WO2004082046A1 - Poudre de matiere active d'electrodes positives, pour accumulateur au lithium - Google Patents

Poudre de matiere active d'electrodes positives, pour accumulateur au lithium Download PDF

Info

Publication number
WO2004082046A1
WO2004082046A1 PCT/JP2004/003295 JP2004003295W WO2004082046A1 WO 2004082046 A1 WO2004082046 A1 WO 2004082046A1 JP 2004003295 W JP2004003295 W JP 2004003295W WO 2004082046 A1 WO2004082046 A1 WO 2004082046A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite oxide
powder
manganese composite
positive electrode
Prior art date
Application number
PCT/JP2004/003295
Other languages
English (en)
Japanese (ja)
Inventor
Manabu Suhara
Takuya Mihara
Koichiro Ueda
Yukimitsu Wakasugi
Original Assignee
Seimi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co., Ltd. filed Critical Seimi Chemical Co., Ltd.
Priority to JP2005503600A priority Critical patent/JPWO2004082046A1/ja
Publication of WO2004082046A1 publication Critical patent/WO2004082046A1/fr
Priority to US11/133,322 priority patent/US20050220700A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a lithium nickel cobalt manganese composite oxide powder for a lithium secondary battery positive electrode, which has a large volume capacity density, high safety, and excellent charge / discharge cycle durability.
  • the present invention relates to a positive electrode for a lithium secondary battery containing a powder, and a lithium secondary battery. Background art
  • non-aqueous electrolyte secondary batteries such as lithium secondary batteries
  • the positive electrode active material for non-aqueous electrolyte solution for a secondary battery L i Co 0 2, L i N i 0 2, L i N i a8 C o. 2 0 2, L iMn 2 0 4, L iMn0 composite oxide of lithium and transition metals such as 2 are known.
  • lithium cobalt composite oxide (L i Co0 2) as a positive electrode active material, a lithium alloy, graphite, lithium secondary batteries using carbon such as carbon fiber as a negative electrode, a high 4 V-class Since a voltage can be obtained, it is widely used as a battery with high energy density.
  • the active material be excellent in coating characteristics, self-discharge characteristics, and cycle characteristics.
  • the publication proposes a preferred embodiment in which Li CoO 2 has substantially no particle size distribution of 1 m or less or 25 / xm or more.
  • the coating characteristics and the cycle characteristics are improved, a material which sufficiently satisfies safety, volume capacity density, and weight capacity density has not been obtained.
  • Japanese Patent Application Laid-Open No. 2000-82466 discloses that the average particle diameter of lithium composite oxide particles is 0.1 to 50 m, A positive electrode active material that has two or more peaks in the distribution has been proposed. It has also been proposed to mix two types of positive electrode active materials having different average particle diameters to obtain a positive electrode active material having two or more peaks in the particle size distribution.
  • the weight capacity density and charge / discharge cycleability of the positive electrode may be improved, but the production of the positive electrode raw material powder having two types of particle size distribution is complicated, and the volume capacity density of the positive electrode, low No product that satisfies all of the requirements for completeness, coating uniformity, weight capacity density, and cycleability has been obtained.
  • Japanese Patent Application Laid-Open No. 3-201368 discloses that replacing 5 to 35% of Co atoms with W, Mn, Ta, Ti or Nb for improving cycle characteristics. Proposed.
  • Japanese Patent Application Laid-Open No. Hei 10-312805 discloses a hexagonal system in which the c-axis length of the lattice constant is 14.051 A or less, and the crystallite diameter of the crystallite in the (110) direction is 45 to 100 nm.
  • L i C O_ ⁇ 2 is possible to further improve the cycle characteristics to the cathode active material has been proposed.
  • JP 2001- the 80920 discloses, wherein L i X N i H, _ Z C o y Me 7 0 2 ( wherein, 0 ⁇ ⁇ 1. 1 , 0 ⁇ y ⁇ 0.6, O ⁇ z ⁇ 0.6), and an agglomerated granular lithium composite oxide in which fine powder is agglomerated, and a granular lithium composite oxide having a compressive strength per particle of 0.1-1.0 g g has been proposed.
  • the composite oxide has a problem of poor safety and poor high-current discharge characteristics, and at the compressive strength in the above-described small range, the volume capacity density, safety, cycle characteristics, and high-current discharge characteristics are low.
  • the present invention provides a lithium-nickel-cobalt-manganese composite oxide powder for a positive electrode of a lithium secondary battery, which satisfies these characteristics which have been difficult to achieve with the conventional techniques, and a lithium-nickel-cobalt-manganese composite oxide powder.
  • the purpose of the present invention is to provide a positive electrode for a lithium secondary battery and a lithium secondary battery. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that a large number of fine particles of lithium nickel cobalt manganese composite oxide having a specific composition for a lithium secondary battery positive electrode are formed by agglomeration, and the aggregated particulate composite having a specific average particle diameter is formed. Focusing on the relationship between the compressive crushing strength of the oxide powder and the volume capacity density of the positive electrode for a lithium secondary battery using the powder, it was found that both were in a positive correlation. That is, it was found that the larger the compressive breaking strength of the powder, the higher the volume capacity density of the obtained positive electrode. In addition, it has been confirmed that such a large volume capacity density of the positive electrode can be achieved without impairing other properties required for the positive electrode, such as volume capacity density, safety, cycle characteristics, and high-current discharge characteristics.
  • the volume capacity density is large, and the characteristics such as safety, cycle characteristics, and high current discharge characteristics are sufficiently improved.
  • a satisfactory lithium nickel cobalt manganese composite oxide for a lithium secondary battery positive electrode can be obtained.
  • the relationship between the compressive crushing strength and the volume capacity density of the positive electrode found in the present invention is, as described in Patent Document 5, to obtain a high initial discharge capacity per weight and a high capacity retention rate.
  • the new technology is contradictory to the conventional technology that controls the compressive strength of the lithium cobalt composite oxide powder for the lithium secondary battery positive electrode within a specified range and must not be larger than a predetermined value. It is an idea.
  • the present invention has the following features.
  • a lithium nickel cobalt manganese composite oxide powder for lithium secondary batteries which is a composite oxide powder and has a compressive crushing strength of 50 MPa or more.
  • a positive electrode for a lithium secondary battery comprising the lithium nickel cobalt manganese composite oxide according to any one of (1) to (7).
  • Lithium nickel cobalt 1 for lithium secondary battery positive electrode of the present invention manganese composite oxide powder is represented by the general formula Li p N i x Co y Mn z M a 0 2 _ a F a.
  • M, p, x, y, z, Q, and a are defined above.
  • the lithium nickel cobalt manganese composite oxide powder of the present invention contains Ni and Mn as essential components.
  • Ni in the numerical range of X in the above general formula, the discharge capacity is improved. If X is less than 0.2, the discharge capacity will be low, and if it exceeds 0.5, the safety will be reduced, which is not preferable.
