性を考慮し、適宜選択した方法に従って前記基板上に形成することができる。例えば、陽極の材料としてITOを選択する場合には、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って形成することができる。陰極の材料として金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って形成することができる。
 なお、前記電極を形成する際にパターニングを行う場合は、フォトリソグラフィー等による化学的エッチングによって行ってもよいし、レーザー等による物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
<基板>
 本発明の有機電界発光素子は、基板上に設けられていることが好ましく、電極と基板とが直接接する形で設けられていてもよいし、中間層を介在する形で設けられていてもよい。
 前記基板の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無機材料、ポリエステル樹脂、有機材料などが挙げられる。
 前記無機材料としては、例えば、イットリア安定化ジルコニア(YSZ)、ガラス(無アルカリガラス、ソーダライムガラス等)などが挙げられる。
 前記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレートなどが挙げられる。
 前記有機材料としては、例えば、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)などが挙げられる。
 前記基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。前記基板の形状としては、板状であることが好ましい。前記基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。前記基板は、透明でも不透明でもよく、透明な場合は無色透明でも有色透明でもよい。
 前記基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
 前記透湿防止層(ガスバリア層)の材料としては、例えば窒化珪素、酸化珪素等の無機物などが挙げられる。
 前記透湿防止層(ガスバリア層)は、例えば高周波スパッタリング法などにより形成することができる。
-その他の構成-
 前記その他の構成としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、保護層、封止容器、樹脂封止層、封止接着剤などが挙げられる。
 前記保護層、前記封止容器、前記樹脂封止層、前記封止接着剤などとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2009-152572号公報等に記載の事項を適用することができる。
 図1は、前記有機電界発光素子の層構成の一例を示す概略図である。前記有機電界発光素子10は、ガラス基板1上に形成された陽極2(例えばITO電極)と、正孔注入層3と、正孔輸送層4と、発光層5と、電子輸送層6と、電子注入層7と、陰極8(例えばAl-Li電極)とをこの順に積層してなる層構成を有する。なお、陽極2(例えばITO電極)と陰極8(例えばAl-Li電極)とは電源を介して互いに接続されている。
-駆動-
 前記有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
 前記有機電界発光素子は、薄膜トランジスタ(TFT)によりアクティブマトリックスへ適用することができる。薄膜トランジスタの活性層としてアモルファスシリコン、高温ポリシリコン、低温ポリシリコン、微結晶シリコン、酸化物半導体、有機半導体、カーボンナノチューブ等を適用することができる。
 本発明の有機電界発光素子は、例えばWO2005/088726号パンフレット、特開2006-165529号公報、米国特許出願公開2008/0237598A1号明細書などに記載の薄膜トランジスタを適用することができる。
 前記有機電界発光素子は、特に制限はなく、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板、ITO層、発光層等の有機層の屈折率を制御する、基板、ITO層、発光層等の有機層の厚みを制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
 本発明の有機電界発光素子からの光取り出し方式は、トップエミッション方式であってもボトムエミッション方式であってもよい。
 前記有機電界発光素子は、共振器構造を有してもよい。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明又は半透明電極、発光層、及び金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する(第一の態様)。
 第二の態様では、透明基板上に、透明又は半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
 共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長を得るのに最適な値となるよう調整される。
 前記第一の態様の場合の計算式は、特開平9-180883号公報に記載されている。
 前記第2の態様の場合の計算式は、特開2004-127795号公報に記載されている。
-用途-
 本発明の有機電界発光素子は、特に制限はなく、目的に応じて適宜選択することができ、例えば表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等に好適に利用できる。
 前記有機ELディスプレイをフルカラータイプのものとする方法としては、例えば「月刊ディスプレイ」、2000年9月号、33~37ページに記載されているように、色の3原色(青色(B)、緑色(G)、赤色(R))に対応する光をそれぞれ発光する有機電界発光素子を基板上に配置する3色発光法、白色発光用の有機電界発光素子による白色発光をカラーフィルターを通して3原色に分ける白色法、青色発光用の有機電界発光素子による青色発光を蛍光色素層を通して赤色(R)及び緑色(G)に変換する色変換法、などが知られている。また、上記方法により得られる異なる発光色の有機電界発光素子を複数組み合わせて用いることにより、所望の発光色の平面型光源を得ることができる。例えば、青色及び黄色の発光素子を組み合わせた白色発光光源、青色、緑色、赤色の発光素子を組み合わせた白色発光光源、などが挙げられる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれらに限定されるものではない。
[製造例1:実施例1~6及び比較例1~7]
 ホスト材料である下記構造式で表される化合物(A)を昇華精製装置(商品名:P-100、(株)ALSテクノロジー社製)を用いて昇華精製して回収したものを、スーパーマスコロイダー(MKCA6-2)を用いて砥石間隔を変えてミリングし、平均粒径1,500μm程度~20μm程度の粉末を作製した。
 更に小さい粒径の粉末を作るために乾式ジェットミル(NJ-50)を用いて粉砕を行い、20μm程度~1μm程度の粉末を作製した。
 これらの粉末の均一度を制御するために、目開き1,520μm~1μmまでの下記メッシュを用いて、前記作製した平均粒径1,500μm程度~1μm程度の粉末を段階的に篩いにかけて調整することにより、下記表1に示す平均粒径(D50%)と均一度(D60%径/D10%径)とを有する実施例1~6及び比較例1~7における有機デバイス用蒸着材料を製造した。
・目開き1,520μm~目開き20μmまで
  ステンレスメッシュ(セミテック社製)
・目開き15μm~目開き1μmまで
  ナイロンメッシュ(セミテック社製、NYTAL)
Figure JPOXMLDOC01-appb-C000007
(平均粒径及び均一度の測定)
 実施例1~6及び比較例1~7における有機デバイス用蒸着材料の平均粒径(D50%)と均一度(D60%径/D10%径)の測定は、レーザー回折散乱式粒度分析計(日機装社製、マイクロトラックMT3000II)を用いて行った。結果を下記表1に示す。
(蒸着速度の測定方法及び蒸着速度安定性の評価)
 実施例1~6及び比較例1~7における有機デバイス用蒸着材料の蒸着速度の測定は、蒸着装置(トッキ社製)を用い、真空室内でフラッシュ蒸着部に有機デバイス用蒸着材料を攪拌羽根を用いて一定速度で落下させ、蒸着速度12.0Å/s(=1.2nm/s)でフラッシュ蒸着部から基板に蒸着させたとき、フラッシュ蒸着部から基板までの距離と同じ距離に設置された水晶振動子に堆積する有機デバイス用蒸着材料の蒸着速度を膜厚モニター(アルバック社製、CRTM-9000)で測定し、安定状態における蒸着速度の最小値と最大値とを記録することにより行った。
 また、蒸着速度安定性の評価は、前記測定された蒸着速度の最小値と最大値との差をとり、該差を下記基準により評価することによって行った。結果を下記表1に示す。
<蒸着速度安定性の評価基準>
  ○:2Å/s以下
  △:2Å/sを超え、3Å/s以下
  ×:3Å/sを超える
(製造例1の有機電界発光素子の作製)
 厚みが0.5mm、2.5cm角のガラス基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス基板上に真空蒸着法にて以下に示す各層を形成した。特に断りがない限り有機材料はフラッシュ蒸着により成膜した。なお、以下の実施例及び比較例における蒸着速度は、特に断りのない場合は1.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。
<陽極>
 ガラス基板上に、ITO(Indium Tin Oxide)を、厚みが100nmになるようにスパッタ蒸着した。
<正孔注入層>
 陽極(ITO)上に、2-TNATA(4,4’,4’’-Tris(N-(2-naphtyl)-N-phenyl-amino)-triphenylamine)と、ドーパントとして1質量%のF4-TCNQ(2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane)とを、厚みが120nmになるように共蒸着して、正孔注入層を形成した。
<第一正孔輸送層>
 正孔注入層上に、α-NPD(Bis[N-(1-naphthyl)-N-pheny]benzidine)を、厚みが7nmになるように蒸着して、第一正孔輸送層を形成した。
<第二正孔輸送層>
 第一正孔輸送層上に、下記構造式からなる正孔輸送材料1を、厚みが3nmになるように蒸着して、第二正孔輸送層を形成した。
-正孔輸送材料1-
Figure JPOXMLDOC01-appb-C000008
<発光層>
 第二正孔輸送層上に、実施例1で用意した化合物(A)をホスト材料として、また、ゲスト材料として前記ホスト材料に対して10質量%の燐光発光材料であるIr(ppy)(tris(2-phenylpyridine)-iridium)をドープした発光層を、厚みが30nmになるように蒸着して、発光層を形成した。
<電子輸送層>
 前記発光層上に、電子輸送層としてBAlq(Bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolate)-aluminium(III))を厚みが30nmになるように蒸着して、電子輸送層を形成した。
<電子注入層>
 前記電子輸送層上に、LiFを厚みが1nmになるように蒸着した。
<陰極>
 電子注入層上に、陰極用にパタ-ニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、金属アルミニウムを厚みが100nmとなるように蒸着して、陰極を形成した。
 以上により作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶、及び紫外線硬化型の封止接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。以上により、実施例1の有機電界発光素子を作製した。
 また、発光層のホスト材料として平均粒径と均一度が異なる実施例2~6及び比較例1~7における化合物(A)を用いた有機デバイス用蒸着材料を蒸着材料として用いた以外は、実施例1と同様にして、実施例2~6及び比較例1~7における有機電界発光素子を作製した。
<初期低下の測定>
 各有機電界発光素子について、東陽テクニカ株式会社製ソースメジャーユニット2400を用いて、輝度2,000cd/mになるように直流電圧を印加し、輝度が1割落ちる時間が輝度半減時間の1/10以上の場合を「○」と評価し、1/10未満の場合を「×」と評価した。結果を表1に示す。
<成膜均一性の評価>
 20cm角ガラス基板上にフラッシュ蒸着により平均粒径と均一度が異なる実施例1~6及び比較例1~7における化合物(A)を蒸着材料として成膜し、該ガラス基板上に形成された化合物(A)の膜の基板中央部の膜厚と基板周辺部の膜厚を触針膜厚計(DEKTAK6M)にて測定し、その差が5%以内の場合を「○」、5%を超える場合を「×」と評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000009
 なお、表1に示されるÅ/sは、0.1nm/sを表す。
[製造例2:実施例7~9及び比較例8~11]
 製造例1において、ホスト材料である前記化合物(A)に代えて、下記構造式で表される化合物(B)からなる発光材料を用いた以外は、製造例1と同様にして、表2に示す実施例7~9及び比較例8~11における有機デバイス用蒸着材料を製造した(製造例2)。
 また、平均粒径及び均一度の測定、並びに蒸着速度の測定方法及び蒸着速度安定性の評価は、製造例1における有機デバイス用蒸着材料について行う方法と同様の方法で行った。結果を表2に示す。

