WO1998029341A1 - Oxyde de compose zirconium et cerium, procede d'elaboration correspondant et co-catalyseur d'epuration des gaz - Google Patents

Oxyde de compose zirconium et cerium, procede d'elaboration correspondant et co-catalyseur d'epuration des gaz Download PDF

Info

Publication number
WO1998029341A1
WO1998029341A1 PCT/JP1997/004786 JP9704786W WO9829341A1 WO 1998029341 A1 WO1998029341 A1 WO 1998029341A1 JP 9704786 W JP9704786 W JP 9704786W WO 9829341 A1 WO9829341 A1 WO 9829341A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
cerium
oxide
surface area
composite oxide
Prior art date
Application number
PCT/JP1997/004786
Other languages
English (en)
French (fr)
Inventor
Shigeru Aozasa
Original Assignee
Anan Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18405375&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998029341(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Anan Kasei Co., Ltd. filed Critical Anan Kasei Co., Ltd.
Priority to DE69724655.8T priority Critical patent/DE69724655C5/de
Priority to KR19997005879A priority patent/KR100351381B1/ko
Priority to US09/331,821 priority patent/US6171572B1/en
Priority to EP97950373A priority patent/EP0955267B1/en
Publication of WO1998029341A1 publication Critical patent/WO1998029341A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01J35/30
    • B01J35/40
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the present invention can be used in the field of catalysts, functional ceramics, solid electrolytes for fuel cells, etc., and has excellent heat resistance, which can be suitably used particularly as an exhaust gas purifying cocatalyst for automobiles.
  • the present invention relates to a zirconium-cerium composite oxide, a method for producing the same, and an exhaust gas purifying cocatalyst.
  • Exhaust gas purifying catalysts for automobiles and the like are composed of a catalyst carrier such as alumina, cordierite or the like, on which platinum, palladium, rhodium or the like as a catalytic metal and a co-catalyst for enhancing these catalytic actions are supported.
  • the cerium oxide-based material as the co-catalyst absorbs oxygen in an oxidizing atmosphere and releases the oxygen in a reducing atmosphere. Purifies harmful components such as hydrocarbons, carbon monoxide and nitrogen oxides with excellent efficiency. For this reason, cerium oxide-based materials are used in large quantities as co-catalysts.
  • zirconium oxide enhances the characteristics of the cerium oxide, so that as a co-catalyst, a zirconium-cerium-based composite oxide is currently mainstream and its use is increasing.
  • the current zirconium-cerium-based composite oxide particles are not sufficient in terms of heat resistance because the specific surface area decreases due to grain growth in a high-temperature and long-time use environment. There is a strong need for a co-catalyst that is maintained.
  • Japanese Patent Application Laid-Open No. 1993-94848 discloses that a mixture of a hydrated zirconazole having an average particle size of 0.2 ⁇ or less and a compound such as Ce, Y, Ca, Mg is fired.
  • a method for producing a mixed oxide has been proposed, and it is described that the heat resistance of the obtained mixed oxide is 12 m 2 / g after calcining at 150 ° C.
  • Japanese Patent Application Laid-Open No. 5-116945 discloses a hydrated zirconazole having an average particle size of 0.05 to 0.3 ⁇ m and a crystallite diameter of 4 nm or less, Ce, Y, Ca, A method for producing a mixed oxide by firing a mixture with a compound such as Mg has been proposed. The heat resistance of the obtained mixed oxide is described as a specific surface area after firing at 850 ° C. of 1 S.
  • JP-A-5-155622 discloses a zirconium salt aqueous solution containing a hydroxide of a divalent or higher-valent metal, A method has been proposed in which hydrated oxides, oxides, and the like are mixed and hydrolyzed. The heat resistance of the obtained mixed oxide is described as having a specific surface area of 8 m 2 Z g after firing at 100 ° C.
  • All of the above methods have a problem that the operation time for producing the target oxide is long.
  • the method using zirconazole has a problem in productivity such that the hydrolysis time of the aqueous solution of zirconium salt exceeds 100 hours.
  • the crystallite diameter of the oxide As a method for obtaining a high specific surface area, the crystallite diameter of the oxide, that is, the degree of crystal growth may be suppressed.
  • Japanese Patent Application Laid-Open No. Hei 6-27907 and Japanese Patent Publication No. Hei 8-1 The production method using a zirconazole (zircoure 'colloid particles having a diameter of 5 to 500 nm) described in Japanese Patent Application Laid-Open No. 6-015 is optimal.
  • the oxides are very sensitive to thermal energy due to their fine crystal and particle diameters, and the oxides obtained by these known manufacturing methods are more than 900 ° C.
  • the specific surface area is remarkably reduced and the heat resistance is poor. That is, it is not suitable for a cocatalyst used at a high temperature.
  • many of the production methods proposed so far have a problem that impurities such as chlorine and sulfur which are harmful to the catalyst due to the raw material cannot be avoided.
  • An object of the present invention is to provide a zirconium-cerium composite oxide which has excellent heat resistance, particularly as an exhaust gas purifying co-catalyst, and can maintain a high specific surface area even when used in a high temperature environment.
  • An object of the present invention is to provide a production method thereof and an exhaust gas purifying cocatalyst.
  • Another object of the present invention is to provide a zirconium-cerium-based composite oxide having excellent heat resistance with good reproducibility and economical preparation. It is to provide a manufacturing method.
  • Another object of the present invention is to provide a method for producing a zirconium-cerium-based composite oxide which has excellent heat resistance and does not contain impurities such as chlorine and sulfur which are harmful to the catalyst.
  • the present inventor has conducted a detailed study on the effect of zirconium raw materials in order to investigate the cause of a sudden decrease in the specific surface area when heated at high temperatures, even if the zirconium-cerium composite oxide power of the prior art has a large specific surface area. Was done.
  • an aqueous solution of zirconium sol or zirconium salt, an aqueous solution of cerium sol or cerium salt which is conventionally known as a method for obtaining a composite oxide having high solid solubility of zirconium oxide and cerium oxide
  • the mixed oxide precursor which is mixed with an aqueous solution and precipitated by adding a base, is extremely sensitive to thermal energy, probably because it is microcrystalline, and a single phase with high solid solubility upon firing
  • a zirconium-cerium-based composite oxide with a crystalline phase of was produced, it was confirmed that the specific surface area was significantly reduced by sintering at a high temperature range, and that a high specific surface area could not be maintained.
  • the zirconium and cerium containing zirconium and cerium, and the mixing ratio of the zirconium and cerium in terms of zirconium oxide and cerium oxide are from 51 to 95:49 to 100 by weight. 5 and, if necessary, additional yttrium, scandium, lanthanum, praseodymium, neo Jim, samarium, europium, gadolinium, magnesium, potassium, barium, aluminum, titanium, hafnium, and metals selected from the group consisting of these, and the total amount of oxides as the total amount of composite oxide 0.1 to 20% by weight, with a specific surface area of 50 m 2 / g or more, and a specific surface area of 20 m 2 / g or more after heating at 110 for 6 hours.
  • the present invention provides a zirconium-cerium-based composite oxide and a cocatalyst for purifying exhaust gas containing the zirconium-cerium-based composite oxide powder.
  • zirconium hydroxide powder having an average particle size of 0.5 to 50 / m, and cerium zole having an average particle size of colloid particles of 3 to 100 nm are included.
  • Selected from the group consisting of the respective salts of yttrium, scandium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, magnesium, canolecidium, cerium, anoremium, titanium and hafnium Heat-reacting the mixture containing one or more of the above-mentioned compounds in the presence of nitric acid in an amount of 5 to 10 times the molar number of cerium in the mixture, and then further reacting by adding a base to produce a product.
  • a method for producing the zirconium-cerium based composite oxide powder comprising a step of calcining the obtained product at 500 to 100 ° C.
  • FIG. 1 is a graph showing an X-ray diffraction result of the precipitate before firing of Example 1.
  • FIG. 2 is a graph showing an X-ray diffraction result of the precipitate before firing in Comparative Example 1.
  • FIG. 3 is a graph showing the change in heated weight (TG) of the precipitate of Example 1.
  • FIG. 4 is a graph showing a comparison between the heat resistance of Example 1 and the heat resistance of Comparative Example 1 expressed by the firing temperature and the crystallite diameter.
  • FIG. 5 is a graph showing a comparison between the heat resistance of Example 1 and the heat resistance of Comparative Example 1 expressed by the firing temperature and the specific surface area.
  • the composite oxide is not simply a mixture of zirconium oxide and cerium oxide, but partially or substantially forms a composite oxide or solid solution. Say what you are doing.
  • this composite oxide is cerium oxide that exhibits the ability to absorb and release oxygen, but zirconium oxide enhances the heat resistance of this cerium oxide and increases the oxygen content over a wide temperature range. Shows the ability to exhibit absorption and release capabilities.
  • the compounding ratio of zirconium and cerium contained is 51 to 1 by weight in terms of zirconium oxide (ZrO 2 ) and cerium oxide (CeO 2 ). To 95: 49 to 5, preferably 55 to 85: 45 to 15, more preferably 60 to 80: 40 to 20. If the content of zirconium in terms of zirconium oxide is less than 51, excellent heat resistance cannot be obtained, and if it exceeds 95, the ability to absorb and release oxygen due to cerium oxide is insufficient.
  • the total content of zirconium and cerium in the composite oxide is preferably 80 to 100% by weight in terms of zirconium oxide and second cerium oxide.
  • the composite oxide of the present invention has a specific surface area of 50 m 2 / g or more.
  • the specific surface area usually decreases as the firing temperature during production increases.
  • the specific surface area of the composite oxide obtained by calcining at 500 ° C. for 6 hours is 90 m 2 / g or more
  • the specific surface area of the composite oxide obtained by calcining at 900 ° C. for 6 hours is More than 70 m 2 / g, duplicates obtained by baking at 1000 ° C for 6 hours
  • the specific surface area of the composite oxide is as high as 50 m 2 / g or more.
  • the upper limit of the specific surface area of the composite oxide of the present invention is not particularly limited, but is about 120 m 2 ng.
  • Such a material having a high specific surface area at the firing temperature has not been conventionally known as a zirconium-cerium composite oxide.
  • the composite oxide of the present invention is used as a cocatalyst, for example, after heating at 110 ° C. for 6 hours, it is at least 20 m 2 / g, preferably 20 to 30 m It has physical properties to maintain a specific surface area of 2 / g.
  • sintering at a specific temperature range or more depending on the composition and the manufacturing history of the powder results in remarkable grain growth and a sharp decrease in specific surface area.
  • the current exhaust gas purifying catalytic converter usually operates at about 900 ° C or less.
  • the heat resistance of the obtained composite oxide is based on 110 ° C, which is regarded as the upper limit of the temperature used, and the value of the specific surface area that can be maintained after heating at 110 ° C for 6 hours is a physical property index of the composite oxide. It was decided.
  • the specific surface area is a value measured based on the BET method using nitrogen gas adsorption, which is the most standard method for measuring the specific surface area of a powder.
  • the composite oxide of the present invention may further comprise, in addition to zirconium and cerium, yttrium, scandium, lanthanum, praseodymium, neodymium, summerium, europium, gadolinium, magnesium, canoledium, barium, aluminum,
  • One or more selected from the group consisting of titanium and hafnium are converted to oxides based on the total amount of composite oxides. And it may be contained in the range of 0.1 to 20% by weight. By further containing such a specific metal, more excellent heat resistance can be imparted.
  • the content is less than 0.1% by weight, the effect of improving the heat resistance is not recognized, and if it exceeds 20% by weight, the content of cerium is relatively reduced, which is required when used as a promoter or the like. It is not preferable because the oxygen absorption / release capacity is insufficient.
  • the composite oxide can be produced economically with good reproducibility.
  • a mixture containing a specific zirconium raw material and a specific cerium raw material is heated and reacted in the presence of a specific amount of nitric acid.
  • the specific zirconium raw material is a zirconium hydroxide powder having an average particle size of 0.5 to 50 ⁇ , preferably 1 to 30 / xm, and more preferably 5 to 25 m. If the average particle size is less than 0.5 ⁇ m, a composite oxide having a high specific surface area with excellent heat resistance, which is the object of the present invention, cannot be obtained. If the average particle size exceeds 50 ⁇ m, the specific surface area of the composite oxide will not be obtained. Decrease.
  • the aqueous oxidation Jirukoniu beam (1) zirconium hydroxide Z r (OH) 4 ⁇ n H 2 0, (2) Okishi water zirconium oxide Z r O (OH) 2 ⁇ n H 2 0, (3) water a general term of the sum Jirukonia Z r 0 2 ⁇ n H 2 0, can be used as a single or mixture.
  • the zirconium hydroxide powder is usually available in the form of a powder from a commercial product. It can be obtained by a known method such as precipitation by adding a base such as a hydration power rim. Above all, a zirconium nitrone ammonium nitrate production method is advantageous in that it does not contain harmful impurities such as chlorine and sulfur.
  • the average particle size was measured with a particle size analyzer (type II) manufactured by Leeds & Northrup Company based on the laser diffraction method.
  • the specific cell raw material is a cell sol having an average particle size of colloid particles of 3 to 100 nm, preferably 5 to 80 nm, and more preferably 10 to 50 nm.
  • the cerium sol generally refers to a state in which solid fine particles (colloid particles) in one or more of cerium oxide sol, hydrated cerium oxide sol, and cerium hydroxide sol having a colloid particle size are dispersed in an aqueous medium. Means When the average particle size of the colloid particles is less than 3 nm, industrial production is difficult, and when the average particle size exceeds 100 nm, the complexation with zirconium oxide hardly proceeds in a later step.
  • the colloid particle size was measured using a dynamic light scattering photometer (DLS-700, manufactured by Otsuka Electronics Co., Ltd.) based on a dynamic light scattering measurement method.
  • the method for producing the cell sol is not particularly limited.
  • the cell sol can be obtained by a known method of hydrolyzing an aqueous solution of sec- ondium nitrate. Concentrations of about 200 gZ liter can be used.
  • Some commercially available cerium sols are acidified with nitric acid or acetic acid in order to stably maintain the sol state, and any of them can be used.
  • the mixing ratio of the zirconium hydroxide powder and the cerium sol can be appropriately set so as to be a stoichiometric ratio corresponding to a desired composition ratio of the zirconium mu-cerium composite oxide.
  • the mixing ratio of zirconium and cerium converted to zirconium oxide and cerium oxide is 51 to 95:49 to 5 by weight. It is preferable to mix them.
  • the zirconium hydroxide powder and the cell sol are weighed and mixed with an appropriate amount of water to form a slurry-like mixture.
  • the concentration of the zirconium hydroxide powder and the cerium sol in the mixture is from 100 to 200 g liter, especially from 20 to 150 g liter, in terms of oxide. desirable.
  • the mixture may further contain salts of yttrium, scandium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, magnesium, calcium, nordium, aluminum, titanium and hafnium.
  • the salts can be selected from nitrates, chlorides, sulfates, and other water-soluble salts.Other than water-soluble salts, any compounds that dissolve and ionize when heated under nitric acid in the next step are used.
  • nitrates that do not remain in the composite oxide from which harmful impurities are obtained are preferable.
  • the mixing amount of these salts is preferably weighed and mixed in the obtained composite oxide at a theoretical ratio such that the total amount in terms of oxide is 0.1 to 20% by weight.
  • These mixed components other than zirconium and cell are finely dispersed as a solid solution or an oxide in the obtained composite oxide, and have an effect of preventing crystal growth of the composite oxide at a high temperature.
  • the heating reaction of the mixture is preferably carried out with stirring.
  • the molar amount of the cerium in the mixture is 5 to 10 times, preferably 5.5 to 8 times, more preferably 5 to 8 times. Eight to seven times the molar amount of nitric acid must be present.
  • the total amount of nitric acid including the amount of nitric acid may be adjusted to be the above-mentioned moles, and stabilized with acetic acid. In the type given Nitric acid may be added so as to have the above mole number.