  • Mn within the numerical range of z in the above general formula, safety is improved. If z is less than 0.2, the safety will be insufficient. On the other hand, if it exceeds 0.5, the discharge capacity is reduced and the large current discharge characteristics are undesirably reduced.
  • M is a transition metal element or an alkaline earth metal excluding Ni, Co, and Mn, and the transition metal element is a group 4, 5, 6, 7, 8, 9, or 9 of the periodic table. Represents transition metals of Groups 10 and 11. Among them, M is at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr, Ba, and A1. Among them, Ti, Zr, Hf, Mg or A1 is preferred from the viewpoint of capacity development, safety, cycle durability and the like.
  • both M and F exist on the surface of the lithium nickel cobalt manganese composite oxide particles. It is not preferable that the particles exist inside the particles because not only the effect of improving the battery characteristics is small, but also the battery characteristics may deteriorate. Due to its presence on the surface, small amounts of addition do not cause deterioration in battery performance.> Important battery characteristics such as safety and charge / discharge cycle characteristics can be improved. Whether M and F are present on the surface can be determined by performing spectroscopic analysis, for example, XPS analysis, on the positive electrode particles.
  • the lithium nickel cobalt manganese composite oxide of the present invention needs to be a granular powder formed by agglomeration of a large number of fine particles represented by the above general formula.
  • the fine particles are not particularly limited, but preferably have an average particle diameter D 50 (hereinafter, also referred to as a volume average particle diameter) of 0.5 to 7 m.
  • the average particle diameter D50 of the composite oxide powder formed by agglomeration of a large number of the fine particles is preferably 3 to 15 m, more preferably 5 to 12 mm. If the average particle size of the composite oxide powder is smaller than 3, it is difficult to form a dense electrode layer, and if it is larger than 15 m, large current discharge characteristics are undesirably reduced.
  • the powder of the aggregated granular composite oxide of the present invention needs to have a compression breaking strength (hereinafter, also simply referred to as compression strength) of 5 OMPa or more.
  • the compressive strength (St) is a value determined by the formula of Hiramatsu et al. Shown in the following formula 1 ("Journal of the Mining Industry", Vol. 81, No. 932, December 1965, pp. 1024-1030).
  • the above-mentioned aggregated granular composite oxide powder has a compressive strength of less than 50 MPa, it is difficult to form a dense electrode layer, and the electrode density decreases. As a result, the above object of the present invention cannot be achieved.
  • the compressive strength is particularly preferably from 80 to 300 MPa.
  • the lithium nickel cobalt manganese composite oxide of the present invention has a specific surface area of preferably 0.3 to 2.0 m 2 / g, particularly preferably 0.4 to 1.0 Om 2 / g, and the particle shape is It is preferably a substantially spherical shape such as a spherical shape or an elliptical shape.
  • the lithium nickel cobalt manganese composite oxide satisfies such properties, effects such as high capacity, high cycle durability and high safety are achieved.
  • 0.94 ⁇ x / z ⁇ l.06 and the amount of residual alkali contained is preferably 0.25% by weight or less. It is preferably at most 15% by weight.
  • 0.94 ⁇ x / z ⁇ 1.06 high capacity and high cycle durability can be obtained, and when the amount of residual alkali is 0.25% by weight or less, deterioration of the battery during high-temperature storage is small. it can.
  • the present invention further provides the above-described general formula Li p N i s C o y Mn z M Q 0 2 - microparticles of a F lithium nickel Copal Bok manganese composite oxide represented by a is formed by a number agglomerated
  • a large particle size lithium secondary battery which is an agglomerated granular composite oxide powder having an average particle diameter D50 of 3 to 15 m, preferably 8 to 15 m, and having a compressive fracture strength of 50 MPa or more.
  • the lithium nickel cobalt manganese composite oxide powder having a large particle size and the lithium nickel cobalt manganese composite oxide powder having a small particle size are The density of the electrodes is further improved by mixing at a weight ratio of the box, particularly preferably at a weight ratio of 8.5: 1.5 to 7: 3.
  • the lithium-nickel-cobalt-manganese composite oxide of the present invention is obtained by mixing a lithium source, a nickel source, a cobalt source, a manganese source, and a mixture of an M element source and a fluorine source, if necessary, in an oxygen-containing atmosphere. It is formed by firing at about 150 ° C.
  • the lithium source lithium carbonate, lithium hydroxide, and the like can be used, and particularly, lithium carbonate is preferably used.
  • lithium carbonate is used as the lithium source, the cost is lower than when lithium hydroxide is used, for example, and the inexpensive and high-performance lithium nickel cobalt manganese composite oxide desired by the present invention can be easily obtained. It is preferable because it can be obtained.
  • nickel, cobalt, and manganese sources nickel-cobalt-manganese composite oxyhydroxide and the like are used.
  • a hydroxide, an oxide, a carbonate, and a fluoride are preferably selected.
  • metal fluoride, L i F, M g F 2 and the like are selected.
  • the firing temperature is lower than 700, lithiation is incomplete, and if it exceeds 150 ° C, the charge / discharge cycle durability and the initial capacity decrease.
  • the firing temperature is preferably from 900 to 100 ° C.
  • the firing is preferably performed in multiple stages. Preferred examples include firing at 700 ° C. for several hours and firing at 900 to 100 O: for several hours.
  • a mixed powder of a lithium source, a nickel source, a cobalt source, a manganese source, and an optional M element source and a fluorine source is used at 700 to 150 ° C in an oxygen-containing atmosphere as described above. After baking for 5 to 20 hours, and cooling and pulverizing and classifying the obtained baking product, agglomerated particles in which fine particles of a lithium nickel cobalt manganese composite oxide of preferably 0.3 to 7 m are condensed are obtained. A composite oxide powder is formed.
  • the average particle size of the formed aggregated granular composite oxide powder divided by the compressive strength is controlled. Can be.
  • a positive electrode for a lithium secondary battery is manufactured from the lithium nickel cobalt manganese composite oxide, acetylene black, graphite, It is formed by mixing a carbon-based conductive material such as a rubber and a binder.
  • a binder polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethylcellulose, an acrylic resin, or the like is preferably used.
  • the powder, conductive material and binder of the lithium nickel cobalt manganese composite oxide of the present invention are used as a slurry or a kneaded material using a solvent or a dispersion medium, and are applied to a positive electrode current collector such as an aluminum foil or a stainless steel foil.
  • a positive electrode for a lithium secondary battery is manufactured.
  • a porous polyethylene, a porous polypropylene film or the like is used as a separator.
  • various solvents can be used as a solvent for the electrolyte solution of the battery, and among them, a carbonate ester is preferable.
  • Carbonate can be used in any of a ring shape and a chain shape.
  • Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC).
  • Examples of the chain carbonate include dimethyl carbonate, dimethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, methyl isopropyl carbonate and the like.
  • the above carbonate esters can be used alone or in combination of two or more. Further, it may be used by mixing with another solvent.
