US20180168615A1 - Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument - Google Patents

Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument Download PDF

Info

Publication number
US20180168615A1
US20180168615A1 US15/385,914 US201615385914A US2018168615A1 US 20180168615 A1 US20180168615 A1 US 20180168615A1 US 201615385914 A US201615385914 A US 201615385914A US 2018168615 A1 US2018168615 A1 US 2018168615A1
Authority
US
United States
Prior art keywords
anvil
staples
firing
patent application
staple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/385,914
Inventor
Frederick E. Shelton, IV
Jason L. Harris
Gregory J. Bakos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cilag GmbH International
Ethicon Endo Surgery LLC
Original Assignee
Ethicon LLC
Ethicon Endo Surgery LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/385,914 priority Critical patent/US20180168615A1/en
Application filed by Ethicon LLC, Ethicon Endo Surgery LLC filed Critical Ethicon LLC
Assigned to ETHICON ENDO-SURGERY, LLC reassignment ETHICON ENDO-SURGERY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHELTON, FREDERICK E., IV, BAKOS, GREGORY J., HARRIS, JASON L.
Priority to PCT/US2017/066377 priority patent/WO2018118636A1/en
Priority to BR112019012220-6A priority patent/BR112019012220B1/en
Priority to CN201780079991.9A priority patent/CN110099639A/en
Priority to JP2019533444A priority patent/JP2020501782A/en
Priority to MX2019007427A priority patent/MX2019007427A/en
Assigned to ETHICON LLC reassignment ETHICON LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON ENDO-SURGERY, LLC
Priority to EP17209330.4A priority patent/EP3338657A1/en
Publication of US20180168615A1 publication Critical patent/US20180168615A1/en
Priority to US17/361,596 priority patent/US11766259B2/en
Assigned to CILAG GMBH INTERNATIONAL reassignment CILAG GMBH INTERNATIONAL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON LLC
Priority to JP2022119430A priority patent/JP2022153543A/en
Priority to US18/373,042 priority patent/US20240016494A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B17/0644Surgical staples, i.e. penetrating the tissue penetrating the tissue, deformable to closed position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/0682Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00464Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable for use with different instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • A61B2017/0053Loading magazines or sutures into applying tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00938Material properties hydrophobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07228Arrangement of the staples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07235Stapler heads containing different staples, e.g. staples of different shapes, sizes or materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07242Stapler heads achieving different staple heights during the same shot, e.g. using an anvil anvil having different heights or staples of different sizes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07257Stapler heads characterised by its anvil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07257Stapler heads characterised by its anvil
    • A61B2017/07264Stapler heads characterised by its anvil characterised by its staple forming cavities, e.g. geometry or material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07271Stapler heads characterised by its cartridge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07278Stapler heads characterised by its sled or its staple holder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07285Stapler heads characterised by its cutter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2933Transmission of forces to jaw members camming or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0814Preventing re-use

Definitions

  • the present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.
  • FIG. 1 is a side elevational view of a surgical system comprising a handle assembly and multiple interchangeable surgical tool assemblies that may be used therewith;
  • FIG. 2 is a perspective view of one of the interchangeable surgical tool assemblies of FIG. 1 operably coupled to the handle assembly of FIG. 1 ;
  • FIG. 3 is an exploded assembly view of portions of the handle assembly and interchangeable surgical tool assembly of FIGS. 1 and 2 ;
  • FIG. 5 is a partial cross-sectional perspective view of the interchangeable surgical tool assembly of FIG. 4 ;
  • FIG. 6 is another partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIGS. 4 and 5 ;
  • FIG. 7A is an enlarged top view of a portion of an elastic spine assembly of the interchangeable surgical tool assembly of FIG. 7 ;
  • FIG. 9 is another cross-sectional perspective view of a surgical end effector portion of the interchangeable surgical tool assembly of FIGS. 4-8 ;
  • FIG. 11 is a perspective view, a side elevational view and a front elevational view of a firing member embodiment that may be employed in the interchangeable surgical tool assembly of FIG. 10 ;
  • FIG. 12 is a perspective view of an anvil that may be employed in the interchangeable surgical tool assembly of FIG. 4 ;
  • FIG. 13 is a cross-sectional side elevational view of the anvil of FIG. 12 ;
  • FIG. 16 is another cross-sectional side elevational view of the surgical end effector and shaft portion of FIG. 15 after the surgical staple cartridge has been at least partially fired and a firing member thereof is being retracted to a starting position;
  • FIG. 17 is another cross-sectional side elevational view of the surgical end effector and shaft portion of FIG. 16 after the firing member has been fully retracted back to the starting position;
  • FIG. 18 is a top cross-sectional view of the surgical end effector and shaft portion depicted in FIG. 15 with the unspent or unfired surgical staple cartridge properly seated with the elongate channel of the surgical end effector;
  • FIG. 20 is a partial cross-sectional view of portions of the anvil and elongate channel of the interchangeable tool assembly of FIG. 4 ;
  • FIG. 24 is a rear perspective view of an anvil mounting portion of another anvil embodiment
  • FIG. 25 is a perspective view of an anvil embodiment
  • FIG. 26 is an exploded perspective view of the anvil of FIG. 25 ;
  • FIG. 27 is a cross-sectional end view of the anvil of FIG. 25 ;
  • FIG. 28 is a perspective view of another anvil embodiment
  • FIG. 29 is an exploded perspective view of the anvil embodiment of FIG. 28 ;
  • FIG. 30 is a top view of a distal end portion of an anvil body portion of the anvil of FIG. 28 ;
  • FIG. 31 is a top view of a distal end portion of an anvil body portion of another anvil embodiment
  • FIG. 32 is a cross-sectional end perspective view of the anvil of FIG. 31 ;
  • FIG. 33 is a cross-sectional end perspective view of another anvil embodiment
  • FIG. 34 is a perspective view of a closure member embodiment comprising a distal closure tube segment
  • FIG. 35 is a cross-sectional side elevational view of the closure member embodiment of FIG. 34 ;
  • FIG. 36 is a partial cross-sectional view of an interchangeable surgical tool assembly embodiment showing a position of an anvil mounting portion of an anvil in a fully closed position and a firing member thereof in a starting position;
  • FIG. 37 is another partial cross-sectional view of the interchangeable surgical tool assembly of FIG. 36 at the commencement of an opening process
  • FIG. 38 is another partial cross-sectional view of the interchangeable surgical tool assembly of FIG. 37 with the anvil in the fully opened position;
  • FIG. 39 is a side elevational view of a portion of the interchangeable surgical tool assembly of FIG. 36 ;
  • FIG. 40 is a side elevational view of a portion of the interchangeable surgical tool assembly of FIG. 37 ;
  • FIG. 41 is a side elevational view of a portion of the interchangeable surgical tool assembly of FIG. 38 ;
  • FIG. 42 is a cross-sectional side elevational view of another closure member embodiment
  • FIG. 43 is a cross-sectional end view of the closure member of FIG. 42 ;
  • FIG. 44 is a cross-sectional end view of another closure member embodiment
  • FIG. 45 is a cross-sectional end view of another closure member embodiment
  • FIG. 46 is a cross-sectional end view of another closure member embodiment
  • FIG. 47 is a partial cross-sectional view of portions of a surgical end effector of an interchangeable tool assembly illustrated in FIG. 1 ;
  • FIG. 48 is a partial cross-sectional view of portions of a surgical end effector of the interchangeable surgical tool assembly of FIG. 5 ;
  • FIG. 49 is another cross-sectional view of the surgical end effector of FIG. 48 ;
  • FIG. 50 is a partial perspective view of a portion of an underside of an anvil embodiment
  • FIG. 51 is a partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 5 with an anvil of a surgical end effector thereof in a fully opened position;
  • FIG. 52 is another partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 51 with the anvil of the surgical end effector thereof in a first closed position;
  • FIG. 53 is another partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 51 at the commencement of the firing process wherein the anvil is in the first closed position and a firing member of the surgical end effector thereof has moved distally out of a starting position;
  • FIG. 54 is another partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 51 wherein the anvil is in a second closed position and the firing member has been distally advanced into a surgical staple cartridge of the surgical end effector thereof;
  • FIG. 55 is a graphical comparison of firing energy versus time for different interchangeable surgical tool assemblies
  • FIG. 56 is a graphical depiction of force to fire improvements and comparisons of firing loads verses the percentage of firing distance that the firing member thereof has traveled for four different interchangeable surgical tool assemblies;
  • FIG. 57 provides a comparison between a first embodiment of an anvil and a second embodiment of an anvil
  • FIG. 58 is a cross-sectional view of an end effector comprising the second anvil embodiment of FIG. 57 ;
  • FIG. 59 is a partial cross-sectional view of the first anvil embodiment of FIG. 57 and a firing member configured to engage the first anvil embodiment;
  • FIG. 60 is a partial elevational view of the firing member of FIG. 59 ;
  • FIG. 61 is an illustration depicting stress concentrations in the first anvil embodiment of FIG. 57 and the firing member of FIG. 59 ;
  • FIG. 62 is an another illustration depicting stress concentrations in the firing member of FIG. 59 ;
  • FIG. 63 is a perspective view of a firing member in accordance with at least one embodiment
  • FIG. 64 is a side elevational view of the firing member of FIG. 63 ;
  • FIG. 65 is a front elevational view of the firing member of FIG. 63 ;
  • FIG. 66 is a partial perspective view of a firing member in accordance with at least one embodiment
  • FIG. 67 is a partial side elevational view of the firing member of FIG. 66 ;
  • FIG. 68 is a partial front elevational view of the firing member of FIG. 66 ;
  • FIG. 69 is a partial perspective view of a firing member in accordance with at least one embodiment
  • FIG. 70 is a partial side elevational view of the firing member of FIG. 69 ;
  • FIG. 72 is a partial perspective view of a firing member in accordance with at least one embodiment
  • FIG. 73 is a partial side elevational view of the firing member of FIG. 72 ;
  • FIG. 77 is a partial front elevational view of the firing member of FIG. 75 ;
  • FIG. 78 is a partial perspective view of a firing member in accordance with at least one embodiment
  • FIG. 79 is a partial side elevational view of the firing member of FIG. 78 ;
  • FIG. 81 is a partial perspective view of a firing member in accordance with at least one embodiment
  • FIG. 82 is a partial side elevational view of the firing member of FIG. 81 ;
  • FIG. 83 is a partial front elevational view of the firing member of FIG. 81 ;
  • FIG. 84 is a partial perspective view of a firing member in accordance with at least one embodiment
  • FIG. 85 is a partial side elevational view of the firing member of FIG. 84 ;
  • FIG. 86 is a partial front elevational view of the firing member of FIG. 84 ;
  • FIG. 87 is a partial perspective view of a firing member in accordance with at least one embodiment
  • FIG. 88 is a partial side elevational view of the firing member of FIG. 87 ;
  • FIG. 89 is another partial perspective view of the firing member of FIG. 87 ;
  • FIG. 90 is a partial front elevational view of the firing member of FIG. 87 ;
  • FIG. 91 is a schematic depicting the energy needed to advance firing members disclosed herein through staple firing strokes
  • FIG. 92 is a detail view of a lateral projection extending from the firing member of FIG. 66 schematically illustrating the interaction between the lateral projection and an anvil in a flexed condition;
  • FIG. 93 is a detail view of a lateral projection extending from the firing member of FIG. 81 schematically illustrating the interaction between the lateral projection and an anvil in a flexed condition;
  • FIG. 94 is a detail view of a lateral projection extending from the firing member of FIG. 81 schematically illustrating the interaction between the lateral projection and an anvil another flexed condition;
  • FIG. 95 is a perspective view of an end effector of a surgical stapling instrument including a staple cartridge in accordance with at least one embodiment
  • FIG. 96 is an exploded view of the end effector of FIG. 95 ;
  • FIG. 97 is a perspective view of the staple cartridge FIG. 95 ;
  • FIG. 98 is a partial perspective view of a channel of the end effector of FIG. 95 configured to receive the staple cartridge of FIG. 95 ;
  • FIG. 98A is a partial perspective view of the channel of FIG. 98 ;
  • FIG. 98B is a circuit diagram of a cartridge circuit of the staple cartridge of FIG. 97 ;
  • FIG. 98C is a circuit diagram of a carrier circuit of the end effector of FIG. 95 ;
  • FIG. 99 is a bottom partial view of the end effector of FIG. 95 illustrating an intact trace element and a sled in a starting position in accordance with at least one embodiment
  • FIG. 100 is a bottom partial view of the end effector of FIG. 95 illustrating a broken trace element and a sled in a partially advanced position in accordance with at least one embodiment
  • FIG. 100A is a block diagram illustrating an electrical circuit in accordance with at least one embodiment
  • FIG. 100B is a block diagram illustrating an electrical circuit in accordance with at least one embodiment
  • FIG. 100C is a block diagram illustrating an electrical circuit in accordance with at least one embodiment
  • FIG. 100D is a block diagram illustrating an electrical circuit in accordance with at least one embodiment
  • FIG. 101 is a circuit diagram of a safety mechanism of the end effector of FIG. 95 in accordance with at least one embodiment
  • FIG. 102 is a switch of the circuit diagram of FIG. 101 in an open configuration in accordance with at least one embodiment
  • FIG. 103 illustrates the switch of FIG. 102 in a closed configuration
  • FIG. 103B is a logic diagram of a method for controlling the firing of a surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 104 is a partial perspective view of a staple cartridge including a conductive gate in accordance with at least one embodiment
  • FIG. 105 is a partial exploded view of the staple cartridge of FIG. 104 ;
  • FIG. 106 is a cross-sectional view of the staple cartridge of FIG. 105 showing the conductive gate in a fully closed configuration
  • FIG. 107 is a cross-sectional view of the staple cartridge of FIG. 105 showing the conductive gate in an open configuration
  • FIG. 108 is a cross-sectional view of the staple cartridge of FIG. 105 showing the conductive gate transitioning from an open configuration to a partially closed configuration;
  • FIG. 109 is a block diagram illustrating an electrical circuit configured to activate/deactivate a firing system of a surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 110 illustrates a controller a surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 111 illustrates a combinational logic circuit of a surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 112 illustrates a sequential logic circuit of a surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 113 is an electromagnetic lockout mechanism for a surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 114 illustrates the electromagnetic lockout mechanism of FIG. 113 in a locked configuration
  • FIG. 115 illustrates the electromagnetic lockout mechanism of FIG. 113 in an unlocked configuration
  • FIG. 116 is a circuit diagram of an electrical circuit in accordance with at least one embodiment
  • FIG. 117 is a circuit diagram of an electrical circuit of a powered surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 117A is an electrical circuit configured to detect the position and progression of a staple firing member illustrating the staple firing member in a fully fired position
  • FIG. 117B illustrates the staple firing member of FIG. 117A in a fully retracted position
  • FIG. 118 is a perspective view of a powered surgical stapling and cutting instrument comprising a power assembly, a handle assembly, and an interchangeable shaft assembly;
  • FIG. 119 is perspective view of the surgical instrument of FIG. 118 with the interchangeable shaft assembly separated from the handle assembly;
  • FIGS. 120A and 120B depict a circuit diagram of the surgical instrument of FIG. 118 ;
  • FIG. 121 is a circuit diagram of a powered surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 122A is a circuit diagram of a powered surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 122B illustrates minimum and maximum thresholds of current drawn by a motor of a powered surgical stapling and cutting instrument in accordance with at least one embodiment
  • FIG. 123 is circuit diagram illustrating a beginning-of-stroke switch circuit and an end-of-stroke switch circuit with at least one embodiment
  • FIG. 124 is logic diagram illustrating a failure response system in accordance with at least one embodiment
  • FIG. 125 is logic diagram illustrating a failure response system in accordance with at least one embodiment
  • FIG. 126 is logic diagram illustrating a failure response system in accordance with at least one embodiment
  • FIG. 127 is logic diagram illustrating a failure response system in accordance with at least one embodiment
  • FIG. 129 is a plan view of the staple forming pocket arrangement of FIG. 128 ;
  • FIG. 130 is a cross-sectional view of the staple forming pocket arrangement of FIG. 128 taken along line 130 - 130 in FIG. 129 ;
  • FIG. 131 is a cross-sectional view of the staple forming pocket arrangement of FIG. 128 taken along line 131 - 131 in FIG. 129 ;
  • FIG. 132 is a cross-sectional view of the staple forming pocket arrangement of FIG. 128 taken along line 132 - 132 in FIG. 129 ;
  • FIG. 134 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having an entry zone and an exit zone comprising different radii of curvature;
  • FIG. 136 is a cross-sectional view of the staple forming pocket arrangement of FIG. 134 taken along line 136 - 136 in FIG. 135 ;
  • FIG. 137 is a cross-sectional view of the staple forming pocket arrangement of FIG. 134 taken along line 137 - 137 in FIG. 135 ;
  • FIG. 139 is a cross-sectional view of the staple forming pocket arrangement of FIG. 134 taken along line 139 - 139 in FIG. 135 ;
  • FIG. 140 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket, a distal forming pocket, and a pair of primary sidewalls extending from a planar anvil surface to the pockets at a first angle, wherein each pocket comprises a pair of pocket sidewalls extending from the primary sidewalls to forming surfaces of the pockets at a second angle different than the first angle;
  • FIG. 141 is a plan view of the staple forming pocket arrangement of FIG. 140 ;
  • FIG. 142 is a cross-sectional view of the staple forming pocket arrangement of FIG. 140 taken along line 142 - 142 in FIG. 141 ;
  • FIG. 143 is a cross-sectional view of the staple forming pocket arrangement of FIG. 140 taken along line 143 - 143 in FIG. 141 ;
  • FIG. 144 is a cross-sectional view of the staple forming pocket arrangement of FIG. 140 taken along line 144 - 144 in FIG. 141 ;
  • FIG. 145 is a cross-sectional view of the staple forming pocket arrangement of FIG. 140 taken along line 145 - 145 in FIG. 141 ;
  • FIG. 146 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket, a distal forming pocket, and primary sidewalls, wherein each pocket comprises a pair of pocket sidewalls, and wherein each pocket sidewall comprises discrete sidewall portions;
  • FIG. 147 is a plan view of the staple forming pocket arrangement of FIG. 146 ;
  • FIG. 148 is a cross-sectional view of the staple forming pocket arrangement of FIG. 146 taken along line 148 - 148 in FIG. 147 ;
  • FIG. 149 is a cross-sectional view of the staple forming pocket arrangement of FIG. 146 taken along line 149 - 149 in FIG. 147 ;
  • FIG. 150 is a cross-sectional view of the staple forming pocket arrangement of FIG. 146 taken along line 150 - 150 in FIG. 147 ;
  • FIG. 151 is a cross-sectional view of the staple forming pocket arrangement of FIG. 146 taken along line 151 - 151 in FIG. 147 ;
  • FIG. 152 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket, a distal forming pocket, and primary sidewalls, wherein each pocket comprises a pair of contoured sidewalls;
  • FIG. 154 is a cross-sectional view of the staple forming pocket arrangement of FIG. 152 taken along line 154 - 154 in FIG. 153 ;
  • FIG. 155 is a cross-sectional view of the staple forming pocket arrangement of FIG. 152 taken along line 155 - 155 in FIG. 153 ;
  • FIG. 157 is a cross-sectional view of the staple forming pocket arrangement of FIG. 152 taken along line 157 - 157 in FIG. 153 ;
  • FIG. 158 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having a groove defined therein;
  • FIG. 159 is a cross-sectional view of the staple forming pocket arrangement of FIG. 158 taken along line 159 - 159 in FIG. 158 ;
  • FIG. 160 is an enlarged view of the proximal forming pocket of the staple forming pocket arrangement shown in FIG. 159 ;
  • FIG. 161 is a cross-sectional view of the staple forming pocket arrangement of FIG. 158 taken along line 161 - 161 in FIG. 158 ;
  • FIG. 162 is a cross-sectional view of the staple forming pocket arrangement of FIG. 158 taken along line 162 - 162 in FIG. 158 ;
  • FIG. 163 is a cross-sectional view of the staple forming pocket arrangement of FIG. 158 taken along line 163 - 163 in FIG. 158 ;
  • FIG. 164 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having a zoned groove defined therein;
  • FIG. 165 is a cross-sectional view of the staple forming pocket arrangement of FIG. 164 taken along line 165 - 165 in FIG. 164 ;
  • FIG. 166 is a cross-sectional view of the staple forming pocket arrangement of FIG. 164 taken along line 166 - 166 in FIG. 164 ;
  • FIG. 167 is a cross-sectional view of the staple forming pocket arrangement of FIG. 164 taken along line 167 - 167 in FIG. 164 ;
  • FIG. 168 is a cross-sectional view of the staple forming pocket arrangement of FIG. 164 taken along line 168 - 168 in FIG. 164 ;
  • FIG. 169 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having a groove defined therein, and wherein the pockets are bilaterally asymmetric with respect to a bridge of the pocket pair;
  • FIG. 170 is a cross-sectional view of the staple forming pocket arrangement of FIG. 169 taken along line 170 - 170 in FIG. 169 ;
  • FIG. 171 is a cross-sectional view of the staple forming pocket arrangement of FIG. 169 taken along line 171 - 171 in FIG. 169 ;
  • FIG. 172 is a cross-sectional view of the staple forming pocket arrangement of FIG. 169 taken along line 172 - 172 in FIG. 169 ;
  • FIG. 173 is a cross-sectional view of the staple forming pocket arrangement of FIG. 169 taken along line 173 - 173 in FIG. 169 ;
  • FIG. 174 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having an entry zone and an exit zone comprising different radii of curvature, and wherein each forming surface comprises a groove defined therein;
  • FIG. 175 is a cross-sectional view of the staple forming pocket arrangement of FIG. 174 taken along line 175 - 175 in FIG. 174 ;
  • FIG. 176 is a cross-sectional view of the staple forming pocket arrangement of FIG. 174 taken along line 176 - 176 in FIG. 174 ;
  • FIG. 177 is a cross-sectional view of the staple forming pocket arrangement of FIG. 174 taken along line 177 - 177 in FIG. 174 ;
  • FIG. 178 is a cross-sectional view of the staple forming pocket arrangement of FIG. 174 taken along line 178 - 178 in FIG. 174 ;
  • FIG. 179 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a pair of contoured sidewalls and a forming surface groove defined therein, and wherein the pockets are bilaterally asymmetric with respect to a bridge of the pocket pair;
  • FIG. 180 is a cross-sectional view of the staple forming pocket arrangement of FIG. 179 taken along line 180 - 180 in FIG. 179 ;
  • FIG. 181 is a cross-sectional view of the staple forming pocket arrangement of FIG. 179 taken along line 181 - 181 in FIG. 179 ;
  • FIG. 182 is a cross-sectional view of the staple forming pocket arrangement of FIG. 179 taken along line 182 - 182 in FIG. 179 ;
  • FIG. 183 is a cross-sectional view of the staple forming pocket arrangement of FIG. 179 taken along line 183 - 183 in FIG. 179 ;
  • FIG. 184 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket each comprising a forming surface groove defined therein, wherein the pockets are bilaterally symmetric with respect to a bridge of the pocket pair and rotationally asymmetric with respect to a center portion of the bridge;
  • FIG. 185 is a cross-sectional view of the staple forming pocket arrangement of FIG. 184 taken along line 185 - 185 in FIG. 184 ;
  • FIG. 186 is a cross-sectional view of the staple forming pocket arrangement of FIG. 184 taken along line 186 - 186 in FIG. 184 ;
  • FIG. 187 is a cross-sectional view of the staple forming pocket arrangement of FIG. 184 taken along line 187 - 187 in FIG. 184 ;
  • FIG. 188 is a cross-sectional view of the staple forming pocket arrangement of FIG. 184 taken along line 188 - 188 in FIG. 184 ;
  • FIG. 189 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket which is different than the proximal forming pocket, wherein the pockets are bilaterally asymmetric with respect to a bridge of the pocket pair, bilaterally symmetric with respect to a pocket axis of the pocket pair, and rotationally asymmetric with respect to a center portion of the bridge;
  • FIG. 190 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 190 - 190 in FIG. 189 ;
  • FIG. 191 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 191 - 191 in FIG. 189 ;
  • FIG. 192 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 192 - 192 in FIG. 189 ;
  • FIG. 193 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 193 - 193 in FIG. 189 ;
  • FIG. 194 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 194 - 194 in FIG. 189 ;
  • FIG. 195 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 195 - 195 in FIG. 189 ;
  • FIG. 196 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 196 - 196 in FIG. 189 ;
  • FIG. 197 is partial cross-sectional view of a stapling assembly in a fully clamped but nonparallel configuration
  • FIG. 198 is an elevational view of a staple formed with the stapling assembly of FIG. 197 ;
  • FIG. 199 is partial cross-sectional view of another stapling assembly in a fully clamped but nonparallel configuration
  • FIG. 200 is an elevational view of a staple formed with the stapling assembly of FIG. 199 ;
  • FIG. 201 is a bottom view of an anvil comprising a plurality of forming pockets that are identical;
  • FIG. 202 is a bottom view of an anvil comprising laterally changing forming pocket pairs
  • FIG. 203 is a bottom view of an anvil comprising longitudinally changing forming pocket pairs
  • FIG. 204 is a bottom view of an anvil comprising laterally and longitudinally changing forming pocket pairs
  • FIG. 205 is a table identifying specific features of various forming pocket arrangements
  • FIG. 206 contains cross-sectional views of different forming pocket arrangements corresponding to various features listed in the table of FIG. 205 ;
  • FIG. 207 is a comparison of forming pocket arrangements, staples formed with those forming pocket arrangements, and the maximum forces required to fire those staples against those forming pocket arrangements;
  • FIG. 208 is a table identifying additional features of the forming pocket arrangements shown in the table of FIG. 205 ;
  • FIG. 209 depicts a staple in a fully formed configuration and in an overdriven configuration formed with a forming pocket arrangement in accordance with at least one embodiment
  • FIG. 210 depicts a staple in a fully formed configuration and in an overdriven configuration formed with a forming pocket arrangement in accordance with at least one embodiment
  • FIG. 211 depicts a staple in a first and second stage of a forming process formed with a forming pocket arrangement in accordance with at least one embodiment
  • FIG. 212 depicts the staple of FIG. 211 in a third and fourth stage of the forming process formed with the forming pocket arrangement of FIG. 211 ;
  • FIG. 213 depicts a staple in a first and second stage of a forming process formed with a forming pocket arrangement in accordance with at least one embodiment
  • FIG. 214 depicts the staple of FIG. 213 in a third and fourth stage of the forming process formed with the forming pocket arrangement of FIG. 213 ;
  • FIG. 216 depicts a staple in various stages of forming formed with a forming pocket arrangement in accordance with at least one embodiment
  • FIG. 217 depicts a staple formed with the forming pocket arrangement of FIG. 134 in a fully formed configuration, wherein the staple contacted the forming pockets in a misaligned state;
  • FIG. 220 depicts a staple formed with the forming pocket arrangement of FIG. 140 in a fully formed configuration, wherein the staple contacted the forming pockets in a misaligned state;
  • FIG. 222 depicts a staple formed with the forming pocket arrangement of FIG. 152 in a fully formed configuration, wherein the staple contacted the forming pockets in an misaligned state;
  • FIG. 223 depicts a staple formed with the forming pocket arrangement of FIG. 179 in a fully formed configuration, wherein the staple contacted the forming pockets in an aligned state;
  • FIG. 225 depicts a staple formed with the forming pocket arrangement of FIG. 128 in a fully formed configuration, wherein the staple contacted the forming pockets in an misaligned state;
  • FIG. 226 depicts a staple formed with the forming pocket arrangement of FIG. 158 in a fully formed configuration, wherein the staple contacted the forming pockets in an misaligned state.
  • proximal and distal are used herein with reference to a clinician manipulating the handle portion of the surgical instrument.
  • proximal refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician.
  • distal refers to the portion located away from the clinician.
  • spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings.
  • surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
  • the staple cartridge comprises a cartridge body.
  • the cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end.
  • the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue.
  • the anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck.
  • staples removably stored in the cartridge body can be deployed into the tissue.
  • the cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities.
  • the staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
  • the staples are supported by staple drivers in the cartridge body.
  • the drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities.
  • the drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body.
  • the drivers are movable between their unfired positions and their fired positions by a sled.
  • the sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end.
  • the sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
  • the sled is moved distally by a firing member.
  • the firing member is configured to contact the sled and push the sled toward the distal end.
  • the longitudinal slot defined in the cartridge body is configured to receive the firing member.
  • the anvil also includes a slot configured to receive the firing member.
  • the firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil.
  • the firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
  • FIG. 1 depicts a motor-driven surgical system 10 that may be used to perform a variety of different surgical procedures.
  • the surgical system 10 includes four interchangeable surgical tool assemblies 100 , 200 , 300 and 1000 that are each adapted for interchangeable use with a handle assembly 500 .
  • Each interchangeable surgical tool assembly 100 , 200 , 300 and 1000 may be designed for use in connection with the performance of one or more specific surgical procedures.
  • the interchangeable surgical tool assemblies may be effectively employed with a tool drive assembly of a robotically controlled or automated surgical system.
  • the surgical tool assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods such as, but not limited to, those disclosed in U.S. Pat. No. 9,072,535, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, which is hereby incorporated by reference herein in its entirety.
  • the handle assembly 500 may further include a frame 506 that operably supports the plurality of drive systems.
  • the frame 506 can operably support a “first” or closure drive system, generally designated as 510 , which may be employed to apply closing and opening motions to the interchangeable surgical tool assembly 100 , 200 , 300 and 1000 that is operably attached or coupled to the handle assembly 500 .
  • the closure drive system 510 may include an actuator in the form of a closure trigger 512 that is pivotally supported by the frame 506 .
  • the clinician depresses the closure trigger 512 towards the pistol grip portion 504 .
  • the closure drive system is configured to lock the closure trigger 512 into the fully depressed or fully actuated position.
  • the handle assembly 500 and the frame 506 may operably support another drive system referred to herein as a firing drive system 530 that is configured to apply firing motions to corresponding portions of the interchangeable surgical tool assembly that is attached thereto.
  • the firing drive system 530 may employ an electric motor (not shown in FIGS. 1-3 ) that is located in the pistol grip portion 504 of the handle assembly 500 .
  • the motor may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example.
  • the electric motor is configured to axially drive a longitudinally movable drive member 540 in a distal and proximal directions depending upon the polarity of the motor. For example, when the motor is driven in one rotary direction, the longitudinally movable drive member 540 the will be axially driven in the distal direction “DD”. When the motor is driven in the opposite rotary direction, the longitudinally movable drive member 540 will be axially driven in a proximal direction “PD”.
  • the handle assembly 500 can include a switch 513 which can be configured to reverse the polarity applied to the electric motor by the power source 522 or otherwise control the motor.
  • the handle assembly 500 can also include a sensor or sensors (not shown) that is configured to detect the position of the drive member 540 and/or the direction in which the drive member 540 is being moved. Actuation of the motor can be controlled by a firing trigger 532 ( FIG. 1 ) that is pivotally supported on the handle assembly 500 .
  • the firing trigger 532 may be pivoted between an unactuated position and an actuated position.
  • the firing trigger 532 may be biased into the unactuated position by a spring or other biasing arrangement such that when the clinician releases the firing trigger 532 , it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement.
  • the firing trigger 532 can be positioned “outboard” of the closure trigger 512 as was discussed above.
  • the handle assembly 500 may be equipped with a firing trigger safety button (not shown) to prevent inadvertent actuation of the firing trigger 532 .
  • a firing trigger safety button (not shown) to prevent inadvertent actuation of the firing trigger 532 .
  • the safety button is contained in the handle assembly 500 where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 532 and a firing position wherein the firing trigger 532 may be fired.
  • the safety button and the firing trigger 532 pivot down wherein they can then be manipulated by the clinician.
  • the longitudinally movable drive member 540 may have a rack of teeth (not shown) formed thereon for meshing engagement with a corresponding drive gear arrangement (not shown) that interfaces with the motor. Further details regarding those features may be found in U.S. Patent Application Publication No. 2015/0272575.
  • At least one form also includes a manually-actuatable “bailout” assembly that is configured to enable the clinician to manually retract the longitudinally movable drive member 540 should the motor become disabled.
  • the bailout assembly may include a lever or bailout handle assembly that is stored within the handle assembly 500 under a releasable door 550 . The lever is configured to be manually pivoted into ratcheting engagement with the teeth in the drive member 540 .
  • the interchangeable surgical tool assembly 100 includes a surgical end effector 110 that comprises a first jaw and a second jaw.
  • the first jaw comprises an elongate channel 112 that is configured to operably support a surgical staple cartridge 116 therein.
  • the second jaw comprises an anvil 114 that is pivotally supported relative to the elongate channel 112 .
  • the interchangeable surgical tool assembly 100 also includes a lockable articulation joint 120 which can be configured to releasably hold the end effector 110 in a desired position relative to a shaft axis SA. Details regarding various constructions and operation of the end effector 110 , the articulation joint 120 and the articulation lock are set forth in U.S.
  • the interchangeable surgical tool assembly 100 can include a proximal housing or nozzle 130 and a closure tube assembly 140 which can be utilized to close and/or open the anvil 114 of the end effector 110 .
  • the closure tube assembly 140 is movably supported on a spine 145 which supports articulation driver arrangement 147 for applying articulation motions to the surgical end effector 110 .
  • the spine 145 is configured to, one, slidably support a firing bar 170 therein and, two, slidably support the closure tube assembly 140 which extends around the spine 145 .
  • the spine 145 includes a proximal end that is rotatably supported in a chassis 150 . See FIG. 3 .
  • the proximal end of the spine 145 is attached to a spine bearing (not shown) that is configured to be supported within the chassis 150 .
  • Such an arrangement facilitates rotatable attachment of the spine 145 to the chassis 150 such that the spine 145 may be selectively rotated about a shaft axis SA relative to the chassis 150 .
  • the interchangeable surgical tool assembly 100 includes a closure shuttle 160 that is slidably supported within the chassis 150 such that it may be axially moved relative thereto.
  • the closure shuttle 160 includes a pair of proximally-protruding hooks 162 that are configured for attachment to the attachment pin 516 that is attached to the closure linkage assembly 514 in the handle assembly 500 .
  • a proximal closure tube segment 146 of the closure tube assembly 140 is coupled to the closure shuttle 160 for relative rotation thereto.
  • a closure spring (not shown) may also be journaled on the closure tube assembly 140 and serves to bias the closure tube assembly 140 in the proximal direction “PD” which can serve to pivot the closure trigger 512 into the unactuated position when the shaft assembly 100 is operably coupled to the handle assembly 500 .
  • the closure tube assembly 140 is translated distally (direction DD) to close the anvil 114 , for example, in response to the actuation of the closure trigger 512 .
  • the closure tube assembly 140 includes a distal closure tube segment 142 that is pivotally pinned to a distal end of a proximal closure tube segment 146 .
  • the distal closure tube segment 142 is configured to axially move with the proximal closure tube segment 146 relative to the surgical end effector 110 .
  • the anvil 114 is pivoted closed. Further details concerning the closure of anvil 114 may be found in the aforementioned U.S. Patent Application Publication No. 2014/0263541 and will be discussed in further detail below.
  • the anvil 114 is opened by proximally translating the distal closure tube segment 142 .
  • the distal closure tube segment 142 has a horseshoe aperture 143 therein that defines a downwardly extending return tab (not shown) that cooperates with an anvil tab 117 formed on the proximal end of the anvil 114 to pivot the anvil 114 back to an open position.
  • the closure tube assembly 140 In the fully open position, the closure tube assembly 140 is in its proximal-most or unactuated position.
  • the interchangeable surgical tool assembly 100 further includes a firing bar 170 that is supported for axial travel within the shaft spine 145 .
  • the firing bar 170 includes an intermediate firing shaft portion that is configured for attachment to a distal cutting portion or knife bar that is configured for axial travel through the surgical end effector 110 .
  • the interchangeable surgical tool assembly 100 includes a clutch assembly (not shown) which can be configured to selectively and releasably couple the articulation driver to the firing bar 170 . Further details regarding the clutch assembly features and operation may be found in U.S. Patent Application Publication No. 2014/0263541. As discussed in U.S. Patent Application Publication No.
  • the interchangeable surgical tool assembly 100 may also include a slip ring assembly (not shown) which can be configured to conduct electrical power to and/or from the end effector 110 and/or communicate signals to and/or from the end effector 110 .
  • the chassis 150 has at least one, and preferably two, tapered attachment portions 152 formed thereon that are adapted to be received within corresponding dovetail slots 507 formed within a distal end of the frame 506 .
  • Each dovetail slot 507 may be tapered or, stated another way, be somewhat V-shaped to seatingly receive the tapered attachment portions 152 therein.
  • a shaft attachment lug 172 is formed on the proximal end of the firing shaft 170 . When the interchangeable surgical tool assembly 100 is coupled to the handle assembly 500 , the shaft attachment lug 172 is received in a firing shaft attachment cradle 542 formed in the distal end of the longitudinally movable drive member 540 .
  • the interchangeable surgical tool assembly 100 also employs a latch system 180 for releasably latching the shaft assembly 100 to the frame 506 of the handle assembly 500 .
  • the latch system 180 includes a lock member or lock yoke 182 that is movably coupled to the chassis 150 .
  • the lock yoke 182 includes two proximally protruding lock lugs 184 that are configured for releasable engagement with corresponding lock detents or grooves 509 in the distal attachment flange of the frame 506 .
  • the lock yoke 182 is biased in the proximal direction by spring or biasing member.
  • Actuation of the lock yoke 182 may be accomplished by a latch button 186 that is slidably mounted on a latch actuator assembly that is mounted to the chassis 150 .
  • the latch button 186 may be biased in a proximal direction relative to the lock yoke 182 .
  • the lock yoke 182 may be moved to an unlocked position by biasing the latch button 186 the in distal direction DD which also causes the lock yoke 182 to pivot out of retaining engagement with the distal attachment flange of the frame 506 .
  • the clinician may position the chassis 150 of the interchangeable surgical tool assembly 100 above or adjacent to the distal end of the frame 506 such that the tapered attachment portions 152 formed on the chassis 150 are aligned with the dovetail slots 507 in the frame 506 .
  • the clinician may then move the surgical tool assembly 100 along an installation axis IA that is perpendicular to the shaft axis SA to seat the tapered attachment portions 152 in “operable engagement” with the corresponding dovetail receiving slots 507 in the distal end of the frame 506 .
  • the shaft attachment lug 172 on the firing shaft 170 will also be seated in the cradle 542 in the longitudinally movable drive member 540 and the portions of pin 516 on the closure link 514 will be seated in the corresponding hooks 162 in the closure shuttle 160 .
  • operble engagement in the context of two components means that the two components are sufficiently engaged with each other so that upon application of an actuation motion thereto, the components may carry out their intended action, function and/or procedure.
  • the surgical system 10 illustrated in that Figure includes four interchangeable surgical tool assemblies 100 , 200 , 300 and 1000 that may each be effectively employed with the same handle assembly 500 to perform different surgical procedures.
  • the construction of an exemplary form of interchangeable surgical tool assembly 100 was briefly discussed above and is discussed in further detail in U.S. Patent Application Publication No. 2014/0263541.
  • Various details regarding interchangeable surgical tool assemblies 200 and 300 may be found in the various U.S. patent applications that were filed on even date herewith and which have been incorporated by reference herein.
  • Various details regarding interchangeable surgical tool assembly 1000 will be discussed in further detail below.
  • each of the surgical tool assemblies 100 , 200 , 300 and 1000 includes a pair of jaws wherein at least one of the jaws is movable between open positions wherein tissue may be captured or manipulated between the two jaws and closed positions wherein the tissue is firmly retained therebetween.
  • the movable jaw or jaws are moved between open and closed positions upon application of closure and opening motions applied thereto from the handle assembly or the robotic or automated surgical system to which the surgical tool assembly is operably coupled.
  • each of the illustrated interchangeable surgical tool assemblies includes a firing member that is configured to cut tissue and fire staples from a staple cartridge that is supported in one of the jaws in response to firing motions applied thereto by the handle assembly or robotic system.
  • Each surgical tool assembly may be uniquely designed to perform a specific procedure, for example, to cut and fasten a particular type of and thickness of tissue within a certain area in the body.
  • the closing, firing and articulation control systems in the handle assembly 500 or robotic system may be configured to generate axial control motions and/or rotary control motions depending upon the type of closing, firing and articulation system configurations that are employed in the surgical tool assembly.
  • one of the closure system control components which may, for example, comprise a closure tube assembly as described above, moves axially from an unactuated position to its fully actuated position.
  • the axial distance that the closure tube assembly moves between its unactuated position to its fully actuated position may be referred to herein as its “closure stroke length”.
  • one of the firing system control components which may, for example, comprise the longitudinally movable drive member as described above moves axially from its unactuated position to its fully actuated or fired position.
  • the axial distance that the longitudinally movable drive member moves between its unactuated position and its fully fired position may be referred to herein as its “firing stroke length”.
  • the handle assembly or robotic system may employ articulation control components that move axially through an “articulation drive stroke length”.
  • each of the surgical tool assemblies must be able to accommodate control movements of the closure, firing and/or articulation components through each of their entire stroke lengths without placing undue stress on the surgical tool components which might lead to damage or catastrophic failure of surgical tool assembly.
  • the interchangeable surgical tool assembly 1000 includes a surgical end effector 1100 that comprises an elongate channel 1102 that is configured to operably support a staple cartridge 1110 therein.
  • the end effector 1100 may further include an anvil 1130 that is pivotally supported relative to the elongate channel 1102 .
  • the interchangeable surgical tool assembly 1000 may further include an articulation joint 1200 and an articulation lock 1210 ( FIGS. 5 and 8-10 ) which can be configured to releasably hold the end effector 1100 in a desired articulated position relative to a shaft axis SA. Details regarding the construction and operation of the articulation lock 1210 may be found in in U.S. patent application Ser. No.
  • the interchangeable surgical tool assembly 1000 can further include a proximal housing or nozzle 1300 comprised of nozzle portions 1302 , 1304 as well as an actuator wheel portion 1306 that is configured to be coupled to the assembled nozzle portions 1302 , 1304 by snaps, lugs, screws etc.
  • the interchangeable surgical tool assembly 1000 can further include a closure tube assembly 1400 which can be utilized to close and/or open the anvil 1130 of the end effector 1100 as will be discussed in further detail below.
  • the interchangeable surgical tool assembly 1000 can include a spine assembly 1500 which can be configured to support the articulation lock 1210 .
  • the spine assembly 1500 comprises an “elastic” spine or frame member 1510 which will be described in further detail below.
  • a distal end portion 1522 of the elastic spine member 1510 is attached to a distal frame segment 1560 that operably supports the articulation lock 1210 therein.
  • the spine assembly 1500 is configured to, one, slidably support a firing member assembly 1600 therein and, two, slidably support the closure tube assembly 1400 which extends around the spine assembly 1500 .
  • the spine assembly 1500 can also be configured to slidably support a proximal articulation driver 1700 .
  • the distal frame segment 1560 is pivotally coupled to the elongate channel 1102 by an end effector mounting assembly 1230 .
  • the distal end 1562 of the distal frame segment 1560 has a pivot pin 1564 formed thereon.
  • the pivot pin 1564 is adapted to be pivotally received within a pivot hole 1234 formed in pivot base portion 1232 of the end effector mounting assembly 1230 .
  • the end effector mounting assembly 1230 is attached to the proximal end 1103 of the elongate channel 1102 by a spring pin 1105 or other suitable member.
  • the pivot pin 1564 defines an articulation axis B-B that is transverse to the shaft axis SA. See FIG. 4 .
  • Such arrangement facilitates pivotal travel (i.e., articulation) of the end effector 1100 about the articulation axis B-B relative to the spine assembly 1500 .
  • the articulation driver 1700 has a distal end 1702 that is configured to operably engage the articulation lock 1210 .
  • the articulation lock 1210 includes an articulation frame 1212 that is adapted to operably engage a drive pin 1238 on the pivot base portion 1232 of the end effector mounting assembly 1230 .
  • a cross-link 1237 may be linked to the drive pin 1238 and articulation frame 1212 to assist articulation of the end effector 1100 .
  • further details regarding the operation of the articulation lock 1210 and the articulation frame 1212 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No.
  • the elastic spine member 1510 includes a proximal end 1514 which is rotatably supported in a chassis 1800 .
  • the proximal end 1514 of the elastic spine member 1510 has a thread 1516 formed thereon for threaded attachment to a spine bearing (not shown) that is configured to be supported within the chassis 1800 .
  • a spine bearing not shown
  • Such an arrangement facilitates rotatable attachment of the elastic spine member 1510 to the chassis 1800 such that the spine assembly 1500 may be selectively rotated about a shaft axis SA relative to the chassis 1800 .
  • the interchangeable surgical tool assembly 1000 includes a closure shuttle 1420 that is slidably supported within the chassis 1800 such that it may be axially moved relative thereto.
  • the closure shuttle 1420 includes a pair of proximally-protruding hooks 1421 that are configured for attachment to the attachment pin 516 that is attached to the closure linkage assembly 514 of the handle assembly 500 as was discussed above.
  • a proximal end 1412 of a proximal closure tube segment 1410 is coupled to the closure shuttle 1420 for relative rotation thereto.
  • a U-shaped connector 1424 is inserted into an annular slot 1414 in the proximal end 1412 of the proximal closure tube segment 1410 and is retained within vertical slots 1422 in the closure shuttle 1420 . See FIG. 7 .
  • Such arrangement serves to attach the proximal closure tube segment 1410 to the closure shuttle 1420 for axial travel therewith while enabling the closure tube assembly 1400 to rotate relative to the closure shuttle 1420 about the shaft axis SA.
  • a closure spring (not shown) is journaled on the proximal end 1412 of the proximal closure tube segment 1410 and serves to bias the closure tube assembly 1400 in the proximal direction PD which can serve to pivot the closure trigger 512 on the handle assembly 500 ( FIG. 3 ) into the unactuated position when the interchangeable surgical tool assembly 1000 is operably coupled to the handle assembly 500 .
  • the illustrated interchangeable surgical tool assembly 1000 includes an articulation joint 1200 .
  • Other interchangeable surgical tool assemblies may not be capable of articulation.
  • upper and lower tangs 1415 , 1416 protrude distally from a distal end of the proximal closure tube segment 1410 to be movably coupled to an end effector closure sleeve or distal closure tube segment 1430 of the closure tube assembly 1400 .
  • the distal closure tube segment 1430 includes upper and lower tangs 1434 , 1436 that protrude proximally from a proximal end thereof.
  • An upper double pivot link 1220 includes proximal and distal pins that engage corresponding holes in the upper tangs 1415 , 1434 of the proximal closure tube segment 1410 and distal closure tube segment 1430 , respectively.
  • a lower double pivot link 1222 includes proximal and distal pins that engage corresponding holes in the lower tangs 1416 and 1436 of the proximal closure tube segment 1410 and distal closure tube segment 1430 , respectively.
  • distal and proximal axial translation of the closure tube assembly 1400 will result in the closing and opening of the anvil 1130 relative to the elongate channel 1102 .
  • the interchangeable surgical tool assembly 1000 further includes a firing member assembly 1600 that is supported for axial travel within the spine assembly 1500 .
  • the firing member assembly 1600 includes an intermediate firing shaft portion 1602 that is configured for attachment to a distal cutting portion or knife bar 1610 .
  • the firing member assembly 1600 may also be referred to herein as a “second shaft” and/or a “second shaft assembly”.
  • the intermediate firing shaft portion 1602 may include a longitudinal slot 1604 in the distal end thereof which can be configured to receive a tab (not shown) on the proximal end of the knife bar 1610 .
  • the longitudinal slot 1604 and the proximal end of the knife bar 1610 can be sized and configured to permit relative movement therebetween and can comprise a slip joint 1612 .
  • the slip joint 1612 can permit the intermediate firing shaft portion 1602 of the firing member assembly 1600 to be moved to articulate the end effector 1100 without moving, or at least substantially moving, the knife bar 1610 .
  • the intermediate firing shaft portion 1602 can be advanced distally until a proximal sidewall of the longitudinal slot 1604 comes into contact with the tab on the knife bar 1610 to advance the knife bar 1610 and fire the staple cartridge 1110 positioned within the elongate channel 1102 .
  • the elastic spine member 1520 has an elongate opening or window 1525 therein to facilitate assembly and insertion of the intermediate firing shaft portion 1602 into the elastic spine member 1520 .
  • a top frame segment 1527 may be engaged with the elastic spine member 1520 to enclose the intermediate firing shaft portion 1602 and knife bar 1610 therein. Further description of the operation of the firing member assembly 1600 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541.
  • the interchangeable tool assembly 1000 can include a clutch assembly 1620 which can be configured to selectively and releasably couple the articulation driver 1800 to the firing member assembly 1600 .
  • the clutch assembly 1620 includes a lock collar, or sleeve 1622 , positioned around the firing member assembly 1600 wherein the lock sleeve 1622 can be rotated between an engaged position in which the lock sleeve 1622 couples the articulation driver 1700 to the firing member assembly 1600 and a disengaged position in which the articulation driver 1700 is not operably coupled to the firing member assembly 1600 .
  • lock sleeve 1622 When lock sleeve 1622 is in its engaged position, distal movement of the firing member assembly 1600 can move the articulation driver 1700 distally and, correspondingly, proximal movement of the firing member assembly 1600 can move the articulation driver 1700 proximally.
  • lock sleeve 1622 When lock sleeve 1622 is in its disengaged position, movement of the firing member assembly 1600 is not transmitted to the articulation driver 1700 and, as a result, the firing member assembly 1600 can move independently of the articulation driver 1700 .
  • the articulation driver 1700 can be held in position by the articulation lock 1210 when the articulation driver 1700 is not being moved in the proximal or distal directions by the firing member assembly 1600 .
  • the lock sleeve 1622 can comprise a cylindrical, or an at least substantially cylindrical, body including a longitudinal aperture 1624 defined therein configured to receive the firing member assembly 1600 .
  • the lock sleeve 1622 can comprise diametrically-opposed, inwardly-facing lock protrusions 1626 , 1628 and an outwardly-facing lock member 1629 .
  • the lock protrusions 1626 , 1628 can be configured to be selectively engaged with the intermediate firing shaft portion 1602 of the firing member assembly 1600 .
  • the lock protrusions 1626 , 1628 are positioned within a drive notch 1605 defined in the intermediate firing shaft portion 1602 such that a distal pushing force and/or a proximal pulling force can be transmitted from the firing member assembly 1600 to the lock sleeve 1622 .
  • the second lock member 1629 is received within a drive notch 1704 defined in the articulation driver 1700 such that the distal pushing force and/or the proximal pulling force applied to the lock sleeve 1622 can be transmitted to the articulation driver 1700 .
  • the firing member assembly 1600 , the lock sleeve 1622 , and the articulation driver 1700 will move together when the lock sleeve 1622 is in its engaged position.
  • the lock protrusions 1626 , 1628 may not be positioned within the drive notch 1605 of the intermediate firing shaft portion 1602 of the firing member assembly 1600 and, as a result, a distal pushing force and/or a proximal pulling force may not be transmitted from the firing member assembly 1600 to the lock sleeve 1622 .
  • the distal pushing force and/or the proximal pulling force may not be transmitted to the articulation driver 1700 .
  • the firing member assembly 1600 can be slid proximally and/or distally relative to the lock sleeve 1622 and the proximal articulation driver 1700 .
  • the clutching assembly 1620 further includes a switch drum 1630 that interfaces with the lock sleeve 1622 . Further details concerning the operation of the switch drum and lock sleeve 1622 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541, and Ser. No. 15/019,196.
  • the switch drum 1630 can further comprise at least partially circumferential openings 1632 , 1634 defined therein which can receive circumferential mounts 1305 that extend from the nozzle halves 1302 , 1304 and permit relative rotation, but not translation, between the switch drum 1630 and the proximal nozzle 1300 . See FIG. 6 . Rotation of the nozzle 1300 to a point where the mounts reach the end of their respective slots 1632 , 1634 in the switch drum 1630 will result in rotation of the switch drum 1630 about the shaft axis SA. Rotation of the switch drum 1630 may ultimately result in the movement of the lock sleeve 1622 between its engaged and disengaged positions.
  • the nozzle 1300 may be employed to operably engage and disengage the articulation drive system with the firing drive system.
  • clutch assembly 1620 may operate in the various manners described in further detail in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541, and U.S. patent application Ser. No. 15/019,196, which have each been herein incorporated by reference in their respective entirety.
  • the switch drum 1630 includes a an L-shaped slot 1636 that extends into a distal opening 1637 in the switch drum 1630 .
  • the distal opening 1637 receives a transverse pin 1639 of a shifter plate 1638 .
  • the shifter plate 1638 is received within a longitudinal slot (not shown) that is provided in the lock sleeve 1622 to facilitate axial movement of the lock sleeve 1622 when engaged with the articulation driver 1700 .
  • Further details regarding the operation of the shifter plate and shift drum arrangements may be found in U.S. patent application Ser. No. 14/868,718, filed Sep. 28, 2015, entitled SURGICAL STAPLING INSTRUMENT WITH SHAFT RELEASE, POWERED FIRING AND POWERED ARTICULATION, the entire disclosure of which is hereby incorporated by reference herein.
  • the interchangeable tool assembly 1000 can comprise a slip ring assembly 1640 which can be configured to conduct electrical power to and/or from the end effector 1100 and/or communicate signals to and/or from the end effector 1100 , back to a microprocessor in the handle assembly or robotic system controller, for example.
  • a slip ring assembly 1640 which can be configured to conduct electrical power to and/or from the end effector 1100 and/or communicate signals to and/or from the end effector 1100 , back to a microprocessor in the handle assembly or robotic system controller, for example.
  • Further details concerning the slip ring assembly 1640 and associated connectors may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541, and U.S. patent application Ser. No. 15/019,196 which have each been herein incorporated by reference in their respective entirety as well as in U.S. patent application Ser. No.
  • the chassis 1800 includes at least one, and preferably two, tapered attachment portions 1802 formed thereon that are adapted to be received within corresponding dovetail slots 507 formed within the distal end portion of the frame 506 of the handle assembly 500 as was discussed above.
  • a shaft attachment lug 1605 is formed on the proximal end of the intermediate firing shaft 1602 .
  • the shaft attachment lug 1605 is received in a firing shaft attachment cradle 542 that is formed in the distal end of the longitudinal drive member 540 . See FIG. 3 .
  • the latch system 1810 includes a lock member or lock yoke 1812 that is movably coupled to the chassis 1800 .
  • the lock yoke 1812 has a U-shape with two spaced downwardly extending legs 1814 .
  • the legs 1814 each have a pivot lug (not shown) formed thereon that are adapted to be received in corresponding holes 1816 formed in the chassis 1800 .
  • Such arrangement facilitates pivotal attachment of the lock yoke 1812 to the chassis 1800 .
  • the lock yoke 1812 may include two proximally protruding lock lugs 1818 that are configured for releasable engagement with corresponding lock detents or grooves 509 in the distal end of the frame 506 of the handle assembly 500 . See FIG. 3 .
  • the lock yoke 1812 is biased in the proximal direction by a spring or biasing member 1819 .
  • Actuation of the lock yoke 1812 may be accomplished by a latch button 1820 that is slidably mounted on a latch actuator assembly 1822 that is mounted to the chassis 1800 .
  • the latch button 1820 may be biased in a proximal direction relative to the lock yoke 1812 .
  • the lock yoke 1812 may be moved to an unlocked position by biasing the latch button 1820 the in distal direction which also causes the lock yoke 1812 to pivot out of retaining engagement with the distal end of the frame 506 .
  • the lock lugs 1818 are retainingly seated within the corresponding lock detents or grooves 509 in the distal end of the frame 506 .
  • the lock yoke 1812 includes at least one and preferably two lock hooks 1824 that are adapted to contact corresponding lock lug portions 1426 that are formed on the closure shuttle 1420 .
  • the lock yoke 1812 may be pivoted in a distal direction to unlock the interchangeable surgical tool assembly 1000 from the handle assembly 500 .
  • the lock hooks 1824 do not contact the lock lug portions 1426 on the closure shuttle 1420 .
  • the lock yoke 1812 is prevented from being pivoted to an unlocked position.
  • the knife bar 1610 may comprise a laminated beam structure that includes at least two beam layers.
  • Such beam layers may comprise, for example, stainless steel bands that are interconnected by, for example, welding or pinning together at their proximal ends and/or at other locations along their length.
  • the distal ends of the bands are not connected together to allow the laminates or bands to splay relative to each other when the end effector is articulated.
  • Such arrangement permits the knife bar 1610 to be sufficiently flexible to accommodate articulation of the end effector.
  • Various laminated knife bar arrangements are disclosed in U.S. patent application Ser. No. 15/019,245. As can also be seen in FIG.
  • FIG. 11 illustrates one form of a firing member 1660 that may be employed with the interchangeable tool assembly 1000 .
  • the firing member 1660 comprises a body portion 1662 that includes a proximally extending connector member 1663 that is configured to be received in a correspondingly shaped connector opening 1614 in the distal end of the knife bar 1610 . See FIG. 10 .
  • the connector 1663 may be retained within the connector opening 1614 by friction and/or welding or suitable adhesive, etc.
  • the body portion 1662 protrudes through an elongate slot 1104 in the elongate channel 1102 and terminates in a foot member 1664 that extends laterally on each side of the body portion 1662 .
  • the foot member 1664 rides within a passage 1105 in the elongate channel 1102 that is located under the surgical staple cartridge 1110 .
  • one form of the firing member 1660 may further include laterally protruding central tabs, pins or retainer features 1680 .
  • the central retainer features 1680 ride on the inner surface 1106 of the elongate channel 1102 .
  • the body portion 1662 of the firing member 1660 further includes a tissue cutting edge or feature 1666 that is disposed between a distally protruding hook feature 1665 and a distally protruding top nose portion 1670 .
  • the firing member 1660 may further include two laterally extending top tabs, pins or anvil engagement features 1665 .
  • a top portion of the body 1662 extends through a centrally disposed anvil slot 1138 and the top anvil engagement features 1672 ride on corresponding ledges 1136 formed on each side of the anvil slot 1134 . See FIGS. 13 and 14 .
  • the firing member 1660 is configured to operably interface with a sled assembly 1120 that is operably supported within the body 1111 of the surgical staple cartridge 1110 .
  • the sled assembly 1120 is slidably displaceable within the surgical staple cartridge body 1111 from a proximal starting position adjacent the proximal end 1112 of the cartridge body 1111 to an ending position adjacent a distal end 1113 of the cartridge body 1111 .
  • the cartridge body 1111 operably supports therein a plurality of staple drivers (not shown) that are aligned in rows on each side of a centrally disposed slot 1114 .
  • the centrally disposed slot 1114 enables the firing member 1660 to pass therethrough and cut the tissue that is clamped between the anvil 1130 and the staple cartridge 1110 .
  • the drivers are associated with corresponding pockets 1116 that open through the upper deck surface 1115 of the cartridge body.
  • Each of the staple drivers supports one or more surgical staple or fastener (not shown) thereon.
  • the sled assembly 1120 includes a plurality of sloped or wedge-shaped cams 1122 wherein each cam 1122 corresponds to a particular line of fasteners or drivers located on a side of the slot 1114 .
  • one cam 1122 is aligned with one line of “double” drivers that each support two staples or fasteners thereon and another cam 1122 is aligned with another line of “single” drivers on the same side of the slot 1114 that each operably support a single surgical staple or fastener thereon.
  • the sled assembly 1120 has a central body portion 1124 that is configured to be engaged by the hook portion 1665 of the firing member 1660 .
  • the firing member 1660 drives the sled assembly 1120 distally as well.
  • the tissue cutting feature 1666 cuts the tissue that is clamped between the anvil assembly 1130 and the cartridge 1110 and the sled assembly 1120 drives the drivers upwardly in the cartridge which drive the corresponding staples or fasteners into forming contact with the anvil assembly 1130 .
  • the elongate shaft assembly may be configured in such a way so as to prevent the inadvertent advancement of the firing member unless an unspent staple cartridge is properly supported in the elongate channel 1102 of the surgical end effector 1100 . If, for example, no staple cartridge is present at all and the firing member is distally advanced through the end effector, the tissue would be severed, but not stapled. Similarly, if a spent staple cartridge (i.e., a staple cartridge wherein at least some of the staples have already been fired therefrom) is present in the end effector and the firing member is advanced, the tissue would be severed, but may not be completely stapled, if at all.
  • a spent staple cartridge i.e., a staple cartridge wherein at least some of the staples have already been fired therefrom
  • An “unfired”, “unspent”, “fresh” or “new” cartridge 1110 means herein that the cartridge 1110 has all of its fasteners in their “ready-to-be-fired positions”.
  • the sled assembly 1120 When in that position, the sled assembly 1120 is located in its starting position.
  • the new cartridge 1110 is seated within the elongate channel 1102 and may be retained therein by snap features on the cartridge body that are configured to retainingly engage corresponding portions of the elongate channel 1102 .
  • FIGS. 15 and 18 illustrate a portion of the surgical end effector 1100 with a new or unfired surgical staple cartridge 1110 seated therein. As can be seen in those Figures, the sled assembly 1120 is in the starting position.
  • the illustrated interchangeable surgical tool assembly 1000 employs a firing member lockout system generally designated as 1650 .
  • the firing member lockout system 1650 includes movable lock member 1652 that is configured to retainingly engage the firing member 1660 when a surgical staple cartridge 1110 is not properly seated within the elongate channel 1102 .
  • the lock member 1652 comprises at least one laterally moving locking portion 1654 that is configured to retainingly engage a corresponding portion of the firing member when the sled assembly 1120 is not present within the cartridge 1110 in its starting position.
  • the lock member 1652 employs two laterally moving locking portions 1654 wherein each locking portion 1654 engages a laterally extending portion of the firing member 1660 .
  • the lock member 1652 comprises a generally U-shaped spring member wherein each laterally movable leg or locking portion 1654 extends from a central spring portion 1653 and is configured to move in lateral directions represented by “L” in FIGS. 18 and 19 .
  • the spring or lock member 1652 may be fabricated from high strength spring steel or similar material.
  • the central spring portion 1653 may be seated within a slot 1236 in the end effector mounting assembly 1230 . See FIG. 10 .
  • each of the laterally movable legs or locking portions 1654 has a distal end 1656 with a locking window 1658 therein.
  • FIGS. 15 and 18 illustrate a portion of the surgical end effector 1100 with a new unfired cartridge 1110 properly installed therein.
  • the sled assembly 1120 includes an unlocking feature 1126 that corresponds to each of the laterally movable locking portion 1654 .
  • an unlocking feature 1126 is provided on or extends proximally from each of the central wedge-shaped cams 1122 .
  • the unlocking feature 1126 may comprise a proximally protruding portion of the corresponding wedge-shaped cam 1122 .
  • FIG. 15 and 18 illustrate a portion of the surgical end effector 1100 with a new unfired cartridge 1110 properly installed therein.
  • the sled assembly 1120 includes an unlocking feature 1126 that corresponds to each of the laterally movable locking portion 1654 .
  • an unlocking feature 1126 is provided on or extends proximally from each of the central wedge-shaped cams 1122 .
  • the unlocking feature 1126 may comprise a proximally protruding portion of
  • the unlocking features 1124 engage and bias the corresponding locking portions 1654 laterally in a direction that is transverse to the shaft axis SA.
  • the central retainer features 1680 are not in retaining engagement with their corresponding locking window 1658 .
  • the firing member 1660 may be distally axially advanced (fired).
  • the locking portions 1654 spring laterally into retaining engagement with the firing member 1660 .
  • the firing member 1660 cannot be moved distally.
  • FIGS. 16 and 17 illustrate the retraction of the firing member 1660 back to the starting position after firing the cartridge 1110 and driving the sled assembly 1120 distally.
  • FIG. 16 depicts the initial reengagement of the retaining feature 1680 into its corresponding locking window 1658 .
  • FIG. 17 illustrates the retaining feature in its locked position when the firing member 1660 has been fully retracted back to its starting position.
  • each of the retaining features 1680 may be provided with a proximally facing, laterally tapered end portion.
  • Such lockout system prevents actuation of the firing member 1660 when a new unfired cartridge is not present or when a new unfired cartridge is present, but has not been properly seated in the elongate channel 1102 .
  • the lockout system may prevent the clinician from distally advancing the firing member in the case where a spent or partially fired cartridge has been inadvertently properly seated within the elongate channel.
  • Another advantage that may be provided by the lockout system 1650 is that, unlike other firing member lock out arrangements that require movement of the firing member into and out of alignment with the corresponding slots/passages in the staple cartridge, the firing member 1660 remains in alignment with the cartridge passages while in the locked and unlocked position.
  • the locking portions 1654 are designed to move laterally into and out of engagement with corresponding sides of the firing member. Such lateral movement of the locking portions or portion is distinguishable from other locking arrangements that move in vertical directions to engage and disengage portions of the firing member.
  • the anvil 1130 includes an elongated anvil body portion 1132 and a proximal anvil mounting portion 1150 .
  • the elongated anvil body portion 1132 includes an outer surface 1134 that defines two downwardly extending tissue stop members 1136 that are adjacent to the proximal anvil mounting portion 1150 .
  • the elongated anvil body portion 1132 also includes an underside 1135 that defines an elongate anvil slot 1138 . In the illustrated arrangement shown in FIG. 14 , the anvil slot 1138 is centrally disposed in the underside 1135 .
  • the underside 1135 includes three rows 1140 , 1141 , 1142 of staple forming pockets 1143 , 1144 and 1145 located on each side of the anvil slot 1138 . Adjacent each side of the anvil slot 1138 are two elongate anvil passages 1146 . Each passage 1146 has a proximal ramp portion 1148 . See FIG. 13 . As the firing member 1660 is advanced distally, the top anvil engagement features 1632 initially enter the corresponding proximal ramp portions 1148 and into the corresponding elongate anvil passages 1146 .
  • the anvil slot 1138 extend into the anvil mounting portion 1150 .
  • the anvil slot 1138 divides or bifurcates the anvil mounting portion 1150 into two anvil attachment flanges 1151 .
  • the anvil attachments flanges 1151 are coupled together at their proximal ends by a connection bridge 1153 .
  • the connection bridge 1153 serves to provide support to the anvil attachment flanges 1151 and can serve to make the anvil mounting portion 1150 more rigid than the mounting portions of other anvil arrangements wherein the anvil attachment flanges are not connected at their proximal ends.
  • the anvil slot 1138 has a wide portion 1139 to accommodate the top portion and top anvil engagement features 1632 of the firing member 1660 .
  • each of the anvil attachment flanges 1151 includes a transverse mounting hole 1156 that is configured to receive a pivot pin 1158 ( FIGS. 10 and 20 ) therethrough.
  • the anvil mounting portion 1150 is pivotally pinned to the proximal end 1103 of the elongate channel 1102 by the pivot pin 1158 which extends through mounting holes 1107 in the proximal end 1103 of the elongate channel 1102 and the mounting hole 1156 in anvil mounting portion 1150 .
  • Such arrangement serves to pivotally affix the anvil 1130 to the elongate channel 1102 for selective pivotal travel about a fixed anvil axis A-A which is transverse to the shaft axis SA. See FIG. 5 .
  • the anvil mounting portion 1150 also includes a cam surface 1152 that extends from a centralized firing member parking area 1154 to the outer surface 1134 of the anvil body portion 1132 .
  • FIG. 23 illustrates a cam surface 1152 b that is configured relative to the internal cam surface 1444 on the distal closure tube segment to establish two separate and distinct arcuate contact paths 1155 b between the cam surface 1152 on the anvil mounting portion 1150 and internal cam surface 1444 on the distal closure tube segment 1430 .
  • FIG. 24 illustrates a cam surface 1152 c that is configured relative to the internal cam surface 1444 of the distal closure tube segment 1430 to establish three distinct zones of contact 1155 c and 1155 d between the cam surfaces on the anvil mounting portion 1150 and the distal closure tube segment 1430 .
  • the zones 1155 c , 1155 d establish larger areas of camming contact between the cam surface or cam surfaces on the distal closure tube segment 1430 and the anvil mounting portion 1150 and may serve to better distribute the closure forces to the anvil 1130 .
  • the anvil 1130 is pivoted about the anvil axis AA which results in the pivotal movement of the distal end of the end 1133 of elongate anvil body portion 1132 toward the surgical staple cartridge 1110 and distal end 1105 of the elongate channel 1102 .
  • the anvil body portion 1132 begins to pivot, it contacts the tissue that is to be cut and stapled which is now positioned between the underside 1135 of the elongate anvil body portion 1132 and the deck 1116 of the surgical staple cartridge 1110 .
  • the anvil 1130 may experience considerable amounts of resistive forces.
  • FIGS. 25-27 illustrate an alternative anvil embodiment that includes features that may improve the stiffness of the anvil body and its resistance to flexure forces that may be generated during the closing and/or firing processes.
  • the anvil 1130 ′ may otherwise be identical in construction to the anvil 1130 described above except for the differences discussed herein. As can be seen in those Figures, the anvil 1130 ′ has an elongate anvil body 1132 ′ that has an upper body portion 1165 that has an anvil cap 1170 attached thereto. In the embodiment depicted in FIGS. 25-27 , the anvil cap 1170 is roughly rectangular in shape and has an outer cap perimeter 1172 .
  • the perimeter 1172 of the anvil cap 1170 is configured to be inserted through the correspondingly-shaped opening 1137 formed in the upper body portion 1165 and received on axially extending internal ledge portions 1139 formed therein. See FIG. 27 .
  • the internal ledge portions 1139 are configured to support the corresponding long sides 1177 of the anvil cap 1170 .
  • the anvil cap 1170 may be slide onto the internal ledges 1139 through an opening (not shown) in the distal end 1133 of the anvil body 1132 ′.
  • no internal ledge portions are provided.
  • the anvil body 1132 ′ and the anvil cap 1170 may be fabricated from suitable metal that is conducive to welding.
  • a first weld 1178 may extend around the entire cap perimeter 1172 of the anvil cap 1170 or it may only be located along the long sides 1177 of the anvil cap 1170 and not the distal end 1173 and/or proximal end 1175 thereof.