  • the crystals of zirconium hydroxide powder and cerium zol particles repeatedly elute and precipitate, and the crystal growth proceeds while compounding zirconium and cerium. Can be. If the amount of nitric acid is less than 5 moles, the crystal growth becomes insufficient and the resulting composite oxide cannot be provided with excellent heat resistance. On the other hand, if the molar ratio exceeds 10 times, the zirconium hydroxide powder dissolves and zirconium in an ionic state is formed, so that a fine precipitate is formed in the reaction with a base described later, and the precursor which has been sufficiently grown according to the present invention is intended. No complex is obtained, and as a result, a composite oxide having excellent heat resistance cannot be obtained.
  • the heating reaction in the presence of nitric acid can be performed at a reaction temperature of 60 to 150 ° C, preferably 80 to 140 ° C, for a reaction time of 1 to 36 hours. Preferably, it can be performed under normal pressure or under pressure.
  • the reaction time can be reduced by using a pressurized container such as an autoclave under a pressure of about 1.5 to 10 kg / cm 2 . .
  • a base is then added to further react to precipitate the product.
  • the mixture reacted in the presence of nitric acid is cooled to preferably 60 ° C. or less, particularly preferably 50 ° C. or less, and then a base is added and the reaction is carried out by stirring or the like. Let it proceed.
  • the base include sodium hydroxide, potassium hydroxide, ammonia water, ammonia gas, a mixture thereof, and the like, with preference given to ammonia water.
  • the base can be added by, for example, a method in which the base is converted into an aqueous solution having an appropriate concentration and added to the cooled mixture while stirring, or in the case of ammonia gas, a method in which the base is blown into the container with stirring.
  • the limit of the amount of base to be added is easily determined by measuring the change in pH of the mixture, and a pH above 10 is sufficient and the reaction is complete. By this reaction, substantially all of the solids and metal ions present in the mixture are complexed, and a product having advanced crystal growth can be precipitated.
  • Example 1 and 2 show the results of X-ray diffraction measurement of the product at this stage in Example 1 of the present invention and Comparative Example 1 described below under the same conditions.
  • the product according to the present invention has a high crystallinity. It turns out that it is.
  • This product is a suitable precursor for obtaining a desired composite oxide having excellent heat resistance.
  • This precursor can be separated by, for example, a Nutsch II method, a centrifugal separation method, a filter press method, or the like.
  • the precipitate may be washed with water as necessary. Further, in order to increase the efficiency of the next firing step, the obtained precipitate may be appropriately dried.
  • a desired composite oxide can be obtained by firing the obtained product at a specific temperature.
  • the firing temperature any temperature between 500 and 100 ° C. can be selected.
  • the lower limit temperature was set to 500 ° C for the following reasons.
  • the change in the weight of the product under heating was measured using a hot-air heater (using TG-DTA-812H type manufactured by Rigaku Denki Co., Ltd.), and the weight loss was completed at 500 ° C. You can see that there is.
  • the firing temperature is lower than 500 ° C, the zirconium-cerium composite oxide is incomplete, and the hydroxyl group, acid group, base, etc. remain. Is released and cannot be adopted.
  • the firing temperature for obtaining the desired composite oxide can be arbitrarily selected from the required or guaranteed values of the specific surface area and the bulk density, but the upper limit is set from a practical viewpoint as a co-catalyst that emphasizes the specific surface area. Is limited to 100 ° C. or less.
  • the temperature is preferably 500 to 800 ° C, more preferably 500 to 600 ° C.
  • the firing time may be appropriately set in consideration of the temperature, and is preferably 1 to 10 hours.
  • the composite oxide according to the present invention has excellent heat resistance, and can maintain a high specific surface area of 20 m 2 / g or more after heating at 110 ° C. for 6 hours.
  • the composite oxide of the present invention can be pulverized after the firing step.
  • the resulting composite oxide powder which is a pulverized product, can be used as an exhaust gas purifying cocatalyst.
  • This pulverization can be performed on the calcined composite oxide by using a commonly used pulverizer, for example, a hammer mill or the like, to obtain a powder having a sufficiently desired particle size.
  • the particle size of the composite oxide powder when used as the exhaust gas purifying cocatalyst is not particularly limited, but is preferably 1 to 20 m.
  • the obtained co-catalyst can be used by a method used when a catalyst metal is supported on a usual catalyst carrier.
  • the composite oxide of the present invention is mainly composed of a composite oxide of zirconium and cerium, has a high specific surface area, and particularly has a specific surface area of at least 20 m 2 / g after heating at 110 ° C. for 6 hours. Since it has excellent heat resistance to maintain its specific surface area, it can be used as a co-catalyst for exhaust gas purification, etc., in place of the conventional zirconium-cerium 'composite oxides Can be used. It is also very useful in the field of highly efficient exhaust gas purification catalysts. According to the production method of the present invention, the composite oxide having the high specific surface area and the high heat resistance can be economically obtained with good reproducibility.
  • Example 1 Example 1
  • Zirconium hydroxide powder manufactured by Santoku Metal Industry Co., Ltd., purity 99.9%, zirconium oxide equivalent content 40.1% by weight, average particle size 18.56 ⁇ m
  • 81.05 g Pemsol (Rhone Poulin Co., Ltd., cerium oxide content 5% by weight or less, cerium oxide equivalent concentration lOO gZ liter) 15 Om1
  • lanthanum nitrate aqueous solution (Anan Kasei Co., Ltd., purity 9 9. 9) 9% lanthanum oxide concentration in terms 1 5 0 g glue Tsu torr) 1 6.
  • nitric acid purity: 60 to 61%, manufactured by Wako Pure Chemical Industries, Ltd.
  • the oxide-concentrated concentration was 50 g.
  • One liter of the mixture adjusted with demineralized water to obtain a torr was obtained.
  • 1 liter of this mixture was transferred to a vessel equipped with a steam condenser and heated at 100 ° C. for 12 hours with stirring.
  • the obtained precipitate was calcined at 500 ° C. for 6 hours to obtain a zirconium-cerium lanthanum-containing composite oxide having a specific surface area of 92.7 m 2 Zg 50 g.
  • FIG. 4 shows the crystallite diameter determined from the X-ray diffraction image.
  • the specific surface area after heating at 110 ° C for 6 hours is 24. It was eight .
  • the content ratios of zirconium, cerium and lanthanum in the composite oxide were 65.1% by weight and 29.99%, respectively, in terms of zirconium oxide, cerium oxide and lanthanum oxide. % And 5% by weight.
  • Example 2 the mixture was stirred and heated in the same manner as in Example 1, ammonia water was added, and the product was subjected to solid-liquid separation to obtain 142 g of a precipitate.
  • the obtained precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1. Although the exact crystallite size could not be measured, the X-ray intensity indicating crystallinity was about 700 cps. Further and fired in the same manner as in Example 1, zirconium specific surface 1 1 5. 7 m 2 / g - was obtained parsley um system La lanthanum-containing composite oxide 5 0 g.
  • Table 1 shows the specific surface area when the composite oxide was further heated at 900 ° C., 1,000 ° C., and 1100 ° C. for 6 hours.
  • the specific surface area after heating at 110 ° C. for 6 hours was 22.4 m 2 / g.
  • the content of zirconium, cerium and lanthanum in the composite oxide was 74.9% by weight and 20.2% by weight in terms of zirconium oxide, cerium oxide and lanthanum oxide, respectively. And 4.9% by weight.
  • Example 2 the same procedure as in Example 1 was carried out to obtain 50 g of a zirconium-musselium composite oxide having a specific surface area of 11.2.4 m 2 / g. Table 1 shows the specific surface area when the obtained composite oxide was further heated at 900 ° C., 1,000 ° C., and 1100 ° C. for 6 hours. The specific surface area after heating at 110 ° C. for 6 hours was 20.4 m 2 Z g. As a result of composition analysis, the content of zirconium and cerium in the composite oxide was 75% by weight and 25% by weight in terms of zirconium oxide and ceric oxide, respectively.
  • Example 1 By carrying out in the same manner as in Example 1, 138.24 g of a precipitate was obtained. The obtained precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1. The exact crystallite size could not be measured, but the X-ray intensity indicating crystallinity was about 700 cps. Further, the same procedure as in Example 1 was carried out to obtain 50 g of a zirconium musselium-based neodymium-containing composite oxide having a specific surface area of 91.3 m 2 / g. Table 1 shows the specific surface area when the obtained composite oxide was further heated at 900 ° C., 100 ° C., and 110 ° C. for 6 hours.
  • the specific surface area after heating at 110 with 6 hours was 23.8 m 2 Zg.
  • the contents of zirconium, cerium and neodymium in the composite oxide were 65% by weight, 30.1% by weight and 40.1% by weight, respectively, in terms of zirconium oxide, ceric oxide and neodymium oxide. It was 9% by weight.
  • Example 1 To this mixture, nitric acid was added so as to be present in an amount of 6.1 times the mole of total serum, and 1 liter of the mixture adjusted with demineralized water so that the concentration in terms of oxide was 5 OgZ liter. I got torr. Then, the same procedure as in Example 1 was carried out to obtain 137.94 g of a precipitate. The obtained precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1. Although the exact crystallite size could not be measured, the X-ray intensity indicating crystallinity was about 700 cps.
  • Example 2 the same procedure as in Example 1 was carried out to obtain 50 g of a zirconium-cerium-based aluminum-containing composite oxide having a specific surface area of 90.9 m 2 / g.
  • the obtained composite oxide was further added to 90% Table 1 shows the specific surface area when heating at 0 ° C, 1000 ° C, and 1100 ° C for 6 hours each.
  • the specific surface area after heating at 110 ° C. for 6 hours was 24.2 m 2 Zg.
  • the contents of zirconium, cerium and aluminum in the composite oxide were calculated to be 65.1% by weight and 3% by weight, respectively, in terms of zirconium oxide, cerium oxide and aluminum oxide. 0 wt% and 4.9 wt%.
  • nitric acid was added so as to be present in a molar amount of 6.1 times the total cerium mole, and 1 liter of a mixture adjusted with demineralized water to obtain a concentration of 50 gZ in terms of oxide was obtained. Then, proceed in the same manner as in Example 1.
  • Example 1 37.79 g of precipitate was obtained.
  • the obtained precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1. Although the exact crystallite size could not be measured, the X-ray intensity indicating crystallinity was about 700 cps.
  • Example 1 the same procedure as in Example 1 was performed to obtain 50 g of a zirconium-cerium-based magnesium-containing composite oxide having a specific surface area of 91.6 m 2 / g. Table 1 shows the specific surface area when the obtained composite oxide was further heated at 900 ° C, 10000 ° C, and 1100 ° C for 6 hours each. The specific surface area after heating at 1100 for 6 hours was 25.3 m 2 / g.
  • composition analysis revealed that the zirconium in the composite oxide, glyceryl um and content of magnesium, zirconium oxide, a second auction um and magnesium oxide in terms of oxide, respectively 6 5.1 weight 0/0, 30% by weight and 4.9% by weight.
  • Example 1 The obtained precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1. Although the exact crystallite size could not be measured, the X-ray intensity, which indicates crystallinity, was about 700 cps. Further, the same procedure as in Example 1 was carried out to obtain 50 g of a zirconium-cerium lanthanum-containing composite oxide having a specific surface area of 108. 1 m 2 / g. Table 1 shows the specific surface area when the obtained composite oxide was further heated at 900 ° C., 10000 ° C., and 1100 ° C. for 6 hours. The specific surface area after heating at 110 ° C. for 6 hours was 24.5 m 2 Zg.
  • composition analysis revealed that the zirconium in the composite oxide, the content of Se um and lanthanum, zirconium oxide, a second cell re um and lanthanum oxide in terms oxide, respectively 6 5.1 weight 0/0, 3 0 wt% And 4.9% by weight.
  • Example 2 1 liter of the obtained mixture was placed in a pressurized reaction vessel (autoclave) and held for 6 hours while stirring under pressure (2 kgcm 2 ). Next, ammonia water was added in the same manner as in Example 1, and the product was subjected to solid-liquid separation to obtain 136.53 g of a precipitate. The obtained precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1. The exact crystallite size could not be measured, but the X-ray intensity, which indicates crystallinity, was about 700 cps.
  • Example 2 Thereafter, the same procedure as in Example 1 was performed to obtain 50 g of a zirconium-cerium-based lanthanum-containing composite oxide having a specific surface area of 102.6 m 2 / g.
  • Table 1 shows the specific surface area when this composite oxide was further heated at 900 ° C., 1000 ° C., and 1100 for 6 hours.
  • the specific surface area after heating at 110 ° C. for 6 hours was 27 m 2 Zg.
  • the contents of zirconium, cerium and lanthanum in the composite oxide were calculated to be 65.1% by weight, 24.8% by weight and 14.8% by weight, respectively, in terms of zirconium oxide, ceric oxide and lanthanum oxide. It was 0.1% by weight.
  • Zirconyl nitrate solution manufactured by Santoku Metal Industry Co., Ltd., purity: 99%, zirconium oxide conversion concentration: 250 g / liter) 130 ml, cerium zol 150 m1 and lanthanum nitrate aqueous solution 1 6.
  • mixing 6 7m l, Z r O 2 : C e O 2: L a 2 Os 6 5: 3 0: to give a mixture of 5 (weight ratio). Further, 1 liter of a mixture adjusted with demineralized water so as to have a concentration in terms of oxide of 5 Og / liter was obtained. Then, the same procedure as in Example 1 was carried out to obtain 141.2 lg of precipitate.
  • This precipitate was a gel.
  • the precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1.
  • Figure 2 shows the X-ray diffraction image. Although the exact crystallite size could not be measured, the X-ray intensity indicating crystallinity was about 500 cps. Further, the specific surface area was 9 7.7 m 2 / g of a zirconium-cerium based lanthanum-containing composite oxide (50 g) was obtained. Table 1 and FIG. 5 show the specific surface area when the obtained composite oxide was further heated at 900 ° C., 1000 ° C., and 110 ° C. for 6 hours.
  • FIG. 4 shows the crystallite diameter determined from the X-ray diffraction image.
  • Example 1 with zirconium hydroxide powder 8 1 using 0 5 and g, a parsley c Muzoru 1 5 0 m 1, mixing an aqueous solution of lanthanum nitrate 1 6. 6 7 m 1, Z r 0 2: C e 0 2: L a 2 Oa 6 5: 3 0: to give a mixture of 5 (weight ratio). Further, nitric acid was added so as to be present in an amount of 11 times as much as the total cell mole, and 1 liter of a mixture adjusted with demineralized water so that the concentration in terms of oxide was 5 OgZ liter was obtained. Then, the same procedure as in Example 1 was performed to obtain 140.35 g of a precipitate.
  • the obtained precipitate was gel-like.
  • the precipitate obtained was subjected to X-ray diffraction measurement under the same conditions as in Example 1. Although the exact crystallite size could not be measured, the X-ray intensity indicating crystallinity was about 500 cps.
  • 50 g of a zirconium-cerium lanthanum-containing composite oxide having a specific surface area of 96 m 2 / g was obtained. Table 1 shows the specific surface area when the obtained composite oxide was further heated at 900 ° C., 1000 ° C., and 110 ° C. for 6 hours. Specific surface area after 6 hours pressurized heat in 1 1 0 0 was 7.6 ⁇ 1 2 8.
  • the content ratios of zirconium, cerium and lanthanum in the composite oxide were 6 in terms of zirconium oxide, cerium oxide and lanthanum oxide, respectively. 5.1%, 30% and 4.9% by weight.
  • Example 1 The obtained precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1. The exact crystallite size could not be measured, but the X-ray intensity, which indicates crystallinity, was about 500 cps. Further, the same procedure as in Example 1 was performed to obtain 50 g of a zirconium-cerium-based lanthanum-containing composite oxide having a specific surface area of 98.7 m 2 / g. Table 1 shows the specific surface area when the composite oxide was further heated at 900 ° C., 1000 ° C., and 1100 ° C. for 6 hours. The specific surface area after heating at 1100 for 6 hours was 3.3 m 2 Zg.
  • the contents of zirconium, cerium and lanthanum in the composite oxide were 65% by weight, 30% by weight and 5% by weight, respectively, in terms of zirconium oxide, ceric oxide and lanthanum oxide. Met.
  • Example 1 The precipitate was subjected to X-ray diffraction measurement under the same conditions as in Example 1. Although the exact crystallite size could not be measured, the X-ray intensity indicating crystallinity was about 500 cps. The ratio similarly performed on the further in Example 1 surface 1 1 5. 7 m 2 / g of zirconyl two ⁇ beam - to give the parsley um lanthanum-containing composite oxide 5 0 g. Chlorine was detected at 0.18% by weight. Table 1 shows the specific surface area when this composite oxide was further heated at 900 ° C., 1000 ° C., and 1100 ° C. for 6 hours. The specific surface area after heating at 110 ° C for 6 hours is 6.g Met.
  • the content of zirconium, cerium and lanthanum in the composite oxide was 64.9% by weight and 30.2% by weight in terms of zirconium oxide, cerium oxide and lanthanum oxide, respectively. And 4.9% by weight.

