WO1997007408A1 - Systeme de detection de tension, circuit de remise a zero/remise en service d'un circuit et dispositif semi-conducteur - Google Patents

Systeme de detection de tension, circuit de remise a zero/remise en service d'un circuit et dispositif semi-conducteur Download PDF

Info

Publication number
WO1997007408A1
WO1997007408A1 PCT/JP1996/002295 JP9602295W WO9707408A1 WO 1997007408 A1 WO1997007408 A1 WO 1997007408A1 JP 9602295 W JP9602295 W JP 9602295W WO 9707408 A1 WO9707408 A1 WO 9707408A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
signal
node
circuit
detection circuit
Prior art date
Application number
PCT/JP1996/002295
Other languages
English (en)
French (fr)
Inventor
Hiroshige Hirano
Kouji Asari
Tatsumi Sumi
Original Assignee
Matsushita Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corporation filed Critical Matsushita Electronics Corporation
Priority to US08/817,746 priority Critical patent/US5864247A/en
Priority to EP96926643A priority patent/EP0787993A4/en
Publication of WO1997007408A1 publication Critical patent/WO1997007408A1/ja
Priority to US09/803,775 priority patent/US6538482B2/en
Priority to US10/370,395 priority patent/US6822493B2/en
Priority to US10/797,253 priority patent/US6882193B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/223Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • G01R19/155Indicating the presence of voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/143Detection of memory cassette insertion or removal; Continuity checks of supply or ground lines; Detection of supply variations, interruptions or levels ; Switching between alternative supplies
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines

Definitions

  • the present invention relates to a voltage detection circuit for a mas voltage or the like, a power-on / off reset circuit, and a semiconductor device. Things. Background art
  • FIG. 23 shows the configuration of the conventional voltage detection circuit
  • Figure 24 shows the relationship between the voltage and the output voltage signal in the conventional voltage detection circuit
  • Figure 25 shows the relationship between the sag voltage and the current consumption.
  • reference numeral 061 denotes a channel-type MOS transistor whose source is connected to the as voltage VDD and whose gate and drain are connected to the node N61.
  • Q p62 is a P-channel MOS transistor whose source is connected to node N61 and whose gate and drain are connected to node N62.
  • Q p63 is a P-channel MOS transistor whose source is connected to node N62 and whose gate and drain are connected to node N63.
  • Qn 61 is an N-channel MOS transistor whose source is connected to ground voltage VSS, its gate is connected to voltage VDD, and its drain is connected to node N63.
  • Qp 64 is a P-channel MOS transistor, Qn 62 is an N-channel MOS transistor, and these constitute a first NOT circuit 61.
  • the source of P-channel MOS transistor Qp64 is connected to power supply voltage VDD, the gate is connected to node N63, and the drain is connected to node N64.
  • the source of N-channel MOS transistor Qn62 is connected to ground voltage VSS, the gate is connected to node N63, and the drain is connected to node N64.
  • the node N 64 is connected to the input terminal of the second NOT circuit 62.
  • the second NOT circuit 62 receives the voltage detection signal VDT60 from the node N64 and generates an output voltage signal VOUT60.
  • the output voltage signal VOUT 60 obtained at the output terminal of the second NOT circuit 62 becomes the logic voltage "L" when the power supply voltage VDD is less than about 4 V, Above about 4 V, the logic voltage is "H".
  • the threshold level of the first NOT circuit 61 composed of the P-channel MOS transistor Qp64 and the N-channel MOS transistor Qn62 is about 1Z2 of the voltage VDD. Therefore, when the voltage VDD is about 4 V, the potential of the node N64 connected to the input terminal of the first NOT circuit 61 becomes about 2 V, and the node N64, that is, the voltage detection signal VDT becomes the logic voltage “H”.
  • the output voltage signal VOUT 60 which is the output of the second negation circuit 62, becomes ⁇ JE at which the logic voltage changes from the logic voltage “L” to the logic voltage “H” to the logic voltage “L”.
  • the current consumption of the voltage detection circuit will be described.
  • the input terminal of the first NOT circuit 61 composed of the P-channel MOS transistor Qp64 and the N-channel MOS transistor Qn62 Since the potential of a certain node N63 becomes a potential between the power supply voltage VDD and the ground voltage VSS, the state in which both the P-channel MOS transistor Qp64 and the N-channel MOS transistor Qn62 are turned on, that is, the first The negation circuit 61 is temporarily short-circuited, and the current consumption In 60 flowing through the N-channel MOS transistor Qn 62 has a peak of, for example, 0.6 ⁇ A. Further, even when the 3 ⁇ 4 ⁇ voltage VDD is other than about 4 V, the current consumption In 60 flows as shown in FIG.
  • the first negation circuit 61 when the input node N 63 is at an intermediate potential between the power supply voltage VDD and the ground voltage VSS, the first negation circuit 61 has the P-channel MMOS transistors Qp 64 and N Both of the channel type MOS transistors Qn 62 are turned on, that is, temporarily short-circuited, and the current consumption becomes particularly large, and the current consumption of the entire voltage detection circuit is large even at other times.
  • An object of the present invention is to provide a voltage detection circuit that suppresses a peak of current consumption in a temporary short-circuit state and reduces current consumption of the entire circuit in consideration of such a problem.
  • a power-on-off reset circuit for immediately stopping the operation of a device such as a logic circuit or a memory circuit has a --Even if there is no problem in the memory circuit, in the memory circuit that needs to be rewritten (restored or refreshed) after reading, there is a possibility that the data in the memory may be destroyed by stopping the operation immediately. It is difficult to complete the sequence normally.
  • An object of the present invention is to provide a power-on / off reset circuit that normally ends an operating sequence in consideration of such a problem. Disclosure of the invention
  • the present invention provides a voltage detection circuit, a power on / off reset circuit, and a semiconductor device having the following configurations.
  • the voltage detection circuit according to claim 1 includes a first MOS transistor having a gate and a drain connected to a first node; a gate connected to the first node; and a drain connected to a third node.
  • a second MOS transistor connected to the first node, a first resistor connected between the first node and the second node, a second node and a ground voltage terminal, An input terminal is connected to the second node, a fourth node is an output terminal, and a connection is made between the third node and a ground voltage terminal.
  • a voltage detection circuit comprising: a first NOT circuit; and a second NOT circuit having an input terminal connected to the fourth node and having a fifth node as an output terminal.
  • the voltage detection circuit includes: a first MOS transistor having a gate and a drain connected to the first node; a gate connected to the first node; and a drain connected to the third node; A second MOS transistor connected, a first resistor connected between the first node and the second node, and a second node and a ground voltage terminal. A second resistor connected between the second node and the second node, an input terminal connected to the second node, a first NOT circuit having a fourth node as an output terminal, and a third node.
  • a second NOT circuit having an input terminal connected to the fourth node, an input terminal connected to the fourth node, and an output terminal connected to the fifth node, and a ground voltage terminal or a power supply voltage terminal connected to the fourth node.
  • a third MOS transistor having a gate connected to the fifth node.
  • the invention of claim 3 is the invention according to claim 2, wherein the first, second, and third MOS transistors are P-channel MOS transistors, and the source of the third MOS transistor is a mas voltage. This is a configuration connected to terminals.
  • a voltage detecting circuit includes a first voltage detecting circuit for detecting a first voltage and outputting a first signal, and a second voltage lower than the first voltage.
  • a first P-channel MOS transistor having a gate and a drain connected to a first node, and a second voltage detection circuit that outputs a second signal.
  • a second P-channel MOS transistor connected to the first node, a drain connected to the third node; and a first P-channel MOS transistor connected between the first node and the second node.
  • a fifth aspect of the present invention is characterized in that, in the fourth aspect of the present invention, the second signal output from the second voltage detection circuit is a signal output only when mas is input.
  • the invention according to claim 6 is the invention according to claim 4, wherein the second signal output from the second voltage detection circuit is a signal output for a certain period of time after 3 g is input.
  • the voltage detection circuit according to the seventh aspect of the present invention includes a first P-channel MOS transistor having a gate and a drain connected to the first node, a gate having the first node, and a drain having the third node.
  • a second P-channel MOS transistor respectively connected to the node, a first resistor connected between the first node and the second node, a second node and a ground voltage terminal.
  • An N-channel MOS transistor connected between the third node and the ground voltage, with the gate connected to the second node, and the third node as inputs.
  • a first negation circuit having a fourth node as an output.
  • the invention according to claim 8 is the configuration according to claim 7, wherein the first resistor is an N-channel MOS transistor.
  • a power-on / off reset circuit includes a first voltage detection circuit that detects a first voltage and outputs a first signal. The operation sequence is prohibited.
  • a power-on / off reset circuit detects a first voltage and outputs a first signal, and detects a second voltage lower than the first voltage.
  • a second voltage detection circuit that outputs a second signal, prohibits a new operation sequence when is equal to or lower than the first voltage, and immediately operates when the power supply voltage is equal to or lower than the second voltage. This is a configuration to stop.
  • a power-on / off reset circuit detects a first voltage and outputs a first signal, and a first voltage detection circuit, and detects a second voltage lower than the first voltage. And a second voltage detection circuit that outputs a second signal, wherein a time during which the power supply voltage decreases to the first voltage / the second voltage is longer than a predetermined operation sequence end time. It is.
  • the voltage detection circuit according to claim 14 is: (a) a circuit for detecting a first voltage and outputting a first signal; and (b) outputting the first signal only when power is turned on.
  • a third voltage detection circuit that detects a third voltage higher than the second voltage and outputs a third signal; and detects a fourth voltage higher than the third voltage and outputs a fourth signal.
  • a fourth voltage detection circuit to select one of the third signal and the fourth signal, and a signal selection circuit to output a fifth signal; and a first signal and a second signal
  • a first control circuit that generates a logical sum output with a signal; and a second control circuit that generates a logical sum output of the first signal and the fifth signal. That.
  • the power-on-off reset circuit according to claim 15 has a voltage detection circuit that detects a first voltage and a second voltage higher than the first voltage, and outputs a first signal. When the source voltage rises, the first signal makes a transition at the second, and when the voltage decreases, the first signal makes a transition at the first voltage, and the power supply voltage is lower than the transition voltage of the first signal.
  • the power-on / off reset circuit is to prohibit a new operation sequence when.
  • a power-on / off reset circuit is a first voltage detection circuit that detects a first voltage and a second voltage higher than the first voltage and outputs a first signal, A second voltage detection circuit that detects a third voltage lower than the first voltage and outputs a second signal, wherein when the voltage increases, the first signal transitions at the second voltage. When the voltage decreases, the first signal transitions at the first voltage, and when the power supply voltage is lower than the transition voltage of the first signal, a new operation sequence is inhibited, and
  • a power on / off reset circuit comprises: a first voltage detection circuit that detects a first voltage and a second voltage higher than the first voltage and outputs a first signal; A second voltage detection circuit for detecting a third voltage lower than the first voltage and outputting a second signal, wherein when the mas voltage increases, the first signal transitions at the second voltage.
  • the voltage decreases the first signal transitions at the first voltage, and the time when the power supply voltage decreases from the transition voltage of the first signal to the third voltage is longer than the predetermined operation sequence end time. It is a long power-off reset circuit.
  • a semiconductor device has a power-on / off reset circuit according to claim 9 and a nonvolatile memory, and operates when the power supply voltage is equal to or lower than the first voltage according to claim 9. This is a semiconductor device that does not perform the above.
  • a semiconductor device includes a power-on / off reset circuit according to the first and second aspects, and a nonvolatile memory. The semiconductor device does not operate.
  • a semiconductor device includes a power-on / off reset circuit according to the fifteenth aspect and a non-volatile memory, and the mm voltage is equal to or less than the transition voltage of the first signal according to the fifteenth aspect, or A semiconductor device that does not operate as a nonvolatile memory when the voltage is equal to or lower than 3.
  • a semiconductor device includes a power-on / off reset circuit according to the sixteenth aspect and a nonvolatile memory, wherein the voltage is equal to or less than the transition voltage of the first signal according to the twenty-second aspect or the third level. Is a semiconductor device that does not operate as a nonvolatile memory when the voltage is equal to or lower than the voltage.
  • the invention according to claims 1 to 8 and 14 of the present invention is a voltage detection circuit, which suppresses a peak of current consumption and obtains a stable SEE detection signal. Further, There is an effect that a stable voltage detection signal can be obtained even at a low voltage when mas is on.
  • the invention according to claims 9, 12 and 13 of the present invention provides a power-on circuit that does not erroneously start a new operation sequence at the time of power-on and that can normally end the operating sequence at the time of power-off. ⁇ This has the effect of being an off reset.
  • the inventions according to claims 15, 16 and 17 of the present invention have an effect that the power-on / off-reset voltage has a voltage hysteresis so that the power-on / off-reset voltage can operate stably with respect to voltage fluctuations.
  • the invention described in claims 18, 19, 20, 21 of the present invention provides a power-on / off reset voltage with a voltage hysteresis, thereby stabilizing operation against voltage fluctuations. This has the effect of preventing a malfunction of the non-volatile memory controlled using the signal.
  • FIG. 1 is a diagram showing a configuration of a voltage detection circuit according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a relationship between a power supply voltage and an output voltage signal according to a first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the mm voltage and the current consumption in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a voltage detection circuit according to a second embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of a voltage detection circuit as a third embodiment of the present invention.
  • FIG. 6 is a diagram showing an output signal waveform when the power is turned on in the third embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a voltage detection circuit according to a fourth embodiment of the present invention.
  • FIG. 8 is a diagram showing a relationship between an mi voltage and an output voltage signal according to a fourth embodiment of the present invention. --Yes.
  • FIG. 9 is a diagram showing a configuration of a power-on-off reset circuit as a fifth embodiment of the present invention.
  • FIG. 10 is a diagram showing a configuration of a power-on-off reset circuit as a fifth embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration of a power-on / off reset circuit as a fifth embodiment of the present invention.
  • FIG. 12 is a diagram for explaining the operation timing of the power-on / off reset circuit as the fifth embodiment of the present invention.
  • FIG. 13 is a diagram showing a configuration of a power-on / off reset circuit as a sixth embodiment of the present invention.
  • FIG. 14 is a diagram for explaining the operation timing of the sixth embodiment of the present invention.
  • FIG. 15 is a diagram for explaining the operation timing of the sixth embodiment of the present invention.
  • FIG. 16 is a diagram showing a configuration of a power-on / off reset circuit as a seventh embodiment of the present invention.
  • FIG. 17 is a diagram showing a configuration of a power-on / off reset circuit as an eighth embodiment of the present invention.
  • FIG. 18 is a diagram for explaining the operation timing of the power-on / off reset circuit according to the eighth embodiment of the present invention.
  • FIG. 19 is a diagram showing a configuration of a power-on / off reset circuit as a ninth embodiment of the present invention.
  • FIG. 20 is a diagram for explaining the operation timing of the power-on'off reset circuit according to the ninth embodiment of the present invention.
  • FIG. 21 is a circuit configuration diagram of a ferroelectric memory section of a semiconductor device having a nonvolatile ferroelectric memory controlled by a power-on / off reset circuit according to a tenth embodiment of the present invention. It is.
  • FIG. 22 is an operation timing chart of the ferroelectric memory section according to the tenth embodiment of the present invention.
  • FIG. 23 is a diagram showing a configuration of a conventional voltage detection circuit.
  • FIG. 24 is a diagram showing a relationship between a power supply voltage and an output voltage signal of a conventional voltage detection circuit.
  • FIG. 25 is a diagram showing the relationship between the power supply voltage and the current consumption of a conventional voltage detection circuit.
  • FIG. 1 is a diagram showing a configuration of a voltage detection circuit as a first embodiment of the present invention (corresponding to claims 1, 2 and 3), and FIG. 2 shows a relationship between a power supply voltage and an output voltage signal. Fig. 3 shows the relationship between voltage and current consumption.
  • Qp11 to Qp16 are P-channel MOS transistors
  • Qn11 and Qn12 are N-channel MOS transistors
  • 11 and 12 are NOT circuits.
  • the source of the P-channel MOS transistor Qp11 is connected to the power supply voltage VDD, and the gate and drain are connected to the node Nl1, respectively.
  • the source of the P-channel SMOS transistor Qp12 is connected to the power supply voltage VDD, the gate is connected to the node N11, and the drain is connected to the node N13.
  • P channel type MOS transistors Qp l 4 and Q 15 are connected in series between nodes Nl 1 and N 12, and N channel type MOS transistor Q ni l is connected between node N 12 and ground voltage V. Is connected.
  • the series connection of the P-channel MOS transistors Qp14 and Qp15 and the N-channel MO transistor Q nil each function as a t3 ⁇ 4 antibody.