  • the first weld 1178 may be continuous or it may be discontinuous or intermittent.
  • the weld segments may be equally distributed along the long sides 1177 of the anvil cap 1170 or the weld segments may be more densely spaced closer to the distal ends of the long sides 1177 or more densely spaced closer to the proximal ends of the long sides 1177 .
  • the weld segments may be more densely spaced in the center areas of the long sides 1177 of the anvil cap 1170 .
  • FIGS. 28-30 illustrate an anvil cap 1170 ′ that is configured to be “mechanically interlocked” to the anvil body 1132 ′ as well as welded to the upper body portion 1165 .
  • a plurality of retention formations 1182 are formed into the wall 1180 of the upper body portion 1165 that defines opening 1137 .
  • the term “mechanically interlocked” means that the anvil cap will remain affixed to the elongate anvil body regardless of the orientation of the elongate anvil body and without any additional retaining or fastening such as welding and/or adhesive, for example.
  • the retention formations 1182 may protrude inwardly into the opening 1137 from the opening wall 1180 .
  • the retention formations 1182 may be integrally formed into the wall 1180 or otherwise be attached thereto.
  • the retention formations 1182 are designed to frictionally engage a corresponding portion of the anvil cap 1170 ′ when it is installed in the opening 1137 to frictionally retain the anvil cap 1170 ′ therein.
  • the retention formations 1182 protrude inwardly into the opening 1137 and are configured to be frictionally received within a correspondingly shaped engagement area 1184 formed in the outer perimeter 1172 ′ of the anvil cap 1170 ′.
  • the retention formations 1182 only correspond to the long sides 1177 ′ of the anvil cap 1170 ′ and are not provided in the portions of the wall 1180 that correspond to the distal end 1173 or proximal end 1175 of the anvil cap 1170 ′.
  • the retention formations 1182 may also be provided in the portions of the wall 1180 that correspond to the distal end 1173 and proximal end 1175 of the anvil cap 1170 ′ as wall as the long sides 1177 ′ thereof.
  • the retention formations 1182 may only be provided in the portions of the wall 1180 that correspond to one or both of the distal and proximal ends 1173 , 1175 of the anvil cap 1170 ′.
  • the retention formations 1182 may be provided in the portions of the wall 1180 corresponding to the long sides 1177 ′ and only one of the proximal and distal ends 1173 , 1175 of the anvil cap 1170 ′. It will be further understood that the retention protrusions in all of the foregoing embodiments may be alternatively formed on the anvil cap with the engagement areas being formed in the elongate anvil body.
  • the retention formations 1182 are equally spaced or equally distributed along the wall portions 1180 that correspond to the long sides 1177 ′ of the anvil cap 1170 ′.
  • the retention formations 1182 may be more densely spaced closer to the distal ends of the long sides 1177 ′ or more densely spaced closer to the proximal ends of the long sides 1177 ′.
  • the spacing between those retention formations adjacent the distal end, the proximal end or both the distal and proximal ends may be less than the spacing of the formations located in the central portion of the anvil cap 1170 ′.
  • a weld 1178 ′ may extend around the entire perimeter 1172 ′ of the anvil cap 1170 ′ or the weld 1178 ′ may only be located along the long sides 1177 ′ of the anvil cap 1170 ′ and not the distal end 1173 and/or proximal end 1175 thereof.
  • the weld 1178 ′ may be continuous or it may be discontinuous or intermittent.
  • the weld segments may be equally distributed along the long sides 1177 ′ of the anvil cap 1170 ′ or the weld segments may be more densely spaced closer to the distal ends of the long sides 1177 ′ or more densely spaced closer to the proximal ends of the long sides 1177 ′. In still other arrangements, the weld segments may be more densely spaced in the center areas of the long sides 1177 ′ of the anvil cap 1170 ′.
  • FIGS. 31 and 32 illustrate another anvil arrangement 1130 ′′ that is has an anvil cap 1170 ′′ attached thereto.
  • the anvil cap 1170 ′′ is roughly rectangular in shape and has an outer cap perimeter 1172 ′′.
  • the outer cap perimeter 1172 ′′ is configured to be inserted through the correspondingly-shaped opening 1137 ′′ in upper body portion 1165 of the anvil body 1132 ′′ and received on axially extending internal ledge portions 1139 ′′ and 1190 ′′ formed therein. See FIG. 32 .
  • the ledge portions 1139 ′′ and 1190 ′′ are configured to support the corresponding long sides 1177 ′′ of the anvil cap 1170 ′′.
  • the anvil cap 1170 ′′ may be slid onto the internal ledges 1139 ′′ and 1190 ′′ through an opening (not shown) in the distal end 1133 ′′ of the anvil body 1132 ′.
  • the anvil body 1132 ′′ and the anvil cap 1170 ′′ may be fabricated from metal material that is conducive to welding.
  • a first weld 1178 ′′ may extend around the entire perimeter 1172 ′′ of the anvil cap 1170 ′′ or it may only be located along the long sides 1177 ′′ of the anvil cap 1170 ′′ and not the distal end 1173 ′′ and/or proximal end (not shown) thereof.
  • the weld 1178 ′′ may be continuous or it may be discontinuous or intermittent.
  • the anvil cap 1170 ′′ may be additionally welded to the anvil body 1132 ′′ by a plurality of second discrete “deep” welds 1192 ′′.
  • each weld 1192 ′′ may be placed at the bottom of a corresponding hole or opening 1194 ′′ provided through the anvil cap 1170 ′′ so that a discrete weld 1192 ′′ may be formed along the portion of the anvil body 1132 ′′ between the ledges 1190 ′′ and 1139 ′′. See FIG. 32 .
  • the welds 1192 ′′ may be equally distributed along the long sides 1177 ′′ of the anvil cap 1170 ′′ or the welds 1192 ′′ may be more densely spaced closer to the distal ends of the long sides 1177 ′′ or more densely spaced closer to the proximal ends of the long sides 1177 ′′. In still other arrangements, the welds 1192 ′′ may be more densely spaced in the center areas of the long sides 1177 ′′ of the anvil cap 1170 ′′.
  • FIG. 33 illustrates another anvil cap 1170 ′′′ that is configured to be mechanically interlocked to the anvil body 1132 ′′′ as well as welded to the upper body portion 1165 .
  • a “tongue-in-groove” arrangement is employed along each long side 1177 ′′′ of the anvil cap 1170 ′′′.
  • a laterally extending continuous or intermittent tab 1195 ′′′ protrudes from each of the long sides 1177 ′′′ of the anvil cap 1170 ′′′.
  • Each tab 1195 ′′ corresponds to an axial slot 1197 ′′′ formed in the anvil body 1132 ′′′.
  • the anvil cap 1170 ′′′ is slid in from an opening (not shown) in the distal end of the anvil body 1132 ′′′ to “mechanically” affix the anvil cap to the anvil body 1132 ′′′.
  • the tabs 1195 ′′′ and slots 1197 ′′′ may be sized relative to each other to establish a sliding frictional fit therebetween.
  • the anvil cap 1170 ′′′ may be welded to the anvil body 1132 ′′′.
  • the anvil body 1132 ′′′ and the anvil cap 1170 ′′′ may be fabricated from metal that is conducive to welding.
  • the weld 1178 ′′′ may extend around the entire perimeter 1172 ′′′ of the anvil cap 1170 ′′′ or it may only be located along the long sides 1177 ′′′ of the anvil cap 1170 ′′′.
  • the weld 1178 ′′′ may be continuous or it may be discontinuous or intermittent.
  • the weld segments may be equally distributed along the long sides 1177 ′′′ of the anvil cap 1170 ′′′ or the weld segments may be more densely spaced closer to the distal ends of the long sides 1177 ′′′ or more densely spaced closer to the proximal ends of the long sides 1177 ′′′.
  • the weld segments may be more densely spaced in the center areas of the long sides 1177 ′′′ of the anvil cap 1170 ′′′.
  • the anvil body 1132 contacts the tissue that is to be cut and stapled which is positioned between the undersurface of the elongate anvil body 1132 and the deck of the surgical staple cartridge 1110 .
  • the anvil 1130 may experience considerable amounts of resistive forces. To continue the closure process, these resistive forces must be overcome by the distal closure tube segment 1430 as it cammingly contacts the anvil mounting portion 1150 .
  • These resistive forces may be generally applied to the distal closure tube segment 1430 in the vertical directions V which, if excessive, could conceivably cause the distal closure tube segment 1430 to expand or elongate in the vertical direction (distance ID in FIG. 31 may increase).
  • the distal closure tube 1430 elongates in the vertical directions, the distal closure tube segment 1430 may not be able to effectively close the anvil 1130 and retain the anvil 1130 in the fully closed position. If that condition occurs, the firing member 1660 may encounter dramatically higher resistance which will then require higher firing forces to distally advance the firing member.
  • the distal closure tube segment 1430 may be machined or otherwise formed from round bar stock manufactured from, for example, suitable metal material.
  • the closure body 1470 has an outer surface 1431 and an inner surface 1433 that defines an upper wall portion 1440 that has an upper wall cross-sectional thickness UWT and a lower wall portion 1442 that has a lower wall thickness LWT.
  • the upper wall portion 1440 is located above the shaft axis SA and the lower wall portion 1442 is located below the shaft axis SA.
  • the distal end 1441 of the upper wall portion 1440 has an internal cam surface 1444 formed thereon at a cam angle ⁇ .
  • UWT>LWT which serves to provide a longer internal cam surface 1444 than might other wise be attainable if the distal closure tube segment has a uniform wall thickness.
  • a long internal cam surface may be advantageous for transferring the closure forces to the cam surface(s) on the anvil mounting portion 1150 .
  • the transitional sidewalls 1446 , 1448 that are located on each side of the shaft axis SA between the upper wall portion 1440 and the lower wall portion 1442 comprise generally flat, vertically extending internal sidewall surfaces 1451 , 1453 that may be generally parallel to each other.
  • the transitional sidewalls 1446 , 1448 each have a wall thickness that transitions from the upper wall thickness to the lower wall thickness.
  • the distal closure tube segment 1430 also includes positive jaw or anvil opening features 1462 that correspond to each of the sidewalls 1446 and 1448 and protrude inwardly therefrom.
  • the anvil opening features 1462 are formed on a lateral mounting body 1460 that sized to be received within a correspondingly-shaped cavity 1447 , 1449 machined or otherwise formed in the transitional sidewalls 1446 , 1448 adjacent the distal end 1438 of the distal closure tube segment 1430 .
  • the positive anvil opening features 1462 extend inwardly through corresponding openings 1450 , 1452 in the transitional sidewalls 1446 , 1448 .
  • FIGS. 36-41 illustrate one example of the use of the distal closure tube segment 1430 to move the anvil 1130 from a fully closed position to a fully open position.
  • FIGS. 36 and 39 illustrate the position of the distal closure tube segment 1430 and, more particularly the position of one of the positive anvil opening features 1462 when the distal closure tube segment 1430 is in the fully closed position.
  • an anvil opening ramp 1162 is formed on the underside of each of the anvil attachment flanges 1151 .
  • each of the positive anvil opening features 1462 is located in a cavity 1164 that is established between the anvil opening ramps 1162 and the bottom portion of the elongate channel 1102 .
  • the positive anvil opening features 1462 do not contact the anvil mounting portion 1150 or at least do not apply any significant opening motions or forces thereto.
  • FIGS. 37 and 40 illustrate the positions of the anvil 1130 and the distal closure tube segment 1430 upon the initial application of an opening motion in the proximal direction PD to the distal closure tube segment 1430 .
  • the positive jaw opening features 1462 have initially contacted the anvil opening ramps 1164 to cause the anvil 1130 to start pivoting to an open position.
  • the distal closure tube segment 1430 ′ has an outer surface 1431 ′ that has circular cross-sectional shape.
  • the distal closure tube segment 1430 ′ may be machined from solid bar stock.
  • internal radius R 1 from a first center axis A inner extends to the inner surface 1433 ′ and the outer radius R 2 from a second center axis A outer extends to the outer surface 1431 ′.
  • axis A inner is offset by distance OR from axis A outer and R 2 >R 1 .
  • FIG. 44 illustrates another closure member for applying closure motions to a movable jaw of a surgical instrument.
  • the closure member comprises a distal closure tube segment 1430 ′′ that has a closure body 1470 ′′.
  • the closure body 1470 ′′ has an outer surface 1431 ′ and an inner surface 1433 ′′ that define an upper wall portion 1440 ′′ that has an upper wall thickness UWT and a lower wall portion 1442 ′′ that has a lower wall thickness LWT and two sidewall portions 1435 ′ that each has a sidewall thickness SWT.
  • UWT >LWT.
  • SWT >UWT.
  • R 1 and R 2 are measured from a common center point or center axis C and R 1 >R 2 .
  • Each of the sidewall portions 1435 ′′ of the closure body portion 1470 ′′′ of the distal closure tube segment 1430 ′′′ that extend between the upper portion 1431 ′′ and 1433 ′′ have a sidewall thickness SWT that is approximately equal to the UWT at points along a horizontal reference line HR.
  • the horizontal reference line HR is perpendicular to a vertical reference line VR that extends through the center axis C and along which the UWT and LWT may be measured and compared.
  • SWT UWT.
  • SWT when measured along the horizontal reference line HR may be slightly less than the UWT.
  • the thicknesses SWT of the sidewall portions 1437 ′′ are greater than the upper wall and lower wall thicknesses UWT and LWT.
  • SWT is greater than UWT and LWT.
  • the portion of the distal closure tube segment 1430 ′′ located above the horizontal reference line HR is a mirror image of the portion of the distal closure tube segment 1430 ′′ located below the horizontal reference line HR.
  • the side portions 1437 ′′ are thicker than the upper and lower wall portions and may tend to prevent or minimize the tendency of the distal closure tube segment to elongate in the vertical directions.
  • the internal camming surface may be formed on the distal end of the upper wall portion 1440 ′′.
  • FIG. 47 depicts portion of a surgical end effector 110 ′ that may be similar to the surgical end effector 110 of the interchangeable surgical tool assembly 100 of FIGS. 1 and 2 .
  • the anvil 114 includes an elongate body portion 190 and an anvil mounting portion 192 .
  • the anvil mounting portion 192 comprises two spaced anvil mounting flanges 194 that protrude proximally from the elongate body portion 190 .
  • Each anvil mounting flange 194 has an outwardly extending trunnion 196 thereon.
  • the distal closure tube segment 142 causes the body portion 190 of the anvil 114 to pivot and move axially relative to the surgical staple cartridge 116 .
  • the distal end 148 of the distal closure tube segment 142 abuts/contacts an abrupt anvil ledge 191 and serves to position the anvil 114 so that the forming pockets (not shown) in the underside of the body portion 190 are properly aligned with the staples in the cartridge.
  • the anvil ledge 191 is defined between the cam surface 193 on the anvil mounting portion 192 and the elongate anvil body portion 190 . Stated another way, in this arrangement, the cam surface 193 does not extend to the outermost surface 195 of the anvil body 190 . After the distal closure tube 142 has reached this fully extended position, any further application of closure motions/forces to the anvil 114 , may cause damage to the anvil and/or the closure system components. As can be seen in FIG. 47 , in this arrangement, the closure force F H is parallel to the shaft axis SA. The distance between an axis or plane T A passing through the centers of the trunnions 196 to the closure force vector F H is represented as distance X R . This distance X R times the closure force F H represents a closure moment C M that is applied to the anvil 114 .
  • FIGS. 48 and 49 illustrate the closure force configurations for an anvil 1130 of a surgical end effector 1100 of the interchangeable tool assembly 1000 .
  • the anvil trunnions 1158 are pivotally mounted within holes 1154 in the elongate channel 1102 .
  • the anvil 1130 does not move axially. Instead, the anvil 1130 is constrained to only pivot about the anvil axis AA.
  • F T represents the force generated by the tissue when the tissue is clamped between the anvil and the staple cartridge.
  • This “counter” moment M T that is applied to the anvil 1130 equals the distance X T between the tissue force T F and the axis or plane T A that extends through the centers of the anvil trunnions 1158 times the tissue force T F .
  • C M1 must be greater than M T .
  • the firing bar 170 is attached to a firing member 174 that, when in a starting or unfired position, is located within the elongate channel 112 and, more particularly, is located completely distal to the distal closure tube segment 142 in a position wherein a top portion 175 of the firing member 174 is in contact with a portion of the anvil 114 . Because the firing member 174 is located in a position wherein the top portion 175 thereof can contact the anvil as the anvil 114 is moved to the closed position, such arrangement may result in the need for higher closure forces to move the anvil 114 to a completely or fully closed position.
  • the firing member 1660 is “parked” in the firing member parking area 1154 that is within the distal closure tube segment 1430 .
  • the firing member 1660 is located within the firing member parking area 1154 within the distal closure tube segment 1430 , it is unable to generate significant frictional forces with the anvil.
  • one of the advantages that may be achieved by parking the firing member 1660 completely within the distal closure tube segment 1430 may be the reduction of the amount of closure force necessary to close the anvil to a fully closed position and/or a reduction in the amount of firing force needed to advance the firing member from the starting to ending position within the end effector.
  • parking the firing member 1660 so that the firing member 1660 is completely proximal to the distal end of the distal closure tube segment 1430 and the internal cam surface 1444 thereon and in a starting position wherein any frictional contact between the firing member and the anvil is eliminated or reduced may ultimately require lower closure and firing forces to be generated for operation of the end effector.
  • FIGS. 20 and 21 another advantage that may be provided by the anvil 1130 and elongate channel 1102 depicted therein is that the anvil mounting portion 1150 of the anvil 1130 is generally more robust and therefor stiffer than other anvil and elongate channel arrangements.
  • FIG. 50 illustrates use of stiffener gussets 199 between the anvil mounting flanges 194 and the elongate anvil body portion 190 . Similar gusset arrangements may also be employed between the anvil attachment flanges 1151 and anvil body 1132 of anvil 1130 to further enhance anvil stiffness.
  • the interchangeable surgical tool 1000 includes an elastic spine member 1520 .
  • the distal end portion 1522 of the elastic spine member 1520 is separated from the proximal end portion 1524 of the elastic spine member 15 by a stretch feature 1530 formed in the elastic spine member 1520 .
  • a stretch limiting insert 1540 is retainingly supported between the distal end portion 1522 and the proximal end portion 1524 .
  • the elastic spine member 1520 may be fabricated from, for example, suitable polymeric material, rubber, etc. which has a modulus of elasticity designated as ME 1 for reference purposes.
  • the stretch feature 1530 may include a plurality of stretch cavities 1532 .
  • the illustrated stretch feature 1530 includes four triangular-shaped stretch cavities 1532 that are arranged to define some what flexible wall segments 1534 therebetween. Other shapes and numbers of stretch cavities 1532 may be employed.
  • the stretch cavities 1532 may be molded or machined into the elastic spine member 1520 , for example.
  • the stretch limiting insert 1540 comprises a body portion 1541 which has a modulus of elasticity designated as ME 2 for reference purposes.
  • the body portion 1541 includes two downwardly extending mounting lugs 1542 that are each configured to be seated into mounting cavities 1535 formed in the elastic spine member 1520 . See also FIG. 7A .
  • the body portion 1541 in the illustrated arrangement is provided with a plurality of upper cavities 1543 .
  • the illustrated example includes four upper cavities 1543 that are relatively square or rectangular in shape and which are spaced to define flexible walls 1544 therebetween. Other embodiments may include other numbers and shapes of upper cavities.
  • the body portion 1541 of the illustrated stretch limiting insert 1540 also includes a centrally disposed, downwardly protruding central lug portion 1545 that is configured to be seated in a central cavity 1536 above the stretch feature 1530 . See FIG. 7 A.
  • the central lug portion 1545 includes a pair of central passages 1546 that extend laterally therethrough to define a flexible wall 1547 therebetween.
  • FIG. 51 illustrates the anvil 1130 in an open position.
  • the distal closure tube segment 1430 is in its starting or unactuated position and the positive anvil opening features 1462 have pivoted the anvil 1130 to the open position.
  • the firing member 1660 is in the unactuated or starting position wherein the upper portion, including the top nose portion 1630 , is parked in the firing member parking area 1154 of the anvil mounting portion 1150 .
  • the stretch limiting insert 1540 is in an unstretched state.
  • the axial length of the stretch limiting insert 1540 when in the unstretched state is represented by L us in FIG. 51 .
  • L us represents the distance between a reference axis A that corresponds to the proximal end of the body portion 1541 of the stretch limiting insert 1540 and a reference axis B that corresponds to the distal end of the body portion 1541 as shown in FIG. 51 .
  • the axis labeled F corresponds to the location of the distal end of the staple cartridge 1110 that has been properly seated within the elongate channel 1102 . It will be understood that when the tool assembly 1000 is in this unactuated state, the elastic spine member 1520 is in a relaxed unstretched state.
  • FIG. 52 illustrates the interchangeable surgical tool assembly 1000 after the closure drive system 510 has been activated as described above to drive the distal closure tube segment 1430 distally in the distal direction DD.
  • the cam surface 1444 on the distal end 1441 of the upper wall portion 1440 of the distal closure tube segment 1430 cammingly contacts the cam surface 1152 on the anvil mounting portion 1150 and pivots the anvil 1130 to the closed position as shown.
  • the closure drive system 510 moves the distal closure tube segment 1430 through its entire closure stroke distance and then is deactivated and the distal closure tube segment is axially locked or otherwise retained in that position by the closure drive system 510 .
  • Axis B as shown in FIG. 52 is a reference axis for the stretch limiting insert 1540 when in a relaxed or unstretched state.
  • Axis C corresponds to the end of the stretch limiting insert 1540 after the stretch limiting insert has been stretched into its maximum elongated stated.
  • the distance L s represents the maximum amount or length that the stretch limiting insert 1540 may elongate.
  • Axis G corresponds to the location of the distal end of the surgical staple cartridge 1110 after the anvil 1130 has been moved to that “first” closed position.
  • the distance L T between reference axes F and G represents the axial distance that the elongate channel 1102 and the anvil 1130 have traveled during actuation of the closure drive system 510 . This distance L T may be equal to the distance L S that the stretch limiting insert 1540 was stretched during the closure process as limited by the stretch limiter 1550 .
  • each mounting lug 1554 of the stretch limiter 1550 serves to limit the amount of elongation experienced by the stretch limiting insert 1540 which in turn limits the amount of distal travel of the elongate channel 1102 and anvil 1130 relative to the proximal end portion 1524 of the elastic spine 1520 .
  • the distal closure tube 1430 is axially locked in position by the closure drive system 510 .
  • the anvil 1130 is retained in a ‘first” closed position relative to the surgical staple cartridge 1110 .
  • the firing drive system 530 has yet to be actuated, the firing member 1660 has not moved and remains parked in the firing member parking area 1154 .
  • the position of the underside of the anvil 1130 when in the “first” closed position is represented by axis K in FIGS. 52 and 53 .
  • FIG. 53 illustrates the position of the firing member 1660 after the firing drive system 530 has been initially actuated.
  • the firing member 1660 has been distally advanced out of the firing member parking area 1154 .
  • the top portion of the firing member 1660 and, more specifically, each of the top anvil engagement features 1672 has entered the proximal ramp portion 1138 of the corresponding axial passage 1146 in the anvil 1130 .
  • the anvil 1130 may be under considerable bending stress caused by the tissue that is clamped between the underside of the anvil 1130 and the deck of the staple cartridge 1110 .
  • the amount of force required to fire the firing member 1660 or, stated another way, the amount of force required to distally push the firing member 1660 through the tissue that is clamped between the anvil 1130 and the cartridge 1110 is increasing. See line 1480 in FIG. 55 .
  • the stretch limiting insert is trying to retract the elongate channel 1102 and anvil 1130 in the proximal direction PD into the distal closure tube segment 1430 .
  • the stretch limiting insert 1540 will cause the elongate channel 1102 and anvil 1130 to be drawn proximally further into the distal closure tube segment 1430 .
  • the position of the distal end 1113 of the staple cartridge 1110 after the elongate channel 1102 and anvil 1130 have traveled in the proximal direction PD is represented as position H in FIG. 54 .
  • the axial distance that the elongate channel 1102 and the anvil 1130 traveled in the proximal direction PD is represented as distance I in FIG. 54 .
  • This proximal movement of the anvil 1130 and the elongate channel 1102 into the distal closure tube segment 1430 will result in the application of additional closure forces to the anvil 1130 by the distal closure tube segment 1430 .
  • Line M in FIG. 54 represents the “second” closed position of the anvil 1130 .
  • the distance between position K and position M which is represented as distance N comprises the vertical distance that the distal end 1133 of the anvil body 1132 traveled between the first closed position and the second closed position.
  • Line 1480 represents the amount of firing force required to move the firing member 1660 from its starting to ending position when the end effector 1100 is clamping tissue therein.
  • Line 1482 represents the amount of firing force required to move the firing member the interchangeable surgical tool assembly 1000 described above.
  • Line 1482 represents the firing force required to move the firing member 174 from its starting to ending position through tissue that is clamped in the end effector 110 or 110 ′.
  • the firing forces required by both of the surgical tool assemblies 100 , 1000 are substantially the same or very similar until the point in time 1484 wherein the elastic spine assembly 1510 of the interchangeable tool assembly 1000 results in an application of a second amount of closure force to the anvil.
  • the second amount of closure force is experienced by the anvil 1130 (point 1484 )
  • the amount of closure force required to complete the firing process is less than the amount of closure force required to complete the closing process in tool assembly 100 .
  • FIG. 56 compares the amount of firing load required to move a firing member of various surgical end effectors from a starting position ( 0 . 0 ) to an ending position ( 1 . 0 ).
  • the vertical axis represents the amount of firing load and the horizontal axis represents the percentage distance that the firing member traveled between the starting position ( 0 . 0 ) and the ending position ( 1 . 0 ).
  • Line 1490 depicts the firing force required to fire, for example, the firing member of a surgical tool assembly 100 or similar tool assembly.
  • Line 1492 depicts the firing force required to fire the firing member of a surgical tool assembly that employs the various firing member improvements and configurations that may be disclosed in, for example, U.S. patent application Ser. No.
  • Line 1494 depicts the firing force required to fire the firing member from its starting to ending position of surgical tool assemblies that employ at least some of the features and arrangements disclosed herein for stiffening the anvil.
  • Line 1496 depicts the firing force required to fire, for example, surgical tool assemblies that employ the elastic spine arrangement and at least some of the features and arrangements disclosed herein for stiffening the anvil. As can be seen in that Figure, the surgical tool assembly that employs the elastic spine arrangement and at least some of the anvil stiffening arrangements disclosed herein have a much lower force-to-fire requirement.
  • FIG. 57 provides a side-by-side comparison of two anvils.
  • a portion of a first anvil 2030 of an end effector 2000 is depicted in the right half of FIG. 57 and a portion of a second anvil 2030 ′ of an end effector 2000 ′ is depicted in the left half of FIG. 57 .
  • the anvil 2030 comprises a first longitudinal row of forming pockets 2032 a , a second longitudinal row of forming pockets 2032 b , and a third longitudinal row of forming pockets 2032 c .
  • the anvil 2030 further comprises a longitudinal slot 2033 which is configured to receive a firing member, such as firing member 2040 , for example, as the firing member is advanced through a staple firing stroke.
  • the first longitudinal row of forming pockets 2032 a is positioned intermediate the longitudinal slot 2033 and the second longitudinal row of forming pockets 2032 b
  • the second longitudinal row of forming pockets 2032 b is positioned intermediate the first longitudinal row of forming pockets 2032 a and the third longitudinal row of forming pockets 2032 c .
  • the first longitudinal row of forming pockets 2032 a comprises an inner row
  • the third longitudinal row of forming pockets 2032 c comprises an outer row
  • the second longitudinal row of forming pockets 2032 b comprises a middle or intermediate row.
  • the anvil 2030 ′ comprises a first longitudinal row of forming pockets 2032 a , a second longitudinal row of forming pockets 2032 b , and a third longitudinal row of forming pockets 2032 c .
  • the anvil 2030 ′ further comprises a longitudinal slot 2033 ′ which is configured to receive a firing member, such as firing member 2040 ′, for example, as the firing member is advanced through a staple firing stroke.
  • the first longitudinal row of forming pockets 2032 a is positioned intermediate the longitudinal slot 2033 ′ and the second longitudinal row of forming pockets 2032 b
  • the second longitudinal row of forming pockets 2032 b is positioned intermediate the first longitudinal row of forming pockets 2032 a and the third longitudinal row of forming pockets 2032 c .
  • the first longitudinal row of forming pockets 2032 a comprises an inner row
  • the third longitudinal row of forming pockets 2032 c comprises an outer row
  • the second longitudinal row of forming pockets 2032 b comprises a middle or intermediate row.
  • the anvil 2030 comprises a flat, or an at least substantially flat, tissue engaging surface 2031 .
  • the forming pockets 2032 a , 2032 b , and 2032 c are defined in the flat surface 2031 .
  • the flat surface 2031 does not have steps defined therein; however, embodiments are envisioned in which the anvil 2030 can comprise a stepped tissue engaging surface.
  • the anvil 2030 ′ comprises a stepped tissue engaging surface 2031 ′.
  • the forming pockets 2032 a and 2032 b are defined in a lower step and the forming pockets 2032 c are defined in an upper step.
  • the firing member 2040 ′ comprises a coupling member 2042 ′ including a cutting portion 2041 .
  • the cutting portion 2041 is configured and arranged to incise tissue captured between the anvil 2030 ′ and a staple cartridge 2010 ( FIG. 58 ), for example.
  • the firing member 2040 ′ is configured to push a sled having inclined surfaces distally during a staple firing stroke.
  • the inclined surfaces are configured to lift staple drivers within the staple cartridge 2010 to form staples 2020 against the anvil 2030 ′ and eject the staples 2020 from the staple cartridge 2010 .
  • the coupling member 2042 ′ comprises projections, or cams, 2043 ′ extending laterally therefrom which are configured to engage the anvil 2030 ′ during the staple firing stroke. Referring to FIG.
  • the projections 2043 ′ are comprised of longitudinally elongate shoulders extending from the coupling member 2042 ′.
  • the projections 2043 ′ comprise a cylindrical pin which extends through the coupling member 2042 ′.
  • the projections 2043 ′ have flat lateral sides, or ends, 2047 ′.
  • the longitudinal slot 2033 ′ comprises lateral portions 20331 ′ extending laterally from a central portion 2033 c ′ which are configured to receive the projections 2043 ′.
  • the lateral portions 20331 ′ of the longitudinal slot 2033 ′ have a rectangular, or at least substantially rectangular, configuration having sharp corners.
  • Each lateral portion 20331 ′ of the slot 2033 ′ comprises a longitudinal cam surface 2035 ′ configured to be engaged by the projections 2043 ′ during the staple firing stroke.
  • Each longitudinal cam surface 2035 ′ is defined on the upper side of a ledge 2037 ′ which extends longitudinally along the slot 2033 ′.
  • Each longitudinal ledge 2037 ′ comprises a beam including a fixed end attached to the main body portion of the anvil 2030 ′ and a free end configured to move relative to the fixed end.
  • each longitudinal ledge 2037 ′ can comprise a cantilever beam.
  • the coupling member 2042 ′ further comprises a foot, or cam, 2044 ( FIG. 58 ) configured to engage the staple cartridge 2010 , or a jaw supporting the staple cartridge 2010 , during the staple firing stroke. Moreover, the projections 2043 ′ and the foot 2044 co-operate to position the anvil 2030 ′ and the staple cartridge 2010 relative to one another.
  • the coupling member 2042 ′ can cam the anvil 2030 ′ into position relative to the staple cartridge 2010 .
  • the coupling member 2042 ′ can cam the staple cartridge 2010 into position relative to the anvil 2030 ′.
  • the firing member 2040 comprises a coupling member 2042 including a cutting portion 2041 .
  • the cutting portion 2041 is configured and arranged to incise tissue captured between the anvil 2030 and a staple cartridge 2010 ( FIG. 58 ).
  • the firing member 2040 is configured to push a sled having inclined surfaces distally during a staple firing stroke.
  • the inclined surfaces are configured to lift staple drivers within the staple cartridge 2010 to form staples 2020 against the anvil 2030 and eject the staples 2020 from the staple cartridge 2010 .
  • the coupling member 2042 comprises projections, or cams, 2043 extending laterally therefrom which are configured to engage the anvil 2030 during the staple firing stroke.
  • the projections 2043 have curved, or rounded, lateral sides, or ends, 2047 .
  • the lateral ends 2047 of the projections 2043 are entirely curved or fully-rounded. Each lateral end 2047 comprises an arcuate profile extending between a top surface of a projection 2043 and a bottom surface of the projection 2043 . In other embodiments, the lateral ends 2047 of the projections 2043 are only partially curved.
  • the longitudinal slot 2033 comprises lateral portions 20331 extending laterally from a central portion 2033 c which are configured to receive the projections 2043 .
  • Each lateral portion 20331 of the slot 2033 comprises a longitudinal cam surface 2035 configured to be engaged by the projections 2043 during the staple firing stroke.
  • Each longitudinal cam surface 2035 is defined on the upper side of a ledge 2037 which extends longitudinally along the slot 2033 .
  • Each longitudinal ledge 2037 comprises a beam including a fixed end attached to the main body portion of the anvil 2030 and a free end configured to move relative to the fixed end.
  • each longitudinal ledge 2037 can comprise a cantilever beam.
  • the lateral portions of the longitudinal slot 2033 comprise a curved, or rounded, profile which match, or at least substantially match, the curved ends 2047 of the projections 2043 .
  • the coupling member 2042 further comprises a foot, or cam, 2044 ( FIG. 58 ) configured to engage the staple cartridge 2010 , or a jaw supporting the staple cartridge 2010 , during the staple firing stroke. Moreover, the projections 2043 and the foot 2044 co-operate to position the anvil 2030 and the staple cartridge 2010 relative to one another. When the anvil 2030 is movable relative to the staple cartridge 2010 , the coupling member 2042 can cam the anvil 2030 into position relative to the staple cartridge 2010 . When the staple cartridge 2010 , or the jaw supporting the staple cartridge 2010 , is movable relative to the anvil 2030 , the coupling member 2042 can cam the staple cartridge 2010 into position relative to the anvil 2030 .
  • the lateral portions 20331 ′ of the longitudinal slot 2033 ′ extend a distance 2034 ′ from a centerline CL of the anvil 2030 ′.
  • the lateral portions 20331 ′ extend over, or behind, the forming pockets 2032 a in the anvil 2030 ′.
  • the lateral ends of the lateral portions 20331 ′ are aligned with the outer edges of the forming pockets 2032 a .
  • Other embodiments are envisioned in which the lateral portions 20331 ′ extend laterally beyond the forming pockets 2032 a , for example. That said, referring to FIG.
  • the ledges 2037 ′ of the anvil 2030 ′ are long and, in certain instances, the ledges 2037 ′ can deflect significantly under load. In some instances, the ledges 2037 ′ can deflect downwardly such that a large portion of the drive surfaces 2045 ′ defined on the bottom of the projections 2043 ′ are not in contact with the cam surfaces 2035 ′. In such instances, the contact between the projections 2043 ′ and the cam surfaces 2035 ′ can be reduced to a point, such as point 2047 ′, for example.
  • the contact between the projections 2043 ′ and the cam surfaces 2035 ′ can be reduced to a longitudinally extending line, which may appear to be a point when viewed from the distal end of the end effector, as illustrated in FIG. 59 .
  • the projections 2043 ′ extend over, or behind, the forming pockets 2032 a in the anvil 2030 ′.
  • the lateral ends of the projections 2043 ′ extend over a longitudinal centerline 2062 a of the forming pockets 2032 a .
  • Other embodiments are envisioned in which the lateral ends of the projections 2043 ′ are aligned with the longitudinal centerline 2062 a of the forming pockets 2032 a .
  • Certain embodiments are envisioned in which the lateral ends of the projections 2043 ′ do not extend to the longitudinal centerline 2062 a of the forming pockets 2032 a .
  • FIG. 57 the projections 2043 ′ extend over, or behind, the forming pockets 2032 a in the anvil 2030 ′.
  • the lateral ends of the projections 2043 ′ extend over a longitudinal centerline 2062 a of the forming pockets 2032 a .
  • Other embodiments are envisioned in which the lateral ends of the projections 2043 ′ are aligned with
  • the projections 2043 ′ can deflect upwardly, especially when the projections 2043 ′ are long, such that a large portion of the drive surfaces 2045 ′ of the projections 2043 ′ are not in contact with the cam surfaces 2035 ′. This condition can further exacerbate the condition discussed above in connection with the ledges 2037 ′. That being said, the projections 2043 ′ may be able to better control the staple formation process occurring in the forming pockets 2032 a , and/or the forming pockets 2032 b and 2032 c , when the projections 2043 ′ extend to the outer edge of the forming pockets 2032 a or beyond, for instance.
  • the ledges 2037 ′ and the projections 2043 ′ can deflect in a manner which causes the load flowing between the firing member 2040 ′ and the anvil 2030 ′ to be applied at the inner ends of ledges 2037 ′.
  • the contact points 2048 ′ are at or near the inner ends of the ledges 2037 ′.
  • the deflection of the ledges 2037 ′, and the projections 2043 ′ is the same or similar to that of cantilever beams.
  • the deflection of a cantilever beam is proportional to the cube of the beam length when the load is applied at the end of the cantilever beam.
  • gaps between the ledges 2037 ′ and the projections 2043 ′ can be created when the ledges 2037 ′ and/or the projections 2043 ′ deflect.
  • gaps between portions of the ledges 2037 ′ and the projections 2043 ′ means that the forces flowing therebetween will flow through very small areas which will, as a result, increase the stress and strain experienced by the ledges 2037 ′ and projections 2043 ′. This interaction is represented by stress risers, or concentrations, 2039 ′ and 2049 ′ in FIGS.
  • stress risers 2039 ′ are present in the ledges 2037 ′ and stress risers 2049 ′ are present at the interconnection between the projections 2043 ′ and the coupling member 2042 ′.
  • Other stress risers, or concentrations may be present but, as discussed below, it is desirable to reduce or eliminate such stress risers.
  • the lateral portions 20331 of the longitudinal slot 2033 each extend a distance 2034 from a centerline CL of the anvil 2030 .
  • the distance 2034 is shorter than the distance 2034 ′. Nonetheless, the lateral portions 20331 extend over, or behind, the forming pockets 2032 a in the anvil 2030 .
  • the lateral ends of the lateral portions 20331 are not aligned with the outer edges of the forming pockets 2032 a .
  • the lateral ends of the lateral portions 20331 do not extend beyond the outer edges of the forming pockets 2032 a ; however, the lateral portions 20331 extend over the longitudinal centerlines 2062 a of the forming pockets 2032 a .
  • the ledges 2037 are shorter than the ledges 2037 ′. As such, the ledges 2037 will experience less deflection, stress, and strain than the ledges 2037 ′ for a given force applied thereto.
  • the lateral portions 20331 of the slot 2033 do not extend to the longitudinal centerline 2062 a of the forming pockets 2032 a .
  • the lateral portions 20331 do not extend laterally over or overlap the forming pockets 2032 a .
  • Such shorter lateral portions 20331 can reduce the deflection, stress, and strain in the ledges 2037 .
  • the drive surfaces 2045 defined on the bottom of the projections 2043 can remain in contact with the cam surfaces 2035 of the ledges 2037 . In such instances, the contact area between the projections 2043 and the cam surfaces 2035 can be increased as compared to the contact area between the projections 2043 ′ and the cam surfaces 2035 ′.
  • the projections 2043 extend over, or behind, the forming pockets 2032 a in the anvil 2030 .
  • the lateral ends of the projections 2043 do not extend over the longitudinal centerline 2062 a of the forming pockets 2032 a .
  • Other embodiments are envisioned in which the lateral ends of the projections 2043 are aligned with the longitudinal centerline 2062 a of the forming pockets 2032 a .
  • Certain embodiments are envisioned in which the lateral ends of the projections 2043 do not extend over the forming pockets 2032 a at all.
  • the upward deflection of the projections 2043 may be less than the projections 2043 ′ and, as a result, a larger contact area can be present between the drive surfaces 2045 and the cam surfaces 2035 .
  • the ledges 2037 and the projections 2043 can deflect in a manner which causes the load flowing between the firing member 2040 and the anvil 2030 to be applied laterally along the lengths of the ledges 2037 instead of at a single point and/or at end of the ledges 2037 .
  • the forces flowing therebetween will flow through larger areas which will, as a result, reduce the stress and strain experienced by the ledges 2037 and projections 2043 which can reduce or eliminate the stress risers discussed above in connection with the ledges 2037 ′ and the projections 2043 ′, for example.
  • the foot 2044 of the coupling member 2042 is wider than the projections 2033 .
  • the lateral width of the foot 2044 is wider than the width between the lateral ends of the projections 2033 .
  • the foot 2044 can deflect or strain more than the projections and, as a result, the deflection of the projections 2033 can be reduced.
  • Alternative embodiments are envisioned in which the lateral width of the foot 2044 is the same as or less than the width between the lateral ends of the projections 2033 ; however, such embodiments can be otherwise configured to provide the desired deflection and/or strain within the projections 2033 .
  • an end effector can comprise an anvil, for example, which is movable between an open position and a closed position.
  • the anvil is moved toward its closed position by a firing member, such as firing member 2040 or 2040 ′, for example, when the firing member is moved distally.
  • the anvil is moved toward its closed position prior to the firing member being advanced distally to perform a staple firing stroke.
  • the anvil may not move into its entirely closed position until the firing member approaches or reaches the end of its staple firing stroke.
  • the anvil is progressively closed by the firing member.
  • the anvil may progressively close owing to thick tissue captured between the anvil and the staple cartridge.
  • the anvil may actually deflect or deform during the staple firing stroke of the firing member. Such circumstances are generally controlled, however, by the upper projections and the bottom foot of the firing member.
  • the drive surfaces 2045 ′ are parallel, or at least substantially parallel, to the longitudinal path of the firing member 2040 ′ during the staple firing stroke.
  • the anvil 2030 ′ may progressively close during the firing stroke and, as a result, the anvil 2030 ′ may not always be in an entirely closed position.
  • the drive surfaces 2045 ′ may not always be aligned with the cam surfaces 2035 ′ and, in such instances, the projections 2043 ′ may gouge into the ledges 2037 ′ of the anvil 2030 .
  • FIG. 60 depicts such instances with solid lines.
  • the drive surfaces 2045 ′ of the projections 2043 ′ and/or the cam surfaces 2035 ′ defined on the ledges 2037 ′ can plastically deform if the firing member 2040 ′ has to progressively close the anvil 2030 ′ into its entirely closed position.
  • the cam surfaces 2035 ′ can gall, for example, which can increase the force needed to complete the staple firing stroke. More specifically, plastic strain of the projections 2043 ′ and/or the anvil ledges 2037 ′ can cause energy losses as the metal is deformed beyond the plastic limits. At that point, galling occurs and the frictional co-efficient of the coupling increases substantially.
  • a firing member 2140 comprises a firing bar and a coupling member 2142 attached to the firing bar.
  • the coupling member 2142 comprises a connector 2148 which connects the coupling member 2142 to the firing bar.
  • the coupling member 2142 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke.
  • the coupling member 2142 also comprises projections 2143 configured to engage an anvil, such as anvil 2030 or 2030 ′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke.
  • Each projection 2143 comprises a drive surface 2145 defined on the bottom side thereof.
  • Each projection 2143 further comprises a proximally-extending cam transition 2147 and a radiused-transition 2149 extending around the perimeter of the projection 2143 .
  • the coupling member 2142 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2140 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2140 at the outset of the staple firing stroke.
  • the drive surfaces 2145 of the projections 2143 are not parallel to the longitudinal path 2160 of the firing member 2140 . Rather, the drive surfaces 2145 extend transversely to the longitudinal path 2160 . In at least one instance, the distal end of each drive surface 2145 is positioned further away from the longitudinal path 2160 than the proximal end. Such an arrangement can reduce or eliminate the problems described above in connection with the progressive closure of the anvil 2130 .
  • the drive surface 2145 could be oriented at about 2 degrees with respect to the longitudinal path 2160 , for example, which represents the midpoint in the range of progressive closure.
  • the drive surfaces 2145 could be oriented at about 1 degree with respect to the longitudinal path 2160 , for example, which represents the upper bound in the range of progressive closure.
  • the firing member 2140 may be required to progressively close the anvil 2130 through a 5 degree range of motion, for example. In other instances, the firing member 2140 may be required to progressively the anvil 2130 through a 10 degree range of motion, for example. In some instances, the anvil 2130 may not reach its completely closed position and, as a result, the progressive closure of the anvil 2130 may not reach 0 degrees.
  • a firing member 2240 comprises a firing bar and a coupling member 2242 attached to the firing bar.
  • the coupling member 2242 comprises a connector 2148 which connects the coupling member 2242 to the firing bar.
  • the coupling member 2242 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke.
  • the coupling member 2242 also comprises projections 2243 configured to engage an anvil, such as anvil 2030 or 2030 ′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke.
  • Each projection 2243 comprises a drive surface 2245 defined on the bottom side thereof.
  • each projection 2243 comprises a leading, or proximal, end 2251 configured to engage the anvil and, in addition, a trailing end.
  • the leading end of each projection 2243 is different than the lagging, or trailing, end of the projection 2243 .
  • the leading end 2251 comprises a radius which extends from the bottom drive surface 2245 of the projection 2243 to a location positioned above a longitudinal centerline 2250 of the projection 2243 .
  • the leading end 2251 comprises a single radius of curvature; however, the leading end 2251 can be comprised of more than one radius of curvature.
  • Each projection 2243 further comprises a radiused edge 2259 between the radiused leading end 2251 and the top surface of the projection 2243 .
  • a firing member 2340 comprises a firing bar and a coupling member 2342 attached to the firing bar.
  • the coupling member 2342 comprises a connector 2148 which connects the coupling member 2342 to the firing bar.
  • the coupling member 2342 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke.
  • the coupling member 2342 also comprises projections 2343 configured to engage an anvil, such as anvil 2030 or 2030 ′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke.
  • Each projection 2343 comprises a drive surface defined on the bottom side thereof.
  • Each projection 2343 further comprises a radiused-transition 2349 extending around the perimeter thereof.
  • the coupling member 2342 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2340 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2340 at the outset of the staple firing stroke.
  • each projection 2343 comprises a radiused leading end 2351 .
  • the leading end 2351 is similar to the leading end 2251 and comprises a curved surface which extends across the centerline 2350 of the projection 2343 .
  • the leading end 2251 has a different configuration than the trailing end of the projection 2243 .
  • Each projection 2343 further comprises a lateral side, or end, 2352 .
  • Each lateral end 2352 comprises a flat surface which is positioned intermediate radiused, or curved, edges 2347 .
  • a first radiused edge 2347 is positioned intermediate a top surface of the projection 2343 and the lateral end 2352 and, in addition, a second radiused edge 2347 is positioned intermediate a bottom surface of the projection 2343 and the lateral end 2352 .
  • a firing member 2440 comprises a firing bar and a coupling member 2442 attached to the firing bar.
  • the coupling member 2442 comprises a connector 2148 which connects the coupling member 2442 to the firing bar.
  • the coupling member 2442 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke.
  • the coupling member 2442 also comprises projections 2443 configured to engage an anvil, such as anvil 2030 or 2030 ′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke.
  • Each projection 2443 comprises a drive surface 2445 defined on the bottom side thereof.
  • Each projection 2443 further comprises a radiused-transition extending around the perimeter thereof.
  • the coupling member 2442 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2440 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2440 at the outset of the staple firing stroke.
  • each projection 2443 comprises a first radius of curvature 2447 a extending from the bottom drive surface 2445 and a second radius of curvature 2447 b extending from the top surface of the projection 2443 .
  • the first radius of curvature 2447 a is different than the second radius of curvature 2447 b .
  • the first radius of curvature 2447 a is larger than the second radius of curvature 2447 b ; however, the curvatures 2447 a and 2447 b can comprise any suitable configuration.
  • the first radius of curvature 2447 a extends upwardly past a centerline 2450 of the projection 2443 .
  • a firing member 2540 comprises a firing bar and a coupling member 2542 attached to the firing bar.
  • the coupling member 2542 comprises a connector 2148 which connects the coupling member 2542 to the firing bar.
  • the coupling member 2542 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke.
  • the coupling member 2542 also comprises projections 2543 configured to engage an anvil, such as anvil 2030 or 2030 ′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke.
  • Each projection 2543 comprises a drive surface defined on the bottom side thereof.
  • Each projection 2543 further comprises a radiused-transition extending around the perimeter thereof.
  • the coupling member 2542 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2540 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2540 at the outset of the staple firing stroke.
  • each projection 2543 comprises a lateral side, or end, 2552 which is flat, or at least substantially flat.
  • Each projection 2543 further comprises a radiused transition 2547 extending around the lateral end 2552 .
  • Each projection 2543 is symmetrical, or at least substantially symmetrical, about a longitudinal centerline which extends through the lateral end 2552 .
  • the top surface and the bottom surface of each projection 2543 are parallel to one another.
  • each projection 2543 is positioned distally with respect to a cutting edge 2042 of the cutting portion 2041 .
  • the trailing end 2559 of each projection 2543 is positioned proximally with respect to the cutting edge 2042 .
  • the projections 2043 longitudinally span the cutting edge 2042 .
  • the firing member 2540 can hold the anvil and the staple cartridge together directly at the location in which the tissue is being cut.
  • a firing member 2640 comprises a firing bar and a coupling member 2642 attached to the firing bar.
  • the coupling member 2642 comprises a connector 2148 which connects the coupling member 2642 to the firing bar.
  • the coupling member 2642 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke.
  • the coupling member 2642 also comprises projections 2643 configured to engage an anvil, such as anvil 2030 or 2030 ′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke.
  • Each projection 2643 comprises a drive surface 2645 defined on the bottom side thereof.
  • Each projection 2643 further comprises a radiused-transition 2649 extending around the perimeter thereof.
  • the coupling member 2642 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2640 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2640 at the outset of the staple firing stroke.
  • each projection 2643 further comprises a lateral end 2652 , a bottom drive surface 2645 , and a top surface 2647 .
  • the bottom drive surface 2645 is flat and is parallel to the longitudinal firing path 2660 of the firing member 2640 .
  • the top surface 2647 is flat, but not parallel to the longitudinal firing path 2660 .
  • the top surface 2647 is not parallel to the bottom surface 2645 .
  • each projection 2643 is asymmetrical. In fact, the orientation of the top surface 2647 shifts the moment of inertia of the projection 2643 above the lateral end 2652 . Such an arrangement can increase the bending stiffness of the projections 2643 which can reduce the deflection of the projections 2643 .
  • a firing member 2740 comprises a firing bar and a coupling member 2742 attached to the firing bar.
  • the coupling member 2742 comprises a connector 2148 which connects the coupling member 2742 to the firing bar.
  • the coupling member 2742 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke.
  • the coupling member 2742 also comprises projections 2743 configured to engage an anvil, such as anvil 2030 or 2030 ′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke.
  • Each projection 2743 comprises a drive surface defined on the bottom side thereof.
  • the coupling member 2742 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2740 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2740 at the outset of the staple firing stroke.
  • each projection 2743 comprises a first, or leading, portion 2753 a and a second, or lagging, portion 2753 b positioned distally behind the leading portion 2753 a .
  • the leading portion 2753 a comprises a curved lead-in surface 2751 defined on the distal end thereof which is configured to initially engage the anvil.
  • the leading portion 2753 a further comprises a first, or leading, drive surface 2745 a defined on the bottom side thereof.
  • the lagging portion 2753 b comprises a second, or lagging, drive surface 2745 b defined on the bottom side thereof.
  • Each projection 2743 further comprises a transition 2752 defined between the leading portion 2753 a and the lagging portion 2753 b.
  • the drive surfaces 2745 a and 2745 b can co-operate to engage and position the anvil.
  • the drive surfaces 2745 a and 2745 b define a drive plane which is parallel, or at least substantially parallel, to the longitudinal path 2760 of the firing member 2740 during the staple firing stroke. In some instances, however, only the leading drive surface 2745 a may engage the cam surface defined on the anvil. Such instances can arise when the firing member 2740 progressively closes the anvil, for example.
  • the leading drive surface 2745 a is positioned above the lagging drive surface 2745 b . Stated another way, the leading drive surface 2745 a is positioned further away from the longitudinal path 2760 than the lagging drive surface 2745 b such that both drive surfaces 2745 a and 2745 b remain in contact with the anvil during the staple firing stroke.
  • the drive surfaces 2745 a and 2745 b can define a drive plane which is transverse to the longitudinal path 2760 . In certain instances, a 1 degree angle, for example, can be defined between the drive plane and the longitudinal path 2760 .
  • leading drive surface 2745 a is positioned vertically above the lagging drive surface 2745 b by approximately 0.001′′, for example. In other embodiments, the leading drive surface 2745 a is positioned vertically above the lagging drive surface 2745 b by approximately 0.002′′, for example. In certain instances, the leading drive surface 2745 a is positioned above the lagging drive surface 2745 b a distance which is between about 0.001′′ and about 0.002′′, for example
  • only the lagging drive surfaces 2745 b may be in contact with the cam surfaces of the anvil when the firing member 2740 progressively closes the anvil.
  • the leading drive surfaces 2745 a are not in contact with the cam surfaces of the anvil.
  • Such an arrangement can reduce the plastic deformation of the projections 2743 and reduce to force needed to advance the firing member 2740 distally as compared to when only the leading drive surfaces 2745 a are in contact with the cam surfaces of the anvil.
  • the anvil can flex upwardly into contact with the leasing drive surfaces 2745 a as illustrated in FIG. 94 .
  • the leading portion 2753 a is thicker than the lagging portion 2753 b . Stated another way, the leading portion 2753 a has a larger bending moment of inertia than the lagging portion 2753 b which can resist the upward bending of the projection 2743 . As a result, the lagging portion 2753 b can deflect upwardly more than the leading portion 2753 a . In such instances, it is more likely that both portions 2753 a and 2753 b of the projections 2743 can remain in contact with the anvil during the staple firing stroke even though the firing member 2740 is being used to progressively close the anvil.
  • leading portion 2753 a also has a larger shear thickness than the lagging portion 2753 b which can better resist shear forces transmitted through the projections 2743 .
  • the leading portion 2753 a is often exposed to greater shear forces than the lagging portion 2753 b and, as a result, can benefit from the increased shear thickness. If it is believed that the lagging portion 2753 b may experience greater shear forces than the leading projection 2753 a , then the lagging portion 2753 b can have a greater shear thickness than the leading portion 2753 a , for example.
  • a firing member 2840 comprises a firing bar and a coupling member 2842 attached to the firing bar.
  • the coupling member 2842 comprises a connector 2148 which connects the coupling member 2842 to the firing bar.
  • the coupling member 2842 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke.
  • the coupling member 2842 also comprises projections configured to engage an anvil, such as anvil 2030 or 2030 ′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke.
  • each projection comprises a drive surface defined on the bottom side thereof.
  • the coupling member 2842 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2840 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2840 at the outset of the staple firing stroke.
  • each side of the coupling member comprises a first, or leading, projection 2843 d and a second, or lagging, projection 2843 p positioned behind the leading projection 2843 d .
  • the leading projection 2843 d comprises a curved lead-in surface 2851 d defined on the distal end thereof which is configured to initially engage the anvil.
  • the leading projection 2843 d further comprises a first, or leading, drive surface 2845 d defined on the bottom side thereof.
  • the lagging projection 2843 p comprises a curved lead-in surface 2851 p defined on the distal end thereof which is configured to engage the anvil.
  • the lagging projection 2843 p further comprises a second, or lagging, drive surface 2845 p defined on the bottom side thereof.
  • the drive surfaces 2845 d and 2845 p can co-operate to engage and position the anvil.
  • the drive surfaces 2845 d and 2845 p define a drive plane which is parallel, or at least substantially parallel, to the longitudinal path 2860 of the firing member 2840 during the staple firing stroke.
  • the leading drive surface 2845 d is positioned above the lagging drive surface 2845 p . Stated another way, the leading drive surface 2845 d is positioned further away from the longitudinal path 2860 than the lagging drive surface 2845 p .
  • the drive surfaces 2845 d and 2845 p can define a drive plane which is transverse to the longitudinal path 2860 .
  • a 1 degree angle for example, can be defined between the drive plane and the longitudinal path 2860 .
  • leading projections 2843 d and the lagging projections 2843 p can move relative to each other.
  • a leading projection 2843 d and a lagging projection 2843 p on one side of the coupling member 2842 can move independently of one another.
  • Such an arrangement can allow the projections 2843 d and 2843 p to independently adapt to the orientation of the anvil, especially when the firing member 2840 is used to progressively close the anvil.
  • both of the projections 2843 d and 2843 p can remain engaged with the anvil such that forces flow between the firing member 2840 and the anvil at several locations and that the plastic deformation of the projections is reduced.
  • FIG. 91 depicts the energy required for a first firing member to complete a firing stroke, labeled as 2090 ′, and a second firing member to complete a firing stroke, labeled as 3090 .
  • the firing stroke 2090 ′ represents a condition in which significant plastic deformation and galling is occurring.
  • the firing stroke 3090 represents an improvement over the firing stroke 2090 ′ in which the deformation of the firing member and anvil ledge is mostly elastic. It is believed that, in certain instances, the plastic strain experienced by the firing member and/or anvil can be reduced by about 40%-60%, for example, by employing the teachings disclosed herein.
  • the various embodiments described herein can be utilized to balance the loads transmitted between a firing member and an anvil. Such embodiments can also be utilized to balance the loads transmitted between a firing member and a staple cartridge jaw.
  • the firing member can be designed to provide a desired result but it should be understood that such a desired result may not be achieved in some circumstances owing to manufacturing tolerances of the stapling instrument and/or the variability of the tissue thickness captured within the end effector, for example.
  • the upper projections and/or the bottom foot of the firing member for example, can comprise wearable features which are configured to allow the firing member to define a balanced interface with the anvil.
  • a firing member 2940 comprises lateral projections 2943 .
  • Each projection 2943 comprises longitudinal ridges 2945 extending from the bottom thereof.
  • the ridges 2945 are configured to plastically deform and/or smear when the firing member 2940 is advanced distally to engage the anvil.
  • the ridges 2945 are configured to quickly wear in, or take a set, so as to increase the contact area between the projections 2943 and the anvil and provide better load balancing between the firing member 2940 and the anvil. Such an arrangement can be especially useful when the end effector is used to perform several staple firing strokes.
  • one or more wearable pads can be attached to the projections of the firing member which can be configured to plastically deform.
  • surgical stapling and cutting instruments comprised robust mechanical lockouts configured to protect against unauthorized firing of the surgical stapling and cutting instruments because of the dangers associated with such unauthorized firing. For example, firing a surgical stapling and cutting instrument that is not loaded with a staple cartridge, or is loaded with a staple cartridge that has already been fired, may cause severe bleeding if the tissue cutting is performed without any tissue stapling.
  • the present disclosure presents various electrical and electro-mechanical lockouts that are suitable for use with motorized surgical stapling and cutting instruments. Since lockout failure can result in a serious risk to the patient, the present disclosure presents multiple safeguards that operate in redundancy to ensure that lockout failures are avoided.
  • the present disclosure provides various techniques for detecting when a staple cartridge is attached to an end effector of a surgical stapling and cutting instrument. The present disclosure further provides various techniques for detecting whether an attached staple cartridge is spent.
  • FIG. 95 An end effector 4000 of a surgical stapling system is illustrated in FIG. 95 .
  • the end effector 4000 comprises a frame 4002 , a cartridge jaw 4004 , and an anvil 4006 .
  • the cartridge jaw 4004 extends fixedly from the frame 4002 .
  • the anvil 4006 is movable between an open, or unclamped, position and a closed, or clamped, position ( FIG. 95 ) relative to the cartridge jaw 4004 .
  • the cartridge jaw 4004 is movable between an open, or unclamped, position and a closed, or clamped, position relative to the anvil 4006 .
  • the anvil 4006 extends fixedly from the frame 4002 .
  • the cartridge jaw 4004 includes a channel or carrier 4022 configured to receive a staple cartridge, such as a staple cartridge 4008 , for example.
  • the staple cartridge 4008 comprises a cartridge body 4010 .
  • the cartridge body 4010 comprises a deck 4012 configured to support the tissue of a patient, a longitudinal slot 4014 , and six longitudinal rows of staple cavities 4016 defined therein.
  • Each staple cavity 4016 is configured to receive and removably store a staple therein.
  • the staple cartridge 4008 further comprises staple drivers configured to drive the staples out of the staple cavities 4016 .
  • Other staple cartridges with various other arrangements of staple cavities, decks, and/or staples are envisioned for use with the end effector 4000 .
  • the staple cartridge 4008 further comprises a sled 4018 configured to engage the staple drivers. More specifically, the sled 4018 comprises ramps 4020 configured to engage cams defined on the staple drivers and lift the staple drivers and the staples within the staple cavities 4016 as the sled 4018 is moved distally through the staple cartridge 4008 .
  • a firing member is configured to motivate the sled 4018 distally from a proximal, unfired, or starting position toward a distal, fired, or end position during a staple firing stroke.
  • the staple cartridge 4008 includes a cartridge circuit 4024 .
  • the cartridge circuit 4024 includes a storage medium 4026 , a cartridge connector-region 4017 comprising a plurality of external electrical contacts 4028 , and a cartridge-status circuit portion 4032 that includes a trace element 4034 .
  • the storage medium 4026 can be a memory that stores information about the staple cartridge 4008 such as, for example, various characteristics of the staple cartridge 4008 including a firing status, staple-type, staple-size, cartridge batch number, and/or cartridge color.
  • the circuit breaker 4019 may comprise a magnetic member configured to magnetically retain a severed trace element 4034 , for example.
  • a trace element can be cut or displaced to sever or establish an electrical connection indicative of whether a staple cartridge has been fired without completely severing the trace element.
  • a controller 4050 can be configured to receive input from the Hall effect sensor 4029 to assess the position of the sled 4018 and, accordingly, determine whether an attached staple cartridge 4008 is spent based on the readings of the Hall effect sensor 4029 .
  • the Hall effect sensor 4029 can be attached to the sled 4018 while the corresponding magnet is attached to and/or embedded into the carrier 4022 .
  • other position sensors can be employed to determine whether the sled 4018 is at the start, proximal, or unfired position.
  • the corresponding magnet is coupled to a proximal-most staple driver of the staple cartridge 4008 .
  • the Hall effect sensor is coupled to the carrier 4022 or the staple cartridge 4008 while the magnet is coupled to the staple driver. In certain instances, the Hall effect sensor is coupled to the carrier 4022 or the staple cartridge 4008 while the magnet is coupled to the proximal-most staple driver.
  • the controller 4050 may comprise a processor 4052 and/or one or more storage mediums such as, for example, a memory 4054 .
  • the processor 4052 may control various components of the surgical stapling and cutting instrument such as a firing system 4056 and a user interface 4058 such as, for example, a display.
  • the memory 4054 includes program instructions which, when executed by the processor 4052 , cause the processor 4052 to determine whether an attached staple cartridge 4008 is spent based on input from one or more sensors such as, for example, the Hall effect sensor 4029 .
  • the carrier 4022 includes one or more electrical contacts configured to be electrically connected to corresponding electrical contacts in a sled 4018 of a staple cartridge 4008 seated in the carrier 4022 .
  • the electrical contacts define an electrical circuit 4031 ( FIG. 100B ) that remains closed while the sled 4018 is in a proximal unfired position.
  • the electrical circuit 4031 is transitioned into an open configuration when the sled 4018 is advanced toward an end, distal, or fired position due to the severance of the electrical connection between the electrical contacts of the carrier 4022 and the sled 4018 .
  • the electrical circuit 4031 may further include one or more sensors such as, for example, voltage or current sensors configured to detect whether the electrical circuit 4031 is in a closed configuration or an open configuration. Input from the one or more sensors can be received by a controller 4050 . The controller 4050 can determine whether an attached staple cartridge 4008 is spent based on the input from the one or more sensors.
  • the memory 4054 may include program instructions which, when executed by the processor 4052 , cause the processor 4052 to determine whether an attached staple cartridge 4008 is spent based on input from the one or more sensors.
  • a staple cartridge 4008 may include an ETS lockout with a continuity path along a path of a sled defined by sled guide rails, for example.
  • the sled When the sled is in a proximal-most position, the sled is configured to interrupt the electrical path. However, when the sled is advanced distally the electrical path is completed and is sensed by an inductance sensor in the carrier 4022 , for example.
  • one or more inductance sensors can be configured to track one or more proximal forming pockets for identification of the finger print of staples received within the proximal pockets. The inductance sensors can be configured to detect the absence of the staples from their respective forming pockets. Examples of ETS lockouts are described in U.S.
  • Patent Application Publication No. 2013/0248577 entitled SURGICAL STAPLING DEVICE WITH LOCKOUT SYSTEM FOR PREVENTING ACTUATION IN THE ABSENCE OF AN INSTALLED STAPLE CARTRIDGE, filed Mar. 26, 2012, now U.S. Pat. No. 9,078,653, the entire disclosure of which is incorporated by reference herein.
  • a staple cartridge similar to the staple cartridge 4008 , includes at least one electrical circuit 4033 ( FIG. 100C ) that comprises two electrical contacts that are spaced apart from one another.
  • the electrical contacts are configured to be bridged by a staple of the staple cartridge when the staple is in an unfired position. Accordingly, the electrical circuit 4033 is in a closed configuration when the staple is in the unfired position.
  • the electrical circuit 4033 is in an open configuration when the staple is lifted by a staple driver for deployment into tissue. The lifting of the staple by a staple driver during a firing stroke separates the staple from the electrical contacts of the electrical circuit 4033 thereby transitioning the electrical circuit 4033 into an open configuration.
  • the electrical circuit 4033 may further include one or more sensors such as, for example, voltage or current sensors configured to detect whether the electrical circuit 4033 is in a closed configuration or an open configuration. Input from the one or more sensors can be received by a controller 4050 . The controller 4050 can determine whether an attached staple cartridge 4008 is spent based on the input from the one or more sensors.
  • the memory 4054 may include program instructions which, when executed by the processor 4052 , cause the processor 4052 to determine whether an attached staple cartridge 4008 is spent based on input from the one or more sensors.
  • a staple cartridge similar to the staple cartridge 4008 , includes at least one electrical circuit 4035 ( FIG. 100D ) that comprises a conductive bridge that is configured to be ruptured when a staple driver of the staple cartridge is lifted to deploy one or more staples into tissue, which causes the electrical circuit 4035 to be transitioned from a closed configuration to an open configuration.
  • the lifting of the staple driver during a firing stroke causes the conductive bridge of the electrical circuit 4035 to be severed, cut, or displaced thereby transitioning the electrical circuit 4033 into an open configuration.
  • the conductive bridge of the electrical circuit 4035 is placed in a predetermined path of the staple driver. In at least one instance, the conductive bridge extends across, or at least partially across, a staple pocket configured to store the staple in an unfired position.
  • the electrical circuit 4035 may further include one or more sensors such as, for example, voltage or current sensors configured to detect whether the electrical circuit 4035 is in a closed configuration or an open configuration. Input from the one or more sensors can be received by a controller 4050 . The controller 4050 can determine whether an attached staple cartridge 4008 is spent based on the input from the one or more sensors.
  • the memory 4054 may include program instructions which, when executed by the processor 4052 , cause the processor 4052 to determine whether an attached staple cartridge 4008 is spent based on input from the one or more sensors.
  • a controller 4050 is configured to cause the firing system 4056 to be deactivated and/or provide user feedback as to the reason for the deactivation through a user interface such as, for example, a display 4058 .
  • the controller 4050 may identify and/or aid a user in addressing the cause of the deactivation of the firing system 4056 .
  • the controller 4050 may alert a user that an attached staple cartridge is spent or is not the correct type to be used with the end effector 4000 .
  • Other techniques for determining whether a staple cartridge is spent are included in U.S.
  • the carrier 4022 includes a carrier circuit 4043 ( FIG. 98C ) separably couplable to a cartridge circuit 4024 of a staple cartridge 4008 .
  • the carrier circuit 4043 has a plurality of electrical contacts 4036 .
  • the carrier circuit 4043 includes a carrier connector-region 4013 comprising a plurality of connectors 4038 that each defines a first electrical contact 4038 a and a second electrical contact 4038 b .
  • the connectors 4038 are positioned such that a gap is maintained between the electrical contacts 4036 and the first electrical contacts 4038 a of the connectors 4038 in their neutral positions.
  • Each of the connectors 4038 comprises a curved portion protruding from a supporting wall 4040 .
  • the second electrical contacts 4038 b are defined at the curved portions of the connectors 4038 .
  • the external electrical contacts 4028 of the staple cartridge 4008 are configured to engage and move the connectors 4038 into a biased configuration where the electrical contacts 4036 are electrically coupled to the corresponding first electrical contacts 4038 a of the connectors 4038 .
  • the external electrical contacts 4028 of the staple cartridge 4008 are also electrically coupled to the corresponding second electrical contacts 4038 b of the connectors 4038 .
  • one or more of the electrical connectors 4038 , external electrical contacts 4028 , the electrical contacts 4036 , the electrical contacts 4038 a , and/or the electrical contacts 4038 b can be coated, or at least partially coated, with a fluid-repellant coating, and/or potted in an insulating material such as silicon to prevent fluid ingress.
  • a fluid-repellant coating is added to the electrical connectors 4038 and the electrical contacts 4036 .
  • the fluid-repellant coating is added to all the electrical cables and/or connections of a staple cartridge.
  • One or more fluid-repellant coatings manufactured by Aculon, Inc., for example, can be used.
  • the electrical contacts 4038 b of the spring-biased electrical connectors 4038 include wearing features, or point contacts, 4039 in the form of a raised dome-shaped structure configured to remove or scratch off the fluid-repellant coating from the external electrical contacts 4028 of the staple cartridge 4008 thus establishing an electrical connection with the staple cartridge 4008 .
  • a compressible seal 4041 is configured to prevent, or at least resist, fluid ingress between a carrier 4022 and a staple cartridge 4008 seated in the carrier 4022 .