Description

明 細 書
ジルコニウムーセリ ゥム系複合酸化物及びその製造法、 並びに排ガス浄化用助触媒
技 丁分野
本発明は、 触媒分野、 機能性セラミ ックス分野、 燃料電池用固体電 解質分野等に利用可能であり、 特に自動車の排ガス浄化用助触媒と し て好適に利用可能な優れた耐熱性を有するジルコニウムーセリ ウム系 複合酸化物及びその製造法、 並びに排ガス浄化用助触媒に関する。 背景技術
自動車等の排ガス浄化用触媒は、 例えばアルミナ、 コージエライ ト 等の触媒担持体に触媒金属である白金、 パラジウム、 ロジウム等と、 これらの触媒作用を高めるための助触媒が担持されて構成される。 こ の助触媒と しての酸化セリ ゥム系材料は、 酸化雰囲気下で酸素を吸収 し、 還元雰囲気下でその酸素を放出するという酸化セリ ゥムの特性、 所謂酸素吸収 ·放出能により排ガス中の有害成分である炭化水素、 一 酸化炭素及び窒素酸化物等を優れた効率で浄化する。 このために酸化 セリ ウム系材料が助触媒と して大量に使用されている。 また、 酸化ジ ルコニゥムは、 前記酸化セリ ウムの特性を高めるので、 現在、 助触媒 と しては、 ジルコニウム一セリ ウム系複合酸化物が主流となり、 その 使用量が増加している。
この複合酸化物を用いた助触媒を機能させるときに最も重要なこと は高温に維持することであり、 エンジン始動時のように排ガスの温度 が低いときは浄化効率が悪い。 近年、 自動車メーカーはエンジンと触 媒装置の距離を近付け、 排気直後の高温排ガスを触媒装置に導入する ことでこの問題に対処している。 しかし、 この場合触媒の耐熱性に新たな問題が生じている。 触媒に よる排ガス処理の効率は一般に触媒の活性相と排ガスの接触面積に比 例することから、 使用される助触媒は充分に比表面積が大きい必要が ある。 しかし、 現状のジルコニウム—セリ ウム系複合酸化物の粒子は、 高温長時間の使用環境では粒成長により比表面積が低下することから、 耐熱性に関して十分とは言えず、 安定して高い比表面積が維持される 助触媒が強く求められている。
従来の耐熱性に優れたジルコニウムーセリ ゥム系複合酸化物の製造 法と しては、 例えば特開平 6 - 2 79 0 2 7号公報及ぴ特公平 8― 1 6 0 1 5号公報に、 ジルコニウムゾルとセリ ゥムゾルとを混合し、 塩 基を加えて沈澱物を得る方法、 又は噴霧乾燥を用いる方法が提案され ている。 そして、 得られた混合酸化物の耐熱性については、 1 000 °C仮焼後の比表面積が 1 5 m2Zgであることが記載されている。
特開平 5— 1 9 3 94 8号公報には、 平均粒径 0. 2 μ πι以下の水 和ジルコ二ァゾルと、 C e、 Y、 C a、 M g等の化合物との混合物を 焼成する混合酸化物の製造法が提案されており、 得られた混合酸化物 の耐熱性は、 1 0 50 °C仮焼後の比表面積が 1 2 m2/ gであること が記載されている。
特開平 5— 1 1 6 94 5号公報には、 平均粒径 0. 0 5〜 0. 3 μ m及び結晶子径 4 n m以下の水和ジルコ二ァゾルと、 C e、 Y、 C a、 M g等の化合物との混合物を焼成する混合酸化物の製造法が提案され ている。 得られた混合酸化物の耐熱性は、 8 5 0 °C焼成後の比表面積 が 1 S であることが記載されている。
また、 ジルコニウム酸化物の製造法と して、 特開平 5— 1 5 5 6 2 2号公報には、 ジルコニウム塩水溶液に、 2価以上の金属の水酸化物、 水和酸化物、 酸化物等を混合し、 加水分解させる方法が提案されてい る。 得られた混合酸化物の耐熱性は、 1 0 0 0 °C焼成後の比表面積が 8 m 2 Z gであることが記載されている。
以上のいずれの方法も目的とする酸化物を製造する操作時間が長い という問題がある。 例えば、 ジルコ二ァゾルを用いる方法では、 ジル コニゥム塩水溶液の加水分解時間が 1 0 0時間を越えるなどの生産性 に問題がある。
高比表面積を得る方法と しては、 酸化物の結晶子径、 即ち結晶の成 長度合いを抑制すれば良く、 例えば、 特開平 6— 2 7 9 0 2 7号公報 及び特公平 8 - 1 6 0 1 5号公報に記載されるジルコ二ァゾル ( 5〜 5 0 0 n mのジルコユア ' コロイ ド粒子) を用いる製造法が最適であ る。 しかし、 酸化物の状態における結晶 ·粒子径が微細であるが故に 熱エネルギーに対して非常に敏感であり、 これら既知の製造法によつ て得られた酸化物は、 9 0 0 °C以上の高温域での焼結において、 著し く比表面積が小さくなり耐熱性が悪いという問題がある。 即ち、 高温 使用される助触媒には適していない。 更に、 従来提案されている多く の製造法では、 原料に起因する触媒にとって有害な塩素、 硫黄等の不 純物混入が避けられないという問題もある。
発明の開示
本発明の目的は、 特に排ガス浄化用助触媒と して優れた耐熱性を有 し、 高温環境下で使用された場合においても高い比表面積を維持でき るジルコニウム—セリ ゥム系複合酸化物及びその製造法、 並びに排ガ ス浄化用助触媒を提供することにある。
本発明の別の目的は、 優れた耐熱性を有するジルコニウムーセリ ゥ ム系複合酸化物を、 再現性よく、 且つ経済的に調製することが可能な 製造法を提供することにある。
本発明の他の目的は、 優れた耐熱性を有すると共に触媒にとって有 害な塩素、 硫黄等の不純物の混入がないジルコニウムーセリ ウム系複 合酸化物の製造法を提供することにある。
本発明者は、 従来技術によるジルコニウムーセリ ゥム系複合酸化物 力 大きな比表面積を持つ場合でも高温で加熱すると急激に比表面積 が低下する原因を追及すべく、 ジルコニウム原料の影響について詳細 な研究を行った。 その結果、 従来、 酸化ジルコニウムと酸化セリ ウム との固溶度の高い複合酸化物を得る方法と して知られた、 ジルコニゥ ムゾル或いはジルコ二ゥム塩の水溶液と、 セリ ウムゾル或いはセリ ゥ ム塩水溶液とを混合し、 塩基を添加して沈澱生成させた複合酸化物前 駆体は、 微結晶性であるためか熱エネルギーに対して極めて敏感であ り、 焼成により固溶度の高い単相の結晶相をもつジルコニウム—セリ ゥム系複合酸化物を生成するが、 高温域での焼結による比表面積の低 下が著しく、 高比表面積を維持できないことを確認した。 そこで、 前 駆体の段階で結晶度を高める試みを試行錯誤したところ、 このような 高比表面積の複合酸化物におけるジルコニウム原料と して、 これまで 取り上げられなかった水酸化ジルコニウム粒子の利用とその粒度の影 響について検討した結果、 この粒子を母体と して、 セリ ウム成分、 或 いは更に他の添加成分を複合させた前駆体を得るための反応方法を開 発し、 本発明を完成するに至った。
本発明によれば、 ジルコニウム及びセリ ウムを含み、 酸化ジルコ二 ゥム及び酸化第二セリ ゥムに換算した前記ジルコニウム及びセリ ウム の配合比率が、 重量比で 5 1〜 9 5 : 4 9〜 5であり、 必要により、 さ らにイ ッ ト リ ウム、 スカンジウム、 ランタン、 プラセオジム、 ネオ ジム、 サマリ ウム、 ユーロピウム、 ガドリニウム、 マグネシウム、 力 ルシゥム、 バリ ウム、 アルミニウム、 チタン、 ハフニウム及びこれら の混合物からなる群より選択される金属を、 酸化物換算しての合計量 で複合酸化物全量に対して 0 . 1〜 2 0重量%含有し、 比表面積が 5 0 m 2 / g以上であり、 かつ 1 1 0 0でで 6時間加熱後において 2 0 m 2 / g以上の比表面積を維持することができるジルコニウム一セリ ゥム系複合酸化物及び該ジルコニウム—セリ ゥム系複合酸化物粉末を 含む排ガス浄化用助触媒が提供される。
また、 本発明によれば、 平均粒径 0 . 5〜 5 0 / mの水酸化ジルコ ニゥム粉末と、 コロイ ド粒子の平均粒径 3〜 1 0 0 n mのセリ ウムゾ ルとを含み、 また必要に応じてイッ ト リ ウム、 スカンジウム、 ランタ ン、 プラセオジム、 ネオジム、 サマリ ウム、 ユーロピウム、 ガドリニ ゥム、 マグネシウム、 カノレシゥム、 ノくリ ウム、 ァノレミ ニゥム、 チタン 及びハフニウムのそれぞれの塩類からなる群より選択される 1種又は 2種以上を含む混合物を、 該混合物中のセリ ゥムモル数に対して 5〜 1 0倍モルの硝酸存在下に加熱反応させる工程、 次いで、 塩基を加え て更に反応させ生成物を沈澱させる工程、 得られた生成物を 5 0 0〜 1 0 0 0 °Cで焼成する工程を含む前記ジルコニウム—セリ ゥム系複合 酸化物粉末の製造法が提供される。
図面の簡単な説明
図 1は実施例 1の焼成前沈殿物の X線回折結果を示すグラフである。 図 2は比較例 1の焼成前沈殿物の X線回折結果を示すグラフである。 図 3は実施例 1の沈殿物の加熱重量変化(T G )を示すグラフである。 図 4は焼成温度及び結晶子径から表した、 実施例 1 と比較例 1の耐 熱性の比較を示すグラフである。 図 5は焼成温度及び比表面積から表した、 実施例 1 と比較例 1の耐 熱性の比較を示すグラフである。
明の好ましい実施の熊様
以下本発明を更に詳細に説明する。
本発明のジルコニウムーセリ ゥム系複合酸化物において、 複合酸化 物とは、 酸化ジルコニウムと酸化セリ ゥムとが単に混合物の状態でな く、 部分的又は実質的に複合酸化物乃至固溶体を形成しているものを 言う。 この複合酸化物を助触媒と して使用した場合に酸素吸収 ·放出 能を示すのは、 酸化セリ ウムであるが、 酸化ジルコニウムはこの酸化 セリ ゥムの耐熱性を高め、 広い温度範囲で酸素吸収 ·放出能を発揮さ せる作用を示す。
本発明の複合酸化物において、 含有されるジルコニウム及びセリ ウ ムの配合比率は、 酸化ジルコニウム (Z r O2) 及び酸化第二セリ ウ ム (C e O2) に換算した重量比で 5 1〜 9 5 : 4 9〜 5、 好ましく は 5 5〜 8 5 : 4 5〜: 1 5、 更に好ましくは 6 0〜 8 0 : 4 0〜 2 0 である。 ジルコニウムの酸化ジルコニウム換算における前記配合比率 が 5 1未満では、 優れた耐熱性が得られず、 また 9 5を越えると酸化 セリ ウムに起因する酸素吸収 · 放出能が不足する。 複合酸化物中のジ ルコニゥム及ぴセリ ゥムの合計含有割合は、 酸化ジルコニウム及び酸 化第二セリ ゥム換算で 8 0〜 1 0 0重量%が好ましい。
本発明の複合酸化物は、 比表面積が 5 0 m2/ g以上を示す。 この 比表面積は、 通常、 製造時の焼成温度が高いほど比表面積が低くなる。 例えば 5 0 0 °Cで 6時間焼成して得られた複合酸化物の比表面積は 9 0 m2/ g以上、 9 0 0でで 6時間焼成して得られた複合酸化物の比 表面積は 7 0 m2/ g以上、 1 0 0 0°Cで 6時間焼成して得られた複 合酸化物の比表面積は 5 0 m 2 / g以上の高い比表面積を示す。 本発 明の複合酸化物の比表面積の上限は特に限定されないが、 1 2 0 m 2 ノ g程度である。 このような焼成温度における高水準の比表面積を有 する材料はジルコニウム—セリ ゥム系複合酸化物としては従来知られ ていない。 そして、 本発明の複合酸化物は、 例えば助触媒と して使用 した場合等において、 1 1 0 0 °Cで 6時間加熱後において 2 0 m 2 / g以上、 好ましくは 2 0〜 3 0 m 2 / gの比表面積を維持できる物性 を有する。 一般に酸化物粉末を加熱する場合、 組成及びその粉末の製 造履歴に依存する特定の温度領域以上で焼結することによって、 粒成 長が顕著になり、 急激な比表面積の低下が生じる。 ジルコニウム—セ リ ゥム系複合酸化物においては略 1 0 0 0 °C以上でこの減少が顕著で あり、 現行の排ガス浄化用触媒装置も通常は約 9 0 0 °C以下で稼働す るように設計されている。 本発明では、 今後求められる 1 0 0 0 °C前 後の高温で使用可能な助触媒等にも使用可能である複合酸化物の性能 を示すために、 得られた複合酸化物の耐熱性の評価温度と しては使用 される温度の上限とみなされる 1 1 0 0 °Cを基準と し、 1 1 0 0 °Cで 6時間加熱後に維持できる比表面積の値を複合酸化物の物性指標と し た。 なお、 本発明において比表面積とは、 粉体の比表面積測定法と し て最も標準的な窒素ガス吸着による B E T法に基づいて測定された値 である。
本発明の複合酸化物は、 ジルコニウム及ぴセリ ウムの他に、 更にィ ッ ト リ ウム、 スカンジウム、 ランタン、 プラセオジム、 ネオジム、 サ マリ ゥム、 ユーロピウム、 ガドリニウム、 マグネシウム、 カノレシゥム、 バリ ウム、 アルミニウム、 チタン及びハフニウムからなる群より選択 される 1種又は 2種以上を、 酸化物換算して複合酸化物の合計量に対 して 0. 1〜 2 0重量%の範囲で含有していても良い。 このような特 定の金属を更に含有させることにより、 一層優れた耐熱性を付与する ことが可能である。 この際、 0. 1重量%未満では耐熱性改善に効果 が認められず、 また 2 0重量%を越えるとセリ ゥムの含有量が相対的 に低下し、 助触媒等に使用した場合に要求される酸素吸収 · 放出能が 不足するので好ましくない。
本発明の製造法は、 前記複合酸化物を再現性よく、 且つ経済的に調 製することができる。 この製造法では、 まず、 特定のジルコニウム原 料と、 特定のセリ ウム原料とを含む混合物を、 特定量の硝酸存在下に 加熱反応させる。
前記特定のジルコニウム原料は、 平均粒径 0. 5〜 5 0 μ ιη、 好ま しくは l〜 3 0 /x m、 更に好ましくは 5〜 2 5 mの水酸化ジルコ二 ゥム粉末である。 平均粒径が 0. 5 μ m未満の場合は本発明の目的と する耐熱性に優れた高比表面積の複合酸化物が得られず、 5 0 μ mを 越える場合は複合酸化物の比表面積が低下する。 該水酸化ジルコニゥ ムとは、 (1)水酸化ジルコニウム Z r (OH)4 · n H20、 (2)ォキシ水 酸化ジルコニウム Z r O (O H) 2 · n H20、 (3)水和ジルコニァ Z r 02 · n H20の総称であって、 単独若しくは混合物と して用いること ができる。
前記水酸化ジルコニウム粉末は、 通常粉体の状態で市販品から入手 できるが、 例えば硝酸ジルコニウム、 塩化ジルコニウム、 硝酸ジルコ ニル等のジルコニウム塩水溶液に、 アンモニア水、 アンモニアガス、 水酸化ナト リ ゥム、 水酸化力リ ゥム等の塩基を加えて沈澱させる等の 公知の方法で得ることができる。 中でも、 硝酸ジルコ二ルーアンモニ ァ系の製法は、 塩素、 硫黄等の有害不純物を含まない点で有利である。 なお、 平均粒径の測定はレーザー回折法に基づく リーズ &ノースラッ プ社製粒度分析計 (ΜΚΠ型) により行った。