Figure JPOXMLDOC01-appb-C000010
(製造例2の有機電界発光素子の作製)
 製造例1において、ホスト材料としてmCP(ビスカルバゾールベンゼン)を用いたこと、また、発光材料として平均粒径と均一度が異なる実施例7~9及び比較例8~11における化合物(B)を用いた有機デバイス用蒸着材料を蒸着材料として用いた以外は、製造例1と同様にして、実施例7~9及び比較例8~11における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000011
 なお、表2に示されるÅ/sは、0.1nm/sを表す。
[製造例3:実施例10~12及び比較例12~15]
 製造例1において、ホスト材料である前記化合物(A)に代えて、下記構造式で表される化合物(C)からなる発光材料を用いた以外は、製造例1と同様にして、表3に示す実施例10~12及び比較例12~15における有機デバイス用蒸着材料を製造した(製造例3)。
 また、平均粒径及び均一度の測定、並びに蒸着速度の測定方法及び蒸着速度安定性の評価は、製造例1における有機デバイス用蒸着材料について行う方法と同様の方法で行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-C000012
(製造例3の有機電界発光素子の作製)
 製造例2において、発光材料として、平均粒径と均一度が異なる実施例10~12及び比較例12~15における化合物(C)の化合物を用いた有機デバイス用蒸着材料を蒸着材料として用いた以外は、製造例2と同様にして、実施例10~12及び比較例12~15における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を表3に示す。