  • a NOT circuit 11 having the node N12 as an input terminal and the node N15 as an output terminal is connected between the node N13 and the ground voltage VSS.
  • the negation circuit 11 is formed by cascade-connecting a P-channel MOS transistor Qp13 and an N-channel MOS transistor Qn12.
  • the input terminal of the NOT circuit 12 is no - ⁇ ⁇ ⁇ ⁇ ⁇ N ⁇ N N N ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the output of the signal VOUT10 becomes the logic voltage "L” when the power supply voltage VDD is less than about 3.5 V, and becomes the logic voltage "H” when the output voltage is about 3.5 V or more. It is designed to operate as follows.
  • the resistance value is increased so that the P-channel MOS transistor Qp11 , Qp 12 can be reduced.
  • the current consumption Ip10 of the P-channel MOS transistor Qp12 can be further reduced. it can.
  • the current consumption is any voltage in the operating power supply voltage range ⁇ . Can be 0.1 A or less.
  • the node N15 is latched by the P-channel MOS transistor Qp16 to keep the signal VOUT10 stable.
  • FIG. 4 is a diagram showing a configuration of a voltage detection circuit as a second embodiment of the present invention (corresponding to claim 4).
  • This embodiment is different from the first embodiment in that a voltage detection circuit 41 capable of detecting a voltage lower than that of the first embodiment is added. Is supplied to the gate of a P-channel MOS transistor Qp17, and this transistor Qp17 is connected between the node N15 and the power supply SJEVDD. Below 1.5 V in Fig. 2, the circuit in Fig. 1 becomes unstable and can be prevented.
  • FIG. 5 is a diagram showing a configuration of a voltage detection circuit as a third embodiment of the present invention (corresponding to claims 5 and 6), and FIG. 6 is a waveform diagram of an output signal when the power is turned on.
  • This embodiment can be used for the voltage detection circuit 41 and the like in the second embodiment.
  • the sources of P-channel MOS transistors 21 to 24, the gate of Qp21 and the gate of Qp24 are connected to power supply voltage VDD, and the drains of Qp21 to Q22 and the gates of Qp22 to Qp23 are nodes.
  • the drains of Qp23 to Qp24 are connected to a node N23.
  • the source of single-channel MOS transistor Qp25 is connected to node N21, the gate and drain of Qp25 are connected to node N22, and a resistor R is connected between node N22 and ground voltage VSS. 21 is connected.
  • N-channel MOS transistor Qn21 having a gate of node N23 is connected between voltage VDD and node N23 via resistor R22, and a capacitor C21 is connected between node N23 and ground voltage VSS.
  • P-channel MOS transistor Qp 26 whose gate is ground voltage V SS and P-channel MOS transistor Qp 27 whose gate is node N 26 are connected in parallel between nodes N23 and N24.
  • a NOT circuit 21 having a node N24 as an input and a node N26 as an output, and a NOT circuit 22 having a node N26 as an input and a signal VDT 20 as an output! Are connected, and the node N24 is connected to the ground voltage.
  • the capacitor C22 is connected between the capacitor and VSS.
  • the gate and source of the N channel MOS transistor Qn22 are connected to the node N24, and the drain is connected to N25.
  • the source of the P-channel MOS transistor Qp28 is connected to the node N24, the gate and drain are connected to the node N25, and the resistor R23 is connected between the node N25 and the voltage VDD.
  • the node N23 is regarded as a voltage source in which the voltage rises slowly. be able to.
  • the negative circuit 21 receives the voltage of the node N 24 determined by the charge supplied from the node N 23, outputs the voltage to the node N 26, and the node 22 receives the voltage, and outputs the voltage detection signal VDT 20.
  • the switching voltage level of the NOT circuit 21 is set high. Since the voltage of the node N23 rises slowly, as shown in FIG. 6, the 3 ⁇ 4JE detection signal VDT20 rises after the time t1 after turning on the power supply voltage VDD.
  • Time t 1 is the capacity of C 21 and P It is determined by the current capability and capacity C22 of the channel type MOS transistor Qp23 and the current capability of the P-channel type MOS transistor Qp26.
  • the feature of this circuit is that the voltage detection signal VDT 20 is output when the power supply voltage is on, but not output when the power supply voltage is off.
  • Fig. 7 is a diagram showing a configuration of a voltage detection circuit according to a fourth embodiment of the present invention (corresponding to claims 7 and 8), and Fig. 8 is a diagram showing a relationship between a power supply voltage and an output voltage signal.
  • Qpll and Qp12 are P-channel MOS transistors
  • Qnll to Qn13 are N-channel MOS transistors
  • 31 is a NOT circuit.
  • the source of the P-channel MOS transistor Qp11 is connected to the power supply voltage VDD, and the gate and drain are connected to the node Nl1, respectively.
  • the source of the P-channel MMOS transistor Qp12 is connected to the as voltage VDD, the gate is connected to the node Nil, and the drain is connected to the node N13.
  • An N-channel MOS transistor Qn12 is connected between node Nl1 and node N12, and an N-channel MOS transistor Qnl1 is connected between node N12 and ground voltage VSS.
  • An N-channel MOS transistor Qn13 whose gate is the node N12 is connected between them.
  • the input terminal of the NOT circuit 31 is connected to the node N13, and the signal VOUT 30 is obtained at the output terminal.
  • the voltage lower than the power supply voltage VDD by the threshold value of the P-channel MMOS transistor Qp11 is divided by the N-channel MOS transistor Qnl2 and the same Qn11, and this divided voltage is output to the node N12. Is done.
  • the N channel MOS transistor Qn13 is turned on / off by the voltage of the node N12, and the signal VOUT30 is determined. That is, a low-voltage detection signal can be obtained by dividing the voltage between the N-channel MOS transistors Qn12 and Qn11.
  • the voltage division ratio of the N-channel MOS transistors Qn12 and Qnl1 may be made different, or another N-channel MOS transistor may be connected to them
  • By newly providing a node from which a voltage can be obtained, a voltage detection signal different from the above can be obtained.
  • a circuit configuration may be used in which the capability of the N-channel MOS transistor Qn12 can be switched by a fuse or the like. This embodiment requires less power consumption. Also, the present invention is applicable to the circuit 41 of the second embodiment.
  • FIGS. 9, 10, and 11 are diagrams showing a configuration of a power-on'off reset circuit as a fifth embodiment of the present invention (corresponding to claim 9), and FIG. 12 is a diagram showing operation timings thereof.
  • VDD is a voltage
  • CLK is a reference clock
  • CE is a control signal
  • ICE is an internal control signal.
  • the voltage detection circuit 43 that outputs the voltage detection VD signal T21
  • the reference clock generation circuit 47 that outputs the reference clock CLK
  • the control signal from the voltage detection VD signal T21 and the control signal CLK A control signal CE generating circuit 48 that outputs CE, and an internal control signal I CE generating circuit 49 that outputs an internal control signal I CE from the control signal CE
  • the control signal CE When the parent voltage is equal to or higher than the voltage detected by the voltage detection signal VDT 21, the control signal CE is a signal having a phase opposite to that of the reference clock CLK, and the voltage is equal to or lower than the voltage detected by the voltage detection signal VDT 21. At one time, the control signal CE is at a logic voltage "H".
  • Fig. 11 shows a circuit for operating the already operating sequence to the end, which generates a pulse signal with a certain delay time from the falling edge of the control signal CE.
  • the internal control signal I CE When the voltage is equal to or higher than the voltage detected by the voltage detection signal VDT21, the internal control signal I CE has the same waveform as the external input control signal CE.
  • the internal control signal ICE maintains the logic voltage even if the external input control signal CE becomes the logic voltage "H”.
  • the internal control signal ICE maintains the logic voltage "H” even if the external input control signal CE changes to the logic voltage "L” at time t8.
  • the sequence under operation can be completely terminated, and a new operation sequence is prohibited. It is effective to use it for strong non-volatile memory such as strong dielectric memory.
  • FIG. 13 is a diagram showing the configuration of a power-on / off reset circuit as a sixth example of the present invention (corresponding to claims 12 and 13), and FIGS. 14 and 15 are operation timing diagrams thereof. It is.
  • This embodiment has two voltage detection circuits 42 and 43 that output voltage detection signals VDT30 and VDT31.
  • the voltage detection signal VDT30 is a signal for detecting a voltage lower than VDT31. A new operation sequence is prohibited when the voltage is lower than the voltage detected by the voltage detection signal VDT31 (time t10 in FIG. 15), and the operation is immediately stopped when the voltage is lower than the voltage detected by the voltage detection signal VDT30 (FIG. 14). Time t13).
  • a setting is made so as to secure enough time to end the operating sequence before the power supply voltage decreases from the voltage detection signal VDT31 to the same voltage VDT30.
  • This circuit controls the WL (lead line signal) 'CP (cell plate line signal) ⁇ SAE (sense amp enable signal) control circuit 44 with the voltage detection signal VDT 30 of the voltage detection circuit 42, and the voltage detection circuit 43
  • the ICE (internal control signal) control circuit 45 is controlled by the voltage detection signal VDT 31 of FIG.
  • VDD is a power supply voltage
  • CE is an external input control signal
  • ICE is an internal control signal
  • WL is a word line signal.
  • the internal control signal ICE performs the same operation as the external input control signal CE.
  • the internal control signal ICE changes to the time t when the S2I voltage VDD falls below the voltage detection signal VDT30, even if the external input control signal CE is at the logic voltage "L". It keeps the logic voltage "L” until 13 and then goes to the logic voltage.
  • ma3 ⁇ 4®EVD D is lower than the miE detection signal VDT30, the lead line signal WL immediately stops operating.
  • FIG. 16 is a circuit diagram showing a seventh embodiment of the present invention (corresponding to claim 14).
  • FIG. 3 is a diagram illustrating a configuration of an off-reset circuit. This embodiment is different from the power-on reset circuit 41 of the third embodiment, which outputs the voltage detection signal VDT20, and the voltage detection circuits 42, 4 3 shown in the fourth embodiment, which output the voltage detection signals VDT30 and VDT31, respectively.
  • the voltage detection circuit 40 which outputs the voltage detection signal VDT 10, the voltage detection circuit 40 shown in the first embodiment, the 3V / 5V version switching circuit 46, WL (word iHm) '' CP (cell plate line signal) ⁇ SAE (sense amplifier Signal) control circuit 44 and ICE (internal control signal) control circuit 45.
  • the control circuit 44 is controlled by, for example, a logical sum signal of the voltage detection signals VDT20 and VDT30, and the 3V / 5V version switching circuit 46 selects one of the voltage detection signals VDT31 and VDT10. For example, the voltage detection signal VDT31 is selected for the 3 V version device, and the voltage detection signal VDT10 is selected for the 5 V version device.
  • the control circuit 45 is controlled by a logical sum signal of the selected signal and the voltage detection signal VDT20.
  • This embodiment is an application example of the above-mentioned embodiment, in which 3 V version and 5 V version devices can be shared, and complete protection of data at power on / off of nonvolatile memory such as ferroelectric memory is possible. is there.
  • the eighth embodiment has a configuration in which the voltage detection signal VDT 21 of the fifth embodiment has voltage hysteresis.
  • FIG. 17 is a circuit configuration diagram of an eighth example of the present invention (corresponding to claim 15), and FIG. 18 is a diagram illustrating operation timings of the power-on / off reset circuit.
  • VDD is a power supply voltage
  • CE is an external input control signal
  • ICE is an internal control signal.
  • This embodiment has a voltage detection circuit that detects the detection voltages VDT30 and VDT31, and is detected by the voltage detection signals DT30 and DT31, and generates a voltage detection signal DT21 having a hysteresis of the power supply voltage from these signals. (Circuit 54 in Fig. 17). When the voltage detection signal DT21 is at the logic voltage "H", a new operation sequence is prohibited. Stop.
  • the internal control signal ICE is a signal that has a certain time width from the time when the signal transitions to the logical voltage "L" to the logical sum signal of the voltage detection signal DT21 and the external input control signal CE. And That is, even if the external input control signal CE becomes a logic voltage, the internal control signal ICE is configured to maintain the logic voltage for a certain period of time.
  • the sequence under operation can be completely terminated, and a new operation sequence is prohibited. It is effective to use it for strong non-volatile memory such as strong dielectric memory.
  • the two voltage detection signals DT 30 and DT 31 output the voltage detection signal DT 21 having power supply voltage hysteresis, a stable voltage detection signal is output even when the power supply voltage fluctuates. In this way, the data in the nonvolatile memory can be prevented from being destroyed.
  • FIG. 19 is a configuration diagram of a power-on / off reset circuit as a ninth example of the present invention (corresponding to claims 16 and 17), and FIG. 20 is an operation timing diagram thereof.
  • This embodiment has a voltage detection signal DT32 for detecting a lower power supply voltage in addition to the voltage detection signals DT30 and DT31 of the sixth embodiment, and the voltage detection signals DT30 and DT30. 3 1 controls the mas voltage hysteresis.
  • the voltage detection signal DT 32 is output from a detection signal selection circuit 56 that generates, for example, a logical sum of the power-on reset circuit 41 and the voltage detection circuit 42, and is output when the power-on reset circuit 41 is turned on at 31.
  • the internal control signal ICE is controlled by VDT 31 when the power supply voltage increases, and by VDT 30 when the power supply voltage decreases.
  • a new operation sequence is prohibited by the voltage detection signals VDT30 and VDT31, and the operation is immediately stopped when the voltage is lower than the voltage detected by the voltage detection signal VDT32.
  • a setting is made so that a sufficient time for ending the operating sequence can be secured before the power supply voltage decreases from the voltage detection signal VDT30 to VDT32.
  • the word line signal WL immediately stops operating. For example, when the power is turned on, the word line signal WL is reliably set to the logic voltage "L". In a ferroelectric memory, etc., the memory cell is used. Can be prevented from malfunctioning.
  • the tenth embodiment is directed to a ferroelectric memory section in, for example, an RF-ID tag semiconductor device having the voltage detection circuit, the power-on / off reset circuit, and the nonvolatile ferroelectric memory of the above-described embodiment. This is an example.
  • FIG. 21 is an overall circuit configuration diagram
  • FIG. 22 is an operation timing diagram
  • WL0 to WL255 are word lines
  • BL and / BL are bit lines
  • CP0 to CP 255 are cell plate electrodes
  • BP is a bit line precharge control signal
  • SAE is a sense amplifier control signal
  • VSS is a ground voltage
  • SA is a sense amplifier
  • C0 to C255, C0B to C255B are memory cell capacitors
  • QnBP0 to QnBP2 are N-channel MOS transistors.
  • the bit lines BL and ZBL are connected to the sense amplifier SA.
  • the sense amplifier SA is the sense amplifier control signal SA Controlled by E.
  • the first electrode of the memory cell capacitor CO is connected to the bit line BL via the memory cell transistor Qn0 whose gate electrode is connected to the lead line WL0, and the second electrode is connected to the cell plate electrode CP0. It is connected.
  • the first electrode of the memory cell capacitor C 0 B forming a pair with the memory cell capacitor C 0 is connected to a bit line via a memory cell transistor Q n 0 B having a gate electrode connected to a lead line WL 0.
  • the second electrode is connected to the cell plate electrode CP0.
  • the connections of the other memory cell capacitors C1 to C255 and C1B to C255B are the same as those of the memory cell capacitors CO and COB.
  • the bit lines BL and / BL are connected by an N-channel MOS transistor QnBP2, and the bit line BL and the ground voltage VSS, and the bit line ZBL and the ground voltage VSS are connected by N-channel MOS transistors QnBP0 and QnBP1, respectively.
  • the gate electrodes of the N-channel MOS transistors QnBP0 to QnBP2 are connected to the bit line precharge control signal BP.
  • the bit line precharge control signal BP is set to the logic voltage “ ⁇ ”, and the bit lines BL and / BL are set to the logic voltage “L”.
  • WL0 to WL255 the cell plate electrode CP is set to the ground voltage VSS that is the logic voltage “L.”
  • the bit line precharge control signal BP is set to the logic voltage “L,” whereby the bit lines BL and / BL are set.
  • the word line WL0 and the cell plate electrode CP are set to the logic voltage “ ⁇ ”, and the data of the memory cell capacitors C0 and COB are read out to the bit line BL and the bit line ZBL.
  • the cell plate electrode CP is set to the logic voltage "L”, and the data of the memory cell capacitors CO and COB are rewritten.
  • the word line WL0 is set to the logic voltage "L”, Make sure that no voltage is applied to the memory cell capacitors CO and COB.
  • the sense amplifier control signal S AE is set to the logic voltage “L”, and the operation of the sense amplifier SA is stopped.
  • the bit lines BL and / BL are set to a logic voltage "L" to be in an initial state.
  • the peak of the current consumption is suppressed, and the voltage detection signal is stabilized.
  • a new operation sequence does not accidentally start at the time of power-on, and the operating sequence can be normally terminated at the time of power-off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electronic Switches (AREA)
  • Dram (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