  • the compressible seal 4041 can be comprised of a compressible material that snuggly fits between a carrier 4022 and a staple cartridge 4008 seated in the carrier 4022 .
  • the compressible seal 4041 defines walls that define a perimeter around, or at least partially around, the electrical connectors 4038 and the external electrical contacts 4028 of the staple cartridge 4008 when the staple cartridge 4008 is seated in the carrier 4022 .
  • the carrier connector-region 4013 and the cartridge connector-region 4017 are configured to facilitate an electrical connection between the cartridge circuit 4024 and the carrier circuit 4043 when the staple cartridge 4008 is seated within the carrier 4022 .
  • the carrier connector-region 4013 is located on a side wall 4009 of the carrier 4022 .
  • the carrier connector-region 4013 is secured to an inner surface 4011 of the side wall 4009 .
  • the cartridge connector-region 4017 is located on a side wall 4007 of the staple cartridge 4008 .
  • the cartridge connector-region 4017 is secured to an outer surface 4005 of the side wall 4007 .
  • the carrier connector-region 4013 is configured to abut against the cartridge connector-region 4017 when the staple cartridge 4008 is seated in the carrier 4022 .
  • the compressible seal 4041 prevents, or at least resists, fluid ingress between the carrier connector-region 4013 and the cartridge connector-region 4017 .
  • Positioning the carrier connector-region 4013 and the cartridge connector-region 4017 on the corresponding side walls 4009 and 4007 facilitates the establishment of an electrical connection between the staple cartridge 4008 and the end effector 4000 by seating the staple cartridge 4008 within the carrier 4022 .
  • a first electrical interface 4042 is defined by the electrical contacts 4036 and 4038 a .
  • the first electrical interface 4042 is configured to be transitioned between an open configuration where the electrical contacts 4036 and 4038 a are spaced apart and a closed configuration where the electrical contacts 4036 and 4038 a are electrically coupled.
  • a second electrical interface 4044 is defined by the electrical contacts 4038 b and 4028 .
  • the second electrical interface 4044 is configured to be transitioned between an open configuration where the electrical contacts 4038 b and 4028 are spaced apart and a closed configuration where the electrical contacts 4038 b and 4028 are electrically coupled.
  • a third electrical interface 4046 is defined between the end effector 4000 and a handle portion of a surgical stapling and cutting instrument.
  • the third electrical interface 4046 is also configured to be transitioned between an open configuration where the end effector 4000 is not attached to the handle portion and a closed configuration where the end effector 4000 is attached to the handle portion.
  • the transition of the electrical interface 4042 from an open configuration to a closed configuration indicates that a staple cartridge has been attached to the carrier 4022 .
  • the transition of the electrical interface 4044 from an open configuration to a closed configuration indicates that a correct type of staple cartridge has been attached to the carrier 4022 .
  • the storage medium 4026 of the staple cartridge 4008 can be accessed to obtain information stored therein about staple cartridge 4008 .
  • the electrical interfaces 4042 , 4044 , and 4046 and the cartridge-status circuit portion 4032 are electrically connected in a control circuit 4048 .
  • a safety mechanism can be incorporated to prevent the firing of the end effector 4000 if at least one of the electrical interface 4042 , the electrical interface 4044 , the electrical interface 4046 , and the cartridge-status circuit portion 4032 is in an open configuration. Said another way, if the control circuit 4048 is in an open configuration, the safety mechanism prevents the firing of the end effector 4000 .
  • the safety mechanism prevents the firing of the end effector 4000 if the end effector 4000 is not correctly attached to the handle portion of the surgical instrument, if no staple cartridge is attached to the carrier 4022 , if an incorrect staple cartridge is attached to the carrier 4022 , and/or if a spent staple cartridge is attached to carrier 4022 , the safety mechanism prevents the firing of the end effector 4000 if the end effector 4000 is not correctly attached to the handle portion of the surgical instrument, if no staple cartridge is attached to the carrier 4022 , if an incorrect staple cartridge is attached to the carrier 4022 , and/or if a spent staple cartridge is attached to carrier 4022 , the safety mechanism prevents the firing of the end effector 4000 if the end effector 4000 is not correctly attached to the handle portion of the surgical instrument, if no staple cartridge is attached to the carrier 4022 , if an incorrect staple cartridge is attached to the carrier 4022 , and/or if a spent staple cartridge is attached to carrier 4022 , the safety mechanism prevents the firing of
  • one or more of the electrical interface 4042 , the electrical interface 4044 , the electrical interface 4046 , and the cartridge-status circuit portion 4032 are connected in parallel with non-severable sections of the control circuit 4048 which helps avoid any single point failure due to a full interruption of the control circuit 4048 .
  • This arrangement ensures a continued electrical connection within the control circuit 4048 in the event one or more of the electrical interface 4042 , the electrical interface 4044 , the electrical interface 4046 , and the cartridge-status circuit portion 4032 is in an open configuration. For example, as illustrated in FIG.
  • the trace element 4034 of the cartridge-status circuit portion 4032 is in parallel with a first resistive element 4037 and in series with a second resistive element 4037 ′ to ensure continued operation and avoid a single point failure of the control circuit 4048 in the event the trace element 4034 is severed.
  • One or more sensors including but not limited to voltage and/or current sensors, can be employed to detect a current configuration and/or a transition between an open or severed configuration and a closed or intact configuration.
  • one or more of the electrical interface 4042 , the electrical interface 4044 , the electrical interface 4046 , and the cartridge-status circuit portion 4032 are not connected in series. In such instances, one or more of the electrical interface 4042 , the electrical interface 4044 , the electrical interface 4046 , and/or the cartridge-status circuit portion 4032 are configured to separately provide feedback regarding their dedicated functions.
  • one or more of the electrical interface 4042 , the electrical interface 4044 , the electrical interface 4046 , and the cartridge-status circuit portion 4032 can be implemented in the form of a conductive gate 4060 transitionable between an open configuration, as illustrated in FIG. 102 , and a closed configuration, as illustrated in FIG. 103 .
  • the conductive gate 4060 In the closed configuration, the conductive gate 4060 enables an electrical connection between two end-points of an electrical circuit such as, for example, the control circuit 4048 . The electrical connection, however, is severed when the conductive gate 4060 is transitioned to the open configuration.
  • the conductive gate 4060 can be repeatedly transitioned between a closed configuration and an open configuration.
  • the conductive gate 4060 includes a pivot portion 4062 rotatably attached to a first end-point 4068 of the control circuit 4048 .
  • the conductive gate 4060 is configured to pivot about the first end-point 4068 between the open and closed configurations.
  • the conductive gate 4060 further includes an attachment portion 4066 spaced apart from the pivot portion 4062 .
  • a central bridge portion 4064 extends between and connects the pivot portion 4062 and the attachment portion 4066 . As illustrated in FIGS.
  • the attachment portion 4066 is in the form of a hook or latch configured to releasably capture a second end-point 4069 of the control circuit 4048 to transition the conductive gate 4060 from the open configuration to the closed configuration.
  • the attachment portion 4066 may comprise a magnetic attachment or any other mechanical attachment, for example.
  • the conductive gate 4060 can be spring-biased in the closed configuration.
  • the conductive gate 4060 can be spring-biased in the open configuration.
  • a safety mechanism 4047 of the surgical instrument may include a controller 4050 which may comprise a processor 4052 and/or one or more storage mediums such as, for example, a memory 4054 .
  • the processor 4052 may control various components of the surgical instrument such as a firing system 4056 and a user interface such as, for example, a display 4058 .
  • the controller 4050 keeps track of the statuses of the electrical interface 4042 , the electrical interface 4044 , the electrical interface 4046 , and/or the cartridge-status circuit portion 4032 .
  • the controller 4050 may, depending on the reported statuses of one or more of the electrical interface 4042 , the electrical interface 4044 , the electrical interface 4046 , and/or the cartridge-status circuit portion 4032 , cause the firing system 4056 to be deactivated and/or provide user feedback as to the reason for the deactivation. In certain instances, the controller 4050 may identify and/or aid a user in addressing the cause of the deactivation of the firing system 4056 . For example, the controller 4050 may alert a user that an attached staple cartridge is spent or is not the correct type to be used with the end effector 4000 .
  • the memory 4054 includes program instructions which, when executed by the processor 4052 , cause the processor 4052 to determine that a staple cartridge 4008 has been attached to the carrier 4022 when a transition of the electrical interface 4042 to a closed configuration is detected by the processor 4052 .
  • the memory 4054 may include program instructions which, when executed by the processor 4052 , cause the processor 4052 to determine that that attached staple cartridge 4008 has already been spent or fired when a transition of the electrical interface 4042 to a closed configuration is detected by the processor 4052 but the cartridge-status circuit portion 4032 is in the open configuration.
  • the memory 4054 may also include program instructions which, when executed by the processor 4052 , cause the processor 4052 to determine that a memory 4026 of an attached staple cartridge 4008 is accessible when a transition of the electrical interface 4044 to a closed configuration is detected by the processor 4052 .
  • the processor 4052 may be configured to retrieve certain information stored in the memory 4026 of the attached staple cartridge 4008 . In certain instances, detecting a closed configuration of the electrical interface 4042 while not detecting a closed configuration of the electrical interface 4044 indicates that an incorrect staple cartridge is attached to the carrier 4022 .
  • a block diagram depicts a method 4071 of firing a surgical instrument that includes an end effector such as, for example, the end effector 4000 .
  • a firing trigger 4550 FIG. 118
  • a cutting member of the end effector 4000 is positioned proximally to a predetermined no-cartridge-lockout zone.
  • One or more position sensors can be employed to determine the position of the cutting member.
  • the firing trigger can be located on a handle of the surgical instrument and can be pressed by a user, for example, to in initiate a firing stroke of the surgical instrument.
  • a first decision block 4075 is configured to check whether the trace element 4034 ( FIG.
  • a second decision block 4077 is configured to check whether the memory 4026 ( FIG. 97 ) can be read. If the trace element 4034 is not intact or the memory 4026 cannot be read, the firing lockout is engaged, as indicated in step 4079 . Then, once captured tissue is released by unclamping the end effector 4000 at step 4070 , an articulation mode is re-engaged in step 4072 . If, however, the trace element 4034 is intact and the memory 4026 is read, the firing system 4056 is permitted to proceed through the firing stroke, step 4074 .
  • a decision block 4076 is configured to provide a threshold at a pre-determined cutline at which point, the firing system 4056 is reset.
  • Resetting the firing system 4056 can include returning the cutting member to a per-determined default position, as depicted in step 4078 . As illustrated in step 4074 a , if the firing trigger 4550 is pressed while the cutting member of the end effector 4000 is positioned distal to the predetermined no-cartridge-lockout zone, the firing system 4056 is permitted to proceed with the firing stroke.
  • a staple cartridge 4100 is similar in many respects to the staple cartridge 4008 .
  • the staple cartridge 4100 is releasably attached to the end effector 4000 .
  • the staple cartridge 4100 includes a cartridge-status circuit 4102 for assessing whether the staple cartridge 4100 is attached to an end effector 4000 and/or whether an attached staple cartridge 4100 was previously fired.
  • the staple cartridge 4100 comprises a conductive gate 4160 at a proximal portion 4103 of the staple cartridge 4100 .
  • the conductive gate 4160 is movable between a first closed configuration ( FIG. 106 ), a second closed configuration ( FIG. 108 ), and an open configuration ( FIG. 107 ).
  • a controller can be configured to assess whether the staple cartridge 4100 is attached to an end effector 4000 and/or whether an attached staple cartridge 4100 was previously fired by determining whether the conductive gate 4160 is at an open configuration, a first closed configuration, or a second closed configuration.
  • the first closed configuration is a partially closed configuration while the second closed configuration is a fully closed configuration.
  • the conductive gate 4160 extends across an elongate slot 4114 defined between a first deck portion 4112 a and a second deck portion 4112 b of the staple cartridge 4100 .
  • the conductive gate 4160 extends between a first end-point 4168 of the cartridge-status circuit 4102 and a second end-point 4170 of the cartridge-status circuit 4102 .
  • the first end-point 4168 is defined on a first side wall 4114 a of the elongate slot 4114 and the second end-point 4170 is defined on a second side wall 4114 b of the elongate slot 4114 .
  • the conductive gate 4160 bridges the elongate slot 4114 , as illustrated in FIG. 106 .
  • the conductive gate 4160 includes a pivot portion 4162 rotatably attached to the first end-point 4168 of the cartridge-status circuit 4102 .
  • the conductive gate 4160 is configured to pivot about the first end-point 4168 between the open, first closed, and second closed configurations.
  • the conductive gate 4160 further includes an attachment portion 4166 spaced apart from the pivot portion 4162 .
  • a central bridge portion 4164 extends between and connects the pivot portion 4162 and the attachment portion 4166 .
  • the attachment portion 4166 is in the form of a hook or latch configured to be releasably captured by the second end-point 4170 .
  • the attachment portion 4166 includes a “C” shaped ring 4171 configured to receive the second end-point 4170 in the second closed configuration.
  • An opening 4173 of the “C” shaped ring 4171 is slightly smaller than the second end-point 4170 . Accordingly, for the second end-point 4170 to be received within the “C” shaped ring 4171 an external force is needed to pass the second end-point 4170 through the opening 4173 of the “C” shaped ring 4171 and bring the conductive gate 4160 to the second closed configuration, as illustrated in FIG. 106 .
  • the conductive gate is spring-biased toward a closed configuration, the spring-biasing force is insufficient to bring the conductive gate 4160 to the second closed configuration. Accordingly, in the absence of an external force to motivate the conductive gate 4160 toward an open configuration or a second closed configuration, the conductive gate 4160 will swing, under the effect of the spring-biasing force, to a resting position at the first closed configuration, as illustrated in FIG. 108 .
  • an intermediate region 4175 between the “C” shaped ring 4171 of the attachment portion 4166 and the central bridge portion 4164 is in contact with the second end-point 4170 . However, the second end-point 4170 is not received within the “C” shaped ring 4171 .
  • the staple cartridge 4100 further comprises a sled 4118 which is similar in many respects to the sled 4018 .
  • a firing member 4113 is configured to motivate the sled 4118 distally from a proximal, unfired, or start position toward a distal, fired, or end position during a staple firing stroke.
  • the sled 4118 includes a catch member 4119 configured to engage and transition the conductive gate 4160 from a second closed configuration to an open configuration as the sled 4118 is advanced distally from the proximal, unfired, or start position toward a distal, fired, or end position.
  • the conductive gate 4160 Upon losing contact with the catch member 4119 , the conductive gate 4160 is configured to return to the first closed configuration from the open configuration under the influence of the spring-biasing force and in the absence of any external force.
  • At least a portion of the catch member 4119 may be constructed from a non-conductive material.
  • the engagement portion 4119 b is at least partially made from a non-conductive material.
  • the catch member 4119 can be a post extending away from a base 4118 a of the sled 4118 , for example.
  • the catch member 4119 can be in the form of a ramp wherein the conductive gate 4160 is configured to engage a lower portion of the ramp and, as the sled 4118 is advanced distally, the ramp transitions the conductive gate 4160 to an open configuration. Once the conductive gate 4160 reaches the top of the ramp, the spring-biasing force returns the conductive gate 4160 to a first closed position.
  • the first closed configuration, the second closed configuration, and the open configuration represent a first resistance-status, a second resistance-status, and an infinite resistance-status, respectively, wherein the first resistance-status is different than the second resistance-status and the infinite resistance-status, and wherein the second resistance-status is different than the first resistance-status and the infinite resistance-status.
  • a controller 4050 FIG. 109 ) can determine whether the staple cartridge 4100 is attached to an end effector 4000 and/or whether an attached staple cartridge 4100 was previously fired.
  • the conductive gate 4160 can be configured to define a first resistance when the conductive gate 4160 is at the first closed configuration and a second resistance, different than the first resistance, when the conductive gate 4160 is at the second closed configuration.
  • the controller 4050 may comprise a processor 4052 and/or one or more storage mediums such as, for example, a memory 4054 . By executing instruction code stored in the memory 4054 , the processor 4052 may identify a current resistance-status of the conductive gate 4160 . The controller 4050 may, depending on the detected resistance-status, perform one or more function such as, for example, causing the firing system 4056 to become inactivated and/or providing user feedback as to the reason for such deactivation.
  • the controller 4050 can be configured to make a determination as to whether a staple cartridge 4008 is detected upon activation or powering of the surgical stapling and cutting instrument by performing a first reading, or a plurality of readings, of the resistance-status. If an infinite resistance-status is detected, the controller 4050 may then instruct a user through the display 4058 , for example, to load or insert a staple cartridge 4008 into the carrier 4022 . If the controller 4050 detects that a staple cartridge 4008 has been attached, the controller 4050 may determine whether the attached staple cartridge has been previously fired by performing a second reading, or a plurality of readings, of the resistance-status. If a first resistance-status is detected, the controller 4050 may instruct the user that the attached staple cartridge 4008 has been previously fired and/or to replace the staple cartridge 4008 .
  • the controller 4050 employs a resistance-status detector 4124 to detect a current resistance-status and, in turn, determine whether the conductive gate 4160 is in the open configuration, the first closed configuration, or the second closed configuration.
  • the resistance-status detector 4124 may comprise a current sensor.
  • the controller 4050 may cause a predetermined voltage potential to be generated between the first end-point 4168 and the second end-point 4170 , and then measure the current passing through the conductive gate 4160 . If the measured current corresponds to the first resistance, the controller 4050 determines that the conductive gate 4160 is at the first closed configuration. On the other hand, if the measured current corresponds to the second resistance, the controller determines that the conductive gate 4160 is at the second closed configuration. Finally, if no current is detected, the controller 4050 determines that the conductive gate 4160 is at the open configuration.
  • the resistance-status detector 4124 may comprise other sensors such as, for example, a voltage sensor.
  • discrete hardware elements may include circuits and/or circuit elements (e.g., logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, relay and so forth).
  • one or more controllers of the present disclosure may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
  • a circuit 4080 may comprise a controller comprising one or more processors 4082 (e.g., microprocessor, microcontroller) coupled to at least one memory circuit 4084 .
  • the at least one memory circuit 4084 stores machine executable instructions that when executed by the processor 4082 , cause the processor 4082 to execute machine instructions to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller 4050 .
  • the processor 4082 may be any one of a number of single or multi-core processors known in the art.
  • the memory circuit 4084 may comprise volatile and non-volatile storage media.
  • the processor 4082 may include an instruction processing unit 4086 and an arithmetic unit 4088 .
  • the instruction processing unit may be configured to receive instructions from the one memory circuit 4084 .
  • a circuit 4090 may comprise a finite state machine comprising a combinational logic circuit 4092 , as illustrated in FIG. 111 , configured to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller 4050 .
  • a circuit 4200 may comprise a finite state machine comprising a sequential logic circuit, as illustrated in FIG. 112 .
  • the sequential logic circuit 4200 may comprise the combinational logic circuit 4202 and at least one memory circuit 4204 , for example.
  • the at least one memory circuit 4204 can store a current state of the finite state machine, as illustrated in FIG. 112 .
  • the sequential logic circuit 4200 or the combinational logic circuit 4202 can be configured to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller 4050 .
  • the sequential logic circuit 4200 may be synchronous or asynchronous.
  • the circuit may comprise a combination of the processor 4082 and the finite state machine to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller 4050 .
  • the finite state machine may comprise a combination of the combinational logic circuit 4090 and the sequential logic circuit 4200 .
  • various embodiments may be implemented as an article of manufacture.
  • the article of manufacture may include a computer readable storage medium arranged to store logic, instructions and/or data for performing various operations of one or more embodiments.
  • the article of manufacture may comprise a magnetic disk, optical disk, flash memory or firmware containing computer program instructions suitable for execution by a general purpose processor or application specific processor.
  • the embodiments are not limited in this context.
  • Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network.
  • software, control modules, logic, and/or logic modules may be located in both local and remote computer storage media including memory storage devices.
  • Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
  • a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.
  • a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception
  • an electromagnetic lockout mechanism 4300 is employed in connection with a firing system such as, for example, the firing system 4056 to prevent firing the surgical stapling and cutting instrument if a staple cartridge is not attached to a carrier 4022 of the surgical stapling and cutting instrument, or if an attached staple cartridge is spent.
  • a lockout mechanism 4300 for a surgical stapling and cutting instrument interacts with a drive train 4302 of the firing system 4056 .
  • the lockout mechanism 4300 comprises an electro-mechanical lockout that includes a latch 4304 transitionable between a locked configuration with a drive train 4302 and an unlocked configuration with the drive train 4302 .
  • the drive train 4302 In the unlocked configuration, as illustrated in FIG. 115 , the drive train 4302 is permitted to advance to deploy staples into tissue and/or cut the tissue.
  • the locked configuration illustrated in FIG. 114 , the drive train 4302 is prevented from being advanced either because no staple cartridge is attached to the carrier 4022 or an attached staple cartridge is spent.
  • the drive train 4302 includes a hole 4306 configured to receive the latch 4304 when the latch 4304 is in the locked configuration.
  • An electrical circuit 4308 is configured to selectively transition the latch 4304 between the locked configuration and the unlocked configuration.
  • the electrical circuit 4308 includes an electrical magnet 4310 which is configured to selectively transition the lockout mechanism 4300 between the locked configuration and the unlocked configuration.
  • the electrical circuit 4308 further includes a power source 4312 and a power relay 4314 configured to selectively transmit energy to power the electrical magnet 4310 . Powering the electrical magnet 4310 causes the lockout mechanism 4300 to be transitioned from a locked configuration to an unlocked configuration. In an alternative embodiment, powering the electrical magnet 4310 can cause the lockout mechanism 4300 to be transitioned from an unlocked configuration to a locked configuration.
  • the electrical magnet 4310 is configured to selectively move the latch 4304 between a first position, where the latch 4304 is at least partially positioned in the hole 4306 , and a second position, where the latch 4304 is outside the hole 4306 .
  • the electrical magnet 4310 is configured to selectively move the latch 4304 between a first position, where the latch 4304 interferes with advancement of the drive train 4302 , and a second position, where the latch 4304 permits advancement of the drive train 4302 .
  • a drive train of the firing system 4056 comprises a protrusion or a latch configured to be received in a hole of a corresponding structure that is operably attached to the electrical magnet 4310 .
  • the electrical magnet 4310 is configured to selectively move the structure comprising the hole between the first position and the second position.
  • a latch and a corresponding structure that includes a hole are described in connection with the lockout mechanism 4300 , it is understood that other mechanical mating members can be employed.
  • the lockout mechanism 4300 further includes a piston 4315 comprising a biasing member such as, for example, a spring 4316 movable between an first compressed configuration, as illustrated in FIG. 114 , and a second compressed configuration, as illustrated in FIG. 115 .
  • a biasing member such as, for example, a spring 4316 movable between an first compressed configuration, as illustrated in FIG. 114 , and a second compressed configuration, as illustrated in FIG. 115 .
  • the spring 4316 lifts or maintains the latch 4304 out of engagement with the drive train 4302 , as illustrated in FIG. 115 .
  • the latch 4304 is also returned into engagement with the drive train 4302 , as illustrated in FIG. 114 .
  • a permanent magnet 4318 is attached to the latch 4304 .
  • the latch 4304 or at least a portion thereof, can be made from a ferromagnetic material.
  • the electrical circuit 4308 activates the electrical magnet 4310
  • the permanent magnet 4318 is attracted toward the electrical magnet 4310 causing the spring 4316 to be biased or compressed.
  • the permanent magnet 4318 causes the latch 4304 to be lifted or transitioned out of engagement with the drive train 4302 , as illustrated in FIG. 115 .
  • a safety mechanism 4347 of a surgical stapling and cutting instrument may include a controller 4050 which may comprise a processor 4052 and/or one or more storage mediums such as, for example, a memory 4054 .
  • the processor 4052 may control activating and/or deactivating the lockout mechanism 4300 .
  • the processor 4052 may receive input 4320 regarding whether a staple cartridge is attached to the carrier 4022 and/or whether an attached staple cartridge is spent. Depending on the received input, the processor 4052 may activate or deactivate the lockout mechanism 4300 to permit or prevent the firing system 4056 from being used to perform a staple firing stroke.
  • FIGS. 118-120B generally depict a motor-driven surgical fastening and cutting instrument 4500 .
  • the surgical instrument 4500 includes a handle assembly 4502 , a shaft assembly 4504 , and a power assembly 4506 (“power source,” “power pack,” or “battery pack”).
  • the shaft assembly 4504 includes an end effector 4508 which can be configured to act as an endocutter for clamping, severing, and/or stapling tissue, although, in other instances, different types of end effectors may be used, such as end effectors for other types of surgical devices, graspers, cutters, staplers, clip appliers, access devices, drug/gene therapy devices, ultrasound devices, RF device, and/or laser devices, for example.
  • end effectors for other types of surgical devices, graspers, cutters, staplers, clip appliers, access devices, drug/gene therapy devices, ultrasound devices, RF device, and/or laser devices, for example.
  • Several RF devices may be found in U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995, and U.S. patent application Ser. No. 12/031,573, entitled SURGICAL FASTENING AND CUTTING INSTRUMENT HAVING
  • the handle assembly 4502 can be employed with a plurality of interchangeable shaft assemblies such as, for example, the shaft assembly 4504 .
  • Such interchangeable shaft assemblies may comprise surgical end effectors such as, for example, the end effector 4508 that can be configured to perform one or more surgical tasks or procedures.
  • suitable interchangeable shaft assemblies are disclosed in U.S. Provisional Patent Application Ser. No. 61/782,866, entitled CONTROL SYSTEM OF A SURGICAL INSTRUMENT, and filed Mar. 14, 2013, the entire disclosure of which is hereby incorporated herein by reference in its entirety.
  • the handle assembly 4502 may comprise a housing 4510 that contains a handle 4512 that may be configured to be grasped, manipulated and actuated by a clinician.
  • the various arrangements of the various forms of interchangeable shaft assemblies disclosed herein may also be effectively employed in connection with robotically-controlled surgical systems.
  • the term “housing” may also encompass a housing or similar portion of a robotic system that houses or otherwise operably supports at least one drive system that is configured to generate and apply at least one control motion which could be used to actuate the interchangeable shaft assemblies disclosed herein and their respective equivalents.
  • the interchangeable shaft assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods disclosed in U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT, now U.S. Pat. No. 9,072,535, the entire disclosure of which is incorporated by reference herein.
  • the handle assembly 4502 operably supports a plurality of drive systems therein that can be configured to generate and apply various control motions to corresponding portions of the interchangeable shaft assembly that is operably attached thereto.
  • the handle assembly 4502 operably supports a first or closure drive system, which is employed to apply closing and opening motions to the shaft assembly 4504 while operably attached or coupled to the handle assembly 4502 .
  • the handle assembly 4502 operably supports a firing drive system that is configured to apply firing motions to corresponding portions of the interchangeable shaft assembly attached thereto.
  • the handle assembly 4502 includes a motor 4514 which is controlled by a motor control circuit 4515 and is employed by the firing system of the surgical instrument 4500 .
  • the motor 4514 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM.
  • the motor 4514 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor.
  • the motor control circuit 4515 may comprise an H-Bridge field-effect transistors (FETs) 4519 , as illustrated in FIGS. 120A and 120B .
  • the motor 4514 is powered by the power assembly 4506 ( FIGS.
  • the shaft assembly 4504 includes a shaft assembly controller 4522 which communicates with the power management controller 4516 through an interface while the shaft assembly 4504 and the power assembly 4506 are coupled to the handle assembly 4502 .
  • the interface may comprise a first interface portion 4525 which includes one or more electric connectors for coupling engagement with corresponding shaft assembly electric connectors and a second interface portion 4527 which includes one or more electric connectors for coupling engagement with corresponding power assembly electric connectors to permit electrical communication between the shaft assembly controller 4522 and the power management controller 4516 while the shaft assembly 4504 and the power assembly 4506 are coupled to the handle assembly 4502 .
  • One or more communication signals can be transmitted through the interface to communicate one or more of the power requirements of the attached interchangeable shaft assembly 4504 to the power management controller 4516 .
  • the power management controller modulates the power output of the battery of the power assembly 4506 , as described below in greater detail, in accordance with the power requirements of the attached shaft assembly 4504 .
  • One or more of the electric connectors comprise switches which can be activated after mechanical coupling engagement of the handle assembly 4502 to the shaft assembly 4504 and/or to the power assembly 4506 to allow electrical communication between the shaft assembly controller 4522 and the power management controller 4516 .
  • the main controller 4517 may be any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments.
  • the surgical instrument 4500 may comprise a power management controller 4516 such as a safety microcontroller platform comprising two microcontroller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. Nevertheless, other suitable substitutes for microcontrollers and safety processor may be employed, without limitation.
  • the safety processor may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
  • the main controller 4517 may be an LM 4F230H5QR, available from Texas Instruments.
  • the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet.
  • the present disclosure should not be limited in this context.
  • the power assembly 4506 includes a power management circuit which comprises the power management controller 4516 , a power modulator 4538 , and a current sense circuit 4536 .
  • the power management circuit is configured to modulate power output of the battery based on the power requirements of the shaft assembly 4504 while the shaft assembly 4504 and the power assembly 4506 are coupled to the handle assembly 4502 .
  • the power management controller 4516 can be programmed to control the power modulator 4538 of the power output of the power assembly 4506 and the current sense circuit 4536 is employed to monitor power output of the power assembly 4506 to provide feedback to the power management controller 4516 about the power output of the battery so that the power management controller 4516 may adjust the power output of the power assembly 4506 to maintain a desired output.
  • one or more of the controllers of the present disclosure may comprise one or more processors and/or memory units which may store a number of software modules.
  • modules and/or blocks of the surgical instrument 4500 may be described by way of example, it can be appreciated that a greater or lesser number of modules and/or blocks may be used.
  • modules and/or blocks may be implemented by one or more hardware components, e.g., processors, Digital Signal Processors (DSPs), Programmable Logic Devices (PLDs), Application Specific Integrated Circuits (ASICs), circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components.
  • DSPs Digital Signal Processors
  • PLDs Programmable Logic Devices
  • ASICs Application Specific Integrated Circuits
  • the surgical instrument 4500 may comprise an output device 4542 which includes one or more devices for providing a sensory feedback to a user. Such devices may comprise visual feedback devices (e.g., an LCD display screen, LED indicators), audio feedback devices (e.g., a speaker, a buzzer) or tactile feedback devices (e.g., haptic actuators).
  • the output device 4542 may comprise a display 4543 which may be included in the handle assembly 4502 .
  • the shaft assembly controller 4522 and/or the power management controller 4516 can provide feedback to a user of the surgical instrument 4500 through the output device 4542 .
  • the interface 4524 can be configured to connect the shaft assembly controller 4522 and/or the power management controller 4516 to the output device 4542 .
  • the output device 4542 can instead be integrated with the power assembly 4506 .
  • communication between the output device 4542 and the shaft assembly controller 4522 may be accomplished through the interface 4524 while the shaft assembly 4504 is coupled to the handle assembly 4502 .
  • FIG. 117 a circuit 4700 is depicted.
  • the circuit 4700 is configured to control a powered surgical instrument, such as the surgical instrument 4500 illustrated in FIG. 118 .
  • the circuit 4700 is configured to control one or more operations of the powered surgical instrument 4500 .
  • the circuit 4700 includes a safety processor 4704 and a main or primary processor 4702 .
  • the safety processor 4704 and/or the primary processor 4702 are configured to interact with one or more additional circuit elements to control operation of the powered surgical instrument 4500 .
  • the primary processor 4702 comprises a plurality of inputs coupled to one or more circuit elements.
  • the circuit 4700 can be a segmented circuit. In various instances, the circuit 4700 may be implemented by any suitable circuit, such as a printed circuit board assembly (PCBA) within the powered surgical instrument 4500 .
  • PCBA printed circuit board assembly
  • processor includes any microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or at most a few integrated circuits.
  • the processor is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system.
  • the primary processor 4702 is any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments.
  • the safety processor 4604 may be a safety microcontroller platform comprising two microcontroller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. Nevertheless, other suitable substitutes for microcontrollers and safety processor may be employed, without limitation.
  • the safety processor 4704 may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
  • the primary processor 4702 may be an LM 4F230H5QR, available from Texas Instruments.
  • the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet.
  • SRAM serial random access memory
  • ROM internal read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • the safety processor 4704 is configured to implement a watchdog function with respect to one or more operations of the powered surgical instrument 4500 .
  • the safety processor 4704 employs the watchdog function to detect and recover from malfunctions of the primary processor 4702 .
  • the safety processor 4704 monitors for hardware faults or program errors of the primary processor 4702 and to initiate corrective action or actions.
  • the corrective actions may include placing the primary processor 4702 in a safe state and restoring normal system operation.
  • the primary processor 4702 and the safety processor 4704 operate in a redundant mode.
  • the primary processor 4702 and the safety processor 4704 are housed in a handle portion of the powered surgical stapling and cutting instrument 4500 . At least one of the primary processor 4702 and the safety processor 4704 is in communication with a shaft processor 4706 through an interface 4707 .
  • the shaft processor 4706 is configured to receive input from a cartridge detection system 4709 configured to detect whether an unspent staple cartridge has been attached to the powered surgical stapling and cutting instrument 4500 .
  • the circuit 4700 further includes a motor 4714 operably coupled to a firing member of the powered surgical stapling and cutting instrument 4500 .
  • One or more rotary position encoders 4741 can be configured to provide feedback to the primary processor 4702 and/or the safety processor 4704 as to the operational status of the motor 4714 .
  • a motor driver including a metal-oxide-semiconductor field-effect transistor (MOSFET) 4711 , controls power delivery to the motor 4714 from a power source 4713 .
  • the MOSFET 4711 is controlled by an AND logic gate 4717 . A high output of the AND logic gate 4717 causes the MOSFET 4711 to be activated, which causes the motor 4714 to run.
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the high output of the AND logic gate 4717 depends on receiving an input from the primary processor 4702 and the safety processor 4704 , as illustrated in FIG. 117 .
  • the primary processor 4702 and the safety processor 4704 are configured to independently determine whether to allow the motor 4714 to run. Said another way, the primary processor 4702 and the safety processor 4704 are configured to independently determine whether to permit advancement of the firing member of the powered surgical stapling and cutting instrument 4500 .
  • the AND logic gate 4717 produces a high output causing the MOSFET 4711 to be activated thereby allowing the motor 4714 to run and, in turn, the firing member to be advanced to fire the powered surgical stapling and cutting instrument 4500 .
  • the AND logic gate 4717 fails to produce a high output and, in turn, the MOSFET 4711 remains inactive.
  • the decision as to whether to run the motor 4714 depends, at least in part, on information communicated to the primary processor 4702 and/or the safety processor 4704 through the interface 4707 regarding whether or not an unspent staple cartridge has been attached to the powered surgical stapling and cutting instrument 4500 .
  • a cartridge detection system 4709 can be employed to determine, among other things, whether or not an unspent staple cartridge, is attached to the powered surgical stapling and cutting instrument 4500 .
  • a translatable staple firing member 4460 of a stapling assembly 4400 of the powered surgical stapling and cutting instrument 4500 is movable between a proximal, unfired, or start position and a distal, fired, or end position along a staple firing path 4463 .
  • a detectable magnetic element 4461 is mounted to the staple firing member 4460 which moves along, or at least substantially along, the staple firing path 4463 .
  • the magnetic element 4461 is a permanent magnet, for example, which is comprised of iron, nickel, and/or any other suitable material.
  • the cartridge detection system 4709 comprises a first, or proximal, sensor 4401 ′ and a second, or distal, sensor 4401 which are configured to detect the magnetic element 4461 as it moves along the staple firing path 4463 with the staple firing member 4460 .
  • the first sensor 4401 ′ and the second sensor 4401 each comprise a Hall Effect sensor; however, the sensors 4401 ′ and 4401 can comprise any suitable sensor.
  • the sensors 4401 ′ and 4401 output a voltage that varies depending on their respective distances from the magnetic element 4461 (a higher voltage is output when the distance is small and a lesser voltage is output when the distance is great).
  • the cartridge detection system 4709 comprises a sensor circuit 4708 including, among other things, a voltage source 4403 , for example, in communication with the sensors 4401 ′ and 4401 which supplies power to the sensors 4401 ′ and 4401 .
  • the sensor circuit 4708 further comprises a first switch 4405 ′ in communication with the first sensor 4401 ′ and a second switch 4405 in communication with the second sensor 4401 .
  • the switches 4401 ′ and 4401 each comprise a transistor, such as a FET, for example.
  • the outputs of the sensors 4401 ′, 4401 are connected to the central (gate) terminal of the switches 4405 ′, 4405 , respectively.
  • the output voltages from the sensors 4401 ′, 4401 Prior to the firing stroke of the staple firing member 4460 , the output voltages from the sensors 4401 ′, 4401 are high so that the first switch 4405 ′ and the second switch 4405 are in closed conditions.
  • the voltage output of the first sensor 4401 ′ is sufficient to change the first switch between a closed condition and an open condition.
  • the voltage output of the second sensor 4401 is sufficient to change the second switch 4405 between a closed condition and an open condition when the magnetic element 4461 passes by the second sensor 4401 .
  • a ground potential is applied to an operational amplifier circuit 4406 .
  • the operational amplifier circuit 4406 is in signal communication with an input channel of a shaft processor 4706 of the motor controller and, when a ground potential is applied to the operational amplifier circuit 4406 , the processor 4706 receives a ground signal from the circuit 4406 .
  • the processor 4706 can determine that the staple firing stroke has been completed and that the staple cartridge positioned in the stapling assembly 4400 has been completely spent.
  • the sensor system is configured to detect a partial firing stroke of the staple firing member 4460 and supply a signal to the processor 4706 that indicates that the staple cartridge has been at least partially spent.
  • the motor controller can be configured to prevent the staple firing member 4460 from performing another firing stroke until the staple cartridge has been replaced with an unspent cartridge.
  • the sensor system comprises a sensor configured to detect whether the spent cartridge has been detached from the stapling assembly and/or whether an unspent cartridge has been assembled to the stapling assembly.
  • the sensor system can be configured to detect whether the staple firing member 4460 has been retracted along a retraction path 4462 .
  • the magnetic element 4461 can be detected by the sensor 4401 as the magnetic element 4461 is retracted along the path 4462 and change the second switch 4405 back into a closed condition.
  • the magnetic element 4461 can be detected by the sensor 4401 ′ as the magnetic element 4461 is retracted along the path 4463 and change the first switch 4405 ′ back into a closed condition.
  • the processor 4706 receives a Vcc signal from the circuit 4406 on its input channel.
  • the cartridge detection system 4709 includes a cartridge circuit 4724 .
  • the cartridge circuit 4624 is similar in many respects to the cartridge circuit 4024 ( FIG. 97 ).
  • the cartridge circuit 4724 includes a trace element 4734 which is transitioned between a severed status, where the staple cartridge is spent, and an intact status, where the staple cartridge is unspent.
  • the trace element 4734 is positioned in parallel with a first resistive element 4737 and in series with a second resistive element 4737 ′ to insure that the detection of failure of the sensor or interruption of its circuit is not merely lack of signal output.
  • One or more sensors including but not limited to voltage and/or current sensors, can be employed to detect a current status and/or a transition between severed status and an intact status.
  • CMOS complementary metal-oxide-semiconductor
  • security codes such as, for example, cyclic redundancy checks (CRC) which are error-detecting codes attached to data communications to detect accidental changes in communicated data which may occur during data transmission. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.
  • CRC cyclic redundancy checks
  • two parameter sets with separate CRCs are loaded into the shaft processor 4706 wherein one is normal and the other has a STOP command, for example, and parameters like a 0 mm transection length.
  • the primary processor 4702 tracks the status of the trace element 4734 via a shared universal asynchronous receiver/transmitter (UART) pin, and the position of the motor 4714 via the rotary position encoder 4741 , for example.
  • the primary processor 4702 can be configured to prevent the motor 4714 from running if the primary processor 4702 detects that the trace element 4734 has been severed.
  • the primary processor 4702 and/or the safety processor 4704 can be configured to prevent the motor 4714 from running if a movement of the firing member is detected by the proximal sensor 4401 ′, as described above, after a severed status of the trace element 4734 is detected.
  • the detection of the movement of the firing member and the severed status of the trace element 4734 can be performed by the cartridge detection system 4709 , as described above.
  • the shaft processor 4706 can be configured to send a STOP command to the primary processor 4702 and/or the safety processor 4704 a severed status of the trace element 4734 is detected.
  • the communication between the shaft processor 4706 , the primary processor 4702 , and/or the safety processor 4704 can be a CRC communication, for example.
  • the safety processor 4704 is configured to watch for the STOP command and to enter a sleep mode once the STOP command is received. In various instances, the safety processor 4704 is configured to stop the motor 4714 from running if a computed CRC, which is computed from the received data, does not match the received CRC.
  • a CRC verification module can be employed by the safety processor 4704 to compute a CRC from the received data and compare the computed CRC with the received CRC.
  • the primary processor 4702 , the safety processor 4704 , and/or the shaft processor 4706 may comprise security code generator modules and/or security code verification modules.
  • Security codes can be generated by CHECK-SUM, HASH, or other suitable protocols.
  • the security code generation module and/or the security code verification module may be implemented in hardware, firmware, software or any combination thereof. Ensuring the validity of the communications between the primary processor 4702 , the safety processor 4704 , and/or the shaft processor 4706 is important because body fluids may interfere with communicated signals between such processors.
  • the shaft processor 4706 can be configured to send a STOP command to the primary processor 4702 and/or the safety processor 4704 via a CRC communication.
  • the shaft processor 4706 includes a security code generator configured to generate a security code and attached the security code to the STOP command transmitted to the primary processor 4702 , for example.
  • the primary processor 4702 includes a security code verification module configured to verify the integrity of the transmission received from the shaft processor 4706 .
  • the security code verification module is configured to compute a security code based on the received STOP command data and compare the computed security code to the security code received with the STOP command data. If the primary processor 4702 confirms the integrity of the received message, the primary processor 4702 may activate a stop mode 4688 , for example.
  • the safety processor 4704 may be tasked with ensuring the integrity of messages transmitted to the primary processor 4702 .
  • the safety processor 4704 includes a security code verification module configured to verify the integrity of a message transmission from the shaft processor 4706 .
  • the security code verification module of the safety processor 4704 is configured to compute a security code based on the received STOP command data and compare the computed security code to the security code received with the STOP command data. If the safety processor 4704 confirms the integrity of the received message, the safety processor 4704 may activate a stop mode 4688 ( FIG. 124 ), for example.
  • a circuit 4600 is configured to control a powered surgical instrument, such as the surgical instrument 4500 illustrated in FIG. 118 .
  • the circuit 4600 is configured to control one or more operations of the powered surgical instrument 4500 .
  • the circuit 4600 includes a safety processor 4604 and a main or primary processor 4602 , which are similar in many respects to the safety processor 4704 and the primary processor 4702 , respectively.
  • the safety processor 4604 and/or the primary processor 4602 are configured to interact with one or more additional circuit elements to control operation of the powered surgical instrument 4500 .
  • the primary processor 4602 comprises a plurality of inputs coupled to one or more circuit elements.
  • the circuit 4600 can be a segmented circuit. In various instances, the circuit 4600 may be implemented by any suitable circuit, such as a printed circuit board assembly (PCBA) within the powered surgical instrument 4500 .
  • PCBA printed circuit board assembly
  • the circuit 4600 comprises a feedback element in the form of a display 4609 .
  • the display 4609 comprises a display connector coupled to the primary processor 4602 .
  • the display connector couples the primary processor 4602 to a display 4609 through one or more display driver integrated circuits.
  • the display driver integrated circuits may be integrated with the display 4609 and/or may be located separately from the display 4609 .
  • the display 4609 may comprise any suitable display, such as an organic light-emitting diode (OLED) display, a liquid-crystal display (LCD), and/or any other suitable display.
  • the display 4609 is coupled to the safety processor 4604 .
  • the circuit 4600 further comprises one or more user controls 4611 , for example.
  • the safety processor 4604 is configured to implement a watchdog function with respect to one or more operations of the powered surgical instrument 4500 .
  • the safety processor 4604 employs the watchdog function to detect and recover from malfunctions of the primary processor 4602 .
  • the safety processor 4604 is configured to monitor for hardware faults or program errors of the primary processor 4602 and to initiate corrective action or actions.
  • the corrective actions may include placing the primary processor 4602 in a safe state and restoring normal system operation.
  • the primary processor 4602 and the safety processor 4604 operate in a redundant mode.
  • the primary processor 4602 and the safety processor 4604 are coupled to at least a first sensor.
  • the first sensor measures a first property of the surgical instrument 4500 .
  • the primary processor 4602 is configured to determine an output based on the measured first property of the surgical instrument 4500 and compare the output to a predetermined value.
  • the safety processor 4604 is configured to separately determine an output based on the measured first property of the surgical instrument 4500 and compare the output to the same predetermined value.
  • the safety processor 4604 and the primary processor 4602 are configured to provide a signal indicative of the value of their determined outputs.
  • the primary processor 4602 and the safety processor 4604 receive their inputs from separate sensors that are configured to separately measure the first property of the surgical instrument 4500 .
  • the surgical instrument 4500 is allowed to continue in a normal mode of operation.
  • the firing system 4056 can be allowed to complete a firing stroke of the surgical instrument 4500 when at least one of the safety processor 4604 and the primary processor 4602 indicates a value within an acceptable range.
  • a discrepancy between the values or results determined by the safety processor 4604 and the primary processor 4602 can be attributed to a faulty sensor or a calculation error, for example.
  • linear position encoders 4640 and 4641 are coupled to the primary processor 4602 and the safety processor 4604 , respectively.
  • the position encoder 4640 provides speed and position information about a firing member of the powered surgical instrument 4500 to the primary processor 4602 an analog to digital converters 4623 a (ADCs).
  • ADCs analog to digital converters 4623 a
  • the position encoder 4640 provides speed and position information about a firing member of the powered surgical instrument 4500 to the safety processor 4604 through a separate analog to digital converter 4623 b (ADCs).
  • the primary processor 4602 and the safety processor 4604 are configured to execute an algorithm for calculating at least one acceleration of the firing member based on the information derived from the linear position encoders 4640 and 4641 .
  • the acceleration of the firing member can be determined based on the following equation:
  • a is the current acceleration of the firing member
  • v 2 is a current velocity of the firing member recorded at time t 2
  • v 1 is a previous velocity of the firing member at a previous time t 1 .
  • the acceleration of the firing member can also be determined based on the following equation:
  • a is the current acceleration of the firing member
  • d 2 is a distance traveled by the firing member between an initial position and a current position during a time t 2
  • d 1 is a distance traveled by the firing member between an initial position a previous position during a time t 1 .
  • the primary processor 4602 is further configured to compare the determined acceleration value to a predetermined threshold acceleration which can be stored in a memory unit in communication with the primary processor 4602 , for example.
  • the safety processor 4604 is configured to compare its determined acceleration value to a predetermined threshold acceleration which can be stored in a memory unit in communication with the safety processor 4604 , for example. In the event the primary processor 4602 and/or the safety processor 4604 determine that the determined acceleration values are beyond the a predetermined threshold acceleration, appropriate safety measures can be taken such as, for example, stopping power delivery to the motor 4514 and/or resetting the firing system 4056 .
  • the surgical instrument 4500 when at least one of the safety processor 4604 and the primary processor 4602 indicates an acceptable acceleration value, the surgical instrument 4500 is allowed to continue in a normal mode of operation.
  • the firing system 4056 can be allowed to complete a firing stroke of the surgical instrument 4500 when at least one of the safety processor 4604 and the primary processor 4602 reports an acceptable acceleration.
  • a discrepancy between the values or results determined by the safety processor 4604 and the primary processor 4602 can be attributed to a faulty sensor or a calculation error, for example.
  • the primary processor 4602 and the safety processor 4604 are further configured to compare the determined acceleration values to a predetermined threshold acceleration which can be stored in a memory unit, for example.
  • the threshold acceleration can be determined from a threshold force corresponding to a failure load of a lockout mechanism of the firing system 4056 .
  • the failure load is known to be about 100 lbf.
  • Newton's second law of motion can be employed to determine the corresponding threshold acceleration based on the equation:
  • F is the threshold force
  • m is the mass exerting the force
  • a sensor 4617 can be coupled to a motor control circuit 4619 to measure the current drawn by the motor 4514 during the firing stroke.
  • the sensor 4617 can be a current sensor or a Hall effect sensor, for example.
  • the readings of the sensor 4617 can be amplified using a buffer amplifier 4625 , digitized using an ADC 4623 , and transmitted to the primary processor 4602 ( FIG. 121 ) and the safety processor 4604 ( FIG. 121 ) which are configured to execute an algorithm to determine the corresponding load on the firing member and determine an acceleration of the firing member based on Newton's second law of motion.
  • the sensor 4617 can be coupled to the motor control circuit 4619 to measure the current drawn by the motor 4514 during the firing stroke.
  • the readings of the sensor 4617 are expected to be within a normal predetermined range.
  • the normal range can have a minimum threshold of about 0.5 A, for example, and a maximum threshold of about 5.0 A, for example.
  • a sensor reading above the maximum threshold or a sensor reading above zero but below the minimum threshold can indicate a failure in the sensor 4617 .
  • the maximum threshold can be any value selected from a range of about 4.0 A, for example, to 6.0 A, for example.
  • the minimum threshold can be any value selected from a range of about 0.4 A, for example, to 0.6 A, for example.
  • the readings of the sensor 4617 can be amplified using a buffer amplifier 4625 , digitized using an ADC 4623 , and transmitted to the primary processor 4602 which is configured to execute an algorithm to determine whether the readings of the sensor 4617 are within a predetermined normal range. In the event it is determined that the readings of the sensor 4617 is beyond the predetermined normal range, appropriate safety measures can be taken by the primary processor 4602 .
  • the primary processor 4602 may permit completion of the firing stroke in a safe mode because the abnormal motor current readings are likely due to a faulty sensor 4617 .
  • the primary processor may cause power delivery to the motor 4514 to be stopped and alert a user to utilize a mechanical bailout feature.
  • the primary processor 4602 may alert a user through the display 4058 to contact a service department to replace the faulty sensor 4617 .
  • the primary processor 4602 may provide instructions on how to replace the faulty sensor 4617 .
  • the safety processor 4604 can be configured to receive readings from another sensor, independent from the sensor 4617 , configured to separately measure the current drawn by the motor 4514 during the firing stroke. Like the primary processor 4602 , the safety processor 4604 can be configured to execute an algorithm to determine whether the readings of the other sensor are within a predetermined normal range. If at least one of the primary processor 4602 and the secondary processor 4604 determines that the current drawn by the motor 4514 is within the predetermined normal range, the motor 4514 is allowed to complete the firing stroke. In such instances, a discrepancy between the values or results determined by the safety processor 4604 and the primary processor 4602 are attributed to a faulty sensor or a calculation error, for example.
  • the primary processor 4602 can be configured to determine or track an acceleration of a firing member of the firing system 4056 using a first technique.
  • the primary processor 4602 can be configured to determine or track an acceleration of the firing member by employing the sensor 4617 to measure the current drawn by the motor 4514 .
  • the primary processor 4602 can then execute an algorithm for calculating at least one acceleration of the firing member based on input from the sensor 4617 , as described above.
  • the safety processor 4604 can be configured to determine or track the acceleration of the firing member using a second technique, different than the first technique.
  • the safety processor 4604 can be configured to determine or track the same acceleration of the firing member by employing the position encoders 4640 to detect the position of the firing member during a firing stroke.
  • the safety processor 4604 can execute an algorithm for calculating at least one acceleration of the firing member based on input from the position encoders 4640 , as described above.
  • the calculated accelerations can be compared against a predetermined normal range. In the event, the primary processor 4602 and the safety processor 4604 are in agreement that their respective acceleration values are within the normal range, the firing member is allowed to complete the firing stroke. If, however, the primary processor 4602 and the safety processor 4604 are in agreement that their respective acceleration values are outside the normal range, appropriate safety measures can be taken by the primary processor 4602 , for example, as described above. In the event of a discrepancy between the outcomes determined by the primary processor 4602 and the safety processor 4604 with regard to the acceleration of the firing member, the firing member is allowed to complete the firing stroke.
  • the trigger-sensing control circuit 4627 also includes a verification-trigger Hall effect sensor 4631 configured to detect current drawn by the motor 4514 when the firing trigger is transitioned to the closed configuration.
  • the sensors 4629 and 4631 are in signal communication with the primary processor 4602 and/or the safety processor 4604 .
  • the readings of the sensor 4629 and 4631 are amplified using buffer amplifiers 4625 , digitized using ADCs 4623 and transmitted to the primary processor 4602 and/or the safety processor 4604 for analysis and comparison.
  • the transmitted readings of the sensors 4629 and 4631 provide a redundant assurance to the primary processor 4602 that the mechanical and electrical components involved in the firing of the powered surgical cutting and stapling instrument 4500 are functioning properly.
  • the primary processor 4602 may determine that the sensor 4631 is not functioning properly.
  • the primary processor 4602 may determine that the sensor 4629 is not functioning properly.
  • the primary processor 4602 may permit completion of the firing stroke in a safe mode because the disagreement is attributed to a faulty sensor.
  • the primary processor may cause power delivery to the motor 4514 to be stopped and alert a user, for example, to utilize a mechanical bailout feature.
  • the primary processor 4602 may alert a user through the display 4058 to contact a service department to replace the faulty sensor.
  • the primary processor 4602 may provide instructions on how to replace the faulty sensor.
  • the primary processor 4602 and/or the safety processor 4604 are in signal communication with one or more linear position encoders 4640 and/or one or more rotary position encoders 4641 .
  • the rotary position encoder 4641 is configured to identify the rotational position and/or speed of a motor 4514 .
  • the linear position encoder 4640 is configured to identify the position and/or speed of the firing member which is driven by the motor 4514 during a firing stroke of the surgical cutting and stapling instrument 4500 .
  • the readings of the rotary position encoder 4641 are in correlation with the readings of the linear position encoders 4640 . This is because the motor 4514 is operably coupled to the firing member such that the rotation of the motor 4514 causes the firing member to be advanced during the firing stroke.
  • the readings of the rotary position encoder 4641 may not correlate with the readings of the linear position encoders 4640 if the advancement speed of the firing member is outside a tolerance band as measured by the linear position encoder 4640 .
  • appropriate safety measures can be activated by the primary processor 4602 and/or the safety processor 4604 .
  • an input member such as, for example, a sensor or switch can be positioned in parallel with a first resistive element and in series with a second resistive element to insure that the detection of failure of the sensor or interruption of its circuit is not merely lack of signal output.
  • an electrical circuit 4650 includes a beginning-of-stroke switch 4652 positioned in parallel with a first resistive element 4654 and in series with a second resistive element 4656 .
  • the electrical circuit 4650 includes an end-of-stroke switch 4662 positioned in parallel with a first resistive element 4664 and in series with a second resistive element 4666 . Examples of beginning and end of stroke switches are described in U.S. Pat. No. 8,210,411, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, issued on Jul. 3, 2012, which is incorporated herein by reference its entirety.
  • the electrical circuit 4650 also includes a voltage source 4660 providing an input voltage of 5 volts, for example. As illustrated in FIG. 123 , output voltages 4659 and 4669 can be processed by buffer amplifiers 4625 and ADCs 4623 to generate digital outputs which can be communicated to the primary processor 4602 .
  • the primary processor 4602 is configured to execute an algorithm to assess one or more statuses of the circuit 4650 based on the received digital outputs. In the event the output voltage 4659 is equal to the input voltage of the voltage source 4660 , the primary processor 4602 determines that connection wires 4658 are disconnected.
  • the primary processor 4602 determines that connection wires 4658 are connected but the beginning-of-stroke switch 4652 is in an open configuration. In the event the output voltage 4659 is equal to one third of the input voltage of the voltage source 4660 , the primary processor 4602 determines that connection wires 4658 are connected and the beginning-of-stroke switch 4652 is in a closed configuration. In the event the output voltage 4659 is equal to zero, the primary processor 4602 determines that there is a short in the circuit 4650 . In certain instances, determining that the output voltage 4659 is equal to zero indicates a failure of the end-of-stroke switch 4652 . In certain instances, determining that the output voltage 4659 is equal to the input voltage indicates a failure of the end-of-stroke switch 4652 .
  • the primary processor 4602 determines that connection wires 4668 are disconnected. In the event the output voltage 4669 is equal to half of the input voltage of the voltage source 4660 , the primary processor 4602 determines that connection wires 4668 are connected but the end-of-stroke switch 4662 is in an open configuration. In the event the output voltage 4669 is equal to one third of the input voltage of the voltage source 4660 , the primary processor 4602 determines that connection wires 4668 are connected and the end-of-stroke switch 4662 is in a closed configuration. In the event the output voltage 4669 is equal to zero, the primary processor 4602 determines that there is a short in the circuit 4650 .
  • determining that the output voltage 4669 is equal to zero indicates a failure of the end-of-stroke switch 4662 . In certain instances, determining that the output voltage 4669 is equal to the input voltage indicates a failure of the end-of-stroke switch 4662 .
  • a powered surgical stapling and cutting instrument 4500 may comprise a failure response system 4681 that includes a number of operational modes that can be selectively engaged in response to input, or the lack thereof, from the above-described positions encoders, sensors, and/or switches of the powered surgical stapling and cutting instrument 4500 .
  • a warning mode 4682 is activated if the readings of the sensor 4617 , which represent current drawn by the motor 4514 , are beyond a predetermined normal range.
  • the warning mode 4682 is also activated if a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected.
  • the warning mode 4682 is limited to providing a user of the powered surgical cutting and stapling instrument 4500 with a warning without taking additional steps to stop or modify the progress or parameters of a firing stroke.
  • the warning mode 4682 is activated in situations where aborting a firing stroke is unnecessary. For example, the warning mode 4682 is activated when a detected error is deemed to be attributed to a failed sensor or switch.
  • the warning mode 4682 employs the user interface 4058 to deliver a visual, audio, and/or haptic warning.
  • the powered surgical cutting and stapling instrument 4500 further includes a warning/back-up system mode 4680 .
  • the warning/back-up system mode 4680 is activated if the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641 .
  • the warning/back-up system mode 4680 employs the user interface 4058 to deliver a visual, audio, and/or haptic warning.
  • warning/back-up system mode 4680 causes a back-up system to be activated.
  • a normal mode 4684 employs a primary system that includes primary sensors and primary control means.
  • a back-up system which comprises secondary sensors and/or secondary control means is used in lieu of the primary system if an error is detected that warrants activation of the warning/back-up system mode 4680 .
  • the powered surgical cutting and stapling instrument 4500 also includes a limp mode 4686 which is a failure response mode or state that is triggered if (i) the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641 and (ii) a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected.
  • the limp mode 4686 employs the user interface 4058 to deliver a visual, audio, and/or haptic warning.
  • the limp mode 4686 slows the progress of the firing stroke.
  • the powered surgical cutting and stapling instrument 4500 also includes a stop mode 4688 which is an escalated failure response mode or state that is triggered if (i) the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641 , (ii) a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected, and (iii) the readings of the sensor 4617 , which represent current drawn by the motor 4514 , are beyond a predetermined normal range.
  • the stop mode 4688 employs the user interface 4058 to deliver a visual, audio, and/or haptic warning.
  • the stop mode 4688 when triggered, causes the motor 4514 to be deactivated or stopped leaving only a mechanical bailout system available for use to retract the firing member to a starting position.
  • the stop mode 4688 employs the user interface 4058 to provide a user with instructions on operating the bailout system. Examples of suitable bailout systems are described in U.S. Patent Application Publication No. 2015/0272569, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, filed Mar. 26, 2014, which is incorporated herein by reference in its entirety.
  • the above-identified operational modes of the powered surgical stapling and cutting instrument 4500 create redundant electronic control pathways that enable operation of the powered surgical stapling and cutting instrument 4500 even as some of the inputs, switches, and/or sensors fail integrity checks. For example, as illustrated in FIG. 124 , triggering the limp mode 4686 requires detecting two separate and discrete failures, and triggering the stop mode 4688 requires detecting three separate and discrete failures. A single failure, however, only triggers the warning mode 4682 . In other words, the failure response system 4681 of the powered surgical stapling and cutting instrument 4500 is configured to escalate to a more secure mode of operation in response to an escalation in detected failures.
  • the failure response system 4681 can be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both.
  • integrated hardware elements may include processors, microprocessors, controllers, integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate arrays (FPGA), logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontroller, system-on-chip (SoC), and/or system-in-package (SIP).
  • Examples of discrete hardware elements may include circuits and/or circuit elements (e.g., logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, relay and so forth).
  • one or more controllers of the present disclosure may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
  • the failure response system 4681 can be implemented by a circuit including a controller that comprises one or more processors (e.g., microprocessor, microcontroller) coupled to at least one memory circuit.
  • the at least one memory circuit stores machine executable instructions that when executed by the processor, cause the processor to execute machine instructions to implement one or more of the functions performed by the failure response system 4681 .
  • the processor may be any one of a number of single or multi-core processors known in the art.
  • the memory circuit may comprise volatile and non-volatile storage media.
  • the processor may include an instruction processing unit and an arithmetic unit.
  • the instruction processing unit may be configured to receive instructions from the one memory circuit.
  • the failure response system 4681 may comprise a finite state machine comprising a combinational logic circuit configured to implement one or more of the functions performed the failure response system 4681 .
  • a failure response system 4681 may comprise a finite state machine comprising a sequential logic circuit.
  • the sequential logic circuit may comprise the combinational logic circuit and at least one memory circuit, for example.
  • the at least one memory circuit can store a current state of the finite state machine.
  • the sequential logic circuit or the combinational logic circuit can be configured to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller. In certain instances, the sequential logic circuit may be synchronous or asynchronous.
  • the failure response system 4681 is implemented, at least in part, using a number of logic gates.
  • a logic circuit 4691 can be configured to deliver a binary input to an AND logic gate 4690 as to whether the readings of the linear position encoder 4640 correlate with the readings of the rotary position encoder 4641 .
  • the second input of the AND gate 4690 is delivered through an OR logic gate 4692 which receives inputs from the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 .
  • the OR logic gate 4692 delivers a high output to the AND logic gate 4690 if a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected.
  • the AND logic gate 4690 delivers a high output, which causes the limp mode 4686 to be activated, if the logic circuit 4691 and the OR logic gate 4692 deliver high outputs to the AND logic gate 4690 .
  • a logic inverter or a NOT logic gate 4694 maintains the normal mode 4684 in the absence of a high output from the AND logic gate 4690 .
  • An AND gate 4696 is responsible for causing the stop mode 4688 to be activated upon receiving a high output from the AND logic gate 4690 and a high output from a high output from a logic circuit 4698 configured to monitor current drawn by the motor 4514 .
  • the logic circuit 4698 is configured to receive the readings of the sensor 4617 , which represent current drawn by the motor 4514 , and deliver a high output when such readings are beyond a predetermined normal range which indicates a sensor failure.
  • An OR logic gate 4699 is configured to cause the warning mode 4682 to be activated upon receiving a high output from one of the logic circuit 4698 and the OR logic gate 4692 .
  • the failure response system 4681 ′ is similar in many respects to the failure response system 4681 and includes the normal mode 4684 , the limp mode 4686 , and the stop mode 4688 .
  • the failure response system 4681 ′ includes the AND logic gate 4690 , the OR logic gate 4692 , and an AND logic gate 4674 .
  • a logic circuit 4670 which can be configured to implement a decision block, is configured to receive an input from the AND logic gate 4690 .
  • the logic circuit 4670 is configured to activate the limp mode 4686 if the logic circuit 4670 receives positive input from the AND logic gate 4690 . However, if the logic circuit 4670 does not receive a positive input from the AND logic gate 4690 , the normal mode 4684 remains active.
  • the failure response system 4681 ′ includes a second logic circuit 4672 , which can be configured to implement a decision block.
  • the second logic circuit 4672 is configured to receive an input from an AND logic gate 4674 .
  • the AND logic gate 4674 delivers a positive output if the limp mode 4686 is active and the logic circuit 4698 determines that the readings of the sensor 4617 , which represent current drawn by the motor 4514 , are beyond a predetermined normal range. If, however, the AND logic gate 4674 does not deliver an output to the logic circuit 4672 , the limp mode 4686 remains active.
  • a failure response system 5001 is similar in many respects to the failure response system 4681 , and includes the limp mode 4686 and the stop mode 4688 .
  • the failure response system 5001 is configured to transition the powered surgical stapling and cutting instrument 4500 from the limp mode 4686 to a stop mode 4688 if (i) the trigger-sensing control circuit 4627 determines that the readings of the firing-trigger Hall sensor 4629 and the verification-trigger Hall effect sensor 4631 do not correlate, and (ii)(a) the beginning-stroke-switch 4652 is in a closed configuration ( FIG. 123 ) or (ii)(b) the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641 .
  • the failure response system 5001 includes an OR logic gate configured to receive a positive input 5008 if the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641 .
  • the OR logic gate 5004 is also configured to receive a positive input 5006 from the electrical circuit 4650 ( FIG. 123 ) if the beginning-stroke-switch 4652 is in a closed configuration.
  • the failure response system 5001 further includes an AND logic gate 5010 configured to receive a positive input 5012 from the trigger-sensing control circuit 4627 if the trigger-sensing control circuit 4627 determines that the readings of the firing-trigger Hall sensor 4629 and the verification-trigger Hall effect sensor 4631 do not correlate.
  • the OR logic gate 5004 is configured to deliver a positive input to the AND logic gate 5010 in response to receiving one of the inputs 5006 and 5008 .
  • the failure response system 5001 further includes a logic circuit 5002 , which is configured to implement a decision block.
  • the logic circuit 5002 is configured to maintain a limp mode 4686 in the absence of a positive output of the AND logic gate 5010 .
  • the logic circuit 5002 is further configured to transition from the limp mode 4686 to the stop mode 4688 in the presence of a positive output from the AND logic gate 5010 .
  • failure response system 5021 is similar in many respects to the failure response system 4681 and includes the normal mode 4684 and the stop mode 4688 .
  • the failure response system 5021 is configured to maintain the powered surgical stapling and cutting instrument 4500 in the normal mode 4684 until three separate failures are detected, as described in greater detail below. Upon detecting such failures, the failure response system 5021 causes the stop mode 4688 to be activated.
  • the failure response system 5021 includes an AND logic gate 5024 , an OR logic gate 5026 , and an AND logic gate 5028 .
  • a logic circuit 5022 which can be configured to implement a decision block, is configured to receive an input from the AND logic gate 5024 .
  • the logic circuit 5022 is configured to activate the stop mode 4688 if the logic circuit 5022 receives a positive input from the AND logic gate 5024 .
  • the normal mode 4684 remains active.
  • the AND logic gate 5024 is coupled to the logic circuit 4691 , which is configured to deliver a binary input to an AND logic gate 5024 as to whether the readings of the linear position encoder 4640 correlate with the readings of the rotary position encoder 4641 .
  • the second input of the AND gate 5024 is delivered through the AND logic gate 5026 which is which is coupled to the logic circuit 4698 .
  • the logic circuit 4698 is configured to deliver a binary output to the AND logic gate 5026 as to whether the readings of the sensor 4617 , which represent current drawn by the motor 4514 , are beyond a predetermined normal range.
  • the second input of the AND gate 5026 is delivered through an OR logic gate 5028 which receives inputs from the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 .
  • the OR logic gate 5028 delivers a high output to the AND logic gate 4690 if a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected.
  • the failure response system 5021 protects against malfunctions that are based on sensor and/or switch errors by requiring a plurality of sensor and/or switch errors to be detected before activating the stop mode 4688 . This ensures that a single point failure such as a failure of a sensor and/or a switch will not by itself render the powered surgical stapling and cutting instrument 4500 inoperable.
  • the failure response system 5021 requires a plurality of inputs to indicate failures prior to activating the stop mode 4688 .
  • the failure response system 5021 is configured to look for failures in other related or relevant inputs such as, for example, motor current inputs, inputs from the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 , before activating the stop mode 4688 .
  • a first circuit and a second circuit are configured to separately assess or detect an operational parameter of a powered surgical stapling and cutting instrument 4500 such as, for example, an operational parameter in connection with the performance of a firing member during a firing stroke of the powered surgical stapling and cutting instrument 4500 .
  • the second circuit output can be used to verify and/or as a substitute, within a control loop of the firing stroke, for the output of the first circuit should the output of the first circuit be identified as erroneous.
  • the primary processor 4702 can be configured to track a first operational parameter by assessing the current drawn by the motor 4514 during the firing stroke
  • the safety processor 4704 can be configured to track a second operational parameter by assessing correlation between the rotational motion of the motor 4514 and the linear motion of the firing member during the firing stroke.
  • the current drawn by the motor 4514 corresponds to the speed of the firing member and/or falls within a normal predetermined range.
  • the rotational motion of the motor 4514 correlates with the linear motion of the firing member.
  • the primary processor 4702 and the safety processor 4704 separately track separate operational parameters of the powered surgical stapling and cutting instrument 4500 that provide feedback as to the performance of the firing member within a control loop of the firing stroke.
  • the primary processor 4702 and/or the safety processor 4704 may be configured to generate outputs indicative of whether their respective operational parameters are within normal operating conditions.
  • the output of the safety processor 4704 can be used to verify and/or as a substitute, within a control loop of the firing stroke, for the output of the primary processor 4702 should the assessment of operational parameter of the safety processor 4704 be identified as erroneous or indicative of abnormal operating conditions while the second operational parameter indicates normal operating conditions.
  • the outputs of the primary processor 4702 and/or the safety processor 4704 may comprise activating an operational mode of the powered surgical stapling and cutting instrument 4500 selected from a group comprising a normal mode, a warning mode, a limp mode, and a stop mode.
  • the output of the primary processor 4702 may comprise activating a failure response mode such as, for example, a limp mode or a stop mode but if the output of the safety processor 4704 comprises activating/continuing a normal mode of operation, the normal mode is used as a substitute for the failure response mode. Accordingly, the powered surgical stapling and cutting instrument 4500 will continue to operate in normal mode in spite of the error identified based on the assessment of the operational parameter tracked by the primary processor 4702 .