Figure JPOXMLDOC01-appb-T000013
 なお、表3に示されるÅ/sは、0.1nm/sを表す。
[製造例4:実施例13~15及び比較例16~19]
 製造例1において、ホスト材料である前記化合物(A)を粉砕することに代えて、粒径が0.5μm~900μm程度の市販品の三酸化モリブデン(MoO、フルウチ化学社製)を、粒径を適宜選択して用いた以外は、製造例1と同様にして、表4に示す実施例13~15及び比較例16~19における有機デバイス用蒸着材料を製造した(製造例4)。
 また、平均粒径及び均一度の測定、並びに蒸着速度の測定方法及び蒸着速度安定性の評価は、製造例1における有機デバイス用蒸着材料について行う方法と同様の方法で行った。結果を表4に示す。
(製造例4の有機電界発光素子の作製)
 製造例1において、ホスト材料としてmCP(ビスカルバゾールベンゼン)を用いたこと、また、正孔注入層のドーパントとして平均粒径と均一度が異なる実施例13~15及び比較例16~19における三酸化モリブデンを用いた有機デバイス用蒸着材料を蒸着材料として用いた以外は、製造例1と同様にして、実施例13~15及び比較例16~19における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014
 なお、表4に示されるÅ/sは、0.1nm/sを表す。
[製造例5:実施例16~18及び比較例20~23]
 製造例1において、ホスト材料である前記化合物(A)に代えて、下記構造式で表される化合物(D)からなる発光材料を用いた以外は、製造例1と同様にして、表5に示す実施例16~18及び比較例20~23における有機デバイス用蒸着材料を製造した(製造例5)。
 また、平均粒径及び均一度の測定、並びに蒸着速度の測定方法及び蒸着速度安定性の評価は、製造例1における有機デバイス用蒸着材料について行う方法と同様の方法で行った。結果を表5に示す。