前記特定のセリ ゥム原料は、 コロイ ド粒子の平均粒径 3〜 1 0 0 n m、 好ましくは 5〜 8 0 n m、 更に好ましくは 1 0〜 5 0 n mのセリ ゥムゾルである。 該セリ ウムゾルとは、 一般に、 コロイ ド粒子サイズ の酸化セリ ウムゾル、 水和酸化セリ ウムゾル、 水酸化セリ ウムゾルの いずれか又は複数の形の固体微粒子 (コロイ ド粒子) が水性媒体中に 分散した状態のものをいう。 コロイ ド粒子の平均粒径が 3 n m未満の 場合は工業的に製造が困難であり、 1 0 0 n mを越える場合は、 後ェ 程において酸化ジルコニウムとの複合化が進行し難い。 なお、 コロイ ド粒子径の測定は動的光散乱測定法に基づく大塚電子社製ダイナミ ッ ク光散乱光度計 (D L S— 7 0 0 0型) により行った。
前記セリ ゥムゾルの製造法は特に限定されるものではなく、 例えば 硝酸第二セリ ゥム水溶液を加水分解させる公知の方法等によって得ら れ、 また市販品として、 酸化セリ ゥム換算で 1 00〜 200 gZリ ツ トル程度の濃度のものが利用できる。 市販のセリ ウムゾルは、 ゾル状 態を安定に保持するために、 硝酸酸性或いは酢酸酸性されているもの があるがいずれも使用可能である。 但し、 セリ ウムゾルを製造する際 の原料に起因する塩素、 硫黄等の不純物の残留の極力少ないものの使 用が望ましい。
前記混合物において、 前記水酸化ジルコニウム粉末及び前記セリ ゥ ムゾルの混合割合は、 所望のジルコ二ゥムーセリ ゥム系複合酸化物の 組成比に対応する理論比となるように適宜設定することができる。 例 えば、 ジルコニウム及ぴセリ ゥムを酸化ジルコニウム及び酸化第二セ リ ゥムに換算した混合割合が、 重量比で 5 1〜 9 5 : 4 9〜 5 となる ように混合するのが好ましい。 混合物の調製は、 前記水酸化ジルコ二 ゥム粉末及び前記セリ ゥムゾルを秤量し適量の水と共に混合し、 スラ リ一状の混合物とするのが好ましい。 混合物中の前記水酸化ジルコ二 ゥム粉末及び前記セリ ゥムゾルの濃度は、 酸化物換算の合計量で 1 0 〜 2 0 0 g リ ッ トル、 特に 2 0〜 : 1 5 0 gノリ ツ トルが望ましい。 前記混合物には、 必要に応じて、 更にイッ ト リ ウム、 スカンジウム、 ランタン、 プラセオジム、 ネオジム、 サマリ ウム、 ユーロピウム、 ガ ドリ二ゥム、 マグネシウム、 カルシウム、 ノ リ ウム、 アルミニウム、 チタン及びハフニウムの塩類からなる群より選択される 1種又は 2種 以上を添加することができる。 塩類と しては、 硝酸塩、 塩化物、 硫酸 塩、 その他水溶性塩類の中から選択できるが、 水溶性塩以外でも次ェ 程において硝酸酸性下で加熱した時に溶解してイオン化する化合物で あれば使用可能である。 特に有害不純物が得られる複合酸化物中に残 存しない硝酸塩が好ましい。 これら塩類の混合量は、 得られる複合酸 化物中に、 酸化物換算しての合計量が 0 . 1〜2 0重量%となるよう な理論比で秤量し混合するのが好ましい。 これらジルコニウム、 セリ ゥム以外の混合成分は、 得られる複合酸化物中に固溶体乃至酸化物と して微細分散し、 高温での複合酸化物の結晶成長を妨げる作用を有す る。
前記混合物の加熱反応は、 撹拌下行うのが好ましく、 この際、 混合 物中のセリ ウムモル数に对して、 5〜1 0倍モル、 好ましくは 5 . 5 〜8倍モル、 さらに好ましくは 5 . 8〜 7倍モルの硝酸を存在させる 必要がある。 前述のセリ ゥムゾルと して硝酸酸性で安定化されたタイ プを用いた場合は、 その硝酸量をも含めて トータルで硝酸が上記モル 数となるよ うに調整すればよく、 酢酸酸性で安定化されたタイプでは 上記モル数となるように硝酸を添加すればよい。 このよ うな特定量の 硝酸を存在させることにより、 水酸化ジルコニウム粉末、 セリ ウムゾ ルの粒子それぞれの結晶が溶出及び析出を繰り返し、 ジルコニウム、 セリ ゥムの複合化を行いながら結晶成長を進行させることができる。 硝酸が 5倍モル未満では、 結晶成長が不十分となり得られる複合酸化 物に優れた耐熱性を付与できない。 一方、 1 0倍モルを越えると水酸 化ジルコニウム粉末が溶解し、 イオン状態のジルコニウムが增すため、 後述する塩基との反応において微細沈殿が生じて本発明の意図する十 分に成長した前駆体が得られず、 結果と して耐熱性に優れた複合酸化 物が得られない。
前記硝酸存在下の加熱反応は、 反応温度 6 0〜 1 5 0 °C、 好ましく は 8 0〜 1 4 0 °Cで、 反応時間 1〜 3 6時間の範囲で行う ことができ る。 好ましくは常圧又は加圧下で行う ことができる。 加圧下で実施す る場合には、 例えば、 オートクレープ等の加圧容器を用い、 1 . 5〜 1 0 k g / c m 2程度の加圧下で行うことにより反応時間を短縮する ことが可能である。
本発明の製造法では、 次いで塩基を加えて更に反応させ生成物を沈 澱させる。 この反応にあたっては、 例えば、 前記硝酸の存在下反応さ せた混合物を、 好ましくは 6 0 °C以下、 特に好ましくは 5 0 °C以下に 冷却した後、 塩基を加えて撹拌等して反応を進行させることができる。 塩基と しては、 水酸化ナト リ ウム、 水酸化カリ ウム、 アンモニア水、 アンモニアガス又はこれらの混合物等が挙げられるが、 好ましくはァ ンモニァ水である。 塩基の添加は、 塩基を適度な濃度の水溶液と し、 前記冷却された混合物に撹拌しながら加える方法、 アンモニアガスの 場合は撹拌しながら容器内に吹き込む方法等により行う ことができる。 加える塩基の量の限度は混合物の p Hの変化を測定することによって 容易に判定され、 p Hが 1 0を越えれば十分であり、 反応が完了する。 この反応により、 混合物中に存在した固形物及び金属イオンは実質的 に全て複合化され、 結晶成長の進んだ生成物を沈澱させることができ る。 図 1及び図 2は後述する本発明の実施例 1 と比較例 1におけるこ の段階の生成物を同一条件で X線回折測定した結果であり、 本発明に よる生成物が結晶性の高いものであることが分かる。 この生成物が、 耐熱性に優れた所望の複合酸化物を得るために好適な前駆体となる。 この前駆体は、 例えばヌ ッチヱ法、 遠心分離法、 フィルタープレス法 等で分離できる。 また、 必要程度に沈殿物を水洗いしてもよい。 更に、 次の焼成工程の効率を高めるために、 得られた沈殿物を適度に乾燥し てもよい。
本発明の製造法では、 前記得られた生成物を特定温度で焼成するこ とにより所望の複合酸化物を得ることができる。 焼成温度は 5 0 0〜 1 0 0 0 °Cの間の任意の温度が選択できる。 下限温度を 5 0 0 °Cと し たのは次の理由による。 図 3において、 生成物の加熱重量変化を熱天 枰 (リガク電機社製造 T G— D T A— 8 1 2 H型使用) を用いて測定 した結果から、 重量減少は 5 0 0 °Cで完了していることが分かる。 即 ち、 焼成温度が 5 0 0 °C未満ではジルコニウムーセリ ゥム系複合酸化 物が未完成であり、 水酸基、 酸基、 塩基等が残留しているため、 高温 下で使用する際、 それらが放出されるので採用できない。 図 4は、 5 0 0 °C以上の温度領域において、 本発明 (後述の実施例 1 ) と比較例 1による複合酸化物について、 焼成温度 (各 6時間) に対する結晶子 径の変化を比較して調べたグラフである。 図 5はそれらに対応する比 表面積の変化を示すグラフである。 両図より、 本発明による複合酸化 物が高温域で焼成した場合でも、 結晶子が粗大化しにく く (焼結性が 低く) 、 従って高い比表面積を維持できることが判る。 所望の複合酸 化物とするための焼成温度は、 要求される、 または保証する比表面積 及び嵩密度の値から任意に選び得るが、 比表面積を重視する助触媒と しての実用的観点から上限は 1 0 0 0 °C以下に限定する。 好ましくは 5 0 0〜 8 0 0 °C、 更に好ましくは 5 0 0〜 6 0 0 °Cである。 焼成時 間は温度との兼ね合いで適宜設定してよく、 好ましくは 1 〜 1 0時間 である。 本発明による複合酸化物は、 優れた耐熱性を有し、 1 1 0 0 °C、 6時間加熱後に 2 0 m 2 / g以上の高い比表面積が維持できる。 本発明の複合酸化物は、 前記焼成工程の後、 粉砕すること もできる。 得られた粉砕物である複合酸化物粉体は、 排ガス清浄用助触媒と して 使用することができる。 この粉砕は、 焼成された複合酸化物を、 通常 用いられる粉砕機、 例えばハンマーミル等を用いて実施でき、 十分所 望の粒度の粉末とすることができる。 前記排ガス清浄用助触媒とする 場合の複合酸化物粉末の粒径は、 特に限定されないが、 1 〜 2 0 m が好ましい。 得られる助触媒は、 通常の触媒担持体に触媒金属を担持 させる際に用いる方法等により使用することができる。
本発明の複合酸化物は、 ジルコニウムとセリ ウムとの複合酸化物を 主成分と し、 高い比表面積を有し、 特に 1 1 0 0 °C 6時間の加熱後に 2 0 m 2 / g以上の比表面積を維持できる優れた耐熱性を有するので、 従来のジルコニウムーセリ ゥム'系複合酸化物に代えて特に排ガス浄化 用助触媒等と して利用でき、 従来の限界以上の高温域での使用が可能 である。 また、 高効率の排ガス浄化用触媒の分野において極めて有用 である。 本発明の製造法では、 前記高比表面積と高耐熱性を有する複 合酸化物を、 再現性よく、 しかも経済的に得ることができる。 実施例
以下、 本発明を実施例及び比較例により更に詳細に説明するが、 本 発明はこれらに限定されるものではない。
実施例 1
水酸化ジルコニウム粉末 (三徳金属工業株式会社製、 純度 9 9. 9 %、 酸化ジルコニウム換算含有量 40. 1重量%、 平均粒径 1 8. 5 6 μ m) 8 1. 0 5 gと、 セリ ゥムゾル (ローヌ ' プーラン社製、 セ リ ゥムイオン含有量 5重量%以下、 酸化セリ ウム換算濃度 l O O gZ リ ッ トル) 1 5 Om 1 と、 硝酸ランタン水溶液 (阿南化成株式会社製、 純度 9 9. 9 %、 酸化ランタン換算濃度 1 5 0 gノリ ッ トル) 1 6. 6 7m l とを混合し、 Z r O2 : C e O2 : L a 2 O3 = 6 5 : 3 0 : 5 (重量比) の混合物を得た。 この混合物に、 硝酸 (和光純薬工業株式 会社製、 純度 6 0〜 6 1 %) を総セリ ウムモルの 6倍モル分存在する よ うに添加し、 更に酸化物換算濃度が 5 0 g Zリ ッ トルとなるように 脱塩水で調整した混合物を 1 リ ッ トル得た。 次いでこの混合物 1 リ ッ トルを水蒸気冷却管を備えた容器に移し 1 0 0 °Cで 1 2時間、 撹拌下 で加熱した。 20°Cまで徐冷した後、 アンモニア水 (和光純薬工業株 式会社製、 NH3含有量 2 5〜 2 8重量%) を撹拌下で添加し、 p H を 1 0以上に調整した。 得られた生成物をヌッチェで固液分離を行い、 沈殿物を 1 3 9. 2 3 g得た。 得られた沈殿物をリガク社製 「R I N T 1 1 0 0型」 X線回折装置で C u Κ α線、 管電圧 40 k V、 管電流 4 OmAにより測定した。 X線回折像を図 1に示す。 正確な結晶子径 は測定不能であつたが、 結晶性を示す X線強度は約 700 c p sであ つた。 得られた沈殿物を 5 00 °Cで 6時間焼成し、 比表面積 9 2. 7 m2Zgのジルコニウム—セリ ゥム系ランタン含有複合酸化物 5 0 g を得た。 得られた複合酸化物を更に 90 0 °C、 1 000 °C、 及び 1 1 00でにて各 6時間加熱したときの比表面積を表 1及び図 5に示す。 また、 X線回折像から求めた結晶子径を図 4に示す。 1 1 0 0°Cで 6 時間加熱後の比表面積は 24.
Figure imgf000017_0001
8であった。 組成分析の結果、 複合酸化物中のジルコニウム、 セリ ゥム及びランタンの含有割合は、 酸化ジルコニウム、 酸化第二セリ ウム及び酸化ランタン換算で、 それ ぞれ 6 5. 1重量%、 2 9. 9重量%、 及び 5重量%であった。
龍 I 2
実施例 1で用いた水酸化ジルコニウム粉末 9 3. 5 2 g、 セリ ウム ゾル 1 0 0m l及び硝酸ランタン水溶液 1 6. 6 7 m 1 とを混合し、 Z r O2 : C e O 2 : L a 2O3= 7 5 : 20 : 5 (重量比) の混合物を 得た。 この混合物に、 硝酸を総セリ ウムモルの 6. 2倍モル分存在す るよ うに添加し、 更に酸化物換算濃度が 5 0 8ノリ ッ トルとなるよう に脱塩水で調整した混合物を 1 リ ッ トル得た。 次いで、 実施例 1 と同 様に撹拌 ·加熱し、 アンモニア水を添加し、 生成物の固液分離を行つ て 1 4 2 gの沈殿物を得た。 得られた沈殿物を実施例 1 と同条件で X 線回折測定した。 正確な結晶子径は測定不能であつたが、 結晶性を示 す X線強度は約 700 c p sであった。 更に実施例 1 と同様に焼成を 行って、 比表面積 1 1 5. 7 m2/ gのジルコニウム—セリ ウム系ラ ンタン含有複合酸化物 5 0 gを得た。 この複合酸化物を更に 900 °C、 1 000 °C、 及び 1 1 00 °Cにて各 6時間加熱したときの比表面積を 表 1に示す。 1 1 00 °Cで 6時間加熱後の比表面積は 2 2. 4 m2/ gであった。 組成分析の結果、 複合酸化物中のジルコニウム、 セリ ウ ム及ぴランタンの含有割合は、 酸化ジルコニウム、 酸化第二セリ ウム 及び酸化ランタン換算で、 それぞれ 74. 9重量%、 2 0. 2重量% 及び 4. 9重量%であった。
実施例 3
実施例 1で用いた水酸化ジルコニウム粉末 9 3. 5 2 g とセリ ウム ゾル 1 2 5 m 1 とを混合し、 Z r O2 : C e O2= 7 5 : 2 5 (重量比) の混合物を得た。 この混合物に、 硝酸を総セリ ウムモルの 5. 5倍モ ル分存在するように添加し、 更に酸化物換算濃度 50 g //リ ッ トルと なるように脱塩水で調整した混合物を 1 リ ッ トル得た。 次いで、 実施 例 1 と同様に行って 1 4 1. 6 2 gの沈殿物を得た。 得られた沈殿物 を実施例 1 と同条件で X線回折測定した。 正確な結晶子径は測定不可 能であつたが、 結晶性を示す X線強度は約 7 00 c p sであった。 更 に実施例 1 と同様に行って比表面積 1 1 2. 4 m2/ gのジルコニゥ ムーセリ ゥム複合酸化物 5 0 gを得た。 得られた複合酸化物を更に 9 0 0°C、 1 000 °C、 及び 1 1 00°Cにて各 6時間加熱した時の比表 面積を表 1に示す。 1 1 00 °Cで 6時間加熱後の比表面積は 20. 4 m2Z gであった。 また、 組成分析の結果、 複合酸化物中のジルコ二 ゥム、 セリ ウムの含有割合は、 酸化ジルコニウム、 酸化第二セリ ウム 換算で、 それぞれ 7 5重量%、 2 5重量%であった。
実施例 4