_ _ 明 細 書 電圧検知回路、 パワーオン ·オフリセット回路及び半導体装置 技術分野
本発明は、 mas電圧等の電圧検知回路と、 パワーオン'オフリセット回路と、 半導体装置に関する。ものである。 背景技術
最近、 半導体装置において、 電源電圧値に応じて内部回路動作を変えることに より、 広い電源電圧範囲で安定した動作をさせる技術が広く用いられようになつ てきた。 このため、 mm電圧値を検知する電圧検知回路が重要なものとなってい る。
従来の電圧検知回路について、 図 2 3〜図 2 5を参照しながら説明する。 図 2 3は従来の電圧検知回路の構成を示す図、 図 2 4は従来の電圧検知回路における 電圧と出力電圧信号との関係を示す図、 図 2 5は同じく sag電圧と消費電流 との関係を示す図である。
まず、 その回路構成について説明する。 図 2 3に示すように、 0 6 1は チ ャネル型 MO Sトランジスタで、 そのソースが ®as電圧 VDDに接続され、 ゲー トとドレインがノード N 6 1に接続されている。 Q p 6 2は Pチャネル型 MO S トランジスタで、 そのソースがノード N 6 1に接続され、 ゲートとドレインがノ ード N 6 2に接続されている。 Q p 6 3は Pチャネル型 MO Sトランジスタで、 そのソースがノード N 6 2に接続され、 ゲートとドレインがノード N 6 3に接続 されている。 Qn 61は Nチャネル型 MOSトランジスタで、 そのソースが接地 電圧 VSSに接続され、 ゲートが 電圧 VDDに接続され、 ドレインがノード N63に接続されている。 Qp 64は Pチャネル型 MOSトランジスタ、 Qn6 2は Nチャネル型 MOSトランジスタで、 これらは第 1の否定回路 61を構成す る。 Pチャネル型 MOSトランジスタ Qp 64のソースが電源電圧 VDDに接続 され、 そのゲートがノード N 63に接続され、 さらにドレインがノード N 64に 接続されている。 また、 Nチャネル型 MOSトランジスタ Qn 62のソースが接 地電圧 VSSに接続され、 そのゲートがノード N63に接続され、 さらにドレイ ンがノード N 64に接続されている。 ノード N 64は第 2の否定回路 62の入力 端に接続されている。 第 2の否定回路 62は、 ノード N 64から電圧検知信号 V DT60が印加され、 出力電圧信号 VOUT 60を発生する。
次に、 この電圧検知回路の動作について説明する。 所定の条件の下で、 図 24 に示すように、 第 2の否定回路 62の出力端に得られる出力電圧信号 VOUT 6 0は、 電源電圧 VDDが約 4 V未満では論理電圧 "L" となり、 約 4 V以上では 論理電圧 "H" となる。
これは以下に述べる理由によるものである。 ノード N 63の電位は mas電圧 V
DDから Pチャネル SMOSトランジスタ Qp 6 l〜Qp 63の電圧降下分だけ 低い電位となる。 例えば 2 Vである。
ところで、 Pチャネル型 MOSトランジスタ Qp 64と Nチャネル型 MOSト ランジスタ Qn 62とで構成される第 1の否定回路 61のスレツショルドレベル は 電圧 VDDの約 1Z2である。 したがって、 電圧 VDDが約 4Vであ るときには、 第 1の否定回路 61の入力端に接続されたノード N64の電位が約 2Vとなり、 ノード N64すなわち電圧検知信号 VDTが論理電圧 "H" 力 論 一 一 理電圧 "L" に、 第 2の否定回路 62の出力である出力電圧信号 VOUT 60が 論理電圧 "L" から論理電圧 "H" に遷移する ¾JEとなる。
次に、 この電圧検知回路の消費電流について説明する。 図 24に示すように、 電源電圧 VDDが約 4 Vであるときに、 Pチャネル型 MOSトランジスタ Qp 6 4と Nチャネル型 MOSトランジスタ Qn62とで構成される第 1の否定回路 6 1の入力端であるノード N 63の電位が電源電圧 VDDと接地電圧 VS Sとの中 間の電位となるため、 Pチャネル型 MOSトランジスタ Qp 64と Nチヤネノレ型 MOSトランジスタ Qn 62とが共にオンした状態、 すなわち第 1の否定回路 6 1が一時的に短絡状態となり、 この Nチャネル型 MOSトランジスタ Qn 62を 流れる消費電流 I n 60は例えばピーク 0.6 μ Aとなる。 また、 ¾ί ^電圧 VDD が約 4V以外のときでも、 消費電流 I n 60は図 25に示すように、 0.1 A 以上流れている。
しかしながら、 前記従来の電圧検知回路では、 第 1の否定回路 61が、 その入 力となるノード N 63が電源電圧 V D Dと接地電圧 V S Sとの中間電位となると き、 Pチャネル MMOSトランジスタ Qp 64と Nチャネル型 MOSトランジス タ Qn 62が共にオンした状態、 すなわち一時的に短絡状態となり、 消費電流が 特に大きくなることや、 そのとき以外でも電圧検知回路全体としての消費電流が 多い。
本発明は、 このような課題を考慮し、 一時的な短絡状態における消費電流のピ ークを抑えるとともに、 回路全体としての消費電流を少なくする電圧検知回路を 提供することを目的とする。
他方、 電圧検知回路により所定の電圧を検知した場合、 ロジック回路やメモリ 回路等の装置を即時動作停止するためのパワーオン 'オフリセット回路は、 口ジ - - ック回路では問題が無くても、 読み出し後再書き込み (リストアやリフレッシュ) が必要なメモリ回路では、 動作を即^止させることによりメモリのデータ破壊 する可能性があるため、 動作途中のシーケンスを正常に終了させることが困難で ある。
本発明は、 このような課題を考慮して、 動作中のシーケンスを正常に終了させ るパワーオン 'オフリセット回路を提供することを目的とする。 発明の開示
本発明は、 以下の構成の電圧検知回路、 パワーオン 'オフリセット回路及び半 導体装置である。
請求項 1の発明の電圧検知回路は、 ゲートおよびドレインが第 1のノ一ドに接 続された第 1の MO Sトランジスタと、 ゲートが前記第 1のノードに、 ドレイン が第 3のノードにそれぞ; >g続された第 2の MO S トランジスタと、 前記第 1の ノードと第 2のノードとの間に接続された第 1の抵抗体と、 前記第 2のノードと 接地電圧端子との間に接続された第 2の抵抗体と、 前記第 2のノ一ドに入力端が 接続され、 第 4のノードを出力端とし、 前記第 3のノードと接地電圧端子との間 に接続され第 1の否定回路と、 前記第 4のノードに入力端が接続され、 第 5のノ 一ドを出力端とする第 2の否定回路とを有することを特徴とする電圧検知回路で ある。
請求項 2の発明の電圧検知回路は、 ゲートおよびドレインが第 1のノードに接 続された第 1の MO Sトランジスタと、 ゲートが第 1のノードに、 ドレインが第 3のノードにそれぞ; 続された第 2の MO Sトランジスタと、 第 1のノードと 第 2のノードとの間に接続された第 1の抵抗体と、 第 2のノードと接地電圧端子 - - との間に接続された第 2の抵抗体と、 第 2のノードに入力端が接続され、 第 4の ノ一ドを出力端とする第 1の否定回路と、 第 3のノードと接地電圧端子との間に 接続され、 第 4のノードに入力端が接続され、 第 5のノードを出力端とする第 2 の否定回路と、 接地電圧端子または電源電圧端子と第 4のノードとの間に接続さ れ、 ゲートが第 5のノードに接続された第 3の MO Sトランジスタとを有する。 請求項 3の発明は、 請求項 2の発明において、 その 第 1, 第 2, 第 3の MO Sトランジスタが Pチャネル型 MO Sトランジスタであって、 第 3の MO Sトラ ンジスタのソースが mas電圧端子に接続された構成である。
請求項 4の発明の電圧検知回路は、 第 1の電圧を検知し、 第 1の信号を出力す る第 1の電圧検知回路と、 第 1の電圧より低い第 2の電圧を検知し、 第 2の信号 を出力する第 2の電圧検知回路とを備え、 第 1の電圧検知回路が、 ゲートおよび ドレインが第 1のノードに接続された第 1の Pチャネル型 MO Sトランジスタと、 ゲートが第 1のノードに、 ドレインが第 3のノ一ドにそれぞ; 続された第 2の Pチャネル型 MO Sトランジスタと、 第 1のノードと第 2のノードとの間に接続 された第 1の抵抗体と、 第 2のノードと接地電圧との間に接続された第 2の抵抗 体と、 第 3のノードと接地電圧端子との間に接続され、 第 2のノードを入力端と し、 第 4のノードを出力端とする否定回路と、 接地電圧端子または mmmEE端子 と第 4のノードとの間に接続され、 第 2の電圧検知回路による第 2の信号がゲ一 トに印加される第 3の MO Sトランジスタとを有する。
請求項 5の発明は、 請求項 4の発明において、 第 2電圧検知回路から出力され る第 2の信号を mas投入時にのみ出力される信号とすることを特徴とする。
請求項 6の発明は、 請求項 4の発明において、 第 2電圧検知回路から出力され る第 2の信号を 3g投入後一定時間出力される信号とする構成である。 - - 請求項 7の発明の電圧検知回路は、 ゲートおよびドレインが第 1のノードに接 続された第 1の Pチャネル型 MO Sトランジスタと、 ゲートが第 1のノードに、 ドレインが第 3のノードにそれぞれ接続された第 2の Pチャネル型 MO Sトラン ジスタと、 第 1のノードと第 2のノードとの間に接続された第 1の抵抗体と、 第 2のノードと接地電圧端子との間に接続された第 2の抵抗体と、 第 3のノードと 接地電圧との間に接続され、 ゲートが第 2のノードに接続された Nチャネル型 M O Sトランジスタと 第 3のノードを入力とし、 第 4のノードを出力とする第 1 の否定回路とを有する。
請求項 8の発明は、 請求項 7の発明において、 第 1の抵抗体を Nチャネル型 M O Sトランジスタとする構成である。
請求項 9の発明のパワーオン 'オフリセット回路は、 第 1の電圧を検知し、 第 1の信号を出力する第 1電圧検知回路を有し、 電源電圧が第 1の電圧以下のとき 新たな動作シーケンスを禁止する構成である。
請求項 1 2の発明のパワーオン 'オフリセット回路は、 第 1の電圧を検知し、 第 1の信号を出力する第 1電圧検知回路と、 第 1の電圧より低い第 2の電圧を検 知し、 第 2の信号を出力する第 2電圧検知回路とを有し、 が第 1の電圧 以下であるとき新たな動作シーケンスを禁止し、 電源電圧が第 2の電圧以下であ るとき即時動作停止する構成である。
請求項 1 3の発明のパワーオン 'オフリセット回路は、 第 1の電圧を検知し、 第 1の信号を出力する第 1電圧検知回路と、 第 1の電圧より低い第 2の電圧を検 知し、 第 2の信号を出力する第 2電圧検知回路とを有し、 電源電圧が第 1の電圧 力^前記第 2の ΕΕに低下する時間が、 所定の動作シーケンス終了時間よりも長 い構成である。 請求項 1 4の発明の電圧検知回路は、 ( a ) 第 1の電圧を検知し、 第 1の信号 を出力する回路であって、 また (b ) 電源投入時のみ前記第 1の信号を出力する 回路であって、 ( c ) 電源投入後一定時間前記第 1の信号を出力する第 1電圧検 知回路と、 第 2の電圧を検知し、 第 2の信号を出力する第 2電圧検知回路と、 第 2の電圧より高い第 3の電圧を検知し、 第 3の信号を出力する第 3電圧検知回路 と、 第 3の電圧より高い第 4の電圧を検知し、 第 4の信号を出力する第 4電圧検 知回路と、 第 3の信号および第 4の信号のうちのいずれか一方の信号を選択し、 第 5の信号を出力する信号選択回路と、 第 1の信号と第 2の信号との論理和出力 を発生する第 1の制御回路と、 第 1の信号と前記第 5の信号との論理和出力を発 生する第 2の制御回路とを有する。
請求項 1 5の発明のパワーオン 'オフリセット回路は、 第 1の電圧と第 1の電 圧より高い第 2の電圧を検知し、 第 1の信号を出力する電圧検知回路を有し、 電 源電圧が上昇するときには第 1の信号は第 2の で遷移し、 ®ϋ電圧が低下す るときには第 1の信号は第 1の電圧で遷移し、 電源電圧が第 1の信号の遷移電圧 以下のとき新たな動作シーケンスを禁止することパワーオン ·オフリセット回路 である。
請求項 1 6の発明のパワーオン ·オフリセット回路は、 第 1の電圧と第 1の電 圧より高い第 2の電圧を検知し、 第 1の信号を出力する第 1の電圧検知回路と、 前記第 1の電圧より低い第 3の電圧を検知し、 第 2の信号を出力する第 2電圧検 知回路とを有し、 電圧が上昇するときには第 1の信号は第 2の電圧で遷移し、 電圧が低下するときには第 1の信号は第 1の電圧で遷移し、 電源電圧が第 1 の信号の遷移電圧以下のとき新たな動作シーケンスを禁止し、 電源電圧が前記第
3の電圧以下であるとき即時動作停止するパワーオン 'オフリセット回路である。 請求項 1 7の発明のパワーオン 'オフリセット回路は、 第 1の電圧と第 1の電 圧より高い第 2の電圧を検知し、 第 1の信号を出力する第 1の電圧検知回路と、 前記第 1の電圧より低い第 3の電圧を検知し、 第 2の信号を出力する第 2電圧検 知回路とを有し、 mas電圧が上昇するときには第 1の信号は第 2の電圧で遷移し、 電圧が低下するときには第 1の信号は第 1の電圧で遷移し、 電源電圧が第 1 の信号の遷移電圧から前記第 3の電圧に低下する時間が、 所定の動作シーケンス 終了時間よりも長い.ことパワーオン ·オフリセット回路である。
請求項 1 8の発明の半導体装置は、 請求項 9記載のパワーオン 'オフリセット 回路と不揮発性メモリを有し、 電源電圧が請求項 9記載の第 1の電圧以下のとき 不揮発性メモリの動作をしない半導体装置である。
請求項 1 9の発明の半導体装置は、 請求項 1 2記載のパワーオン ·オフリセッ ト回路と不揮発性メモリを有し、 電圧が請求項 1 2記載の第 2の電圧以下の とき不揮発性メモリの動作をしない半導体装置である。
請求項 2 0の発明の半導体装置は、 請求項 1 5記載のパワーオン 'オフリセッ ト回路と不揮発性メモリを有し、 mm電圧が請求項 1 5記載の第 1の信号の遷移 電圧以下または第 3の電圧以下のとき不揮発性メモリの動作をしない半導体装置 である。