  • the combined use of a chain carbonate and a cyclic carbonate may improve discharge characteristics, cycle durability, and charge / discharge efficiency.
  • a vinylidene fluoride-hexafluoro propylene copolymer for example, manufactured by Atochem Co., Ltd .: Inaichi Co., Ltd.
  • a gel polymer containing vinylidene fluoride-fluoropropyl vinyl ether copolymer As the solute added to the above-mentioned electrolyte solvent or polymer electrolyte, cio 4 —,
  • Any one or more of the salts are preferably used.
  • the electrolyte solvent or the polymer electrolyte comprising the lithium salt 0.2 to 2.2. It is preferred to add at a concentration of O mo 1/1 (liter). Outside this range, the ionic conductivity decreases and the electrical conductivity of the electrolyte decreases. Among them, 0.5 to 1.5 mo 1/1 is particularly preferred.
  • a material capable of occluding and releasing lithium ions is used as the negative electrode active material.
  • the material forming the negative electrode active material is not particularly limited, and examples thereof include lithium metal, lithium alloy, carbon material, oxides, carbon compounds, and silicon carbide compounds mainly composed of metals in Groups 14 or 15 of the periodic table. , A silicon oxide compound, titanium sulfide, a boron carbide compound, and the like.
  • As the carbon material those obtained by thermally decomposing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flaky graphite and the like can be used.
  • the oxide a compound mainly composed of tin oxide can be used.
  • a copper foil, a nickel foil, or the like is used as the negative electrode current collector.
  • Such a negative electrode is preferably manufactured by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil collector, drying and pressing to obtain the slurry.
  • the shape of the lithium battery using the lithium nickel cobalt manganese composite oxide of the present invention as a positive electrode active material is not particularly limited. Sheets, films, folds, rolled bottomed cylinders, buttons, etc. are selected according to the application.
  • the X-ray diffraction analysis was performed using a RINT-2000 type Rigaku Corporation, Cu- ⁇ tube, tube voltage 40 KV, tube current 40 mA, light receiving slit 15 mm, The measurement was performed under the condition of a sampling width of 0.02 °.
  • particle size analysis was performed using a RINT-2000 type Rigaku Corporation, Cu- ⁇ tube, tube voltage 40 KV, tube current 40 mA, light receiving slit 15 mm.
  • Microtrac HRA X-100 from Leed + Northrup was used.
  • a sulfate aqueous solution containing nickel sulfate, cobalt sulfate, and manganese sulfate, an ammonia aqueous solution, and a sodium hydroxide aqueous solution were continuously added to the reaction tank, and the pH of the slurry in the reaction tank was 11 and the temperature was 50 ° C.
  • the solution was supplied while stirring the inside of the reaction vessel.
  • the amount of liquid in the reaction system was adjusted by an over-the-mouth method, and the overflowed coprecipitated slurry was removed. Filtration, washing with water, and drying at 70 ° C. yielded a nickel-cobalt-manganese composite hydroxide powder.
  • the obtained hydroxide is dispersed in a 6% by weight aqueous sodium persulfate solution containing 3% by weight of sodium hydroxide, and the mixture is stirred at 20 ° C. for 12 hours to obtain a nickel-cobalt-manganese composite oxyhydroxide.
  • a nickel-cobalt-manganese composite oxyhydroxide was synthesized.
  • This composite oxyhydroxide powder is mixed with lithium carbonate powder having an average particle size of 20 / m, and calcined in air at 900 ° C for 16 hours, followed by mixing and pulverization to obtain LiNi 1/3 Co 1/3 Mn 1/3 to give 0. 2 powder.
  • the specific surface area of this positive electrode powder determined by the nitrogen adsorption method was 0.58 m 2 / g, and the volume average particle diameter D50 was 11.
  • the powder X-ray diffraction spectrum using Cu- ⁇ ; lines was similar to the rhombohedral system (R-3m).
  • the SEM observation of the positive electrode powder particles revealed that the primary particles were innumerably aggregated to form secondary particles, and the shape was spherical or round.
  • LiNi 1/3 Co 1/3 Mn 1/3 0 2 powder obtained was measured compressive strength using a micro compression testing machine MCT-W500 manufactured by Shimadzu. That is, the test load was 100 mN, the load speed was 3.874 mN / sec, and the measurement was performed on 10 arbitrary particles with a known particle size using a flat indenter with a diameter of 50 m, and the compressive strength was obtained. Met.
  • 10 g of this LiNi 1/3 Co 1/3 Mn 1/3 0 2 powder was dispersed in 100 g of pure water, filtered, and the potential difference was measured with 0.02N HC 1 to determine the amount of residual alkali. 0.12% by weight.
  • the positive electrode powder, acetylene black, graphite powder, and PVDF binder were mixed at a solid content weight ratio of 88Z3Z3 / 6, and an N-methylpyrrolidone solvent was added thereto, followed by ball mill mixing to prepare a coating slurry.
  • This slurry was applied to one side of a 20- ⁇ m-thick aluminum foil current collector by the doctor blade method, the solvent was removed by hot-air drying, and then roll-pressed four times to produce a positive electrode sheet.
  • the apparent density of the electrode layer was determined from the thickness of the electrode layer of the positive electrode body and the weight of the electrode layer per unit area, and was found to be 3.14 gZcc.
  • the positive electrode sheet is used for the positive electrode
  • a 25-m-thick porous polypropylene is used for the separator
  • a 500-m-thick metallic lithium foil is used for the negative electrode
  • a 20-m nickel-nickel foil is used for the negative electrode current collector.
  • a simple sealed lithium battery cell made of stainless steel was assembled in an argon glove box using 1M LiPF 6 / EC + DEC (1: 1) as an electrolyte.
  • 1M LiPF 6 / EC + DEC (1: 1) as an electrolyte.
  • the battery was charged with CC-CV up to 4.3 V with a load current of, and discharged to 2.5 V with a load current of 20 mA per 1 g of the positive electrode active material to determine the initial discharge capacity. Further, a charge / discharge cycle test was performed 30 times.
  • the initial weight discharge capacity density at 2.5 to 4.3 V at 25 ° C was 161 mAh / g, and the initial volume discharge capacity density was 444 mA hZC C--electrode layer.
  • the charge / discharge efficiency was 89%, and the capacity retention after 30 charge / discharge cycles was 97.0%.
  • a nickel-cobalt-manganese composite oxyhydroxide (Ni / Co / Mn atomic ratio 1/1/1) was obtained in the same manner as in Example 1 except that the stirring speed in the coprecipitation slurry and the slurry concentration were increased.
  • the particle size distribution of the composite oxide was measured by a laser scattering method. As a result, the volume average particle size D 50 was 8.7 / 2 m.
  • the composite Okishi hydroxide powder was mixed with lithium carbonate powder, form baked in the same manner as in Example 1 to obtain a LiN 3 Co 1/3 Mn 1/3 0 2 powder were mixed and ground.
  • the specific surface area of this positive electrode powder measured by a nitrogen adsorption method was 0.70 m 2 / g, and the volume average particle diameter D50 was 9.4 im.
  • the powder X-ray diffraction spectrum using Cu-Ko! Line was similar to the rhombohedral system (R-3m).
  • the breaking strength of the particles determined in the same manner as in Example 1 was 114 Mpa.
  • the amount of residual alkali in the positive electrode powder was determined in the same manner as in Example 1, and found to be 0.13% by weight.
  • a positive electrode body sheet was prepared in the same manner as in Example 1.
  • the electrode layer density of the obtained positive electrode body sheet was 3.13 g / cc.
  • a simple closed cell made of stainless steel was assembled and the charge / discharge performance was evaluated in the same manner as in Example 1.
  • the initial weight discharge capacity density at 25 was 160 mA h / g