実施例 1で用いた水酸化ジルコニウム粉末 8 1. 0 5 g、 セリ ウム ゾル 1 5 0 m 1及び硝酸ネオジム水溶液 (阿南化成株式会社製、 純度 9 9. 9 %、 酸化ネオジム換算濃度 1 5 0 gZリ ッ トル) 1 6. 6 7 m l を混合し、 Z r O2 : C e O2 : N d2O3= 6 5 : 3 0 : 5 (重量 比) の混合物を得た。 この混合物に硝酸を総セリ ウムモルの 6. 5倍 モル分存在するように添加し、 更に酸化物換算濃度 5 0 g リ ッ トル となるよ うに脱塩水で調整した混合物を 1 リ ッ トル得た。 次いで、 実 施例 1 と同様に行って 1 3 8 . 2 4 gの沈殿物を得た。 得られた沈殿 物を実施例 1 と同条件で X線回折測定した。 正確な結晶子径は測定不 可能であつたが、 結晶性を示す X線強度は約 7 0 0 c p sであった。 さらに実施例 1 と同様に行って比表面積 9 1 . 3 m2/ gのジルコ二 ゥムーセリ ゥム系ネオジム含有複合酸化物 5 0 gを得た。 得られた複 合酸化物をさらに 9 0 0 °C、 1 0 0 0で、 及び 1 1 0 0でにて各 6時 間加熱したときの比表面積を表 1に示す。 1 1 0 0でで 6時間加熱後 の比表面積は 2 3 . 8 m2Zgであった。 組成分析の結果、 複合酸化 物中のジルコニウム、 セリ ウム及びネオジムの含有割合は、 酸化ジル コニゥム、 酸化第二セリ ウム及び酸化ネオジム換算で、 それぞれ 6 5 重量%、 3 0 . 1重量%及び 4 . 9重量%であった。
実施例 5
実施例 1で用いた水酸化ジルコニウム粉末 8 1 . 0 5 g、 セリ ウム ゾル 1 5 0 m l及び硝酸アルミ二ゥム水溶液 (和光純薬工業株式会社 製の硝酸アルミニウム · 9水和物、 純度 9 9 . 9 %、 酸化アルミユウ ム換算濃度 1 5 0 g / 1 の水溶液) 1 6 . 6 7 m 1 を混合し Z r 02 : C e〇2 : A l 2O3 = 6 5 : 3 0 : 5 (重量比) の混合物を得た。 こ の混合物に硝酸を総セリ ゥムモルの 6 . 1倍モル分存在するよ うに添 加し、 更に酸化物換算濃度 5 O gZリ ッ トルとなるよ うに脱塩水で調 整した混合物を 1 リ ッ トル得た。 次いで、 実施例 1 と同様に行って 1 3 7 . 9 4 gの沈殿物を得た。 得られた沈殿物を実施例 1 と同条件で X線回折測定した。 正確な結晶子径は測定不可能であつたが、 結晶性 を示す X線強度は約 7 0 0 c p sであった。 さらに実施例 1 と同様に 行って比表面積 9 0 . 9 m2/ gのジルコ二ゥム—セリ ゥム系アルミ ニゥム含有複合酸化物 5 0 gを得た。 得られた複合酸化物を更に 9 0 0 °C、 1 000 °C、 及び 1 1 00 °Cにて各 6時間加熱したときの比表 面積を表 1に示す。 1 1 00 °Cで 6時間加熱後の比表面積は 24. 2 m2Zgであった。 また、 組成分析の結果、 複合酸化物中のジルコ二 ゥム、 セリ ウム及びアルミニウムの含有割合は、 酸化ジルコニウム、 酸化第二セリ ウム及び酸化アルミニウム換算で、 それぞれ 6 5. 1重 量%、 3 0重量%及び 4. 9重量%であった。
実淪例 β
実施例 1で用いた水酸化ジルコニウム粉末 8 1. 0 5 g、 セリ ウム ゾル 1 5 0 m l及び硝酸マグネシウム水溶液 (和光純薬工業株式会社 製の硝酸マグネシウム · 6水和物、 純度 9 9. 9 %、 酸化マグネシゥ ム換算濃度 1 5 0 gノリ ッ トルの水溶液) 1 6. 6 7m l を混合し、 Z r O2 : C e O2 : Mg O= 6 5 : 3 0 : 5 (重量比) の混合物を得 た。 この混合物に硝酸を総セリ ウムモルの 6. 1倍モル分存在するよ うに添加し、 酸化物換算濃度 5 0 gZリ ッ トルとなるよ うに脱塩水で 調整した混合物を 1 リ ッ トル得た。 次いで、 実施例 1 と同様に行って
1 3 7. 7 9 gの沈殿物を得た。 得られた沈殿物を実施例 1 と同条件 で X線回折測定した。 正確な結晶子径は測定不可能であつたが、 結晶 性を示す X線強度は約 700 c p sであった。 さらに実施例 1 と同様 に行って比表面積 9 1. 6 m2/gのジルコニウム—セリ ゥム系マグ ネシゥム含有複合酸化物 5 0 gを得た。 得られた複合酸化物を更に 9 00°C、 1 000°C、 及び 1 1 00°Cにて各 6時間加熱したときの比 表面積を表 1に示す。 1 1 00でで 6時間加熱後の比表面積は 2 5. 3 m2/ gであった。 組成分析の結果、 複合酸化物中のジルコニウム、 セリ ウム及びマグネシウムの含有割合は、 酸化ジルコニウム、 酸化第 二セリ ウム及び酸化マグネシウム換算で、 それぞれ 6 5. 1重量0 /0、 30重量%及び 4. 9重量%であった。
実施例 7
実施例 1で用いた水酸化ジルコ二ゥム粉末 8 1 . 0 5 g、 セリ ウム ゾル 1 5 0m l及び硝酸ランタン水溶液 1 6. 6 7 m l を混合し、 Z r O2 : C e O2 : L a 2 Ο3 = 6 5 : 3 0 : 5 (重量比) の混合物を 得た。 この混合物に硝酸を総セリ ゥムモルの 7倍モル分存在するよう に添加し、 更に酸化物換算濃度 5 0 gZリ ツ トルとなるように脱塩水 で調整した混合物を 1 リ ッ トル得た。 次いで、 実施例 1 と同様に行つ て 1 3 8. 04 gの沈殿物を得た。 得られた沈殿物を実施例 1 と同条 件で X線回折測定した。 正確な結晶子径は測定不可能であつたが、 結 晶性を示す X線強度は約 700 c p sであった。 更に実施例 1 と同様 に行って比表面積 1 08. 1 m2/ gのジルコニウム一セリ ウム系ラ ンタン含有複合酸化物 5 0 gを得た。 得られた複合酸化物を更に 90 0 °C、 1 000 °C、 及ぴ 1 1 00 °Cにて各 6時間加熱したときの比表 面積を表 1に示す。 1 1 00 °Cで 6時間加熱後の比表面積は 24. 5 m2Zgであった。 組成分析の結果、 複合酸化物中のジルコニウム、 セリ ウム及びランタンの含有割合は、 酸化ジルコニウム、 酸化第二セ リ ウム及び酸化ランタン換算で、 それぞれ 6 5. 1重量0 /0、 3 0重量 %及び 4. 9重量%であった。
実施例 8
実施例 1で用いた水酸化ジルコニウム粉末 8 1 . 0 5 g、 セリ ウム ゾル 8 3. 3 m 1及び硝酸ランタン水溶液 3 3. 3 m l を混合し、 Z r O2 : C e 02 : L a 2O3= 6 5 : 2 5 : 1 0 (重量比) の混合物 を得た。 更に硝酸を総セリ ウムモルの 5. 8倍モル分存在するように 添加し、 更に酸化物換算濃度 5 0 gZリ ッ トルとなるように脱塩水で 調整した混合物を 1 リ ッ トル得た。 次いで、 得られた混合物 1 リ ッ ト ルを加圧反応容器 (オートクレープ) に入れて加圧下( 2 k g c m2) で撹拌しながら 6時間保持した。 次に実施例 1 と同様にアンモニア水 を添加し、 生成物の固液分離を行って 1 3 6. 5 3 gの沈殿物を得た。 得られた沈殿物を実施例 1 と同条件で X線回折測定した。 正確な結晶 子径は測定不可能であつたが、 結晶性を示す X線強度は約 700 c p sであった。 以後、 実施例 1 と同様に行って比表面積 1 0 2. 6 m2 / gのジルコニウム—セリ ゥム系ランタン含有複合酸化物 5 0 gを得 た。 この複合酸化物を更に 9 00 °C、 1 000 °C、 及び 1 1 00でに て各 6時間加熱したときの比表面積を表 1に示す。 1 1 0 0 °Cで 6時 間加熱後の比表面積は 2 7 m2Z gであった。 組成分析の結果、 複合 酸化物中のジルコニウム、 セリ ウム及びランタンの含有割合は、 酸化 ジルコニウム、 酸化第二セリ ウム及び酸化ランタン換算で、 それぞれ 6 5. 1重量%、 24. 8重量%及び 1 0. 1重量%であった。
比較例 1
硝酸ジルコニル溶液 (三徳金属工業株式会社製、 純度 9 9 %、 酸化 ジルコ二ゥム換算濃度 2 5 0 g/リ ッ トル) 1 3 0 m l、 セリ ウムゾ ル 1 5 0 m 1及び硝酸ランタン水溶液 1 6. 6 7m l を混合し、 Z r O2 : C e O2 : L a 2 Os = 6 5 : 3 0 : 5 (重量比) の混合物を 得た。 更に酸化物換算濃度 5 O g/リ ッ トルとなるように脱塩水で調 整した混合物を 1 リ ッ トル得た。 次いで、 実施例 1 と同様に行って 1 4 1. 2 l gの沈殿物を得た。 この沈殿物はゲル状であった。 この沈 殿物を実施例 1 と同条件で X線回折測定した。 X線回折像を図 2に示 す。 正確な結晶子径は測定不可能であつたが、 結晶性を示す X線強度 は約 5 00 c p sであった。 更に実施例 1 と同様に行って比表面積 9 7. 7 m2/ gのジルコニウムーセリ ゥム系ランタン含有複合酸化物 5 0 gを得た。 得られた複合酸化物を更に 9 0 0 °C、 1 0 0 0 °C、 及 び 1 1 0 0 °Cにて各 6時間加熱したときの比表面積を表 1及び図 5に 示す。 X線回折像から求めた結晶子径を図 4に示す。 1 1 0 0°Cで 6 時間加熱後の比表面積は 7. l m2/ gであった。 組成分析の結果、 複合酸化物中のジルコニウム、 セリ ゥム及ぴランタンの含有割合は、 酸化ジルコニウム、 酸化セリ ウム、 及び酸化ランタン換算で、 それぞ れ 6 5重量%、 3 0. 1重量%及び 4. 9重量%であった。
比較例 2
実施例 1で用いた水酸化ジルコニウム粉末 8 1 . 0 5 g と、 セリ ウ ムゾル 1 5 0 m 1 と、 硝酸ランタン水溶液 1 6. 6 7 m 1 とを混合し、 Z r 02 : C e 02 : L a 2 Oa = 6 5 : 3 0 : 5 (重量比) の混合物を 得た。 更に硝酸を総セリ ゥムモルの 1 1倍モル分存在するように添加 し、 更に酸化物換算濃度 5 O gZリ ッ トルとなるように脱塩水で調整 した混合物を 1 リ ッ トル得た。 次いで、 実施例 1 と同様に行って 1 4 0. 3 5 gの沈殿物を得た。 得られた沈殿物はゲル状であった。 得ら れた沈殿物を実施例 1 と同条件で X線回折測定した。 正確な結晶子径 は測定不可能であつたが、 結晶性を示す X線強度は約 5 0 0 c p sで あった。 さらに実施例 1 と同様に行って比表面積 9 6 m2/ gのジル コニゥム一セリ ゥム系ランタン含有複合酸化物 5 0 gを得た。 得られ た複合酸化物をさらに 9 0 0 °C、 1 0 0 0 °C、 及び 1 1 0 0 °Cにて各 6時間加熱したときの比表面積を表 1に示す。 1 1 0 0でで 6時間加 熱後の比表面積は 7. 6 ^12 8であった。 組成分析の結果、 複合酸 化物中のジルコニウム、 セリ ウム及びランタンの含有割合は、 酸化ジ ルコニゥム、 酸化第二セリ ウム及び酸化ランタン換算で、 それぞれ 6 5. 1重量%、 30重量%及び 4. 9重量%であった。
比較例 3
実施例 1で用いた水酸化ジルコニウム粉末 8 1 . 0 5 g、 セ リ ウム ゾル 1 5 0 m 1及び硝酸ランタン水溶液 1 6. 6 7 m l を混合し、 Z r O2 : C e O2 : L a 2 O a = 6 5 : 3 0 : 5 (重量比) の混合物を 得た。 この混合物に硝酸を総セリ ウムモルの 4. 5倍モル分存在する よ うに添加し、 酸化物換算濃度 50 gZリ ッ トルとなるように脱塩水 で調整した混合物を 1 リ ッ トルを得た。 次いで、 実施例 1 と同様に行 つて 1 4 0. 6 7 gの沈殿物を得た。 この沈殿物はゲル状であった。 得られた沈殿物を実施例 1 と同条件で X線回折測定した。 正確な結晶 子径は測定不可能であつたが、 結晶性を示す X線強度は約 5 00 c p sであった。 更に実施例 1 と同様に行って比表面積 9 8. 7 m2/ g のジルコニウムーセリ ゥム系ランタン含有複合酸化物 5 0 gを得た。 この複合酸化物を更に 9 00 °C、 1 000 °C、 及び 1 1 00 °Cにて各 6時間加熱したときの比表面積を表 1に示す。 1 1 00でで 6時間加 熱後の比表面積は 3. 3 m2Zgであった。 組成分析の結果、 複合酸 化物中のジルコニウム、 セリ ウム及びランタンの含有割合は、 酸化ジ ルコニゥム、 酸化第二セリ ウム及び酸化ランタン換算で、 それぞれ 6 5重量%、 3 0重量%及び 5重量%であった。
比較例 4
ォキシ塩化ジルコニウムを加水分解して得られたジルコニウムゾル (純度 9 9. 9 %、 酸化ジルコニウム換算濃度 5 0 g/リ ッ トル) 6 5 0m l , セリ ゥムゾル 1 5 0m l及び硝酸ランタン水溶液 1 6. 6 7 m l を混合し、 Z r O2 : C e O 2 : L a 2 O3 = 6 5 : 3 0 : 5 (重 量比) の混合物を得た。 この混合物に酸化物換算濃度 5 0 g/リ ッ ト ルとなるよ うに脱塩水で調整した混合物を 1 リ ッ トル得た。 次いで、 実施例 1 と同様に行って 1 4 1. 6 8 gの沈殿物を得た。 この沈殿物 を実施例 1 と同条件で X線回折測定した。 正確な結晶子径は測定不可 能であつたが、 結晶性を示す X線強度は約 5 00 c p sであった。 更 に実施例 1 と同様に行って比表面積 1 1 5. 7 m2/ gのジルコ二ゥ ム—セリ ウム系ランタン含有複合酸化物 5 0 gを得た。 塩素が 0. 1 8重量%検出された。 この複合酸化物を更に 9 0 0 °C、 1 000 °C、 及び 1 1 0 0 °Cにて各 6時間加熱したときの比表面積を表 1に示す。 1 1 00 °Cで 6時間加熱後の比表面積は 6. g
Figure imgf000025_0001
であった。 組 成分析の結果、 複合酸化物中のジルコニウム、 セリ ウム及びランタン の含有割合は、 酸化ジルコニウム、 酸化第二セリ ウム及び酸化ランタ ン換算で、 それぞれ 64. 9重量%、 3 0. 2重量%及び 4. 9重量 %であった。
表 1 讓匕 1:¾^ (mVg)
Γリ e (j τ '- a π a 23 A 1 Π OO°rXfi s气 1000°CX6離 1 1 n frxp, B 气
¾ttff歹 65.1 29.9 5 92.7 72.8 55.4 24.7
¾fefii|2 74.9 20.2 4.9 115.7 70.9 51.7 22.4
75 25 112.4 70.4 52 20.4
65 30.1 4.9 91.3 70.9 23.8 細列 5 65.1 30 4.9 90.9 71.2 55 24.2 麵列 6 65.1 30 4.9 91.6 72.6 56.1 25.3 麵列 7 65.1 30 4.9 108.1 76.4 60.4 24.5 鐘列 8 65.1 24.8 10.1 102.6 81.7 63.1 27 顧列 1 65 30.1 4.9 97.7 53.8 34 7.1 顧列 2 65.1 30 4.9 96 51.4 7.6 顧列 3 65 30 5 98.7 41.3 25.4 3.3
1:瞧 4 64.9 30.2 4.9 115.7 70 39.1 6.9
M C