Figure JPOXMLDOC01-appb-C000015
(製造例5の有機電界発光素子の作製)
 製造例1において、ホスト材料としてmCP(ビスカルバゾールベンゼン)を用いたこと、また、発光材料として平均粒径と均一度が異なる実施例16~18及び比較例20~23における化合物(D)を用いた有機デバイス用蒸着材料を蒸着材料として用いた以外は、製造例1と同様にして、実施例16~18及び比較例20~23における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000016
 なお、表5に示されるÅ/sは、0.1nm/sを表す。
[製造例6:実施例19~21及び比較例24~27]
 製造例1において、ホスト材料である前記化合物(A)に代えて、下記構造式で表される化合物(E)からなる発光材料を用いた以外は、製造例1と同様にして、表6に示す実施例19~21及び比較例24~27における有機デバイス用蒸着材料を製造した(製造例6)。
 また、平均粒径及び均一度の測定、並びに蒸着速度の測定方法及び蒸着速度安定性の評価は、製造例1における有機デバイス用蒸着材料について行う方法と同様の方法で行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-C000017
(製造例6の有機電界発光素子の作製)
 製造例1において、ホスト材料としてmCP(ビスカルバゾールベンゼン)を用いたこと、また、発光材料として平均粒径と均一度が異なる実施例19~21及び比較例24~27における化合物(E)を用いた有機デバイス用蒸着材料を蒸着材料として用いた以外は、製造例1と同様にして、実施例19~21及び比較例24~27における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を表6に示す。

Figure JPOXMLDOC01-appb-T000018
 なお、表6に示されるÅ/sは、0.1nm/sを表す。
[製造例7:実施例22~24及び比較例28~31]
 製造例1において、ホスト材料である前記化合物(A)の化合物に代えて、下記構造式で表される化合物(F)からなる発光材料を用いた以外は、製造例1と同様にして、表7に示す実施例22~24及び比較例28~31における有機デバイス用蒸着材料を製造した(製造例7)。
 また、平均粒径及び均一度の測定、並びに蒸着速度の測定方法及び蒸着速度安定性の評価は、製造例1における有機デバイス用蒸着材料について行う方法と同様の方法で行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-C000019
(製造例7の有機電界発光素子の作製)
 製造例1において、ホスト材料としてmCP(ビスカルバゾールベンゼン)を用いたこと、また、発光材料として平均粒径と均一度が異なる実施例22~24及び比較例28~31における化合物(F)を用いた有機デバイス用蒸着材料を蒸着材料として用いた以外は、製造例1と同様にして、実施例22~24及び比較例28~31における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000020
 なお、表7に示されるÅ/sは、0.1nm/sを表す。
[製造例8:比較例32~33]
 製造例1において、ホスト材料である前記構造式(A)の化合物に代えて、上記構造式(D)からなる発光材料を用い、昇華精製を行わなかったこと以外は、製造例1と同様にして、下記表8に示す比較例32~33における有機デバイス用蒸着材料を製造した(製造例8)。
 また、平均粒径及び均一度の測定、並びに蒸着速度の測定方法及び蒸着速度安定性の評価は、製造例1における有機デバイス用蒸着材料について行う方法と同様の方法で行った。結果を下記表8に示す。
(製造例8の有機電界発光素子の作製)
 製造例1において、ホスト材料としてmCP(ビスカルバゾールベンゼン)を用いたこと、また、発光材料として平均粒径と均一度が異なり、昇華精製を行わなかった比較例32~33における構造式(D)の化合物を用いた有機デバイス用蒸着材料を蒸着材料として用いたこと以外は、製造例1と同様にして、比較例32~33における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を下記表8示す。
Figure JPOXMLDOC01-appb-T000021
 なお、表8に示されるÅ/sは、0.1nm/sを表す。
 表8より、昇華精製をしていないと、粒径と均一度が範囲内に入っていても、蒸着速度安定性が悪いことが分かり、また、昇華精製を行い、材料中の不純物を取り除いた方が、初期低下を抑制できるだけでなく、蒸着速度が安定し、成膜均一性なども向上することが分かった。
[製造例9:比較例34~35]
 製造例1において、ホスト材料である前記構造式(A)の化合物に代えて、上記構造式(E)からなる発光材料を用い、昇華精製を行わなかったこと以外は、製造例1と同様にして、下記表9に示す比較例34~35における有機デバイス用蒸着材料を製造した(製造例9)。
 また、平均粒径及び均一度の測定、並びに蒸着速度の測定方法及び蒸着速度安定性の評価は、製造例1における有機デバイス用蒸着材料について行う方法と同様の方法で行った。結果を下記表9に示す。
(製造例9の有機電界発光素子の作製)
 製造例1において、ホスト材料としてmCP(ビスカルバゾールベンゼン)を用いたこと、また、発光材料として平均粒径と均一度が異なり、昇華精製を行わなかった比較例34~35における構造式(E)の化合物を用いた有機デバイス用蒸着材料を蒸着材料として用いたこと以外は、製造例1と同様にして、比較例34~35における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を下記表9に示す。
Figure JPOXMLDOC01-appb-T000022
 なお、表9に示されるÅ/sは、0.1nm/sを表す。
 表9より、昇華精製をしていないと、粒径と均一度が範囲内に入っていても、蒸着速度安定性が悪いことが分かり、また、昇華精製を行い、材料中の不純物を取り除いた方が、初期低下を抑制できるだけでなく、蒸着速度が安定し、成膜均一性なども向上することが分かった。
(製造例10の有機電界発光素子の作製)
 製造例1において、ホスト材料としての構造式(A)の化合物と、発光材料としての平均粒径と均一度が異なる構造式(E)の化合物とをあらかじめ質量比95:5で混合した有機デバイス用蒸着材料を蒸着材料として用いたこと以外は、製造例1と同様にして、実施例25及び比較例36における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を下記表10に示す。
Figure JPOXMLDOC01-appb-T000023
 なお、表10に示されるÅ/sは、0.1nm/sを表す。
 表10より、粒径と均一度が規定された材料は、1種類からなるものでもよいし、複数の材料が混合されたものでもよいことが分かった。
(製造例11の有機電界発光素子の作製)
 製造例1において、ホスト材料としての構造式(A)の化合物と、発光材料としての平均粒径と均一度が異なる構造式(F)の化合物とをあらかじめ質量比90:10で混合した有機デバイス用蒸着材料を蒸着材料として用いたこと以外は、製造例1と同様にして、実施例26及び比較例37における有機電界発光素子を製造した。
 これらの有機電界発光素子について、初期低下及び成膜均一性について製造例1と同様に評価した。結果を下記表11に示す。
Figure JPOXMLDOC01-appb-T000024
 なお、表11に示されるÅ/sは、0.1nm/sを表す。
 表11より、粒径と均一度が規定された材料は1種類からなるものでもよいし、複数の材料が混合されたものでもよいことが分かった。
 本発明の有機デバイス用蒸着材料及び該有機デバイス蒸着材料を用いた有機デバイスの製造方法によれば、蒸着速度の安定性に優れ、大面積の有機化合物を含む膜を均一に成膜することができるとともに、有機デバイスの性能がバラつくことを低減させる有機デバイス用蒸着材料及び該有機デバイス用蒸着材料を用いた有機デバイスの製造方法を提供することできるので、有機電界発光素子、及び有機薄膜太陽電池、有機電界効果トランジスタなどの有機デバイスの製造分野において好適に用いられる。
   1   基板
   2   陽極
   3   正孔注入層
   4   正孔輸送層
   5   発光層
   6   電子輸送層
   7   電子注入層
   8   陰極
  10   有機電界発光素子