  • a failure response system can be configured to activate a first failure response mode if a first error is detected, a second failure response mode if a second error is detected in addition to the first error, and a third failure response mode if a third error is detected in addition to the first and second errors.
  • a powered surgical stapling and cutting instrument 4500 remain operational in the first failure response mode and the second failure response mode, and is deactivated in the third failure response mode.
  • a failure response system can be configured to elevate or escalate a failure response to accommodate an escalation in detected failures.
  • a failure response system is configured to transition from a first failure response mode to a second response failure response mode in response to an increase in detected errors, wherein the detected errors include at least one sensor failure and/or at least one switch failures.
  • a failure response system is configured to activate transition from a first failure response mode to a second failure response mode in response to an increase in detected errors, wherein the detected errors include at least one measurement outside a predetermine normal range.
  • a failure response system is configured to activate a first failure response mode if a first error is detected and is configured to transition from the first failure response mode to a second failure response mode if a second error is detected in addition to the first error.
  • a failure response system is configured to activate a first failure response mode if a first plurality of errors are detected and is configured to transition from the first failure response mode to a second failure response mode if a second plurality of errors are detected, wherein the second plurality of errors are greater than the first plurality of errors, and wherein the second plurality of errors encompasses the first plurality of errors.
  • the second failure response mode involves a greater number of restrictions on operation of the powered surgical stapling and cutting instrument 4500 than the first failure response mode.
  • FIGS. 128-133 depict a forming pocket arrangement 10100 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10100 comprises a proximal forming pocket 10110 and a distal forming pocket 10130 defined in a planar, or tissue-engaging, surface 10107 of an anvil 10101 .
  • the pockets 10110 , 10130 are aligned along a longitudinal pocket axis 10103 of the forming pocket arrangement 10100 .
  • a staple is intended to be formed along the pocket axis 10103 by the forming pocket arrangement 10100 when deployed from a staple cartridge. Referring to FIGS.
  • the forming pocket arrangement 10100 further comprises a bridge, or ridge, portion 10105 defined between the forming pockets 10110 , 10130 .
  • the bridge portion 10105 is part of the planar surface 10107 of the anvil 10101 .
  • the bridge portion 10105 comprises a bridge width “W”.
  • the forming pocket arrangement 10100 comprises a center “C” defined within the bridge portion 10105 .
  • the forming pocket arrangement 10100 is bilaterally symmetric with respect to the bridge portion 10105 , bilaterally symmetric with respect to the pocket axis 10103 , and rotationally symmetric with respect to the center “C”.
  • the forming pocket 10110 comprises a pair of pocket sidewalls 10113 and the forming pocket 10130 comprises a pair of pocket sidewalls 10133 .
  • the pocket sidewalls 10113 , 10133 are configured to direct the tips and the legs of the staples toward the forming surfaces of the pockets 10110 , 10130 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10113 , 10133 of the pockets 10110 , 10130 .
  • the sidewalls 10113 , 10133 extend from the planar surface 10107 of the anvil 10101 toward the forming surfaces of each pocket 10110 , 10130 .
  • the sidewalls 10113 , 10133 of the forming pockets 10110 , 10130 are angled with respect to the planar surface 10107 of the anvil 10101 at angle ⁇ in order to direct, or channel, the staple legs and/or the tips of the staples toward the forming surfaces.
  • the sidewalls 10113 , 10133 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10103 as the staples are formed against the forming surfaces of the pockets 10110 , 10130 .
  • the forming surfaces of the pockets 10110 , 10130 comprise an entry zone forming surface 10111 , 10131 and an exit zone forming surface 10112 , 10132 , respectively.
  • the amount of surface area of the forming surfaces that the entry zone forming surfaces 10111 , 10131 cover is equal to the amount of surface area of the forming surfaces that the exit zone forming surfaces 10112 , 10132 cover.
  • the entry zone forming surfaces 10111 , 10131 transition to the exit zone forming surfaces 10112 , 10132 in the center of each pocket 10110 , 10130 .
  • the transitions between the entry zone forming surfaces 10111 , 10131 and the exit zone forming surfaces 10112 , 10132 define a valley, or trough of each pocket 10110 , 10130 .
  • the valleys of the forming pockets 10110 , 10130 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10107 .
  • each pocket 10110 , 10130 comprise a longitudinal radius of curvature 10117 , 10137 , respectively.
  • the longitudinal radius of curvature 10117 is equal to the radius of curvature 10137 .
  • the longitudinal radius of curvature 10117 and the longitudinal radius of curvature 10137 can form a symmetric staple.
  • the longitudinal radius of curvature 10117 and the longitudinal radius of curvature 10137 are different and can form an asymmetric staple.
  • FIG. 132 is a cross-sectional view of the distal forming pocket 10130 taken along line 132 - 132 in FIG. 129 . This view illustrates the valley, or trough, of the distal forming pocket 10130 .
  • the outer edges of each pocket 10110 , 10130 define the widest portion of the forming surfaces of each pocket 10110 , 10130 .
  • FIG. 131 illustrates a cross-sectional view of the distal forming pocket 10130 taken along line 131 - 131 in FIG. 129 which is within the exit zone forming surface 10132 of the distal forming pocket 10130 .
  • 133 is a cross-sectional view of the distal forming pocket 10130 taken along line 133 - 133 in FIG. 129 which is within the entry zone forming surface 10132 of the distal forming pocket 10130 .
  • a proximal staple leg is configured to land in the entry zone forming surface 10111 of the proximal forming pocket 10110 and exit in the exit zone forming surface 10112 of the proximal forming pocket 10110 .
  • a distal staple leg is configured to land in the entry zone forming surface 10131 of the distal forming pocket 10130 and exit in the exit zone forming surface 10132 of the distal forming pocket 10130 .
  • FIGS. 134-139 depict a forming pocket arrangement 10200 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10200 comprises a proximal forming pocket 10210 and a distal forming pocket 10230 defined in a planar, or tissue-engaging, surface 10207 of an anvil 10201 .
  • the pockets 10210 , 10230 are aligned along a longitudinal pocket axis 10203 of the forming pocket arrangement 10200 .
  • a staple is intended to be formed along the pocket axis 10203 by the forming pocket arrangement 10200 when deployed from a staple cartridge. Referring to FIGS.
  • the forming pocket arrangement 10200 further comprises a bridge portion 10205 defined between the forming pockets 10210 , 10230 .
  • the bridge portion 10205 is recessed with respect to the planar surface 10207 of the anvil 10201 .
  • the bridge portion 10205 comprises a bridge width “W” and a bridge depth “D”.
  • the bridge depth “D” is the distance that the bridge portion 10205 is recessed with respect to the planar surface 10207 .
  • the forming pocket arrangement 10200 comprises a center “C” defined within the bridge portion 10205 .
  • the forming pocket arrangement 10200 is bilaterally symmetric with respect to the bridge portion 10205 , bilaterally symmetric with respect to pocket axis 10203 , and rotationally symmetric with respect to the center “C”.
  • the forming pocket arrangement 10200 further comprises a pair of primary sidewalls 10208 extending from the planar surface 10207 of the anvil 10201 toward the pockets 10210 , 10230 and the bridge portion 10205 .
  • the primary sidewalls 10208 are angled at angle ⁇ 2 with respect to the planar surface 10207 of the anvil 10201 .
  • the forming pocket arrangement 10200 further comprises edge features 10215 , 10235 which provide a transition feature between the outer edges of the pockets 10210 , 10230 and the planar surface 10207 , between the longitudinal edges of the pockets 10210 , 10230 and the primary sidewalls 10208 , and between the inner edges of pockets 10210 , 10230 and the bridge portion 10205 .
  • These edges 10215 , 10235 can be rounded, and/or chamfered, for example.
  • the edge features 10215 , 10235 may help prevent staple tips from sticking, as discussed in greater detail below.
  • the forming pocket 10210 comprises a pair of pocket sidewalls 10213 and the forming pocket 10230 comprises a pair of pocket sidewalls 10233 .
  • the pocket sidewalls 10213 , 10233 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10210 , 10230 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10213 , 10233 of the pockets 10210 , 10230 .
  • the sidewalls 10213 , 10233 extend from the transition edges 10215 , 10235 toward the forming surfaces of each pocket 10210 , 10230 .
  • the pockets 10210 , 10230 further comprise transition edges 10214 , 10234 which provide a transition feature between the pocket sidewalls 10213 , 10233 and the forming surfaces, as discussed in greater detail below.
  • the transition edges 10214 , 10234 can comprise a similar profile as the transition edges 10215 , 10235 .
  • the transition edges 10214 , 10234 can comprise a different profile than the transition edges 10215 , 10235 . That said, the edges 10214 , 10234 can be rounded, or chamfered, for example.
  • the edges 10214 , 10234 comprise a first end where the edges 10214 , 10234 meet the outer ends of the pockets 10210 , 10230 and a second end where the edges 10214 , 10234 approach the bridge portion 10205 , or the inner ends of the pockets 10210 , 10230 .
  • the edges 10214 , 10234 may transition into the transition edges 10215 , 10235 near the bridge portion 10205 .
  • the edge features 10214 , 10234 may also help prevent staple tips from sticking in the pockets 10210 , 10230 when forming, as discussed in greater detail below.
  • the forming surfaces of the pockets 10210 , 10230 comprise an entry zone forming surface 10211 , 10231 and an exit zone forming surface 10212 , 10232 , respectively.
  • the amount of surface area of the forming surfaces that the entry zone forming surfaces 10211 , 10231 cover is greater than the amount of surface area of the forming surfaces that the exit zone forming surfaces 10212 , 10232 cover.
  • the entry zone forming surfaces 10211 , 10231 do not transition to the exit zone forming surfaces 10212 , 10232 in the center of each pocket 10210 , 10230 .
  • FIG. 138 is a cross-sectional view of the distal forming pocket 10230 taken along line 138 - 138 in FIG. 135 .
  • This view illustrates the valley, or trough, of the distal forming pocket 10230 .
  • This valley, or trough is also the transition between the entry zone forming surface 10231 and the exit zone forming surface 10232 .
  • FIG. 137 illustrates a cross-sectional view of the distal forming pocket 10230 taken along line 137 - 137 in FIG. 135 which is located within the exit zone forming surface 10232 of the forming pocket 10230 .
  • FIG. 139 is a cross-sectional view of the distal forming pocket 10230 taken along line 139 - 139 in FIG. 135 which is within the entry zone forming surface 10232 of the distal forming pocket 10230 .
  • FIGS. 140-145 depict a forming pocket arrangement 10300 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10300 comprises a proximal forming pocket 10310 and a distal forming pocket 10330 defined in a planar, or tissue-contacting, surface 10307 of an anvil 10301 .
  • the pockets 10310 , 10330 are aligned along a longitudinal pocket axis 10303 of the forming pocket arrangement 10300 .
  • a staple is intended to be formed along the pocket axis 10303 by the forming pocket arrangement 10300 when deployed from a staple cartridge.
  • the forming pocket arrangement 10300 further comprises a bridge portion 10305 defined between the forming pockets 10310 , 10330 .
  • the bridge portion 10305 is recessed with respect to the planar surface 10307 of the anvil 10301 .
  • the bridge portion 10305 comprises a bridge width “W” and a bridge depth “D”.
  • the bridge depth “D” is the distance that the bridge portion 10305 is recessed with respect to the planar surface 10307 .
  • the forming pocket arrangement 10300 comprises a center “C” defined within the bridge portion 10305 .
  • the forming pocket arrangement 10300 is bilaterally symmetric with respect to the bridge portion 10305 , bilaterally symmetric with respect to pocket axis 10303 , and rotationally symmetric with respect to the center “C”.
  • the forming pocket arrangement 10300 further comprises a pair of primary sidewalls 10308 extending from the planar surface 10307 of the anvil 10301 toward the pockets 10310 , 10330 and the bridge portion 10305 .
  • the primary sidewalls 10308 are angled at angle ⁇ 2 with respect to the planar surface 10307 of the anvil 10301 .
  • the forming pocket arrangement 10300 further comprises a pair of edge features 10309 which provide a transition feature between the lateral edges of the pockets 10310 , 10330 and the primary sidewalls 10308 .
  • the edges 10309 also provide a transition feature between central portions of the primary sidewalls 10308 and the bridge portion 10305 . These edges 10309 can be rounded, and/or chamfered, for example.
  • the edge features 10309 may help prevent staple tips from sticking, as discussed in greater detail below.
  • the forming pocket 10310 comprises a pair of pocket sidewalls 10313 and the forming pocket 10330 comprises a pair of pocket sidewalls 10333 .
  • the pocket sidewalls 10313 , 10333 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10310 , 10330 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10313 , 10333 of the pockets 10310 , 10330 .
  • the sidewalls 10313 , 10333 extend from the transition edges 10309 toward the forming surfaces of each pocket 10310 , 10330 .
  • the sidewalls 10313 , 10333 of the forming pockets 10310 , 10330 are angled with respect to the planar surface 10307 of the anvil 10301 at angle ⁇ 1 in order to direct, or channel, the legs and/or staple tips of the staples toward the forming surfaces of the pockets 10310 , 10330 .
  • the sidewalls 10313 , 10333 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10303 as the staples are formed against the forming surfaces of the pockets 10310 , 10330 .
  • the primary sidewalls 10308 and the pocket sidewalls 10313 , 10333 can provide a funnel-like configuration for corresponding staple tips. Referring to FIGS.
  • the angle ⁇ 1 is greater than the angle ⁇ 2 .
  • the pocket sidewalls 10313 , 10333 can be considered aggressive.
  • the angle ⁇ 1 is 80 degrees.
  • the angle ⁇ 2 is significantly less aggressive than the angle ⁇ 1 .
  • the angle ⁇ 2 is 4 degrees.
  • Angle ⁇ 3 ( FIG. 144 ) is defined as the angle between the sidewalls 10333 is between about 0 degrees and about 10 degrees. In various instances, the angle ⁇ 3 is 0 degrees and the walls 10333 are at least substantially parallel to each other.
  • the pockets 10310 , 10330 further comprise transition edges 10306 which provide a transition feature between the pocket sidewalls 10313 , 10333 and the forming surfaces, as discussed in greater detail below.
  • the transition edges 10306 can comprise a similar profile as the transition edges 10309 .
  • the transition edges 10306 can comprise a different profile than the transition edges 10309 . That said, the edges 10307 can be rounded, or chamfered, for example.
  • the edges 10306 , 10309 comprise a first end where the edges 10306 , 10309 meet the outer ends of the pockets 10310 , 10330 and a second end where the edges 10306 , 10309 approach the bridge portion 10305 , or the inner ends of the pockets 10310 , 10330 .
  • the edges 10306 may transition into the transition edges 10309 near the bridge portion 10305 .
  • the edge features 10306 may also help prevent staple tips from sticking in the pockets 10310 , 10330 when forming, as discussed in greater detail below.
  • the forming surfaces of the pockets 10310 , 10330 comprise an entry zone forming surface 10311 , 10331 and an exit zone forming surface 10312 , 10332 , respectively.
  • the amount of surface area of the forming surfaces that the entry zone forming surfaces 10311 , 10331 cover is greater than the amount of surface area of the forming surfaces that the exit zone forming surfaces 10312 , 10332 cover.
  • the entry zone forming surfaces 10311 , 10331 do not transition to the exit zone forming surfaces 10312 , 10332 in the center of each pocket 10310 , 10330 .
  • transition points where the entry zones 10311 , 10331 transition to the exit zones 10312 , 10332 are closer to the bridge portion 10305 .
  • the transitions between the entry zone forming surfaces 10311 , 10331 and the exit zone forming surfaces 10312 , 10332 define a valley, or trough of each pocket 10310 , 10330 .
  • the valleys of the forming pockets 10310 , 10330 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10307 .
  • each pocket 10310 , 10330 comprise more than one radius of curvature.
  • the pocket 10310 comprises an entry radius of curvature 10317 corresponding to the entry zone forming surface 10311 and an exit radius of curvature 10318 corresponding to the exit zone forming surface 10312 .
  • the pocket 10330 comprises an entry radius of curvature 10337 corresponding to the entry zone forming surface 10331 and an exit radius of curvature 10338 corresponding to the exit zone forming surface 10332 .
  • the entry radii of curvature 10317 , 10337 are larger than the exit radii of curvature 10318 , 10338 .
  • each pocket 10310 , 10330 also referred to as entry edges because they define the beginning of the entry zone forming surfaces 10311 , 10331 , comprise an entry width which is the largest width of the forming surfaces of each pocket 10310 , 10330 .
  • the inner edges of each pocket 10310 , 10330 also referred to as exit edges because they define the end of the exit zone forming surfaces 10312 , 10332 , comprise an exit width which is the narrowest section of the forming surfaces of each pocket 10310 , 10330 .
  • the exit widths are larger than the largest diameter staple configured for use with the forming pocket arrangement 10300 .
  • the transitions between entry and exit zones comprise a transition width which is less than the entry width but greater than the exit width.
  • FIG. 144 is a cross-sectional view of the distal forming pocket 10330 taken along line 144 - 144 in FIG. 141 .
  • This view illustrates the valley, or trough, of the distal forming pocket 10330 .
  • This valley, or trough is also the transition between the entry zone forming surface 10331 and the exit zone forming surface 10332 .
  • FIG. 143 illustrates a cross-sectional view of the distal forming pocket 10330 taken along line 143 - 143 in FIG. 141 which is located within the exit zone forming surface 10332 of the forming pocket 10330 .
  • FIG. 145 is a cross-sectional view of the distal forming pocket 10330 taken along line 145 - 145 in FIG. 141 which is within the entry zone forming surface 10332 of the distal forming pocket 10330 .
  • FIGS. 146-151 depict a forming pocket arrangement 10400 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10400 comprises a proximal forming pocket 10410 and a distal forming pocket 10430 defined in a planar, or tissue-contacting, surface 10407 of an anvil 10401 .
  • the pockets 10410 , 10430 are aligned along a longitudinal pocket axis 10403 of the forming pocket arrangement 10400 .
  • a staple is intended to be formed along the pocket axis 10403 by the forming pocket arrangement 10400 when deployed from a staple cartridge. Referring to FIGS.
  • the forming pocket arrangement 10400 further comprises a bridge portion 10405 defined between the forming pockets 10410 , 10430 .
  • the bridge portion 10405 is recessed with respect to the planar surface 10407 of the anvil 10401 .
  • the bridge portion 10405 comprises a bridge width “W” and a bridge depth “D”.
  • the bridge depth “D” is the distance that the bridge portion 10405 is recessed with respect to the planar surface 10407 .
  • the forming pocket arrangement 10400 comprises a center “C” defined within the bridge portion 10405 .
  • the forming pocket arrangement 10400 is bilaterally symmetric with respect to the bridge portion 10405 , bilaterally symmetric with respect to pocket axis 10403 , and rotationally symmetric with respect to the center “C”.
  • the forming pocket arrangement 10400 further comprises a pair of primary sidewalls 10408 extending from the planar surface 10407 of the anvil 10401 toward the pockets 10410 , 10430 and the bridge portion 10405 .
  • each sidewall 10408 shares an edge with only a portion of each pocket, as discussed in greater detail below.
  • the primary sidewalls 10408 are angled at angle ⁇ 4 with respect to the planar surface 10407 of the anvil 10401 .
  • Each forming pocket 10410 , 10430 comprises a pair of pocket sidewalls, wherein each pocket sidewall of each pair comprises discrete, sidewall portions.
  • the proximal forming pocket 10410 comprises a pair of pocket sidewalls, each comprising discrete sidewall portions 10413 and 10416 .
  • the sidewall portions 10413 may be referred to as entry sidewalls portions and the sidewalls portions 10416 may be referred to as exit sidewalls portions.
  • the distal forming pocket 10430 comprises a pair of pocket sidewalls, each comprising discrete sidewall portions 10433 and 10436 respectively.
  • the sidewall portions 10433 may be referred to as entry sidewalls portions and the sidewalls portions 10436 may be referred to as exit sidewalls portions.
  • the pocket sidewalls 10413 , 10416 , 10433 , 10436 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10410 , 10430 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10413 , 10416 , 10433 , 10436 of the pockets 10410 , 10430 .
  • the sidewall portions 10413 extend from the planar surface 10407 toward the forming surface of the proximal forming pocket 10410 .
  • the sidewall portions 10413 transition into the forming surface via transition feature 10414 .
  • Another transition feature 10417 is provided between the discrete sidewall portions 10413 and 10416 to provide the discrete, sidewall features.
  • the transition features 10414 , 10417 may comprise rounded and/or chamfered surfaces, for example.
  • the transition features 10414 , 10417 may, instead, comprise a discrete edge.
  • the sidewall portions 10416 share an edge with the primary sidewalls 10408 and extend from the primary sidewalls 10408 toward the forming surface of the proximal forming pocket 10410 .
  • the sidewalls 10413 and 10416 are orientated at different angles with respect to the pocket axis 10403 .
  • the sidewall portion 10413 is at least substantially parallel with respect to the pocket axis 10403 and the sidewall portion 10416 is angled at angle ⁇ 3 with respect to the pocket axis 10403 .
  • the phrase “substantially parallel” refers to an orientation that is nearly parallel to, or parallel to, the pocket axis 10403 .
  • the sidewall portions 10433 extend from the planar surface 10407 toward the forming surface of the distal forming pocket 10430 .
  • the sidewall portions 10433 transition into the forming surface via transition feature 10434 .
  • Another transition feature 10437 is provided between the discrete sidewall portions 10433 and 10436 to provide the discrete, sidewall features.
  • the transition features 10434 , 10437 may comprise rounded and/or chamfered surfaces, for example.
  • the transition features 10434 , 10437 may, instead, comprise a discrete edge.
  • the sidewall portions 10436 share an edge with the primary sidewalls 10408 and extend from the primary sidewalls 10408 toward the forming surface of the distal forming pocket 10430 .
  • the sidewalls 10433 and 10436 are orientated at different angles with respect to the pocket axis 10403 .
  • the sidewall portion 10433 is at least substantially parallel with respect to the pocket axis 10403 and the sidewall portion 10436 is angled at angle ⁇ 3 with respect to the pocket axis 10403 .
  • the phrase “substantially parallel” refers to an orientation that is nearly parallel to, or parallel to, the pocket axis 10403 .
  • the sidewall portions 10413 , 10433 are angled with respect to the planar surface 10407 of the anvil 10401 at a different angle than the sidewall portions 10416 , 10436 .
  • the proximal forming pocket 10410 comprises a configuration symmetric of the distal forming pocket 10430 .
  • the entry sidewall portions 10433 are angled with respect to the planar surface 10407 at angle ⁇ 1 .
  • the exit sidewall portions 10436 are angled with respect to the planar surface 10407 at angle ⁇ 2 .
  • Angle ⁇ 2 is greater than angle ⁇ 1 .
  • Angle ⁇ 2 is between about 60 degrees and about 90 degrees, for example. In various instances, angle ⁇ 2 is about 80 degrees. In other instances, angle ⁇ 2 is about 90 degrees.
  • the exit sidewall portions 10436 are more aggressively angled, or more vertical, than the entry sidewall portions 10433 .
  • the transition edges 10414 , 10434 provide a transition feature between the pocket sidewall portions 10413 , 10416 , 10433 , 10436 and the forming surfaces.
  • the edges 10414 , 10434 comprise a first end where the edges 10414 , 10434 meet the outer ends of the pockets 10410 , 10430 and a second end where the edges 10414 , 10434 meet the bridge portion 10405 , or the inner ends of the pockets 10410 , 10430 .
  • the edge features 10414 , 10434 may help prevent staple tips from sticking in the pockets 10410 , 10430 when forming, as discussed in greater detail below.
  • each pocket 10410 , 10430 comprise more than one radius of curvature.
  • the pocket 10410 comprises an entry radius of curvature 10418 corresponding to the entry zone forming surface 10411 and an exit radius of curvature 10419 corresponding to the exit zone forming surface 10412 .
  • the pocket 10430 comprises an entry radius of curvature 10438 corresponding to the entry zone forming surface 10431 and an exit radius of curvature 10439 corresponding to the exit zone forming surface 10432 .
  • the entry radii of curvature 10418 , 10438 are larger than the exit radii of curvature 10419 , 10439 .
  • each pocket 10410 , 10430 also referred to as entry edges because they define the beginning of the entry zone forming surfaces 10411 , 10431 , comprise an entry width which is the largest width of the forming surfaces of each pocket 10410 , 10430 .
  • the inner edges of each pocket 10410 , 10430 also referred to as exit edges because they define the end of the exit zone forming surfaces 10412 , 10432 , comprise an exit width which is narrower than the entry width of the forming surfaces of each pocket 10410 , 10430 .
  • the transitions between entry and exit zones comprise a transition width which is less than the entry width. In various instances, the transition width is similar to the exit width ( FIG. 147 ).
  • FIGS. 152-157 depict a forming pocket arrangement 10500 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10500 comprises a proximal forming pocket 10510 and a distal forming pocket 10530 defined in a planar, or tissue-contacting, surface 10507 of an anvil 10501 .
  • the pockets 10510 , 10530 are aligned along a longitudinal pocket axis 10503 of the forming pocket arrangement 10500 .
  • a staple is intended to be formed along the pocket axis 10503 by the forming pocket arrangement 10500 when deployed from a staple cartridge. Referring to FIGS.
  • the forming pocket arrangement 10500 further comprises a pair of primary sidewalls 10508 extending from the planar surface 10507 of the anvil 10501 toward the pockets 10510 , 10530 and the bridge portion 10505 .
  • the primary sidewalls 10508 are angled at angle ⁇ 1 with respect to the planar surface 10507 of the anvil 10501 .
  • the primary sidewalls 10508 comprise inner edges that are curved, or contoured, with respect to the pockets 10510 , 10530 .
  • the forming pocket 10510 comprises a pair of pocket sidewalls 10513 and the forming pocket 10530 comprises a pair of pocket sidewalls 10533 .
  • the pocket sidewalls 10513 , 10533 comprise curved, or contoured, profiles and are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10510 , 10530 as well as help control the forming process of the staples.
  • the sidewalls 10513 , 10533 extend from the primary sidewalls 10508 and the planar surface 10507 toward the forming surfaces of each pocket 10510 , 10530 .
  • the forming surfaces of the pockets 10510 , 10530 comprise an entry zone forming surface 10511 , 10531 and an exit zone forming surface 10512 , 10532 , respectively.
  • the entry zone forming surfaces 10511 , 10531 can coincide with the less aggressive channeling portions of the sidewalls 10513 , 10533 .
  • the exit zone forming surfaces 10512 , 10532 can coincide with the more aggressive channeling portions of the sidewalls 10513 , 10533 .
  • the pockets 10510 , 10530 further comprise a forming, or guiding, groove 10515 , 10535 , also referred to as a tip control channel, extending the entire longitudinal length of each pocket 10510 , 10530 and positioned centrally with respect to the outer lateral edges of the pockets 10510 , 10530 .
  • the grooves 10515 , 10535 are narrower at the outer longitudinal edges of the pockets 10510 , 10530 than the inner longitudinal edges of the pockets 10510 , 10530 .
  • the grooves 10515 , 10535 meet at the bridge portion 10505 to encourage the staple tips, and staple legs, to contact each other during the forming process, as discussed in greater detail below.
  • grooves defined in the forming surfaces of forming pockets can have a similar effect in staple forming as more aggressively-angled exit walls and/or narrowly-configured exit walls.
  • FIGS. 158-163 depict a forming pocket arrangement 10600 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10600 is similar in many respects to the forming pocket arrangement 10100 .
  • the forming pocket arrangement 10600 comprises a proximal forming pocket 10610 and a distal forming pocket 10630 defined in a planar, or tissue-contacting, surface 10607 of an anvil 10601 .
  • the pockets 10610 , 10630 are aligned along a longitudinal pocket axis 10603 of the forming pocket arrangement 10600 .
  • a staple is intended to be formed along the pocket axis 10603 by the forming pocket arrangement 10600 when deployed from a staple cartridge. Referring to FIG.
  • the forming pocket arrangement 10600 further comprises a bridge portion 10605 defined between the forming pockets 10610 , 10630 .
  • the bridge portion 10605 is part of the planar surface 10607 of the anvil 10601 .
  • the bridge portion 10605 comprises an inner bridge width “W 1 ” and an outer bridge width “W 2 ”.
  • the inner bridge width “W 1 ” is less than the outer bridge width “W 2 ”.
  • the forming pocket arrangement 10600 comprises a center “C” defined within the bridge portion 10605 .
  • the forming pocket arrangement 10600 is bilaterally symmetric with respect to the bridge portion 10605 , bilaterally symmetric with respect to the pocket axis 10603 , and rotationally symmetric with respect to the center “C”.
  • the forming pocket 10610 comprises a pair of pocket sidewalls 10613 and the forming pocket 10630 comprises a pair of pocket sidewalls 10633 .
  • the pocket sidewalls 10613 , 10633 are configured to direct the tips and legs of a staple toward the forming surfaces of the pockets 10610 , 10630 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10613 , 10633 of the pockets 10610 , 10630 .
  • the sidewalls 10613 , 10633 extend from the planar surface 10607 of the anvil 10601 toward the forming surfaces of each pocket 10610 , 10630 .
  • the forming surfaces of the pockets 10610 , 10630 comprise an entry zone forming surface 10611 , 10631 , an exit zone forming surface 10612 , 10632 , and a groove, or channel, 10615 , 10635 defined in the forming surfaces, respectively.
  • the amount of surface area of the forming surfaces that the entry zone forming surfaces 10611 , 10631 cover is equal to the amount of surface area of the forming surfaces that the exit zone forming surfaces 10612 , 10632 cover.
  • the entry zone forming surfaces 10611 , 10631 transition to the exit zone forming surfaces 10612 , 10632 in the center of each pocket 10610 , 10630 .
  • the transitions between the entry zone forming surfaces 10611 , 10631 and the exit zone forming surfaces 10612 , 10632 define a valley, or trough of each pocket 10610 , 10630 .
  • the valleys of the forming pockets 10610 , 10630 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10607 .
  • the forming surfaces also comprise transition features 10616 , 10636 surrounding the grooves 10615 , 10635 , respectively, as well as transition features 10617 , 10637 at the inner and outer longitudinal edges of the pockets 10610 , 10630 , respectively.
  • the transition features 10616 , 10617 , 10636 , 10637 are rounded, however, the transition features 10616 , 10617 , 10636 , 10637 can comprise any suitable profile in addition to, or in lieu of, a rounded edge.
  • the transition features 10616 , 10636 provide a transition between the grooves 10615 , 10635 and the forming surfaces of each pocket 10610 , 10630 .
  • the transition features 10616 , 10636 may provide a transition between the grooves 10615 , 10635 and the sidewalls 10613 , 10633 .
  • the transition features 10617 , 10637 provide a transition between the forming surfaces and the planar surface 10607 .
  • the transition features 10617 , 10637 comprise extension portions 10618 , 10638 positioned at the proximal and distal ends of each groove 10615 , 10635 .
  • FIG. 162 is a cross-sectional view of the distal forming pocket 10630 taken along line 162 - 162 in FIG. 158 . This view illustrates the valley, or trough, of the distal forming pocket 10630 .
  • the outer longitudinal edges of each pocket 10610 , 10630 define the widest portion of the forming surfaces of each pocket 10610 , 10630 .
  • FIG. 161 illustrates a cross-sectional view of the distal forming pocket 10630 taken along line 161 - 161 in FIG. 158 which is within the exit zone forming surface 10632 of the distal forming pocket 10630 .
  • FIG. 163 is a cross-sectional view of the distal forming pocket 10630 taken along line 163 - 163 in FIG. 158 which is within the entry zone forming surface 10632 of the distal forming pocket 10630 .
  • FIGS. 164-168 depict a forming pocket arrangement 10700 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10700 is similar in many respects to the forming pocket arrangement 10600 .
  • the forming pocket arrangement 10700 comprises a proximal forming pocket 10710 and a distal forming pocket 10730 defined in a planar, or tissue-contacting, surface 10707 of an anvil 10701 .
  • the pockets 10710 , 10730 are aligned along a longitudinal pocket axis 10703 of the forming pocket arrangement 10700 .
  • a staple is intended to be formed along the pocket axis 10703 by the forming pocket arrangement 10700 when deployed from a staple cartridge. Referring to FIG.
  • the forming pocket 10710 comprises a pair of pocket sidewalls 10713 and the forming pocket 10730 comprises a pair of pocket sidewalls 10733 .
  • the pocket sidewalls 10713 , 10733 are configured to direct the staple tips and the legs of staples toward the forming surfaces of the pockets 10710 , 10730 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10713 , 10733 of the pockets 10710 , 10730 .
  • the sidewalls 10713 , 10733 extend from the planar surface 10707 of the anvil 10701 toward the forming surfaces of each pocket 10710 , 10730 .
  • the forming surfaces of the pockets 10710 , 10730 comprise an entry zone forming surface 10711 , 10731 , an exit zone forming surface 10712 , 10732 , and a groove, or channel, 10715 , 10735 defined in the forming surfaces, respectively.
  • the amount of surface area of the forming surfaces that the entry zone forming surfaces 10711 , 10731 cover is equal to the amount of surface area of the forming surfaces that the exit zone forming surfaces 10712 , 10732 cover.
  • the entry zone forming surfaces 10711 , 10731 transition to the exit zone forming surfaces 10712 , 10732 in the center of each pocket 10710 , 10730 .
  • the transitions between the entry zone forming surfaces 10711 , 10731 and the exit zone forming surfaces 10712 , 10732 define a valley, or trough of each pocket 10710 , 10730 .
  • the valleys of the forming pockets 10710 , 10730 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10707 .
  • the grooves 10715 , 10735 which are aligned with the pocket axis 10703 , are defined only within a portion of each pocket 10710 , 10730 . In this instance, the grooves 10715 , 10735 are positioned entirely within the exit zone forming surfaces 10712 , 10732 . In other instances, the grooves can be positioned entirely within the entry zones.
  • the grooves 10715 , 10735 comprise edges 10716 , 10736 which provide a transition between the grooves 10715 , 10735 and their respective forming surfaces.
  • the edges 10716 , 10736 comprise a rounded profile, however, flat, curved, and/or irregular profiles are contemplated, for example.
  • the rounded profile may help prevent staple tip sticking, as discussed in greater detail below.
  • the grooves 10715 , 10735 extend from a central portion of their forming surface toward the bridge portion 10705 of the pocket arrangement 10700 .
  • the grooves 10715 , 10735 extend into the bridge portion 10705 of the pocket arrangement 10700 .
  • the grooves 10715 , 10735 extend beyond the inner longitudinal edges 10717 , 10737 of each pocket 10710 , 10730 .
  • FIG. 166 is a cross-sectional view of the distal forming pocket 10730 taken along line 166 - 166 in FIG. 164 . This cross-sectional view is taken within the exit zone forming surface 10732 .
  • the diameter of the staple “S” is larger than the width, or diameter, of the groove 10735 .
  • the diameter of the staple “S” is smaller than the width of the groove 10735 plus the transition edges 10736 . This prevents the body of the staple “S” from contacting the bottom of the groove 10735 .
  • This configuration may help maintain minimal, dual-tangent contact between the staple “S” as it forms within the exit zone forming surface 10732 and exits the distal pocket 10730 .
  • Minimal contact between the staple and the pocket may help prevent staple tip sticking and provide a more continuously formed staple, as discussed in greater detail below.
  • Staples used with this forming pocket arrangement may comprise a diameter larger than the width of the groove 10735 plus the width of the edges 10736 . In this instance, among others, a similar dual-tangent contact would occur.
  • FIG. 167 is a cross-sectional view of the distal forming pocket 10730 taken along line 167 - 167 in FIG. 164 . This view illustrates the valley, or trough, of the distal forming pocket 10730 .
  • the outer longitudinal edges of each pocket 10710 , 10730 define the widest portion of the forming surfaces of each pocket 10710 , 10730 .
  • FIG. 168 is a cross-sectional view of the distal forming pocket 10730 taken along line 168 - 168 in FIG. 164 which is within the entry zone forming surface 10732 of the distal forming pocket 10730 .
  • FIGS. 169-173 depict a forming pocket arrangement 10800 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10800 is similar in many respects to the forming pocket arrangement 10600 .
  • the forming pocket arrangement 10800 comprises a proximal forming pocket 10810 and a distal forming pocket 10830 defined in a planar, or tissue-contacting, surface 10807 of an anvil 10801 .
  • the pockets 10810 , 10830 are aligned along a longitudinal pocket axis 10803 of the forming pocket arrangement 10800 .
  • a staple is not intended to be formed along the pocket axis 10803 when deployed from a staple cartridge.
  • the forming pocket arrangement 10800 further comprises a bridge portion 10805 defined between the forming pockets 10810 , 10830 .
  • the bridge portion 10805 is part of the planar surface 10807 of the anvil 10801 .
  • the bridge portion 10805 comprises an inner bridge width “W 1 ” and an outer bridge width “W 2 ”.
  • the inner bridge width “W 1 ” is less than the outer bridge width “W 2 ”.
  • the forming pocket arrangement 10800 comprises a center “C” defined within the bridge portion 10805 .
  • the forming pocket arrangement 10800 is bilaterally asymmetric with respect to the bridge portion 10805 , bilaterally asymmetric with respect to the pocket axis 10803 , and rotationally symmetric with respect to the center “C”.
  • the forming pocket 10810 comprises a pair of pocket sidewalls 10813 and the forming pocket 10830 comprises a pair of pocket sidewalls 10833 .
  • the pocket sidewalls 10813 , 10833 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10810 , 10830 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10813 , 10833 of the pockets 10810 , 10830 .
  • the sidewalls 10813 , 10833 extend from the planar surface 10807 of the anvil 10801 toward the forming surfaces of each pocket 10810 , 10830 .
  • the sidewalls 10813 , 10833 of the forming pockets 10810 , 10830 are angled with respect to the planar surface 10807 of the anvil 10801 at angle ⁇ in order to direct, or channel, the legs and/or staple tips of the staples toward the forming surfaces.
  • the sidewalls 10813 , 10833 are configured to push, or guide, the staple tips and/or the legs of staples toward the forming surfaces of the pockets 10810 , 10830 .
  • the forming surfaces of the pockets 10810 , 10830 comprise an entry zone forming surface 10811 , 10831 , an exit zone forming surface 10812 , 10832 , and a groove, or channel, 10815 , 10835 defined in the forming surfaces, respectively.
  • the amount of surface area of the forming surfaces that the entry zone forming surfaces 10811 , 10831 cover is equal to the amount of surface area of the forming surfaces that the exit zone forming surfaces 10812 , 10832 cover.
  • the entry zone forming surfaces 10811 , 10831 transition to the exit zone forming surfaces 10812 , 10832 in the center of each pocket 10810 , 10830 .
  • the transitions between the entry zone forming surfaces 10811 , 10831 and the exit zone forming surfaces 10812 , 10832 define a valley, or trough of each pocket 10810 , 10830 .
  • the valleys of the forming pockets 10810 , 10830 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10807 .
  • the forming surfaces also comprise transition features 10816 , 10836 surrounding the grooves 10815 , 10835 as well as transition features 10817 , 10837 at the inner and outer longitudinal edges of each pocket 10810 , 10830 .
  • the transition features 10816 , 10817 , 10836 , 10837 are rounded, however, the transition features 10816 , 10817 , 10836 , 10837 can comprise any suitable profile in addition to, or in lieu of, a rounded edge, for example.
  • the transition features 10816 , 10836 provide a transition between the grooves 10815 , 10835 and the forming surfaces of the pockets 10810 , 10830 , respectively.
  • the transition features 10816 , 10836 may provide a transition between the grooves 10815 , 10835 and the sidewalls 10813 , 10833 .
  • the transition features 10817 , 10837 provide a transition between the forming surfaces and the planar surface 10807 .
  • the transition features 10817 , 10837 comprise extension portions positioned at the proximal and distal ends of the grooves 10815 , 10835 .
  • the grooves 10815 , 10835 are angled with respect to the pocket axis 10803 .
  • the grooves 10815 , 10835 each comprise an entry portion and an exit portion where the entry portion of the groove 10815 and the entry portion of the groove 10835 are on opposite sides of the pocket axis 10803 and the exit portion of the groove 10815 and the exit portion of the groove 10835 are on opposite sides of the pocket axis 10803 .
  • This configuration encourages legs to form away from each other. For example, instead of head to head contact between a pair of corresponding legs, the legs are configured to form offset with respect to and on opposite sides of the pocket axis 10803 .
  • FIG. 172 is a cross-sectional view of the distal forming pocket 10830 taken along line 172 - 172 in FIG. 169 . This view illustrates the valley, or trough, of the distal forming pocket 10830 .
  • the outer longitudinal edges of each pocket 10810 , 10830 define the widest portion of the forming surfaces of each pocket 10810 , 10830 .
  • FIG. 171 illustrates a cross-sectional view of the distal forming pocket 10830 taken along line 171 - 171 in FIG.
  • FIG. 173 is a cross-sectional view of the distal forming pocket 10830 taken along line 173 - 173 in FIG. 169 which is within the entry zone forming surface 10832 of the distal forming pocket 10830 .
  • FIGS. 174-178 depict a forming pocket arrangement 10900 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 10900 may be similar to the forming pocket arrangement 10200 in many respects.
  • the forming pocket arrangement 10900 comprises a proximal forming pocket 10910 and a distal forming pocket 10930 defined in a planar, or tissue-contacting, surface 10907 of an anvil 10901 .
  • the pockets 10910 , 10930 are aligned along a longitudinal pocket axis 10903 of the forming pocket arrangement 10900 .
  • a staple is intended to be formed along the pocket axis 10903 by the forming pocket arrangement 10900 when deployed from a staple cartridge. Referring to FIGS.
  • the forming pocket arrangement 10900 further comprises a bridge portion 10905 defined between the forming pockets 10910 , 10930 .
  • the bridge portion 10905 is recessed with respect to the planar surface 10907 of the anvil 10901 .
  • the bridge portion 10905 comprises a first bridge width “W 1 ” and a second bridge width “W 2 ”.
  • the first width “W 1 ” is greater than the second width “W 2 ”.
  • the bridge portion also comprises a bridge depth “D”.
  • the bridge depth “D” is the distance that the bridge portion 10905 is recessed with respect to the planar surface 10907 .
  • the forming pocket arrangement 10900 comprises a center “C” defined within the bridge portion 10905 .
  • the forming pocket arrangement 10900 is bilaterally symmetric with respect to the bridge portion 10905 , bilaterally symmetric with respect to pocket axis 10903 , and rotationally symmetric with respect to the center “C”.
  • the forming pocket arrangement 10900 further comprises a pair of primary sidewalls 10908 extending from the planar surface 10907 of the anvil 10901 toward the pockets 10910 , 10930 and the bridge portion 10905 .
  • the primary sidewalls 10908 are angled at angle ⁇ 2 with respect to the planar surface 10907 of the anvil 10901 .
  • the forming pocket arrangement 10900 further comprises edge features 10915 , 10935 which provide a transition feature between the outer edges of the pockets 10910 , 10930 and the planar surface 10907 and between the longitudinal edges of the pockets 10910 , 10930 and the primary sidewalls 10908 .
  • These edges 10915 , 10935 can be rounded, and/or chamfered, for example.
  • the edge features 10915 , 10935 may help prevent staple tips from sticking, as discussed in greater detail below.
  • the forming pocket 10910 comprises a pair of pocket sidewalls 10913 and the forming pocket 10930 comprises a pair of pocket sidewalls 10933 .
  • the pocket sidewalls 10913 , 10933 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10910 , 10930 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10913 , 10933 of the pockets 10910 , 10930 .
  • the sidewalls 10913 , 10933 extend from the transition edges 10915 , 10935 toward the forming surfaces of each pocket 10910 , 10930 .
  • the sidewalls 10913 , 10933 of the forming pockets 10910 , 10930 are angled with respect to the planar surface 10907 of the anvil 10901 at angle ⁇ 1 in order to direct, or channel, the legs and/or staple tips of the staples toward the forming surfaces of the pockets 10910 , 10930 .
  • the sidewalls 10913 , 10933 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10903 as the staples are formed against the forming surfaces of the pockets 10910 , 10930 .
  • the primary sidewalls 10908 and the pocket sidewalls 10913 , 10933 can provide a funnel-like configuration for receiving two staple tips. Referring to FIGS. 176 and 177 , the angle ⁇ 1 is greater than the angle ⁇ 2 .
  • the pockets 10910 , 10930 further comprise transition edges 10914 , 10934 which provide a transition feature between the pocket sidewalls 10913 , 10933 and the forming surfaces, as discussed in greater detail below.
  • the transition edges 10914 , 10934 can comprise a similar profile as the transition edges 10915 , 10935 .
  • the transition edges 10914 , 10934 can comprise a different profile than the transition edges 10915 , 10935 .
  • the edges 10914 , 10934 can be rounded, or chamfered, for example.
  • the edges 10914 , 10934 comprise a first end where the edges 10914 , 10934 meet the outer corners of the pockets 10910 , 10930 and a second end where the edges 10914 , 10934 approach the bridge portion 10905 , or the inner ends of the pockets 10910 , 10930 .
  • the edges 10914 , 10934 may transition into the transition edges 10915 , 10935 near the bridge portion 10905 .
  • the edge features 10914 , 10934 may also help prevent staple tips from sticking in the pockets 10910 , 10930 when forming, as discussed in greater detail below.
  • the forming surfaces of the pockets 10910 , 10930 comprise an entry zone forming surface 10911 , 10931 and an exit zone forming surface 10912 , 10932 , respectively.
  • the amount of surface area of the forming surfaces that the entry zone forming surfaces 10911 , 10931 cover is greater than the amount of surface area of the forming surfaces that the exit zone forming surfaces 10912 , 10932 cover.
  • the entry zone forming surfaces 10911 , 10931 do not transition to the exit zone forming surfaces 10912 , 10932 in the center of each pocket 10910 , 10930 .
  • transition points where the entry zones 10911 , 10931 transition to the exit zones 10912 , 10932 are closer to the bridge portion 10905 .
  • the transitions between the entry zone forming surfaces 10911 , 10931 and the exit zone forming surfaces 10912 , 10932 define a valley, or trough of each pocket 10910 , 10930 .
  • the valleys of the forming pockets 10910 , 10930 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10907 .
  • each pocket 10910 , 10930 comprise more than one radius of curvature.
  • the pocket 10910 comprises an entry radius of curvature 10918 corresponding to the entry zone forming surface 10911 and an exit radius of curvature 10919 corresponding to the exit zone forming surface 10912 .
  • the pocket 10930 comprises an entry radius of curvature 10938 corresponding to the entry zone forming surface 10931 and an exit radius of curvature 10939 corresponding to the exit zone forming surface 10932 .
  • the entry radii of curvature 10918 , 10938 are larger than the exit radii of curvature 10919 , 10939 .
  • each pocket 10910 , 10930 also comprise grooves, or channels, 10916 , 10936 defined in the entire longitudinal length of each form pocket 10910 , 10930 , respectively.
  • the forming surfaces may comprise a main forming surface length and the grooves may comprise a groove length which is greater than the main forming surface length.
  • the grooves 10916 , 10936 are configured to guide staple tips and/or legs during the forming process.
  • the grooves also comprise transition edges 10917 , 10937 providing a transition between the forming surfaces and the grooves 10916 , 10936 and between the grooves 10916 , 10936 and the sidewalls 10913 , 10933 .
  • the transition edges 10917 , 10937 may comprise a rounded profile and/or a chamfered profile, for example.
  • a staple “S” is shown.
  • FIG. 176 is a cross-sectional view of the distal forming pocket 10930 taken along line 176 - 176 in FIG. 174 . This cross-sectional view is taken within the exit zone forming surface 10932 .
  • the diameter of the staple “S” is larger than the width of the groove 10936 .
  • the diameter of the staple “S” is smaller than the width of the groove 10936 plus the transition edges 10937 . This prevents the body of the staple “S” from contacting the deepest portion of the groove 10936 .
  • the forming pocket arrangement 10900 is configured to be employed with staples of varying diameter.
  • the diameter of the staple may be less than that of the width of the grooves 10916 , 10936 such that the staple can enter and contact the deepest portion of the grooves 10916 , 10936 .
  • the valleys of the forming pockets 10910 , 10930 also define the narrowest portion of the forming surfaces of each pocket 10910 , 10930 .
  • the outer longitudinal edges of each pocket 10910 , 10930 also referred to as entry edges because they define the beginning of the entry zone forming surfaces 10911 , 10931 , comprise an entry width.
  • the inner longitudinal edges of each pocket 10910 , 10930 also referred to as exit edges because they define the end of the exit zone forming surfaces 10912 , 10932 , comprise an exit width. In this instance, the entry width is greater than the exit width.
  • FIG. 177 is a cross-sectional view of the distal forming pocket 10930 taken along line 177 - 177 in FIG. 174 .
  • This view illustrates the valley, or trough, of the distal forming pocket 10930 .
  • This valley, or trough is also the transition between the entry zone forming surface 10931 and the exit zone forming surface 10932 .
  • FIG. 178 is a cross-sectional view of the distal forming pocket 10930 taken along line 178 - 178 in FIG. 174 which is within the entry zone forming surface 10932 of the distal forming pocket 10930 .
  • FIGS. 179-183 depict a forming pocket arrangement 11000 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 11000 comprises a proximal forming pocket 11010 and a distal forming pocket 11030 defined in a planar, or tissue-contacting, surface 11007 of an anvil 11001 .
  • the pockets 11010 , 11030 are aligned along a longitudinal pocket axis 11003 of the forming pocket arrangement 11000 .
  • a staple is intended to be formed away from the pocket axis 11003 by the forming pocket arrangement 11000 when deployed from a staple cartridge.
  • the forming pocket arrangement 11000 further comprises a bridge portion 11005 defined between the forming pockets 11010 , 11030 .
  • the bridge portion 11005 is recessed with respect to the planar surface 11007 of the anvil 11001 and angled with respect to the pocket axis 11003 .
  • the bridge portion 11005 comprises a bridge width “W” and a bridge depth “D”.
  • the bridge portion 11005 is substantially U-shaped with a substantial planar bottom portion.
  • the bridge depth “D” is the distance that the planar portion of the bridge portion 11005 is recessed with respect to the planar surface 11007 .
  • the forming pocket arrangement 11000 comprises a center “C” defined within the bridge portion 11005 .
  • the forming pocket arrangement 11000 is bilaterally asymmetric with respect to the bridge portion 11005 , bilaterally asymmetric with respect to pocket axis 11003 , and rotationally symmetric with respect to the center “C”.
  • the forming pocket arrangement 11000 further comprises a pair of primary sidewalls 11008 extending from the planar surface 11007 of the anvil 11001 toward the pockets 11010 , 11030 and the bridge portion 11005 .
  • the primary sidewalls 11008 are angled at angle ⁇ 2 with respect to the planar surface 11007 of the anvil 11001 .
  • the primary sidewalls 11008 comprise inner edges that are curved, or contoured, with respect to the pockets 11010 , 11030 .
  • the forming pocket 11010 comprises a pair of pocket sidewalls 11013 and the forming pocket 11030 comprises a pair of pocket sidewalls 11033 .
  • the pocket sidewalls 11013 , 11033 comprise a substantially V-shaped profile near the entry portion and a curved, or contoured, profile.
  • the sidewalls 11013 , 11033 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 11010 , 11030 as well as help control the forming process of the staples.
  • the sidewalls 11013 , 11033 extend from the primary sidewalls 11008 and the planar surface 11007 toward the forming surfaces of each pocket 11010 , 11030 .
  • the primary sidewalls 11008 and the pocket sidewalls 11013 , 11033 cooperate to funnel corresponding staple tips toward the forming surfaces each pocket 11010 , 11030 .
  • the sidewalls 11013 , 11033 comprise entry portions and exit portions where the entry portions comprise a less aggressive channeling configuration than the exit portions.
  • the forming surfaces of the pockets 11010 , 11030 comprise an entry zone forming surface 11011 , 11031 and an exit zone forming surface 11012 , 11032 , respectively.
  • the entry zone forming surfaces 11011 , 11031 can coincide with the less aggressive channeling portions of the sidewalls 11013 , 11033 .
  • the entry zone forming surfaces 11011 , 11031 can also coincide with the substantially V-shaped profile of each pocket 11010 , 11030 .
  • the exit zone forming surfaces 11012 , 11032 can coincide with the more aggressive channeling portions of the sidewalls 11013 , 11033 .
  • the exit zone forming surfaces 11012 , 11032 can also coincide with the curved, or contoured, profile of each pocket 11010 , 11030 .
  • the pockets 11010 , 11030 further comprise a forming, or guiding, groove 11015 , 11035 , respectively, which extend the entire longitudinal length of the pockets 11010 , 11030 and are positioned on only one side of the pocket axis 11003 .
  • the grooves 11015 , 11035 are angled with respect to the pocket axis 11003 .
  • the grooves 11015 , 11035 are narrower at the outer longitudinal edges of the pockets 11010 , 11030 than the inner longitudinal edges of the pockets 11010 , 11030 .
  • the grooves 11015 , 11035 are also parallel, or at least substantially parallel, to each other.
  • each pocket 11010 , 11030 comprise more than one radius of curvature.
  • the pocket 11010 comprises an entry radius of curvature 11017 corresponding to the entry zone forming surface 11011 and an exit radius of curvature 11018 corresponding to the exit zone forming surface 11012 .
  • the pocket 11030 comprises an entry radius of curvature 11037 corresponding to the entry zone forming surface 11031 and an exit radius of curvature 11038 corresponding to the exit zone forming surface 11032 .
  • the entry radii of curvature 11017 , 11037 are larger than the exit radii of curvature 11018 , 11038 .
  • each pocket 11010 , 11030 are referred to as entry edges because they define the beginning of the entry zone forming surfaces 11011 , 11031 .
  • the entry edges comprise an entry width which is the largest width of the forming surfaces of each pocket 11010 , 11030 .
  • the inner longitudinal edges of each pocket 11010 , 11030 are referred to as exit edges because they define the end of the exit zone forming surfaces 11012 , 11032 .
  • the exit edges comprise an exit width which is the narrowest section of the forming surfaces of each pocket 11010 , 11030 .
  • the transitions between entry and exit zones comprise a transition width which is less than the entry width but greater than the exit width.
  • FIG. 181 is a cross-sectional view of the distal forming pocket 11030 taken along line 181 - 181 in FIG. 179 . This view is taken within the exit zone forming surface 11032 of the forming pocket 11030 .
  • the sidewall 11033 which the groove 11035 is angled toward is curved more and more aggressively sloped than the other sidewall 11033 which the groove 11035 is angled away from.
  • FIG. 182 is a cross-sectional view of the distal forming pocket 11030 taken along line 182 - 182 in FIG. 179 . This view is taken near the valley, or trough, of the forming pocket 11030 .
  • each sidewall 11033 is substantially similar near this section of the pocket 11030 though, the sidewall 11033 which the groove 11035 is angled toward is, still, curved more and more aggressively sloped than the other sidewall 11033 which the groove 11035 is angled away from.
  • FIG. 183 is cross-sectional view of the distal forming pocket 11030 taken along line 183 - 183 in FIG. 179 . This view is taken within the entry zone forming surface 11031 of the forming pocket 11030 . In this section of the pocket, the sidewalls 11033 are substantially flat. However, it can be seen that the sidewall 11033 which the groove 11035 is angled toward is still curved slightly.
  • the sidewall 11033 which the groove 11035 is angled away from is planar in this section and is angled at angle ⁇ 1 with respect to the planar surface 11007 . Angle ⁇ 1 is greater than angle ⁇ 2 .
  • FIGS. 184-188 depict a forming pocket arrangement 11100 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 11100 comprises a proximal forming pocket 11110 and a distal forming pocket 11130 defined in a planar, or tissue-contacting, surface 11107 of an anvil 11101 .
  • the pockets 11110 , 11130 are aligned along a longitudinal pocket axis 11103 of the forming pocket arrangement 11100 .
  • the forming pocket arrangement 11100 further comprises a bridge portion 11105 defined between the forming pockets 11110 , 11130 . In this instance, the bridge portion 11105 is part of the planar surface 11107 of the anvil 11101 .
  • the bridge portion 11105 comprises a bridge width “W”.
  • the forming pocket arrangement 11100 comprises a center “C” defined within the bridge portion 11105 .
  • the forming pocket arrangement 11100 is bilaterally symmetric with respect to the bridge portion 11105 , bilaterally asymmetric with respect to pocket axis 11103 , and rotationally asymmetric with respect to the center “C”.
  • Each forming pocket 11110 , 11130 comprises a filleted edge 11114 , 11134 , respectively, extending around the perimeter of each pocket 11110 , 11130 .
  • the edges 11114 , 11134 provide a curved transition between the planar surface 11107 and the pockets 11110 , 11130 . Specifically, the edges 11114 , 11134 transition the planar surface 11107 into pocket sidewalls 11113 A, 11113 B of the pocket 11110 and pocket sidewalls 11133 A, 11133 B of the pocket 11130 .
  • the edges 11114 , 11134 also transition the planar surface 11107 into the entry and exit portions of the forming surfaces of each pocket 11110 , 11130 .
  • the sidewalls 11113 A, 11133 A are angled with respect to the pocket axis 11103 at angle ⁇ .
  • the sidewalls 11113 B, 11133 B comprise distinct sidewall portions 11121 , 11122 , 11123 and 11141 , 11142 , 11143 , respectively.
  • the sidewall portions 11121 , 11141 are angled with respect to the pocket axis 11103 at a different angle than the angle at which the sidewall portions 11113 A, 11133 A are angled with respect to the pocket axis 11103 .
  • the sidewall portions 11122 , 11142 are parallel, or at least substantially parallel, to the pocket axis 11103 .
  • the sidewall portions 11123 , 11143 are parallel, or at least substantially parallel, to the sidewalls 11113 A, 11133 A.
  • the sidewalls 11113 A, 11113 B, 11133 A, 11133 B are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 11110 , 11130 as well as help control the
  • the sidewalls 11113 A, 11113 B, 11133 A, 11133 B extend from the transition edges 11114 , 11134 to transition edges 11116 , 11136 .
  • These edges 11116 , 11136 provide a rounded, or smoothed, transition feature between the sidewalls 11113 A, 11113 B, 11133 A, 11133 B and the forming surfaces of each pocket 11110 , 11130 .
  • the edges 11116 , 11136 may comprise rounded and/or flat profiles.
  • the forming surfaces of the pockets 11110 , 11130 comprise an entry zone forming surface 11111 , 11131 and an exit zone forming surface 11112 , 11132 , respectively.
  • the pockets 11110 , 11130 further comprise a forming, or guiding, groove 11115 , 11135 defined in the forming pockets 11110 , 11130 , respectively.
  • the grooves 11115 , 11135 extend parallel, or at least substantially parallel, to the pocket axis 11103 and reside only in the entry zone forming surface 11111 , 11131 .
  • the pockets 11110 , 11130 also comprise filleted transition edges extending around the perimeter of the grooves 11115 , 11135 , respectively, to provide a smooth a transition between the forming surfaces and the grooves 11115 , 11135 .
  • the filleted transition edges may aid in ensuring two-point forming contact, as discussed in greater detail below.
  • the grooves 11115 , 11135 also reside entirely on one side of the pocket axis 11103 .
  • each pocket 11110 , 11130 comprise more than one radius of curvature.
  • the proximal pocket 11110 comprises an entry radius of curvature 11127 corresponding to the entry zone forming surface 11111 and an exit radius of curvature 11128 corresponding to the exit zone forming surface 11112 .
  • the distal pocket 11130 comprises an entry radius of curvature 11147 corresponding to the entry zone forming surface 11131 and an exit radius of curvature 11148 corresponding to the exit zone forming surface 11132 .
  • the entry radii of curvature 11117 , 11137 are larger than the exit radii of curvature 11118 , 11138 .
  • the forming surfaces comprise a transition point where the radii of curvature switch from entry radii of curvature 11127 , 11147 to exit radii of curvature 11128 , 11148 .
  • this transition point occurs at the ends of the grooves 11115 , 11135 which are closer to the bridge portion 11105 .
  • each pocket 11110 , 11130 are referred to as entry edges because they define the beginning of the entry zone forming surfaces 11111 , 11131 .
  • the entry edges comprise an entry width which is the largest width of the forming surfaces of each pocket 11110 , 11130 .
  • the inner longitudinal edges of each pocket 11110 , 11130 are referred to as exit edges because they define the end of the exit zone forming surfaces 11112 , 11132 .
  • the exit edges comprise an exit width which is the narrowest section of the forming surfaces of each pocket 11110 , 11130 .
  • the transition point where the entry zone transitions to the exit zone comprises a transition width which is less than the entry width but greater than the exit width.
  • FIG. 186 is a cross-sectional view of the distal forming pocket 11130 taken along line 186 - 186 in FIG. 184 . This view is taken within the exit zone forming surface 11132 of the forming pocket 11130 .
  • FIG. 187 is a cross-sectional view of the distal forming pocket 11130 taken along line 187 - 187 in FIG. 184 . This view is taken near the valley, or trough, of the forming pocket 11130 . In this view, it can be seen that the groove 11135 may be considered an extension of the sidewall portion 11142 .
  • FIG. 188 is cross-sectional view of the distal forming pocket 11130 taken along line 188 - 188 in FIG. 184 .
  • FIGS. 189-196 depict a forming pocket arrangement 11200 that is configured to deform a staple during a surgical stapling procedure.
  • the forming pocket arrangement 11200 comprises a proximal forming pocket 11210 and a distal forming pocket 11230 defined in a planar, or tissue-contacting, surface 11207 of an anvil 11201 .
  • the pockets 11210 , 11230 are aligned along a longitudinal pocket axis 11203 of the forming pocket arrangement 11200 .
  • the forming pocket arrangement 11200 further comprises a bridge portion 11205 defined between the forming pockets 11210 , 11230 . In this instance, the bridge portion 11205 is recessed with respect to the planar surface 11207 of the anvil 11201 .
  • the bridge portion 11205 comprises a bridge width “W” and a bridge depth “D”.
  • the bridge depth “D” is the distance that the bridge portion 11205 is recessed with respect to the planar surface 11207 .
  • the forming pocket arrangement 11200 comprises a center “C” defined within the bridge portion 11205 .
  • the center “C” is not the geometrical center of the pocket arrangement 11200 , rather, the center “C” is identified as being near the central portion of the bridge portion 11205 to define an intermediate reference point between the pockets to describe, in this case, the lack of symmetry of the pocket arrangement 11200 .
  • the forming pocket arrangement 11200 is bilaterally asymmetric with respect to the bridge portion 11205 , bilaterally symmetric with respect to pocket axis 11203 , and rotationally asymmetric with respect to the center “C”.
  • the pockets 11210 , 11230 are different in many respects, as discussed in greater detail below.
  • the forming pocket arrangement 11200 further comprises a pair of primary sidewalls 11208 extending from the planar surface 11207 of the anvil 11201 toward the pockets 11210 , 11230 and the bridge portion 11205 .
  • the primary sidewalls 11208 are angled at angle ⁇ with respect to the planar surface 11207 of the anvil 11201 .
  • the proximal forming pocket 11210 comprises a pair of pocket sidewalls 11213 configured to direct staple tips and/or legs toward a forming surface of the pocket as well as control the forming of the staples.
  • the pocket sidewalls 11213 are substantially vertical. In other words, the sidewalls 11213 are oriented 90 degrees, or approximately 90 degrees, with respect to the planar surface 11207 of the anvil 11201 .
  • the pocket sidewalls 11213 extend from the primary sidewalls 11208 toward the forming surface of the proximal pocket 11210 . Collectively, the primary sidewalls 11208 and the pocket sidewalls 11213 cooperate to funnel corresponding staple tips toward the forming surface of the proximal pocket 11210 .
  • transition features 11214 Extending from the sidewalls 11213 to the forming surface of the proximal forming pocket 11210 are transition features 11214 .
  • the features 11214 are curved, however, the features 11214 may be flat in addition to, or in lieu of, being curved. These features 11214 may help prevent staple tip sticking, as discussed in greater detail below.
  • the forming surface of the proximal forming pocket 11210 comprises an entry zone forming surface 11211 and an exit zone forming surface 11212 .
  • the entry zone forming surface 11211 corresponds with a proximal portion of the proximal pocket 11210 .
  • the exit zone forming 11212 corresponds with a distal portion of the proximal pocket 11210 .
  • the entry zone forming surface 11211 corresponds to a portion of the pocket 11210 of which the corresponding staple tip is intended to enter, or strike, the pocket 11210 and begin forming.
  • the exit zone forming surface 11212 corresponds to a portion of the pocket 11210 where the corresponding staple tip is intended to exit the pocket 11210 .
  • the forming surface of the proximal forming pocket 11210 also comprises a forming surface length L 1 and a forming surface depth V 1 .
  • the length L 1 is identified as the distance between the entry edge of the pocket 11210 and the exit edge of the pocket 11210 .
  • the forming surface depth V 1 is identified as the deepest portion of the pocket 11210 , or the trough of the pocket 11210 , also referred to as the valley of the pocket 11210 .
  • the distal forming pocket 11230 is different than the proximal forming pocket 11210 .
  • the distal forming pocket 11230 comprises a pair of pocket sidewalls 11233 configured to direct staple tips and/or legs toward a forming surface of the pocket as well as control the forming of the staples.
  • the sidewalls 11233 comprise discrete sidewall portions angled at different angles with respect to the pocket axis 11203 .
  • the pocket sidewalls 11233 are substantially vertical. In other words, the sidewalls 11233 are oriented 90 degrees, or at least substantially 90 degrees, with respect to the planar surface 11207 of the anvil 11201 .
  • the pocket sidewalls 11233 extend from the primary sidewalls 11208 toward the forming surface of the distal pocket 11230 .
  • the primary sidewalls 11208 and the pocket sidewalls 11233 cooperate to funnel corresponding staple tips toward the forming surface of the distal pocket 11230 .
  • Extending from the sidewalls 11233 to the forming surface of the proximal forming pocket 11230 are transition features 11234 .
  • the features 11234 are curved, however, the features 11234 may be flat in addition to, or in lieu of, being curved. These features 11234 may help prevent staple tip sticking, as discussed in greater detail below.
  • the features 11234 of the distal forming pocket 11230 comprise a smaller radius of curvature than the features 11213 of the proximal forming pocket 11210 .
  • the forming surface of the distal forming pocket 11230 comprises an entry zone forming surface 11231 and an exit zone forming surface 11232 .
  • the entry zone forming surface 11231 corresponds with a distal portion of the distal pocket 11230 .
  • the exit zone forming 11232 corresponds with a proximal portion of the distal pocket 11230 .
  • the entry zone forming surface 11231 corresponds to a portion of the pocket 11230 of which the corresponding staple tip is intended to enter, or strike, the pocket 11230 and begin forming.
  • the exit zone forming surface 11232 corresponds to a portion of the pocket 11230 where the corresponding staple tip is intended to exit the pocket 11230 .
  • the forming surface of the distal forming pocket 11210 also comprises a forming surface length L 2 and a forming surface depth V 2 .
  • the length L 2 is identified as the distance between the entry edge of the pocket 11230 and the exit edge of the pocket 11230 .
  • the forming surface depth V 2 is identified as the deepest portion of the pocket 11230 , or the trough of the pocket 11230 , also referred to as the valley of the pocket 11230 .
  • the forming surface length L 2 of the distal pocket 11230 is greater than the forming surface length L 1 of the proximal pocket 11210 .
  • the forming surface depth V 1 of the proximal pocket 11210 is greater than the forming surface depth V 2 of the distal pocket 11230 . In other instances, the forming surface depth V 1 of the proximal pocket 11210 may be less than the forming surface depth V 2 of the distal pocket 11230 .
  • tissue can be pushed forward during a firing stroke owing to the advancement of the tissue-cutting knife, for example, and, consequently, tissue may be urged forward during firing of the staples. If the staples are being ejected from the cartridge and into the tissue as the tissue is moving longitudinally relative to the deck, this may cause the staple legs and/or staple tips to bend distally with respect to their bases owing to the tissue flow. In this instance, a distal forming pocket having a greater forming surface length than the proximal forming pocket may be able to account for this longitudinal deflection of the staple legs.
  • each pocket 11210 , 11230 comprise more than one radius of curvature.
  • the proximal pocket 11210 comprises an entry radius of curvature 11216 corresponding to the entry zone forming surface 11211 and an exit radius of curvature 11217 corresponding to the exit zone forming surface 11212 .
  • the distal pocket 11230 comprises an entry radius of curvature 11236 corresponding to the entry zone forming surface 11231 and an exit radius of curvature 11237 corresponding to the exit zone forming surface 11232 .
  • the entry radii of curvature 11216 , 11236 are larger than the exit radii of curvature 11217 , 11237 .
  • the entry radii of curvature 11216 , 11236 are different and the exit radii of curvature 11217 , 11237 are different. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • the outer longitudinal edge of the proximal pocket 11210 is referred to as an entry edge because it defines the beginning of the entry zone forming surface 11211 .
  • the entry edge comprises an entry width which is the largest width of the forming surface of the proximal pocket 11210 .
  • the entry width of the forming surface of the proximal pocket 11210 is also greater than the bridge width “W”.
  • the inner longitudinal edge of the proximal pocket 11210 is referred to as an exit edge because it defines the end of the exit zone forming surface 11212 .
  • the exit edge comprises an exit width which is the narrowest section of the forming surface of the proximal pocket 11210 .
  • the transition between the entry zone forming surface 11211 and the exit zone forming surface 11212 comprise a transition width which is less than the entry width but greater than the exit width.
  • the exit width and the transition width of the forming surface of the proximal pocket 11210 are both less than the bridge width “W”.
  • FIG. 194 is a cross-sectional view of the proximal forming pocket 11210 taken along line 194 - 194 in FIG. 189 . This view is taken within the exit zone forming surface 11212 of the forming pocket 11210 .
  • FIG. 195 is a cross-sectional view of the proximal forming pocket 11210 taken along line 195 - 195 in FIG. 189 . This view is taken at, or near, the valley, or trough, of the forming pocket 11210 .
  • FIG. 196 is cross-sectional view of the proximal forming pocket 11210 taken along line 196 - 196 in FIG. 189 . This view is taken within the entry zone forming surface 11211 of the forming pocket 11210 .