Claims

請 求 の 範 囲
1) ジルコニウム及びセリ ウムを含み、 酸化ジルコニウム及び酸化第 ニセリ ゥムに換算した前記ジルコニウム及びセリ ゥムの配合比率が、 重量比で 5 1〜 9 5 : 4 9〜 5であり、 比表面積が 5 0 m2 / g以 上を示し、 かつ 1 1 0 0°Cで 6時間加熱後に 2 0 m2Zg以上の比 表面積を維持できるジルコニウムーセリ ゥム系複合酸化物。
2) 前記複合酸化物が、 さらにイッ ト リ ウム、 スカンジウム、 ランタ ン、 プラセオジム、 ネオジム、 サマリ ウム、 ユーロピウム、 ガドリ 二ゥム、 マグネシウム、 カルシウム、 バリ ウム、 アルミニウム、 チ タン、 ハフニウム及びこれらの混合物からなる群より選択される金 属を、 酸化物換算しての合計量で複合酸化物全量に対して 0. 1〜 2 0重量%含有する請求の範囲 1に記載のジルコニウム一セリ ウム 系複合酸化物。
3) 平均粒径 0. 5〜 5 0 μ mの水酸化ジルコニウム粉末と、 コロイ ド粒子の平均粒径 3〜 1 0 0 n mのセリ ゥムゾルとを含む混合物を、 該混合物中のセリ ゥムモル数に対して 5〜 1 0倍モルの硝酸存在下 に加熱反応させる工程、 塩基を加えて更に反応させ生成物を沈澱さ せる工程、 得られた生成物を 5 0 0〜 1 0 0 0 °Cで焼成する工程を 含む請求の範囲 1に記載のジルコニウムーセリ ゥム系複合酸化物の 製造法。
4) 前記混合物が、 イ ッ ト リ ウム、 スカンジウム、 ランタン、 プラセ オジム、 ネオジム、 サマリ ウム、 ユーロピウム、 ガドリニウム、 マ グネシゥム、 カルシウム、 ノくリ ウム、 アルミニウム、 チタン及びハ フニゥムの塩類及びこれらの混合塩類からなる群より選択される金 属塩を含む請求の範囲 3に記載の製造法。 5) 前記硝酸存在下に加熱反応させる工程における反応温度が 6 0 - 1 5 0 °Cであり、 反応時間が 1〜 3 6時間である請求の範囲 3に記 載の製造法。
6) 前記硝酸存在下に加熱反応させる工程における加熱反応を、 1 .
5〜 1 0 k g / cdの加圧下で行なう請求の範囲 3に記載の製造法。
7) ジルコニウム及びセリ ウムを含み、 酸化ジルコニウム及び酸化第 ニセリ ゥムに換算した前記ジルコニウム及びセリ ゥムの配合比率が、 重量比で 5 :!〜 9 5 : 4 9〜 5であり、 比表面積が 5 0 m 2 / g以 上を示し、 かつ 1 1 0 0でで 6時間加熱後に 2 0 m 2 / g以上の比 表面積を維持できるジルコニウムーセリ ゥム系複合酸化物粉末を含 む排ガス清浄用助触媒。
8) 前記複合酸化物粉末が、 さらにイッ トリ ウム、 スカンジウム、 ラ ンタン、 プラセオジム、 ネオジム、 サマリ ウム、 ユーロ ピウム、 ガ ドリ 二ゥム、 マグネシウム、 カルシウム、 ノくリ ウム、 アルミニウム、 チタン、 ハフニウム及びこれらの混合物からなる群より選択される 金属を、 酸化物換算しての合計量で複合酸化物粉末全量に対して 0 .
1 〜 2 0重量%含有する請求の範囲 7に記載の助触媒。
9) 前記複合酸化物粉末の粒径が、 1〜 2 0 / mである請求の範囲 7 に記載の助触媒。
PCT/JP1997/004786 1996-12-27 1997-12-24 Oxyde de compose zirconium et cerium, procede d'elaboration correspondant et co-catalyseur d'epuration des gaz WO1998029341A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69724655.8T DE69724655C5 (de) 1996-12-27 1997-12-24 Zirkonium-cerium-verbundoxid, verfahren zur herstellung und cokatalysator zur reingung von abgas
KR19997005879A KR100351381B1 (ko) 1996-12-27 1997-12-24 지르코늄-세륨계 복합산화물 및 그 제조법, 및 배기가스 정화용 조촉매
US09/331,821 US6171572B1 (en) 1996-12-27 1997-12-24 Method for preparing a zirconium-cerium composite oxide
EP97950373A EP0955267B1 (en) 1996-12-27 1997-12-24 Zirconium-cerium composite oxide, method for preparing the same, and co-catalyst for purifying exhaust gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/349679 1996-12-27
JP34967996A JP4053623B2 (ja) 1996-12-27 1996-12-27 ジルコニウム−セリウム系複合酸化物及びその製造方法

Publications (1)

Publication Number Publication Date
WO1998029341A1 true WO1998029341A1 (fr) 1998-07-09

Family

ID=18405375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004786 WO1998029341A1 (fr) 1996-12-27 1997-12-24 Oxyde de compose zirconium et cerium, procede d'elaboration correspondant et co-catalyseur d'epuration des gaz

Country Status (7)

Country Link
US (1) US6171572B1 (ja)
EP (1) EP0955267B1 (ja)
JP (1) JP4053623B2 (ja)
KR (1) KR100351381B1 (ja)
CN (1) CN1098811C (ja)
DE (1) DE69724655C5 (ja)
WO (1) WO1998029341A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492297B1 (en) * 2000-09-15 2002-12-10 Engelhard Corporation Catalyst composition for purifying exhaust gas