請求項 2 1の発明の半導体装置は、 請求項 1 6記載のパワーオン ·オフリセッ ト回路と不揮発性メモリを有し、 電圧が請求項 1 2記載の第 1の信号の遷移 電圧以下または第 3の電圧以下のとき不揮発性メモリの動作をしない半導体装置 である。
本発明の請求項 1〜 8および 1 4記載の発明は、 電圧検知回路であって、 消費 電流のピークが抑えられるとともに、 安定した SEE検知信号が得られる。 さらに、 masオン時の低電圧でも安定した電圧検知信号が得られるという効果がある。 本発明の請求項 9、 1 2、 1 3記載の発明は、 パワーオン時には誤って新たな 動作シーケンスが始まることがなく、 パワーオフ時には、 動作中のシーケンスを 正常に終了させることができるパワーオン ·オフリセットであるという効果があ る。
本発明の請求項 1 5、 1 6、 1 7記載の発明は、 パワーオン'オフリセット電 圧に電圧ヒステリシ を持たせることにより、 電圧の変動に対して安定動作 するという効果がある。
本発明の請求項 1 8、 1 9、 2 0、 2 1記載の発明は、 パワーオン'オフリセ ット電圧に電圧ヒステリシスを持たせることにより、 ¾¾Ε電圧の変動に対して安 定動作し、 この信号を用いて制御された不揮発性メモリの誤動作を防止するとい う効果がある。 図面の簡単な説明
第 1図は本発明の第 1実施例としての電圧検知回路の構成を示す図である。 第 2図は本発明の第 1 ^例の電源電圧と出力電圧信号との関係を示す図であ る。
第 3図は本発明の第 1実施例の mm電圧と消費電流との関係を示す図である。 第 4図は本発明の第 2実施例としての電圧検知回路の構成を示す図である。 第 5図は本発明の第 3実施例としての電圧検知回路の構成を示す図である。 第 6図は本発明の第 3実施例の電源投入時の出力信号波形を示す図である。 第 7図は本発明の第 4実施例としての電圧検知回路の構成を示す図である。 第 8図は本発明の第 4実施例の mi 電圧と出力電圧信号との関係を示す図であ - - る。
第 9図は本発明の第 5実施例としてのパワーオン 'オフリセット回路の構成を 示す図である。
第 1 0図は本発明の第 5実施例としてのパワーオン 'オフリセット回路の構成 を示す図である。
第 1 1図は本発明の第 5実施例としてのパワーオン'オフリセット回路の構成 を示す図である。 ,
第 1 2図は本発明の第 5実施例としてのパワーオン.オフリセット回路の動作 タイミングを説明するための図である。
第 1 3図は本発明の第 6実施例としてのパワーオン 'オフリセット回路の構成 を示す図である。
第 1 4図は本発明の第 6実施例の動作タイミングを説明するための図である。 第 1 5図は本発明の第 6実施例の動作タイミングを説明するための図である。 第 1 6図は本発明の第 7実施例としてのパワーオン ·オフリセット回路の構成 を示す図である。
第 1 7図は本発明の第 8実施例としてのパワーオン'オフリセット回路の構成 を示す図である。
第 1 8図は本発明の第 8実施例としてのパワーオン 'オフリセット回路の動作 タイミングを説明するための図である。
第 1 9図は本発明の第 9実施例としてのパワーオン'オフリセット回路の構成 を示す図である。
第 2 0図は本発明の第 9実施例としてのパワーオン 'オフリセット回路の動作 タイミングを説明するための図である。 - 第 21図は本発明の第 10実施例のパワーオン 'オフリセット回路で制御され る不揮発性強誘電体メモリを有した半導体装置の強誘電体メモリ部の回路構成図 である。 である。
第 22図は本発明の第 10実施例の強誘電体メモリ部の動作タイミング図であ る。
第 23図は従来の電圧検知回路の構成を示す図である。
第 24図は従来の電圧検知回路の電源電圧と出力電圧信号との関係を示す図で ある。
第 25図は従来の電圧検知回路の電源電圧と消費電流との関係を示す図である。
(符号の説明)
Qp l l〜Qp64 Pチャネル型 MO Sトランジスタ
Qnl l〜Qn62 Nチャネル型 MO Sトランジスタ
VDD 電源電圧
VS S 接地電圧
11〜 31 否定回路
N11〜N64 ノード
VDT10〜VDT60 電圧検知信号
VOUT10〜VOUT60 出力電圧信号
I nl O〜I n60 消費電流
BL、 ZBL ビット線およびその信号
WL0〜WL255 ワード線およびその信号
CP0〜CP255 セルプレート電極およびその信号
BP ビット線プリチャージ制御信号 - -
SAE センスアンプ制御信号 発明を実施するための最良の形態
以下、 本発明の実施例について説明する。
(第 1実施例)
図 1は、 本発明 (請求項 1、 2、 3に対応する) の第 1実施例としての電圧検 知回路の構成を示す図、 図 2はその電源電圧と出力電圧信号との関係を示す図、 図 3は 電圧と消費電流との関係を示す図である。
まず、 本実施例の構成について説明する。 図 1において、 Qp l l〜Qp l 6 は Pチャネル型 MOSトランジスタ、 Qnl l, Q n 12は Nチャネル型 MO S トランジスタ、 11, 12は否定回路である。
Pチャネル型 MOSトランジスタ Qp 11のソースが電源電圧 VDD、 ゲート とドレインがノード Nl 1にそれぞれ接続されている。 Pチャネル SMOSトラ ンジスタ Qp 12のソースが電源電圧 VDD、 ゲートがノード N 11、 ドレイン がノード N13にそれぞ; 続されている。 ノード Nl 1と同 N12との間に P チャネル型 MO Sトランジスタ Qp l 4, Q 15が直列に接続され、 ノ一ド N 12と接地電圧 V との間に Nチャネル型 MO Sトランジスタ Q ni lが接続 されている。 Pチャネル型 MOSトランジスタ Qp 14, Qp 15の直列接続体、 および Nチャネル型 MO トランジスタ Q ni lはそれぞ t¾抗体としての働き をする。 ノード N13と接地電圧 VSSとの間に、 ノード N12を入力端とし、 ノード N15を出力端とする否定回路 11が接続されている。 この否定回路 11 は、 Pチヤネノレ型 MOSトランジスタ Qp 13と Nチヤネノレ型 MOSトランジス タ Qn 12とを縦属接続して構成したものである。 否定回路 12の入力端はノー ー 丄 ό一 ド Nl 5に接続され、 その出力端に信号 VOUT10が得られる。 ノード N15 と mm電圧 VDDとの間には、 ゲートが信号 νουτι 0が供給される pチヤネ ル型 MOSトランジスタ Qp 16が接続されている。
本実施例は、 図 2に示すように、 信号 VOUT10の出力が、 電源電圧 VDD が約 3.5 V未満であるときには論理電圧 "L" となり、 それが約 3.5V以上で あるときには論理電圧 "H" となる動作をするように設計されている。
また、 本実施例の消費電流は、 図 3に示すように、 電源電圧 00が約3.5 Vであるとき、 第 2のノード N12の電位が接地電圧 VSSと第 3のノード N1 3の電圧との中間の電位となるため、 Pチャネル型 MOSトランジスタ Qp 13 と Nチャネル型 MOSトランジスタ Qn 12とが共にオンした状態、 すなわち第 1の否定回路 11が一時的に短絡した状態となって、 電流値がもっとも大きくな るが、 Pチャネル型 MOSトランジスタ Qp 12により電流値が抑えられるため、 このトランジスタ Qnl 2を流れる消費電流 I nl 0はピーク 0.05μΑと な る。 S ^電圧 VDDが約 3.5V以外のときにも、 消費電流 I η 10は 0.1 /i A 以下となる。
ここで、 Pチャネル型 MOSトランジスタ Qp 12の電流値が Pチャネル型 M OSトランジスタ Qp 11に流れる電流値と同程度になるため、 その抵抗値を大 きくすることで、 Pチャネル型 MOSトランジスタ Qp 11, Qp 12に流れる 電流を少なくできる。
また、 Pチャネル型 MOSトランジスタ Qp 12の駆動能力を Pチャネル型 M OSトランジスタ Qp 11の駆動能力以下とすることにより、 Pチヤネノレ型 MO Sトランジスタ Qp 12の消費電流 I p 10をさらに少なくすることができる。 このように、 本実施例では、 動作電源電圧範囲內でいかなる電圧でも消費電流 を 0.1 A以下とすることができる。
また、 Pチヤネノレ型 MOSトランジスタ Qp 16によりノード N15をラッチ 状態とし、 信号 VOUT 10を安定に保つ。
(第 2実施例)
図 4は本発明 (請求項 4に対応する) の第 2実施例としての電圧検知回路の構 成を示す図である。
本実施例は、 第 1の実施例に対して、 それよりも低い電圧を検知することがで きる電圧検知回路 41を付加し、 さらに、 電圧検知回路 41の低電圧で論理電圧 の出力信号 VDT20が Pチャネル型 MOSトランジスタ Qp 17のゲー トに供給され、 力 1つこのトランジスタ Qp 17がノード N15と電源 SJEVDD との間に接続された構成である。 図 2の 1.5 V付近以下では図 1の回路は不安定 となるので、 それを防ぐことが出来る。
その結果、 この回路によれば、 それ自体の検知電圧よりも低い電圧を検知する 電圧検知回路の信号によって、 低電圧での特にパワーオン時の安定動作が実現で さる。
(第 3 例)
図 5は本発明 (請求項 5、 6に対応する) の第 3実施例としての電圧検知回路 の構成を示す図、 図 6はその電源投入時の出力信号波形図である。
本実施例は第 2実施例における電圧検知回路 41などに用いることができる。
Pチャネル型 MOSトランジスタ 21〜0 24のソース、 同 Qp 21の ゲートおよび同 Qp 24のゲートが電源電圧 VDDに接続され、 同 Qp 21〜Q 22のドレインおよび同 Qp 22〜Qp 23のゲートがノード N21に接続さ れ、 同 Qp 23〜Qp 24のドレインがノード N23に接続されている。 Pチヤ ー 丄 i) 一 ネル MOSトランジスタ Qp 25のソースがノード N21に接続され、 同 Qp 25のゲ一トおよびドレインがノード N 22に接続され、 ノード N 22と接地電 圧 V S Sとの間に抵抗 R 21が接続されている。 ¾ 電圧 VDDとノード N 23 との間に、 抵抗 R 22を介してゲートがノード N 23である Nチャネル型 MOS トランジスタ Q n 21が接続され、 ノード N 23と接地電圧 V S Sとの間に容量 C21が接続され、 ノード N23とノード N24との間に、 ゲートが接地電圧 V SSである Pチャネル型 MOSトランジスタ Qp 26と、 ゲートがノード N 26 である Pチャネル型 MOSトランジスタ Qp 27とが並列に接続されている。 そ して、 ノード N24を入力としノード N26を出力とする否定回路 21と、 ノー ド N 26を入力とし信号 VDT 20を出力とする否定回路 22とが! ^接続され、 ノード N 24と接地電圧 VS Sとの間に容量 C 22が接続されている。 Nチヤネ ノレ MOSトランジスタ Qn22のゲートとソースがノード N24に、 またドレ インが N 25に接続されている。 Pチャネル型 MOSトランジスタ Qp 28のソ ースがノード N 24に、 ゲートとドレインがノード N 25に接続され、 ノード N 25と 電圧 VDDとの間には抵抗 R23が接続されている。
この回路は、 容量 C 21が接続されたノード N 23には電流が抑制された Pチ ャネル型 MOSトランジスタ Qp 23を介して電荷が供給され、 ノード N23を 電圧がゆつくり上昇する電圧源とみなすことができる。 このノード N 23からの 供給電荷で決まるノード N 24の電圧を否定回路 21が受けてノード N 26へ出 力し、 それをノード 22が受けて、 電圧検知信号 VDT 20を出力する。 ちなみ に、 否定回路 21のスイッチング電圧レベルは高く設定してある。 上記のノード N 23の電圧がゆっくり上昇するので、 図 6のように、 電源電圧 VDDをオンし て時間 t 1後に ¾JE検知信号 VDT 20が上昇する。 時間 t 1は容量 C 21と P チャネル型 MOSトランジスタ Qp 23の電流能力および容量 C 22と Pチヤネ ル型 MOSトランジスタ Qp 26の電流能力で決まる。 この回路の特徴は、 電源 電圧オン時には電圧検知信号 VDT 20が出力されるが、 電源電圧オフ時には出 力されない。
本実施例を電圧検知回路またはパワーオンリセット回路として第 2実施例の電 圧検知回路 41に用いることによって、 パワーオン時の安定動作を実現できる。
(第 4実施例) .
図 7は本発明 (請求項 7、 8に対応するの第 4実施例としての電圧検知回路の 構成を示す図、 図 8はその電源電圧と出力電圧信号との関係を示す図である。 まず、 本纖例の構成について説明する。 図 7において、 Qp l l, Qp 12 は Pチャネル型 MOSトランジスタ、 Qnl l~Qn 13は Nチャネル型 MOS トランジスタ、 31は否定回路である。
Pチャネル型 MOSトランジスタ Qp 11のソースが電源電圧 VDDに、 グー トとドレインがノード Nl 1にそれぞれ接続されている。 Pチャネル MMOSト ランジスタ Qp 12のソースが as電圧 VDDに、 ゲートがノード Ni lに、 ド レインがノード N13にそれぞれ接続されている。 ノード Nl 1とノード N12 との間に Nチャネル型 MOSトランジスタ Qn 12が接続され、 ノード N12と 接地電圧 VSSとの間に Nチャネル型 MOSトランジスタ Qnl 1が接続され、 ノード N13と接地電圧 VSSとの間にノード N12がゲートである Nチヤネノレ 型 MOSトランジスタ Qn 13が接続されている。 否定回路 31の入力端がノー ド N13に接続され、 その出力端に信号 VOUT 30が得られる。
本実施例は、 図 8に示すように、 m¾S電圧 VDDが約 2.0V未満であるとき 動作信号 VOUT 30の出力が論理電圧 "L" であり、 電源電圧 VDDが約 2. 一 17 一
0V以上であるときにはそれが論理電圧 "H" となる動作をする。