Claims (7)

  1.  有機デバイスの製造に用いられる蒸着材料であって、D50%で表される平均粒径が10μm~200μmであり、かつD60%径/D10%径で表される均一度が1.0~4.0であることを特徴とする有機デバイス用蒸着材料。
  2.  有機化合物及び無機酸化物のいずれかを含有する請求項1に記載の有機デバイス用蒸着材料。
  3.  有機電界発光素子における一対の電極間に配される少なくとも一つの有機層の形成に用いられる請求項1から2のいずれかに記載の有機デバイス用蒸着材料。
  4.  有機層が発光層である請求項3に記載の有機デバイス用蒸着材料。
  5.  Ir錯体及びPt錯体のいずれかを含む請求項4に記載の有機デバイス用蒸着材料。
  6.  請求項1から5のいずれかに記載の有機デバイス用蒸着材料をフラッシュ蒸着法により蒸着させて有機層を形成する工程を含むことを特徴とする有機デバイスの製造方法。
  7.  請求項6に記載の有機デバイスの製造方法により製造されたことを特徴とする有機デバイス。
PCT/JP2010/062538 2009-07-31 2010-07-26 有機デバイス用蒸着材料及び有機デバイスの製造方法 WO2011013626A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127004448A KR101235776B1 (ko) 2009-07-31 2010-07-26 유기 디바이스용 증착 재료 및 유기 디바이스의 제조 방법
CN2010800331451A CN102473854B (zh) 2009-07-31 2010-07-26 用于有机器件的沉积材料以及用于制备有机器件的方法
EP10804372A EP2461387A4 (en) 2009-07-31 2010-07-26 VAPOR DEPOSITION MATERIAL FOR ORGANIC DEVICE AND METHOD FOR MANUFACTURING ORGANIC DEVICE
US13/387,982 US20120135239A1 (en) 2009-07-31 2010-07-26 Deposition material for organic device, and method for producing organic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009179957 2009-07-31
JP2009-179957 2009-07-31
JP2009-219311 2009-09-24
JP2009219311 2009-09-24

Publications (1)

Publication Number Publication Date
WO2011013626A1 true WO2011013626A1 (ja) 2011-02-03