  • the initial volume discharge capacity density was 44 I mA h / CC one electrode layer
  • the initial charge / discharge efficiency was 91.0%.
  • the capacity retention rate after 30 charge / discharge cycles was 97.3%.
  • a nickel cobalt manganese composite oxyhydroxide was prepared in the same manner as in Example 1 except that the composition ratio of the aqueous sulfate solution containing nickel sulfate, cobalt sulfate and manganese sulfate was changed. (Ni / Co / Mn atomic ratio: 0.38 / 0.24 / 0.38) was obtained.
  • the composite oxide powder particles were formed by innumerable primary particles forming secondary particles, and were spherical or elliptical in shape. Lithium carbonate powder was mixed with this composite oxide powder, and UNi was used in the same manner as in Example 1. 38 Co. . To obtain a 24 M3 ⁇ 4 38 0 2 powder.
  • the specific surface area of the positive electrode powder determined by the nitrogen adsorption method was 0.63 m 2 / g, and the volume average particle diameter D50 was 12.1 m.
  • the powder X-ray diffraction spectrum of this positive electrode powder using Cu-rays was similar to that of rhombohedral (R-3m).
  • the rupture strength of the particles determined in the same manner as in Example 1 was 135 Mpa. Further, the amount of residual alkali in the positive electrode powder was determined in the same manner as in Example 1, and found to be 0.16% by weight.
  • a positive electrode body sheet was prepared in the same manner as in Example 1.
  • the electrode layer density of the obtained positive electrode body sheet was 3.08 g / cc.
  • a simple closed cell made of stainless steel was assembled in the same manner as in Example 1, and the charge / discharge performance was evaluated.
  • the initial weight discharge capacity density at 25 ° C was 158 mAh / 'g
  • the initial volume discharge capacity density was 428 mAh ZCC--electrode layer
  • the capacity retention rate after 30 charge / discharge cycles was 96.1%.
  • Ni / Co / Mn atomic ratio 1/1/1 nickel cobalt manganese composite oxyhydroxide synthesized in Example 1
  • lithium carbonate powder and zirconium oxide powder were added to the composite oxyhydroxide powder.
  • Lithium fluoride powder was mixed, fired in the same manner as in Example 1, and mixed and ground to obtain Li (Ni 1/3 Co 1/3 Mn 1/3 ) a 995 Zr ⁇ OuF ⁇ powder.
  • the specific surface area of this positive electrode powder measured by a nitrogen adsorption method was 0.55 m 2 / g, and the volume average particle diameter D50 was 11.4 H1.
  • the powder X-ray diffraction spectrum of the positive electrode powder using Cu-Ka line was similar to a rhombohedral system (R-3 ⁇ ).
  • the breaking strength of the particles determined in the same manner as in Example 1 was 150 MPa.
  • the amount of residual alkali in the positive electrode powder was determined in the same manner as in Example 1 and found to be 0.12% by weight.
  • a positive electrode body sheet was prepared in the same manner as in Example 1.
  • the electrode layer density of the obtained positive electrode body sheet was 3.11 g / cc.
  • a simple closed cell made of stainless steel was assembled in the same manner as in Example 1 and the charge / discharge performance was evaluated.
  • the initial weight discharge capacity density at 25 ° C was 162 mAh / g.
  • the initial volume discharge capacity density was 435 mAh ZCC-electrode layer, and the capacity retention rate after 30 charge / discharge cycles was 98.0%.
  • the nickel-cobalt-manganese composite oxyhydroxide (Ni / Co / Mn atomic ratio 1 / 1/1) was obtained.
  • the particle size distribution of the composite oxide was measured by a laser scattering method. As a result, the volume average particle size D50 was 2.6 m.
  • Nickel-cobalt-manganese composite Okishi hydroxide and lithium carbonate powder obtained was combined mixed, and calcined in the same manner as in Example 1, to obtain a LiNi 1/3 Co 1/3 Mn 1/3 0 2 powder and mixed powder ⁇ Was.
  • the specific surface area of this positive electrode powder determined by a nitrogen adsorption method was 0.83 m 2 / g, and the volume average particle diameter D50 was 3.1.
  • the powder X-ray diffraction spectrum using Cu- ⁇ rays was similar to the rhombohedral system (R-3 ⁇ ).
  • the breaking strength of the particles determined in the same manner as in Example 1 was 135 Mpa.
  • the amount of residual alkali in the positive electrode powder was determined in the same manner as in Example 1 and found to be 0.15% by weight.
  • Example 2 Same as Example 1 except that 20 parts by weight of the small particle size positive electrode powder and 80 parts by weight of the large particle size positive electrode powder synthesized in Example 1 having a mean particle size of 11.5 microns were mixed. Thus, a positive electrode sheet was prepared. The ratio of the average particle size D 50 of the small particle size to the average particle size D 50 of the large particle size was 1 Z3.7. The electrode layer density of the obtained positive electrode body sheet was 3.24 g / cc.
  • a nickel-cobalt-manganese composite oxyhydroxide was prepared in the same manner as in Example 1 except that the oxygen concentration in the slurry was increased and the stirring density was lowered, while the slurry concentration was lowered.
  • a positive electrode sheet was produced in the same manner as in Example 1.
  • the electrode layer density of the obtained positive electrode body sheet was 2.91 g / cc.
  • a simple closed cell made of stainless steel was assembled in the same manner as in Example 1 and the charge / discharge performance was evaluated.
  • the initial weight discharge capacity density at 25 ° C was 156 mAh / g
  • the initial volume discharge capacity density was 399 mAliZCC-electrode layer
  • the initial charge / discharge efficiency was 87%.
  • the capacity retention after 30 charge / discharge cycles was 93.2%.
  • the initial volume discharge capacity density and the initial weight discharge capacity density are large, the initial charge / discharge efficiency, the charge / discharge cycle stability, and the safety are high.
  • the present invention provides a positive electrode for a lithium secondary battery, and a lithium secondary battery, comprising a powder of the same, the lithium nickel cobalt manganese composite oxide powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne une poudre de matière composite de lithium-nickel-cobalt-manganèse pour électrodes positives d'accumulateurs au lithium possédant une capacité volumétrique élevée, une sécurité élevée et une excellente durabilité du cycle de charge/décharge. Ladite poudre d'oxyde composite de lithium-nickel-cobalt-manganèse pour accumulateurs au lithium est représentée par la formule générale : LipNixCoyMnzMqO2-aFa (dans laquelle M représente un élément métal de transition autre que Ni, Co et Mn ou un élément métal alcalinoterreux, 0,9 ≤p≤1,1, 0,2≤x≤0,5, 0,1≤y≤0,4, 0,2≤z≤0,5, 0≤q≤0,05, 1,9≤2-a≤2,1, x+y+z+q, et 0≤a≤0,02). Ladite poudre d'oxyde composite de lithium-nickel-cobalt-manganèse se compose d'un agglomérat de particules d'oxyde composite possédant un diamètre de particule moyen D50 de 3-15 νm, agglomérat dans lequel de nombreuses particules de l'oxyde composite de lithium-nickel-cobalt-manganèse sont groupées, et possédant une résistance à la rupture par compression d'au moins 50 Mpa.
PCT/JP2004/003295 2003-03-14 2004-03-12 Poudre de matiere active d'electrodes positives, pour accumulateur au lithium WO2004082046A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005503600A JPWO2004082046A1 (ja) 2003-03-14 2004-03-12 リチウム二次電池用正極活物質粉末
US11/133,322 US20050220700A1 (en) 2003-03-14 2005-05-20 Positive electrode active material powder for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-070834 2003-03-14
JP2003070834 2003-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/133,322 Continuation US20050220700A1 (en) 2003-03-14 2005-05-20 Positive electrode active material powder for lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2004082046A1 true WO2004082046A1 (fr) 2004-09-23