  • the outer longitudinal edge of the distal pocket 11230 is referred to as an entry edge because it defines the beginning of the entry zone forming surface 11231 .
  • the entry edge comprises an entry width which is the largest width of the forming surface of the distal pocket 11230 .
  • the entry width of the forming surface of the distal pocket 11230 is greater than the bridge width “W”.
  • the inner longitudinal edge of the distal pocket 11230 is referred to as an exit edge because it defines the end of the exit zone forming surface 11232 .
  • the exit edge comprises an exit width which is the narrowest section of the forming surface of the distal pocket 11230 .
  • the transition between the entry zone forming surface 11231 and the exit zone forming surface 11232 comprise a transition width which is less than the entry width but greater than the exit width.
  • the exit width and the transition width of the forming surface of the distal pocket 11230 are both less than the bridge width “W”. Though, with respect to pocket width (distance between outer lateral edges) at these locations, the pocket 11230 is wider than the bridge portion 11205 .
  • FIG. 191 is a cross-sectional view of the distal forming pocket 11230 taken along line 191 - 191 in FIG. 189 . This view is taken within the exit zone forming surface 11232 of the forming pocket 11230 .
  • FIG. 192 is a cross-sectional view of the distal forming pocket 11230 taken along line 192 - 192 in FIG. 189 . This view is taken at, or near, the valley, or trough, of the forming pocket 11230 .
  • FIG. 193 is cross-sectional view of the distal forming pocket 11230 taken along line 193 - 193 in FIG. 189 . This view is taken within the entry zone forming surface 11231 of the forming pocket 11230 .
  • Another asymmetric property of the forming pocket arrangement 11200 involves the size of the landing zones of each pocket and the exit zones of each pocket.
  • the proximal pocket comprises a smaller landing zone and exit zone than the landing zone and exit zone of the distal pocket.
  • the center “C” of the arrangement does not correspond to the geometric center of the staple crown. Tuning certain features of forming pocket arrangements to better accommodate for expected tissue flow which ultimately can effect the proximal and distal staple legs differently, for example, can lead to asymmetric, but potentially optimal, forming pocket arrangements.
  • FIGS. 197-200 two different stapling assembly arrangements 11300 and 11300 ′ are illustrated.
  • One of the arrangements 11300 ( FIG. 197 ) comprises forming pockets with identical forming surface, or valley, depths.
  • the other arrangement 11300 ′ ( FIG. 199 ) comprises forming pockets with different forming surface depths.
  • Both arrangements 11300 , 11300 ′ are depicted in a scenario where the anvil has not been clamped to be substantially parallel to the top surface, or deck, of the staple cartridge.
  • the stapling assembly 11300 depicted in FIG. 197 comprises a first jaw 11310 comprising a staple cartridge 11311 , a second jaw 11320 comprising an anvil 11321 , and staples 11301 removably stored within the cartridge 11311 configured to be ejected from the cartridge 11311 by a sled 11312 .
  • the sled 11312 comprises a cam, or pusher surface, 11313 configured to contact a driving surface 11303 of the staple 11301 and push the staples 11301 toward forming pockets 11323 of the anvil 11321 to form the staple legs 11304 (proximal leg) and 11305 (distal leg) which extend from a staple base portion 11302 of each staple 11301 .
  • the forming pockets 11323 of this arrangement 11300 comprise identical forming surface depths. This depth is the distance between a planar anvil surface 11322 and the valley, or trough, of the pocket 11323 .
  • the distal leg 11305 will form with a larger forming height than the proximal leg 11304 ( FIG. 198 ). This may also be described as the distal leg 11305 not being completely formed due to the fact that the anvil 11321 was not clamped into a position such that the planar anvil surface 11322 was parallel to the cartridge deck 11314 .
  • the stapling assembly 11300 ′ depicted in FIG. 199 comprises all of the same elements as the stapling assembly 11300 with the exception of the second jaw 11320 .
  • the stapling assembly 11300 ′ comprises a second jaw 11320 ′ comprising an anvil 11321 ′ including a planar anvil surface 11322 ′ and a plurality of forming pockets 11323 A, 11323 B defined in the anvil 11321 ′.
  • the forming pockets 11323 A, 11323 B of this arrangement 11300 ′ comprise different forming surface depths.
  • the proximal pockets 11323 A configured to form proximal staple legs such as the proximal staple leg 11304 , comprise a deeper forming surface depth than the distal pockets 11323 B.
  • the distal pockets 11323 B configured to form distal staple legs such as the distal staple leg 11305 , comprise a forming surface depth shallower than that of the proximal pockets 11323 A in order to account for a potentially-angled jaw 11320 ′.
  • the proximal leg 11304 and the distal leg 11305 may form with identical, or substantially the same, forming heights ( FIG. 201 ).
  • the anvil is intended to be clamped into a position placing the anvil surface substantially parallel to the deck of the cartridge, this is does not always happen.
  • thicker tissue sections may end up in the distal portion of the end effector (this can occur with already stapled tissue that ends up re-clamped in a proximal section of the end effector for a subsequent firing that is thinner and more compact than the tissue at the distal end of the next section of tissue to be stapled). Consequently, the anvil may not be able to be clamped into a substantially parallel configuration with respect to the cartridge.
  • staples may form like staple 11301 in FIG.
  • one solution may be to embrace the likelihood of non-parallel alignment and design the forming pocket arrangement, or forming pocket pairs, as described above.
  • the distal leg of the staple may over form. Over-forming a staple may, in some circumstances, be more advantageous than under, or partially, forming ( FIG. 198 ) a staple. Providing a valley depth difference between pocket pairs can prevent modifications between proximal and distal legs of staples.
  • FIGS. 201-204 depict various anvils to be employed with a surgical instrument for forming surgical staples.
  • FIG. 201 depicts an anvil 11400 comprising a cartridge-facing portion 11401 .
  • the anvil 11400 comprises a pair of longitudinal, inner rows 11407 A, 11407 B of forming pockets 11405 , a pair of longitudinal, intermediate rows 11408 A, 11408 B of forming pockets 11405 , and a pair of longitudinal, outer rows 11409 A, 11409 B of forming pockets 11405 .
  • the rows 11407 A, 11407 B, 11408 A, 11408 B, 11409 A, 11409 B are aligned with, or substantially parallel to, a longitudinal anvil axis 11403 .
  • the forming pockets 11405 are defined in the cartridge-facing portion 11401 .
  • the cartridge-facing portion 11401 may be planar or may comprise multiple stepped surfaces, for instance.
  • the cartridge-facing portion 11401 may comprise two different stepped surfaces where the inner rows 11407 A, 11407 B and intermediate rows 11408 A, 11408 B of forming pockets 11405 are defined in one of the steps and the outer rows 11409 A, 11409 B of forming pockets 11405 are defined in the other step.
  • Another example may include three different stepped surfaces: the inner rows 11407 A, 11407 B of forming pockets 11405 defined in a first step, the intermediate rows 11408 A, 11408 B of forming pockets 11405 defined in a second step, and the outer rows 11409 A, 11409 B of forming pockets 11405 defined in a third step.
  • FIG. 202 depicts an anvil 11410 comprising a cartridge-facing portion 11411 and laterally changing pairs of forming pockets defined therein.
  • the anvil 11410 comprises a pair of longitudinal, inner rows 11417 A, 11417 B of forming pocket pairs 11421 , a pair of longitudinal, intermediate rows 11418 A, 11418 B of forming pocket pairs 11423 , and a pair of longitudinal, outer rows 11419 A, 11419 B of forming pocket pairs 11425 .
  • the rows 11417 A, 11417 B, 11418 A, 11418 B, 11419 A, 11419 B are aligned with, or substantially parallel to, a longitudinal anvil axis 11413 .
  • the forming pocket pairs 11421 , 11423 , 11425 are defined in the cartridge-facing portion 11401 .
  • the pocket pairs 11421 are comprised of a first type of forming pockets 11422 . These forming pockets 11422 may be similar in many respects to the forming pockets 10210 , 10230 , for example.
  • the pocket pairs 11423 are comprised of a second type of forming pockets 11424 A (proximal), 11424 B (distal) which are asymmetric.
  • the forming pockets 11424 A, 11424 B may be similar in many respects to the forming pockets 11210 , 11230 , respectively, for example.
  • the pocket pairs 11425 are comprised of a third type of forming pockets 11426 . These forming pockets 11422 may be similar in many respects to the forming pockets 10110 , 10130 , for example.
  • the anvil 11410 may also comprise various stepped configurations as discussed in connection with the anvil 11400 , among others.
  • FIG. 203 depicts an anvil 11430 comprising a cartridge-facing portion 11431 and longitudinally changing pairs of forming pockets defined therein.
  • the anvil 11430 comprises a pair of longitudinal, inner rows 11437 A, 11437 B which include forming pocket pairs 11441 , 11443 , 11445 , a pair of longitudinal, intermediate rows 11438 A, 11438 B which include forming pocket pairs 11441 , 11443 , 11445 , and a pair of longitudinal, outer rows 11439 A, 11439 B which include forming pocket pairs 11441 , 11443 , 11445 .
  • the rows 11437 A, 11437 B, 11438 A, 11438 B, 11439 A, 11439 B are aligned with, or substantially parallel to, a longitudinal anvil axis 11433 .
  • the forming pocket pairs 11441 , 11443 , 11445 are defined in the cartridge-facing portion 11431 .
  • the pocket pairs 11441 are comprised of a first type of forming pockets 11442 . These forming pockets 11442 may be similar in many respects to the forming pockets 10210 , 10230 , for example.
  • the pocket pairs 11443 are comprised of a second type of forming pockets 11444 . These forming pockets 11444 may be similar in many respects to the forming pockets 10110 , 10130 , for example.
  • the pocket pairs 11445 are comprised of a third type of forming pockets 11446 A (proximal), 11446 B (distal) which are asymmetric.
  • the forming pockets 11446 A, 11446 B may be similar in many respects to the forming pockets 11210 , 11230 , respectively, for example.
  • the anvil 11430 may also comprise various stepped configurations as discussed in connection with the anvil 11400 , among others.
  • FIG. 204 depicts an anvil 11450 comprising a cartridge-facing portion 11451 and forming pocket pairs that vary longitudinally and laterally on the anvil 11450 .
  • the anvil 11450 comprises a pair of longitudinal, inner rows 11457 A, 11457 B of forming pocket pairs 11461 , a pair of longitudinal, intermediate rows 11458 A, 11458 B of forming pocket pairs 11463 , 11465 , and a pair of longitudinal, outer rows 11459 A, 11459 B of forming pocket pairs 11467 .
  • the rows 11457 A, 11457 B, 11458 A, 11458 B, 11459 A, 11459 B are aligned with, or substantially parallel to, a longitudinal anvil axis 11453 .
  • the forming pocket pairs 11461 , 11463 , 11465 , 11467 are defined in the cartridge-facing portion 11451 .
  • the pocket pairs 11461 are comprised of a first type of forming pockets 11462 . These forming pockets 11462 may be similar in many respects to the forming pockets 10510 , 10530 , for example.
  • the pocket pairs 11463 are comprised of a second type of forming pockets 11464 . These forming pockets 11464 may be similar in many respects to the forming pockets 10210 , 10230 , for example.
  • the pocket pairs 11465 are comprised of a third type of forming pockets 11466 A (proximal), 11466 B (distal) which are asymmetric.
  • the forming pockets 11466 A, 11466 B may be similar in many respects to the forming pockets 11210 , 11230 , respectively, for example.
  • the pocket pairs 11467 are comprised of a fourth type of forming pockets 11468 .
  • These forming pockets 11468 may be similar in many respects to the forming pockets 10110 , 10130 , for example.
  • the anvil 11450 may also comprise various stepped configurations as discussed in connection with the anvil 11400 , among others.
  • an anvil may comprise one type of forming pockets on one side of the anvil axis and another type of forming pockets on the other side of the anvil axis.
  • one type of forming pockets may be associated with a proximal portion of the anvil corresponding to an initial stage of firing of the surgical instrument
  • a second type of forming pockets may be associated with an intermediate portion of the anvil corresponding to a stage of firing that is subsequent the initial stage of firing
  • a third type of forming pockets may be associated with a third and final stage of firing that is subsequent the intermediate stage of firing and the initial stage of firing.
  • the pockets may be strategically positioned on the anvil to increase the overall performance of the pockets.
  • one type of forming pockets may form taller staples more consistently and overall better than it forms shorter staples, or vice versa.
  • a cartridge having multiple staples with different diameters it may be advantageous to have the forming pockets that form staples with smaller diameters form the smaller staples in the cartridge and, similarly, have the forming pockets that form staples with larger diameters form the larger staples in the cartridge.
  • FIG. 205 a table 12000 is shown identifying features of various forming pocket arrangements.
  • the table identifies features for forming pocket arrangement 10100 and forming pocket arrangement 10200 .
  • the table also identifies features for other forming pocket arrangements tested in a finite element analysis environment that may be similar to the forming pocket arrangements 10100 , 10200 in many respects.
  • Forming pocket arrangements A 1 , A 2 are similar to forming pocket arrangement 10100 and forming pocket arrangements B 1 , B 2 are similar to forming pocket arrangement 10200 .
  • the table 12000 also identifies features of the forming pocket arrangements 12100 .
  • features 12001 , 12003 , 12005 , 12007 , and 12009 are referenced with respect to some of the forming pocket arrangements identified in the table 12000 as well as another forming pocket arrangement in accordance with at least one embodiment.
  • FIG. 206 From top to bottom in FIG. 206 , cross-sectional views of the forming pocket arrangement 10100 , the forming pocket arrangement 12100 , the forming pocket arrangement 10200 , and the forming pocket arrangement 10400 are illustrated.
  • the feature 12001 represents the longitudinal enter radius of each forming pocket.
  • the feature 12003 represents the longitudinal exit radius of each forming pocket.
  • the feature 12005 represents the distance between the valleys of the forming pocket pairs.
  • the feature 12005 represents the distance between the deepest point of the pockets in each forming pocket arrangement.
  • the feature 12007 represents the width of the ridge, or bridge, of each forming pocket arrangement.
  • the feature 12009 represents the depth of the ridge, or bridge, of each forming pocket arrangement.
  • FIG. 207 depicts three forming pocket arrangements 10100 , 10200 , 10400 and corresponding staples 10100 ′, 10200 ′, 10400 ′ formed with the forming pocket arrangements 10100 , 10200 , 10400 , respectively.
  • the pocket arrangement 10200 requires the least amount of force to fully form the staple 10200 ′.
  • the maximum force required to form the staple 10200 ′ with the forming pocket arrangement 10200 is less than the maximum force required to form the other staples 10100 ′, 10400 ′ with the forming pocket arrangements 10100 , 10400 .
  • This can be advantageous in that minimizing overall staple firing force can minimize stress and strain on other components within the surgical stapling assembly. Minimizing mechanical stress and strain can reduce the likelihood of elements failing prematurely.
  • FIG. 208 is a table 12200 identifying additional features of various forming pocket arrangements discussed above.
  • Column 12201 identifies various maximum forces to fire to fully form a staple with different forming pocket arrangements.
  • Column 12203 identifies various maximum forces to fire to overdrive a staple with different forming pocket arrangements.
  • FIG. 209 depicts a staple 12301 in a B-formed configuration 12300 and in a overdrive configuration 12300 ′ formed with the forming pocket arrangement 10100 .
  • the staple 12301 comprises a staple base 12302 and a pair of staple legs 12303 extending from the staple base 12302 .
  • Each staple leg 12303 comprises a staple tip 12304 configured to contact a forming pocket when the staple 12301 is driven toward the anvil of a surgical instrument.
  • the staple 12301 comprises various bend regions, or zones, 12305 , 12306 , which, when formed by certain forming pocket arrangements, can bend into predictable bend profiles.
  • the forming pocket arrangement 10100 causes the bend regions 12305 , 12306 , to bend into a discrete profile.
  • the staple 12301 in the fully-formed configuration for instance, comprises a boxy structure rather than a continuously formed structure.
  • the bend regions 12305 , 12306 comprise sharp bend portions.
  • the gap distance 12308 between the tips 12304 of the legs 12303 is significant. In various tissue-fastening scenarios, these gaps 12307 , 12308 between the bend portions 12606 and the staple tips 12304 can less effectively seal tissue.
  • the force F required to form the staple 12301 with the forming pocket arrangement 10100 is illustrated in the graph 12310 of FIG. 209 .
  • the force profile comprises specific zones and peaks 12302 , 12303 , 12304 , 12305 , 12306 .
  • the initial peak 12302 represents tip strike, or tip contact, with its corresponding forming pocket. Once the staple tips strike the pockets and stick in the exit zones of the pockets, the legs 12303 will then buckle and begin bending at the bend regions 12306 . The bending of these bend regions 12306 corresponds to the portion 12313 of the graph 12310 .
  • the legs 12303 will then progress to a second buckling stage once the bend regions 12306 are fully, or mostly, formed and the bend regions 12306 contact the entry zone forming surfaces of the pockets. Once the bend regions 12306 contact the forming pockets, the legs 12303 will buckle into a B-shape forming the bend regions 12305 .
  • This second buckling stage produces a second force peak 12314 .
  • the staple 12301 When the staple 12301 is formed beyond its B-formed configuration 12300 , the staple is in an overdrive configuration 12300 ′. This can happen for various reasons. One reason may be that, the staple 12301 is lifted above the deck of the staple cartridge to fully eject the staple 12301 from the staple cartridge. With respect to the overdrive configuration 12300 ′ of the staple 12301 , the gap 12308 has significantly increased in distance between the staple tips 12304 . Additionally, the legs 12303 of the staple 12301 have began to form additional overdrive bend regions between the staple base 12302 and the bend regions 12305 . When this region bends, the formed staple height can decrease which can also contribute to less effectively sealed tissue. Moreover, when this region bends, bowing “B” of the staple legs 12303 can occur.
  • This bowing “B” comprises a width that, when increased, can cause the staple 12301 to less effectively seal tissue.
  • a second force peak 12316 represents the force required to overdrive the staple 12301 . This force is significantly more than the force required to B-form the staple 12301 at peak 12314 .
  • FIG. 210 depicts a staple 12321 in a B-formed configuration 12320 and in a overdrive configuration 12320 ′ formed with the forming pocket arrangement 10200 .
  • the staple 12321 comprises a staple base 12322 and a pair of staple legs 12323 extending from the staple base 12322 .
  • Each staple leg 12323 comprises a staple tip 12324 configured to contact corresponding forming pockets when the staple 12321 is driven toward the anvil of a surgical instrument.
  • the staple 12321 comprises various bend regions, or zones, 12325 , 12326 , which, when formed by certain forming pocket arrangements, can bend into predictable bend profiles.
  • the forming pocket arrangement 10200 causes the bend regions 12325 , 12326 to bend into a more continuous profile than the bend regions 12305 , 12306 of the staple 12301 formed with the forming pocket arrangement 10100 .
  • the staple 12321 in the B-formed configuration comprises a profile closer to an actual “B” staple configuration than the fully-formed, discrete bend configuration of the staple 12301 .
  • the bend regions 12325 , 12326 comprise larger bend radii of curvature than the bend regions 12305 , 12306 .
  • the gap distance 12327 between the bend portions 12326 of the legs 12323 is less than the gap distance 12307 .
  • the gap distance 12328 between the tips 12324 of the legs 12323 is less than the gap distance 12308 .
  • the smaller gaps 12327 , 12328 between the bend portions 12626 and the staple tips 12324 can aid in sealing tissue more effectively than the staple 12301 . Minimizing these gap distances may increase the tissue capturing ability of the staple 12321 .
  • the force F required to form the staple 12321 with the forming pocket arrangement 10200 is illustrated in the graph 12330 of FIG. 210 .
  • the force profile comprises specific zones 12333 , 12335 and peaks 12332 , 12334 , 12336 .
  • the initial peak 12332 represents tip strike, or tip contact, with its corresponding forming pocket. Once the staple tips strike the pockets and stick in the exit zones of the pockets, the legs 12323 will then buckle and begin bending at the bend regions 12326 . The bending of these bend regions 12326 corresponds to the portion 12333 of the graph 12330 .
  • the legs 12323 will then progress to a second buckling stage once the bend regions 12326 are fully, or mostly, formed and the bend regions 12326 contact and glide within the entry zone forming surfaces of the pockets. Once the bend regions 12326 contact the forming pockets, the legs 12323 will buckle into a B-shape forming the bend regions 12325 .
  • This second buckling stage produces a second force peak 12334 .
  • the staple 12321 formed with the forming pocket arrangement 10200 requires less force to fully form.
  • an overdrive configuration 12320 ′ In a situation where the staple 12321 is formed beyond its B-formed configuration 12320 can be referred to as an overdrive configuration 12320 ′.
  • the gap distance 12328 has increased in distance between the staple tips 12304 , however, the gap is not as significant as the gap distance between the tips 12304 of the staple 12301 in its overdrive configuration 12300 ′.
  • the gap distance 12327 between the bend regions 12326 has decreased.
  • the legs 12323 of the staple 12321 have began to form additional overdrive bend regions between the staple base 12322 and the bend regions 12325 .
  • the forming pocket arrangement 10100 and staple 12301 are illustrated in FIGS. 211 and 212 in a tip strike stage 12400 , a first bend stage 12400 ′, a second bend stage 12400 ′′, and a B, or fully, formed stage 12400 ′′′.
  • the legs of the staple 12301 are configured to buckle into the first bend stage 12400 ′. After buckling, the legs bend creating first bend regions.
  • the legs are configured to buckle a second time when the first bend regions contact the forming pockets into the second bend stage 12400 ′′. After buckling a second time, the legs bend again creating second bend regions.
  • the staple 12301 then finishes forming and, desirably, attains a fully formed stage 12400 ′′′.
  • the fully formed stage 12400 ′′′ illustrates the staple 12301 with discretely bent legs.
  • the forming pocket arrangement 10200 and staple 12321 are illustrated in FIGS. 213 and 214 in a tip strike stage 12500 , a first bend stage 12500 ′, a second bend stage 12500 ′′, and a fully formed stage 12500 ′′′.
  • the legs of the staple 12501 are configured to buckle into the first bend stage 12500 ′. After buckling, the legs bend creating first bend regions.
  • the first bend regions of the staple 12321 comprise greater radii of curvature than the first bend regions of the staple 12301 .
  • the legs are configured to buckle a second time when the first bend regions contact the forming pockets into the second bend stage 12500 ′′. After buckling a second time, the legs bend again creating second bend regions.
  • the staple 12321 forms with less of a tissue path, or footprint, than the staple 12301 .
  • a large tissue path footprint can cause excessive tissue stretching and/or ripping during the forming of the staple.
  • the legs 12323 form and follow closer to the path of the tips 12324 than the legs 12303 and the tips 12304 .
  • FIGS. 215 and 216 depict the staples 12301 , 12321 forming from their tip strike stage to a partially-formed stage. This partially-formed stage may also be referred to as a tip sticking stage.
  • the legs 12303 are configured to buckle creating the bend regions 12306 .
  • the loads experienced by the legs 12303 when formed with the forming pocket arrangement 10100 comprise a first eccentricity.
  • the legs 12323 are configured to buckle creating the bend regions 12326 .
  • the loads experienced by the legs 12323 when formed with the forming pocket arrangement 10200 comprise a second eccentricity.
  • the second eccentricity is greater than the first eccentricity.
  • This relationship causes differing locations of deflection.
  • the legs 12303 deflect at the bend regions 12306 a distance D 1 from a datum D.
  • the legs 12323 deflect at the bend regions 12326 a distance D 2 from a datum D.
  • the distance D 2 is less than the distance D 1 .
  • Lowering the deflection, or the bend regions 12326 causes the legs 12323 to buckle and form with greater radii of curvature thus creating more continuously formed staple legs.
  • FIGS. 217-224 forming of staples formed with various forming pocket arrangements discussed above will now be described. Staples do not always contact their respective forming pockets in an aligned state. Providing forming pocket arrangements which can counter poor formation of a staple in the event that the staple is not aligned with its corresponding forming pockets during forming can be advantageous.
  • FIG. 217 depicts a side view 12700 and a bottom view 12700 ′ of a staple 12701 in a fully-formed configuration formed with the forming pocket arrangement 10200 .
  • this staple 12701 was not aligned with the pocket axis 10203 of the forming pocket arrangement 10200 during the forming process.
  • the staple 12701 was driven off plane with respect to the pocket axis 10203 .
  • the tips 12704 did not strike the forming pocket arrangement 10200 along the pocket axis 10203 nor was the crown, or base, 12702 of the staple 12701 aligned with the pocket axis 10203 during forming.
  • the staple 12701 comprises a first tip alignment axis TA 1 , a second tip alignment axis TA 2 , and a crown alignment axis CA.
  • the tips 12704 are configured to cross the first tip alignment axis TA 1 and, as a result, overlap, or cross each other.
  • the fully formed location of the tips 12704 defines the second tip alignment axis TA 2 .
  • This axis can be defined as an axis parallel to the crown alignment axis CA defined by the crown 12702 and aligned with an average point between the tips 12704 .
  • Minimizing the distance between the crown alignment axis CA and the second tip alignment axis TA 2 can be advantageous in that the closer that these axes are to each other, the more effective the tissue capturing and/or sealing ability of the staple 12701 .
  • FIG. 218 is a comparison of the staple 12701 and forming pocket arrangement 10200 of FIG. 217 and a staple 12801 formed with forming pocket arrangement 10100 .
  • the distance between the second tip alignment axis TA 2 and the crown alignment axis CA of the staple 12801 is greater than the distance between the second tip alignment axis TA 2 and the crown alignment axis CA of the staple 12701 .
  • the tips 12804 of the staple 12801 do not overlap in this misalignment forming scenario of the staple 12801 .
  • the staple 12801 formed on a path 12805 directed away from the crown alignment axis CA whereas the staple 12701 formed on a path 12705 more aligned with the crown alignment axis CA.
  • FIG. 219 depicts a side view 12900 and a bottom view 12900 ′ of a staple 12901 in a fully-formed configuration formed with the forming pocket arrangement 10400 .
  • this staple 12901 was not aligned with the pocket axis 10403 of the forming pocket arrangement 10400 during the forming process.
  • the staple 12901 was driven off plane with respect to the pocket axis 10403 .
  • the tips 12904 did not strike the forming pocket arrangement 10400 along the pocket axis 10403 nor was the crown, or base, 12902 of the staple 12901 aligned with the pocket axis 10403 during forming.
  • the staple 12901 comprises a first tip alignment axis TA 1 , a second tip alignment axis TA 2 , and a crown alignment axis CA.
  • the tips 12904 are configured to partially, and/or fully, cross the first tip alignment axis TA 1 and, as a result, partially cross each other.
  • the fully formed location of the tips 12904 defines the second tip alignment axis TA 2 .
  • This axis can be defined as an axis parallel to the crown alignment axis CA defined by the crown 12902 and aligned with an average point between the tips 12904 .
  • Minimizing the distance between the crown alignment axis CA and the second tip alignment axis TA 2 can be advantageous in that the closer that these axes are to each other, the more effective the tissue capturing and/or sealing ability of the staple 12901 .
  • the narrowly-spaced exit walls and/or the aggressively-angled exit walls of the forming pocket arrangement 10400 can encourage legs of staples to form closer to their crowns.
  • the forming pocket arrangement 10400 can encourage planar forming in at least the event of misalignment.
  • FIG. 220 depicts a side view 13000 and a bottom view 13000 ′ of a staple 13001 in a fully-formed configuration formed with the forming pocket arrangement 10300 .
  • this staple 13001 was not aligned with the pocket axis 10303 of the forming pocket arrangement 10300 during the forming process.
  • the staple 13001 was driven off plane with respect to the pocket axis 10303 .
  • the tips 13004 did not strike the forming pocket arrangement 10300 along the pocket axis 10303 nor was the crown, or base, 13002 of the staple 13001 aligned with the pocket axis 10303 during forming.
  • the staple 13001 comprises a first tip alignment axis TA 1 , a second tip alignment axis TA 2 , and a crown alignment axis CA.
  • the legs 13003 are configured to be formed into a position in which they the legs are at least substantially aligned with the first tip alignment axis TA 1 .
  • the tips 13004 and/or legs may contact each other during forming which may prevent the legs 13003 from crossing the first tip alignment axis TA 1 .
  • the fully-formed location of the tips 13004 defines the second tip alignment axis TA 2 .
  • This axis can be defined as an axis parallel to the crown alignment axis CA defined by the crown 13002 and aligned with an average point between the tips 13004 .
  • Minimizing the distance between the crown alignment axis CA and the second tip alignment axis TA 2 can be advantageous in that the closer that these axes are to each other, the more effective the tissue capturing and/or sealing ability of the staple 13001 .
  • the narrowly-spaced exit walls and/or the aggressively-angled exit walls of the forming pocket arrangement 10300 can encourage legs of staples to form closer to their crowns.
  • the forming pocket arrangement 10300 can encourage planar forming in the event of misalignment.
  • FIGS. 221 and 222 depict staples formed with the forming pocket arrangement 10500 where one staple was aligned with the pocket axis 10503 of the forming pocket arrangement 10500 and the other staple was misaligned with the pocket axis 10503 of the forming pocket arrangement 10500 .
  • FIG. 221 depicts a side view 13100 and a bottom view 13100 ′ of a staple 13101 in a fully-formed configuration formed with the forming pocket arrangement 10500 .
  • This staple 13101 was aligned with the pocket axis 10503 of the forming pocket arrangement 10500 during the forming process.
  • the tips 13104 struck the forming pocket arrangement 10500 along the pocket axis 10503 .
  • FIG. 222 depicts a side view 13120 and a bottom view 13120 ′ of a staple 13121 in a fully formed configuration formed with the forming pocket arrangement 10500 .
  • This staple 13121 was misaligned with the pocket axis 10503 of the forming pocket arrangement 10500 during the forming process.
  • the staple 13121 was driven off plane with respect to the pocket axis 10503 .
  • the tips 13124 did not strike the forming pocket arrangement 10500 along the pocket axis 10503 nor was the crown, or base, 13122 of the staple 13121 aligned with the pocket axis 10503 during forming.
  • the staple 13201 comprises a first tip alignment axis TA 1 , a second tip alignment axis TA 2 , and a crown alignment axis CA.
  • the staple 13101 forms such that the second tip alignment axis TA 2 and the crown alignment axis CA are substantially aligned, however, the axes TA 2 , CA are also non-parallel.
  • the force to fire the staple 13201 is illustrated in the graph 13210 .
  • the force to fire the staple 13201 does not comprise two distinct, substantial force peaks as graphs related to other forming pocket arrangements discussed above.
  • the staple 13201 is configured to contact multiple points of the pockets of the forming pocket arrangement 11000 simultaneously during forming. This dual-tangent contact with the forming pockets can help reduce staple tip and/or leg sticking as well as the force to fire the staple 13201 .
  • FIG. 224 depicts a side view 13220 and a bottom view 13220 ′ of a staple 13221 in a fully-formed configuration formed with the forming pocket arrangement 11000 .
  • This staple 13221 was misaligned with the pocket axis 11003 of the forming pocket arrangement 11000 during the forming process.
  • the staple 13221 was driven off plane with respect to the pocket axis 11003 .
  • the tips 13224 did not strike the forming pocket arrangement 11000 along the pocket axis 11003 nor was the crown, or base, 13222 of the staple 13221 aligned with the pocket axis 11003 during forming.
  • the staple 13221 comprises a first tip alignment axis TA 1 , a second tip alignment axis TA 2 , and a crown alignment axis CA.
  • the staple 13221 forms such that the second tip alignment axis TA 2 and the crown alignment axis CA are substantially aligned with each other or, in other words, the staple 13221 assumes a substantially planar configuration.
  • the axes TA 2 , CA are parallel. Compared to FIG.
  • the staple 13221 forms into a fully-formed configuration that may be more acceptable to a surgeon to more adequately seal tissue than staples formed with other forming pocket arrangements which form in a misaligned state.
  • the force to fire the staple 13221 is illustrated in the graph 13230 . Similar to the staple 13201 , the force to fire the staple 13201 does not comprise two distinct, substantial force peaks as graphs related to other forming pocket arrangements discussed above.
  • a cross section of a forming pocket 11030 of the forming pocket arrangement 11000 is illustrated with various diameter staple profiles 11041 , 11042 , 11043 .
  • Various sizes of staples are configured to be formed with the forming pocket arrangement 11000 . Larger staple diameters may provide the dual-tangent contact with the forming pocket sidewalls as discussed above. Smaller diameter staples may provide full contact with the bottom 11035 of the forming pocket 11030 during forming.
  • a staple 13301 is illustrated in a fully-formed configuration formed with the forming pocket arrangement 10100 ( FIG. 225 ) and a staple 13401 is illustrated in a fully-formed configuration formed with the forming pocket arrangement 10600 ( FIG. 226 ).
  • the staples 13301 , 13401 were misaligned with their respective pocket axes 10103 , 10603 during forming.
  • the staple 13401 comprises a more planar fully formed configuration than the staple 13301 .
  • the tips 13304 of the staple 13301 may exit the forming pocket arrangement 10100 in a direction pointed away from the pocket axis 10103 .
  • the legs 13303 of the staple 13301 may form away from the crown 13302 defining a tip-forming offset distance 13305 .
  • the tips 13404 of the staple 13401 are encouraged to exit the forming pocket arrangement 10600 along the pocket axis 10603 .
  • the legs 13403 of the staple 13401 may form away from the crown 13402 less than those of the staple 13301 defining a tip-forming offset distance 13405 which, in this instance, is less than the tip-forming offset distance 13305 .
  • an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue.
  • an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
  • the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use.
  • reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
  • the devices disclosed herein may be processed before surgery.
  • a new or used instrument may be obtained and, when necessary, cleaned.
  • the instrument may then be sterilized.
  • the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag.
  • the container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons.
  • the radiation may kill bacteria on the instrument and in the container.
  • the sterilized instrument may then be stored in the sterile container.
  • the sealed container may keep the instrument sterile until it is opened in a medical facility.
  • a device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Surgical Instruments (AREA)

Abstract

Methods for providing and using a surgical instrument system are disclosed.

Description

    BACKGROUND
  • The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:
  • FIG. 1 is a side elevational view of a surgical system comprising a handle assembly and multiple interchangeable surgical tool assemblies that may be used therewith;
  • FIG. 2 is a perspective view of one of the interchangeable surgical tool assemblies of FIG. 1 operably coupled to the handle assembly of FIG. 1;
  • FIG. 3 is an exploded assembly view of portions of the handle assembly and interchangeable surgical tool assembly of FIGS. 1 and 2;
  • FIG. 4 is a perspective view of another one of the interchangeable surgical tool assemblies depicted in FIG. 1;
  • FIG. 5 is a partial cross-sectional perspective view of the interchangeable surgical tool assembly of FIG. 4;
  • FIG. 6 is another partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIGS. 4 and 5;
  • FIG. 7 is an exploded assembly view of a portion of the interchangeable surgical tool assembly of FIGS. 4-6;
  • FIG. 7A is an enlarged top view of a portion of an elastic spine assembly of the interchangeable surgical tool assembly of FIG. 7;
  • FIG. 8 is another exploded assembly view of a portion of the interchangeable surgical tool assembly of FIGS. 4-7;
  • FIG. 9 is another cross-sectional perspective view of a surgical end effector portion of the interchangeable surgical tool assembly of FIGS. 4-8;
  • FIG. 10 is an exploded assembly view of the surgical end effector portion of the interchangeable surgical tool assembly depicted in FIG. 9;
  • FIG. 11 is a perspective view, a side elevational view and a front elevational view of a firing member embodiment that may be employed in the interchangeable surgical tool assembly of FIG. 10;
  • FIG. 12 is a perspective view of an anvil that may be employed in the interchangeable surgical tool assembly of FIG. 4;
  • FIG. 13 is a cross-sectional side elevational view of the anvil of FIG. 12;
  • FIG. 14 is a bottom view of the anvil of FIGS. 12 and 13;
  • FIG. 15 is a cross-sectional side elevational view of a portion of a surgical end effector and shaft portion of the interchangeable surgical tool assembly of FIG. 4 with an unspent or unfired surgical staple cartridge properly seated with an elongate channel of the surgical end effector;
  • FIG. 16 is another cross-sectional side elevational view of the surgical end effector and shaft portion of FIG. 15 after the surgical staple cartridge has been at least partially fired and a firing member thereof is being retracted to a starting position;
  • FIG. 17 is another cross-sectional side elevational view of the surgical end effector and shaft portion of FIG. 16 after the firing member has been fully retracted back to the starting position;
  • FIG. 18 is a top cross-sectional view of the surgical end effector and shaft portion depicted in FIG. 15 with the unspent or unfired surgical staple cartridge properly seated with the elongate channel of the surgical end effector;
  • FIG. 19 is another top cross-sectional view of the surgical end effector of FIG. 18 with a surgical staple cartridge mounted therein that has been at least partially fired and illustrates the firing member retained in a locked position;
  • FIG. 20 is a partial cross-sectional view of portions of the anvil and elongate channel of the interchangeable tool assembly of FIG. 4;
  • FIG. 21 is an exploded side elevational view of portions of the anvil and elongate channel of FIG. 20;
  • FIG. 22 is a rear perspective view of an anvil mounting portion of an anvil embodiment;
  • FIG. 23 is a rear perspective view of an anvil mounting portion of another anvil embodiment;
  • FIG. 24 is a rear perspective view of an anvil mounting portion of another anvil embodiment;
  • FIG. 25 is a perspective view of an anvil embodiment;
  • FIG. 26 is an exploded perspective view of the anvil of FIG. 25;
  • FIG. 27 is a cross-sectional end view of the anvil of FIG. 25;
  • FIG. 28 is a perspective view of another anvil embodiment;
  • FIG. 29 is an exploded perspective view of the anvil embodiment of FIG. 28;
  • FIG. 30 is a top view of a distal end portion of an anvil body portion of the anvil of FIG. 28;
  • FIG. 31 is a top view of a distal end portion of an anvil body portion of another anvil embodiment;
  • FIG. 32 is a cross-sectional end perspective view of the anvil of FIG. 31;
  • FIG. 33 is a cross-sectional end perspective view of another anvil embodiment;
  • FIG. 34 is a perspective view of a closure member embodiment comprising a distal closure tube segment;
  • FIG. 35 is a cross-sectional side elevational view of the closure member embodiment of FIG. 34;
  • FIG. 36 is a partial cross-sectional view of an interchangeable surgical tool assembly embodiment showing a position of an anvil mounting portion of an anvil in a fully closed position and a firing member thereof in a starting position;
  • FIG. 37 is another partial cross-sectional view of the interchangeable surgical tool assembly of FIG. 36 at the commencement of an opening process;
  • FIG. 38 is another partial cross-sectional view of the interchangeable surgical tool assembly of FIG. 37 with the anvil in the fully opened position;
  • FIG. 39 is a side elevational view of a portion of the interchangeable surgical tool assembly of FIG. 36;
  • FIG. 40 is a side elevational view of a portion of the interchangeable surgical tool assembly of FIG. 37;
  • FIG. 41 is a side elevational view of a portion of the interchangeable surgical tool assembly of FIG. 38;
  • FIG. 42 is a cross-sectional side elevational view of another closure member embodiment;
  • FIG. 43 is a cross-sectional end view of the closure member of FIG. 42;
  • FIG. 44 is a cross-sectional end view of another closure member embodiment;
  • FIG. 45 is a cross-sectional end view of another closure member embodiment;
  • FIG. 46 is a cross-sectional end view of another closure member embodiment;
  • FIG. 47 is a partial cross-sectional view of portions of a surgical end effector of an interchangeable tool assembly illustrated in FIG. 1;
  • FIG. 48 is a partial cross-sectional view of portions of a surgical end effector of the interchangeable surgical tool assembly of FIG. 5;
  • FIG. 49 is another cross-sectional view of the surgical end effector of FIG. 48;
  • FIG. 50 is a partial perspective view of a portion of an underside of an anvil embodiment;
  • FIG. 51 is a partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 5 with an anvil of a surgical end effector thereof in a fully opened position;
  • FIG. 52 is another partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 51 with the anvil of the surgical end effector thereof in a first closed position;
  • FIG. 53 is another partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 51 at the commencement of the firing process wherein the anvil is in the first closed position and a firing member of the surgical end effector thereof has moved distally out of a starting position;
  • FIG. 54 is another partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 51 wherein the anvil is in a second closed position and the firing member has been distally advanced into a surgical staple cartridge of the surgical end effector thereof;
  • FIG. 55 is a graphical comparison of firing energy versus time for different interchangeable surgical tool assemblies;
  • FIG. 56 is a graphical depiction of force to fire improvements and comparisons of firing loads verses the percentage of firing distance that the firing member thereof has traveled for four different interchangeable surgical tool assemblies;
  • FIG. 57 provides a comparison between a first embodiment of an anvil and a second embodiment of an anvil;
  • FIG. 58 is a cross-sectional view of an end effector comprising the second anvil embodiment of FIG. 57;
  • FIG. 59 is a partial cross-sectional view of the first anvil embodiment of FIG. 57 and a firing member configured to engage the first anvil embodiment;
  • FIG. 60 is a partial elevational view of the firing member of FIG. 59;
  • FIG. 61 is an illustration depicting stress concentrations in the first anvil embodiment of FIG. 57 and the firing member of FIG. 59;
  • FIG. 62 is an another illustration depicting stress concentrations in the firing member of FIG. 59;
  • FIG. 63 is a perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 64 is a side elevational view of the firing member of FIG. 63;
  • FIG. 65 is a front elevational view of the firing member of FIG. 63;
  • FIG. 66 is a partial perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 67 is a partial side elevational view of the firing member of FIG. 66;
  • FIG. 68 is a partial front elevational view of the firing member of FIG. 66;
  • FIG. 69 is a partial perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 70 is a partial side elevational view of the firing member of FIG. 69;
  • FIG. 71 is a partial front elevational view of the firing member of FIG. 69;
  • FIG. 72 is a partial perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 73 is a partial side elevational view of the firing member of FIG. 72;
  • FIG. 74 is a partial front elevational view of the firing member of FIG. 72;
  • FIG. 75 is a partial perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 76 is a partial side elevational view of the firing member of FIG. 75;
  • FIG. 77 is a partial front elevational view of the firing member of FIG. 75;
  • FIG. 78 is a partial perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 79 is a partial side elevational view of the firing member of FIG. 78;
  • FIG. 80 is a partial front elevational view of the firing member of FIG. 78;
  • FIG. 81 is a partial perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 82 is a partial side elevational view of the firing member of FIG. 81;
  • FIG. 83 is a partial front elevational view of the firing member of FIG. 81;
  • FIG. 84 is a partial perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 85 is a partial side elevational view of the firing member of FIG. 84;
  • FIG. 86 is a partial front elevational view of the firing member of FIG. 84;
  • FIG. 87 is a partial perspective view of a firing member in accordance with at least one embodiment;
  • FIG. 88 is a partial side elevational view of the firing member of FIG. 87;
  • FIG. 89 is another partial perspective view of the firing member of FIG. 87;
  • FIG. 90 is a partial front elevational view of the firing member of FIG. 87;
  • FIG. 91 is a schematic depicting the energy needed to advance firing members disclosed herein through staple firing strokes;
  • FIG. 92 is a detail view of a lateral projection extending from the firing member of FIG. 66 schematically illustrating the interaction between the lateral projection and an anvil in a flexed condition;
  • FIG. 93 is a detail view of a lateral projection extending from the firing member of FIG. 81 schematically illustrating the interaction between the lateral projection and an anvil in a flexed condition;
  • FIG. 94 is a detail view of a lateral projection extending from the firing member of FIG. 81 schematically illustrating the interaction between the lateral projection and an anvil another flexed condition;
  • FIG. 95 is a perspective view of an end effector of a surgical stapling instrument including a staple cartridge in accordance with at least one embodiment;
  • FIG. 96 is an exploded view of the end effector of FIG. 95;
  • FIG. 97 is a perspective view of the staple cartridge FIG. 95;
  • FIG. 98 is a partial perspective view of a channel of the end effector of FIG. 95 configured to receive the staple cartridge of FIG. 95;
  • FIG. 98A is a partial perspective view of the channel of FIG. 98;
  • FIG. 98B is a circuit diagram of a cartridge circuit of the staple cartridge of FIG. 97;
  • FIG. 98C is a circuit diagram of a carrier circuit of the end effector of FIG. 95;
  • FIG. 99 is a bottom partial view of the end effector of FIG. 95 illustrating an intact trace element and a sled in a starting position in accordance with at least one embodiment;
  • FIG. 100 is a bottom partial view of the end effector of FIG. 95 illustrating a broken trace element and a sled in a partially advanced position in accordance with at least one embodiment;
  • FIG. 100A is a block diagram illustrating an electrical circuit in accordance with at least one embodiment;
  • FIG. 100B is a block diagram illustrating an electrical circuit in accordance with at least one embodiment;
  • FIG. 100C is a block diagram illustrating an electrical circuit in accordance with at least one embodiment;
  • FIG. 100D is a block diagram illustrating an electrical circuit in accordance with at least one embodiment;
  • FIG. 101 is a circuit diagram of a safety mechanism of the end effector of FIG. 95 in accordance with at least one embodiment;
  • FIG. 102 is a switch of the circuit diagram of FIG. 101 in an open configuration in accordance with at least one embodiment;
  • FIG. 103 illustrates the switch of FIG. 102 in a closed configuration;
  • FIG. 103A is a safety mechanism of the end effector of FIG. 95 in accordance with at least one embodiment;
  • FIG. 103B is a logic diagram of a method for controlling the firing of a surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 104 is a partial perspective view of a staple cartridge including a conductive gate in accordance with at least one embodiment;
  • FIG. 105 is a partial exploded view of the staple cartridge of FIG. 104;
  • FIG. 106 is a cross-sectional view of the staple cartridge of FIG. 105 showing the conductive gate in a fully closed configuration;
  • FIG. 107 is a cross-sectional view of the staple cartridge of FIG. 105 showing the conductive gate in an open configuration;
  • FIG. 108 is a cross-sectional view of the staple cartridge of FIG. 105 showing the conductive gate transitioning from an open configuration to a partially closed configuration;
  • FIG. 109 is a block diagram illustrating an electrical circuit configured to activate/deactivate a firing system of a surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 110 illustrates a controller a surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 111 illustrates a combinational logic circuit of a surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 112 illustrates a sequential logic circuit of a surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 113 is an electromagnetic lockout mechanism for a surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 114 illustrates the electromagnetic lockout mechanism of FIG. 113 in a locked configuration;
  • FIG. 115 illustrates the electromagnetic lockout mechanism of FIG. 113 in an unlocked configuration;
  • FIG. 116 is a circuit diagram of an electrical circuit in accordance with at least one embodiment;
  • FIG. 117 is a circuit diagram of an electrical circuit of a powered surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 117A is an electrical circuit configured to detect the position and progression of a staple firing member illustrating the staple firing member in a fully fired position;
  • FIG. 117B illustrates the staple firing member of FIG. 117A in a fully retracted position;
  • FIG. 118 is a perspective view of a powered surgical stapling and cutting instrument comprising a power assembly, a handle assembly, and an interchangeable shaft assembly;
  • FIG. 119 is perspective view of the surgical instrument of FIG. 118 with the interchangeable shaft assembly separated from the handle assembly;
  • FIGS. 120A and 120B depict a circuit diagram of the surgical instrument of FIG. 118;
  • FIG. 121 is a circuit diagram of a powered surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 122A is a circuit diagram of a powered surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 122B illustrates minimum and maximum thresholds of current drawn by a motor of a powered surgical stapling and cutting instrument in accordance with at least one embodiment;
  • FIG. 123 is circuit diagram illustrating a beginning-of-stroke switch circuit and an end-of-stroke switch circuit with at least one embodiment;
  • FIG. 124 is logic diagram illustrating a failure response system in accordance with at least one embodiment;
  • FIG. 125 is logic diagram illustrating a failure response system in accordance with at least one embodiment;
  • FIG. 126 is logic diagram illustrating a failure response system in accordance with at least one embodiment;
  • FIG. 127 is logic diagram illustrating a failure response system in accordance with at least one embodiment;
  • FIG. 128 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a pair of angled sidewalls and a forming surface;
  • FIG. 129 is a plan view of the staple forming pocket arrangement of FIG. 128;
  • FIG. 130 is a cross-sectional view of the staple forming pocket arrangement of FIG. 128 taken along line 130-130 in FIG. 129;
  • FIG. 131 is a cross-sectional view of the staple forming pocket arrangement of FIG. 128 taken along line 131-131 in FIG. 129;
  • FIG. 132 is a cross-sectional view of the staple forming pocket arrangement of FIG. 128 taken along line 132-132 in FIG. 129;
  • FIG. 133 is a cross-sectional view of the staple forming pocket arrangement of FIG. 128 taken along line 133-133 in FIG. 129;
  • FIG. 134 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having an entry zone and an exit zone comprising different radii of curvature;
  • FIG. 135 is a plan view of the staple forming pocket arrangement of FIG. 134;
  • FIG. 136 is a cross-sectional view of the staple forming pocket arrangement of FIG. 134 taken along line 136-136 in FIG. 135;
  • FIG. 137 is a cross-sectional view of the staple forming pocket arrangement of FIG. 134 taken along line 137-137 in FIG. 135;
  • FIG. 138 is a cross-sectional view of the staple forming pocket arrangement of FIG. 134 taken along line 138-138 in FIG. 135;
  • FIG. 139 is a cross-sectional view of the staple forming pocket arrangement of FIG. 134 taken along line 139-139 in FIG. 135;
  • FIG. 140 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket, a distal forming pocket, and a pair of primary sidewalls extending from a planar anvil surface to the pockets at a first angle, wherein each pocket comprises a pair of pocket sidewalls extending from the primary sidewalls to forming surfaces of the pockets at a second angle different than the first angle;
  • FIG. 141 is a plan view of the staple forming pocket arrangement of FIG. 140;
  • FIG. 142 is a cross-sectional view of the staple forming pocket arrangement of FIG. 140 taken along line 142-142 in FIG. 141;
  • FIG. 143 is a cross-sectional view of the staple forming pocket arrangement of FIG. 140 taken along line 143-143 in FIG. 141;
  • FIG. 144 is a cross-sectional view of the staple forming pocket arrangement of FIG. 140 taken along line 144-144 in FIG. 141;
  • FIG. 145 is a cross-sectional view of the staple forming pocket arrangement of FIG. 140 taken along line 145-145 in FIG. 141;
  • FIG. 146 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket, a distal forming pocket, and primary sidewalls, wherein each pocket comprises a pair of pocket sidewalls, and wherein each pocket sidewall comprises discrete sidewall portions;
  • FIG. 147 is a plan view of the staple forming pocket arrangement of FIG. 146;
  • FIG. 148 is a cross-sectional view of the staple forming pocket arrangement of FIG. 146 taken along line 148-148 in FIG. 147;
  • FIG. 149 is a cross-sectional view of the staple forming pocket arrangement of FIG. 146 taken along line 149-149 in FIG. 147;
  • FIG. 150 is a cross-sectional view of the staple forming pocket arrangement of FIG. 146 taken along line 150-150 in FIG. 147;
  • FIG. 151 is a cross-sectional view of the staple forming pocket arrangement of FIG. 146 taken along line 151-151 in FIG. 147;
  • FIG. 152 is a cross-sectional perspective view of a staple forming pocket arrangement comprising a proximal forming pocket, a distal forming pocket, and primary sidewalls, wherein each pocket comprises a pair of contoured sidewalls;
  • FIG. 153 is a plan view of the staple forming pocket arrangement of FIG. 152;
  • FIG. 154 is a cross-sectional view of the staple forming pocket arrangement of FIG. 152 taken along line 154-154 in FIG. 153;
  • FIG. 155 is a cross-sectional view of the staple forming pocket arrangement of FIG. 152 taken along line 155-155 in FIG. 153;
  • FIG. 156 is a cross-sectional view of the staple forming pocket arrangement of FIG. 152 taken along line 156-156 in FIG. 153;
  • FIG. 157 is a cross-sectional view of the staple forming pocket arrangement of FIG. 152 taken along line 157-157 in FIG. 153;
  • FIG. 158 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having a groove defined therein;
  • FIG. 159 is a cross-sectional view of the staple forming pocket arrangement of FIG. 158 taken along line 159-159 in FIG. 158;
  • FIG. 160 is an enlarged view of the proximal forming pocket of the staple forming pocket arrangement shown in FIG. 159;
  • FIG. 161 is a cross-sectional view of the staple forming pocket arrangement of FIG. 158 taken along line 161-161 in FIG. 158;
  • FIG. 162 is a cross-sectional view of the staple forming pocket arrangement of FIG. 158 taken along line 162-162 in FIG. 158;
  • FIG. 163 is a cross-sectional view of the staple forming pocket arrangement of FIG. 158 taken along line 163-163 in FIG. 158;
  • FIG. 164 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having a zoned groove defined therein;
  • FIG. 165 is a cross-sectional view of the staple forming pocket arrangement of FIG. 164 taken along line 165-165 in FIG. 164;
  • FIG. 166 is a cross-sectional view of the staple forming pocket arrangement of FIG. 164 taken along line 166-166 in FIG. 164;
  • FIG. 167 is a cross-sectional view of the staple forming pocket arrangement of FIG. 164 taken along line 167-167 in FIG. 164;
  • FIG. 168 is a cross-sectional view of the staple forming pocket arrangement of FIG. 164 taken along line 168-168 in FIG. 164;
  • FIG. 169 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having a groove defined therein, and wherein the pockets are bilaterally asymmetric with respect to a bridge of the pocket pair;
  • FIG. 170 is a cross-sectional view of the staple forming pocket arrangement of FIG. 169 taken along line 170-170 in FIG. 169;
  • FIG. 171 is a cross-sectional view of the staple forming pocket arrangement of FIG. 169 taken along line 171-171 in FIG. 169;
  • FIG. 172 is a cross-sectional view of the staple forming pocket arrangement of FIG. 169 taken along line 172-172 in FIG. 169;
  • FIG. 173 is a cross-sectional view of the staple forming pocket arrangement of FIG. 169 taken along line 173-173 in FIG. 169;
  • FIG. 174 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a forming surface having an entry zone and an exit zone comprising different radii of curvature, and wherein each forming surface comprises a groove defined therein;
  • FIG. 175 is a cross-sectional view of the staple forming pocket arrangement of FIG. 174 taken along line 175-175 in FIG. 174;
  • FIG. 176 is a cross-sectional view of the staple forming pocket arrangement of FIG. 174 taken along line 176-176 in FIG. 174;
  • FIG. 177 is a cross-sectional view of the staple forming pocket arrangement of FIG. 174 taken along line 177-177 in FIG. 174;
  • FIG. 178 is a cross-sectional view of the staple forming pocket arrangement of FIG. 174 taken along line 178-178 in FIG. 174;
  • FIG. 179 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket, wherein each pocket comprises a pair of contoured sidewalls and a forming surface groove defined therein, and wherein the pockets are bilaterally asymmetric with respect to a bridge of the pocket pair;
  • FIG. 180 is a cross-sectional view of the staple forming pocket arrangement of FIG. 179 taken along line 180-180 in FIG. 179;
  • FIG. 181 is a cross-sectional view of the staple forming pocket arrangement of FIG. 179 taken along line 181-181 in FIG. 179;
  • FIG. 182 is a cross-sectional view of the staple forming pocket arrangement of FIG. 179 taken along line 182-182 in FIG. 179;
  • FIG. 183 is a cross-sectional view of the staple forming pocket arrangement of FIG. 179 taken along line 183-183 in FIG. 179;
  • FIG. 184 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket each comprising a forming surface groove defined therein, wherein the pockets are bilaterally symmetric with respect to a bridge of the pocket pair and rotationally asymmetric with respect to a center portion of the bridge;
  • FIG. 185 is a cross-sectional view of the staple forming pocket arrangement of FIG. 184 taken along line 185-185 in FIG. 184;
  • FIG. 186 is a cross-sectional view of the staple forming pocket arrangement of FIG. 184 taken along line 186-186 in FIG. 184;
  • FIG. 187 is a cross-sectional view of the staple forming pocket arrangement of FIG. 184 taken along line 187-187 in FIG. 184;
  • FIG. 188 is a cross-sectional view of the staple forming pocket arrangement of FIG. 184 taken along line 188-188 in FIG. 184;
  • FIG. 189 is a plan view of a staple forming pocket arrangement comprising a proximal forming pocket and a distal forming pocket which is different than the proximal forming pocket, wherein the pockets are bilaterally asymmetric with respect to a bridge of the pocket pair, bilaterally symmetric with respect to a pocket axis of the pocket pair, and rotationally asymmetric with respect to a center portion of the bridge;
  • FIG. 190 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 190-190 in FIG. 189;
  • FIG. 191 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 191-191 in FIG. 189;
  • FIG. 192 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 192-192 in FIG. 189;
  • FIG. 193 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 193-193 in FIG. 189;
  • FIG. 194 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 194-194 in FIG. 189;
  • FIG. 195 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 195-195 in FIG. 189;
  • FIG. 196 is a cross-sectional view of the staple forming pocket arrangement of FIG. 189 taken along line 196-196 in FIG. 189;
  • FIG. 197 is partial cross-sectional view of a stapling assembly in a fully clamped but nonparallel configuration;
  • FIG. 198 is an elevational view of a staple formed with the stapling assembly of FIG. 197;
  • FIG. 199 is partial cross-sectional view of another stapling assembly in a fully clamped but nonparallel configuration;
  • FIG. 200 is an elevational view of a staple formed with the stapling assembly of FIG. 199;
  • FIG. 201 is a bottom view of an anvil comprising a plurality of forming pockets that are identical;
  • FIG. 202 is a bottom view of an anvil comprising laterally changing forming pocket pairs;
  • FIG. 203 is a bottom view of an anvil comprising longitudinally changing forming pocket pairs;
  • FIG. 204 is a bottom view of an anvil comprising laterally and longitudinally changing forming pocket pairs;
  • FIG. 205 is a table identifying specific features of various forming pocket arrangements;
  • FIG. 206 contains cross-sectional views of different forming pocket arrangements corresponding to various features listed in the table of FIG. 205;
  • FIG. 207 is a comparison of forming pocket arrangements, staples formed with those forming pocket arrangements, and the maximum forces required to fire those staples against those forming pocket arrangements;
  • FIG. 208 is a table identifying additional features of the forming pocket arrangements shown in the table of FIG. 205;
  • FIG. 209 depicts a staple in a fully formed configuration and in an overdriven configuration formed with a forming pocket arrangement in accordance with at least one embodiment;
  • FIG. 210 depicts a staple in a fully formed configuration and in an overdriven configuration formed with a forming pocket arrangement in accordance with at least one embodiment;
  • FIG. 211 depicts a staple in a first and second stage of a forming process formed with a forming pocket arrangement in accordance with at least one embodiment;
  • FIG. 212 depicts the staple of FIG. 211 in a third and fourth stage of the forming process formed with the forming pocket arrangement of FIG. 211;
  • FIG. 213 depicts a staple in a first and second stage of a forming process formed with a forming pocket arrangement in accordance with at least one embodiment;
  • FIG. 214 depicts the staple of FIG. 213 in a third and fourth stage of the forming process formed with the forming pocket arrangement of FIG. 213;
  • FIG. 215 depicts a staple in various stages of forming formed with a forming pocket arrangement in accordance with at least one embodiment;
  • FIG. 216 depicts a staple in various stages of forming formed with a forming pocket arrangement in accordance with at least one embodiment;
  • FIG. 217 depicts a staple formed with the forming pocket arrangement of FIG. 134 in a fully formed configuration, wherein the staple contacted the forming pockets in a misaligned state;
  • FIG. 218 is a comparison of forming pocket arrangements and staples formed with the forming pocket arrangements;
  • FIG. 219 depicts a staple formed with the forming pocket arrangement of FIG. 146 in a fully formed configuration, wherein the staple contacted the forming pockets in a misaligned state;
  • FIG. 220 depicts a staple formed with the forming pocket arrangement of FIG. 140 in a fully formed configuration, wherein the staple contacted the forming pockets in a misaligned state;
  • FIG. 221 depicts a staple formed with the forming pocket arrangement of FIG. 152 in a fully formed configuration, wherein the staple contacted the forming pockets in an aligned state;
  • FIG. 222 depicts a staple formed with the forming pocket arrangement of FIG. 152 in a fully formed configuration, wherein the staple contacted the forming pockets in an misaligned state;
  • FIG. 223 depicts a staple formed with the forming pocket arrangement of FIG. 179 in a fully formed configuration, wherein the staple contacted the forming pockets in an aligned state;
  • FIG. 224 depicts a staple formed with the forming pocket arrangement of FIG. 179 in a fully formed configuration, wherein the staple contacted the forming pockets in an misaligned state;
  • FIG. 225 depicts a staple formed with the forming pocket arrangement of FIG. 128 in a fully formed configuration, wherein the staple contacted the forming pockets in an misaligned state; and
  • FIG. 226 depicts a staple formed with the forming pocket arrangement of FIG. 158 in a fully formed configuration, wherein the staple contacted the forming pockets in an misaligned state.
  • Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
  • DETAILED DESCRIPTION
  • Applicant of the present application owns the following U.S. patent applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. patent application Ser. No. 15/386,185, entitled SURGICAL STAPLING INSTRUMENTS AND REPLACEABLE TOOL ASSEMBLIES THEREOF;
      • U.S. patent application Ser. No. 15/386,230, entitled ARTICULATABLE SURGICAL STAPLING INSTRUMENTS;
      • U.S. patent application Ser. No. 15/386,221, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS;
      • U.S. patent application Ser. No. 15/386,209, entitled SURGICAL END EFFECTORS AND FIRING MEMBERS THEREOF;
      • U.S. patent application Ser. No. 15/386,198, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS AND REPLACEABLE TOOL ASSEMBLIES; and
      • U.S. patent application Ser. No. 15/386,240, entitled SURGICAL END EFFECTORS AND ADAPTABLE FIRING MEMBERS THEREFOR.
  • Applicant of the present application owns the following U.S. patent applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. patent application Ser. No. 15/385,939, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;
      • U.S. patent application Ser. No. 15/385,941, entitled SURGICAL TOOL ASSEMBLIES WITH CLUTCHING ARRANGEMENTS FOR SHIFTING BETWEEN CLOSURE SYSTEMS WITH CLOSURE STROKE REDUCTION FEATURES AND ARTICULATION AND FIRING SYSTEMS;
      • U.S. patent application Ser. No. 15/385,943, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;
      • U.S. patent application Ser. No. 15/385,950, entitled SURGICAL TOOL ASSEMBLIES WITH CLOSURE STROKE REDUCTION FEATURES;
      • U.S. patent application Ser. No. 15/385,945, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;
      • U.S. patent application Ser. No. 15/385,946, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;
      • U.S. patent application Ser. No. 15/385,951, entitled SURGICAL INSTRUMENTS WITH JAW OPENING FEATURES FOR INCREASING A JAW OPENING DISTANCE;
      • U.S. patent application Ser. No. 15/385,953, entitled METHODS OF STAPLING TISSUE;
      • U.S. patent application Ser. No. 15/385,954, entitled FIRING MEMBERS WITH NON-PARALLEL JAW ENGAGEMENT FEATURES FOR SURGICAL END EFFECTORS;
      • U.S. patent application Ser. No. 15/385,955, entitled SURGICAL END EFFECTORS WITH EXPANDABLE TISSUE STOP ARRANGEMENTS;
      • U.S. patent application Ser. No. 15/385,948, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;
      • U.S. patent application Ser. No. 15/385,956, entitled SURGICAL INSTRUMENTS WITH POSITIVE JAW OPENING FEATURES;
      • U.S. patent application Ser. No. 15/385,958, entitled SURGICAL INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION UNLESS AN UNSPENT STAPLE CARTRIDGE IS PRESENT; and
      • U.S. patent application Ser. No. 15/385,947, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN.
  • Applicant of the present application owns the following U.S. patent applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. patent application Ser. No. 15/385,896, entitled METHOD FOR RESETTING A FUSE OF A SURGICAL INSTRUMENT SHAFT;
      • U.S. patent application Ser. No. 15/385,898, entitled STAPLE FORMING POCKET ARRANGEMENT TO ACCOMMODATE DIFFERENT TYPES OF STAPLES;
      • U.S. patent application Ser. No. 15/385,899, entitled SURGICAL INSTRUMENT COMPRISING IMPROVED JAW CONTROL;
      • U.S. patent application Ser. No. 15/385,901, entitled STAPLE CARTRIDGE AND STAPLE CARTRIDGE CHANNEL COMPRISING WINDOWS DEFINED THEREIN;
      • U.S. patent application Ser. No. 15/385,902, entitled SURGICAL INSTRUMENT COMPRISING A CUTTING MEMBER;
      • U.S. patent application Ser. No. 15/385,904, entitled STAPLE FIRING MEMBER COMPRISING A MISSING CARTRIDGE AND/OR SPENT CARTRIDGE LOCKOUT;
      • U.S. patent application Ser. No. 15/385,905, entitled FIRING ASSEMBLY COMPRISING A LOCKOUT;
      • U.S. patent application Ser. No. 15/385,907, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN END EFFECTOR LOCKOUT AND A FIRING ASSEMBLY LOCKOUT;
      • U.S. patent application Ser. No. 15/385,908, entitled FIRING ASSEMBLY COMPRISING A FUSE; and
      • U.S. patent application Ser. No. 15/385,909, entitled FIRING ASSEMBLY COMPRISING A MULTIPLE FAILED-STATE FUSE.
  • Applicant of the present application owns the following U.S. patent applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. patent application Ser. No. 15/385,920, entitled STAPLE FORMING POCKET ARRANGEMENTS;
      • U.S. patent application Ser. No. 15/385,913, entitled ANVIL ARRANGEMENTS FOR SURGICAL STAPLERS;
      • U.S. patent application Ser. No. 15/385,893, entitled BILATERALLY ASYMMETRIC STAPLE FORMING POCKET PAIRS;
      • U.S. patent application Ser. No. 15/385,929, entitled CLOSURE MEMBERS WITH CAM SURFACE ARRANGEMENTS FOR SURGICAL INSTRUMENTS WITH SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS;
      • U.S. patent application Ser. No. 15/385,911, entitled SURGICAL STAPLERS WITH INDEPENDENTLY ACTUATABLE CLOSING AND FIRING SYSTEMS;
      • U.S. patent application Ser. No. 15/385,927, entitled SURGICAL STAPLING INSTRUMENTS WITH SMART STAPLE CARTRIDGES;
      • U.S. patent application Ser. No. 15/385,917, entitled STAPLE CARTRIDGE COMPRISING STAPLES WITH DIFFERENT CLAMPING BREADTHS;
      • U.S. patent application Ser. No. 15/385,900, entitled STAPLE FORMING POCKET ARRANGEMENTS COMPRISING PRIMARY SIDEWALLS AND POCKET SIDEWALLS;
      • U.S. patent application Ser. No. 15/385,931, entitled NO-CARTRIDGE AND SPENT CARTRIDGE LOCKOUT ARRANGEMENTS FOR SURGICAL STAPLERS;
      • U.S. patent application Ser. No. 15/385,915, entitled FIRING MEMBER PIN ANGLE;
      • U.S. patent application Ser. No. 15/385,897, entitled STAPLE FORMING POCKET ARRANGEMENTS COMPRISING ZONED FORMING SURFACE GROOVES;
      • U.S. patent application Ser. No. 15/385,922, entitled SURGICAL INSTRUMENT WITH MULTIPLE FAILURE RESPONSE MODES;
      • U.S. patent application Ser. No. 15/385,924, entitled SURGICAL INSTRUMENT WITH PRIMARY AND SAFETY PROCESSORS;
      • U.S. patent application Ser. No. 15/385,912, entitled SURGICAL INSTRUMENTS WITH JAWS THAT ARE PIVOTABLE ABOUT A FIXED AXIS AND INCLUDE SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS;
      • U.S. patent application Ser. No. 15/385,910, entitled ANVIL HAVING A KNIFE SLOT WIDTH;
      • U.S. patent application Ser. No. 15/385,903, entitled CLOSURE MEMBER ARRANGEMENTS FOR SURGICAL INSTRUMENTS; and
      • U.S. patent application Ser. No. 15/385,906, entitled FIRING MEMBER PIN CONFIGURATIONS.
  • Applicant of the present application owns the following U.S. patent applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. patent application Ser. No. 15/386,188, entitled STEPPED STAPLE CARTRIDGE WITH ASYMMETRICAL STAPLES;
      • U.S. patent application Ser. No. 15/386,192, entitled STEPPED STAPLE CARTRIDGE WITH TISSUE RETENTION AND GAP SETTING FEATURES;
      • U.S. patent application Ser. No. 15/386,206, entitled STAPLE CARTRIDGE WITH DEFORMABLE DRIVER RETENTION FEATURES;
      • U.S. patent application Ser. No. 15/386,226, entitled DURABILITY FEATURES FOR END EFFECTORS AND FIRING ASSEMBLIES OF SURGICAL STAPLING INSTRUMENTS;
      • U.S. patent application Ser. No. 15/386,222, entitled SURGICAL STAPLING INSTRUMENTS HAVING END EFFECTORS WITH POSITIVE OPENING FEATURES; and
      • U.S. patent application Ser. No. 15/386,236, entitled CONNECTION PORTIONS FOR DISPOSABLE LOADING UNITS FOR SURGICAL STAPLING INSTRUMENTS.