Family

ID=43529282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062538 WO2011013626A1 (ja) 2009-07-31 2010-07-26 有機デバイス用蒸着材料及び有機デバイスの製造方法

Country Status (7)

Country Link
US (1) US20120135239A1 (ja)
EP (1) EP2461387A4 (ja)
JP (1) JP4801211B2 (ja)
KR (1) KR101235776B1 (ja)
CN (1) CN102473854B (ja)
TW (1) TWI486467B (ja)
WO (1) WO2011013626A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662893B2 (ja) * 2011-07-25 2015-02-04 富士フイルム株式会社 光電変換素子用蒸着材料及び光電変換素子、センサ、撮像素子
KR20140140417A (ko) * 2013-05-29 2014-12-09 삼성디스플레이 주식회사 유기 발광 소자
JP6111171B2 (ja) * 2013-09-02 2017-04-05 東京エレクトロン株式会社 成膜方法及び成膜装置
KR20160049974A (ko) * 2014-10-28 2016-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자기기, 및 조명 장치

Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203763A (ja) * 1987-02-18 1988-08-23 Asahi Glass Co Ltd 物理蒸着用の錫を含む酸化インジウム焼結体の製法
JPH04268067A (ja) * 1991-02-20 1992-09-24 Anelva Corp 粉体供給装置
JPH05178614A (ja) * 1991-12-11 1993-07-20 Ishikawajima Harima Heavy Ind Co Ltd 酸化物超電導体膜の製造方法及び製造装置
JPH06161137A (ja) * 1992-11-18 1994-06-07 Fuji Electric Co Ltd 電子写真用セレン感光体の製造方法
JPH07326801A (ja) * 1994-06-01 1995-12-12 Matsushita Electric Ind Co Ltd 薄膜熱電材料の製造方法
JPH09180883A (ja) 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc 微小光共振器型有機電界発光素子
JPH09219289A (ja) * 1996-02-09 1997-08-19 Chisso Corp 有機薄膜電界発光素子とその製造方法
JPH1192915A (ja) 1997-09-24 1999-04-06 Idemitsu Kosan Co Ltd 蒸着方法および有機エレクトロルミネッセンス素子
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
WO2000057676A1 (en) 1999-03-23 2000-09-28 The University Of Southern California Cyclometallated metal complexes as phosphorescent dopants in organic leds
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001008230A1 (en) 1999-07-21 2001-02-01 The Trustees Of Princeton University Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices
WO2001039234A2 (en) 1999-11-24 2001-05-31 The Trustees Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2001247859A (ja) 1999-12-27 2001-09-14 Fuji Photo Film Co Ltd オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
JP2001298470A (ja) 2000-04-11 2001-10-26 Dx Antenna Co Ltd データ伝送システム
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002117978A (ja) 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
EP1211257A2 (en) 2000-12-01 2002-06-05 Canon Kabushiki Kaisha Metal coordination compound, luminescence device and display apparatus
WO2002044189A1 (fr) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Element luminescent et afficheur
JP2002170684A (ja) 2000-09-21 2002-06-14 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002173674A (ja) 2000-09-21 2002-06-21 Fuji Photo Film Co Ltd 発光素子および新規レニウム錯体
JP2002203678A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203679A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002226495A (ja) 2000-11-29 2002-08-14 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002235076A (ja) 2001-02-09 2002-08-23 Fuji Photo Film Co Ltd 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP2002234894A (ja) 2000-11-29 2002-08-23 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2003115381A (ja) 2001-07-03 2003-04-18 Eastman Kodak Co 有機材料の取扱い方法及び有機層の形成方法
JP2003123982A (ja) 2001-08-07 2003-04-25 Fuji Photo Film Co Ltd 発光素子及び新規イリジウム錯体
JP2003133074A (ja) 2001-02-01 2003-05-09 Fuji Photo Film Co Ltd 遷移金属錯体及び発光素子
JP2004127795A (ja) 2002-10-04 2004-04-22 Sony Corp 表示素子およびこれを用いた表示装置
JP2004214179A (ja) 2002-12-17 2004-07-29 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221068A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221065A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221062A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004327313A (ja) 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd 有機電界発光素子
WO2004108857A1 (en) 2003-06-02 2004-12-16 Fuji Photo Film Co., Ltd. Organic electroluminescent devices and metal complex compounds
JP2004357791A (ja) 2003-06-02 2004-12-24 Sea Shell:Kk 履物
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005042444A2 (ja) 2003-11-04 2005-05-12 Takasago Perfumery Co Ltd 白金錯体及び発光素子
WO2005042550A1 (de) 2003-10-30 2005-05-12 Merck Patent Gmbh Metallkomplexe mit bipodalen liganden
WO2005088726A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
JP2006093542A (ja) 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd 発光素子
JP2006165529A (ja) 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ
JP2006256999A (ja) 2005-03-16 2006-09-28 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006261623A (ja) 2004-09-22 2006-09-28 Fuji Photo Film Co Ltd 有機電界発光素子
JP2007019462A (ja) 2005-03-16 2007-01-25 Fujifilm Corp 有機電界発光素子
JP2007084635A (ja) 2005-09-21 2007-04-05 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007096259A (ja) 2005-04-25 2007-04-12 Fujifilm Corp 有機電界発光素子
US20080237598A1 (en) 2007-03-27 2008-10-02 Masaya Nakayama Thin film field effect transistor and display
JP2009152572A (ja) 2007-11-27 2009-07-09 Fujifilm Corp 有機電界発光素子
WO2010035446A1 (ja) * 2008-09-24 2010-04-01 出光興産株式会社 複合有機エレクトロルミネッセンス材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197218B1 (en) * 1997-02-24 2001-03-06 Superior Micropowders Llc Photoluminescent phosphor powders, methods for making phosphor powders and devices incorporating same
JP3586551B2 (ja) 1998-01-27 2004-11-10 松下電器産業株式会社 光記録媒体の製造方法及び製造装置
US6207239B1 (en) * 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
EP1367655A4 (en) * 2001-09-03 2009-05-06 Panasonic Corp SEMICONDUCTOR LIGHT EMITTING DEVICE, LIGHT EMITTING APPARATUS, AND METHOD FOR PRODUCING SEMICONDUCTOR LIGHT EMITTING DEVICE
EP1492768A1 (de) * 2002-03-28 2005-01-05 Basf Aktiengesellschaft Phenethylacrylamide, verfahren zu deren herstellung sowie sie enthaltende mittel
US20050281948A1 (en) * 2004-06-17 2005-12-22 Eastman Kodak Company Vaporizing temperature sensitive materials
US20060083694A1 (en) * 2004-08-07 2006-04-20 Cabot Corporation Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
US8425801B2 (en) * 2009-04-10 2013-04-23 Idemitsu Kosan Co., Ltd. Composite organic electroluminescent material and production method thereof