Family

ID=32984671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003295 WO2004082046A1 (fr) 2003-03-14 2004-03-12 Poudre de matiere active d'electrodes positives, pour accumulateur au lithium

Country Status (5)

Country Link
JP (1) JPWO2004082046A1 (fr)
KR (1) KR100629129B1 (fr)
CN (1) CN1312792C (fr)
TW (1) TW200501485A (fr)
WO (1) WO2004082046A1 (fr)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335152A (ja) * 2003-04-30 2004-11-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および非水系電解質二次電池
WO2005124898A1 (fr) * 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. Poudre de matériau actif d’électrode positive pour batterie secondaire au lithium
US7018741B2 (en) 2002-02-15 2006-03-28 Seimi Chemical Co., Ltd. Particulate positive electrode active material for a lithium secondary cell
JP2006210007A (ja) * 2005-01-25 2006-08-10 Mitsubishi Chemicals Corp 電気化学素子用電極およびそれを用いたリチウム二次電池
JP2006228733A (ja) * 2005-02-15 2006-08-31 Samsung Sdi Co Ltd 正極活物質、その製造方法及びそれを採用した正極とリチウム電池
JP2007512668A (ja) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド リチウム二次電池用正極活物質の製造方法、その方法に使用される反応基及びその方法により製造されるリチウム二次電池用正極活物質
JP2007179917A (ja) * 2005-12-28 2007-07-12 Hitachi Ltd リチウム二次電池用正極活物質及びこれを用いたリチウム二次電池
JP2007257985A (ja) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP2007294396A (ja) * 2006-03-27 2007-11-08 Hitachi Maxell Ltd 非水二次電池およびその使用方法
JP2007294397A (ja) * 2006-03-27 2007-11-08 Hitachi Maxell Ltd 非水二次電池およびその使用方法
WO2008155989A1 (fr) * 2007-06-21 2008-12-24 Agc Seimi Chemical Co., Ltd. Poudre d'oxyde composite contenant du lithium et son procédé de production
WO2009141991A1 (fr) * 2008-05-23 2009-11-26 パナソニック株式会社 Electrode pour une batterie secondaire à électrolyte non aqueux, son procédé de fabrication et batterie secondaire à électrolyte non aqueux
JP2010503969A (ja) * 2006-09-18 2010-02-04 エルジー・ケム・リミテッド 高速放電特性を改良した二次バッテリー
JP2010505732A (ja) * 2006-10-13 2010-02-25 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 化合物粉体、その製造方法およびリチウム二次電池へのその使用
JP2010177207A (ja) * 2010-04-02 2010-08-12 Sanyo Electric Co Ltd 非水電解質二次電池
US7838148B2 (en) 2008-02-27 2010-11-23 Nippon Chemical Industrial Co., Ltd. Lithium nickel manganese cobalt composite oxide used as cathode active material for lithium rechargeable battery, manufacturing method thereof, and lithium rechargeable battery
JP2011076797A (ja) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2012504316A (ja) * 2008-09-30 2012-02-16 エンビア・システムズ・インコーポレイテッド 高い比容量を有するフッ素をドープされたリチウムリッチ金属酸化物からなる正極電池材料およびそれに対応する電池
US20130146807A1 (en) * 2010-08-09 2013-06-13 Murata Manufacturing Co., Ltd. Electrode active material and nonaqueous electrolyte secondary battery having the same
WO2013191179A1 (fr) * 2012-06-21 2013-12-27 Agcセイミケミカル株式会社 Substance active d'électrode positive pour des cellules secondaires au lithium ion, et procédé de production associé
JP2014007034A (ja) * 2012-06-22 2014-01-16 Gs Yuasa Corp 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
WO2014010730A1 (fr) * 2012-07-12 2014-01-16 三井金属鉱業株式会社 Oxyde complexe de lithium-métal
US8765007B2 (en) 2010-01-15 2014-07-01 Toyota Jidosha Kabushiki Kaisha Method of evaluating positive electrode active material
WO2014103166A1 (fr) * 2012-12-27 2014-07-03 三洋電機株式会社 Matériau actif d'électrode positive pour batteries secondaires à électrolyte non aqueux, et batterie secondaire à électrolyte non aqueux
WO2014155990A1 (fr) * 2013-03-26 2014-10-02 三洋電機株式会社 Electrode positive pour batteries secondaires à électrolyte non aqueux, et batterie secondaire à électrolyte non aqueux
JP2015164119A (ja) * 2014-01-31 2015-09-10 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2016157677A (ja) * 2015-02-19 2016-09-01 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2017037713A (ja) * 2015-08-06 2017-02-16 トヨタ自動車株式会社 非水電解質二次電池用正極活物質の製造方法
JP2017037744A (ja) * 2015-08-07 2017-02-16 日立マクセル株式会社 非水電解質二次電池
WO2018110256A1 (fr) * 2016-12-14 2018-06-21 住友化学株式会社 Poudre d'oxyde composite de métal au lithium, matière active d'électrode positive pour batterie secondaire au lithium, électrode positive pour batterie secondaire au lithium, et batterie secondaire au lithium
US10109854B2 (en) 2015-09-30 2018-10-23 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
JP2018181766A (ja) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 リチウム二次電池用の正極
WO2019087492A1 (fr) * 2017-10-31 2019-05-09 住友金属鉱山株式会社 Matériau actif d'électrode positive de batterie rechargeable à électrolyte non aqueux et son procédé de production, et batterie rechargeable à électrolyte non aqueux utilisant le matériau actif d'électrode positive
RU2693858C1 (ru) * 2018-01-17 2019-07-05 Тойота Дзидося Кабусики Кайся Катодная смесь для полностью твердотельной батареи, катод для полностью твердотельной батареи, полностью твердотельная батарея и способ их изготовления
WO2020021749A1 (fr) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Batterie secondaire et son procédé de fabrication
US10573881B2 (en) 2016-02-29 2020-02-25 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
CN110945707A (zh) * 2017-07-31 2020-03-31 松下知识产权经营株式会社 非水电解质二次电池
WO2022069236A1 (fr) * 2020-09-30 2022-04-07 Basf Se Procédé de fabrication d'un matériau actif de cathode dopé
CN114790012A (zh) * 2022-04-22 2022-07-26 格林美(无锡)能源材料有限公司 一种钴酸锂正极材料及其制备方法和应用
CN115004415A (zh) * 2020-01-31 2022-09-02 三洋电机株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859373B2 (ja) 2004-11-30 2012-01-25 パナソニック株式会社 非水電解液二次電池
TWI352066B (en) 2006-02-17 2011-11-11 Lg Chemical Ltd Preparation method of lithium-metal composite oxid