  • Applicant of the present application owns the following U.S. patent applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. patent application Ser. No. 15/385,887, entitled METHOD FOR ATTACHING A SHAFT ASSEMBLY TO A SURGICAL INSTRUMENT AND, ALTERNATIVELY, TO A SURGICAL ROBOT;
      • U.S. patent application Ser. No. 15/385,889, entitled SHAFT ASSEMBLY COMPRISING A MANUALLY-OPERABLE RETRACTION SYSTEM FOR USE WITH A MOTORIZED SURGICAL INSTRUMENT SYSTEM;
      • U.S. patent application Ser. No. 15/385,890, entitled SHAFT ASSEMBLY COMPRISING SEPARATELY ACTUATABLE AND RETRACTABLE SYSTEMS;
      • U.S. patent application Ser. No. 15/385,891, entitled SHAFT ASSEMBLY COMPRISING A CLUTCH CONFIGURED TO ADAPT THE OUTPUT OF A ROTARY FIRING MEMBER TO TWO DIFFERENT SYSTEMS;
      • U.S. patent application Ser. No. 15/385,892, entitled SURGICAL SYSTEM COMPRISING A FIRING MEMBER ROTATABLE INTO AN ARTICULATION STATE TO ARTICULATE AN END EFFECTOR OF THE SURGICAL SYSTEM;
      • U.S. patent application Ser. No. 15/385,894, entitled SHAFT ASSEMBLY COMPRISING A LOCKOUT; and
      • U.S. patent application Ser. No. 15/385,895, entitled SHAFT ASSEMBLY COMPRISING FIRST AND SECOND ARTICULATION LOCKOUTS.
  • Applicant of the present application owns the following U.S. patent applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. patent application Ser. No. 15/385,916, entitled SURGICAL STAPLING SYSTEMS;
      • U.S. patent application Ser. No. 15/385,918, entitled SURGICAL STAPLING SYSTEMS;
      • U.S. patent application Ser. No. 15/385,919, entitled SURGICAL STAPLING SYSTEMS;
      • U.S. patent application Ser. No. 15/385,921, entitled SURGICAL STAPLE CARTRIDGE WITH MOVABLE CAMMING MEMBER CONFIGURED TO DISENGAGE FIRING MEMBER LOCKOUT FEATURES;
      • U.S. patent application Ser. No. 15/385,923, entitled SURGICAL STAPLING SYSTEMS;
      • U.S. patent application Ser. No. 15/385,925, entitled JAW ACTUATED LOCK ARRANGEMENTS FOR PREVENTING ADVANCEMENT OF A FIRING MEMBER IN A SURGICAL END EFFECTOR UNLESS AN UNFIRED CARTRIDGE IS INSTALLED IN THE END EFFECTOR;
      • U.S. patent application Ser. No. 15/385,926, entitled AXIALLY MOVABLE CLOSURE SYSTEM ARRANGEMENTS FOR APPLYING CLOSURE MOTIONS TO JAWS OF SURGICAL INSTRUMENTS;
      • U.S. patent application Ser. No. 15/385,928, entitled PROTECTIVE COVER ARRANGEMENTS FOR A JOINT INTERFACE BETWEEN A MOVABLE JAW AND ACTUATOR SHAFT OF A SURGICAL INSTRUMENT;
      • U.S. patent application Ser. No. 15/385,930, entitled SURGICAL END EFFECTOR WITH TWO SEPARATE COOPERATING OPENING FEATURES FOR OPENING AND CLOSING END EFFECTOR JAWS;
      • U.S. patent application Ser. No. 15/385,932, entitled ARTICULATABLE SURGICAL END EFFECTOR WITH ASYMMETRIC SHAFT ARRANGEMENT;
      • U.S. patent application Ser. No. 15/385,933, entitled ARTICULATABLE SURGICAL INSTRUMENT WITH INDEPENDENT PIVOTABLE LINKAGE DISTAL OF AN ARTICULATION LOCK;
      • U.S. patent application Ser. No. 15/385,934, entitled ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR IN AN ARTICULATED POSITION IN RESPONSE TO ACTUATION OF A JAW CLOSURE SYSTEM;
      • U.S. patent application Ser. No. 15/385,935, entitled LATERALLY ACTUATABLE ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR OF A SURGICAL INSTRUMENT IN AN ARTICULATED CONFIGURATION; and
      • U.S. patent application Ser. No. 15/385,936, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH ARTICULATION STROKE AMPLIFICATION FEATURES.
  • Applicant of the present application owns the following U.S. patent applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. patent application Ser. No. 15/191,775, entitled STAPLE CARTRIDGE COMPRISING WIRE STAPLES AND STAMPED STAPLES;
      • U.S. patent application Ser. No. 15/191,807, entitled STAPLING SYSTEM FOR USE WITH WIRE STAPLES AND STAMPED STAPLES;
      • U.S. patent application Ser. No. 15/191,834, entitled STAMPED STAPLES AND STAPLE CARTRIDGES USING THE SAME;
      • U.S. patent application Ser. No. 15/191,788, entitled STAPLE CARTRIDGE COMPRISING OVERDRIVEN STAPLES; and
      • U.S. patent application Ser. No. 15/191,818, entitled STAPLE CARTRIDGE COMPRISING OFFSET LONGITUDINAL STAPLE ROWS.
  • Applicant of the present application owns the following U.S. patent applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:
      • U.S. Design patent application Serial No. 29/569,218, entitled SURGICAL FASTENER;
      • U.S. Design patent application Serial No. 29/569,227, entitled SURGICAL FASTENER;
      • U.S. Design patent application Serial No. 29/569,259, entitled SURGICAL FASTENER CARTRIDGE; and
      • U.S. Design patent application Serial No. 29/569,264, entitled SURGICAL FASTENER CARTRIDGE.
  • Applicant of the present application owns the following patent applications that were filed on Apr. 1, 2016 and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 15/089,325, entitled METHOD FOR OPERATING A SURGICAL STAPLING SYSTEM;
      • U.S. patent application Ser. No. 15/089,321, entitled MODULAR SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY;
      • U.S. patent application Ser. No. 15/089,326, entitled SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY INCLUDING A RE-ORIENTABLE DISPLAY FIELD;
      • U.S. patent application Ser. No. 15/089,263, entitled SURGICAL INSTRUMENT HANDLE ASSEMBLY WITH RECONFIGURABLE GRIP PORTION;
      • U.S. patent application Ser. No. 15/089,262, entitled ROTARY POWERED SURGICAL INSTRUMENT WITH MANUALLY ACTUATABLE BAILOUT SYSTEM;
      • U.S. patent application Ser. No. 15/089,277, entitled SURGICAL CUTTING AND STAPLING END EFFECTOR WITH ANVIL CONCENTRIC DRIVE MEMBER;
      • U.S. patent application Ser. No. 15/089,296, entitled INTERCHANGEABLE SURGICAL TOOL ASSEMBLY WITH A SURGICAL END EFFECTOR THAT IS SELECTIVELY ROTATABLE ABOUT A SHAFT AXIS;
      • U.S. patent application Ser. No. 15/089,258, entitled SURGICAL STAPLING SYSTEM COMPRISING A SHIFTABLE TRANSMISSION;
      • U.S. patent application Ser. No. 15/089,278, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO PROVIDE SELECTIVE CUTTING OF TISSUE;
      • U.S. patent application Ser. No. 15/089,284, entitled SURGICAL STAPLING SYSTEM COMPRISING A CONTOURABLE SHAFT;
      • U.S. patent application Ser. No. 15/089,295, entitled SURGICAL STAPLING SYSTEM COMPRISING A TISSUE COMPRESSION LOCKOUT;
      • U.S. patent application Ser. No. 15/089,300, entitled SURGICAL STAPLING SYSTEM COMPRISING AN UNCLAMPING LOCKOUT;
      • U.S. patent application Ser. No. 15/089,196, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW CLOSURE LOCKOUT;
      • U.S. patent application Ser. No. 15/089,203, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW ATTACHMENT LOCKOUT;
      • U.S. patent application Ser. No. 15/089,210, entitled SURGICAL STAPLING SYSTEM COMPRISING A SPENT CARTRIDGE LOCKOUT;
      • U.S. patent application Ser. No. 15/089,324, entitled SURGICAL INSTRUMENT COMPRISING A SHIFTING MECHANISM;
      • U.S. patent application Ser. No. 15/089,335, entitled SURGICAL STAPLING INSTRUMENT COMPRISING MULTIPLE LOCKOUTS;
      • U.S. patent application Ser. No. 15/089,339, entitled SURGICAL STAPLING INSTRUMENT;
      • U.S. patent application Ser. No. 15/089,253, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO APPLY ANNULAR ROWS OF STAPLES HAVING DIFFERENT HEIGHTS;
      • U.S. patent application Ser. No. 15/089,304, entitled SURGICAL STAPLING SYSTEM COMPRISING A GROOVED FORMING POCKET;
      • U.S. patent application Ser. No. 15/089,331, entitled ANVIL MODIFICATION MEMBERS FOR SURGICAL STAPLERS;
      • U.S. patent application Ser. No. 15/089,336, entitled STAPLE CARTRIDGES WITH ATRAUMATIC FEATURES;
      • U.S. patent application Ser. No. 15/089,312, entitled CIRCULAR STAPLING SYSTEM COMPRISING AN INCISABLE TISSUE SUPPORT;
      • U.S. patent application Ser. No. 15/089,309, entitled CIRCULAR STAPLING SYSTEM COMPRISING ROTARY FIRING SYSTEM; and
      • U.S. patent application Ser. No. 15/089,349, entitled CIRCULAR STAPLING SYSTEM COMPRISING LOAD CONTROL.
  • Applicant of the present application also owns the U.S. patent applications identified below which were filed on Dec. 31, 2015 which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 14/984,488, entitled MECHANISMS FOR COMPENSATING FOR BATTERY PACK FAILURE IN POWERED SURGICAL INSTRUMENTS;
      • U.S. patent application Ser. No. 14/984,525, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and
      • U.S. patent application Ser. No. 14/984,552, entitled SURGICAL INSTRUMENTS WITH SEPARABLE MOTORS AND MOTOR CONTROL CIRCUITS.
  • Applicant of the present application also owns the U.S. patent applications identified below which were filed on Feb. 9, 2016 which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 15/019,220, entitled SURGICAL INSTRUMENT WITH ARTICULATING AND AXIALLY TRANSLATABLE END EFFECTOR;
      • U.S. patent application Ser. No. 15/019,228, entitled SURGICAL INSTRUMENTS WITH MULTIPLE LINK ARTICULATION ARRANGEMENTS;
      • U.S. patent application Ser. No. 15/019,196, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT;
      • U.S. patent application Ser. No. 15/019,206, entitled SURGICAL INSTRUMENTS WITH AN END EFFECTOR THAT IS HIGHLY ARTICULATABLE RELATIVE TO AN ELONGATE SHAFT ASSEMBLY;
      • U.S. patent application Ser. No. 15/019,215, entitled SURGICAL INSTRUMENTS WITH NON-SYMMETRICAL ARTICULATION ARRANGEMENTS;
      • U.S. patent application Ser. No. 15/019,227, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH SINGLE ARTICULATION LINK ARRANGEMENTS;
      • U.S. patent application Ser. No. 15/019,235, entitled SURGICAL INSTRUMENTS WITH TENSIONING ARRANGEMENTS FOR CABLE DRIVEN ARTICULATION SYSTEMS;
      • U.S. patent application Ser. No. 15/019,230, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH OFF-AXIS FIRING BEAM ARRANGEMENTS; and
      • U.S. patent application Ser. No. 15/019,245, entitled SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS.
  • Applicant of the present application also owns the U.S. patent applications identified below which were filed on Feb. 12, 2016 which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 15/043,254, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;
      • U.S. patent application Ser. No. 15/043,259, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;
      • U.S. patent application Ser. No. 15/043,275, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and
      • U.S. patent application Ser. No. 15/043,289, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS.
  • Applicant of the present application owns the following patent applications that were filed on Jun. 18, 2015 and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 14/742,925, entitled SURGICAL END EFFECTORS WITH POSITIVE JAW OPENING ARRANGEMENTS;
      • U.S. patent application Ser. No. 14/742,941, entitled SURGICAL END EFFECTORS WITH DUAL CAM ACTUATED JAW CLOSING FEATURES;
      • U.S. patent application Ser. No. 14/742,914, entitled MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS;
      • U.S. patent application Ser. No. 14/742,900, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH COMPOSITE FIRING BEAM STRUCTURES WITH CENTER FIRING SUPPORT MEMBER FOR ARTICULATION SUPPORT;
      • U.S. patent application Ser. No. 14/742,885, entitled DUAL ARTICULATION DRIVE SYSTEM ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS; and
      • U.S. patent application Ser. No. 14/742,876, entitled PUSH/PULL ARTICULATION DRIVE SYSTEMS FOR ARTICULATABLE SURGICAL INSTRUMENTS.
  • Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 14/640,746, entitled POWERED SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0256184;
      • U.S. patent application Ser. No. 14/640,795, entitled MULTIPLE LEVEL THRESHOLDS TO MODIFY OPERATION OF POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/02561185;
      • U.S. patent application Ser. No. 14/640,832, entitled ADAPTIVE TISSUE COMPRESSION TECHNIQUES TO ADJUST CLOSURE RATES FOR MULTIPLE TISSUE TYPES, now U.S. Patent Application Publication No. 2016/0256154;
      • U.S. patent application Ser. No. 14/640,935, entitled OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0256071;
      • U.S. patent application Ser. No. 14/640,831, entitled MONITORING SPEED CONTROL AND PRECISION INCREMENTING OF MOTOR FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0256153;
      • U.S. patent application Ser. No. 14/640,859, entitled TIME DEPENDENT EVALUATION OF SENSOR DATA TO DETERMINE STABILITY, CREEP, AND VISCOELASTIC ELEMENTS OF MEASURES, now U.S. Patent Application Publication No. 2016/0256187;
      • U.S. patent application Ser. No. 14/640,817, entitled INTERACTIVE FEEDBACK SYSTEM FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0256186;
      • U.S. patent application Ser. No. 14/640,844, entitled CONTROL TECHNIQUES AND SUB-PROCESSOR CONTAINED WITHIN MODULAR SHAFT WITH SELECT CONTROL PROCESSING FROM HANDLE, now U.S. Patent Application Publication No. 2016/0256155;
      • U.S. patent application Ser. No. 14/640,837, entitled SMART SENSORS WITH LOCAL SIGNAL PROCESSING, now U.S. Patent Application Publication No. 2016/0256163;
      • U.S. patent application Ser. No. 14/640,765, entitled SYSTEM FOR DETECTING THE MIS-INSERTION OF A STAPLE CARTRIDGE INTO A SURGICAL STAPLER, now U.S. Patent Application Publication No. 2016/0256160;
      • U.S. patent application Ser. No. 14/640,799, entitled SIGNAL AND POWER COMMUNICATION SYSTEM POSITIONED ON A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2016/0256162; and
      • U.S. patent application Ser. No. 14/640,780, entitled SURGICAL INSTRUMENT COMPRISING A LOCKABLE BATTERY HOUSING, now U.S. Patent Application Publication No. 2016/0256161.
  • Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 14/633,576, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN INSPECTION STATION, now U.S. Patent Application Publication No. 2016/0249919;
      • U.S. patent application Ser. No. 14/633,546, entitled SURGICAL APPARATUS CONFIGURED TO ASSESS WHETHER A PERFORMANCE PARAMETER OF THE SURGICAL APPARATUS IS WITHIN AN ACCEPTABLE PERFORMANCE BAND, now U.S. Patent Application Publication No. 2016/0249915;
      • U.S. patent application Ser. No. 14/633,560, entitled SURGICAL CHARGING SYSTEM THAT CHARGES AND/OR CONDITIONS ONE OR MORE BATTERIES, now U.S. Patent Application Publication No. 2016/0249910;
      • U.S. patent application Ser. No. 14/633,566, entitled CHARGING SYSTEM THAT ENABLES EMERGENCY RESOLUTIONS FOR CHARGING A BATTERY, now U.S. Patent Application Publication No. 2016/0249918;
      • U.S. patent application Ser. No. 14/633,555, entitled SYSTEM FOR MONITORING WHETHER A SURGICAL INSTRUMENT NEEDS TO BE SERVICED, now U.S. Patent Application Publication No. 2016/0249916;
      • U.S. patent application Ser. No. 14/633,542, entitled REINFORCED BATTERY FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0249908;
      • U.S. patent application Ser. No. 14/633,548, entitled POWER ADAPTER FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0249909;
      • U.S. patent application Ser. No. 14/633,526, entitled ADAPTABLE SURGICAL INSTRUMENT HANDLE, now U.S. Patent Application Publication No. 2016/0249945;
      • U.S. patent application Ser. No. 14/633,541, entitled MODULAR STAPLING ASSEMBLY, now U.S. Patent Application Publication No. 2016/0249927; and
      • U.S. patent application Ser. No. 14/633,562, entitled SURGICAL APPARATUS CONFIGURED TO TRACK AN END-OF-LIFE PARAMETER, now U.S. Patent Application Publication No. 2016/0249917.
  • Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 14/574,478, entitled SURGICAL INSTRUMENT SYSTEMS COMPRISING AN ARTICULATABLE END EFFECTOR AND MEANS FOR ADJUSTING THE FIRING STROKE OF A FIRING MEMBER, now U.S. Patent Application Publication No. 2016/0174977;
      • U.S. patent application Ser. No. 14/574,483, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING LOCKABLE SYSTEMS, now U.S. Patent Application Publication No. 2016/0174969;
      • U.S. patent application Ser. No. 14/575,139, entitled DRIVE ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0174978;
      • U.S. patent application Ser. No. 14/575,148, entitled LOCKING ARRANGEMENTS FOR DETACHABLE SHAFT ASSEMBLIES WITH ARTICULATABLE SURGICAL END EFFECTORS, now U.S. Patent Application Publication No. 2016/0174976;
      • U.S. patent application Ser. No. 14/575,130, entitled SURGICAL INSTRUMENT WITH AN ANVIL THAT IS SELECTIVELY MOVABLE ABOUT A DISCRETE NON-MOVABLE AXIS RELATIVE TO A STAPLE CARTRIDGE, now U.S. Patent Application Publication No. 2016/0174972;
      • U.S. patent application Ser. No. 14/575,143, entitled SURGICAL INSTRUMENTS WITH IMPROVED CLOSURE ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174983;
      • U.S. patent application Ser. No. 14/575,117, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174975;
      • U.S. patent application Ser. No. 14/575,154, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND IMPROVED FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174973;
      • U.S. patent application Ser. No. 14/574,493, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A FLEXIBLE ARTICULATION SYSTEM, now U.S. Patent Application Publication No. 2016/0174970; and
      • U.S. patent application Ser. No. 14/574,500, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A LOCKABLE ARTICULATION SYSTEM, now U.S. Patent Application Publication No. 2016/0174971.
  • Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION, now U.S. Patent Application Publication No. 2014/0246471;
      • U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246472;
      • U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0249557;
      • U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT, now U.S. Pat. No. 9,358,003;
      • U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246478;
      • U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,326,767;
      • U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR, now U.S. Pat. No. 9,468,438;
      • U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS, now U.S. Patent Application Publication No. 2014/0246475;
      • U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM, now U.S. Pat. No. 9,398,911; and
      • U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP, now U.S. Pat. No. 9,307,986.
  • Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, now U.S. Patent Application Publication No. 2014/0263542;
      • U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT, now U.S. Pat. No. 9,332,987;
      • U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263564;
      • U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541;
      • U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263538;
      • U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263554;
      • U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263565;
      • U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,726;
      • U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,727; and
      • U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0277017.
  • Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:
      • U.S. patent application Ser. No. 14/200,111, entitled CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263539.
  • Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 14/226,106, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272582;
      • U.S. patent application Ser. No. 14/226,099, entitled STERILIZATION VERIFICATION CIRCUIT, now U.S. Patent Application Publication No. 2015/0272581;
      • U.S. patent application Ser. No. 14/226,094, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT, now U.S. Patent Application Publication No. 2015/0272580;
      • U.S. patent application Ser. No. 14/226,117, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL, now U.S. Patent Application Publication No. 2015/0272574;
      • U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES, now U.S. Patent Application Publication No. 2015/0272579;
      • U.S. patent application Ser. No. 14/226,093, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272569;
      • U.S. patent application Ser. No. 14/226,116, entitled SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION, now U.S. Patent Application Publication No. 2015/0272571;
      • U.S. patent application Ser. No. 14/226,071, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR, now U.S. Patent Application Publication No. 2015/0272578;
      • U.S. patent application Ser. No. 14/226,097, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS, now U.S. Patent Application Publication No. 2015/0272570;
      • U.S. patent application Ser. No. 14/226,126, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272572;
      • U.S. patent application Ser. No. 14/226,133, entitled MODULAR SURGICAL INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272557;
      • U.S. patent application Ser. No. 14/226,081, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT, now U.S. Patent Application Publication No. 2015/0277471;
      • U.S. patent application Ser. No. 14/226,076, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION, now U.S. Patent Application Publication No. 2015/0280424;
      • U.S. patent application Ser. No. 14/226,111, entitled SURGICAL STAPLING INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272583; and
      • U.S. patent application Ser. No. 14/226,125, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2015/0280384.
  • Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 14/479,103, entitled CIRCUITRY AND SENSORS FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066912;
      • U.S. patent application Ser. No. 14/479,119, entitled ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0066914;
      • U.S. patent application Ser. No. 14/478,908, entitled MONITORING DEVICE DEGRADATION BASED ON COMPONENT EVALUATION, now U.S. Patent Application Publication No. 2016/0066910;
      • U.S. patent application Ser. No. 14/478,895, entitled MULTIPLE SENSORS WITH ONE SENSOR AFFECTING A SECOND SENSOR'S OUTPUT OR INTERPRETATION, now U.S. Patent Application Publication No. 2016/0066909;
      • U.S. patent application Ser. No. 14/479,110, entitled POLARITY OF HALL MAGNET TO DETECT MISLOADED CARTRIDGE, now U.S. Patent Application Publication No. 2016/0066915;
      • U.S. patent application Ser. No. 14/479,098, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION, now U.S. Patent Application Publication No. 2016/0066911;
      • U.S. patent application Ser. No. 14/479,115, entitled MULTIPLE MOTOR CONTROL FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066916; and
      • U.S. patent application Ser. No. 14/479,108, entitled LOCAL DISPLAY OF TISSUE PARAMETER STABILIZATION, now U.S. Patent Application Publication No. 2016/0066913.
  • Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entirety:
      • U.S. patent application Ser. No. 14/248,590, entitled MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS, now U.S. Patent Application Publication No. 2014/0305987;
      • U.S. patent application Ser. No. 14/248,581, entitled SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT, now U.S. Patent Application Publication No. 2014/0305989;
      • U.S. patent application Ser. No. 14/248,595, entitled SURGICAL INSTRUMENT SHAFT INCLUDING SWITCHES FOR CONTROLLING THE OPERATION OF THE SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305988;
      • U.S. patent application Ser. No. 14/248,588, entitled POWERED LINEAR SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309666;
      • U.S. patent application Ser. No. 14/248,591, entitled TRANSMISSION ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305991;
      • U.S. patent application Ser. No. 14/248,584, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS, now U.S. Patent Application Publication No. 2014/0305994;
      • U.S. patent application Ser. No. 14/248,587, entitled POWERED SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309665;
      • U.S. patent application Ser. No. 14/248,586, entitled DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305990; and
      • U.S. patent application Ser. No. 14/248,607, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS, now U.S. Patent Application Publication No. 2014/0305992.
  • Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entirety:
      • U.S. Provisional Patent Application Ser. No. 61/812,365, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR;
      • U.S. Provisional Patent Application Ser. No. 61/812,376, entitled LINEAR CUTTER WITH POWER;
      • U.S. Provisional Patent Application Ser. No. 61/812,382, entitled LINEAR CUTTER WITH MOTOR AND PISTOL GRIP;
      • U.S. Provisional Patent Application Ser. No. 61/812,385, entitled SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL; and
      • U.S. Provisional Patent Application Ser. No. 61/812,372, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR.
  • Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
  • The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
  • The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
  • Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
  • A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which the first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.
  • The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
  • The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
  • Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
  • FIG. 1 depicts a motor-driven surgical system 10 that may be used to perform a variety of different surgical procedures. As can be seen in that Figure, one example of the surgical system 10 includes four interchangeable surgical tool assemblies 100, 200, 300 and 1000 that are each adapted for interchangeable use with a handle assembly 500. Each interchangeable surgical tool assembly 100, 200, 300 and 1000 may be designed for use in connection with the performance of one or more specific surgical procedures. In another surgical system embodiment, the interchangeable surgical tool assemblies may be effectively employed with a tool drive assembly of a robotically controlled or automated surgical system. For example, the surgical tool assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods such as, but not limited to, those disclosed in U.S. Pat. No. 9,072,535, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, which is hereby incorporated by reference herein in its entirety.
  • FIG. 2 illustrates one form of an interchangeable surgical tool assembly 100 that is operably coupled to the handle assembly 500. FIG. 3 illustrates attachment of the interchangeable surgical tool assembly 100 to the handle assembly 500. The attachment arrangement and process depicted in FIG. 3 may also be employed in connection with attachment of any of the interchangeable surgical tool assemblies 100, 200, 300 and 1000 to a tool drive portion or tool drive housing of a robotic system. The handle assembly 500 may comprise a handle housing 502 that includes a pistol grip portion 504 that can be gripped and manipulated by the clinician. As will be briefly discussed below, the handle assembly 500 operably supports a plurality of drive systems that are configured to generate and apply various control motions to corresponding portions of the interchangeable surgical tool assembly 100, 200, 300 and/or 1000 that is operably attached thereto.
  • Referring now to FIG. 3, the handle assembly 500 may further include a frame 506 that operably supports the plurality of drive systems. For example, the frame 506 can operably support a “first” or closure drive system, generally designated as 510, which may be employed to apply closing and opening motions to the interchangeable surgical tool assembly 100, 200, 300 and 1000 that is operably attached or coupled to the handle assembly 500. In at least one form, the closure drive system 510 may include an actuator in the form of a closure trigger 512 that is pivotally supported by the frame 506. Such arrangement enables the closure trigger 512 to be manipulated by a clinician such that when the clinician grips the pistol grip portion 504 of the handle assembly 500, the closure trigger 512 may be easily pivoted from a starting or “unactuated” position to an “actuated” position and more particularly to a fully compressed or fully actuated position. In various forms, the closure drive system 510 further includes a closure linkage assembly 514 that is pivotally coupled to the closure trigger 512 or otherwise operably interfaces therewith. As will be discussed in further detail below, in the illustrated example, the closure linkage assembly 514 includes a transverse attachment pin 516 that facilitates attachment to a corresponding drive system on the surgical tool assembly. In use, to actuate the closure drive system, the clinician depresses the closure trigger 512 towards the pistol grip portion 504. As described in further detail in U.S. patent application Ser. No. 14/226,142, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, now U.S. Patent Application Publication No. 2015/0272575, which is hereby incorporated by reference in its entirety herein, when the clinician fully depresses the closure trigger 512 to attain the full closure stroke, the closure drive system is configured to lock the closure trigger 512 into the fully depressed or fully actuated position. When the clinician desires to unlock the closure trigger 512 to permit it to be biased to the unactuated position, the clinician simply activates a closure release button assembly 518 which enables the closure trigger to return to unactuated position. The closure release button 518 may also be configured to interact with various sensors that communicate with a microcontroller 520 in the handle assembly 500 for tracking the position of the closure trigger 512. Further details concerning the configuration and operation of the closure release button assembly 518 may be found in U.S. Patent Application Publication No. 2015/0272575.
  • In at least one form, the handle assembly 500 and the frame 506 may operably support another drive system referred to herein as a firing drive system 530 that is configured to apply firing motions to corresponding portions of the interchangeable surgical tool assembly that is attached thereto. As was described in detail in U.S. Patent Application Publication No. 2015/0272575, the firing drive system 530 may employ an electric motor (not shown in FIGS. 1-3) that is located in the pistol grip portion 504 of the handle assembly 500. In various forms, the motor may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor may be powered by a power source 522 that in one form may comprise a removable power pack. The power pack may support a plurality of Lithium Ion (“LI”) or other suitable batteries therein. A number of batteries may be connected in series may be used as the power source 522 for the surgical system 10. In addition, the power source 522 may be replaceable and/or rechargeable.
  • The electric motor is configured to axially drive a longitudinally movable drive member 540 in a distal and proximal directions depending upon the polarity of the motor. For example, when the motor is driven in one rotary direction, the longitudinally movable drive member 540 the will be axially driven in the distal direction “DD”. When the motor is driven in the opposite rotary direction, the longitudinally movable drive member 540 will be axially driven in a proximal direction “PD”. The handle assembly 500 can include a switch 513 which can be configured to reverse the polarity applied to the electric motor by the power source 522 or otherwise control the motor. The handle assembly 500 can also include a sensor or sensors (not shown) that is configured to detect the position of the drive member 540 and/or the direction in which the drive member 540 is being moved. Actuation of the motor can be controlled by a firing trigger 532 (FIG. 1) that is pivotally supported on the handle assembly 500. The firing trigger 532 may be pivoted between an unactuated position and an actuated position. The firing trigger 532 may be biased into the unactuated position by a spring or other biasing arrangement such that when the clinician releases the firing trigger 532, it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement. In at least one form, the firing trigger 532 can be positioned “outboard” of the closure trigger 512 as was discussed above. As discussed in U.S. Patent Application Publication No. 2015/0272575, the handle assembly 500 may be equipped with a firing trigger safety button (not shown) to prevent inadvertent actuation of the firing trigger 532. When the closure trigger 512 is in the unactuated position, the safety button is contained in the handle assembly 500 where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 532 and a firing position wherein the firing trigger 532 may be fired. As the clinician depresses the closure trigger 512, the safety button and the firing trigger 532 pivot down wherein they can then be manipulated by the clinician.
  • In at least one form, the longitudinally movable drive member 540 may have a rack of teeth (not shown) formed thereon for meshing engagement with a corresponding drive gear arrangement (not shown) that interfaces with the motor. Further details regarding those features may be found in U.S. Patent Application Publication No. 2015/0272575. At least one form also includes a manually-actuatable “bailout” assembly that is configured to enable the clinician to manually retract the longitudinally movable drive member 540 should the motor become disabled. The bailout assembly may include a lever or bailout handle assembly that is stored within the handle assembly 500 under a releasable door 550. The lever is configured to be manually pivoted into ratcheting engagement with the teeth in the drive member 540. Thus, the clinician can manually retract the drive member 540 by using the bailout handle assembly to ratchet the drive member 5400 in the proximal direction “PD”. U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045, the entire disclosure of which is hereby incorporated by reference herein discloses bailout arrangements and other components, arrangements and systems that may also be employed with the various surgical tool assemblies disclosed herein.
  • Turning now to FIG. 2, the interchangeable surgical tool assembly 100 includes a surgical end effector 110 that comprises a first jaw and a second jaw. In one arrangement, the first jaw comprises an elongate channel 112 that is configured to operably support a surgical staple cartridge 116 therein. The second jaw comprises an anvil 114 that is pivotally supported relative to the elongate channel 112. The interchangeable surgical tool assembly 100 also includes a lockable articulation joint 120 which can be configured to releasably hold the end effector 110 in a desired position relative to a shaft axis SA. Details regarding various constructions and operation of the end effector 110, the articulation joint 120 and the articulation lock are set forth in U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541, which is hereby incorporated by reference herein in its entirety. As can be further seen in FIGS. 2 and 3, the interchangeable surgical tool assembly 100 can include a proximal housing or nozzle 130 and a closure tube assembly 140 which can be utilized to close and/or open the anvil 114 of the end effector 110. As discussed in U.S. Patent Application Publication No. 2015/0272575, the closure tube assembly 140 is movably supported on a spine 145 which supports articulation driver arrangement 147 for applying articulation motions to the surgical end effector 110. The spine 145 is configured to, one, slidably support a firing bar 170 therein and, two, slidably support the closure tube assembly 140 which extends around the spine 145. In various circumstances, the spine 145 includes a proximal end that is rotatably supported in a chassis 150. See FIG. 3. In one arrangement, for example, the proximal end of the spine 145 is attached to a spine bearing (not shown) that is configured to be supported within the chassis 150. Such an arrangement facilitates rotatable attachment of the spine 145 to the chassis 150 such that the spine 145 may be selectively rotated about a shaft axis SA relative to the chassis 150.
  • Still referring to FIG. 3, the interchangeable surgical tool assembly 100 includes a closure shuttle 160 that is slidably supported within the chassis 150 such that it may be axially moved relative thereto. As can be seen in FIG. 3, the closure shuttle 160 includes a pair of proximally-protruding hooks 162 that are configured for attachment to the attachment pin 516 that is attached to the closure linkage assembly 514 in the handle assembly 500. A proximal closure tube segment 146 of the closure tube assembly 140 is coupled to the closure shuttle 160 for relative rotation thereto. Thus, when the hooks 162 are hooked over the pin 516, actuation of the closure trigger 512 will result in the axial movement of the closure shuttle 160 and ultimately, the closure tube assembly 140 on the spine 145. A closure spring (not shown) may also be journaled on the closure tube assembly 140 and serves to bias the closure tube assembly 140 in the proximal direction “PD” which can serve to pivot the closure trigger 512 into the unactuated position when the shaft assembly 100 is operably coupled to the handle assembly 500. In use, the closure tube assembly 140 is translated distally (direction DD) to close the anvil 114, for example, in response to the actuation of the closure trigger 512. The closure tube assembly 140 includes a distal closure tube segment 142 that is pivotally pinned to a distal end of a proximal closure tube segment 146. The distal closure tube segment 142 is configured to axially move with the proximal closure tube segment 146 relative to the surgical end effector 110. When the distal end of the distal closure tube segment 142 strikes a proximal surface or ledge 115 on the anvil 114, the anvil 114 is pivoted closed. Further details concerning the closure of anvil 114 may be found in the aforementioned U.S. Patent Application Publication No. 2014/0263541 and will be discussed in further detail below. As was also described in detail in U.S. Patent Application Publication No. 2014/0263541, the anvil 114 is opened by proximally translating the distal closure tube segment 142. The distal closure tube segment 142 has a horseshoe aperture 143 therein that defines a downwardly extending return tab (not shown) that cooperates with an anvil tab 117 formed on the proximal end of the anvil 114 to pivot the anvil 114 back to an open position. In the fully open position, the closure tube assembly 140 is in its proximal-most or unactuated position.
  • As was also indicated above, the interchangeable surgical tool assembly 100 further includes a firing bar 170 that is supported for axial travel within the shaft spine 145. The firing bar 170 includes an intermediate firing shaft portion that is configured for attachment to a distal cutting portion or knife bar that is configured for axial travel through the surgical end effector 110. In at least one arrangement, the interchangeable surgical tool assembly 100 includes a clutch assembly (not shown) which can be configured to selectively and releasably couple the articulation driver to the firing bar 170. Further details regarding the clutch assembly features and operation may be found in U.S. Patent Application Publication No. 2014/0263541. As discussed in U.S. Patent Application Publication No. 2014/0263541, when the clutch assembly is in its engaged position, distal movement of the firing bar 170 can move the articulation driver arrangement 147 distally and, correspondingly, proximal movement of the firing bar 170 can move the articulation driver arrangement 147 proximally. When the clutch assembly is in its disengaged position, movement of the firing bar 170 is not transmitted to the articulation driver arrangement 147 and, as a result, the firing bar 170 can move independently of the articulation driver arrangement 147. The interchangeable surgical tool assembly 100 may also include a slip ring assembly (not shown) which can be configured to conduct electrical power to and/or from the end effector 110 and/or communicate signals to and/or from the end effector 110. Further details regarding the slip ring assembly may be found in U.S. Patent Application Publication No. 2014/0263541. U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, now U.S. Patent Application Publication No. 2014/0263552 is incorporated by reference in its entirety. U.S. Pat. No. 9,345,481, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, is also hereby incorporated by reference in its entirety.
  • Still referring to FIG. 3, the chassis 150 has at least one, and preferably two, tapered attachment portions 152 formed thereon that are adapted to be received within corresponding dovetail slots 507 formed within a distal end of the frame 506. Each dovetail slot 507 may be tapered or, stated another way, be somewhat V-shaped to seatingly receive the tapered attachment portions 152 therein. As can be further seen in FIG. 3, a shaft attachment lug 172 is formed on the proximal end of the firing shaft 170. When the interchangeable surgical tool assembly 100 is coupled to the handle assembly 500, the shaft attachment lug 172 is received in a firing shaft attachment cradle 542 formed in the distal end of the longitudinally movable drive member 540. The interchangeable surgical tool assembly 100 also employs a latch system 180 for releasably latching the shaft assembly 100 to the frame 506 of the handle assembly 500. In at least one form, for example, the latch system 180 includes a lock member or lock yoke 182 that is movably coupled to the chassis 150. The lock yoke 182 includes two proximally protruding lock lugs 184 that are configured for releasable engagement with corresponding lock detents or grooves 509 in the distal attachment flange of the frame 506. In various forms, the lock yoke 182 is biased in the proximal direction by spring or biasing member. Actuation of the lock yoke 182 may be accomplished by a latch button 186 that is slidably mounted on a latch actuator assembly that is mounted to the chassis 150. The latch button 186 may be biased in a proximal direction relative to the lock yoke 182. As will be discussed in further detail below, the lock yoke 182 may be moved to an unlocked position by biasing the latch button 186 the in distal direction DD which also causes the lock yoke 182 to pivot out of retaining engagement with the distal attachment flange of the frame 506. When the lock yoke 182 is in “retaining engagement” with the distal attachment flange of the frame 506, the lock lugs 184 are retainingly seated within the corresponding lock detents or grooves 509 in the distal end of the frame 506. Further details concerning the latching system may be found in U.S. Patent Application Publication No. 2014/0263541.
  • Attachment of the interchangeable surgical tool assembly 100 to the handle assembly 500 will now be described with reference to FIG. 3. To commence the coupling process, the clinician may position the chassis 150 of the interchangeable surgical tool assembly 100 above or adjacent to the distal end of the frame 506 such that the tapered attachment portions 152 formed on the chassis 150 are aligned with the dovetail slots 507 in the frame 506. The clinician may then move the surgical tool assembly 100 along an installation axis IA that is perpendicular to the shaft axis SA to seat the tapered attachment portions 152 in “operable engagement” with the corresponding dovetail receiving slots 507 in the distal end of the frame 506. In doing so, the shaft attachment lug 172 on the firing shaft 170 will also be seated in the cradle 542 in the longitudinally movable drive member 540 and the portions of pin 516 on the closure link 514 will be seated in the corresponding hooks 162 in the closure shuttle 160. As used herein, the term “operable engagement” in the context of two components means that the two components are sufficiently engaged with each other so that upon application of an actuation motion thereto, the components may carry out their intended action, function and/or procedure.
  • Returning now to FIG. 1, the surgical system 10 illustrated in that Figure includes four interchangeable surgical tool assemblies 100, 200, 300 and 1000 that may each be effectively employed with the same handle assembly 500 to perform different surgical procedures. The construction of an exemplary form of interchangeable surgical tool assembly 100 was briefly discussed above and is discussed in further detail in U.S. Patent Application Publication No. 2014/0263541. Various details regarding interchangeable surgical tool assemblies 200 and 300 may be found in the various U.S. patent applications that were filed on even date herewith and which have been incorporated by reference herein. Various details regarding interchangeable surgical tool assembly 1000 will be discussed in further detail below.
  • As illustrated in FIG. 1, each of the surgical tool assemblies 100, 200, 300 and 1000 includes a pair of jaws wherein at least one of the jaws is movable between open positions wherein tissue may be captured or manipulated between the two jaws and closed positions wherein the tissue is firmly retained therebetween. The movable jaw or jaws are moved between open and closed positions upon application of closure and opening motions applied thereto from the handle assembly or the robotic or automated surgical system to which the surgical tool assembly is operably coupled. In addition, each of the illustrated interchangeable surgical tool assemblies includes a firing member that is configured to cut tissue and fire staples from a staple cartridge that is supported in one of the jaws in response to firing motions applied thereto by the handle assembly or robotic system. Each surgical tool assembly may be uniquely designed to perform a specific procedure, for example, to cut and fasten a particular type of and thickness of tissue within a certain area in the body. The closing, firing and articulation control systems in the handle assembly 500 or robotic system may be configured to generate axial control motions and/or rotary control motions depending upon the type of closing, firing and articulation system configurations that are employed in the surgical tool assembly. In one arrangement, when a closure control system in the handle assembly or robotic system is fully actuated, one of the closure system control components which may, for example, comprise a closure tube assembly as described above, moves axially from an unactuated position to its fully actuated position. The axial distance that the closure tube assembly moves between its unactuated position to its fully actuated position may be referred to herein as its “closure stroke length”. Similarly, when a firing system in the handle assembly or robotic system is fully actuated, one of the firing system control components which may, for example, comprise the longitudinally movable drive member as described above moves axially from its unactuated position to its fully actuated or fired position. The axial distance that the longitudinally movable drive member moves between its unactuated position and its fully fired position may be referred to herein as its “firing stroke length”. For those surgical tool assemblies that employ articulatable end effector arrangements, the handle assembly or robotic system may employ articulation control components that move axially through an “articulation drive stroke length”. In many circumstances, the closure stroke length, the firing stroke length and the articulation drive stroke length are fixed for a particular handle assembly or robotic system. Thus, each of the surgical tool assemblies must be able to accommodate control movements of the closure, firing and/or articulation components through each of their entire stroke lengths without placing undue stress on the surgical tool components which might lead to damage or catastrophic failure of surgical tool assembly.
  • Turning now to FIGS. 4-10, the interchangeable surgical tool assembly 1000 includes a surgical end effector 1100 that comprises an elongate channel 1102 that is configured to operably support a staple cartridge 1110 therein. The end effector 1100 may further include an anvil 1130 that is pivotally supported relative to the elongate channel 1102. The interchangeable surgical tool assembly 1000 may further include an articulation joint 1200 and an articulation lock 1210 (FIGS. 5 and 8-10) which can be configured to releasably hold the end effector 1100 in a desired articulated position relative to a shaft axis SA. Details regarding the construction and operation of the articulation lock 1210 may be found in in U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541, the entire disclosure of which is hereby incorporated by reference herein. Additional details concerning the articulation lock may also be found in U.S. patent application Ser. No. 15/019,196, filed Feb. 9, 2016, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT, the entire disclosure of which is hereby incorporated by reference herein. As can be seen in FIG. 7, the interchangeable surgical tool assembly 1000 can further include a proximal housing or nozzle 1300 comprised of nozzle portions 1302, 1304 as well as an actuator wheel portion 1306 that is configured to be coupled to the assembled nozzle portions 1302, 1304 by snaps, lugs, screws etc. The interchangeable surgical tool assembly 1000 can further include a closure tube assembly 1400 which can be utilized to close and/or open the anvil 1130 of the end effector 1100 as will be discussed in further detail below. Primarily referring now to FIGS. 8 and 9, the interchangeable surgical tool assembly 1000 can include a spine assembly 1500 which can be configured to support the articulation lock 1210. In the illustrated arrangement, the spine assembly 1500 comprises an “elastic” spine or frame member 1510 which will be described in further detail below. A distal end portion 1522 of the elastic spine member 1510 is attached to a distal frame segment 1560 that operably supports the articulation lock 1210 therein. As can be seen in FIGS. 7 and 8, the spine assembly 1500 is configured to, one, slidably support a firing member assembly 1600 therein and, two, slidably support the closure tube assembly 1400 which extends around the spine assembly 1500. The spine assembly 1500 can also be configured to slidably support a proximal articulation driver 1700.
  • As can be seen in FIG. 10, the distal frame segment 1560 is pivotally coupled to the elongate channel 1102 by an end effector mounting assembly 1230. In one arrangement, for example, the distal end 1562 of the distal frame segment 1560 has a pivot pin 1564 formed thereon. The pivot pin 1564 is adapted to be pivotally received within a pivot hole 1234 formed in pivot base portion 1232 of the end effector mounting assembly 1230. The end effector mounting assembly 1230 is attached to the proximal end 1103 of the elongate channel 1102 by a spring pin 1105 or other suitable member. The pivot pin 1564 defines an articulation axis B-B that is transverse to the shaft axis SA. See FIG. 4. Such arrangement facilitates pivotal travel (i.e., articulation) of the end effector 1100 about the articulation axis B-B relative to the spine assembly 1500.
  • Still referring to FIG. 10, in the illustrated embodiment, the articulation driver 1700 has a distal end 1702 that is configured to operably engage the articulation lock 1210. The articulation lock 1210 includes an articulation frame 1212 that is adapted to operably engage a drive pin 1238 on the pivot base portion 1232 of the end effector mounting assembly 1230. In addition, a cross-link 1237 may be linked to the drive pin 1238 and articulation frame 1212 to assist articulation of the end effector 1100. As indicated above, further details regarding the operation of the articulation lock 1210 and the articulation frame 1212 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541. Further details regarding the end effector mounting assembly and crosslink may be found in U.S. patent application Ser. No. 15/019,245, filed Feb. 9, 2016, entitled SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS, the entire disclosure of which is hereby incorporated by reference herein. In various circumstances, the elastic spine member 1510 includes a proximal end 1514 which is rotatably supported in a chassis 1800. In one arrangement, for example, the proximal end 1514 of the elastic spine member 1510 has a thread 1516 formed thereon for threaded attachment to a spine bearing (not shown) that is configured to be supported within the chassis 1800. Such an arrangement facilitates rotatable attachment of the elastic spine member 1510 to the chassis 1800 such that the spine assembly 1500 may be selectively rotated about a shaft axis SA relative to the chassis 1800.
  • Referring primarily to FIG. 7, the interchangeable surgical tool assembly 1000 includes a closure shuttle 1420 that is slidably supported within the chassis 1800 such that it may be axially moved relative thereto. In one form, the closure shuttle 1420 includes a pair of proximally-protruding hooks 1421 that are configured for attachment to the attachment pin 516 that is attached to the closure linkage assembly 514 of the handle assembly 500 as was discussed above. A proximal end 1412 of a proximal closure tube segment 1410 is coupled to the closure shuttle 1420 for relative rotation thereto. For example, a U-shaped connector 1424 is inserted into an annular slot 1414 in the proximal end 1412 of the proximal closure tube segment 1410 and is retained within vertical slots 1422 in the closure shuttle 1420. See FIG. 7. Such arrangement serves to attach the proximal closure tube segment 1410 to the closure shuttle 1420 for axial travel therewith while enabling the closure tube assembly 1400 to rotate relative to the closure shuttle 1420 about the shaft axis SA. A closure spring (not shown) is journaled on the proximal end 1412 of the proximal closure tube segment 1410 and serves to bias the closure tube assembly 1400 in the proximal direction PD which can serve to pivot the closure trigger 512 on the handle assembly 500 (FIG. 3) into the unactuated position when the interchangeable surgical tool assembly 1000 is operably coupled to the handle assembly 500.
  • As indicated above, the illustrated interchangeable surgical tool assembly 1000 includes an articulation joint 1200. Other interchangeable surgical tool assemblies, however, may not be capable of articulation. As can be seen in FIG. 10, upper and lower tangs 1415, 1416 protrude distally from a distal end of the proximal closure tube segment 1410 to be movably coupled to an end effector closure sleeve or distal closure tube segment 1430 of the closure tube assembly 1400. As can be seen in FIG. 10, the distal closure tube segment 1430 includes upper and lower tangs 1434, 1436 that protrude proximally from a proximal end thereof. An upper double pivot link 1220 includes proximal and distal pins that engage corresponding holes in the upper tangs 1415, 1434 of the proximal closure tube segment 1410 and distal closure tube segment 1430, respectively. Similarly, a lower double pivot link 1222 includes proximal and distal pins that engage corresponding holes in the lower tangs 1416 and 1436 of the proximal closure tube segment 1410 and distal closure tube segment 1430, respectively. As will be discussed in further detail below, distal and proximal axial translation of the closure tube assembly 1400 will result in the closing and opening of the anvil 1130 relative to the elongate channel 1102.
  • As mentioned above, the interchangeable surgical tool assembly 1000 further includes a firing member assembly 1600 that is supported for axial travel within the spine assembly 1500. In the illustrated embodiment, the firing member assembly 1600 includes an intermediate firing shaft portion 1602 that is configured for attachment to a distal cutting portion or knife bar 1610. The firing member assembly 1600 may also be referred to herein as a “second shaft” and/or a “second shaft assembly”. As can be seen in FIGS. 7-10, the intermediate firing shaft portion 1602 may include a longitudinal slot 1604 in the distal end thereof which can be configured to receive a tab (not shown) on the proximal end of the knife bar 1610. The longitudinal slot 1604 and the proximal end of the knife bar 1610 can be sized and configured to permit relative movement therebetween and can comprise a slip joint 1612. The slip joint 1612 can permit the intermediate firing shaft portion 1602 of the firing member assembly 1600 to be moved to articulate the end effector 1100 without moving, or at least substantially moving, the knife bar 1610. Once the end effector 1100 has been suitably oriented, the intermediate firing shaft portion 1602 can be advanced distally until a proximal sidewall of the longitudinal slot 1604 comes into contact with the tab on the knife bar 1610 to advance the knife bar 1610 and fire the staple cartridge 1110 positioned within the elongate channel 1102. As can be further seen in FIGS. 8 and 9, the elastic spine member 1520 has an elongate opening or window 1525 therein to facilitate assembly and insertion of the intermediate firing shaft portion 1602 into the elastic spine member 1520. Once the intermediate firing shaft portion 1602 has been inserted therein, a top frame segment 1527 may be engaged with the elastic spine member 1520 to enclose the intermediate firing shaft portion 1602 and knife bar 1610 therein. Further description of the operation of the firing member assembly 1600 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541.
  • Further to the above, the interchangeable tool assembly 1000 can include a clutch assembly 1620 which can be configured to selectively and releasably couple the articulation driver 1800 to the firing member assembly 1600. In one form, the clutch assembly 1620 includes a lock collar, or sleeve 1622, positioned around the firing member assembly 1600 wherein the lock sleeve 1622 can be rotated between an engaged position in which the lock sleeve 1622 couples the articulation driver 1700 to the firing member assembly 1600 and a disengaged position in which the articulation driver 1700 is not operably coupled to the firing member assembly 1600. When lock sleeve 1622 is in its engaged position, distal movement of the firing member assembly 1600 can move the articulation driver 1700 distally and, correspondingly, proximal movement of the firing member assembly 1600 can move the articulation driver 1700 proximally. When lock sleeve 1622 is in its disengaged position, movement of the firing member assembly 1600 is not transmitted to the articulation driver 1700 and, as a result, the firing member assembly 1600 can move independently of the articulation driver 1700. In various circumstances, the articulation driver 1700 can be held in position by the articulation lock 1210 when the articulation driver 1700 is not being moved in the proximal or distal directions by the firing member assembly 1600.
  • Referring primarily to FIG. 7, the lock sleeve 1622 can comprise a cylindrical, or an at least substantially cylindrical, body including a longitudinal aperture 1624 defined therein configured to receive the firing member assembly 1600. The lock sleeve 1622 can comprise diametrically-opposed, inwardly-facing lock protrusions 1626, 1628 and an outwardly-facing lock member 1629. The lock protrusions 1626, 1628 can be configured to be selectively engaged with the intermediate firing shaft portion 1602 of the firing member assembly 1600. More particularly, when the lock sleeve 1622 is in its engaged position, the lock protrusions 1626, 1628 are positioned within a drive notch 1605 defined in the intermediate firing shaft portion 1602 such that a distal pushing force and/or a proximal pulling force can be transmitted from the firing member assembly 1600 to the lock sleeve 1622. When the lock sleeve 1622 is in its engaged position, the second lock member 1629 is received within a drive notch 1704 defined in the articulation driver 1700 such that the distal pushing force and/or the proximal pulling force applied to the lock sleeve 1622 can be transmitted to the articulation driver 1700. In effect, the firing member assembly 1600, the lock sleeve 1622, and the articulation driver 1700 will move together when the lock sleeve 1622 is in its engaged position. On the other hand, when the lock sleeve 1622 is in its disengaged position, the lock protrusions 1626, 1628 may not be positioned within the drive notch 1605 of the intermediate firing shaft portion 1602 of the firing member assembly 1600 and, as a result, a distal pushing force and/or a proximal pulling force may not be transmitted from the firing member assembly 1600 to the lock sleeve 1622. Correspondingly, the distal pushing force and/or the proximal pulling force may not be transmitted to the articulation driver 1700. In such circumstances, the firing member assembly 1600 can be slid proximally and/or distally relative to the lock sleeve 1622 and the proximal articulation driver 1700. The clutching assembly 1620 further includes a switch drum 1630 that interfaces with the lock sleeve 1622. Further details concerning the operation of the switch drum and lock sleeve 1622 may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541, and Ser. No. 15/019,196. The switch drum 1630 can further comprise at least partially circumferential openings 1632, 1634 defined therein which can receive circumferential mounts 1305 that extend from the nozzle halves 1302, 1304 and permit relative rotation, but not translation, between the switch drum 1630 and the proximal nozzle 1300. See FIG. 6. Rotation of the nozzle 1300 to a point where the mounts reach the end of their respective slots 1632, 1634 in the switch drum 1630 will result in rotation of the switch drum 1630 about the shaft axis SA. Rotation of the switch drum 1630 may ultimately result in the movement of the lock sleeve 1622 between its engaged and disengaged positions. In alternative embodiments, the nozzle 1300 may be employed to operably engage and disengage the articulation drive system with the firing drive system. As indicated above, clutch assembly 1620 may operate in the various manners described in further detail in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541, and U.S. patent application Ser. No. 15/019,196, which have each been herein incorporated by reference in their respective entirety.
  • In the illustrated arrangement, the switch drum 1630 includes a an L-shaped slot 1636 that extends into a distal opening 1637 in the switch drum 1630. The distal opening 1637 receives a transverse pin 1639 of a shifter plate 1638. In one example, the shifter plate 1638 is received within a longitudinal slot (not shown) that is provided in the lock sleeve 1622 to facilitate axial movement of the lock sleeve 1622 when engaged with the articulation driver 1700. Further details regarding the operation of the shifter plate and shift drum arrangements may be found in U.S. patent application Ser. No. 14/868,718, filed Sep. 28, 2015, entitled SURGICAL STAPLING INSTRUMENT WITH SHAFT RELEASE, POWERED FIRING AND POWERED ARTICULATION, the entire disclosure of which is hereby incorporated by reference herein.
  • As also illustrated in FIGS. 7 and 8, the interchangeable tool assembly 1000 can comprise a slip ring assembly 1640 which can be configured to conduct electrical power to and/or from the end effector 1100 and/or communicate signals to and/or from the end effector 1100, back to a microprocessor in the handle assembly or robotic system controller, for example. Further details concerning the slip ring assembly 1640 and associated connectors may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541, and U.S. patent application Ser. No. 15/019,196 which have each been herein incorporated by reference in their respective entirety as well as in U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, now U.S. Patent Application Publication No. 2014/0263552, which is hereby incorporated by reference herein in its entirety. As also described in further detail in the aforementioned patent applications that have been incorporated by reference herein, the interchangeable surgical tool assembly 1000 can also comprise at least one sensor that is configured to detect the position of the switch drum 1630.
  • Referring again to FIG. 7, the chassis 1800 includes at least one, and preferably two, tapered attachment portions 1802 formed thereon that are adapted to be received within corresponding dovetail slots 507 formed within the distal end portion of the frame 506 of the handle assembly 500 as was discussed above. As can be further seen in FIG. 7, a shaft attachment lug 1605 is formed on the proximal end of the intermediate firing shaft 1602. As will be discussed in further detail below, when the interchangeable surgical tool assembly 1000 is coupled to the handle assembly 500, the shaft attachment lug 1605 is received in a firing shaft attachment cradle 542 that is formed in the distal end of the longitudinal drive member 540. See FIG. 3.
  • Various interchangeable surgical tool assemblies employ a latch system 1810 for removably coupling the interchangeable surgical tool assembly 1000 to the frame 506 of the handle assembly 500. As can be seen in FIG. 7, for example, in at least one form, the latch system 1810 includes a lock member or lock yoke 1812 that is movably coupled to the chassis 1800. In the illustrated embodiment, for example, the lock yoke 1812 has a U-shape with two spaced downwardly extending legs 1814. The legs 1814 each have a pivot lug (not shown) formed thereon that are adapted to be received in corresponding holes 1816 formed in the chassis 1800. Such arrangement facilitates pivotal attachment of the lock yoke 1812 to the chassis 1800. The lock yoke 1812 may include two proximally protruding lock lugs 1818 that are configured for releasable engagement with corresponding lock detents or grooves 509 in the distal end of the frame 506 of the handle assembly 500. See FIG. 3. In various forms, the lock yoke 1812 is biased in the proximal direction by a spring or biasing member 1819. Actuation of the lock yoke 1812 may be accomplished by a latch button 1820 that is slidably mounted on a latch actuator assembly 1822 that is mounted to the chassis 1800. The latch button 1820 may be biased in a proximal direction relative to the lock yoke 1812. The lock yoke 1812 may be moved to an unlocked position by biasing the latch button 1820 the in distal direction which also causes the lock yoke 1812 to pivot out of retaining engagement with the distal end of the frame 506. When the lock yoke 1812 is in “retaining engagement” with the distal end of the frame 506, the lock lugs 1818 are retainingly seated within the corresponding lock detents or grooves 509 in the distal end of the frame 506.
  • In the illustrated arrangement, the lock yoke 1812 includes at least one and preferably two lock hooks 1824 that are adapted to contact corresponding lock lug portions 1426 that are formed on the closure shuttle 1420. When the closure shuttle 1420 is in an unactuated position, the lock yoke 1812 may be pivoted in a distal direction to unlock the interchangeable surgical tool assembly 1000 from the handle assembly 500. When in that position, the lock hooks 1824 do not contact the lock lug portions 1426 on the closure shuttle 1420. However, when the closure shuttle 1420 is moved to an actuated position, the lock yoke 1812 is prevented from being pivoted to an unlocked position. Stated another way, if the clinician were to attempt to pivot the lock yoke 1812 to an unlocked position or, for example, the lock yoke 1812 was in advertently bumped or contacted in a manner that might otherwise cause it to pivot distally, the lock hooks 1824 on the lock yoke 1812 will contact the lock lugs 1426 on the closure shuttle 1420 and prevent movement of the lock yoke 1812 to an unlocked position.
  • Still referring to FIG. 10, the knife bar 1610 may comprise a laminated beam structure that includes at least two beam layers. Such beam layers may comprise, for example, stainless steel bands that are interconnected by, for example, welding or pinning together at their proximal ends and/or at other locations along their length. In alternative embodiments, the distal ends of the bands are not connected together to allow the laminates or bands to splay relative to each other when the end effector is articulated. Such arrangement permits the knife bar 1610 to be sufficiently flexible to accommodate articulation of the end effector. Various laminated knife bar arrangements are disclosed in U.S. patent application Ser. No. 15/019,245. As can also be seen in FIG. 10, a middle support member 1614 is employed to provide lateral support to the knife bar 1610 as it flexes to accommodate articulation of the surgical end effector 1100. Further details concerning the middle support member and alternative knife bar support arrangements are disclosed in U.S. patent application Ser. No. 15/019,245. As can also be seen in FIG. 10, a firing member or knife member 1620 is attached to the distal end of the knife bar 1610.
  • FIG. 11 illustrates one form of a firing member 1660 that may be employed with the interchangeable tool assembly 1000. In one exemplary form, the firing member 1660 comprises a body portion 1662 that includes a proximally extending connector member 1663 that is configured to be received in a correspondingly shaped connector opening 1614 in the distal end of the knife bar 1610. See FIG. 10. The connector 1663 may be retained within the connector opening 1614 by friction and/or welding or suitable adhesive, etc. The body portion 1662 protrudes through an elongate slot 1104 in the elongate channel 1102 and terminates in a foot member 1664 that extends laterally on each side of the body portion 1662. As the firing member 1660 is driven distally through the surgical staple cartridge 1110, the foot member 1664 rides within a passage 1105 in the elongate channel 1102 that is located under the surgical staple cartridge 1110. As can be seen in FIG. 11, one form of the firing member 1660 may further include laterally protruding central tabs, pins or retainer features 1680. As the firing member 1660 is driven distally through the surgical staple cartridge 1110, the central retainer features 1680 ride on the inner surface 1106 of the elongate channel 1102. The body portion 1662 of the firing member 1660 further includes a tissue cutting edge or feature 1666 that is disposed between a distally protruding hook feature 1665 and a distally protruding top nose portion 1670. As can be further seen in FIG. 11, the firing member 1660 may further include two laterally extending top tabs, pins or anvil engagement features 1665. As the firing member 1660 is driven distally, a top portion of the body 1662 extends through a centrally disposed anvil slot 1138 and the top anvil engagement features 1672 ride on corresponding ledges 1136 formed on each side of the anvil slot 1134. See FIGS. 13 and 14.
  • Returning to FIG. 10, the firing member 1660 is configured to operably interface with a sled assembly 1120 that is operably supported within the body 1111 of the surgical staple cartridge 1110. The sled assembly 1120 is slidably displaceable within the surgical staple cartridge body 1111 from a proximal starting position adjacent the proximal end 1112 of the cartridge body 1111 to an ending position adjacent a distal end 1113 of the cartridge body 1111. The cartridge body 1111 operably supports therein a plurality of staple drivers (not shown) that are aligned in rows on each side of a centrally disposed slot 1114. The centrally disposed slot 1114 enables the firing member 1660 to pass therethrough and cut the tissue that is clamped between the anvil 1130 and the staple cartridge 1110. The drivers are associated with corresponding pockets 1116 that open through the upper deck surface 1115 of the cartridge body. Each of the staple drivers supports one or more surgical staple or fastener (not shown) thereon. The sled assembly 1120 includes a plurality of sloped or wedge-shaped cams 1122 wherein each cam 1122 corresponds to a particular line of fasteners or drivers located on a side of the slot 1114. In the illustrated example, one cam 1122 is aligned with one line of “double” drivers that each support two staples or fasteners thereon and another cam 1122 is aligned with another line of “single” drivers on the same side of the slot 1114 that each operably support a single surgical staple or fastener thereon. Thus, in the illustrated example, when the surgical staple cartridge 1110 is “fired”, there will be three lines of staples on each lateral side of the tissue cut line. However, other cartridge and driver configurations could also be employed to fire other staple/fastener arrangements. The sled assembly 1120 has a central body portion 1124 that is configured to be engaged by the hook portion 1665 of the firing member 1660. Thus, when the firing member 1660 is fired or driven distally, the firing member 1660 drives the sled assembly 1120 distally as well. As the firing member 1660 moves distally through the cartridge 1110, the tissue cutting feature 1666 cuts the tissue that is clamped between the anvil assembly 1130 and the cartridge 1110 and the sled assembly 1120 drives the drivers upwardly in the cartridge which drive the corresponding staples or fasteners into forming contact with the anvil assembly 1130.
  • In those embodiments wherein the firing member includes a tissue cutting surface, it may be desirable for the elongate shaft assembly to be configured in such a way so as to prevent the inadvertent advancement of the firing member unless an unspent staple cartridge is properly supported in the elongate channel 1102 of the surgical end effector 1100. If, for example, no staple cartridge is present at all and the firing member is distally advanced through the end effector, the tissue would be severed, but not stapled. Similarly, if a spent staple cartridge (i.e., a staple cartridge wherein at least some of the staples have already been fired therefrom) is present in the end effector and the firing member is advanced, the tissue would be severed, but may not be completely stapled, if at all. It will be appreciated that such occurrences could lead to undesirable catastrophic results during the surgical procedure. U.S. Pat. No. 6,988,649 entitled SURGICAL STAPLING INSTRUMENT HAVING A SPENT CARTRIDGE LOCKOUT, U.S. Pat. No. 7,044,352 entitled SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, and U.S. Pat. No. 7,380,695 entitled SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, and U.S. patent application Ser. No. 14/742,933, entitled SURGICAL STAPLING INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION WHEN A CARTRIDGE IS SPENT OR MISSING each disclose various firing member lockout arrangements. Each of those references is hereby incorporated by reference in its entirety herein.
  • An “unfired”, “unspent”, “fresh” or “new” cartridge 1110 means herein that the cartridge 1110 has all of its fasteners in their “ready-to-be-fired positions”. When in that position, the sled assembly 1120 is located in its starting position. The new cartridge 1110 is seated within the elongate channel 1102 and may be retained therein by snap features on the cartridge body that are configured to retainingly engage corresponding portions of the elongate channel 1102. FIGS. 15 and 18 illustrate a portion of the surgical end effector 1100 with a new or unfired surgical staple cartridge 1110 seated therein. As can be seen in those Figures, the sled assembly 1120 is in the starting position. To prevent the firing system from being activated and, more precisely, to prevent the firing member 1660 from being distally driven through the end effector 1110 unless an unfired or new surgical staple cartridge has been properly seated within the elongate channel 1102, the illustrated interchangeable surgical tool assembly 1000 employs a firing member lockout system generally designated as 1650.
  • Referring now to FIGS. 10 and 15-19, in one form, the firing member lockout system 1650 includes movable lock member 1652 that is configured to retainingly engage the firing member 1660 when a surgical staple cartridge 1110 is not properly seated within the elongate channel 1102. The lock member 1652 comprises at least one laterally moving locking portion 1654 that is configured to retainingly engage a corresponding portion of the firing member when the sled assembly 1120 is not present within the cartridge 1110 in its starting position. In the illustrated arrangement, the lock member 1652 employs two laterally moving locking portions 1654 wherein each locking portion 1654 engages a laterally extending portion of the firing member 1660.
  • In the illustrated embodiment, the lock member 1652 comprises a generally U-shaped spring member wherein each laterally movable leg or locking portion 1654 extends from a central spring portion 1653 and is configured to move in lateral directions represented by “L” in FIGS. 18 and 19. It will be appreciated that the term “lateral directions” refers to directions that are transverse to the shaft axis SA. The spring or lock member 1652 may be fabricated from high strength spring steel or similar material. The central spring portion 1653 may be seated within a slot 1236 in the end effector mounting assembly 1230. See FIG. 10. As can be seen in FIGS. 15-17, each of the laterally movable legs or locking portions 1654 has a distal end 1656 with a locking window 1658 therein. When the locking member 1652 is in a locked position, the central retainer feature 1680 on each lateral side extends into the corresponding locking window 1658 to retainingly prevent the firing member from being distally axially advanced.
  • Operation of the firing member lock out system will be explained with reference to FIGS. 15-19. FIGS. 15 and 18 illustrate a portion of the surgical end effector 1100 with a new unfired cartridge 1110 properly installed therein. As can be seen in those Figures, the sled assembly 1120 includes an unlocking feature 1126 that corresponds to each of the laterally movable locking portion 1654. In the illustrated arrangement, an unlocking feature 1126 is provided on or extends proximally from each of the central wedge-shaped cams 1122. In alternative arrangements, the unlocking feature 1126 may comprise a proximally protruding portion of the corresponding wedge-shaped cam 1122. As can be seen in FIG. 18, when the sled assembly 1120 is in its starting position, the unlocking features 1124 engage and bias the corresponding locking portions 1654 laterally in a direction that is transverse to the shaft axis SA. When the locking portions 1654 are in those unlocked orientations, the central retainer features 1680 are not in retaining engagement with their corresponding locking window 1658. When in those orientations, the firing member 1660 may be distally axially advanced (fired). However, when a cartridge is not present in the elongate channel 1102 or the sled assembly has been moved out of its starting position (meaning the cartridge is partially or completely fired), the locking portions 1654 spring laterally into retaining engagement with the firing member 1660. When in that position as illustrated in FIG. 19, the firing member 1660 cannot be moved distally.
  • FIGS. 16 and 17 illustrate the retraction of the firing member 1660 back to the starting position after firing the cartridge 1110 and driving the sled assembly 1120 distally. FIG. 16 depicts the initial reengagement of the retaining feature 1680 into its corresponding locking window 1658. FIG. 17 illustrates the retaining feature in its locked position when the firing member 1660 has been fully retracted back to its starting position. To assist in the lateral displacement of the locking portions 1654 when they are each initially contacted by the proximally moving retaining features 1680, each of the retaining features 1680 may be provided with a proximally facing, laterally tapered end portion. Such lockout system prevents actuation of the firing member 1660 when a new unfired cartridge is not present or when a new unfired cartridge is present, but has not been properly seated in the elongate channel 1102. In addition, the lockout system may prevent the clinician from distally advancing the firing member in the case where a spent or partially fired cartridge has been inadvertently properly seated within the elongate channel. Another advantage that may be provided by the lockout system 1650 is that, unlike other firing member lock out arrangements that require movement of the firing member into and out of alignment with the corresponding slots/passages in the staple cartridge, the firing member 1660 remains in alignment with the cartridge passages while in the locked and unlocked position. The locking portions 1654 are designed to move laterally into and out of engagement with corresponding sides of the firing member. Such lateral movement of the locking portions or portion is distinguishable from other locking arrangements that move in vertical directions to engage and disengage portions of the firing member.
  • Returning to FIGS. 13 and 14, in one form, the anvil 1130 includes an elongated anvil body portion 1132 and a proximal anvil mounting portion 1150. The elongated anvil body portion 1132 includes an outer surface 1134 that defines two downwardly extending tissue stop members 1136 that are adjacent to the proximal anvil mounting portion 1150. The elongated anvil body portion 1132 also includes an underside 1135 that defines an elongate anvil slot 1138. In the illustrated arrangement shown in FIG. 14, the anvil slot 1138 is centrally disposed in the underside 1135. The underside 1135 includes three rows 1140, 1141, 1142 of staple forming pockets 1143, 1144 and 1145 located on each side of the anvil slot 1138. Adjacent each side of the anvil slot 1138 are two elongate anvil passages 1146. Each passage 1146 has a proximal ramp portion 1148. See FIG. 13. As the firing member 1660 is advanced distally, the top anvil engagement features 1632 initially enter the corresponding proximal ramp portions 1148 and into the corresponding elongate anvil passages 1146.
  • Turning to FIGS. 12 and 13, the anvil slot 1138, as well as the proximal ramp portion 1148, extend into the anvil mounting portion 1150. Stated another way, the anvil slot 1138 divides or bifurcates the anvil mounting portion 1150 into two anvil attachment flanges 1151. The anvil attachments flanges 1151 are coupled together at their proximal ends by a connection bridge 1153. The connection bridge 1153 serves to provide support to the anvil attachment flanges 1151 and can serve to make the anvil mounting portion 1150 more rigid than the mounting portions of other anvil arrangements wherein the anvil attachment flanges are not connected at their proximal ends. As can also be seen in FIGS. 12 and 14, the anvil slot 1138 has a wide portion 1139 to accommodate the top portion and top anvil engagement features 1632 of the firing member 1660.