本実施例によれば、 電源電圧 VDDから Pチャネル MMOSトランジスタ Qp 11のしきい値だけ低い電圧を、 Nチャネル型 MOSトランジスタ Qnl 2と同 Qn 11とで分割し、 この分割電圧がノード N12に出力される。 このノード N 12の電圧によって Nチヤネノレ型 MOSトランジスタ Qn 13がオン ·オフして、 信号 VOUT30が決定される。 すなわち、 Nチャネル型 MOSトランジスタ Q n 12と同 Qn 11,とで電圧分割することによって、 低電圧の検知信号を得るこ とができる。 ここで、 Nチヤネノレ型 MOSトランジスタ Qn 12, Qn l 1によ る電圧分割比を異ならせるか、 またはそれらにさらに他の Nチャネル型 MOSト ランジスタを |«接続してノード N 12とは異なる分割電圧が得られるノードを 新たに設けることによって、 上述とは異なる電圧検知信号を得ることができる。 また、 Nチャネル型 MOSトランジスタ Qn 12の能力はヒューズなどによって 切り換えることができる回路構成としてもよい。 本実施例は消費電力が少なくて すむ。 又、 第 2実施例の回路 41にも適用可能である。
(第 5実施例)
図 9、 図 10、 図 11は本発明 (請求項 9に対応する) の第 5実施例としての パワーオン'オフリセット回路の構成を示す図、 図 12は、 その動作タイミング を示す図である。 VDDは 電圧、 CLKは基準クロック、 CEは制御信号、 I CEは内部制御信号である。
本^例は、 電圧検号 VD知信 T 21を出力する電圧検知回路 43と、 基準ク ロック CLKを出力する基準クロック発生回路 47と、 電圧検号 VD知信 T21 と制御信号 CLKから制御信号 CEを出力する制御信号 CE発生回路 48と、 制 御信号 CEから内部制御信号 I CEを出力する内部制御信号 I CE発生回路 49 - - からなり、 電圧検知信号 VD T 2 1で検知される電圧以下のときに新たな動作シ 一ケンスを禁止するとともに、 すでに動作しているシーケンスは最後まで動作す るものである。
親電圧が電圧検知信号 VDT 2 1で検知される電圧以上であるときには、 制 御信号 C Eは基準クロック C L Kと逆相の信号で、 電圧が電圧検知信号 VD T 2 1で検知される電圧以下であるときには、 制御信号 C Eは論理電圧 "H"で ある。 図 1 1が、 すでに動作しているシーケンスを最後まで動作させるための回 路で、 制御信号 C Eの信号立ち下がりエツジからある遅延時間をもったパルス信 号を発生させるものである。
電圧が電圧検知信号 VD T 2 1で検知される電圧以上のとき、 内部制御信 号 I C Eが外部入力制御信号 C Eと同じ波形の信号となる。 時刻 t 6で電源電圧 が電圧検知信号 VD T 2 1よりも低くなると、 外部入力制御信号 C Eが論理電圧 "H" となっても、 内部制御信号 I C Eは論理電圧 "じ を保ち、 時刻 t 6で論 理電圧 "H" となる。 また、 時刻 t 8で外部入力制御信号 C Eが論理電圧 "L" となっても、 内部制御信号 I C Eは論理電圧 "H" を保持する。
この動作のパワーオン ·オフリセットによると、 電源が低下してきた場合にも、 動作開始中のシーケンスを完全に終了することができ、 新たな動作シーケンスを 禁止するため、 たとえばデータの再書き込みが必要な不揮発性メモリである強誘 電体メモリなどへの利用が有効である。
(第 6織例)
図 1 3は本発明 (請求項 1 2、 1 3に対応する) の第 6 ¾½例としてのパワー オン ·オフリセット回路の構成を示す図、 図 1 4および図 1 5はその動作タイミ ング図である。 本実施例は、 電圧検知信号 VDT30, VDT 31を出力する二つの電圧検知 回路 42, 43を有する。 電圧検知信号 VDT30は同 VDT31より低い電圧 を検知するための信号である。 電圧検知信号 VDT31で検知される電圧以下の とき新たな動作シーケンスを禁止し (図 15の時間 t 10) 、 電圧検知信号 VD T 30で検知される電圧以下のとき即時動作停止する (図 14の時間 t 13) 。 また、 通常、 電源電圧が電圧検知信号 VDT 31から同 VDT 30に低下するま でに、 動作中のシーケンスを終了できるだけの時間を確保できるように設定する。 この回路は、 電圧検知回路 42の電圧検知信号 VDT 30で WL (ヮード線信 号) ' CP (セルプレート線信号) · SAE (センスアンブイネーブル信号) 制 御回路 44を制御し、 電圧検知回路 43の電圧検知信号 VDT 31で ICE (内 部制御信号) 制御回路 45を制御する構成である。
図 14において、 VDDは電源電圧、 CEは外部入力制御信号、 ICEは内部 制御信号、 WLはワード線信号である。 電源電圧 VDDが電圧検知信号 VDT3 1で検知される電圧以上であるときには、 内部制御信号 I CEが外部入力制御信 号 CEと同じ動作をする。 時刻 t 11で 電圧 VDDが電圧検知信号 VDT 3 1に等しくなると、 外部入力制御信号 CEが論理電圧 "L"状態でも、 S2I電圧 VDDが電圧検知信号 VDT30以下になると内部制御信号 I CEは時刻 t 13 まで論理電圧 "L" を保ち、 その後論理電圧 となる。 また、 ma¾®EVD Dが miE検知信号 V DT30以下であるときには、 ヮード線信号 WLは即時動作 停止するため、 たとえば電源投入時などにはヮード線信号 WLを確実に論理電圧
" L " とし、 強誘電体メモリなどではメモリセルの誤動作を防止できる。
(第 7実施例)
図 16は本発明 (請求項 14に対応する) の第 7実施例としてのパワーオン- オフリセット回路の構成を示す図である。 本実施例は、 電圧検知信号 VDT20 を出力する第 3実施例のパワーオンリセット回路 41、 電圧検知信号 VD T 30 および VDT 31をそれぞれ出力する第 4実施例で示した電圧検知回路 42, 4 3、 電圧検知信号 VDT 10を出力する第 1実施例で示した電圧検知回路 40、 3V/5V版切り換え回路 46、 WL (ワード iHm号) ' CP (セルプレート線 信号) · SAE (センスアンプイネ一ブル信号) 制御回路 44、 および、 I CE (内部制御信号) 制御回路 45で構成される。 制御回路 44は電圧検知信号 VD T20と同 VDT30との、 たとえば論理和信号で制御され、 3V/5V版切り 換え回路 46で電圧検知信号 VDT 31と同 VDT 10のいずれかが選択される。 たとえば、 3 V版デバイスでは電圧検知信号 VDT 31が選択され、 5V版デバ イスでは電圧検知信号 VDT10が選択される。 この選択された信号と電圧検知 信号 VDT20との論理和信号で制御回路 45が制御される。 本実施例は上述し た実施例の応用例で、 3 V版と 5 V版のデバイスが共用でき、 強誘電体メモリな どの不揮発性メモリのパワーオン ·オフ時のデータの完全保護が可能である。
(第 8実施例)
第 8実施例は第 5実施例の電圧検知信号 VD T 21に電圧ヒステリシスを持た せた構成である。 図 17は本発明 (請求項 15に対応する) の第 8 例の回路 構成図、 図 18はパワーオン'オフリセット回路の動作タイミングを示す図であ る。 VDDは電源電圧、 CEは外部入力制御信号、 I CEは内部制御信号である。 本実施例は、 検知電圧 VDT30、 VDT 31を検知する電圧検知回路を有し、 電圧検知信号 DT30、 DT31で検知され、 これらの信号から電源電圧のヒス テリシスを持った電圧検知信号 DT 21を発生する (図 17の回路 54) 。 この 電圧検知信号 DT 21が論理電圧 "H" であるとき、 新たな動作シーケンスを禁 止する。
内部制御信号 I C Eは、 電圧検知信号 DT 2 1と外部入力制御信号 C Eの論理 和の信号に対して、 その信号が論理電圧 "L" に遷移する時間からある一定の時 間幅を有した信号としている。 つまり、 外部入力制御信号 C Eが論理電圧 となっても、 内部制御信号 I C Eは一定時間論理電圧 を保つ様に構成され ている。
この動作のパワーオン 'オフリセットによると、 電源が低下してきた場合にも、 動作開始中のシーケンスを完全に終了することができ、 新たな動作シーケンスを 禁止するため、 たとえばデータの再書き込みが必要な不揮発性メモリである強誘 電体メモリなどへの利用が有効である。 また、 2つの電圧検知信号 D T 3 0、 D T 3 1によって電源電圧ヒステリシスを有する電圧検知信号 DT 2 1を出力する ため、 電源電圧の変動に対しても安定した電圧検知信号を出力し、 低電圧での不 揮発性メモリのデータ破壊を防止することができる。
(第 9実施例)
図 1 9は本発明 (請求項 1 6、 1 7に対応する) の第 9 ^例としてのパワー オン ·オフリセット回路の構成図、 図 2 0がその動作タイミング図である。 本実 施例は、 第 6実施例の電圧検知信号 DT 3 0、 DT 3 1のほかに更に低い電源電 圧を検知する電圧検知信号 DT 3 2を有し、 電圧検知信号 DT 3 0、 DT 3 1で mas電圧ヒステリシスを制御する。 また、 電圧検知信号 D T 3 2はパワーオンリ セット回路 4 1と電圧検知回路 4 2の例えば論理和を生成する 検知信号選択 回路 5 6から出力され、 パワーオンリセット回路 4 1の «31投入時の時間待ちリ セット信号と、 低電圧用の電圧検知回路 4 2の検知信号との両信号で制御される 構成である。 内部制御信号 ICEは、 電源電圧が上昇するときは VDT 31で制御され、 電 源電圧が低下するときは VDT 30で制御される。 この電圧検知信号 VDT 30、 VDT 31によって新たな動作シーケンスを禁止し、 電圧検知信号 VDT 32で 検知される電圧以下のとき即時動作停止する。 また、 通常、 電源電圧が電圧検知 信号 VDT30から VDT32に低下するまでに、 動作中のシーケンスを終了で きるだけの時間を確保できるように設定する。 電源電圧が VDT 32以下である ときには、 ワード線信号 WLは即時動作停止するため、 たとえば電源投入時など にはワード線信号 WLを確実に論理電圧 "L" とし、 強誘電体メモリなどではメ モリセルの誤動作を防止できる。
(第 10実施例)
第 10の実施例は、 上記実施例の電圧検知回路やパワーオン 'オフリセット回 路と不揮発性強誘電体メモリとを有した例えば RF— I Dタグ半導体装置におけ る、 強誘電体メモリ部の実施例である。
本 例では 1ビットのメモリセルは 2つの強誘電体キャパシタと 2つのトラ ンジスタで構成され、 それぞれの強誘電体キャパシタには相補データが記億され るものである。 まず、 図 21が全体回路構成図で、 図 22が動作タイミング図で ある。 WL0〜WL255はワード線、 BL、 /BLはビット線、 CP0〜CP 255はセルブレート電極、 B Pはビット線プリチヤ一ジ制御信号、 S A Eはセ ンスアンプ制御信号、 VSSは接地電圧、 S Aはセンスアンプ、 C0〜C255、 C0B〜C255Bはメモリセルキャパシタ、 QnO〜Qn255、 QnOB〜 Qn255B、 Q n B P 0〜Q n B P 2は Nチャネル型 MO Sトランジスタであ る。 図 21の回路構成図について簡単に説明する。 センスアンプ SAにビット線 BL、 ZBLが接続されている。 センスアンプ S Aはセンスアンプ制御信号 S A Eで制御される。 メモリセルキャパシタ COの第 1の電極は、 ゲート電極がヮー ド線 WL 0に接続されたメモリセルトランジスタ Q n 0を介してビット線 B Lに 接続され、 第 2の電極はセルプレート電極 CP 0に接続されている。 このメモリ セルキャパシタ C 0と対をなすメモリセルキャパシタ C 0 Bの第 1の電極は、 ゲ 一ト電極がヮ一ド線 W L 0に接続されたメモリセルトランジスタ Q n 0 Bを介し てビット線 ZBLに接続され、 第 2の電極はセルプレート電極 CP 0に接続され ている。 他のメモリセルキャパシタ C 1~C 255及び C 1 B〜C255Bの接 続は、 メモリセルキャパシタ CO及び COBと同様である。 また、 ビット線 BL と/ BLは Nチャネル型 MOSトランジスタ QnBP 2で接続され、 ビット線 B Lと接地電圧 VSS、 ビット線 ZBLと接地電圧 VSSはそれぞれ Nチャネル型 MOSトランジスタ QnBP 0、 QnBP 1で接続され、 Nチャネル型 MOSト ランジスタ QnBP0〜QnBP2のゲート電極はビット線プリチャージ制御信 号 BPに接続されている。 この強誘電体メモリ装置の回路の動作について、 図 2 2の動作タイミング図を参照しながら説明する。 まず、 メモリセルのデータを読 み出すために、 ビット線プリチャージ制御信号 BPを論理電圧 ' Ή" とすること によって、 ビット線 BL、 /BLを論理電圧 " L" とする。 また、 ワード線 WL 0〜WL255、 セルプレート電極 CPを論理電圧 "L"である接地電圧 VSS とする。 次に、 ビット線プリチャージ制御信号 BPを論理電圧 " L" とすること によって、 ビット線 BL、 /BLをフローティング状態とする。 次に、 ワード線 WL0とセルプレート電極 CPを論理電圧 ' Ή" とし、 メモリセルキャパシタ C 0及び COBのデータをビット線 BL及びビット線 ZBLに読み出す。 次に、 セ ルプレート電極 CPを論理電圧 " L" とし、 メモリセルキャパシタ CO及び CO Bのデータを再書き込みする。 次に、 ワード線 WL0を論理電圧 "L" とし、 メ モリセルキャパシタ C O及び C O Bに電圧がかからないようにする。 次に、 セン スアンプ制御信号 S AEを論理電圧 "L" とし、 センスアンプ S Aの動作を停止 させる。 次に、 ビット線プリチャージ制御信号 B Pを論理電圧 とすること によって、 ビッ十線 B L、 /B Lを論理電圧 "L" とし初期状態とする。
このように、 強誘電体メモリの制御に本発明の電圧検知回路やパワーオン ·ォ フリセット回路を用いることにより、 低電圧での強誘電体メモリのデータ破壊を 防止でき信頼性の高いデバィスとすることができる。 産業上の利用可能性
本発明の電圧検知回路によれば、 消費電流のピークが抑えられるとともに、 電 圧検知信号が安定する。
また、 本発明のパワーオン'オフリセットによれば、 パワーオン時には誤って 新たな動作シーケンスが始まることがなく、 パワーオフ時には、 動作中のシーケ ンスを正常に終了させることができる。
また、 本発明の半導体装置によれば、 不揮発性メモリの誤動作を防止できる。