JP5377981B2 (ja) * 2006-02-17 2013-12-25 エルジー・ケム・リミテッド リチウム−金属複合酸化物及びこれを用いた電気化学素子
WO2011074058A1 (fr) * 2009-12-14 2011-06-23 トヨタ自動車株式会社 Matériau actif d'électrode positive pour batterie secondaire au lithium et utilisation dudit matériau
EP2515364A1 (fr) 2009-12-18 2012-10-24 JX Nippon Mining & Metals Corporation Electrode positive pour batterie au lithium-ion, procédé de production de ladite électrode positive, et batterie au lithium-ion
WO2011077932A1 (fr) 2009-12-22 2011-06-30 Jx日鉱日石金属株式会社 Matériau actif d'électrode positive pour une batterie lithium ion, électrode positive pour une batterie lithium ion, batterie lithium ion l'utilisant, et précurseur de matériau actif d'électrode positive pour une batterie lithium ion
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5923036B2 (ja) 2010-03-04 2016-05-24 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5313392B2 (ja) 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR101450421B1 (ko) 2010-03-04 2014-10-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
JPWO2011108595A1 (ja) 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN102714312A (zh) 2010-12-03 2012-10-03 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
WO2012132071A1 (fr) 2011-03-29 2012-10-04 Jx日鉱日石金属株式会社 Procédé de production de matériau actif d'électrode positive pour batteries lithium-ion et matériau actif d'électrode positive pour batteries lithium-ion
KR101539154B1 (ko) 2011-03-31 2015-07-23 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
CN103828094A (zh) * 2011-08-12 2014-05-28 应用材料公司 颗粒合成的装置及方法
CN103094576B (zh) * 2011-10-31 2015-09-30 北京有色金属研究总院 一种镍基正极材料及其制备方法和电池
JP6292739B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6292738B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN104137303B (zh) 2012-04-16 2017-08-08 株式会社Lg 化学 包含具有不同焊接部形状的正极和负极的电极组件及包含所述电极组件的二次电池
TWI547001B (zh) 2012-09-28 2016-08-21 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
CN103904310A (zh) * 2012-12-28 2014-07-02 北京当升材料科技股份有限公司 一种混合镍钴锰酸锂材料制备方法
JP5876850B2 (ja) * 2013-03-26 2016-03-02 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN103296265A (zh) * 2013-06-06 2013-09-11 南通瑞翔新材料有限公司 锂电子二次电池正极用的含锂复合氧化物及其制造方法
CN104253271A (zh) * 2013-06-28 2014-12-31 江南大学 一种复合三元层状正极材料及其制备方法
KR101538617B1 (ko) * 2013-07-31 2015-07-22 전자부품연구원 나노크기의 이산화티탄이 포함된 구형의 니켈코발트망간수산화물을 이용한 고강도용 비수계 리튬이차전지용 양극재료 및 그의 제조 방법
JP6337360B2 (ja) * 2016-08-31 2018-06-06 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6542421B1 (ja) 2018-03-29 2019-07-10 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
CN112447939B (zh) * 2019-09-02 2022-03-15 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
US20230073433A1 (en) * 2020-03-18 2023-03-09 Lg Chem, Ltd. Positive Electrode Material for Lithium Secondary Battery, and Positive Electrode and Lithium Secondary Battery Which Include the Same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092158A1 (fr) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Oxyde composite de metal de transition de lithium
JP2003031219A (ja) * 2001-07-13 2003-01-31 Yuasa Corp 正極活物質およびこれを用いた非水電解質二次電池
JP2003045424A (ja) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp 電極活物質含有組成物、並びにそれを用いた電極及びリチウム二次電池
JP2003045414A (ja) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp 電極及びそれを用いたリチウム二次電池
JP2003051308A (ja) * 2001-08-03 2003-02-21 Yuasa Corp リチウム二次電池用正極活物質およびその製造方法、並びに、リチウム二次電池
JP2003068299A (ja) * 2001-08-24 2003-03-07 Yuasa Corp リチウム二次電池用正極活物質及びそれを用いたリチウム二次電池
JP2003187801A (ja) * 2001-12-21 2003-07-04 Seimi Chem Co Ltd リチウム二次電池用正極活物質の製造方法
JP2003242976A (ja) * 2002-02-18 2003-08-29 Seimi Chem Co Ltd リチウム二次電池用正極活物質の製造方法
JP2003264006A (ja) * 2002-03-08 2003-09-19 Mitsubishi Chemicals Corp リチウムイオン二次電池及びリチウムイオン二次電池の充電方法
JP2004031091A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2004111076A (ja) * 2002-09-13 2004-04-08 Sony Corp 正極活物質及び非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550783B2 (ja) * 1994-05-16 2004-08-04 東ソー株式会社 リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途
EP0959514A3 (fr) * 1994-12-09 2001-06-06 Japan Storage Battery Company Limited Cellule secondaire à électrolyte organique
JPH08213015A (ja) * 1995-01-31 1996-08-20 Sony Corp リチウム二次電池用正極活物質及びリチウム二次電池
JP3232984B2 (ja) * 1995-10-31 2001-11-26 松下電器産業株式会社 非水電解液電池および正極活物質の製造法
US6350543B2 (en) * 1999-12-29 2002-02-26 Kimberly-Clark Worldwide, Inc. Manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
JP4556377B2 (ja) * 2001-04-20 2010-10-06 株式会社Gsユアサ 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
JP4510331B2 (ja) * 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092158A1 (fr) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Oxyde composite de metal de transition de lithium
JP2003031219A (ja) * 2001-07-13 2003-01-31 Yuasa Corp 正極活物質およびこれを用いた非水電解質二次電池
JP2003045424A (ja) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp 電極活物質含有組成物、並びにそれを用いた電極及びリチウム二次電池
JP2003045414A (ja) * 2001-07-27 2003-02-14 Mitsubishi Chemicals Corp 電極及びそれを用いたリチウム二次電池
JP2003051308A (ja) * 2001-08-03 2003-02-21 Yuasa Corp リチウム二次電池用正極活物質およびその製造方法、並びに、リチウム二次電池
JP2003068299A (ja) * 2001-08-24 2003-03-07 Yuasa Corp リチウム二次電池用正極活物質及びそれを用いたリチウム二次電池
JP2003187801A (ja) * 2001-12-21 2003-07-04 Seimi Chem Co Ltd リチウム二次電池用正極活物質の製造方法
JP2003242976A (ja) * 2002-02-18 2003-08-29 Seimi Chem Co Ltd リチウム二次電池用正極活物質の製造方法
JP2003264006A (ja) * 2002-03-08 2003-09-19 Mitsubishi Chemicals Corp リチウムイオン二次電池及びリチウムイオン二次電池の充電方法
JP2004031091A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2004111076A (ja) * 2002-09-13 2004-04-08 Sony Corp 正極活物質及び非水電解質二次電池