  • As can be seen in FIGS. 13 and 20-24, each of the anvil attachment flanges 1151 includes a transverse mounting hole 1156 that is configured to receive a pivot pin 1158 (FIGS. 10 and 20) therethrough. The anvil mounting portion 1150 is pivotally pinned to the proximal end 1103 of the elongate channel 1102 by the pivot pin 1158 which extends through mounting holes 1107 in the proximal end 1103 of the elongate channel 1102 and the mounting hole 1156 in anvil mounting portion 1150. Such arrangement serves to pivotally affix the anvil 1130 to the elongate channel 1102 for selective pivotal travel about a fixed anvil axis A-A which is transverse to the shaft axis SA. See FIG. 5. The anvil mounting portion 1150 also includes a cam surface 1152 that extends from a centralized firing member parking area 1154 to the outer surface 1134 of the anvil body portion 1132.
  • In the illustrated arrangement, the anvil 1130 is moved between an open position and closed positions by axially advancing and retracting the distal closure tube segment 1430. As will be discussed in further detail below, a distal end portion of the distal closure tube segment 1430 has an internal cam surface formed thereon that is configured to cammingly engage the cam surface 1552 or cam surfaces formed on the anvil mounting portion 1150. FIG. 22 illustrates a cam surface 1152 a formed on the anvil mounting portion 1150 so as to establish a single contact path 1155 a with the internal cam surface 1444, for example, on the distal closure tube segment 1430. FIG. 23 illustrates a cam surface 1152 b that is configured relative to the internal cam surface 1444 on the distal closure tube segment to establish two separate and distinct arcuate contact paths 1155 b between the cam surface 1152 on the anvil mounting portion 1150 and internal cam surface 1444 on the distal closure tube segment 1430. In addition to other potential advantages discussed herein, such arrangement may serve to better distribute the closure forces from the distal closure tube segment 1430 to the anvil 1130. FIG. 24 illustrates a cam surface 1152 c that is configured relative to the internal cam surface 1444 of the distal closure tube segment 1430 to establish three distinct zones of contact 1155 c and 1155 d between the cam surfaces on the anvil mounting portion 1150 and the distal closure tube segment 1430. The zones 1155 c, 1155 d establish larger areas of camming contact between the cam surface or cam surfaces on the distal closure tube segment 1430 and the anvil mounting portion 1150 and may serve to better distribute the closure forces to the anvil 1130.
  • As the distal closure tube segment 1430 cammingly engages the anvil mounting portion 1150 of the anvil 1130, the anvil 1130 is pivoted about the anvil axis AA which results in the pivotal movement of the distal end of the end 1133 of elongate anvil body portion 1132 toward the surgical staple cartridge 1110 and distal end 1105 of the elongate channel 1102. As the anvil body portion 1132 begins to pivot, it contacts the tissue that is to be cut and stapled which is now positioned between the underside 1135 of the elongate anvil body portion 1132 and the deck 1116 of the surgical staple cartridge 1110. As the anvil body portion 1132 is compressed onto the tissue, the anvil 1130 may experience considerable amounts of resistive forces. These resistive forces are overcome as the distal closure tube 1430 continues its distal advancement. However, depending upon their magnitudes and points of application to the anvil body portion 1132, these resistive forces could tend to cause portions of the anvil 1130 to flex which may generally be undesirable. For example, such flexure may cause misalignment between the firing member 1660 and the passages 1148, 1146 within the anvil 1130. In instances wherein the flexure is excessive, such flexure could significantly increase the amount of firing force required to fire the instrument (i.e., drive the firing member 1660 through the tissue from its starting to ending position). Such excessive firing force may result in damage to the end effector, and/or the firing member, and/or the knife bar, and/or the firing drive system components, etc. Thus, it may be advantageous for the anvil to be constructed so as to resist such flexure.
  • FIGS. 25-27 illustrate an alternative anvil embodiment that includes features that may improve the stiffness of the anvil body and its resistance to flexure forces that may be generated during the closing and/or firing processes. The anvil 1130′ may otherwise be identical in construction to the anvil 1130 described above except for the differences discussed herein. As can be seen in those Figures, the anvil 1130′ has an elongate anvil body 1132′ that has an upper body portion 1165 that has an anvil cap 1170 attached thereto. In the embodiment depicted in FIGS. 25-27, the anvil cap 1170 is roughly rectangular in shape and has an outer cap perimeter 1172. The perimeter 1172 of the anvil cap 1170 is configured to be inserted through the correspondingly-shaped opening 1137 formed in the upper body portion 1165 and received on axially extending internal ledge portions 1139 formed therein. See FIG. 27. The internal ledge portions 1139 are configured to support the corresponding long sides 1177 of the anvil cap 1170. In an alternative embodiment, the anvil cap 1170 may be slide onto the internal ledges 1139 through an opening (not shown) in the distal end 1133 of the anvil body 1132′. In yet another embodiment, no internal ledge portions are provided. The anvil body 1132′ and the anvil cap 1170 may be fabricated from suitable metal that is conducive to welding. A first weld 1178 may extend around the entire cap perimeter 1172 of the anvil cap 1170 or it may only be located along the long sides 1177 of the anvil cap 1170 and not the distal end 1173 and/or proximal end 1175 thereof. The first weld 1178 may be continuous or it may be discontinuous or intermittent. In those embodiments where the first weld 1178 is discontinuous or intermittent, the weld segments may be equally distributed along the long sides 1177 of the anvil cap 1170 or the weld segments may be more densely spaced closer to the distal ends of the long sides 1177 or more densely spaced closer to the proximal ends of the long sides 1177. In still other arrangements, the weld segments may be more densely spaced in the center areas of the long sides 1177 of the anvil cap 1170.
  • FIGS. 28-30 illustrate an anvil cap 1170′ that is configured to be “mechanically interlocked” to the anvil body 1132′ as well as welded to the upper body portion 1165. In this embodiment, a plurality of retention formations 1182 are formed into the wall 1180 of the upper body portion 1165 that defines opening 1137. As used in this context, the term “mechanically interlocked” means that the anvil cap will remain affixed to the elongate anvil body regardless of the orientation of the elongate anvil body and without any additional retaining or fastening such as welding and/or adhesive, for example. The retention formations 1182 may protrude inwardly into the opening 1137 from the opening wall 1180. The retention formations 1182 may be integrally formed into the wall 1180 or otherwise be attached thereto. The retention formations 1182 are designed to frictionally engage a corresponding portion of the anvil cap 1170′ when it is installed in the opening 1137 to frictionally retain the anvil cap 1170′ therein. In the illustrated embodiment, the retention formations 1182 protrude inwardly into the opening 1137 and are configured to be frictionally received within a correspondingly shaped engagement area 1184 formed in the outer perimeter 1172′ of the anvil cap 1170′. In the illustrated arrangement, the retention formations 1182 only correspond to the long sides 1177′ of the anvil cap 1170′ and are not provided in the portions of the wall 1180 that correspond to the distal end 1173 or proximal end 1175 of the anvil cap 1170′. In alternative arrangements, the retention formations 1182 may also be provided in the portions of the wall 1180 that correspond to the distal end 1173 and proximal end 1175 of the anvil cap 1170′ as wall as the long sides 1177′ thereof. In still other arrangements, the retention formations 1182 may only be provided in the portions of the wall 1180 that correspond to one or both of the distal and proximal ends 1173, 1175 of the anvil cap 1170′. In still other arrangements, the retention formations 1182 may be provided in the portions of the wall 1180 corresponding to the long sides 1177′ and only one of the proximal and distal ends 1173, 1175 of the anvil cap 1170′. It will be further understood that the retention protrusions in all of the foregoing embodiments may be alternatively formed on the anvil cap with the engagement areas being formed in the elongate anvil body.
  • In the embodiment illustrated in FIGS. 28-30, the retention formations 1182 are equally spaced or equally distributed along the wall portions 1180 that correspond to the long sides 1177′ of the anvil cap 1170′. In alternative embodiments, the retention formations 1182 may be more densely spaced closer to the distal ends of the long sides 1177′ or more densely spaced closer to the proximal ends of the long sides 1177′. Stated another way, the spacing between those retention formations adjacent the distal end, the proximal end or both the distal and proximal ends may be less than the spacing of the formations located in the central portion of the anvil cap 1170′. In still other arrangements, the retention formations 1182 may be more densely spaced in the center areas of the long sides 1177′ of the anvil cap 1170′. Also in alternative embodiments, the correspondingly shaped engagement areas 1184 may not be provided in the outer perimeter 1172′ or in portions of the outer perimeter 1172′ of the anvil cap 1170′. In other embodiments, the retention formations and correspondingly shaped engagement areas may be provided with different shapes and sizes. In alternative arrangements, the retention formations may be sized relative to the engagement areas so that there is no interference fit therebetween. In such arrangements, the anvil cap may be retained in position by welding, adhesive, etc.
  • In the illustrated example, a weld 1178′ may extend around the entire perimeter 1172′ of the anvil cap 1170′ or the weld 1178′ may only be located along the long sides 1177′ of the anvil cap 1170′ and not the distal end 1173 and/or proximal end 1175 thereof. The weld 1178′ may be continuous or it may be discontinuous or intermittent. In those embodiments where the weld 1178′ is discontinuous or intermittent, the weld segments may be equally distributed along the long sides 1177′ of the anvil cap 1170′ or the weld segments may be more densely spaced closer to the distal ends of the long sides 1177′ or more densely spaced closer to the proximal ends of the long sides 1177′. In still other arrangements, the weld segments may be more densely spaced in the center areas of the long sides 1177′ of the anvil cap 1170′.
  • FIGS. 31 and 32 illustrate another anvil arrangement 1130″ that is has an anvil cap 1170″ attached thereto. In the depicted example, the anvil cap 1170″ is roughly rectangular in shape and has an outer cap perimeter 1172″. The outer cap perimeter 1172″ is configured to be inserted through the correspondingly-shaped opening 1137″ in upper body portion 1165 of the anvil body 1132″ and received on axially extending internal ledge portions 1139″ and 1190″ formed therein. See FIG. 32. The ledge portions 1139″ and 1190″ are configured to support the corresponding long sides 1177″ of the anvil cap 1170″. In an alternative embodiment, the anvil cap 1170″ may be slid onto the internal ledges 1139″ and 1190″ through an opening (not shown) in the distal end 1133″ of the anvil body 1132′. The anvil body 1132″ and the anvil cap 1170″ may be fabricated from metal material that is conducive to welding. A first weld 1178″ may extend around the entire perimeter 1172″ of the anvil cap 1170″ or it may only be located along the long sides 1177″ of the anvil cap 1170″ and not the distal end 1173″ and/or proximal end (not shown) thereof. The weld 1178″ may be continuous or it may be discontinuous or intermittent. It will be appreciated that the continuous weld embodiment has more weld surface area due to the irregularly shape perimeter of the anvil cap 1170″ as compared to the embodiments with a straight perimeter sides such as the anvil caps shown in FIG. 26, for example. In those embodiments where the weld 1178″ is discontinuous or intermittent, the weld segments may be equally distributed along the long sides 1177″ of the anvil cap 1170″ or the weld segments may be more densely spaced closer to the distal ends of the long sides 1177″ or more densely spaced closer to the proximal ends of the long sides 1177″. In still other arrangements, the weld segments may be more densely spaced in the center areas of the long sides 1177″ of the anvil cap 1170″.
  • Still referring to FIGS. 31 and 32, the anvil cap 1170″ may be additionally welded to the anvil body 1132″ by a plurality of second discrete “deep” welds 1192″. For example, each weld 1192″ may be placed at the bottom of a corresponding hole or opening 1194″ provided through the anvil cap 1170″ so that a discrete weld 1192″ may be formed along the portion of the anvil body 1132″ between the ledges 1190″ and 1139″. See FIG. 32. The welds 1192″ may be equally distributed along the long sides 1177″ of the anvil cap 1170″ or the welds 1192″ may be more densely spaced closer to the distal ends of the long sides 1177″ or more densely spaced closer to the proximal ends of the long sides 1177″. In still other arrangements, the welds 1192″ may be more densely spaced in the center areas of the long sides 1177″ of the anvil cap 1170″.
  • FIG. 33 illustrates another anvil cap 1170′″ that is configured to be mechanically interlocked to the anvil body 1132′″ as well as welded to the upper body portion 1165. In this embodiment, a “tongue-in-groove” arrangement is employed along each long side 1177′″ of the anvil cap 1170′″. In particular, a laterally extending continuous or intermittent tab 1195′″ protrudes from each of the long sides 1177′″ of the anvil cap 1170′″. Each tab 1195″ corresponds to an axial slot 1197′″ formed in the anvil body 1132′″. The anvil cap 1170′″ is slid in from an opening (not shown) in the distal end of the anvil body 1132′″ to “mechanically” affix the anvil cap to the anvil body 1132′″. The tabs 1195′″ and slots 1197′″ may be sized relative to each other to establish a sliding frictional fit therebetween. In addition, the anvil cap 1170′″ may be welded to the anvil body 1132′″. The anvil body 1132′″ and the anvil cap 1170′″ may be fabricated from metal that is conducive to welding. The weld 1178′″ may extend around the entire perimeter 1172′″ of the anvil cap 1170′″ or it may only be located along the long sides 1177′″ of the anvil cap 1170′″. The weld 1178′″ may be continuous or it may be discontinuous or intermittent. In those embodiments where the weld 1178′″ is discontinuous or intermittent, the weld segments may be equally distributed along the long sides 1177′″ of the anvil cap 1170′″ or the weld segments may be more densely spaced closer to the distal ends of the long sides 1177′″ or more densely spaced closer to the proximal ends of the long sides 1177′″. In still other arrangements, the weld segments may be more densely spaced in the center areas of the long sides 1177′″ of the anvil cap 1170′″.
  • The anvil embodiments described herein with anvil caps may provide several advantages. One advantage for example, may make the anvil and firing member assembly process easier. That is, the firing member may be installed through the opening in the anvil body while the anvil is attached to the elongate channel. Another advantage is that the upper cap may improve the anvil's stiffness and resistance to the above-mentioned flexure forces that may be experienced when clamping tissue. By resisting such flexure, the frictional forces normally encountered by the firing member 1660 may be reduced. Thus, the amount of firing force required to drive the firing member from its starting to ending position in the surgical staple cartridge may also be reduced.
  • As indicated above, as the anvil 1130 begins to pivot, the anvil body 1132 contacts the tissue that is to be cut and stapled which is positioned between the undersurface of the elongate anvil body 1132 and the deck of the surgical staple cartridge 1110. As the anvil body 1132 is compressed onto the tissue, the anvil 1130 may experience considerable amounts of resistive forces. To continue the closure process, these resistive forces must be overcome by the distal closure tube segment 1430 as it cammingly contacts the anvil mounting portion 1150. These resistive forces may be generally applied to the distal closure tube segment 1430 in the vertical directions V which, if excessive, could conceivably cause the distal closure tube segment 1430 to expand or elongate in the vertical direction (distance ID in FIG. 31 may increase). If the distal closure tube 1430 elongates in the vertical directions, the distal closure tube segment 1430 may not be able to effectively close the anvil 1130 and retain the anvil 1130 in the fully closed position. If that condition occurs, the firing member 1660 may encounter dramatically higher resistance which will then require higher firing forces to distally advance the firing member.
  • FIGS. 34 and 35 illustrate one form of a closure member for applying a closure motion to a movable jaw of a surgical instrument. In the illustrated arrangement, the closure member comprises, for example, a distal closure tube segment 1430 that has a closure body portion 1470. As discussed above, one form of the interchangeable surgical tool assembly 1000 is configured so as to facilitate selective articulation of the surgical end effector 1100. To facilitate such articulation, the distal closure tube segment 1430 is movably coupled to the proximal closure tube segment 1410 by means of an upper tang 1434 and a lower tang 1436 and upper and lower double pivot links 1220 and 1222. See FIG. 10. In one arrangement, the distal closure tube segment 1430 may be machined or otherwise formed from round bar stock manufactured from, for example, suitable metal material. In the illustrated arrangement, the closure body 1470 has an outer surface 1431 and an inner surface 1433 that defines an upper wall portion 1440 that has an upper wall cross-sectional thickness UWT and a lower wall portion 1442 that has a lower wall thickness LWT. The upper wall portion 1440 is located above the shaft axis SA and the lower wall portion 1442 is located below the shaft axis SA. The distal end 1441 of the upper wall portion 1440 has an internal cam surface 1444 formed thereon at a cam angle Θ. Also in the illustrated embodiment, UWT>LWT which serves to provide a longer internal cam surface 1444 than might other wise be attainable if the distal closure tube segment has a uniform wall thickness. A long internal cam surface may be advantageous for transferring the closure forces to the cam surface(s) on the anvil mounting portion 1150. As can also be seen in FIGS. 34 and 35, the transitional sidewalls 1446, 1448 that are located on each side of the shaft axis SA between the upper wall portion 1440 and the lower wall portion 1442 comprise generally flat, vertically extending internal sidewall surfaces 1451, 1453 that may be generally parallel to each other. The transitional sidewalls 1446, 1448 each have a wall thickness that transitions from the upper wall thickness to the lower wall thickness.
  • In the illustrated arrangement, the distal closure tube segment 1430 also includes positive jaw or anvil opening features 1462 that correspond to each of the sidewalls 1446 and 1448 and protrude inwardly therefrom. As can be seen in FIGS. 34 and 35, the anvil opening features 1462 are formed on a lateral mounting body 1460 that sized to be received within a correspondingly-shaped cavity 1447, 1449 machined or otherwise formed in the transitional sidewalls 1446, 1448 adjacent the distal end 1438 of the distal closure tube segment 1430. The positive anvil opening features 1462 extend inwardly through corresponding openings 1450, 1452 in the transitional sidewalls 1446, 1448. In the illustrated arrangement, the lateral mounting bodies 1460 are welded to the distal closure tube segment 1430 with welds 1454. In addition to the welds or in alternative to the welds, the lateral mounting bodies 1460 may be retained in place with a mechanical/frictional fit, tongue-in-groove arrangements, adhesive, etc.
  • FIGS. 36-41 illustrate one example of the use of the distal closure tube segment 1430 to move the anvil 1130 from a fully closed position to a fully open position. FIGS. 36 and 39 illustrate the position of the distal closure tube segment 1430 and, more particularly the position of one of the positive anvil opening features 1462 when the distal closure tube segment 1430 is in the fully closed position. In the illustrated example, an anvil opening ramp 1162 is formed on the underside of each of the anvil attachment flanges 1151. When the anvil 1130 and the distal closure tube segment 1430 are in their fully closed positions shown in FIG. 36, each of the positive anvil opening features 1462 is located in a cavity 1164 that is established between the anvil opening ramps 1162 and the bottom portion of the elongate channel 1102. When in that position, the positive anvil opening features 1462 do not contact the anvil mounting portion 1150 or at least do not apply any significant opening motions or forces thereto. FIGS. 37 and 40 illustrate the positions of the anvil 1130 and the distal closure tube segment 1430 upon the initial application of an opening motion in the proximal direction PD to the distal closure tube segment 1430. As can be seen in FIG. 37, the positive jaw opening features 1462 have initially contacted the anvil opening ramps 1164 to cause the anvil 1130 to start pivoting to an open position. In the illustrated arrangement, each of the positive anvil opening features 1462 has a ramped or rounded distal end 1463 to facilitate better camming contact with the corresponding anvil opening ramp 1162. In FIGS. 38 and 41, the distal closure tube segment 1430 has been retracted back to its fully retracted position which has caused the positive anvil opening features 1462 to be driven to the distal ends of the anvil opening ramps 1162 which causes the anvil 1130 to be pivoted to its fully open position as shown therein. Other embodiments may not employ the positive jaw opening features, but may rely on springs or other biasing arrangements to bias the anvil to the open position when the distal closure tube segment has been retracted to its proximal-most starting position.
  • FIGS. 42 and 43 illustrate another closure member for applying closure motions to a movable jaw of a surgical instrument. In this example, the closure member comprises a distal closure tube segment 1430′ that may be similar to the distal closure tube segment 1430 without the positive anvil opening features. The distal closure tube segment 1430′ has a closure body 1470′ that has an outer surface 1440′ and an inner surface 1433′ that define an upper wall portion 1440′ and a lower wall portion 1442′. As indicated above, it may be desirable to employ as large of internal camming surface 1444′ as possible in order to maximize the camming contact with the camming surface on the anvil mounting portion 1150 to thereby effectively transfer the closure forces thereto. Thus, the upper wall portion 1440′ of the distal closure tube segment 1430′ may be provided with the thickest wall thickness UWT and the lower portion of the distal closure tube segment 1430′ may have the thinnest wall thickness LWT. For reference purposes, the UWT and LWT are measured along a common reference line that extends through a center axis or point C of the distal closure tube segment 1430′. Thus, where UWT is diametrically opposite from LWT, UWT>LWT. Such wall thickness arrangements facilitate formation of a longer internal camming surface 1444′.
  • As can be seen in FIG. 43, the distal closure tube segment 1430′ has an outer surface 1431′ that has circular cross-sectional shape. The distal closure tube segment 1430′ may be machined from solid bar stock. In the illustrated example, internal radius R1 from a first center axis Ainner extends to the inner surface 1433′ and the outer radius R2 from a second center axis Aouter extends to the outer surface 1431′. In the illustrated example, axis Ainner is offset by distance OR from axis Aouter and R2>R1.
  • FIG. 44 illustrates another closure member for applying closure motions to a movable jaw of a surgical instrument. In this example, the closure member comprises a distal closure tube segment 1430″ that has a closure body 1470″. The closure body 1470″ has an outer surface 1431′ and an inner surface 1433″ that define an upper wall portion 1440″ that has an upper wall thickness UWT and a lower wall portion 1442″ that has a lower wall thickness LWT and two sidewall portions 1435′ that each has a sidewall thickness SWT. In the illustrated example, UWT>LWT. In addition, SWT>UWT. Thus, SWT>UWT>LWT. In the illustrated arrangement, sidewall portions 1435′ have the same sidewall thickness SWT. In other arrangements, the sidewall portions 1435′ may have different thicknesses. As can be seen in FIG. 44, each sidewall portion 1435′ defines an internal, vertically extending internal surface portion 1437′. In the illustrated embodiment, the vertically extending internal surface portions are approximately parallel to each other. Such thicker vertical sidewall portions 1435′ may help to prevent or at least minimize the vertical elongation of the distal closure tube segment 1430″ when in use.
  • In the example depicted in FIG. 45, R1 and R2 are measured from a common center point or center axis C and R1>R2. Each of the sidewall portions 1435″ of the closure body portion 1470′″ of the distal closure tube segment 1430′″ that extend between the upper portion 1431″ and 1433″ have a sidewall thickness SWT that is approximately equal to the UWT at points along a horizontal reference line HR. The horizontal reference line HR is perpendicular to a vertical reference line VR that extends through the center axis C and along which the UWT and LWT may be measured and compared. Thus, SWT=UWT. In other examples, SWT, when measured along the horizontal reference line HR may be slightly less than the UWT. The SWT may continue to decrease until the side wall portions 1435′ transition into the lower portion 1433′ that has a constant lower wall thickness LWT. Thus, the inner sidewalls 1437″ extend at an angle A2 when measured from a corresponding vertical reference axis VR′ that is perpendicular to the horizontal reference axis HR and parallel to vertical reference axis VR.
  • FIG. 46 illustrates another closure member for applying closure motions to a movable jaw of a surgical instrument. In this example, the closure member comprises a distal closure tube segment 1430″ that has a closure body 1470″ that has a round outer surface 1431″ and a rectangular shaped internal passage 1439 extending therethrough. The outer surface 1431″ is located a distance R from the geometric center point or center axis C. When measured along a vertical reference axis VR that extends through the center point or center axis C as shown, the upper wall thickness UWT is equal to the lower wall thickness LWT. When measure along a horizontal reference axis HR that extends through the center point or center axis C and which is perpendicular to the vertical reference axis VR, the thicknesses SWT of the sidewall portions 1437″ are greater than the upper wall and lower wall thicknesses UWT and LWT. Thus, SWT is greater than UWT and LWT. Stated another way, the portion of the distal closure tube segment 1430″ located above the horizontal reference line HR is a mirror image of the portion of the distal closure tube segment 1430″ located below the horizontal reference line HR. In this example, the side portions 1437″ are thicker than the upper and lower wall portions and may tend to prevent or minimize the tendency of the distal closure tube segment to elongate in the vertical directions. The internal camming surface may be formed on the distal end of the upper wall portion 1440″.
  • In the illustrated arrangement, the anvil 1130 is moved between open and closed positions by distally advancing the distal closure tube segment 1430. As can be seen in FIG. 41, when the anvil 1130 is in the fully open position, the distal ends 1163 of the anvil attachment flanges 1151 may extend above the deck surface 1116 of the staple cartridge 1110. When the closure process is commenced by distally advancing the distal closure tube segment in the distal direction DD, the distal ends 1163 of the anvil attachment flanges 1151 extend past the deck surface 1116 of the staple cartridge 1110 to thereby prevent infiltration of tissue therebetween which might hamper the closure process. See FIG. 40. Once the anvil 1130 has been moved to the fully closed position by the distal closure tube segment 1430, the distal ends 1461 of the lateral mounting bodies on the distal closure tube segment 1430 further act as tissue stops to prevent tissue from infiltrating therebetween. See FIG. 41.
  • FIG. 47 depicts portion of a surgical end effector 110′ that may be similar to the surgical end effector 110 of the interchangeable surgical tool assembly 100 of FIGS. 1 and 2. In the example illustrated in FIG. 47, the anvil 114 includes an elongate body portion 190 and an anvil mounting portion 192. The anvil mounting portion 192 comprises two spaced anvil mounting flanges 194 that protrude proximally from the elongate body portion 190. Each anvil mounting flange 194 has an outwardly extending trunnion 196 thereon. The trunnions 196 are each movably received within a corresponding kidney slot or elongated arcuate trunnion slot 197 that is provided in the elongate channel 112. When the anvil 114 is in a “fully opened” position, the trunnions 196 are generally located in the bottom portions 198 of the elongated arcuate trunnion slots 197. The anvil 114 can be moved to a closed position by distally advancing the distal closure tube segment 142 in the distal direction DD so that the end 148 of the distal closure tube segment 142 rides up a cam surface 193 that is formed on the anvil mounting portion 192 of the anvil 114. As the distal end 148 of the distal closure tube segment 142 is distally advanced along a cam surface 193 on the anvil mounting portion 192, the distal closure tube segment 142 causes the body portion 190 of the anvil 114 to pivot and move axially relative to the surgical staple cartridge 116. When the distal closure tube segment 142 reaches the end of its closure stroke, the distal end 148 of the distal closure tube segment 142 abuts/contacts an abrupt anvil ledge 191 and serves to position the anvil 114 so that the forming pockets (not shown) in the underside of the body portion 190 are properly aligned with the staples in the cartridge. The anvil ledge 191 is defined between the cam surface 193 on the anvil mounting portion 192 and the elongate anvil body portion 190. Stated another way, in this arrangement, the cam surface 193 does not extend to the outermost surface 195 of the anvil body 190. After the distal closure tube 142 has reached this fully extended position, any further application of closure motions/forces to the anvil 114, may cause damage to the anvil and/or the closure system components. As can be seen in FIG. 47, in this arrangement, the closure force FH is parallel to the shaft axis SA. The distance between an axis or plane TA passing through the centers of the trunnions 196 to the closure force vector FH is represented as distance XR. This distance XR times the closure force FH represents a closure moment CM that is applied to the anvil 114.
  • FIGS. 48 and 49 illustrate the closure force configurations for an anvil 1130 of a surgical end effector 1100 of the interchangeable tool assembly 1000. As indicated above, the anvil trunnions 1158 are pivotally mounted within holes 1154 in the elongate channel 1102. Unlike the anvil 114 described above, the anvil 1130 does not move axially. Instead, the anvil 1130 is constrained to only pivot about the anvil axis AA. As the distal closure tube segment 1430 is advanced in the distal direction DD under the horizontal closure force FH1, the interaction between the internal cam surface 1444 on the distal closure tube segment 1430 and the cam surface 1152 on the anvil mounting portion 1150 results in the distal closure tube segment 1430 experiencing a vertical closure force component VF. The resultant force vector FN experienced by the cam surface 1152 on the anvil mounting portion 1150 is “normal to” or perpendicular to the internal cam surface 1444. Angle Θ in FIGS. 48 and 49 represents the angle of the camming surface 1152 as a well as the internal camming surface 1440 to the horizontal. The distance between this resultant force vector FN and an axis or plane TA that extends through the centers of the anvil trunnions 1158 is represented as moment arm MA. This moment arm distance MA times the resultant force vector FN represents a closure moment CM1 that is applied to the anvil 1130. Thus, in applications wherein the horizontal closure forces FH=FH1, the actual amount of closure torque applied to anvil 1130 will be greater than the amount of closure torque applied to the anvil 114 because MA>XR and therefor the closure moment applied to the anvil 1130 will be greater than the closure moment applied to the anvil 114. FIG. 49 also illustrates the resistive forces established by the tissue during the closure process. FT represents the force generated by the tissue when the tissue is clamped between the anvil and the staple cartridge. This “counter” moment MT that is applied to the anvil 1130 equals the distance XT between the tissue force TF and the axis or plane TA that extends through the centers of the anvil trunnions 1158 times the tissue force TF. Thus, in order to achieve a desired amount of anvil closure, CM1 must be greater than MT.
  • Returning to the example depicted in FIG. 47, it can be seen that the firing bar 170 is attached to a firing member 174 that, when in a starting or unfired position, is located within the elongate channel 112 and, more particularly, is located completely distal to the distal closure tube segment 142 in a position wherein a top portion 175 of the firing member 174 is in contact with a portion of the anvil 114. Because the firing member 174 is located in a position wherein the top portion 175 thereof can contact the anvil as the anvil 114 is moved to the closed position, such arrangement may result in the need for higher closure forces to move the anvil 114 to a completely or fully closed position. In addition, when the firing system is activated, higher firing forces may be required to overcome the frictional interference between the top portion 175 of the firing member 174 and the anvil 114. Conversely as can be seen in FIG. 48, in the end effector 1100, the firing member 1660 is “parked” in the firing member parking area 1154 that is within the distal closure tube segment 1430. When the firing member 1660 is located within the firing member parking area 1154 within the distal closure tube segment 1430, it is unable to generate significant frictional forces with the anvil. Thus, one of the advantages that may be achieved by parking the firing member 1660 completely within the distal closure tube segment 1430 may be the reduction of the amount of closure force necessary to close the anvil to a fully closed position and/or a reduction in the amount of firing force needed to advance the firing member from the starting to ending position within the end effector. Stated another way, parking the firing member 1660 so that the firing member 1660 is completely proximal to the distal end of the distal closure tube segment 1430 and the internal cam surface 1444 thereon and in a starting position wherein any frictional contact between the firing member and the anvil is eliminated or reduced, may ultimately require lower closure and firing forces to be generated for operation of the end effector.
  • As discussed above, excessive flexure of the anvil during the closure and firing processes can lead to the need for undesirably higher firing forces. Thus, stiffer anvil arrangements are generally desirable. Returning to FIGS. 20 and 21, another advantage that may be provided by the anvil 1130 and elongate channel 1102 depicted therein is that the anvil mounting portion 1150 of the anvil 1130 is generally more robust and therefor stiffer than other anvil and elongate channel arrangements. FIG. 50 illustrates use of stiffener gussets 199 between the anvil mounting flanges 194 and the elongate anvil body portion 190. Similar gusset arrangements may also be employed between the anvil attachment flanges 1151 and anvil body 1132 of anvil 1130 to further enhance anvil stiffness.
  • As indicated above, the interchangeable surgical tool 1000 includes an elastic spine member 1520. As can be seen in FIGS. 6, 7, 7A, 8 and 51-54, the distal end portion 1522 of the elastic spine member 1520 is separated from the proximal end portion 1524 of the elastic spine member 15 by a stretch feature 1530 formed in the elastic spine member 1520. In addition, a stretch limiting insert 1540 is retainingly supported between the distal end portion 1522 and the proximal end portion 1524. In various arrangements, the elastic spine member 1520 may be fabricated from, for example, suitable polymeric material, rubber, etc. which has a modulus of elasticity designated as ME1 for reference purposes. The stretch feature 1530 may include a plurality of stretch cavities 1532. As can be seen in FIG. 7A, the illustrated stretch feature 1530 includes four triangular-shaped stretch cavities 1532 that are arranged to define some what flexible wall segments 1534 therebetween. Other shapes and numbers of stretch cavities 1532 may be employed. The stretch cavities 1532 may be molded or machined into the elastic spine member 1520, for example.
  • Still referring to FIGS. 6, 7 and 51-54, the stretch limiting insert 1540 comprises a body portion 1541 which has a modulus of elasticity designated as ME2 for reference purposes. As can be seen in FIG. 6, the body portion 1541 includes two downwardly extending mounting lugs 1542 that are each configured to be seated into mounting cavities 1535 formed in the elastic spine member 1520. See also FIG. 7A. To provide the stretch limiting insert 1540 with a desired amount of stretch capacity and elasticity, the body portion 1541 in the illustrated arrangement is provided with a plurality of upper cavities 1543. The illustrated example includes four upper cavities 1543 that are relatively square or rectangular in shape and which are spaced to define flexible walls 1544 therebetween. Other embodiments may include other numbers and shapes of upper cavities. The body portion 1541 of the illustrated stretch limiting insert 1540 also includes a centrally disposed, downwardly protruding central lug portion 1545 that is configured to be seated in a central cavity 1536 above the stretch feature 1530. See FIG. 7A. In the illustrated example, the central lug portion 1545 includes a pair of central passages 1546 that extend laterally therethrough to define a flexible wall 1547 therebetween.
  • Also in the illustrated example, the stretch limiting insert 1540 includes an elongated lateral cavity 1548 that is positioned on each lateral side of the body portion 1541. Only one lateral cavity 1548 may be seen in FIGS. 6 and 51-54. Each elongated lateral cavity 1548 is configured to support a corresponding stretch limiter 1550 therein. Thus, in the described example, two stretch limiters 1550 are employed in the stretch limiting insert 1540. In at least one arrangement, the stretch limiter 1550 includes an elongate body portion 1552 that terminates on each end with a downwardly extending mounting lug 1554. Each mounting lug 1554 is received in a corresponding lug cavity 1549 formed in the body portion 1541. The stretch limiter may have a modulus of elasticity for reference purposes of ME3. In at least one arrangement, ME3<ME2<ME1.
  • Actuation of the interchangeable surgical tool assembly 1000 when operably attached to the handle assembly 500 will now be described in further detail with reference to FIGS. 51-54. FIG. 51 illustrates the anvil 1130 in an open position. As can be seen in that Figure, the distal closure tube segment 1430 is in its starting or unactuated position and the positive anvil opening features 1462 have pivoted the anvil 1130 to the open position. In addition, the firing member 1660 is in the unactuated or starting position wherein the upper portion, including the top nose portion 1630, is parked in the firing member parking area 1154 of the anvil mounting portion 1150. When the interchangeable tool assembly 1000 is in this unactuated state, the stretch limiting insert 1540 is in an unstretched state. The axial length of the stretch limiting insert 1540 when in the unstretched state is represented by Lus in FIG. 51. Lus represents the distance between a reference axis A that corresponds to the proximal end of the body portion 1541 of the stretch limiting insert 1540 and a reference axis B that corresponds to the distal end of the body portion 1541 as shown in FIG. 51. The axis labeled F corresponds to the location of the distal end of the staple cartridge 1110 that has been properly seated within the elongate channel 1102. It will be understood that when the tool assembly 1000 is in this unactuated state, the elastic spine member 1520 is in a relaxed unstretched state.
  • FIG. 52 illustrates the interchangeable surgical tool assembly 1000 after the closure drive system 510 has been activated as described above to drive the distal closure tube segment 1430 distally in the distal direction DD. As the distal closure tube segment 1430 moves distally, the cam surface 1444 on the distal end 1441 of the upper wall portion 1440 of the distal closure tube segment 1430 cammingly contacts the cam surface 1152 on the anvil mounting portion 1150 and pivots the anvil 1130 to the closed position as shown. The closure drive system 510 moves the distal closure tube segment 1430 through its entire closure stroke distance and then is deactivated and the distal closure tube segment is axially locked or otherwise retained in that position by the closure drive system 510. As the distal closure tube segment 1430 contacts the anvil mounting portion 1150, the closure forces generated by the distal advancement of the distal closure tube segment 1430 on the anvil 1130 will also axially advance the anvil 1130 and the elongate channel 1102 in the distal direction DD. The stretch feature 1530 in the elastic spine 1520 will begin to stretch to accommodate this distal advancement of the elongate channel 1102 and anvil 1130. Axis B as shown in FIG. 52 is a reference axis for the stretch limiting insert 1540 when in a relaxed or unstretched state. Axis C corresponds to the end of the stretch limiting insert 1540 after the stretch limiting insert has been stretched into its maximum elongated stated. The distance Ls represents the maximum amount or length that the stretch limiting insert 1540 may elongate. Axis G corresponds to the location of the distal end of the surgical staple cartridge 1110 after the anvil 1130 has been moved to that “first” closed position. The distance LT between reference axes F and G represents the axial distance that the elongate channel 1102 and the anvil 1130 have traveled during actuation of the closure drive system 510. This distance LT may be equal to the distance LS that the stretch limiting insert 1540 was stretched during the closure process as limited by the stretch limiter 1550.
  • Returning to FIG. 51, it can be noted that there is a space S between each mounting lug 1554 of the stretch limiter 1550 and the inner walls 1551 of each of the lug cavities 1549 prior to commencement of the closure process. As can be seen in FIG. 52 the spaces S are gone. That is, each of the mounting lugs 1554 abuts its corresponding cavity wall 1549 in the stretch limiting insert 1540. Thus the stretch limiter 1550 serves to limit the amount of elongation experienced by the stretch limiting insert 1540 which in turn limits the amount of distal travel of the elongate channel 1102 and anvil 1130 relative to the proximal end portion 1524 of the elastic spine 1520. The distal closure tube 1430 is axially locked in position by the closure drive system 510. When in that position, the anvil 1130 is retained in a ‘first” closed position relative to the surgical staple cartridge 1110. Because the firing drive system 530 has yet to be actuated, the firing member 1660 has not moved and remains parked in the firing member parking area 1154. The position of the underside of the anvil 1130 when in the “first” closed position is represented by axis K in FIGS. 52 and 53.
  • FIG. 53 illustrates the position of the firing member 1660 after the firing drive system 530 has been initially actuated. As can be seen in that Figure, the firing member 1660 has been distally advanced out of the firing member parking area 1154. The top portion of the firing member 1660 and, more specifically, each of the top anvil engagement features 1672 has entered the proximal ramp portion 1138 of the corresponding axial passage 1146 in the anvil 1130. At this point in the process, the anvil 1130 may be under considerable bending stress caused by the tissue that is clamped between the underside of the anvil 1130 and the deck of the staple cartridge 1110. This bending stress, as well as the frictional resistance between the various portions of the firing member and the anvil 1130 and elongate channel 1102, serve to essentially retain the elongate channel 1102 and the distal closure tube segment in a static condition while the firing member 1660 is initially distally advanced. During this time period, the amount of force required to fire the firing member 1660 or, stated another way, the amount of force required to distally push the firing member 1660 through the tissue that is clamped between the anvil 1130 and the cartridge 1110 is increasing. See line 1480 in FIG. 55. Also during this time period, the stretch limiting insert is trying to retract the elongate channel 1102 and anvil 1130 in the proximal direction PD into the distal closure tube segment 1430. Once the amount of friction between the firing member 1660 and the anvil 1130 and elongate channel 1102 is less than the retraction force generated by the stretch limiting insert 1540, the stretch limiting insert 1540 will cause the elongate channel 1102 and anvil 1130 to be drawn proximally further into the distal closure tube segment 1430. The position of the distal end 1113 of the staple cartridge 1110 after the elongate channel 1102 and anvil 1130 have traveled in the proximal direction PD is represented as position H in FIG. 54. The axial distance that the elongate channel 1102 and the anvil 1130 traveled in the proximal direction PD is represented as distance I in FIG. 54. This proximal movement of the anvil 1130 and the elongate channel 1102 into the distal closure tube segment 1430 will result in the application of additional closure forces to the anvil 1130 by the distal closure tube segment 1430. Line M in FIG. 54 represents the “second” closed position of the anvil 1130. The distance between position K and position M which is represented as distance N comprises the vertical distance that the distal end 1133 of the anvil body 1132 traveled between the first closed position and the second closed position.
  • The application of additional closure forces to the anvil 1130 by the distal closure tube segment 1430 when the anvil 1130 is in the second closed position, resists the amount of flexure forces applied to the anvil 1130 by the tissue that is clamped between the anvil 1130 and the cartridge 1110. Such condition may lead to better alignment between the passages in the anvil body 1130 and the firing member 1660 which may ultimately reduce the amount of frictional resistance that the firing member 1660 experiences as it continues to advance distally through the end effector 1100. Thus, the amount of firing force required to advance the firing member through the balance of its firing stroke to the ending position may be reduced. This reduction of the firing force can be seen in the chart in FIG. 55. The chart depicted in FIG. 55 compares the firing force (Energy) required to fire the firing member from the beginning to the end of the firing process. Line 1480 represents the amount of firing force required to move the firing member 1660 from its starting to ending position when the end effector 1100 is clamping tissue therein. Line 1482, for example, represents the amount of firing force required to move the firing member the interchangeable surgical tool assembly 1000 described above. Line 1482 represents the firing force required to move the firing member 174 from its starting to ending position through tissue that is clamped in the end effector 110 or 110′. As can be seen from that chart, the firing forces required by both of the surgical tool assemblies 100, 1000 are substantially the same or very similar until the point in time 1484 wherein the elastic spine assembly 1510 of the interchangeable tool assembly 1000 results in an application of a second amount of closure force to the anvil. As can be seen in the chart of FIG. 55, when the second amount of closure force is experienced by the anvil 1130 (point 1484), the amount of closure force required to complete the firing process is less than the amount of closure force required to complete the closing process in tool assembly 100.
  • FIG. 56 compares the amount of firing load required to move a firing member of various surgical end effectors from a starting position (0.0) to an ending position (1.0). The vertical axis represents the amount of firing load and the horizontal axis represents the percentage distance that the firing member traveled between the starting position (0.0) and the ending position (1.0). Line 1490 depicts the firing force required to fire, for example, the firing member of a surgical tool assembly 100 or similar tool assembly. Line 1492 depicts the firing force required to fire the firing member of a surgical tool assembly that employs the various firing member improvements and configurations that may be disclosed in, for example, U.S. patent application Ser. No. 15/385,917, entitled STAPLE CARTRIDGE COMPRISING STAPLES WITH DIFFERENT CLAMPING BREADTHS, and the other above-mentioned U.S. patent applications that were filed on even date herewith and which have been incorporated by reference herein in their respective entirety. Line 1494 depicts the firing force required to fire the firing member from its starting to ending position of surgical tool assemblies that employ at least some of the features and arrangements disclosed herein for stiffening the anvil. Line 1496 depicts the firing force required to fire, for example, surgical tool assemblies that employ the elastic spine arrangement and at least some of the features and arrangements disclosed herein for stiffening the anvil. As can be seen in that Figure, the surgical tool assembly that employs the elastic spine arrangement and at least some of the anvil stiffening arrangements disclosed herein have a much lower force-to-fire requirement.
  • FIG. 57 provides a side-by-side comparison of two anvils. A portion of a first anvil 2030 of an end effector 2000 is depicted in the right half of FIG. 57 and a portion of a second anvil 2030′ of an end effector 2000′ is depicted in the left half of FIG. 57. The anvil 2030 comprises a first longitudinal row of forming pockets 2032 a, a second longitudinal row of forming pockets 2032 b, and a third longitudinal row of forming pockets 2032 c. The anvil 2030 further comprises a longitudinal slot 2033 which is configured to receive a firing member, such as firing member 2040, for example, as the firing member is advanced through a staple firing stroke. The first longitudinal row of forming pockets 2032 a is positioned intermediate the longitudinal slot 2033 and the second longitudinal row of forming pockets 2032 b, and the second longitudinal row of forming pockets 2032 b is positioned intermediate the first longitudinal row of forming pockets 2032 a and the third longitudinal row of forming pockets 2032 c. As a result, the first longitudinal row of forming pockets 2032 a comprises an inner row, the third longitudinal row of forming pockets 2032 c comprises an outer row, and the second longitudinal row of forming pockets 2032 b comprises a middle or intermediate row.
  • Similar to the above, the anvil 2030′ comprises a first longitudinal row of forming pockets 2032 a, a second longitudinal row of forming pockets 2032 b, and a third longitudinal row of forming pockets 2032 c. The anvil 2030′ further comprises a longitudinal slot 2033′ which is configured to receive a firing member, such as firing member 2040′, for example, as the firing member is advanced through a staple firing stroke. The first longitudinal row of forming pockets 2032 a is positioned intermediate the longitudinal slot 2033′ and the second longitudinal row of forming pockets 2032 b, and the second longitudinal row of forming pockets 2032 b is positioned intermediate the first longitudinal row of forming pockets 2032 a and the third longitudinal row of forming pockets 2032 c. As a result, the first longitudinal row of forming pockets 2032 a comprises an inner row, the third longitudinal row of forming pockets 2032 c comprises an outer row, and the second longitudinal row of forming pockets 2032 b comprises a middle or intermediate row.
  • The anvil 2030 comprises a flat, or an at least substantially flat, tissue engaging surface 2031. The forming pockets 2032 a, 2032 b, and 2032 c are defined in the flat surface 2031. The flat surface 2031 does not have steps defined therein; however, embodiments are envisioned in which the anvil 2030 can comprise a stepped tissue engaging surface. For instance, the anvil 2030′ comprises a stepped tissue engaging surface 2031′. In this embodiment, the forming pockets 2032 a and 2032 b are defined in a lower step and the forming pockets 2032 c are defined in an upper step.
  • The firing member 2040′ comprises a coupling member 2042′ including a cutting portion 2041. The cutting portion 2041 is configured and arranged to incise tissue captured between the anvil 2030′ and a staple cartridge 2010 (FIG. 58), for example. The firing member 2040′ is configured to push a sled having inclined surfaces distally during a staple firing stroke. The inclined surfaces are configured to lift staple drivers within the staple cartridge 2010 to form staples 2020 against the anvil 2030′ and eject the staples 2020 from the staple cartridge 2010. The coupling member 2042′ comprises projections, or cams, 2043′ extending laterally therefrom which are configured to engage the anvil 2030′ during the staple firing stroke. Referring to FIG. 60, the projections 2043′ are comprised of longitudinally elongate shoulders extending from the coupling member 2042′. In other embodiments, the projections 2043′ comprise a cylindrical pin which extends through the coupling member 2042′. In any event, the projections 2043′ have flat lateral sides, or ends, 2047′.
  • The longitudinal slot 2033′ comprises lateral portions 20331′ extending laterally from a central portion 2033 c′ which are configured to receive the projections 2043′. As illustrated in FIG. 57, the lateral portions 20331′ of the longitudinal slot 2033′ have a rectangular, or at least substantially rectangular, configuration having sharp corners. Each lateral portion 20331′ of the slot 2033′ comprises a longitudinal cam surface 2035′ configured to be engaged by the projections 2043′ during the staple firing stroke. Each longitudinal cam surface 2035′ is defined on the upper side of a ledge 2037′ which extends longitudinally along the slot 2033′. Each longitudinal ledge 2037′ comprises a beam including a fixed end attached to the main body portion of the anvil 2030′ and a free end configured to move relative to the fixed end. As such, each longitudinal ledge 2037′ can comprise a cantilever beam.
  • The coupling member 2042′ further comprises a foot, or cam, 2044 (FIG. 58) configured to engage the staple cartridge 2010, or a jaw supporting the staple cartridge 2010, during the staple firing stroke. Moreover, the projections 2043′ and the foot 2044 co-operate to position the anvil 2030′ and the staple cartridge 2010 relative to one another. When the anvil 2030′ is movable relative to the staple cartridge 2010, the coupling member 2042′ can cam the anvil 2030′ into position relative to the staple cartridge 2010. When the staple cartridge 2010, or the jaw supporting the staple cartridge 2010, is movable relative to the anvil 2030′, the coupling member 2042′ can cam the staple cartridge 2010 into position relative to the anvil 2030′.
  • Further to the above, the firing member 2040 comprises a coupling member 2042 including a cutting portion 2041. The cutting portion 2041 is configured and arranged to incise tissue captured between the anvil 2030 and a staple cartridge 2010 (FIG. 58). The firing member 2040 is configured to push a sled having inclined surfaces distally during a staple firing stroke. The inclined surfaces are configured to lift staple drivers within the staple cartridge 2010 to form staples 2020 against the anvil 2030 and eject the staples 2020 from the staple cartridge 2010. The coupling member 2042 comprises projections, or cams, 2043 extending laterally therefrom which are configured to engage the anvil 2030 during the staple firing stroke. The projections 2043 have curved, or rounded, lateral sides, or ends, 2047. The lateral ends 2047 of the projections 2043 are entirely curved or fully-rounded. Each lateral end 2047 comprises an arcuate profile extending between a top surface of a projection 2043 and a bottom surface of the projection 2043. In other embodiments, the lateral ends 2047 of the projections 2043 are only partially curved.
  • The longitudinal slot 2033 comprises lateral portions 20331 extending laterally from a central portion 2033 c which are configured to receive the projections 2043. Each lateral portion 20331 of the slot 2033 comprises a longitudinal cam surface 2035 configured to be engaged by the projections 2043 during the staple firing stroke. Each longitudinal cam surface 2035 is defined on the upper side of a ledge 2037 which extends longitudinally along the slot 2033. Each longitudinal ledge 2037 comprises a beam including a fixed end attached to the main body portion of the anvil 2030 and a free end configured to move relative to the fixed end. As such, each longitudinal ledge 2037 can comprise a cantilever beam. As illustrated in FIG. 57, the lateral portions of the longitudinal slot 2033 comprise a curved, or rounded, profile which match, or at least substantially match, the curved ends 2047 of the projections 2043.
  • The coupling member 2042 further comprises a foot, or cam, 2044 (FIG. 58) configured to engage the staple cartridge 2010, or a jaw supporting the staple cartridge 2010, during the staple firing stroke. Moreover, the projections 2043 and the foot 2044 co-operate to position the anvil 2030 and the staple cartridge 2010 relative to one another. When the anvil 2030 is movable relative to the staple cartridge 2010, the coupling member 2042 can cam the anvil 2030 into position relative to the staple cartridge 2010. When the staple cartridge 2010, or the jaw supporting the staple cartridge 2010, is movable relative to the anvil 2030, the coupling member 2042 can cam the staple cartridge 2010 into position relative to the anvil 2030.
  • Referring again to FIG. 57, the lateral portions 20331′ of the longitudinal slot 2033′ extend a distance 2034′ from a centerline CL of the anvil 2030′. The lateral portions 20331′ extend over, or behind, the forming pockets 2032 a in the anvil 2030′. As illustrated in FIG. 57, the lateral ends of the lateral portions 20331′ are aligned with the outer edges of the forming pockets 2032 a. Other embodiments are envisioned in which the lateral portions 20331′ extend laterally beyond the forming pockets 2032 a, for example. That said, referring to FIG. 59, the ledges 2037′ of the anvil 2030′ are long and, in certain instances, the ledges 2037′ can deflect significantly under load. In some instances, the ledges 2037′ can deflect downwardly such that a large portion of the drive surfaces 2045′ defined on the bottom of the projections 2043′ are not in contact with the cam surfaces 2035′. In such instances, the contact between the projections 2043′ and the cam surfaces 2035′ can be reduced to a point, such as point 2047′, for example. In some instances, the contact between the projections 2043′ and the cam surfaces 2035′ can be reduced to a longitudinally extending line, which may appear to be a point when viewed from the distal end of the end effector, as illustrated in FIG. 59.
  • Moreover, referring again to FIG. 57, the projections 2043′ extend over, or behind, the forming pockets 2032 a in the anvil 2030′. The lateral ends of the projections 2043′ extend over a longitudinal centerline 2062 a of the forming pockets 2032 a. Other embodiments are envisioned in which the lateral ends of the projections 2043′ are aligned with the longitudinal centerline 2062 a of the forming pockets 2032 a. Certain embodiments are envisioned in which the lateral ends of the projections 2043′ do not extend to the longitudinal centerline 2062 a of the forming pockets 2032 a. In any event, referring again to FIG. 59, the projections 2043′ can deflect upwardly, especially when the projections 2043′ are long, such that a large portion of the drive surfaces 2045′ of the projections 2043′ are not in contact with the cam surfaces 2035′. This condition can further exacerbate the condition discussed above in connection with the ledges 2037′. That being said, the projections 2043′ may be able to better control the staple formation process occurring in the forming pockets 2032 a, and/or the forming pockets 2032 b and 2032 c, when the projections 2043′ extend to the outer edge of the forming pockets 2032 a or beyond, for instance.
  • Further to the above, the ledges 2037′ and the projections 2043′ can deflect in a manner which causes the load flowing between the firing member 2040′ and the anvil 2030′ to be applied at the inner ends of ledges 2037′. As illustrated in FIG. 59, the contact points 2048′ are at or near the inner ends of the ledges 2037′. The deflection of the ledges 2037′, and the projections 2043′, is the same or similar to that of cantilever beams. As the reader should appreciate, the deflection of a cantilever beam is proportional to the cube of the beam length when the load is applied at the end of the cantilever beam. In any event, gaps between the ledges 2037′ and the projections 2043′ can be created when the ledges 2037′ and/or the projections 2043′ deflect. Such gaps between portions of the ledges 2037′ and the projections 2043′ means that the forces flowing therebetween will flow through very small areas which will, as a result, increase the stress and strain experienced by the ledges 2037′ and projections 2043′. This interaction is represented by stress risers, or concentrations, 2039′ and 2049′ in FIGS. 61 and 62 where stress risers 2039′ are present in the ledges 2037′ and stress risers 2049′ are present at the interconnection between the projections 2043′ and the coupling member 2042′. Other stress risers, or concentrations, may be present but, as discussed below, it is desirable to reduce or eliminate such stress risers.
  • Referring again to FIGS. 57 and 58, the lateral portions 20331 of the longitudinal slot 2033 each extend a distance 2034 from a centerline CL of the anvil 2030. The distance 2034 is shorter than the distance 2034′. Nonetheless, the lateral portions 20331 extend over, or behind, the forming pockets 2032 a in the anvil 2030. As illustrated in FIG. 57, the lateral ends of the lateral portions 20331 are not aligned with the outer edges of the forming pockets 2032 a. Moreover, the lateral ends of the lateral portions 20331 do not extend beyond the outer edges of the forming pockets 2032 a; however, the lateral portions 20331 extend over the longitudinal centerlines 2062 a of the forming pockets 2032 a. Further to the above, the ledges 2037 are shorter than the ledges 2037′. As such, the ledges 2037 will experience less deflection, stress, and strain than the ledges 2037′ for a given force applied thereto.
  • Other embodiments are envisioned in which the lateral portions 20331 of the slot 2033 do not extend to the longitudinal centerline 2062 a of the forming pockets 2032 a. In certain embodiments, the lateral portions 20331 do not extend laterally over or overlap the forming pockets 2032 a. Such shorter lateral portions 20331, further to the above, can reduce the deflection, stress, and strain in the ledges 2037. Owing to the reduced deflection of the ledges 2037, the drive surfaces 2045 defined on the bottom of the projections 2043 can remain in contact with the cam surfaces 2035 of the ledges 2037. In such instances, the contact area between the projections 2043 and the cam surfaces 2035 can be increased as compared to the contact area between the projections 2043′ and the cam surfaces 2035′.
  • Further to the above, the cross-sectional thickness of the ledges 2037 isn't constant, unlike the ledges 2037′ which have a constant cross-sectional thickness. The ledges 2037 have a tapered cross-sectional thickness where the base of each ledge 2037 is wider than its inner end owing to the rounded lateral ends of the lateral slot portions 20331. Such a configuration can serve to stiffen or strengthen the ledges 2037 and reduce the deflection, stress, and strain of the ledges 2037 as compared to the ledges 2037′. In at least one instance, a portion of a ledge 2037 is tapered while another portion of the ledge 2037 has a constant cross-sectional thickness. In at least one other instance, the entirety of a ledge 2037 can be tapered such that none of the cross-sectional thickness is constant.
  • Moreover, referring again to FIGS. 57 and 58, the projections 2043 extend over, or behind, the forming pockets 2032 a in the anvil 2030. The lateral ends of the projections 2043 do not extend over the longitudinal centerline 2062 a of the forming pockets 2032 a. Other embodiments are envisioned in which the lateral ends of the projections 2043 are aligned with the longitudinal centerline 2062 a of the forming pockets 2032 a. Certain embodiments are envisioned in which the lateral ends of the projections 2043 do not extend over the forming pockets 2032 a at all. In any event, the upward deflection of the projections 2043 may be less than the projections 2043′ and, as a result, a larger contact area can be present between the drive surfaces 2045 and the cam surfaces 2035.
  • Further to the above, the ledges 2037 and the projections 2043 can deflect in a manner which causes the load flowing between the firing member 2040 and the anvil 2030 to be applied laterally along the lengths of the ledges 2037 instead of at a single point and/or at end of the ledges 2037. As a result, the forces flowing therebetween will flow through larger areas which will, as a result, reduce the stress and strain experienced by the ledges 2037 and projections 2043 which can reduce or eliminate the stress risers discussed above in connection with the ledges 2037′ and the projections 2043′, for example.
  • Referring again to FIG. 58, the foot 2044 of the coupling member 2042 is wider than the projections 2033. Stated another way, the lateral width of the foot 2044 is wider than the width between the lateral ends of the projections 2033. In such instances, the foot 2044 can deflect or strain more than the projections and, as a result, the deflection of the projections 2033 can be reduced. Alternative embodiments are envisioned in which the lateral width of the foot 2044 is the same as or less than the width between the lateral ends of the projections 2033; however, such embodiments can be otherwise configured to provide the desired deflection and/or strain within the projections 2033.
  • As discussed above, an end effector can comprise an anvil, for example, which is movable between an open position and a closed position. In some instances, the anvil is moved toward its closed position by a firing member, such as firing member 2040 or 2040′, for example, when the firing member is moved distally. In other instances, the anvil is moved toward its closed position prior to the firing member being advanced distally to perform a staple firing stroke. In either event, the anvil may not move into its entirely closed position until the firing member approaches or reaches the end of its staple firing stroke. As a result, the anvil is progressively closed by the firing member. In at least one such instance, the anvil may progressively close owing to thick tissue captured between the anvil and the staple cartridge. In some instances, the anvil may actually deflect or deform during the staple firing stroke of the firing member. Such circumstances are generally controlled, however, by the upper projections and the bottom foot of the firing member.
  • Turning now to FIG. 60, the drive surfaces 2045′ defined on the projections 2043′ are flat, or at least substantially flat. Moreover, the drive surfaces 2045′ are configured to flushingly engage the flat, or at least substantially flat, cam surfaces 2035′ defined on the anvil 2030′ when the anvil 2030′ is in a completely closed position. Stated another way, the drive surfaces 2045′ engage the cam surfaces 2035′ in a face-to-face relationship when the anvil 2030′ is in a completely flat orientation. A flat orientation of the anvil 2030′ is depicted in phantom in FIG. 60. In such instances, the drive surfaces 2045′ are parallel, or at least substantially parallel, to the longitudinal path of the firing member 2040′ during the staple firing stroke. As discussed above, however, the anvil 2030′ may progressively close during the firing stroke and, as a result, the anvil 2030′ may not always be in an entirely closed position. As a result, the drive surfaces 2045′ may not always be aligned with the cam surfaces 2035′ and, in such instances, the projections 2043′ may gouge into the ledges 2037′ of the anvil 2030. FIG. 60 depicts such instances with solid lines.
  • Further to the above, the drive surfaces 2045′ of the projections 2043′ and/or the cam surfaces 2035′ defined on the ledges 2037′ can plastically deform if the firing member 2040′ has to progressively close the anvil 2030′ into its entirely closed position. In certain instances, the cam surfaces 2035′ can gall, for example, which can increase the force needed to complete the staple firing stroke. More specifically, plastic strain of the projections 2043′ and/or the anvil ledges 2037′ can cause energy losses as the metal is deformed beyond the plastic limits. At that point, galling occurs and the frictional co-efficient of the coupling increases substantially. The energy losses can be in the order of about 10%-30%, for example, which can increase the force needed to fire the firing member in the order of about 10%-30%. Moreover, the force needed to complete subsequent staple firing strokes with the end effector 2000′ may increase in such instances in the event that the end effector 2000′ is reused.
  • Turning now to FIGS. 63-65, a firing member 2140 comprises a firing bar and a coupling member 2142 attached to the firing bar. The coupling member 2142 comprises a connector 2148 which connects the coupling member 2142 to the firing bar. The coupling member 2142 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke. The coupling member 2142 also comprises projections 2143 configured to engage an anvil, such as anvil 2030 or 2030′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke. Each projection 2143 comprises a drive surface 2145 defined on the bottom side thereof. Each projection 2143 further comprises a proximally-extending cam transition 2147 and a radiused-transition 2149 extending around the perimeter of the projection 2143. The coupling member 2142 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2140 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2140 at the outset of the staple firing stroke.
  • Further to the above, the drive surfaces 2145 of the projections 2143 are not parallel to the longitudinal path 2160 of the firing member 2140. Rather, the drive surfaces 2145 extend transversely to the longitudinal path 2160. In at least one instance, the distal end of each drive surface 2145 is positioned further away from the longitudinal path 2160 than the proximal end. Such an arrangement can reduce or eliminate the problems described above in connection with the progressive closure of the anvil 2130. More specifically, in at least one instance, if the anvil 2130 will move through a range of motion between about 4 degrees and about 0 degrees with respect to the longitudinal path 2160 during the progressive closure, then the drive surface 2145 could be oriented at about 2 degrees with respect to the longitudinal path 2160, for example, which represents the midpoint in the range of progressive closure. Other embodiments are possible. For instance, if the anvil 2130 will move through a range of motion between about 1 degree and about 0 degrees with respect to the longitudinal path 2160 during the progressive closure, then the drive surfaces 2145 could be oriented at about 1 degree with respect to the longitudinal path 2160, for example, which represents the upper bound in the range of progressive closure. In various instances, the firing member 2140 may be required to progressively close the anvil 2130 through a 5 degree range of motion, for example. In other instances, the firing member 2140 may be required to progressively the anvil 2130 through a 10 degree range of motion, for example. In some instances, the anvil 2130 may not reach its completely closed position and, as a result, the progressive closure of the anvil 2130 may not reach 0 degrees.
  • Further to the above, the drive surface 2145 of the projection 2143 is not parallel to the drive surface of the foot 2144. Referring primarily to FIG. 64, the drive surface 2145 extends along an axis 2183 and the drive surface of the foot 2144 extends along an axis 2184. In at least one instance, the drive surface 2145 is oriented at an about 0.5 degree angle with respect to the drive surface of the foot 2144, for example. Other instances are envisioned in which the drive surface 2145 is oriented at an about 1 degree angle with respect to the drive surface of the foot 2144, for example. Certain instances, are envisioned in which the drive surface 2145 is oriented between about 0.5 degrees and about 5 degrees with respect to the drive surface of the foot 2144, for example. The drive surface of the foot 2144 is parallel to the longitudinal path 2160; however, other embodiments are envisioned in which the drive surface of the foot 2144 is not parallel to the longitudinal path 2160.
  • The examples provided above were discussed in connection with a movable anvil; however, it should be understood that the teachings of such examples could be adapted to any suitable movable jaw, such as a movable staple cartridge jaw, for example. Similarly, the examples provided elsewhere in this application could be adapted to any movable jaw.
  • Turning now to FIGS. 66-68, a firing member 2240 comprises a firing bar and a coupling member 2242 attached to the firing bar. The coupling member 2242 comprises a connector 2148 which connects the coupling member 2242 to the firing bar. The coupling member 2242 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke. The coupling member 2242 also comprises projections 2243 configured to engage an anvil, such as anvil 2030 or 2030′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke. Each projection 2243 comprises a drive surface 2245 defined on the bottom side thereof. Each projection 2243 further comprises a radiused-transition 2249 extending around the perimeter thereof. The coupling member 2242 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2240 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2240 at the outset of the staple firing stroke.
  • Further to the above, each projection 2243 comprises a leading, or proximal, end 2251 configured to engage the anvil and, in addition, a trailing end. The leading end of each projection 2243 is different than the lagging, or trailing, end of the projection 2243. The leading end 2251 comprises a radius which extends from the bottom drive surface 2245 of the projection 2243 to a location positioned above a longitudinal centerline 2250 of the projection 2243. The leading end 2251 comprises a single radius of curvature; however, the leading end 2251 can be comprised of more than one radius of curvature. Each projection 2243 further comprises a radiused edge 2259 between the radiused leading end 2251 and the top surface of the projection 2243. The radius of curvature of the edge 2259 is smaller than the radius of curvature of the leading end 2251. Other embodiments are envisioned in which the entirety of, or at least a portion of, the leading end 2251 is linear. In any event, the configuration of the leading end 2251 can shift the force, or load, transmitted between the firing member 2240 and the anvil away from the leading end 2251 toward the trailing end of the projection 2243. Stated another way, the configuration of the leading end 2251 may prevent the leading end 2251 from becoming the focal point of the transmitted force between the firing member 2240 and the anvil. Such an arrangement can prevent or reduce the possibility of the firing member 2240 becoming stuck against the anvil and can reduce the force required to move the firing member 2240 distally.
  • Turning now to FIGS. 69-71, a firing member 2340 comprises a firing bar and a coupling member 2342 attached to the firing bar. The coupling member 2342 comprises a connector 2148 which connects the coupling member 2342 to the firing bar. The coupling member 2342 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke. The coupling member 2342 also comprises projections 2343 configured to engage an anvil, such as anvil 2030 or 2030′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke. Each projection 2343 comprises a drive surface defined on the bottom side thereof. Each projection 2343 further comprises a radiused-transition 2349 extending around the perimeter thereof. The coupling member 2342 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2340 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2340 at the outset of the staple firing stroke.
  • Further to the above, each projection 2343 comprises a radiused leading end 2351. The leading end 2351 is similar to the leading end 2251 and comprises a curved surface which extends across the centerline 2350 of the projection 2343. The leading end 2251 has a different configuration than the trailing end of the projection 2243. Each projection 2343 further comprises a lateral side, or end, 2352. Each lateral end 2352 comprises a flat surface which is positioned intermediate radiused, or curved, edges 2347. A first radiused edge 2347 is positioned intermediate a top surface of the projection 2343 and the lateral end 2352 and, in addition, a second radiused edge 2347 is positioned intermediate a bottom surface of the projection 2343 and the lateral end 2352.
  • Turning now to FIGS. 72-74, a firing member 2440 comprises a firing bar and a coupling member 2442 attached to the firing bar. The coupling member 2442 comprises a connector 2148 which connects the coupling member 2442 to the firing bar. The coupling member 2442 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke. The coupling member 2442 also comprises projections 2443 configured to engage an anvil, such as anvil 2030 or 2030′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke. Each projection 2443 comprises a drive surface 2445 defined on the bottom side thereof. Each projection 2443 further comprises a radiused-transition extending around the perimeter thereof. The coupling member 2442 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2440 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2440 at the outset of the staple firing stroke.
  • Further to the above, the lateral sides, or ends, of each projection 2443 are defined by more than one radius of curvature. Each projection 2443 comprises a first radius of curvature 2447 a extending from the bottom drive surface 2445 and a second radius of curvature 2447 b extending from the top surface of the projection 2443. The first radius of curvature 2447 a is different than the second radius of curvature 2447 b. For instance, the first radius of curvature 2447 a is larger than the second radius of curvature 2447 b; however, the curvatures 2447 a and 2447 b can comprise any suitable configuration. Referring primarily to FIG. 74, the first radius of curvature 2447 a extends upwardly past a centerline 2450 of the projection 2443.
  • Turning now to FIGS. 75-77, a firing member 2540 comprises a firing bar and a coupling member 2542 attached to the firing bar. The coupling member 2542 comprises a connector 2148 which connects the coupling member 2542 to the firing bar. The coupling member 2542 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke. The coupling member 2542 also comprises projections 2543 configured to engage an anvil, such as anvil 2030 or 2030′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke. Each projection 2543 comprises a drive surface defined on the bottom side thereof. Each projection 2543 further comprises a radiused-transition extending around the perimeter thereof. The coupling member 2542 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2540 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2540 at the outset of the staple firing stroke.
  • Further to the above, each projection 2543 comprises a lateral side, or end, 2552 which is flat, or at least substantially flat. Each projection 2543 further comprises a radiused transition 2547 extending around the lateral end 2552. Each projection 2543 is symmetrical, or at least substantially symmetrical, about a longitudinal centerline which extends through the lateral end 2552. Moreover, the top surface and the bottom surface of each projection 2543 are parallel to one another.
  • Referring primarily to FIG. 76, the leading end 2551 of each projection 2543 is positioned distally with respect to a cutting edge 2042 of the cutting portion 2041. The trailing end 2559 of each projection 2543 is positioned proximally with respect to the cutting edge 2042. As a result, the projections 2043 longitudinally span the cutting edge 2042. In such instances, the firing member 2540 can hold the anvil and the staple cartridge together directly at the location in which the tissue is being cut.
  • Turning now to FIGS. 78-80, a firing member 2640 comprises a firing bar and a coupling member 2642 attached to the firing bar. The coupling member 2642 comprises a connector 2148 which connects the coupling member 2642 to the firing bar. The coupling member 2642 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke. The coupling member 2642 also comprises projections 2643 configured to engage an anvil, such as anvil 2030 or 2030′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke. Each projection 2643 comprises a drive surface 2645 defined on the bottom side thereof. Each projection 2643 further comprises a radiused-transition 2649 extending around the perimeter thereof. The coupling member 2642 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2640 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2640 at the outset of the staple firing stroke.