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919727A (en) * 1996-11-14 1999-07-06 W. R. Grace & Co.-Conn. Ceric oxide washcoat
GB9903519D0 (en) * 1999-02-16 1999-04-07 Europ Economic Community Precipitation process
JP4696338B2 (ja) * 1999-07-09 2011-06-08 東ソー株式会社 ジルコニア微粉末の製造方法
JP4443685B2 (ja) * 1999-09-10 2010-03-31 三井金属鉱業株式会社 排気ガス浄化用助触媒の製造方法
US20020032123A1 (en) * 2000-02-23 2002-03-14 Ford Global Technologies, Inc. Exhaust gas catalyst and method of manufacturing same
US6673143B2 (en) * 2000-03-23 2004-01-06 Shin-Etsu Chemical Co., Ltd. Aqueous slurry of rare earth hydroxide particles
DE60138984D1 (de) 2000-06-27 2009-07-30 Ict Co Ltd Abgasreinigungskatalysator
US6468941B1 (en) * 2000-10-17 2002-10-22 Delphi Technologies, Inc. Niobium containing zirconium-cerium based soild solutions
JP2002177781A (ja) * 2000-12-12 2002-06-25 Ict:Kk 排ガス浄化用触媒
US7887714B2 (en) * 2000-12-25 2011-02-15 Nissan Chemical Industries, Ltd. Cerium oxide sol and abrasive
US6803138B2 (en) * 2001-07-02 2004-10-12 Nextech Materials, Ltd. Ceramic electrolyte coating methods
FR2829129B1 (fr) * 2001-09-03 2004-10-15 Rhodia Elect & Catalysis Composition a reductibilite elevee et a base d'oxyde de cerium, d'oxyde de zirconium et d'un oxyde d'une autre terre rare, son procede de preparation et son utilisation comme catalyseur
KR100890773B1 (ko) * 2001-09-07 2009-03-31 아난 가세이 가부시키가이샤 산화 제2세륨 및 그 제조법 및 배기가스 정화용 촉매
US20030186805A1 (en) * 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
JP3758601B2 (ja) 2002-05-15 2006-03-22 トヨタ自動車株式会社 吸蔵還元型NOx浄化用触媒
FR2841547B1 (fr) * 2002-06-26 2005-05-06 Rhodia Elect & Catalysis Composition a base d'oxyde de zirconium et d'oxydes de cerium, de lanthane et d'une autre terre rare, son procede de preparation et son utilisation comme catalyseur
US20030130117A1 (en) * 2002-10-11 2003-07-10 Veernoy Paul D. Zirconia catalysts for nitrous oxide abatement
JP3797313B2 (ja) 2002-10-28 2006-07-19 トヨタ自動車株式会社 金属酸化物粒子の製造法及び排ガス浄化用触媒
EP1433745A2 (en) * 2002-12-26 2004-06-30 Matsushita Electric Industrial Co., Ltd. Catalyst for the removal of carbon monoxide, its method of manufacture and its uses
WO2004067171A1 (en) * 2003-01-31 2004-08-12 Aktina Limited Petrol engine exhaust catalyst
CN1317074C (zh) * 2003-03-14 2007-05-23 中国科学院大连化学物理研究所 一种锆基复合氧化物催化剂及制备方法和应用
FR2852592B1 (fr) 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Compositions a base d'un oxyde de cerium, d'un oxyde de zirconium et, eventuellement d'un oxyde d'une autre terre rare, a surface specifique elevee a 1100 c, leur procede de preparation et leur utilisation comme catalyseur
FR2852591B1 (fr) * 2003-03-18 2006-06-16 Rhodia Elect & Catalysis Composition a base d'oxyde de zirconium et d'oxyde de cerium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
FR2852596B1 (fr) * 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Composition a base d'oxydes de cerium et de zirconium a surface specifique stable entre 900 c et 1000 c, son procede de preparation et son utilisation comme catalyseur
FR2859470B1 (fr) * 2003-09-04 2006-02-17 Rhodia Elect & Catalysis Composition a base d'oxyde de cerium et d'oxyde de zirconium a reductibilite et surface elevees, procede de preparation et utilisation comme catalyseur
EP1516855B1 (en) 2003-09-15 2017-03-01 Toyota Jidosha Kabushiki Kaisha Cerium-zirconium composite metal oxide with a cerium oxide core surrounded by zirconium oxide
US7384888B2 (en) 2003-09-15 2008-06-10 Toyota Jidosha Kabushiki Kaisha Cerium-zirconium composite metal oxide
JP4120559B2 (ja) 2003-10-24 2008-07-16 トヨタ自動車株式会社 排気ガス浄化用触媒
JP5217072B2 (ja) 2003-11-14 2013-06-19 トヨタ自動車株式会社 排ガス浄化用触媒およびその製法
US7452843B2 (en) * 2003-12-29 2008-11-18 Umicore Ag & Co. Kg Exhaust treatment devices, catalyst, and methods of making and using the same
FR2866871B1 (fr) * 2004-02-26 2007-01-19 Rhodia Chimie Sa Composition a base d'oxydes de zirconium, de praseodyme, de lanthane ou de neodyme, procede de preparation et utilisation dans un systeme catalytique
JP4165419B2 (ja) 2004-03-09 2008-10-15 トヨタ自動車株式会社 金属酸化物粒子及び排ガス浄化触媒の製造方法
FR2868768B1 (fr) 2004-04-07 2007-07-20 Rhodia Chimie Sa Composition a base d'oxydes de zirconium et d'ytrium, procede de preparation et utilisation dans un systeme catalytique
JP4165443B2 (ja) 2004-04-27 2008-10-15 トヨタ自動車株式会社 金属酸化物粒子の製造方法、及び排ガス浄化触媒
JP4165441B2 (ja) * 2004-04-27 2008-10-15 トヨタ自動車株式会社 排ガス浄化触媒の製造方法
WO2005102523A1 (en) 2004-04-27 2005-11-03 Toyota Jidosha Kabushiki Kaisha Process for producing metal oxide particle and exhaust gas purifying catalyst
JP4918857B2 (ja) * 2004-06-11 2012-04-18 株式会社豊田中央研究所 金属酸化物ナノ多孔体、それを得るための被覆組成物、及びそれらの製造方法
JP4660135B2 (ja) * 2004-07-26 2011-03-30 第一稀元素化学工業株式会社 ジルコニア系多孔質体及びその製造方法
US7838460B2 (en) * 2005-01-28 2010-11-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Nanoporous metal oxide material, catalyst support, and catalyst for hydrogen production reaction using the same
JP4972868B2 (ja) * 2005-03-17 2012-07-11 東ソー株式会社 表面修飾されたセリア・ジルコニア系水和酸化物、その酸化物及びそれらの製造方法並びに用途
JP4179299B2 (ja) 2005-03-23 2008-11-12 トヨタ自動車株式会社 触媒担体粉末及び排ガス浄化触媒
JP4648089B2 (ja) * 2005-05-27 2011-03-09 株式会社キャタラー 排ガス浄化用触媒
CN100387522C (zh) * 2005-07-27 2008-05-14 浙江师范大学 高储氧纳米铈基复合氧化物材料的制备工艺
KR100713298B1 (ko) * 2005-09-08 2007-05-04 한화석유화학 주식회사 내열성이 우수한 금속산화물 및 이의 제조방법
JP4714568B2 (ja) * 2005-11-22 2011-06-29 マツダ株式会社 排気ガス浄化用触媒及びその製造方法
JP5216189B2 (ja) * 2005-12-22 2013-06-19 株式会社キャタラー 排ガス浄化用触媒
JP4789794B2 (ja) * 2005-12-28 2011-10-12 第一稀元素化学工業株式会社 セリウム・ジルコニウム複合酸化物及びその製造方法
JP2007185588A (ja) * 2006-01-12 2007-07-26 Mazda Motor Corp 排気ガス浄化用触媒
JP4851190B2 (ja) * 2006-01-13 2012-01-11 戸田工業株式会社 排気ガス浄化用触媒
KR100723392B1 (ko) * 2006-02-02 2007-05-30 삼성에스디아이 주식회사 복합 산화물 담지체, 저온 쉬프트 반응 촉매 및 그의 제조방법
KR101030623B1 (ko) * 2006-02-17 2011-04-20 로디아 오퍼레이션스 지르코늄, 세륨, 이트륨, 란타늄의 산화물 및 또 다른 희토류의 산화물을 기재로 하는 조성물, 그의 제조 방법 및촉매 용도
JP5065605B2 (ja) * 2006-03-02 2012-11-07 Jx日鉱日石エネルギー株式会社 水素製造装置および燃料電池システム並びにその運転方法
FR2898887B1 (fr) * 2006-03-21 2008-05-02 Rhodia Recherches & Tech Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable procede de preparation et utilisation dans le traitement des gaz d'echappement
WO2007131901A1 (fr) 2006-05-15 2007-11-22 Rhodia Operations Composition a base d'oxydes de zirconium, de cerium, de lanthane et d'yttrium, de gadolinium ou de samarium, a surface specifique et reductibilite elevees, procede de preparation et utilisation comme catalyseur
GB0609783D0 (en) * 2006-05-17 2006-06-28 Magnesium Elektron Ltd Improved oxygen storage component
DE102007011339A1 (de) 2006-05-23 2007-12-06 Ivoclar Vivadent Ag Blockkörper
EP1900341B1 (de) * 2006-09-13 2011-05-04 Ivoclar Vivadent AG Mehrfarbiger Formkörper
US8173562B2 (en) 2006-05-23 2012-05-08 Ivoclar Vivadent Ag Shaded zirconia ceramics
EP1859757B1 (de) 2006-05-23 2013-10-09 Ivoclar Vivadent AG Zusammensetzung und Verfahren zur Herstellung von gefärbten Rohlingen und dentalen Formteilen
WO2007144446A1 (en) * 2006-06-15 2007-12-21 Ecocat Oy Coating for particulate filters
JP5344805B2 (ja) * 2006-06-20 2013-11-20 第一稀元素化学工業株式会社 ジルコニア系複合酸化物及びその製造方法
EP2045009A4 (en) * 2006-07-05 2012-12-05 Cataler Corp CATALYST FOR CLEANING EXHAUST GASES AND PRODUCTION METHOD THEREFOR
JP4928931B2 (ja) * 2006-12-20 2012-05-09 日本電工株式会社 セリア−ジルコニア系複合酸化物及びその製造方法
JP5232401B2 (ja) * 2007-04-05 2013-07-10 株式会社キャタラー 排ガス浄化用触媒
JP2008289971A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp コアシェル構造体及びその製造方法並びに当該コアシェル構造体を含む排ガス浄化用触媒
FR2926075B1 (fr) * 2008-01-09 2010-08-13 Rhodia Operations Composition a base d'oxyde de zirconium, d'oxyde d'yttrium et d'oxyde de tungstene, procede de preparation et utilisation comme catalyseur ou support de catalyseur.
CN101998933B (zh) 2008-02-12 2013-04-03 株式会社三德 复合氧化物