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018741B2 (en) 2002-02-15 2006-03-28 Seimi Chemical Co., Ltd. Particulate positive electrode active material for a lithium secondary cell
JP2004335152A (ja) * 2003-04-30 2004-11-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP2007512668A (ja) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド リチウム二次電池用正極活物質の製造方法、その方法に使用される反応基及びその方法により製造されるリチウム二次電池用正極活物質
US8765305B2 (en) 2003-11-26 2014-07-01 Industry-University Cooperation Foundation, Hanyang University Cathode active material for lithium secondary battery, process for preparing the same and reactor for use in the same process
US7429434B2 (en) 2004-06-16 2008-09-30 Seimi Chemical Co., Ltd. Cathode active material powder for lithium secondary battery
WO2005124898A1 (fr) * 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. Poudre de matériau actif d’électrode positive pour batterie secondaire au lithium
JP2006210007A (ja) * 2005-01-25 2006-08-10 Mitsubishi Chemicals Corp 電気化学素子用電極およびそれを用いたリチウム二次電池
US8663846B2 (en) 2005-02-15 2014-03-04 Samsung Sdi Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2006228733A (ja) * 2005-02-15 2006-08-31 Samsung Sdi Co Ltd 正極活物質、その製造方法及びそれを採用した正極とリチウム電池
JP2007179917A (ja) * 2005-12-28 2007-07-12 Hitachi Ltd リチウム二次電池用正極活物質及びこれを用いたリチウム二次電池
JP2007257985A (ja) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP2007294396A (ja) * 2006-03-27 2007-11-08 Hitachi Maxell Ltd 非水二次電池およびその使用方法
JP2007294397A (ja) * 2006-03-27 2007-11-08 Hitachi Maxell Ltd 非水二次電池およびその使用方法
JP2010503969A (ja) * 2006-09-18 2010-02-04 エルジー・ケム・リミテッド 高速放電特性を改良した二次バッテリー
JP2010505732A (ja) * 2006-10-13 2010-02-25 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 化合物粉体、その製造方法およびリチウム二次電池へのその使用
WO2008155989A1 (fr) * 2007-06-21 2008-12-24 Agc Seimi Chemical Co., Ltd. Poudre d'oxyde composite contenant du lithium et son procédé de production
JP5172835B2 (ja) * 2007-06-21 2013-03-27 Agcセイミケミカル株式会社 リチウム含有複合酸化物粉末及びその製造方法
US8795896B2 (en) 2007-06-21 2014-08-05 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and its production method
US7838148B2 (en) 2008-02-27 2010-11-23 Nippon Chemical Industrial Co., Ltd. Lithium nickel manganese cobalt composite oxide used as cathode active material for lithium rechargeable battery, manufacturing method thereof, and lithium rechargeable battery
WO2009141991A1 (fr) * 2008-05-23 2009-11-26 パナソニック株式会社 Electrode pour une batterie secondaire à électrolyte non aqueux, son procédé de fabrication et batterie secondaire à électrolyte non aqueux
JP2009283354A (ja) * 2008-05-23 2009-12-03 Panasonic Corp 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池
JP2012504316A (ja) * 2008-09-30 2012-02-16 エンビア・システムズ・インコーポレイテッド 高い比容量を有するフッ素をドープされたリチウムリッチ金属酸化物からなる正極電池材料およびそれに対応する電池
CN102035019A (zh) * 2009-09-29 2011-04-27 三洋电机株式会社 非水电解质二次电池
JP2011076797A (ja) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 非水電解質二次電池
US8765007B2 (en) 2010-01-15 2014-07-01 Toyota Jidosha Kabushiki Kaisha Method of evaluating positive electrode active material
JP2010177207A (ja) * 2010-04-02 2010-08-12 Sanyo Electric Co Ltd 非水電解質二次電池
US8728344B2 (en) * 2010-08-09 2014-05-20 Murata Manufacturing Co., Ltd. Electrode active material and nonaqueous electrolyte secondary battery having the same
US20130146807A1 (en) * 2010-08-09 2013-06-13 Murata Manufacturing Co., Ltd. Electrode active material and nonaqueous electrolyte secondary battery having the same
US10424777B2 (en) 2012-06-21 2019-09-24 Sumitomo Chemical Co., Ltd. Cathode active material for lithium ion secondary battery, and method for its production
WO2013191179A1 (fr) * 2012-06-21 2013-12-27 Agcセイミケミカル株式会社 Substance active d'électrode positive pour des cellules secondaires au lithium ion, et procédé de production associé
JPWO2013191179A1 (ja) * 2012-06-21 2016-05-26 旭硝子株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2014007034A (ja) * 2012-06-22 2014-01-16 Gs Yuasa Corp 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
GB2520642A (en) * 2012-07-12 2015-05-27 Mitsui Mining & Smelting Co Lithium metal complex oxide
WO2014010730A1 (fr) * 2012-07-12 2014-01-16 三井金属鉱業株式会社 Oxyde complexe de lithium-métal
JPWO2014010730A1 (ja) * 2012-07-12 2016-06-23 三井金属鉱業株式会社 リチウム金属複合酸化物
GB2520642B (en) * 2012-07-12 2017-01-11 Mitsui Mining & Smelting Co Lithium metal oxide
JP5606654B2 (ja) * 2012-07-12 2014-10-15 三井金属鉱業株式会社 リチウム金属複合酸化物
WO2014103166A1 (fr) * 2012-12-27 2014-07-03 三洋電機株式会社 Matériau actif d'électrode positive pour batteries secondaires à électrolyte non aqueux, et batterie secondaire à électrolyte non aqueux
US9947924B2 (en) 2012-12-27 2018-04-17 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10714748B2 (en) 2012-12-27 2020-07-14 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2014155990A1 (ja) * 2013-03-26 2017-02-16 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
CN104584277A (zh) * 2013-03-26 2015-04-29 三洋电机株式会社 非水电解质二次电池用正极和非水电解质二次电池
WO2014155990A1 (fr) * 2013-03-26 2014-10-02 三洋電機株式会社 Electrode positive pour batteries secondaires à électrolyte non aqueux, et batterie secondaire à électrolyte non aqueux
JP2015164119A (ja) * 2014-01-31 2015-09-10 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
US9692047B2 (en) 2014-01-31 2017-06-27 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9985282B2 (en) 2014-01-31 2018-05-29 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016157677A (ja) * 2015-02-19 2016-09-01 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
US10147943B2 (en) 2015-02-19 2018-12-04 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017037713A (ja) * 2015-08-06 2017-02-16 トヨタ自動車株式会社 非水電解質二次電池用正極活物質の製造方法
JP2017037744A (ja) * 2015-08-07 2017-02-16 日立マクセル株式会社 非水電解質二次電池
US10109854B2 (en) 2015-09-30 2018-10-23 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
US10573881B2 (en) 2016-02-29 2020-02-25 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
WO2018110256A1 (fr) * 2016-12-14 2018-06-21 住友化学株式会社 Poudre d'oxyde composite de métal au lithium, matière active d'électrode positive pour batterie secondaire au lithium, électrode positive pour batterie secondaire au lithium, et batterie secondaire au lithium
JP2018181766A (ja) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 リチウム二次電池用の正極
CN110945707A (zh) * 2017-07-31 2020-03-31 松下知识产权经营株式会社 非水电解质二次电池
JP7220851B2 (ja) 2017-10-31 2023-02-13 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び正極活物質を用いた非水系電解質二次電池
US11784310B2 (en) 2017-10-31 2023-10-10 Sumitomo Metal Mining Co., Ltd. Non-aqueous electrolyte secondary battery positive electrode active material, method for producing same, and non-aqueous electrolyte secondary battery which uses positive electrode active material
WO2019087492A1 (fr) * 2017-10-31 2019-05-09 住友金属鉱山株式会社 Matériau actif d'électrode positive de batterie rechargeable à électrolyte non aqueux et son procédé de production, et batterie rechargeable à électrolyte non aqueux utilisant le matériau actif d'électrode positive
JPWO2019087492A1 (ja) * 2017-10-31 2020-12-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び正極活物質を用いた非水系電解質二次電池
RU2693858C1 (ru) * 2018-01-17 2019-07-05 Тойота Дзидося Кабусики Кайся Катодная смесь для полностью твердотельной батареи, катод для полностью твердотельной батареи, полностью твердотельная батарея и способ их изготовления
CN112368871A (zh) * 2018-07-27 2021-02-12 松下知识产权经营株式会社 二次电池及其制造方法
JPWO2020021749A1 (ja) * 2018-07-27 2021-08-02 パナソニックIpマネジメント株式会社 二次電池およびその製造方法
WO2020021749A1 (fr) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Batterie secondaire et son procédé de fabrication
JP7361316B2 (ja) 2018-07-27 2023-10-16 パナソニックIpマネジメント株式会社 二次電池およびその製造方法
CN115004415A (zh) * 2020-01-31 2022-09-02 三洋电机株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
WO2022069236A1 (fr) * 2020-09-30 2022-04-07 Basf Se Procédé de fabrication d'un matériau actif de cathode dopé
CN114790012A (zh) * 2022-04-22 2022-07-26 格林美(无锡)能源材料有限公司 一种钴酸锂正极材料及其制备方法和应用
CN114790012B (zh) * 2022-04-22 2024-04-16 格林美(无锡)能源材料有限公司 一种钴酸锂正极材料及其制备方法和应用