Claims

請 求 の 範 囲
1 . ゲートおよびドレインが第 1のノードに接続された第 1の MO Sトラン ジスタと、 ゲートが前記第 1のノードに、 ドレインが第 3のノードにそれぞれ接 続された第 2の MO Sトランジスタと、 前記第 1のノードと第 2のノードとの間 に接続された第 1の抵抗体と、 第 2のノードと接地電圧端子との間に接続さ れた第 2の ¾ ^体と、 前記第 2のノードに入力端が接続され、 第 4のノードを出 力端とし、 前記第 3のノードと接地電圧端子との間に接続され第 1の否定回路と、 前記第 4のノードに入力端が接続され、 第 5のノードを出力端とする第 2の否定 回路とを有することを特徴とする電圧検知回路。
2 . ゲートおよびドレインが第 1のノードに接続された第 1の MO Sトラン ジスタと、 ゲートが前記第 1のノードに、 ドレインが第 3のノードにそれぞ; }τ¾ 続された第 2の MO Sトランジスタと、 前記第 1のノードと第 2のノードとの間 に接続された第 1の抵抗体と、 前記第 2のノードと接地電圧端子との間に接続さ れた第 2の抵抗体と、 前記第 2のノードに入力端が接続され、 第 4のノードを出 力端とし、 前記第 3のノードと接地電圧端子との間に接続され第 1の否定回路と、 前記第 4のノードに入力端が接続され、 第 5のノードを出力端とする第 2の否定 回路と、 接地電圧端子または ¾2S電圧端子と前記第 4のノードとの間に接続され、 ゲートが fiilB第 5のノ一ドに接続された第 3の MO Sトランジスタとを有するこ とを特徴とする電圧検知回路。
3 . 第 1, 第 2, 第 3の MO Sトランジスタが Pチャネル型 MO Sトランジ スタであって、 前記第 3の MO Sトランジスタのソースが電源電圧端子に接続さ れていることを特徴とする請求の範囲第 2項に記載の電圧検知回路。
4 . 第 1の を検知し、 第 1の信号を出力する第 1の電圧検知回路と、 前 記第 1の電圧より低い第 2の電圧を検知し、 第 2の信号を出力する第 2の電圧検 知回路とを備え、 前記第 1の電圧検知回路が、 ゲートおよびドレインが第 1のノ ードに接続された第 1の Pチャネル型 MO Sトランジスタと、 ゲ^-トが前記第 1 のノードに、 ドレインが第 3のノ一ドにそれぞ 続された第 2の Pチヤネノレ型 MO Sトランジスタと、 ttJlS第 1のノードと第 2のノードとの間に接続された第 1の抵抗体と、 ΙίίΙΕ第 2のノードと接地電圧との間に接続された第 2の抵抗体と、 前記第 3のノードと接地電圧端子との間に接続され、 前記第 2のノードを入力端 とし、 第 4のノードを出力端とする否定回路と、 接地電圧端子または ¾¾S電圧端 子と前記第 4のノードとの間に接続され、 前記第 2の電圧検知回路による前記第 2の信号がゲートに印加される第 3の MO Sトランジスタとを有することを特徴 とする電圧検知回路。
5 . 第 2電圧検知回路から出力される第 2の信号が mai投入時にのみ出力さ れる信号であることを特徴とする請求の範囲第 4項に記載の電圧検知回路。
6 . 第 2電圧検知回路から出力される第 2の信号が電源投入後一定時間出力 される信号であることを特徴とする請求の範囲第 4項に記載の電圧検知回路。
7 . ゲートおよびドレインが第 1のノードに接続された第 1の Pチャネル型 MO Sトランジスタと、 ゲートが前記第 1のノードに、 ドレインが第 3のノード にそれぞれ接続された第 2の Pチャネル型 MO Sトランジスタと、 前記第 1のノ 一ドと第 2のノードとの間に接続された第 1の抵抗体と、 前記第 2のノードと接 地電圧端子との間に接続された第 2の抵抗体と、 第 3のノードと接地電圧との間 に接続され、 ゲートが前記第 2のノードに接続された Nチャネル型 MO Sトラン ジスタと、 前記第 3のノードを入力とし、 第 4のノードを出力とする第 1の否定 回路とを有することを特徴とする ma検知回路。
8 . 第 1の抵抗体が Nチャネル型 MO Sトランジスタであることを特徴とす る請求の範囲第 7項に記載の電圧検知回路。
9 . 第 1の電圧を検知し、 第 1の信号を出力する第 1の電圧検知回路を有し、 電圧が第 1の電圧以下のとき、 動作中のシーケンスは継続させるとともに、 新たな動作シーケンスを禁止することを特徴とするパワーオン ·オフリセット回 路。
1 0 . 起動信号をうけて一連の動作シーケンスを実行する第 1の回路と、 第 1の電圧を検知し、 第 1の信号を出力する第 1の電圧検知回路を有し、 電源電圧 が第 1の電圧以下のとき前記第 1の回路における動作シーケンスの新たな開始を 禁止するパワーオン ·オフリセット回路とを有する半導体装置。
1 1 . 起動信号をうけて一連の動作シーケンスを実行する第 1の回路と、 第 1の電圧を検知し、 第 1の信号を出力する第 1の電圧検知回路を有し、 電源電圧 が第 1の電圧以下のとき既に実行開始されている前記動作シーケンスの完了まで 前記第 1の回路の停止を禁止するパワーオン ·オフリセット回路とを有する半導 体装置。
1 2 . 第 1の電圧を検知し、 第 1の信号を出力する第 1電圧検知回路と、 前 記第 1の電圧より低い第 2の電圧を検知し、 第 2の信号を出力する第 2電圧検知 回路とを有し、 ¾2S電圧が前記第 1の電圧以下であるとき新たな動作シーケンス を禁止し、 電圧が前記第 2の電圧以下であるとき即時動作停止することを特 徴とするパワーオン ·オフリセット回路。
1 3 . 第 1の電圧を検知し、 第 1の信号を出力する第 1電圧検知回路と、 前 記第 1の電圧より低い第 2の電圧を検知し、 第 2の信号を出力する第 2電圧検知 回路とを有し、 電源電圧が前記第 1の電圧から前記第 2の電圧に低下する時間が、 所定の動作シーケンス終了時間よりも長いことを特徴とするパワーオン ·オフリ セット回路。
1 4 . ( a ) 第 1の電圧を検知し、 第 1の信号を出力する回路であって、 ま た (b ) 電源投入時のみ前記第 1の信号を出力する回路であって、 (c ) 電源投 入後一定時間前記第 1の信号を出力する第 1電圧検知回路と、 第 2の電圧を検知 し、 第 2の信号を出力する第 2電圧検知回路と、 前記第 2の電圧より高い第 3の 電圧を検知し、 第 3の信号を出力する第 3電圧検知回路と、 前記第 3の電圧より 高い第 4の電圧を検知し、 第 4の信号を出力する第 4電圧検知回路と、 前記第 3 の信号および前記第 4の信号のうちのいずれ力—方の信号を選択し、 第 5の信号 を出力する信号選択回路と、 前記第 1の信号と WIS第 2の信号との論理和出力を 発生する第 1の制御回路と、 前記第 1の信号と ins第 5の信号との論理和出力を 発生する第 2の制御回路とを有することを特徴とする電圧検知回路。
1 5. 第 1の電圧と第 1の電圧より高い第 2の電圧を検知し、 第 1の信号を 出力する電圧検知回路を有し、 電源電圧が上昇するときには第 1の信号は第 2の 電圧で遷移し、 電圧が低下するときには第 1の信号は第 1の電圧で遷移し、 mas電圧が前記第 1の信号の遷移電圧以下の場合新たな動作シーケンスを禁止す ることを特徴とするパワーオン ·オフリセット回路。
1 6. 第 1の電圧と第 1の電圧より高い第 2の電圧を検知し、 第 1の信号を 出力する第 1の mE検知回路と、 前記第 1の電圧より低い第 3の電圧を検知し、 第 2の信号を出力する第 2電圧検知回路とを有し、 電源電圧が上昇するときには 第 1の信号は第 2の電圧で遷移し、 電源電圧が低下するときには第 1の信号は第 1の電圧で遷移し、 電源電圧が前記第 1の信号の遷移電圧以下の場合新たな動作 シーケンスを禁止し、 電源電圧が前記第 3の電圧以下の場合即時動作停止するこ とを特徴とするパワーオン ·オフリセット回路。
1 7. 第 1の電圧と第 1の電圧より高い第 2の電圧を検知し、 第 1の信号を 出力する第 1の電圧検知回路と、 前記第 1の電圧より低い第 3の電圧を検知し、 第 2の信号を出力する第 2電圧検知回路とを有し、 mm電圧が上昇するときには 第 1の信号は第 2の電圧で遷移し、 電源電圧が低下するときには第 1の信号は第 1の電圧で遷移し、 電源電圧が第 1の信号の遷移電圧から前記第 3の電圧に低下 する時間が、 所定の動作シーケンス終了時間よりも長いことを特徴とするパワー オン.オフリセット回路。
1 8 . 第 1の電圧を検知し、 第 1の信号を出力する第 1の電圧検知回路を有 し、 mas電圧が第 1の電圧以下のとき、 動作中のシーケンスは継続させるととも に、 新たな動作シーケンスを禁止するパワーオン'オフリセット回路と、 不揮発 性メモリとを有した半導体装置であって、
電圧が前記第 1の電圧以下のとき前記不揮発性メモリの動作をしないこと を特徴とする半導体装置。
1 9 . 第 1の電圧を検知し、 第 1の信号を出力する第 1電圧検知回路と、 前 記第 1の電圧より低い第 2の電圧を検知し、 第 2の信号を出力する第 2電圧検知 回路とを有し、 mm電圧が前記第 1の電圧以下であるとき新たな動作シーケンス を禁止し、 mm電圧が前記第 2の電圧以下であるとき即時動作停止することを特 徵とするパワーオン'オフリセット回路と、 不揮発性メモリとを有した半導体装 置であって、
¾2δΕΙΐが前記第 2の電圧以下のとき不揮発性メモリの動作をしないことを特 徴とする半導体装置。
2 0 . 第 1の電圧と第 1の電圧より高い第 2の電圧を検知し、 第 1の信号を 出力する電圧検知回路を有し、 電源電圧が上昇するときには第 1の信号は第 2の 電圧で遷移し、 mm電圧が低下するときには第 1の信号は第 1の電圧で遷移し、 mas電圧が前記第 1の信号の遷移電圧以下の場合新たな動作シーケンスを禁止す ることを特徴とするパワーオン ·オフリセット回路と、 不揮発性メモリとを有し た半導体装置であって、
m 電圧が前記第 1の信号の遷移電圧以下または第 3の電圧以下のとき不揮発 性メモリの動作をしないことを特徴とする半導体装置。
2 1. 第 1の電圧と第 1の電圧より高い第 2の電圧を検知し、 第 1の信号を 出力する第 1の電圧検知回路と、 前記第 1の電圧より低い第 3の電圧を検知し、 第 2の信号を出力する第 2電圧検知回路とを有し、 mm電圧が上昇するときには 第 1の信号は第 2の電圧で遷移し、 電圧が低下するときには第 1の信号は第
1の電圧で遷移し、 電源電圧が前記第 1の信号の遷移電圧以下の場合新たな動作 シーケンスを禁止し、 電源電圧が前記第 3の電圧以下の場合即時動作停止するこ とを特徴とするパワーオン'オフリセット回路と、 不揮発性メモリとを有した半 導体装置であって、
電圧が前記第 1の信号の遷移電圧以下または第 3の電圧以下のとき不揮発 性メモリの動作をしないことを特徴とする半導体装置。
PCT/JP1996/002295 1995-08-21 1996-08-14 Systeme de detection de tension, circuit de remise a zero/remise en service d'un circuit et dispositif semi-conducteur WO1997007408A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/817,746 US5864247A (en) 1995-08-21 1996-08-14 Voltage detection circuit, power-on/off reset circuit, and semiconductor device
EP96926643A EP0787993A4 (en) 1995-08-21 1996-08-14 VOLTAGE DETECTION SYSTEM, RESET / RESET CIRCUIT, AND SEMICONDUCTOR DEVICE
US09/803,775 US6538482B2 (en) 1995-08-21 2001-03-12 Voltage detection circuit, power-on/off reset circuit, and semiconductor device
US10/370,395 US6822493B2 (en) 1995-08-21 2003-02-20 Voltage detection circuit, power-on/off reset circuit, and semiconductor device
US10/797,253 US6882193B2 (en) 1995-08-21 2004-03-10 Voltage detection circuit, power-on/off reset circuit, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/211942 1995-08-21
JP21194295 1995-08-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/198,726 Division US6246624B1 (en) 1995-08-21 1998-11-24 Voltage detection circuit power-on/off reset circuit and semiconductor device

Publications (1)

Publication Number Publication Date
WO1997007408A1 true WO1997007408A1 (fr) 1997-02-27

Family

ID=16614251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002295 WO1997007408A1 (fr) 1995-08-21 1996-08-14 Systeme de detection de tension, circuit de remise a zero/remise en service d'un circuit et dispositif semi-conducteur

Country Status (6)

Country Link
US (5) US5864247A (ja)
EP (1) EP0787993A4 (ja)
KR (1) KR100421523B1 (ja)
CN (1) CN1092335C (ja)
TW (1) TW335548B (ja)
WO (1) WO1997007408A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887801A2 (en) * 1997-06-27 1998-12-30 Siemens Aktiengesellschaft Apparatus for controlling circuit response during power-up
JPH11326398A (ja) * 1998-05-08 1999-11-26 Matsushita Electron Corp 電圧検知回路
US6373744B1 (en) 2000-07-26 2002-04-16 Matsushita Electric Industrial Co., Ltd. Ferroelectric memory
JP2003520965A (ja) * 2000-01-19 2003-07-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電圧レベル検出回路
JP2010080047A (ja) * 2003-12-30 2010-04-08 Hynix Semiconductor Inc 半導体メモリ素子のパワーアップ回路