Patent Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203763A (ja) * 1987-02-18 1988-08-23 Asahi Glass Co Ltd 物理蒸着用の錫を含む酸化インジウム焼結体の製法
JPH04268067A (ja) * 1991-02-20 1992-09-24 Anelva Corp 粉体供給装置
JPH05178614A (ja) * 1991-12-11 1993-07-20 Ishikawajima Harima Heavy Ind Co Ltd 酸化物超電導体膜の製造方法及び製造装置
JPH06161137A (ja) * 1992-11-18 1994-06-07 Fuji Electric Co Ltd 電子写真用セレン感光体の製造方法
JPH07326801A (ja) * 1994-06-01 1995-12-12 Matsushita Electric Ind Co Ltd 薄膜熱電材料の製造方法
JPH09180883A (ja) 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc 微小光共振器型有機電界発光素子
JPH09219289A (ja) * 1996-02-09 1997-08-19 Chisso Corp 有機薄膜電界発光素子とその製造方法
JPH1192915A (ja) 1997-09-24 1999-04-06 Idemitsu Kosan Co Ltd 蒸着方法および有機エレクトロルミネッセンス素子
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
WO2000057676A1 (en) 1999-03-23 2000-09-28 The University Of Southern California Cyclometallated metal complexes as phosphorescent dopants in organic leds
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001008230A1 (en) 1999-07-21 2001-02-01 The Trustees Of Princeton University Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices
WO2001039234A2 (en) 1999-11-24 2001-05-31 The Trustees Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2001247859A (ja) 1999-12-27 2001-09-14 Fuji Photo Film Co Ltd オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2001298470A (ja) 2000-04-11 2001-10-26 Dx Antenna Co Ltd データ伝送システム
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP2002117978A (ja) 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002173674A (ja) 2000-09-21 2002-06-21 Fuji Photo Film Co Ltd 発光素子および新規レニウム錯体
JP2002170684A (ja) 2000-09-21 2002-06-14 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2002234894A (ja) 2000-11-29 2002-08-23 Canon Inc 金属配位化合物、発光素子及び表示装置
JP2002226495A (ja) 2000-11-29 2002-08-14 Canon Inc 金属配位化合物、発光素子及び表示装置
WO2002044189A1 (fr) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Element luminescent et afficheur
EP1211257A2 (en) 2000-12-01 2002-06-05 Canon Kabushiki Kaisha Metal coordination compound, luminescence device and display apparatus
JP2002203679A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203678A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2003133074A (ja) 2001-02-01 2003-05-09 Fuji Photo Film Co Ltd 遷移金属錯体及び発光素子
JP2002235076A (ja) 2001-02-09 2002-08-23 Fuji Photo Film Co Ltd 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP2003115381A (ja) 2001-07-03 2003-04-18 Eastman Kodak Co 有機材料の取扱い方法及び有機層の形成方法
JP2003123982A (ja) 2001-08-07 2003-04-25 Fuji Photo Film Co Ltd 発光素子及び新規イリジウム錯体
JP2004127795A (ja) 2002-10-04 2004-04-22 Sony Corp 表示素子およびこれを用いた表示装置
JP2004214179A (ja) 2002-12-17 2004-07-29 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221068A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221065A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221062A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004327313A (ja) 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004357791A (ja) 2003-06-02 2004-12-24 Sea Shell:Kk 履物
WO2004108857A1 (en) 2003-06-02 2004-12-16 Fuji Photo Film Co., Ltd. Organic electroluminescent devices and metal complex compounds
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005042550A1 (de) 2003-10-30 2005-05-12 Merck Patent Gmbh Metallkomplexe mit bipodalen liganden
WO2005042444A2 (ja) 2003-11-04 2005-05-12 Takasago Perfumery Co Ltd 白金錯体及び発光素子
WO2005088726A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
JP2006261623A (ja) 2004-09-22 2006-09-28 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006093542A (ja) 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd 発光素子
JP2006165529A (ja) 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ
JP2006256999A (ja) 2005-03-16 2006-09-28 Fuji Photo Film Co Ltd 有機電界発光素子
JP2007019462A (ja) 2005-03-16 2007-01-25 Fujifilm Corp 有機電界発光素子
JP2007096259A (ja) 2005-04-25 2007-04-12 Fujifilm Corp 有機電界発光素子
JP2007084635A (ja) 2005-09-21 2007-04-05 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20080237598A1 (en) 2007-03-27 2008-10-02 Masaya Nakayama Thin film field effect transistor and display
JP2009152572A (ja) 2007-11-27 2009-07-09 Fujifilm Corp 有機電界発光素子
WO2010035446A1 (ja) * 2008-09-24 2010-04-01 出光興産株式会社 複合有機エレクトロルミネッセンス材料