Also Published As

Publication number Publication date
KR20050044771A (ko) 2005-05-12
TW200501485A (en) 2005-01-01
TWI323524B (fr) 2010-04-11
CN1312792C (zh) 2007-04-25
CN1701451A (zh) 2005-11-23
JPWO2004082046A1 (ja) 2006-06-15
KR100629129B1 (ko) 2006-09-27

Similar Documents

Publication Publication Date Title
WO2004082046A1 (fr) Poudre de matiere active d'electrodes positives, pour accumulateur au lithium
JP4318313B2 (ja) リチウム二次電池用の正極活物質粉末
JP5044467B2 (ja) リチウム遷移金属複合酸化物
JP5172835B2 (ja) リチウム含有複合酸化物粉末及びその製造方法
JP4276442B2 (ja) リチウム二次電池用正極活物質粉末
KR100895225B1 (ko) 리튬 2차 전지용 양극 활성 물질 및 그 제조방법
KR101052450B1 (ko) 리튬 2 차 전지용 정극 활물질 분말
JP4268392B2 (ja) リチウム二次電池用の正極活物質及びその製造方法
JP4109847B2 (ja) リチウム含有遷移金属複合酸化物およびその製造方法
JP5132360B2 (ja) リチウムイオン二次電池正極活物質用リチウムコバルト複合酸化物の製造方法
JP4167654B2 (ja) リチウム二次電池正極用のリチウムコバルト複合酸化物の製造方法
JP4444117B2 (ja) リチウム二次電池用の正極活物質の製造方法
JP3974420B2 (ja) リチウム二次電池用正極活物質の製造方法
JP3974396B2 (ja) リチウム二次電池用正極活物質の製造方法
JP4199506B2 (ja) リチウム二次電池用の正極活物質の製造方法
JP4209646B2 (ja) 二次電池正極用のリチウムコバルト複合酸化物の製造方法
JP4472430B2 (ja) リチウム二次電池正極用のリチウム複合酸化物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503600

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047019956

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048011640

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047019956

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11133322

Country of ref document: US

122 Ep: pct application non-entry in european phase