CN100569367C (zh) * 2008-05-13 2009-12-16 桂林工学院 一种单环萜烯高收率的α-蒎烯异构化催化剂及制备方法
WO2010058834A1 (ja) 2008-11-21 2010-05-27 日産自動車株式会社 粒子状物質浄化材料、粒子状物質浄化材料を用いた粒子状物質浄化用フィルタ触媒及び粒子状物質浄化用フィルタ触媒の再生方法
EP2223905A1 (en) 2009-02-27 2010-09-01 Treibacher Industrie AG Novel zirconia ceria compositions
US8530372B2 (en) * 2009-07-22 2013-09-10 Basf Corporation Oxygen storage catalyst with decreased ceria reduction temperature
US20120309614A1 (en) 2009-12-25 2012-12-06 Anan Kasei Co., Ltd. Complex oxide, method for producing same, and exhaust gas purifying catalyst
FR2955098B1 (fr) * 2010-01-11 2014-09-05 Rhodia Operations Composition a base d'oxydes de zirconium, de cerium et d'une autre terre rare a temperature maximale de reductibilite reduite, procede de preparation et utilisation dans le domaine de la catalyse.
CN102134088B (zh) * 2011-02-01 2012-08-22 大连海事大学 具有高比表面积羽毛状大颗粒铈基复合氧化物粉体及其制备方法
CN102134089B (zh) * 2011-02-01 2012-11-07 大连海事大学 一种具有纺锤状大尺度铈基复合氧化物粉体及其制备方法
EP2540391A1 (en) * 2011-07-01 2013-01-02 Treibacher Industrie AG Ceria zirconia alumina composition with enhanced thermal stability
CN102407100B (zh) * 2011-09-28 2013-07-03 上海华明高纳稀土新材料有限公司 纳米铈锆基固溶体稀土储氧材料及其制备方法
EP2781487B1 (en) 2011-11-16 2019-01-02 Santoku Corporation Composite oxide
CN103127925B (zh) * 2011-11-23 2015-03-25 上海华明高纳稀土新材料有限公司 铈锆基固溶体稀土储氧材料及其制备方法
WO2014121813A1 (en) * 2013-02-05 2014-08-14 Rhodia Operations Precipitated and calcinated composition based on zirconium oxide and cerium oxide
WO2014196100A1 (ja) 2013-06-04 2014-12-11 新日本電工株式会社 セリア-ジルコニア系複合酸化物及びその製造方法
CN104591275B (zh) * 2014-12-30 2016-05-18 四川大学 水介质分散铈锆氧化物纳米材料的合成方法
GB201518996D0 (en) 2015-10-27 2015-12-09 Magnesium Elektron Ltd Zirconia-based compositions for use as three-way catalysts
CN105736093B (zh) * 2016-03-02 2018-04-10 吴振华 一种多元纳米稀土催化剂机动车尾气净化器及其制造方法
EP3436409A1 (en) 2016-04-01 2019-02-06 Pacific Industrial Development Corporation Method of making mesoporous zirconium-based mixed oxides
KR102580600B1 (ko) * 2016-04-26 2023-09-21 로디아 오퍼레이션스 세륨- 및 지르코늄-기재 혼합 산화물
FR3050450A1 (fr) 2016-04-26 2017-10-27 Rhodia Operations Oxyde mixte a base de cerium et de zirconium
CN111417452B (zh) 2018-01-08 2023-04-04 太平洋工业发展公司 包含二氧化铈-氧化锆-储氧材料的催化剂与该催化剂的生产方法
KR20200104903A (ko) 2018-01-08 2020-09-04 패서픽 인더스트리얼 디벨럽먼트 코퍼레이션 배기 가스 처리를 위한 중 공극(mesoporous) 산소 저장 물질의 제조 방법; 그 산소 저장 물질 및 그 사용
KR20210131355A (ko) * 2019-03-03 2021-11-02 로디아 오퍼레이션스 높은 기공 부피를 갖는 혼합 산화물
CN114127030B (zh) * 2019-07-30 2024-01-30 第一稀元素化学工业株式会社 氧化锆系复合氧化物以及氧化锆系复合氧化物的制造方法
JP7145133B2 (ja) 2019-09-12 2022-09-30 Dmg森精機株式会社 ウォームの製造方法および製造装置
WO2021220727A1 (ja) * 2020-04-28 2021-11-04 ユミコア日本触媒株式会社 Ce-Zr複合酸化物およびその製造方法ならびにこれを用いた排気ガス浄化用触媒
CN112067607B (zh) * 2020-09-09 2022-04-15 深圳九星印刷包装集团有限公司 一氧化碳指示装置
CN114433063B (zh) * 2022-01-12 2023-04-07 江门市科恒实业股份有限公司 一种铈锆复合氧化物及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316416A (ja) * 1993-02-10 1994-11-15 Rhone Poulenc Chim ジルコニウム及びセリウムの混合酸化物を基とする組成物の製造方法
JPH0716452A (ja) * 1993-06-21 1995-01-20 Santoku Kinzoku Kogyo Kk 酸素吸収・放出能を有する複合酸化物及びその製造法
JPH0716460A (ja) * 1993-06-21 1995-01-20 Santoku Kinzoku Kogyo Kk 高温耐久性を有するセリウム及びジルコニウム含有複合酸化物及びその製造法
JPH07315840A (ja) * 1994-05-27 1995-12-05 Rhone Poulenc Chim 高い還元性を有するアルミナ−、酸化セリウム−及び酸化ジルコニウム基材化合物、それらの製造法、及び触媒の製造におけるそれらの使用
JPH08109021A (ja) * 1994-10-05 1996-04-30 Santoku Kinzoku Kogyo Kk 酸素吸収・放出能を有する複合酸化物及びその製造法
JPH08109020A (ja) * 1994-10-05 1996-04-30 Santoku Kinzoku Kogyo Kk 酸素吸収・放出能を有する複合酸化物
JPH09175823A (ja) * 1995-12-26 1997-07-08 Daihatsu Motor Co Ltd 耐熱性酸化物
JPH09175822A (ja) * 1995-12-26 1997-07-08 Daihatsu Motor Co Ltd 耐熱性酸化物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU595655B2 (en) * 1986-11-04 1990-04-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for the purification of exhaust gas
FR2699524B1 (fr) * 1992-12-21 1995-02-10 Rhone Poulenc Chimie Composition à base d'un oxyde mixte de cérium et de zirconium, préparation et utilisation.
FR2701471B1 (fr) * 1993-02-10 1995-05-24 Rhone Poulenc Chimie Procédé de synthèse de compositions à base d'oxydes mixtes de zirconium et de cérium, compositions ainsi obtenues et utilisations de ces dernières.
US6030914A (en) * 1996-11-12 2000-02-29 Tosoh Corporation Zirconia fine powder and method for its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316416A (ja) * 1993-02-10 1994-11-15 Rhone Poulenc Chim ジルコニウム及びセリウムの混合酸化物を基とする組成物の製造方法
JPH0716452A (ja) * 1993-06-21 1995-01-20 Santoku Kinzoku Kogyo Kk 酸素吸収・放出能を有する複合酸化物及びその製造法
JPH0716460A (ja) * 1993-06-21 1995-01-20 Santoku Kinzoku Kogyo Kk 高温耐久性を有するセリウム及びジルコニウム含有複合酸化物及びその製造法
JPH07315840A (ja) * 1994-05-27 1995-12-05 Rhone Poulenc Chim 高い還元性を有するアルミナ−、酸化セリウム−及び酸化ジルコニウム基材化合物、それらの製造法、及び触媒の製造におけるそれらの使用
JPH08109021A (ja) * 1994-10-05 1996-04-30 Santoku Kinzoku Kogyo Kk 酸素吸収・放出能を有する複合酸化物及びその製造法
JPH08109020A (ja) * 1994-10-05 1996-04-30 Santoku Kinzoku Kogyo Kk 酸素吸収・放出能を有する複合酸化物
JPH09175823A (ja) * 1995-12-26 1997-07-08 Daihatsu Motor Co Ltd 耐熱性酸化物
JPH09175822A (ja) * 1995-12-26 1997-07-08 Daihatsu Motor Co Ltd 耐熱性酸化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0955267A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492297B1 (en) * 2000-09-15 2002-12-10 Engelhard Corporation Catalyst composition for purifying exhaust gas

Also Published As

Publication number Publication date
DE69724655D1 (de) 2003-10-09
CN1241988A (zh) 2000-01-19
JPH10194742A (ja) 1998-07-28
JP4053623B2 (ja) 2008-02-27
EP0955267A4 (en) 2001-11-21
KR20000062370A (ko) 2000-10-25
CN1098811C (zh) 2003-01-15
EP0955267B1 (en) 2003-09-03
KR100351381B1 (ko) 2002-09-05
US6171572B1 (en) 2001-01-09
DE69724655C5 (de) 2021-04-22
EP0955267A1 (en) 1999-11-10
DE69724655T2 (de) 2004-06-24

Similar Documents

Publication Publication Date Title
WO1998029341A1 (fr) Oxyde de compose zirconium et cerium, procede d'elaboration correspondant et co-catalyseur d'epuration des gaz
JP3623517B2 (ja) セリウム酸化物及びジルコニウム酸化物を基とし、高い比表面積及び高い酸素貯蔵能力を有する組成物並びにその製造方法
JP3946982B2 (ja) ジルコニア・セリア基複合酸化物の製造方法
JP4062647B2 (ja) メタノールをスチーム改質するための触媒
KR100431919B1 (ko) 산화지르코늄 및 산화세륨기재조성물, 그의 제조방법 및 그의 용도
JP4503603B2 (ja) 酸化セリウムと酸化ジルコニウムを主体とする向上した還元能と比表面積を有する組成物及び触媒
JP3657620B2 (ja) 硫黄を含有する燃料によって作動する内燃機関からの排気ガスを処理する方法
US6030914A (en) Zirconia fine powder and method for its production
WO2003022740A1 (fr) Oxyde cerique et procede de production de celui-ci, ainsi que catalyseur destine a l'epuration des gaz d'echappement
JP2005530612A (ja) 酸化ジルコニウムと、セリウム、ランタン及び他の希土類元素の酸化物とを用いた組成物、その調製方法、並びに触媒としての使用
WO2009076119A1 (en) Low temperature water gas shift catalyst
JP2003277059A (ja) セリア−ジルコニア系複合酸化物
JP2008289985A (ja) 排ガス浄化触媒担体の製造方法
WO2019003424A1 (ja) アルミナ系複合酸化物及びその製造方法
CN104254393B (zh) 复合氧化物,其生产方法,以及用于排气净化的催化剂
WO2000027527A1 (en) Preparation of nanocrystalline and dispersible supported metal catalysts
US3316057A (en) Method of treating exhaust gases of internal combustion engines
JP2006256912A (ja) 表面修飾されたセリア・ジルコニア系水和酸化物、その酸化物及びそれらの製造方法並びに用途
JPH11292538A (ja) ジルコニア−セリア組成物の製造方法
JP2005247585A (ja) ジルコニア−セリア複合酸化物粉末の製造方法
CN114177902A (zh) 一种具有微米级大孔的铈锆固溶体及其制备方法和应用
JP2001276620A (ja) 炭化水素改質用触媒
JP2003275588A (ja) Coシフト反応用触媒
JP2004330106A (ja) 一酸化炭素変成用触媒及び該触媒を用いた一酸化炭素の変成方法
JP4206813B2 (ja) 一酸化炭素変成用触媒及び該触媒を用いた一酸化炭素の変成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97181053.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09331821

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997950373

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997005879

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997950373

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997005879

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997005879

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997950373

Country of ref document: EP