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKIO YAMAMOTO: "Organometallic Chemistry-Basis and Application", 1982, SHOKABO PUBLISHING CO., LTD.
G. WILKINSON ET AL.: "Comprehensive Coordination Chemistry", 1987, PERGAMON PRESS
H. YERSIN: "Photochemistry and Photophysics of Coordination Compounds", 1987, SPRINGER-VERLAG
MONTHLY DISPLAY, September 2000 (2000-09-01), pages 33 - 37
See also references of EP2461387A4

Also Published As

Publication number Publication date
EP2461387A1 (en) 2012-06-06
TW201116638A (en) 2011-05-16
US20120135239A1 (en) 2012-05-31
KR101235776B1 (ko) 2013-02-21
EP2461387A4 (en) 2013-01-23
JP2011091025A (ja) 2011-05-06
TWI486467B (zh) 2015-06-01
CN102473854B (zh) 2013-04-17
CN102473854A (zh) 2012-05-23
JP4801211B2 (ja) 2011-10-26
KR20120030163A (ko) 2012-03-27

Similar Documents

Publication Publication Date Title
WO2013088973A1 (ja) 有機電界発光素子
JP5324513B2 (ja) 有機電界発光素子
WO2011086863A1 (ja) 有機電界発光素子
US9277619B2 (en) Light emitting layer-forming solid material, organic electroluminescent device and method for producing the same
WO2012124642A1 (ja) 有機エレクトロルミネッセンス素子
JP4598136B1 (ja) 有機電界発光素子及びその製造方法
JP2010182637A (ja) 有機電界発光素子の製造方法及び有機電界発光素子
WO2011027749A1 (ja) 有機電界発光素子、有機電界発光素子の製造方法、表示装置及び照明装置
WO2011086866A1 (ja) 有機電界発光素子
JP5473506B2 (ja) カラーフィルタ及び発光表示素子
JP2011171279A (ja) 有機電界発光素子
JP4801211B2 (ja) 有機デバイス用蒸着材料、並びに、有機デバイス及びその製造方法
JP5670223B2 (ja) 有機電界発光素子
JP2004107441A (ja) 有機発光材料、有機発光素子およびこれを用いたディスプレイ
WO2011132540A1 (ja) 有機電界発光素子
JP4758513B2 (ja) 容器のスクリーニング方法
JP3903645B2 (ja) 有機電界発光素子
JP4523666B1 (ja) 有機電界発光素子成膜用組成物及び蒸着膜の製造方法
WO2020012686A1 (ja) 有機エレクトロルミネッセンス素子
JP4516624B1 (ja) 有機電界発光素子の検査方法及び有機電界発光素子用材料の検査方法
US20220199932A1 (en) Optoelectronic device including morphological stabilizing layer
JP5890504B2 (ja) 有機電界発光素子
CN117956820A (en) Organic electroluminescent material and device
WO2012161154A1 (ja) 有機電界発光素子及びその製造方法
JP2010171204A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033145.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010804372

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13387982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127004448

Country of ref document: KR

Kind code of ref document: A