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092335C (zh) 1995-08-21 2002-10-09 松下电器产业株式会社 电压检测电路、电源通-断复位电路及半导体装置
JP3288249B2 (ja) * 1997-03-31 2002-06-04 東芝マイクロエレクトロニクス株式会社 パワーオンリセット回路
US7102421B1 (en) * 1998-04-20 2006-09-05 Vanguard International Semiconductor Corporation Dynamically adjustable on-chip supply voltage generation
US6208542B1 (en) * 1998-06-30 2001-03-27 Sandisk Corporation Techniques for storing digital data in an analog or multilevel memory
US6084454A (en) * 1998-08-26 2000-07-04 Advanced Micro Devices, Inc. Start-up circuit for write selects and equilibrates
SE9803960L (sv) 1998-11-19 2000-05-20 Ericsson Telefon Ab L M Mobiltelefon
KR20010014722A (ko) 1999-04-14 2001-02-26 모리시타 요이찌 전압 검출 회로
US6236250B1 (en) * 1999-11-10 2001-05-22 Intel Corporation Circuit for independent power-up sequencing of a multi-voltage chip
JP3885922B2 (ja) * 2000-03-07 2007-02-28 株式会社ルネサステクノロジ 半導体チップとそれを用いたicカード及びrfid
JP4454830B2 (ja) * 2000-11-06 2010-04-21 富士通マイクロエレクトロニクス株式会社 シーケンス回路
JP4095778B2 (ja) * 2001-08-24 2008-06-04 株式会社東芝 半導体装置および電源電圧制御方法
JP2004062924A (ja) 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその初期化方法
US6812751B2 (en) * 2002-10-15 2004-11-02 Hpl Technologies, Inc. Low standby current power-on reset circuit
US6956409B2 (en) * 2003-08-28 2005-10-18 Infineon Technologies Ag Reference voltage detector for power-on sequence in a memory
US7208987B2 (en) * 2003-12-18 2007-04-24 Stmicroelectronics, Inc. Reset initialization
CN100403034C (zh) * 2003-12-30 2008-07-16 上海贝岭股份有限公司 低功耗低温漂与工艺无关的电压检测电路
US7015732B1 (en) 2004-01-05 2006-03-21 National Semiconductor Corporation Power-on reset circuit with low standby current and self-adaptive reset pulse width
JP4504108B2 (ja) * 2004-06-15 2010-07-14 富士通セミコンダクター株式会社 リセット回路
US7378886B2 (en) * 2004-10-14 2008-05-27 Fairchild Semiconductor Voltage detection circuit with hysteresis for low power, portable products
JP4528254B2 (ja) * 2005-11-25 2010-08-18 富士通セミコンダクター株式会社 電源電圧検出回路
TWI306334B (en) * 2006-01-24 2009-02-11 Holtek Semiconductor Inc Improved circuit and method for generating a power on reset signal
US7439796B2 (en) * 2006-06-05 2008-10-21 Texas Instruments Incorporated Current mirror with circuitry that allows for over voltage stress testing
US8035426B1 (en) * 2007-09-06 2011-10-11 Marvell Israel (M.I.S.L.) Ltd. Power-on-reset generator using a voltage-shaping inverter chain
US7969235B2 (en) * 2008-06-09 2011-06-28 Sandisk Corporation Self-adaptive multi-stage charge pump
CN101730349B (zh) * 2008-10-29 2013-10-02 原景科技股份有限公司 背光模块的短路检测电路
CN101751097B (zh) * 2008-12-02 2011-12-14 盛群半导体股份有限公司 电源开启重置控制电路及其操作方法
CN101839937B (zh) * 2009-03-18 2012-12-05 智原科技股份有限公司 供电检测装置
US8106688B2 (en) * 2009-11-18 2012-01-31 Smartech Worldwide Limited Power-on-reset circuit with brown-out reset for multiple power supplies
US20110133820A1 (en) * 2009-12-09 2011-06-09 Feng Pan Multi-Stage Charge Pump with Variable Number of Boosting Stages
US20110148509A1 (en) * 2009-12-17 2011-06-23 Feng Pan Techniques to Reduce Charge Pump Overshoot
CN102298951A (zh) * 2010-06-25 2011-12-28 鸿富锦精密工业(深圳)有限公司 控制装置及具有控制装置的电子设备
JP5734615B2 (ja) * 2010-10-14 2015-06-17 ラピスセミコンダクタ株式会社 検査装置及び方法
CN102394612B (zh) * 2011-09-30 2013-08-28 广州中大数码科技有限公司 基于低压检测功能的复位电路
US9972364B2 (en) * 2011-10-14 2018-05-15 Texas Instruments Incorporated Method to maintain power supply voltage during brownout
JP5953803B2 (ja) 2012-02-21 2016-07-20 富士通セミコンダクター株式会社 アクティブ信号生成回路及び半導体記憶装置
CN103840639B (zh) * 2014-03-20 2016-08-17 绍兴光大芯业微电子有限公司 实现线电压检测控制的电路结构
CN106571796B (zh) * 2015-10-09 2019-07-02 中芯国际集成电路制造(上海)有限公司 上电复位电路和方法
CN105811941B (zh) * 2016-04-08 2017-05-17 厦门新页微电子技术有限公司 一种上电复位电路
CN105891734B (zh) * 2016-04-11 2019-04-16 芯海科技(深圳)股份有限公司 一种超低功耗电源检测电路
US9698771B1 (en) * 2016-07-06 2017-07-04 Stmicroelectronics International N.V. Testing of power on reset (POR) and unmaskable voltage monitors
US10620267B2 (en) * 2017-09-20 2020-04-14 Stmicroelectronics International N.V. Circuitry for testing non-maskable voltage monitor for power management block
US10250251B1 (en) * 2018-02-07 2019-04-02 Infineon Technologies Ag RF sensor in stacked transistors
US10215795B1 (en) * 2018-04-13 2019-02-26 Infineon Technologies Ag Three level gate monitoring
JP7152681B2 (ja) * 2018-06-19 2022-10-13 株式会社ソシオネクスト 半導体集積回路装置およびレベルシフタ回路
CN112073050B (zh) * 2020-11-12 2021-02-09 杭州晶华微电子有限公司 用于半导体集成电路的电源上电复位电路
KR102668968B1 (ko) 2021-07-12 2024-05-27 윤여표 유아용 기립보조의자
CN116430102B (zh) * 2023-06-14 2023-08-29 苏州贝克微电子股份有限公司 一种宽输入电压范围的电压检测电路

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129986A (ja) * 1983-01-14 1984-07-26 Nec Corp メモリ回路
JPS61214042A (ja) * 1985-03-20 1986-09-22 Sharp Corp 低電圧検出及びメモリ保護方式
JPS63261168A (ja) * 1987-04-03 1988-10-27 エステーミクロエレクトロニクス ソシエテ アノニム Mos技術の高圧レベル検出回路
JPS643716A (en) * 1987-06-25 1989-01-09 Shimadzu Corp Data processor for analyzing device
JPH01191281A (ja) * 1988-01-26 1989-08-01 Matsushita Electric Ind Co Ltd Icカードリードライト装置
JPH02121193A (ja) * 1988-10-28 1990-05-09 Matsushita Electric Ind Co Ltd 不揮発性メモリー書込み制御装置
JPH02216598A (ja) * 1989-02-17 1990-08-29 Oki Electric Ind Co Ltd 自動取引装置の取引処理方法
JPH02290568A (ja) * 1989-04-28 1990-11-30 Nec Corp 電圧検出回路
JPH03280117A (ja) * 1990-03-28 1991-12-11 Omron Corp 電断処理装置
JPH04340148A (ja) * 1991-01-21 1992-11-26 Toshiba Corp パーソナルコンピュータ
JPH0628066A (ja) * 1992-07-09 1994-02-04 Fujitsu Ltd 情報処理装置の停電処理方式
JPH06350423A (ja) * 1993-06-14 1994-12-22 Fujitsu Ltd 電源投入検出回路
JPH0773057A (ja) * 1993-06-03 1995-03-17 Kano Densan Hongkong Yugenkoshi 電子機器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916414A (ja) * 1982-07-20 1984-01-27 Toshiba Corp パワ−オンリセツト回路
DE3310398A1 (de) * 1983-03-18 1984-09-20 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Elektrische schaltung zum sichern des informationsinhaltes eines speichers
NL8304182A (nl) * 1983-12-06 1985-07-01 Philips Nv Gasanalyse-apparaat.
JPS60124124A (ja) * 1983-12-08 1985-07-03 Nec Corp 入力回路
US5083045A (en) * 1987-02-25 1992-01-21 Samsung Electronics Co., Ltd. High voltage follower and sensing circuit
JPH01182757A (ja) * 1988-01-13 1989-07-20 Mitsubishi Electric Corp 電源電圧検知回路
JPH01123269U (ja) * 1988-02-16 1989-08-22
JPH02177100A (ja) * 1988-12-27 1990-07-10 Nec Corp 半導体記憶装置のテスト回路
US5262705A (en) * 1991-07-15 1993-11-16 Nec Corporation IC device for drive control of small hard disk drive unit
JPH05217387A (ja) * 1992-02-05 1993-08-27 Mitsubishi Electric Corp 半導体メモリ装置
EP0573965B1 (en) * 1992-06-10 1999-09-08 Nec Corporation Semiconductor device having bonding optional circuit
US5243233A (en) * 1992-09-24 1993-09-07 Altera Corporation Power on reset circuit having operational voltage trip point
US5302861A (en) * 1992-11-25 1994-04-12 National Semiconductor Corporation Power on reset circuit with sharply sloped voltage transfer function
JP3280117B2 (ja) 1993-05-14 2002-04-30 富士写真光機株式会社 カメラの制御装置
US5479172A (en) * 1994-02-10 1995-12-26 Racom Systems, Inc. Power supply and power enable circuit for an RF/ID transponder
JP3274935B2 (ja) * 1994-07-12 2002-04-15 三菱電機システムエル・エス・アイ・デザイン株式会社 マイクロコンピュータ
US5612642A (en) * 1995-04-28 1997-03-18 Altera Corporation Power-on reset circuit with hysteresis
US5534804A (en) * 1995-02-13 1996-07-09 Advanced Micro Devices, Inc. CMOS power-on reset circuit using hysteresis
US5629646A (en) * 1995-03-21 1997-05-13 Texas Instruments Incorporated Apparatus and method for power reduction in dRAM units
US5723990A (en) * 1995-06-21 1998-03-03 Micron Quantum Devices, Inc. Integrated circuit having high voltage detection circuit
CN1092335C (zh) * 1995-08-21 2002-10-09 松下电器产业株式会社 电压检测电路、电源通-断复位电路及半导体装置
JP3609185B2 (ja) * 1996-01-30 2005-01-12 沖電気工業株式会社 信号発生回路及びこれを用いたテストモード設定方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129986A (ja) * 1983-01-14 1984-07-26 Nec Corp メモリ回路
JPS61214042A (ja) * 1985-03-20 1986-09-22 Sharp Corp 低電圧検出及びメモリ保護方式
JPS63261168A (ja) * 1987-04-03 1988-10-27 エステーミクロエレクトロニクス ソシエテ アノニム Mos技術の高圧レベル検出回路
JPS643716A (en) * 1987-06-25 1989-01-09 Shimadzu Corp Data processor for analyzing device
JPH01191281A (ja) * 1988-01-26 1989-08-01 Matsushita Electric Ind Co Ltd Icカードリードライト装置
JPH02121193A (ja) * 1988-10-28 1990-05-09 Matsushita Electric Ind Co Ltd 不揮発性メモリー書込み制御装置
JPH02216598A (ja) * 1989-02-17 1990-08-29 Oki Electric Ind Co Ltd 自動取引装置の取引処理方法
JPH02290568A (ja) * 1989-04-28 1990-11-30 Nec Corp 電圧検出回路
JPH03280117A (ja) * 1990-03-28 1991-12-11 Omron Corp 電断処理装置
JPH04340148A (ja) * 1991-01-21 1992-11-26 Toshiba Corp パーソナルコンピュータ
JPH0628066A (ja) * 1992-07-09 1994-02-04 Fujitsu Ltd 情報処理装置の停電処理方式
JPH0773057A (ja) * 1993-06-03 1995-03-17 Kano Densan Hongkong Yugenkoshi 電子機器
JPH06350423A (ja) * 1993-06-14 1994-12-22 Fujitsu Ltd 電源投入検出回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0787993A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887801A2 (en) * 1997-06-27 1998-12-30 Siemens Aktiengesellschaft Apparatus for controlling circuit response during power-up
EP0887801A3 (en) * 1997-06-27 2000-07-26 Siemens Aktiengesellschaft Apparatus for controlling circuit response during power-up
JPH11326398A (ja) * 1998-05-08 1999-11-26 Matsushita Electron Corp 電圧検知回路
JP2003520965A (ja) * 2000-01-19 2003-07-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電圧レベル検出回路
US6373744B1 (en) 2000-07-26 2002-04-16 Matsushita Electric Industrial Co., Ltd. Ferroelectric memory
JP2010080047A (ja) * 2003-12-30 2010-04-08 Hynix Semiconductor Inc 半導体メモリ素子のパワーアップ回路

Also Published As

Publication number Publication date
EP0787993A4 (en) 1999-09-15
EP0787993A1 (en) 1997-08-06
US6538482B2 (en) 2003-03-25
TW335548B (en) 1998-07-01
KR970707445A (ko) 1997-12-01
CN1163664A (zh) 1997-10-29
KR100421523B1 (ko) 2004-07-12
CN1092335C (zh) 2002-10-09
US6246624B1 (en) 2001-06-12
US5864247A (en) 1999-01-26
US6822493B2 (en) 2004-11-23
US20030122597A1 (en) 2003-07-03
US20040169533A1 (en) 2004-09-02
US6882193B2 (en) 2005-04-19
US20010036119A1 (en) 2001-11-01

Similar Documents

Publication Publication Date Title
WO1997007408A1 (fr) Systeme de detection de tension, circuit de remise a zero/remise en service d'un circuit et dispositif semi-conducteur
KR100582852B1 (ko) 펄스 폭이 가변하는 펄스 발생기 및 이를 이용한 센스증폭기
US5619165A (en) Voltage threshold detection circuit with very low consumption
TWI446355B (zh) 用於低供應電壓記憶體單元的感測電路
KR980006526A (ko) 중간 전압 발생 회로 및 이것을 갖는 불휘발성 반도체 메모리
KR0167872B1 (ko) 반도체장치의 내부전원회로
US6756837B2 (en) Booster circuit
US6335646B1 (en) Power-on reset circuit for generating a reset pulse signal upon detection of a power supply voltage
US10366764B2 (en) Sense amplifier for detecting data read from memory cell
JP4024812B2 (ja) パワーオン・オフリセット回路及び半導体装置
JP3816736B2 (ja) 半導体装置
KR100507701B1 (ko) 부스트랩 회로
KR101072456B1 (ko) 저전력 내용 주소화 메모리 구동 회로
US6650147B2 (en) Sense amplifier with extended supply voltage range
KR100495854B1 (ko) 부스팅 회로
JPH06350423A (ja) 電源投入検出回路
US8509026B2 (en) Word line boost circuit
US7548482B2 (en) Memory device for early stabilizing power level after deep power down mode exit
KR100585144B1 (ko) 차아지 펌핑 효율을 유지하는 승압 전압 발생 회로
JP5971604B2 (ja) 電圧検出回路
KR0154192B1 (ko) 반도체 소자의 저전압 감지회로
KR100205234B1 (ko) 전압 감시 회로
JP2008199441A (ja) 半導体集積回路
JP2008004262A (ja) データ記憶装置
JP2003297091A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190936.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996926643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970702613

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08817746

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996926643

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970702613

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970702613

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996926643

Country of ref document: EP