  • Further to the above, each projection 2643 further comprises a lateral end 2652, a bottom drive surface 2645, and a top surface 2647. The bottom drive surface 2645 is flat and is parallel to the longitudinal firing path 2660 of the firing member 2640. Referring primarily to FIG. 80, the top surface 2647 is flat, but not parallel to the longitudinal firing path 2660. Moreover, the top surface 2647 is not parallel to the bottom surface 2645. As a result, each projection 2643 is asymmetrical. In fact, the orientation of the top surface 2647 shifts the moment of inertia of the projection 2643 above the lateral end 2652. Such an arrangement can increase the bending stiffness of the projections 2643 which can reduce the deflection of the projections 2643.
  • Turning now to FIGS. 81-83, a firing member 2740 comprises a firing bar and a coupling member 2742 attached to the firing bar. The coupling member 2742 comprises a connector 2148 which connects the coupling member 2742 to the firing bar. The coupling member 2742 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke. The coupling member 2742 also comprises projections 2743 configured to engage an anvil, such as anvil 2030 or 2030′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke. Each projection 2743 comprises a drive surface defined on the bottom side thereof. The coupling member 2742 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2740 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2740 at the outset of the staple firing stroke.
  • Further to the above, each projection 2743 comprises a first, or leading, portion 2753 a and a second, or lagging, portion 2753 b positioned distally behind the leading portion 2753 a. The leading portion 2753 a comprises a curved lead-in surface 2751 defined on the distal end thereof which is configured to initially engage the anvil. The leading portion 2753 a further comprises a first, or leading, drive surface 2745 a defined on the bottom side thereof. Similarly, the lagging portion 2753 b comprises a second, or lagging, drive surface 2745 b defined on the bottom side thereof. Each projection 2743 further comprises a transition 2752 defined between the leading portion 2753 a and the lagging portion 2753 b.
  • As the firing member 2740 is advanced distally, further to the above, the drive surfaces 2745 a and 2745 b can co-operate to engage and position the anvil. In certain embodiments, the drive surfaces 2745 a and 2745 b define a drive plane which is parallel, or at least substantially parallel, to the longitudinal path 2760 of the firing member 2740 during the staple firing stroke. In some instances, however, only the leading drive surface 2745 a may engage the cam surface defined on the anvil. Such instances can arise when the firing member 2740 progressively closes the anvil, for example.
  • In other embodiments, referring to FIGS. 93 and 94, the leading drive surface 2745 a is positioned above the lagging drive surface 2745 b. Stated another way, the leading drive surface 2745 a is positioned further away from the longitudinal path 2760 than the lagging drive surface 2745 b such that both drive surfaces 2745 a and 2745 b remain in contact with the anvil during the staple firing stroke. In at least one instance, the drive surfaces 2745 a and 2745 b can define a drive plane which is transverse to the longitudinal path 2760. In certain instances, a 1 degree angle, for example, can be defined between the drive plane and the longitudinal path 2760. In various instances, the leading drive surface 2745 a is positioned vertically above the lagging drive surface 2745 b by approximately 0.001″, for example. In other embodiments, the leading drive surface 2745 a is positioned vertically above the lagging drive surface 2745 b by approximately 0.002″, for example. In certain instances, the leading drive surface 2745 a is positioned above the lagging drive surface 2745 b a distance which is between about 0.001″ and about 0.002″, for example
  • In certain instances, referring again to FIG. 93, only the lagging drive surfaces 2745 b may be in contact with the cam surfaces of the anvil when the firing member 2740 progressively closes the anvil. In such instances, the leading drive surfaces 2745 a are not in contact with the cam surfaces of the anvil. Such an arrangement can reduce the plastic deformation of the projections 2743 and reduce to force needed to advance the firing member 2740 distally as compared to when only the leading drive surfaces 2745 a are in contact with the cam surfaces of the anvil. When the anvil begins to flex owing to the staple forming load being applied to the anvil, in some instances, the anvil can flex upwardly into contact with the leasing drive surfaces 2745 a as illustrated in FIG. 94.
  • The leading portion 2753 a is thicker than the lagging portion 2753 b. Stated another way, the leading portion 2753 a has a larger bending moment of inertia than the lagging portion 2753 b which can resist the upward bending of the projection 2743. As a result, the lagging portion 2753 b can deflect upwardly more than the leading portion 2753 a. In such instances, it is more likely that both portions 2753 a and 2753 b of the projections 2743 can remain in contact with the anvil during the staple firing stroke even though the firing member 2740 is being used to progressively close the anvil. Moreover, the leading portion 2753 a also has a larger shear thickness than the lagging portion 2753 b which can better resist shear forces transmitted through the projections 2743. The leading portion 2753 a is often exposed to greater shear forces than the lagging portion 2753 b and, as a result, can benefit from the increased shear thickness. If it is believed that the lagging portion 2753 b may experience greater shear forces than the leading projection 2753 a, then the lagging portion 2753 b can have a greater shear thickness than the leading portion 2753 a, for example.
  • Turning now to FIGS. 84-86, a firing member 2840 comprises a firing bar and a coupling member 2842 attached to the firing bar. The coupling member 2842 comprises a connector 2148 which connects the coupling member 2842 to the firing bar. The coupling member 2842 further comprises a cutting member 2041 configured to incise the tissue of a patient during a staple firing stroke. The coupling member 2842 also comprises projections configured to engage an anvil, such as anvil 2030 or 2030′, for example, and, in addition, a foot 2144 configured to engage a staple cartridge jaw during the staple firing stroke. As described in greater detail below, each projection comprises a drive surface defined on the bottom side thereof. The coupling member 2842 further comprises intermediate projections 2146 extending laterally therefrom which are configured to prevent the firing member 2840 from performing the staple firing stroke when an unspent staple cartridge is not positioned in front of the firing member 2840 at the outset of the staple firing stroke.
  • Further to the above, each side of the coupling member comprises a first, or leading, projection 2843 d and a second, or lagging, projection 2843 p positioned behind the leading projection 2843 d. The leading projection 2843 d comprises a curved lead-in surface 2851 d defined on the distal end thereof which is configured to initially engage the anvil. The leading projection 2843 d further comprises a first, or leading, drive surface 2845 d defined on the bottom side thereof. Similarly, the lagging projection 2843 p comprises a curved lead-in surface 2851 p defined on the distal end thereof which is configured to engage the anvil. The lagging projection 2843 p further comprises a second, or lagging, drive surface 2845 p defined on the bottom side thereof.
  • As the firing member 2840 is advanced distally, further to the above, the drive surfaces 2845 d and 2845 p can co-operate to engage and position the anvil. In certain embodiments, the drive surfaces 2845 d and 2845 p define a drive plane which is parallel, or at least substantially parallel, to the longitudinal path 2860 of the firing member 2840 during the staple firing stroke. In other embodiments, the leading drive surface 2845 d is positioned above the lagging drive surface 2845 p. Stated another way, the leading drive surface 2845 d is positioned further away from the longitudinal path 2860 than the lagging drive surface 2845 p. In at least one instance, the drive surfaces 2845 d and 2845 p can define a drive plane which is transverse to the longitudinal path 2860. In certain instances, a 1 degree angle, for example, can be defined between the drive plane and the longitudinal path 2860.
  • Further to the above, the leading projections 2843 d and the lagging projections 2843 p can move relative to each other. In various instances, a leading projection 2843 d and a lagging projection 2843 p on one side of the coupling member 2842 can move independently of one another. Such an arrangement can allow the projections 2843 d and 2843 p to independently adapt to the orientation of the anvil, especially when the firing member 2840 is used to progressively close the anvil. As a result, both of the projections 2843 d and 2843 p can remain engaged with the anvil such that forces flow between the firing member 2840 and the anvil at several locations and that the plastic deformation of the projections is reduced.
  • FIG. 91 depicts the energy required for a first firing member to complete a firing stroke, labeled as 2090′, and a second firing member to complete a firing stroke, labeled as 3090. The firing stroke 2090′ represents a condition in which significant plastic deformation and galling is occurring. The firing stroke 3090 represents an improvement over the firing stroke 2090′ in which the deformation of the firing member and anvil ledge is mostly elastic. It is believed that, in certain instances, the plastic strain experienced by the firing member and/or anvil can be reduced by about 40%-60%, for example, by employing the teachings disclosed herein.
  • The various embodiments described herein can be utilized to balance the loads transmitted between a firing member and an anvil. Such embodiments can also be utilized to balance the loads transmitted between a firing member and a staple cartridge jaw. In either event, the firing member can be designed to provide a desired result but it should be understood that such a desired result may not be achieved in some circumstances owing to manufacturing tolerances of the stapling instrument and/or the variability of the tissue thickness captured within the end effector, for example. In at least one instance, the upper projections and/or the bottom foot of the firing member, for example, can comprise wearable features which are configured to allow the firing member to define a balanced interface with the anvil.
  • Further to the above, referring now to FIGS. 87-90, a firing member 2940 comprises lateral projections 2943. Each projection 2943 comprises longitudinal ridges 2945 extending from the bottom thereof. The ridges 2945 are configured to plastically deform and/or smear when the firing member 2940 is advanced distally to engage the anvil. The ridges 2945 are configured to quickly wear in, or take a set, so as to increase the contact area between the projections 2943 and the anvil and provide better load balancing between the firing member 2940 and the anvil. Such an arrangement can be especially useful when the end effector is used to perform several staple firing strokes. In addition to or in lieu of the above, one or more wearable pads can be attached to the projections of the firing member which can be configured to plastically deform.
  • Traditionally, surgical stapling and cutting instruments comprised robust mechanical lockouts configured to protect against unauthorized firing of the surgical stapling and cutting instruments because of the dangers associated with such unauthorized firing. For example, firing a surgical stapling and cutting instrument that is not loaded with a staple cartridge, or is loaded with a staple cartridge that has already been fired, may cause severe bleeding if the tissue cutting is performed without any tissue stapling.
  • The recent transition to motorized surgical stapling and cutting instruments presents new challenges in ensuring the safe operation of such instruments. Among other things, the present disclosure presents various electrical and electro-mechanical lockouts that are suitable for use with motorized surgical stapling and cutting instruments. Since lockout failure can result in a serious risk to the patient, the present disclosure presents multiple safeguards that operate in redundancy to ensure that lockout failures are avoided. The present disclosure provides various techniques for detecting when a staple cartridge is attached to an end effector of a surgical stapling and cutting instrument. The present disclosure further provides various techniques for detecting whether an attached staple cartridge is spent.
  • An end effector 4000 of a surgical stapling system is illustrated in FIG. 95. The end effector 4000 comprises a frame 4002, a cartridge jaw 4004, and an anvil 4006. The cartridge jaw 4004 extends fixedly from the frame 4002. The anvil 4006 is movable between an open, or unclamped, position and a closed, or clamped, position (FIG. 95) relative to the cartridge jaw 4004. In alternative embodiments, the cartridge jaw 4004 is movable between an open, or unclamped, position and a closed, or clamped, position relative to the anvil 4006. In at least one such embodiment, the anvil 4006 extends fixedly from the frame 4002.
  • The cartridge jaw 4004 includes a channel or carrier 4022 configured to receive a staple cartridge, such as a staple cartridge 4008, for example. Referring to FIG. 96, the staple cartridge 4008 comprises a cartridge body 4010. The cartridge body 4010 comprises a deck 4012 configured to support the tissue of a patient, a longitudinal slot 4014, and six longitudinal rows of staple cavities 4016 defined therein. Each staple cavity 4016 is configured to receive and removably store a staple therein. The staple cartridge 4008 further comprises staple drivers configured to drive the staples out of the staple cavities 4016. Other staple cartridges with various other arrangements of staple cavities, decks, and/or staples are envisioned for use with the end effector 4000.
  • Further to the above, the staple cartridge 4008 further comprises a sled 4018 configured to engage the staple drivers. More specifically, the sled 4018 comprises ramps 4020 configured to engage cams defined on the staple drivers and lift the staple drivers and the staples within the staple cavities 4016 as the sled 4018 is moved distally through the staple cartridge 4008. A firing member is configured to motivate the sled 4018 distally from a proximal, unfired, or starting position toward a distal, fired, or end position during a staple firing stroke.
  • Referring to FIGS. 96, 97, 98B, the staple cartridge 4008 includes a cartridge circuit 4024. The cartridge circuit 4024 includes a storage medium 4026, a cartridge connector-region 4017 comprising a plurality of external electrical contacts 4028, and a cartridge-status circuit portion 4032 that includes a trace element 4034. The storage medium 4026 can be a memory that stores information about the staple cartridge 4008 such as, for example, various characteristics of the staple cartridge 4008 including a firing status, staple-type, staple-size, cartridge batch number, and/or cartridge color.
  • Referring to FIGS. 99-100, the sled 4018 further includes a circuit breaker 4019 comprising a gripping member 4021 that is configured to capture and sever the trace element 4034 from the cartridge-status circuit portion 4032 as the sled 4018 is advanced distally from a starting position. By severing the trace element 4034, the circuit breaker 4019 transitions the cartridge-status circuit portion 4032 from a closed configuration to an open configuration which signals a transition of the staple cartridge 4000 from an unfired, or unspent, status to a fired, or spent, status. Information about this transition can be stored in the storage medium 4026. Accordingly, sensing that a staple cartridge 4008 has a severed trace element 4034 can indicate that the staple cartridge 4008 has already been fired.
  • As illustrated in FIGS. 99-100, the gripping member 4021 of the circuit breaker 4019 has a right-angle configuration with a first portion 4023 protruding or extending away from a bottom surface 4025 of the sled 4018 and a second portion 4027 defining a right angle with the first portion 4023. The second portion 4027 is spaced apart from the bottom surface 4025 a sufficient distance to snuggly hold a severed trace element 4034, as illustrated in FIG. 100. This arrangements ensures that the severed trace element 4034 is not accidently lost in a patient's body after completion of the firing steps of an end effector 4000. In at least one instance, the circuit breaker 4019 may comprise a magnetic member configured to magnetically retain a severed trace element 4034, for example. In various instances, a trace element can be cut or displaced to sever or establish an electrical connection indicative of whether a staple cartridge has been fired without completely severing the trace element.
  • In at least one instance, a carrier 4022 may include a Hall effect sensor 4029 (FIG. 100A) configured to detect the presence of a magnet embedded into or attached to a sled 4018. While the sled 4018 is at a start, proximal, or unfired position, the Hall effect sensor 4029 is able to detect the presence of the magnet. But, once the sled 4018 is advanced distally toward an end, distal, or fired position, the Hall effect sensor 4029 no longer senses the presence of the magnet. In at least one instance, a controller 4050 can be configured to receive input from the Hall effect sensor 4029 to assess the position of the sled 4018 and, accordingly, determine whether an attached staple cartridge 4008 is spent based on the readings of the Hall effect sensor 4029. In certain instances, the Hall effect sensor 4029 can be attached to the sled 4018 while the corresponding magnet is attached to and/or embedded into the carrier 4022. In certain instances, other position sensors can be employed to determine whether the sled 4018 is at the start, proximal, or unfired position.
  • In certain instances, a Hall effect sensor and magnet combination can be employed to determine whether a staple cartridge is spent by detecting whether a staple driver is at a start or unfired position. As described above, during a firing stroke, a sled 4018 is transitioned from a start, proximal, or unfired position toward an end, distal, or fired position to motivate a plurality of staple drivers to deploy staples of a staple cartridge. Each staple driver is generally lifted from a start or unfired position toward an final or fired position to deploy one or more staples. The Hall effect sensor can be coupled to the carrier 4022 or the staple cartridge 4008. The corresponding magnet can be coupled to a staple driver such as, for example, a proximal staple driver of the staple cartridge 4008. In at least one instance, the corresponding magnet is coupled to a proximal-most staple driver of the staple cartridge 4008. In certain instances, the Hall effect sensor is coupled to the carrier 4022 or the staple cartridge 4008 while the magnet is coupled to the staple driver. In certain instances, the Hall effect sensor is coupled to the carrier 4022 or the staple cartridge 4008 while the magnet is coupled to the proximal-most staple driver.
  • The Hall effect sensor is configured to detect the presence of the magnet while the staple driver is in the start or unfired position. But once the sled 4018 motivates the staple driver to be lifted from the start or unfired position, the Hall effect sensor no longer senses the presence of the magnet. Alternatively, the Hall effect sensor and magnet arrangement can be configured to detect when the staple driver reaches the final or fired position, for example. The Hall effect sensor and magnet arrangement can be configured to detect when the distal-most staple driver reaches the final or fired position, for example. In any event, a controller 4050 can be configured to receive input from the Hall effect sensor to assess the position of the staple driver and, accordingly, determine whether an attached staple cartridge 4008 is spent based on the readings of the Hall effect sensor 4029. In certain instances, other position sensors can be employed to determine whether the staple driver is at the start or unfired position.
  • As illustrated in FIG. 100A, the controller 4050 may comprise a processor 4052 and/or one or more storage mediums such as, for example, a memory 4054. By executing instruction code stored in the memory 4054, the processor 4052 may control various components of the surgical stapling and cutting instrument such as a firing system 4056 and a user interface 4058 such as, for example, a display. The memory 4054 includes program instructions which, when executed by the processor 4052, cause the processor 4052 to determine whether an attached staple cartridge 4008 is spent based on input from one or more sensors such as, for example, the Hall effect sensor 4029.
  • The user interface 4058 may include one or more visual feedback elements including display screens, backlights, and/or LEDs, for example. In certain instances, the user interface 4058 may comprise one or more audio feedback systems such as speakers and/or buzzers, for example. In certain instances, the user interface 4058 may comprise one or more haptic feedback systems, for example. In certain instances, the user interface 4058 may comprise combinations of visual, audio, and/or haptic feedback systems, for example.
  • In at least one instance, the carrier 4022 includes one or more electrical contacts configured to be electrically connected to corresponding electrical contacts in a sled 4018 of a staple cartridge 4008 seated in the carrier 4022. The electrical contacts define an electrical circuit 4031 (FIG. 100B) that remains closed while the sled 4018 is in a proximal unfired position. The electrical circuit 4031 is transitioned into an open configuration when the sled 4018 is advanced toward an end, distal, or fired position due to the severance of the electrical connection between the electrical contacts of the carrier 4022 and the sled 4018.
  • The electrical circuit 4031 may further include one or more sensors such as, for example, voltage or current sensors configured to detect whether the electrical circuit 4031 is in a closed configuration or an open configuration. Input from the one or more sensors can be received by a controller 4050. The controller 4050 can determine whether an attached staple cartridge 4008 is spent based on the input from the one or more sensors. The memory 4054 may include program instructions which, when executed by the processor 4052, cause the processor 4052 to determine whether an attached staple cartridge 4008 is spent based on input from the one or more sensors.
  • In certain instances, a staple cartridge 4008 may include an ETS lockout with a continuity path along a path of a sled defined by sled guide rails, for example. When the sled is in a proximal-most position, the sled is configured to interrupt the electrical path. However, when the sled is advanced distally the electrical path is completed and is sensed by an inductance sensor in the carrier 4022, for example. In various instances, one or more inductance sensors can be configured to track one or more proximal forming pockets for identification of the finger print of staples received within the proximal pockets. The inductance sensors can be configured to detect the absence of the staples from their respective forming pockets. Examples of ETS lockouts are described in U.S. Patent Application Publication No. 2013/0248577, entitled SURGICAL STAPLING DEVICE WITH LOCKOUT SYSTEM FOR PREVENTING ACTUATION IN THE ABSENCE OF AN INSTALLED STAPLE CARTRIDGE, filed Mar. 26, 2012, now U.S. Pat. No. 9,078,653, the entire disclosure of which is incorporated by reference herein.
  • In at least one instance, a staple cartridge, similar to the staple cartridge 4008, includes at least one electrical circuit 4033 (FIG. 100C) that comprises two electrical contacts that are spaced apart from one another. The electrical contacts are configured to be bridged by a staple of the staple cartridge when the staple is in an unfired position. Accordingly, the electrical circuit 4033 is in a closed configuration when the staple is in the unfired position. In addition, the electrical circuit 4033 is in an open configuration when the staple is lifted by a staple driver for deployment into tissue. The lifting of the staple by a staple driver during a firing stroke separates the staple from the electrical contacts of the electrical circuit 4033 thereby transitioning the electrical circuit 4033 into an open configuration.
  • The electrical circuit 4033 may further include one or more sensors such as, for example, voltage or current sensors configured to detect whether the electrical circuit 4033 is in a closed configuration or an open configuration. Input from the one or more sensors can be received by a controller 4050. The controller 4050 can determine whether an attached staple cartridge 4008 is spent based on the input from the one or more sensors. The memory 4054 may include program instructions which, when executed by the processor 4052, cause the processor 4052 to determine whether an attached staple cartridge 4008 is spent based on input from the one or more sensors.
  • In at least one instance, a staple cartridge, similar to the staple cartridge 4008, includes at least one electrical circuit 4035 (FIG. 100D) that comprises a conductive bridge that is configured to be ruptured when a staple driver of the staple cartridge is lifted to deploy one or more staples into tissue, which causes the electrical circuit 4035 to be transitioned from a closed configuration to an open configuration. The lifting of the staple driver during a firing stroke causes the conductive bridge of the electrical circuit 4035 to be severed, cut, or displaced thereby transitioning the electrical circuit 4033 into an open configuration. The conductive bridge of the electrical circuit 4035 is placed in a predetermined path of the staple driver. In at least one instance, the conductive bridge extends across, or at least partially across, a staple pocket configured to store the staple in an unfired position.
  • The electrical circuit 4035 may further include one or more sensors such as, for example, voltage or current sensors configured to detect whether the electrical circuit 4035 is in a closed configuration or an open configuration. Input from the one or more sensors can be received by a controller 4050. The controller 4050 can determine whether an attached staple cartridge 4008 is spent based on the input from the one or more sensors. The memory 4054 may include program instructions which, when executed by the processor 4052, cause the processor 4052 to determine whether an attached staple cartridge 4008 is spent based on input from the one or more sensors.
  • In various instances, upon determining that an attached staple cartridge 4008 is spent, a controller 4050 is configured to cause the firing system 4056 to be deactivated and/or provide user feedback as to the reason for the deactivation through a user interface such as, for example, a display 4058. The controller 4050 may identify and/or aid a user in addressing the cause of the deactivation of the firing system 4056. For example, the controller 4050 may alert a user that an attached staple cartridge is spent or is not the correct type to be used with the end effector 4000. Other techniques for determining whether a staple cartridge is spent are included in U.S. patent application Ser. No. 15/131,963, entitled METHOD FOR OPERATING A SURGICAL INSTRUMENT, filed Apr. 18, 2016, which is incorporated herein by reference in its entirety.
  • As illustrated in FIG. 98A, the carrier 4022 includes a carrier circuit 4043 (FIG. 98C) separably couplable to a cartridge circuit 4024 of a staple cartridge 4008. The carrier circuit 4043 has a plurality of electrical contacts 4036. In addition, the carrier circuit 4043 includes a carrier connector-region 4013 comprising a plurality of connectors 4038 that each defines a first electrical contact 4038 a and a second electrical contact 4038 b. The connectors 4038 are positioned such that a gap is maintained between the electrical contacts 4036 and the first electrical contacts 4038 a of the connectors 4038 in their neutral positions. Each of the connectors 4038 comprises a curved portion protruding from a supporting wall 4040. The second electrical contacts 4038 b are defined at the curved portions of the connectors 4038. When the staple cartridge 4008 is inserted in the carrier 4022, the external electrical contacts 4028 of the staple cartridge 4008 are configured to engage and move the connectors 4038 into a biased configuration where the electrical contacts 4036 are electrically coupled to the corresponding first electrical contacts 4038 a of the connectors 4038. While the staple cartridge 4008 is seated in the carrier 4022, the external electrical contacts 4028 of the staple cartridge 4008 are also electrically coupled to the corresponding second electrical contacts 4038 b of the connectors 4038.
  • To ensure a robust electrical connection, one or more of the electrical connectors 4038, external electrical contacts 4028, the electrical contacts 4036, the electrical contacts 4038 a, and/or the electrical contacts 4038 b can be coated, or at least partially coated, with a fluid-repellant coating, and/or potted in an insulating material such as silicon to prevent fluid ingress. As illustrated in FIG. 98A, a fluid-repellant coating is added to the electrical connectors 4038 and the electrical contacts 4036. In at least one aspect, the fluid-repellant coating is added to all the electrical cables and/or connections of a staple cartridge. One or more fluid-repellant coatings manufactured by Aculon, Inc., for example, can be used.
  • Further to the above, the electrical contacts 4038 b of the spring-biased electrical connectors 4038 include wearing features, or point contacts, 4039 in the form of a raised dome-shaped structure configured to remove or scratch off the fluid-repellant coating from the external electrical contacts 4028 of the staple cartridge 4008 thus establishing an electrical connection with the staple cartridge 4008. A compressible seal 4041 is configured to prevent, or at least resist, fluid ingress between a carrier 4022 and a staple cartridge 4008 seated in the carrier 4022. The compressible seal 4041 can be comprised of a compressible material that snuggly fits between a carrier 4022 and a staple cartridge 4008 seated in the carrier 4022. As illustrated in FIG. 98A, the compressible seal 4041 defines walls that define a perimeter around, or at least partially around, the electrical connectors 4038 and the external electrical contacts 4028 of the staple cartridge 4008 when the staple cartridge 4008 is seated in the carrier 4022.
  • Referring primarily to FIGS. 96-98, the carrier connector-region 4013 and the cartridge connector-region 4017 are configured to facilitate an electrical connection between the cartridge circuit 4024 and the carrier circuit 4043 when the staple cartridge 4008 is seated within the carrier 4022. As illustrated in FIG. 98, the carrier connector-region 4013 is located on a side wall 4009 of the carrier 4022. The carrier connector-region 4013 is secured to an inner surface 4011 of the side wall 4009. As illustrated in FIG. 97, the cartridge connector-region 4017 is located on a side wall 4007 of the staple cartridge 4008. The cartridge connector-region 4017 is secured to an outer surface 4005 of the side wall 4007. The carrier connector-region 4013 is configured to abut against the cartridge connector-region 4017 when the staple cartridge 4008 is seated in the carrier 4022. The compressible seal 4041 prevents, or at least resists, fluid ingress between the carrier connector-region 4013 and the cartridge connector-region 4017. Positioning the carrier connector-region 4013 and the cartridge connector-region 4017 on the corresponding side walls 4009 and 4007 facilitates the establishment of an electrical connection between the staple cartridge 4008 and the end effector 4000 by seating the staple cartridge 4008 within the carrier 4022. Positioning the carrier connector-region 4013 and the cartridge connector-region 4017 on the corresponding side walls 4009 and 4007 permits establishing a connection between the carrier connector-region 4013 and the cartridge connector-region 4017 simply by seating the staple cartridge 4008 in the carrier 4022.
  • As illustrated in FIG. 101, a first electrical interface 4042 is defined by the electrical contacts 4036 and 4038 a. The first electrical interface 4042 is configured to be transitioned between an open configuration where the electrical contacts 4036 and 4038 a are spaced apart and a closed configuration where the electrical contacts 4036 and 4038 a are electrically coupled. Likewise, a second electrical interface 4044 is defined by the electrical contacts 4038 b and 4028. The second electrical interface 4044 is configured to be transitioned between an open configuration where the electrical contacts 4038 b and 4028 are spaced apart and a closed configuration where the electrical contacts 4038 b and 4028 are electrically coupled. Furthermore, a third electrical interface 4046 is defined between the end effector 4000 and a handle portion of a surgical stapling and cutting instrument. The third electrical interface 4046 is also configured to be transitioned between an open configuration where the end effector 4000 is not attached to the handle portion and a closed configuration where the end effector 4000 is attached to the handle portion.
  • The transition of the electrical interface 4042 from an open configuration to a closed configuration indicates that a staple cartridge has been attached to the carrier 4022. In addition, the transition of the electrical interface 4044 from an open configuration to a closed configuration indicates that a correct type of staple cartridge has been attached to the carrier 4022. When the electrical interface 4044 is in the closed configuration, the storage medium 4026 of the staple cartridge 4008 can be accessed to obtain information stored therein about staple cartridge 4008.
  • In certain instances, as illustrated in FIG. 101, the electrical interfaces 4042, 4044, and 4046 and the cartridge-status circuit portion 4032 are electrically connected in a control circuit 4048. In such instances, a safety mechanism can be incorporated to prevent the firing of the end effector 4000 if at least one of the electrical interface 4042, the electrical interface 4044, the electrical interface 4046, and the cartridge-status circuit portion 4032 is in an open configuration. Said another way, if the control circuit 4048 is in an open configuration, the safety mechanism prevents the firing of the end effector 4000. In other words, if the end effector 4000 is not correctly attached to the handle portion of the surgical instrument, if no staple cartridge is attached to the carrier 4022, if an incorrect staple cartridge is attached to the carrier 4022, and/or if a spent staple cartridge is attached to carrier 4022, the safety mechanism prevents the firing of the end effector 4000.
  • In certain instances, one or more of the electrical interface 4042, the electrical interface 4044, the electrical interface 4046, and the cartridge-status circuit portion 4032 are connected in parallel with non-severable sections of the control circuit 4048 which helps avoid any single point failure due to a full interruption of the control circuit 4048. This arrangement ensures a continued electrical connection within the control circuit 4048 in the event one or more of the electrical interface 4042, the electrical interface 4044, the electrical interface 4046, and the cartridge-status circuit portion 4032 is in an open configuration. For example, as illustrated in FIG. 101, the trace element 4034 of the cartridge-status circuit portion 4032 is in parallel with a first resistive element 4037 and in series with a second resistive element 4037′ to ensure continued operation and avoid a single point failure of the control circuit 4048 in the event the trace element 4034 is severed. One or more sensors, including but not limited to voltage and/or current sensors, can be employed to detect a current configuration and/or a transition between an open or severed configuration and a closed or intact configuration.
  • In certain instances, one or more of the electrical interface 4042, the electrical interface 4044, the electrical interface 4046, and the cartridge-status circuit portion 4032 are not connected in series. In such instances, one or more of the electrical interface 4042, the electrical interface 4044, the electrical interface 4046, and/or the cartridge-status circuit portion 4032 are configured to separately provide feedback regarding their dedicated functions.
  • Referring to FIGS. 101-103, one or more of the electrical interface 4042, the electrical interface 4044, the electrical interface 4046, and the cartridge-status circuit portion 4032 can be implemented in the form of a conductive gate 4060 transitionable between an open configuration, as illustrated in FIG. 102, and a closed configuration, as illustrated in FIG. 103. In the closed configuration, the conductive gate 4060 enables an electrical connection between two end-points of an electrical circuit such as, for example, the control circuit 4048. The electrical connection, however, is severed when the conductive gate 4060 is transitioned to the open configuration.
  • The conductive gate 4060 can be repeatedly transitioned between a closed configuration and an open configuration. The conductive gate 4060 includes a pivot portion 4062 rotatably attached to a first end-point 4068 of the control circuit 4048. The conductive gate 4060 is configured to pivot about the first end-point 4068 between the open and closed configurations. The conductive gate 4060 further includes an attachment portion 4066 spaced apart from the pivot portion 4062. A central bridge portion 4064 extends between and connects the pivot portion 4062 and the attachment portion 4066. As illustrated in FIGS. 102-103, the attachment portion 4066 is in the form of a hook or latch configured to releasably capture a second end-point 4069 of the control circuit 4048 to transition the conductive gate 4060 from the open configuration to the closed configuration. In certain instances, the attachment portion 4066 may comprise a magnetic attachment or any other mechanical attachment, for example. In at least one instance, the conductive gate 4060 can be spring-biased in the closed configuration. Alternatively, the conductive gate 4060 can be spring-biased in the open configuration.
  • As illustrated in FIG. 103A, a safety mechanism 4047 of the surgical instrument may include a controller 4050 which may comprise a processor 4052 and/or one or more storage mediums such as, for example, a memory 4054. By executing instruction code stored in the memory 4054, the processor 4052 may control various components of the surgical instrument such as a firing system 4056 and a user interface such as, for example, a display 4058. The controller 4050 keeps track of the statuses of the electrical interface 4042, the electrical interface 4044, the electrical interface 4046, and/or the cartridge-status circuit portion 4032. As described in greater detail below, the controller 4050 may, depending on the reported statuses of one or more of the electrical interface 4042, the electrical interface 4044, the electrical interface 4046, and/or the cartridge-status circuit portion 4032, cause the firing system 4056 to be deactivated and/or provide user feedback as to the reason for the deactivation. In certain instances, the controller 4050 may identify and/or aid a user in addressing the cause of the deactivation of the firing system 4056. For example, the controller 4050 may alert a user that an attached staple cartridge is spent or is not the correct type to be used with the end effector 4000.
  • In various instances, the memory 4054 includes program instructions which, when executed by the processor 4052, cause the processor 4052 to determine that a staple cartridge 4008 has been attached to the carrier 4022 when a transition of the electrical interface 4042 to a closed configuration is detected by the processor 4052. In addition, the memory 4054 may include program instructions which, when executed by the processor 4052, cause the processor 4052 to determine that that attached staple cartridge 4008 has already been spent or fired when a transition of the electrical interface 4042 to a closed configuration is detected by the processor 4052 but the cartridge-status circuit portion 4032 is in the open configuration.
  • Further to the above, the memory 4054 may also include program instructions which, when executed by the processor 4052, cause the processor 4052 to determine that a memory 4026 of an attached staple cartridge 4008 is accessible when a transition of the electrical interface 4044 to a closed configuration is detected by the processor 4052. In addition, the processor 4052 may be configured to retrieve certain information stored in the memory 4026 of the attached staple cartridge 4008. In certain instances, detecting a closed configuration of the electrical interface 4042 while not detecting a closed configuration of the electrical interface 4044 indicates that an incorrect staple cartridge is attached to the carrier 4022.
  • Further to the above, the memory 4054 may also include program instructions which, when executed by the processor 4052, cause the processor 4052 to determine that a successful connection between the end effector 4000 and the handle portion of the surgical instrument has been detected when a transition of the electrical interface 4046 to a closed configuration is detected by the processor 4052.
  • Referring to FIG. 103B, a block diagram depicts a method 4071 of firing a surgical instrument that includes an end effector such as, for example, the end effector 4000. In a first step 4073, a firing trigger 4550 (FIG. 118) is pressed while a cutting member of the end effector 4000 is positioned proximally to a predetermined no-cartridge-lockout zone. One or more position sensors can be employed to determine the position of the cutting member. The firing trigger can be located on a handle of the surgical instrument and can be pressed by a user, for example, to in initiate a firing stroke of the surgical instrument. Next, a first decision block 4075 is configured to check whether the trace element 4034 (FIG. 99) is intact, and a second decision block 4077 is configured to check whether the memory 4026 (FIG. 97) can be read. If the trace element 4034 is not intact or the memory 4026 cannot be read, the firing lockout is engaged, as indicated in step 4079. Then, once captured tissue is released by unclamping the end effector 4000 at step 4070, an articulation mode is re-engaged in step 4072. If, however, the trace element 4034 is intact and the memory 4026 is read, the firing system 4056 is permitted to proceed through the firing stroke, step 4074. A decision block 4076 is configured to provide a threshold at a pre-determined cutline at which point, the firing system 4056 is reset. Resetting the firing system 4056 can include returning the cutting member to a per-determined default position, as depicted in step 4078. As illustrated in step 4074 a, if the firing trigger 4550 is pressed while the cutting member of the end effector 4000 is positioned distal to the predetermined no-cartridge-lockout zone, the firing system 4056 is permitted to proceed with the firing stroke.
  • Referring to FIGS. 104-108, a staple cartridge 4100 is similar in many respects to the staple cartridge 4008. The staple cartridge 4100 is releasably attached to the end effector 4000. In addition, the staple cartridge 4100 includes a cartridge-status circuit 4102 for assessing whether the staple cartridge 4100 is attached to an end effector 4000 and/or whether an attached staple cartridge 4100 was previously fired.
  • As illustrated in FIG. 104, the staple cartridge 4100 comprises a conductive gate 4160 at a proximal portion 4103 of the staple cartridge 4100. The conductive gate 4160 is movable between a first closed configuration (FIG. 106), a second closed configuration (FIG. 108), and an open configuration (FIG. 107). A controller can be configured to assess whether the staple cartridge 4100 is attached to an end effector 4000 and/or whether an attached staple cartridge 4100 was previously fired by determining whether the conductive gate 4160 is at an open configuration, a first closed configuration, or a second closed configuration. In at least one instance, the first closed configuration is a partially closed configuration while the second closed configuration is a fully closed configuration.
  • In a closed configuration, the conductive gate 4160 extends across an elongate slot 4114 defined between a first deck portion 4112 a and a second deck portion 4112 b of the staple cartridge 4100. The conductive gate 4160 extends between a first end-point 4168 of the cartridge-status circuit 4102 and a second end-point 4170 of the cartridge-status circuit 4102. The first end-point 4168 is defined on a first side wall 4114 a of the elongate slot 4114 and the second end-point 4170 is defined on a second side wall 4114 b of the elongate slot 4114. To connect the first end-point 4168 and the second end-point 4170 in the closed configuration, the conductive gate 4160 bridges the elongate slot 4114, as illustrated in FIG. 106.
  • As illustrated in FIG. 104, the conductive gate 4160 includes a pivot portion 4162 rotatably attached to the first end-point 4168 of the cartridge-status circuit 4102. The conductive gate 4160 is configured to pivot about the first end-point 4168 between the open, first closed, and second closed configurations. The conductive gate 4160 further includes an attachment portion 4166 spaced apart from the pivot portion 4162. A central bridge portion 4164 extends between and connects the pivot portion 4162 and the attachment portion 4166. As illustrated in FIG. 104, the attachment portion 4166 is in the form of a hook or latch configured to be releasably captured by the second end-point 4170. The attachment portion 4166 includes a “C” shaped ring 4171 configured to receive the second end-point 4170 in the second closed configuration. An opening 4173 of the “C” shaped ring 4171 is slightly smaller than the second end-point 4170. Accordingly, for the second end-point 4170 to be received within the “C” shaped ring 4171 an external force is needed to pass the second end-point 4170 through the opening 4173 of the “C” shaped ring 4171 and bring the conductive gate 4160 to the second closed configuration, as illustrated in FIG. 106.
  • Although the conductive gate is spring-biased toward a closed configuration, the spring-biasing force is insufficient to bring the conductive gate 4160 to the second closed configuration. Accordingly, in the absence of an external force to motivate the conductive gate 4160 toward an open configuration or a second closed configuration, the conductive gate 4160 will swing, under the effect of the spring-biasing force, to a resting position at the first closed configuration, as illustrated in FIG. 108. At the first closed configuration, an intermediate region 4175 between the “C” shaped ring 4171 of the attachment portion 4166 and the central bridge portion 4164 is in contact with the second end-point 4170. However, the second end-point 4170 is not received within the “C” shaped ring 4171.
  • The staple cartridge 4100 further comprises a sled 4118 which is similar in many respects to the sled 4018. A firing member 4113 is configured to motivate the sled 4118 distally from a proximal, unfired, or start position toward a distal, fired, or end position during a staple firing stroke. In addition, the sled 4118 includes a catch member 4119 configured to engage and transition the conductive gate 4160 from a second closed configuration to an open configuration as the sled 4118 is advanced distally from the proximal, unfired, or start position toward a distal, fired, or end position. Upon losing contact with the catch member 4119, the conductive gate 4160 is configured to return to the first closed configuration from the open configuration under the influence of the spring-biasing force and in the absence of any external force.
  • Referring to FIG. 105, the catch member 4119 extends proximally from the sled 4118 and includes a proximal-extending portion 4119 a and an engagement portion 4119 b protruding from a proximal end of the proximal-extending portion 4119 a. The engagement portion 4119 b is arranged such that conductive gate 4160 is captured by the engagement portion 4119 b as the sled 4118 is advanced from the proximal, unfired, or start position toward the distal, fired, or end position to deploy staples during a firing stroke of the surgical stapling and cutting instrument.
  • At least a portion of the catch member 4119 may be constructed from a non-conductive material. In at least one example, the engagement portion 4119 b is at least partially made from a non-conductive material.
  • Other arrangements and configurations of the catch member 4119 are contemplated by the present disclosure. In at least one aspect, the catch member 4119 can be a post extending away from a base 4118 a of the sled 4118, for example. In another instances, the catch member 4119 can be in the form of a ramp wherein the conductive gate 4160 is configured to engage a lower portion of the ramp and, as the sled 4118 is advanced distally, the ramp transitions the conductive gate 4160 to an open configuration. Once the conductive gate 4160 reaches the top of the ramp, the spring-biasing force returns the conductive gate 4160 to a first closed position.
  • Referring to FIGS. 106-109, the first closed configuration, the second closed configuration, and the open configuration represent a first resistance-status, a second resistance-status, and an infinite resistance-status, respectively, wherein the first resistance-status is different than the second resistance-status and the infinite resistance-status, and wherein the second resistance-status is different than the first resistance-status and the infinite resistance-status. By sensing which of the three statuses is current and/or by sensing transitions between the statuses, a controller 4050 (FIG. 109) can determine whether the staple cartridge 4100 is attached to an end effector 4000 and/or whether an attached staple cartridge 4100 was previously fired.
  • The conductive gate 4160 can be configured to define a first resistance when the conductive gate 4160 is at the first closed configuration and a second resistance, different than the first resistance, when the conductive gate 4160 is at the second closed configuration. The controller 4050 may comprise a processor 4052 and/or one or more storage mediums such as, for example, a memory 4054. By executing instruction code stored in the memory 4054, the processor 4052 may identify a current resistance-status of the conductive gate 4160. The controller 4050 may, depending on the detected resistance-status, perform one or more function such as, for example, causing the firing system 4056 to become inactivated and/or providing user feedback as to the reason for such deactivation.
  • In various instances, the memory 4054 includes program instructions which, when executed by the processor 4052, cause the processor 4052 to determine that an unspent or unfired staple cartridge 4100 is attached to the carrier 4022 when a second resistance-status is detected by the processor 4052. In addition, the memory 4054 may include program instructions which, when executed by the processor 4052, cause the processor 4052 to determine that a spent or previously fired staple cartridge 4100 is attached to the carrier 4022 when a first resistance-status is detected by the processor 4052. The memory 4054 may include program instructions which, when executed by the processor 4052, cause the processor 4052 to determine that no staple cartridge is attached to the carrier 4022 when an infinite resistance-status is detected by the processor 4052.
  • The controller 4050 can be configured to make a determination as to whether a staple cartridge 4008 is detected upon activation or powering of the surgical stapling and cutting instrument by performing a first reading, or a plurality of readings, of the resistance-status. If an infinite resistance-status is detected, the controller 4050 may then instruct a user through the display 4058, for example, to load or insert a staple cartridge 4008 into the carrier 4022. If the controller 4050 detects that a staple cartridge 4008 has been attached, the controller 4050 may determine whether the attached staple cartridge has been previously fired by performing a second reading, or a plurality of readings, of the resistance-status. If a first resistance-status is detected, the controller 4050 may instruct the user that the attached staple cartridge 4008 has been previously fired and/or to replace the staple cartridge 4008.
  • The controller 4050 employs a resistance-status detector 4124 to detect a current resistance-status and, in turn, determine whether the conductive gate 4160 is in the open configuration, the first closed configuration, or the second closed configuration. In at least one aspect, the resistance-status detector 4124 may comprise a current sensor. For example, the controller 4050 may cause a predetermined voltage potential to be generated between the first end-point 4168 and the second end-point 4170, and then measure the current passing through the conductive gate 4160. If the measured current corresponds to the first resistance, the controller 4050 determines that the conductive gate 4160 is at the first closed configuration. On the other hand, if the measured current corresponds to the second resistance, the controller determines that the conductive gate 4160 is at the second closed configuration. Finally, if no current is detected, the controller 4050 determines that the conductive gate 4160 is at the open configuration. In at least one aspect, the resistance-status detector 4124 may comprise other sensors such as, for example, a voltage sensor.
  • In various instances, one or more controllers of the present disclosure such as, for example, the controller 4050 may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, controllers, integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate arrays (FPGA), logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontroller, system-on-chip (SoC), and/or system-in-package (SIP). Examples of discrete hardware elements may include circuits and/or circuit elements (e.g., logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, relay and so forth). In other embodiments, one or more controllers of the present disclosure may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
  • In one embodiment, as illustrated in FIG. 110, a circuit 4080 may comprise a controller comprising one or more processors 4082 (e.g., microprocessor, microcontroller) coupled to at least one memory circuit 4084. The at least one memory circuit 4084 stores machine executable instructions that when executed by the processor 4082, cause the processor 4082 to execute machine instructions to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller 4050.
  • The processor 4082 may be any one of a number of single or multi-core processors known in the art. The memory circuit 4084 may comprise volatile and non-volatile storage media. In one embodiment, as illustrated in FIG. 110, the processor 4082 may include an instruction processing unit 4086 and an arithmetic unit 4088. The instruction processing unit may be configured to receive instructions from the one memory circuit 4084.
  • In one embodiment, a circuit 4090 may comprise a finite state machine comprising a combinational logic circuit 4092, as illustrated in FIG. 111, configured to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller 4050. In one embodiment, a circuit 4200 may comprise a finite state machine comprising a sequential logic circuit, as illustrated in FIG. 112. The sequential logic circuit 4200 may comprise the combinational logic circuit 4202 and at least one memory circuit 4204, for example. The at least one memory circuit 4204 can store a current state of the finite state machine, as illustrated in FIG. 112. The sequential logic circuit 4200 or the combinational logic circuit 4202 can be configured to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller 4050. In certain instances, the sequential logic circuit 4200 may be synchronous or asynchronous.
  • In other embodiments, the circuit may comprise a combination of the processor 4082 and the finite state machine to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller 4050. In other embodiments, the finite state machine may comprise a combination of the combinational logic circuit 4090 and the sequential logic circuit 4200.
  • In some cases, various embodiments may be implemented as an article of manufacture. The article of manufacture may include a computer readable storage medium arranged to store logic, instructions and/or data for performing various operations of one or more embodiments. In various embodiments, for example, the article of manufacture may comprise a magnetic disk, optical disk, flash memory or firmware containing computer program instructions suitable for execution by a general purpose processor or application specific processor. The embodiments, however, are not limited in this context.
  • The functions of the various functional elements, logical blocks, modules, and circuits elements described in connection with the embodiments disclosed herein may be implemented in the general context of computer executable instructions, such as software, control modules, logic, and/or logic modules executed by the processing unit. Generally, software, control modules, logic, and/or logic modules comprise any software element arranged to perform particular operations. Software, control modules, logic, and/or logic modules can comprise routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, control modules, logic, and/or logic modules and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, control modules, logic, and/or logic modules may be located in both local and remote computer storage media including memory storage devices.
  • Additionally, it is to be appreciated that the embodiments described herein illustrate example implementations, and that the functional elements, logical blocks, modules, and circuits elements may be implemented in various other ways which are consistent with the described embodiments. Furthermore, the operations performed by such functional elements, logical blocks, modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible
  • The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. Those skilled in the art will recognize, however, that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
  • Various mechanisms are described herein for detecting attachment of a staple cartridge to a surgical stapling and cutting instrument. In addition, various mechanisms are described herein for determining whether an attached staple cartridge is spent. Since firing a surgical stapling and cutting instrument in the absence of an unspent and properly attached staple cartridge presents a significant danger to the patient, an electromagnetic lockout mechanism 4300 is employed in connection with a firing system such as, for example, the firing system 4056 to prevent firing the surgical stapling and cutting instrument if a staple cartridge is not attached to a carrier 4022 of the surgical stapling and cutting instrument, or if an attached staple cartridge is spent.
  • Referring to FIGS. 113-116, a lockout mechanism 4300 for a surgical stapling and cutting instrument interacts with a drive train 4302 of the firing system 4056. The lockout mechanism 4300 comprises an electro-mechanical lockout that includes a latch 4304 transitionable between a locked configuration with a drive train 4302 and an unlocked configuration with the drive train 4302. In the unlocked configuration, as illustrated in FIG. 115, the drive train 4302 is permitted to advance to deploy staples into tissue and/or cut the tissue. In the locked configuration, illustrated in FIG. 114, the drive train 4302 is prevented from being advanced either because no staple cartridge is attached to the carrier 4022 or an attached staple cartridge is spent.
  • As illustrated in FIG. 113, the drive train 4302 includes a hole 4306 configured to receive the latch 4304 when the latch 4304 is in the locked configuration. An electrical circuit 4308 is configured to selectively transition the latch 4304 between the locked configuration and the unlocked configuration. The electrical circuit 4308 includes an electrical magnet 4310 which is configured to selectively transition the lockout mechanism 4300 between the locked configuration and the unlocked configuration. The electrical circuit 4308 further includes a power source 4312 and a power relay 4314 configured to selectively transmit energy to power the electrical magnet 4310. Powering the electrical magnet 4310 causes the lockout mechanism 4300 to be transitioned from a locked configuration to an unlocked configuration. In an alternative embodiment, powering the electrical magnet 4310 can cause the lockout mechanism 4300 to be transitioned from an unlocked configuration to a locked configuration.
  • The electrical magnet 4310 is configured to selectively move the latch 4304 between a first position, where the latch 4304 is at least partially positioned in the hole 4306, and a second position, where the latch 4304 is outside the hole 4306. In other words, the electrical magnet 4310 is configured to selectively move the latch 4304 between a first position, where the latch 4304 interferes with advancement of the drive train 4302, and a second position, where the latch 4304 permits advancement of the drive train 4302. In an alternative embodiment, a drive train of the firing system 4056 comprises a protrusion or a latch configured to be received in a hole of a corresponding structure that is operably attached to the electrical magnet 4310. In such an embodiment, the electrical magnet 4310 is configured to selectively move the structure comprising the hole between the first position and the second position. Although a latch and a corresponding structure that includes a hole are described in connection with the lockout mechanism 4300, it is understood that other mechanical mating members can be employed.
  • As illustrated in FIG. 113, the lockout mechanism 4300 further includes a piston 4315 comprising a biasing member such as, for example, a spring 4316 movable between an first compressed configuration, as illustrated in FIG. 114, and a second compressed configuration, as illustrated in FIG. 115. In the second compressed configuration, the spring 4316 lifts or maintains the latch 4304 out of engagement with the drive train 4302, as illustrated in FIG. 115. When the spring 4316 is allowed to return to the first compressed configuration, the latch 4304 is also returned into engagement with the drive train 4302, as illustrated in FIG. 114.
  • Further to the above, a permanent magnet 4318 is attached to the latch 4304. Alternatively, the latch 4304, or at least a portion thereof, can be made from a ferromagnetic material. When the electrical circuit 4308 activates the electrical magnet 4310, the permanent magnet 4318 is attracted toward the electrical magnet 4310 causing the spring 4316 to be biased or compressed. In addition, the permanent magnet 4318 causes the latch 4304 to be lifted or transitioned out of engagement with the drive train 4302, as illustrated in FIG. 115. However, when the electrical circuit 4308 deactivates the electrical magnet 4310, the biasing force of the spring 4316 returns the permanent magnet 4318 and the latch 4304 to their original positions where the latch 4304 is engaged with the drive train 4302, as illustrated in FIG. 114.
  • Referring to FIG. 116, a safety mechanism 4347 of a surgical stapling and cutting instrument may include a controller 4050 which may comprise a processor 4052 and/or one or more storage mediums such as, for example, a memory 4054. By executing instruction code stored in the memory 4054, the processor 4052 may control activating and/or deactivating the lockout mechanism 4300. The processor 4052 may receive input 4320 regarding whether a staple cartridge is attached to the carrier 4022 and/or whether an attached staple cartridge is spent. Depending on the received input, the processor 4052 may activate or deactivate the lockout mechanism 4300 to permit or prevent the firing system 4056 from being used to perform a staple firing stroke.
  • FIGS. 118-120B generally depict a motor-driven surgical fastening and cutting instrument 4500. As illustrated in FIGS. 118 and 119, the surgical instrument 4500 includes a handle assembly 4502, a shaft assembly 4504, and a power assembly 4506 (“power source,” “power pack,” or “battery pack”). The shaft assembly 4504 includes an end effector 4508 which can be configured to act as an endocutter for clamping, severing, and/or stapling tissue, although, in other instances, different types of end effectors may be used, such as end effectors for other types of surgical devices, graspers, cutters, staplers, clip appliers, access devices, drug/gene therapy devices, ultrasound devices, RF device, and/or laser devices, for example. Several RF devices may be found in U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995, and U.S. patent application Ser. No. 12/031,573, entitled SURGICAL FASTENING AND CUTTING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008, the entire disclosures of which are incorporated herein by reference in their entirety.
  • Referring primarily to FIGS. 119-120B, the handle assembly 4502 can be employed with a plurality of interchangeable shaft assemblies such as, for example, the shaft assembly 4504. Such interchangeable shaft assemblies may comprise surgical end effectors such as, for example, the end effector 4508 that can be configured to perform one or more surgical tasks or procedures. Examples of suitable interchangeable shaft assemblies are disclosed in U.S. Provisional Patent Application Ser. No. 61/782,866, entitled CONTROL SYSTEM OF A SURGICAL INSTRUMENT, and filed Mar. 14, 2013, the entire disclosure of which is hereby incorporated herein by reference in its entirety.
  • Referring primarily to FIG. 119, the handle assembly 4502 may comprise a housing 4510 that contains a handle 4512 that may be configured to be grasped, manipulated and actuated by a clinician. However, it will be understood that the various arrangements of the various forms of interchangeable shaft assemblies disclosed herein may also be effectively employed in connection with robotically-controlled surgical systems. Thus, the term “housing” may also encompass a housing or similar portion of a robotic system that houses or otherwise operably supports at least one drive system that is configured to generate and apply at least one control motion which could be used to actuate the interchangeable shaft assemblies disclosed herein and their respective equivalents. For example, the interchangeable shaft assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods disclosed in U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT, now U.S. Pat. No. 9,072,535, the entire disclosure of which is incorporated by reference herein.
  • Referring again to FIG. 119, the handle assembly 4502 operably supports a plurality of drive systems therein that can be configured to generate and apply various control motions to corresponding portions of the interchangeable shaft assembly that is operably attached thereto. For example, the handle assembly 4502 operably supports a first or closure drive system, which is employed to apply closing and opening motions to the shaft assembly 4504 while operably attached or coupled to the handle assembly 4502. The handle assembly 4502 operably supports a firing drive system that is configured to apply firing motions to corresponding portions of the interchangeable shaft assembly attached thereto.
  • Referring primarily to FIGS. 120A and 120B, the handle assembly 4502 includes a motor 4514 which is controlled by a motor control circuit 4515 and is employed by the firing system of the surgical instrument 4500. The motor 4514 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM. Alternatively, the motor 4514 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor control circuit 4515 may comprise an H-Bridge field-effect transistors (FETs) 4519, as illustrated in FIGS. 120A and 120B. The motor 4514 is powered by the power assembly 4506 (FIGS. 120A and 120B) which can be releasably mounted to the handle assembly 4502 for supplying control power to the surgical instrument 4500. The power assembly 4506 comprises a battery which may include a number of battery cells connected in series that can be used as the power source to power the surgical instrument 4500. The battery cells of the power assembly 4506 may be replaceable and/or rechargeable. In at least one example, the battery cells can be Lithium-Ion batteries which can be separably couplable to the power assembly 4506.
  • The shaft assembly 4504 includes a shaft assembly controller 4522 which communicates with the power management controller 4516 through an interface while the shaft assembly 4504 and the power assembly 4506 are coupled to the handle assembly 4502. The interface may comprise a first interface portion 4525 which includes one or more electric connectors for coupling engagement with corresponding shaft assembly electric connectors and a second interface portion 4527 which includes one or more electric connectors for coupling engagement with corresponding power assembly electric connectors to permit electrical communication between the shaft assembly controller 4522 and the power management controller 4516 while the shaft assembly 4504 and the power assembly 4506 are coupled to the handle assembly 4502. One or more communication signals can be transmitted through the interface to communicate one or more of the power requirements of the attached interchangeable shaft assembly 4504 to the power management controller 4516. In response, the power management controller modulates the power output of the battery of the power assembly 4506, as described below in greater detail, in accordance with the power requirements of the attached shaft assembly 4504. One or more of the electric connectors comprise switches which can be activated after mechanical coupling engagement of the handle assembly 4502 to the shaft assembly 4504 and/or to the power assembly 4506 to allow electrical communication between the shaft assembly controller 4522 and the power management controller 4516.
  • The interface facilitates transmission of the one or more communication signals between the power management controller 4516 and the shaft assembly controller 4522 by routing such communication signals through a main controller 4517 residing in the handle assembly 4502. Alternatively, the interface can facilitate a direct line of communication between the power management controller 4516 and the shaft assembly controller 4522 through the handle assembly 4502 while the shaft assembly 4504 and the power assembly 4506 are coupled to the handle assembly 4502.
  • The main controller 4517 may be any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. The surgical instrument 4500 may comprise a power management controller 4516 such as a safety microcontroller platform comprising two microcontroller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. Nevertheless, other suitable substitutes for microcontrollers and safety processor may be employed, without limitation. The safety processor may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
  • The main controller 4517 may be an LM 4F230H5QR, available from Texas Instruments. The Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet. The present disclosure should not be limited in this context.
  • The power assembly 4506 includes a power management circuit which comprises the power management controller 4516, a power modulator 4538, and a current sense circuit 4536. The power management circuit is configured to modulate power output of the battery based on the power requirements of the shaft assembly 4504 while the shaft assembly 4504 and the power assembly 4506 are coupled to the handle assembly 4502. For example, the power management controller 4516 can be programmed to control the power modulator 4538 of the power output of the power assembly 4506 and the current sense circuit 4536 is employed to monitor power output of the power assembly 4506 to provide feedback to the power management controller 4516 about the power output of the battery so that the power management controller 4516 may adjust the power output of the power assembly 4506 to maintain a desired output.
  • It is noteworthy that one or more of the controllers of the present disclosure may comprise one or more processors and/or memory units which may store a number of software modules. Although certain modules and/or blocks of the surgical instrument 4500 may be described by way of example, it can be appreciated that a greater or lesser number of modules and/or blocks may be used. Further, although various instances may be described in terms of modules and/or blocks to facilitate description, such modules and/or blocks may be implemented by one or more hardware components, e.g., processors, Digital Signal Processors (DSPs), Programmable Logic Devices (PLDs), Application Specific Integrated Circuits (ASICs), circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components.
  • The surgical instrument 4500 may comprise an output device 4542 which includes one or more devices for providing a sensory feedback to a user. Such devices may comprise visual feedback devices (e.g., an LCD display screen, LED indicators), audio feedback devices (e.g., a speaker, a buzzer) or tactile feedback devices (e.g., haptic actuators). The output device 4542 may comprise a display 4543 which may be included in the handle assembly 4502. The shaft assembly controller 4522 and/or the power management controller 4516 can provide feedback to a user of the surgical instrument 4500 through the output device 4542. The interface 4524 can be configured to connect the shaft assembly controller 4522 and/or the power management controller 4516 to the output device 4542. The reader will appreciate that the output device 4542 can instead be integrated with the power assembly 4506. In such circumstances, communication between the output device 4542 and the shaft assembly controller 4522 may be accomplished through the interface 4524 while the shaft assembly 4504 is coupled to the handle assembly 4502.
  • Having described a surgical instrument 4500 in general terms, the description now turns to a detailed description of various electrical/electronic component of the surgical instrument 4500. For expedience, any references herein to the surgical instrument 4500 should be construed to refer to the surgical instrument 4500 shown in connection with FIGS. 118-120B. Turning to FIG. 117, a circuit 4700 is depicted. The circuit 4700 is configured to control a powered surgical instrument, such as the surgical instrument 4500 illustrated in FIG. 118. The circuit 4700 is configured to control one or more operations of the powered surgical instrument 4500. The circuit 4700 includes a safety processor 4704 and a main or primary processor 4702. The safety processor 4704 and/or the primary processor 4702 are configured to interact with one or more additional circuit elements to control operation of the powered surgical instrument 4500. The primary processor 4702 comprises a plurality of inputs coupled to one or more circuit elements. The circuit 4700 can be a segmented circuit. In various instances, the circuit 4700 may be implemented by any suitable circuit, such as a printed circuit board assembly (PCBA) within the powered surgical instrument 4500.
  • It should be understood that the term processor as used herein includes any microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or at most a few integrated circuits. The processor is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system.
  • The primary processor 4702 is any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. The safety processor 4604 may be a safety microcontroller platform comprising two microcontroller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. Nevertheless, other suitable substitutes for microcontrollers and safety processor may be employed, without limitation. In one embodiment, the safety processor 4704 may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
  • The primary processor 4702 may be an LM 4F230H5QR, available from Texas Instruments. The Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet. Other processors may be readily substituted and, accordingly, the present disclosure should not be limited in this context. Examples of powered surgical instruments that include primary processors and safety processors are described in U.S. Patent Application Publication No. 2015/0272574, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL, filed Mar. 26, 2014, the entire disclosure of which is incorporated herein by reference.
  • The safety processor 4704 is configured to implement a watchdog function with respect to one or more operations of the powered surgical instrument 4500. In this regard, the safety processor 4704 employs the watchdog function to detect and recover from malfunctions of the primary processor 4702. During normal operation, the safety processor 4704 monitors for hardware faults or program errors of the primary processor 4702 and to initiate corrective action or actions. The corrective actions may include placing the primary processor 4702 in a safe state and restoring normal system operation. In at least one aspect, the primary processor 4702 and the safety processor 4704 operate in a redundant mode.
  • The primary processor 4702 and the safety processor 4704 are housed in a handle portion of the powered surgical stapling and cutting instrument 4500. At least one of the primary processor 4702 and the safety processor 4704 is in communication with a shaft processor 4706 through an interface 4707. The shaft processor 4706 is configured to receive input from a cartridge detection system 4709 configured to detect whether an unspent staple cartridge has been attached to the powered surgical stapling and cutting instrument 4500.
  • The circuit 4700 further includes a motor 4714 operably coupled to a firing member of the powered surgical stapling and cutting instrument 4500. One or more rotary position encoders 4741 can be configured to provide feedback to the primary processor 4702 and/or the safety processor 4704 as to the operational status of the motor 4714. A motor driver, including a metal-oxide-semiconductor field-effect transistor (MOSFET) 4711, controls power delivery to the motor 4714 from a power source 4713. The MOSFET 4711 is controlled by an AND logic gate 4717. A high output of the AND logic gate 4717 causes the MOSFET 4711 to be activated, which causes the motor 4714 to run. The high output of the AND logic gate 4717 depends on receiving an input from the primary processor 4702 and the safety processor 4704, as illustrated in FIG. 117. The primary processor 4702 and the safety processor 4704 are configured to independently determine whether to allow the motor 4714 to run. Said another way, the primary processor 4702 and the safety processor 4704 are configured to independently determine whether to permit advancement of the firing member of the powered surgical stapling and cutting instrument 4500.
  • In the event of an agreement, where both of the primary processor 4702 and the safety processor 4704 determine to run the motor 4714, the AND logic gate 4717 produces a high output causing the MOSFET 4711 to be activated thereby allowing the motor 4714 to run and, in turn, the firing member to be advanced to fire the powered surgical stapling and cutting instrument 4500. However, in the event of a disagreement, where only one of the primary processor 4702 and the safety processor 4704 determines to run the motor 4714 while the other one of the primary processor 4702 and the safety processor 4704 determines not to run the motor 4714, the AND logic gate 4717 fails to produce a high output and, in turn, the MOSFET 4711 remains inactive.
  • Further to the above, the decision as to whether to run the motor 4714 depends, at least in part, on information communicated to the primary processor 4702 and/or the safety processor 4704 through the interface 4707 regarding whether or not an unspent staple cartridge has been attached to the powered surgical stapling and cutting instrument 4500. As described in greater detail elsewhere herein, a cartridge detection system 4709 can be employed to determine, among other things, whether or not an unspent staple cartridge, is attached to the powered surgical stapling and cutting instrument 4500.
  • Referring to FIGS. 117A-117B, a translatable staple firing member 4460 of a stapling assembly 4400 of the powered surgical stapling and cutting instrument 4500 is movable between a proximal, unfired, or start position and a distal, fired, or end position along a staple firing path 4463. A detectable magnetic element 4461, for example, is mounted to the staple firing member 4460 which moves along, or at least substantially along, the staple firing path 4463. In at least one instance, the magnetic element 4461 is a permanent magnet, for example, which is comprised of iron, nickel, and/or any other suitable material. The cartridge detection system 4709 comprises a first, or proximal, sensor 4401′ and a second, or distal, sensor 4401 which are configured to detect the magnetic element 4461 as it moves along the staple firing path 4463 with the staple firing member 4460. The first sensor 4401′ and the second sensor 4401 each comprise a Hall Effect sensor; however, the sensors 4401′ and 4401 can comprise any suitable sensor. The sensors 4401′ and 4401 output a voltage that varies depending on their respective distances from the magnetic element 4461 (a higher voltage is output when the distance is small and a lesser voltage is output when the distance is great).
  • Further to the above, the cartridge detection system 4709 comprises a sensor circuit 4708 including, among other things, a voltage source 4403, for example, in communication with the sensors 4401′ and 4401 which supplies power to the sensors 4401′ and 4401. The sensor circuit 4708 further comprises a first switch 4405′ in communication with the first sensor 4401′ and a second switch 4405 in communication with the second sensor 4401. In at least one instance, the switches 4401′ and 4401 each comprise a transistor, such as a FET, for example. The outputs of the sensors 4401′, 4401 are connected to the central (gate) terminal of the switches 4405′, 4405, respectively. Prior to the firing stroke of the staple firing member 4460, the output voltages from the sensors 4401′, 4401 are high so that the first switch 4405′ and the second switch 4405 are in closed conditions.
  • When the magnetic element 4461 passes by the first sensor 4401′, the voltage output of the first sensor 4401′ is sufficient to change the first switch between a closed condition and an open condition. Similarly, the voltage output of the second sensor 4401 is sufficient to change the second switch 4405 between a closed condition and an open condition when the magnetic element 4461 passes by the second sensor 4401. When both of the switches 4405′ and 4405 are in an open condition, a ground potential is applied to an operational amplifier circuit 4406. The operational amplifier circuit 4406 is in signal communication with an input channel of a shaft processor 4706 of the motor controller and, when a ground potential is applied to the operational amplifier circuit 4406, the processor 4706 receives a ground signal from the circuit 4406.
  • When the processor 4706 receives a ground signal from the circuit 4406, the processor 4706 can determine that the staple firing stroke has been completed and that the staple cartridge positioned in the stapling assembly 4400 has been completely spent. Other embodiments are envisioned in which the sensor system is configured to detect a partial firing stroke of the staple firing member 4460 and supply a signal to the processor 4706 that indicates that the staple cartridge has been at least partially spent. In either event, the motor controller can be configured to prevent the staple firing member 4460 from performing another firing stroke until the staple cartridge has been replaced with an unspent cartridge. In at least one instance, further to the above, the sensor system comprises a sensor configured to detect whether the spent cartridge has been detached from the stapling assembly and/or whether an unspent cartridge has been assembled to the stapling assembly.
  • Further to the above, the sensor system can be configured to detect whether the staple firing member 4460 has been retracted along a retraction path 4462. In at least one instance, the magnetic element 4461 can be detected by the sensor 4401 as the magnetic element 4461 is retracted along the path 4462 and change the second switch 4405 back into a closed condition. Similarly, the magnetic element 4461 can be detected by the sensor 4401′ as the magnetic element 4461 is retracted along the path 4463 and change the first switch 4405′ back into a closed condition. By closing the switches 4405 and 4405′, the voltage polarity from the battery 4403 is applied to the circuit 4406 and, as a result, the processor 4706 receives a Vcc signal from the circuit 4406 on its input channel.
  • Further to the above, the cartridge detection system 4709 includes a cartridge circuit 4724. The cartridge circuit 4624 is similar in many respects to the cartridge circuit 4024 (FIG. 97). For example, the cartridge circuit 4724 includes a trace element 4734 which is transitioned between a severed status, where the staple cartridge is spent, and an intact status, where the staple cartridge is unspent. As illustrated in FIG. 117, the trace element 4734 is positioned in parallel with a first resistive element 4737 and in series with a second resistive element 4737′ to insure that the detection of failure of the sensor or interruption of its circuit is not merely lack of signal output. One or more sensors, including but not limited to voltage and/or current sensors, can be employed to detect a current status and/or a transition between severed status and an intact status.
  • As illustrated in FIG. 117, accurate communications between the processors 4702, 4704, and 4706 can be ensured using security codes such as, for example, cyclic redundancy checks (CRC) which are error-detecting codes attached to data communications to detect accidental changes in communicated data which may occur during data transmission. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. In certain instances, two parameter sets with separate CRCs are loaded into the shaft processor 4706 wherein one is normal and the other has a STOP command, for example, and parameters like a 0 mm transection length.
  • In at least one instance, the primary processor 4702 tracks the status of the trace element 4734 via a shared universal asynchronous receiver/transmitter (UART) pin, and the position of the motor 4714 via the rotary position encoder 4741, for example. The primary processor 4702 can be configured to prevent the motor 4714 from running if the primary processor 4702 detects that the trace element 4734 has been severed.
  • In various instances, the primary processor 4702 and/or the safety processor 4704 can be configured to prevent the motor 4714 from running if a movement of the firing member is detected by the proximal sensor 4401′, as described above, after a severed status of the trace element 4734 is detected. The detection of the movement of the firing member and the severed status of the trace element 4734 can be performed by the cartridge detection system 4709, as described above. The shaft processor 4706 can be configured to send a STOP command to the primary processor 4702 and/or the safety processor 4704 a severed status of the trace element 4734 is detected. The communication between the shaft processor 4706, the primary processor 4702, and/or the safety processor 4704 can be a CRC communication, for example. In various instances, the safety processor 4704 is configured to watch for the STOP command and to enter a sleep mode once the STOP command is received. In various instances, the safety processor 4704 is configured to stop the motor 4714 from running if a computed CRC, which is computed from the received data, does not match the received CRC. A CRC verification module can be employed by the safety processor 4704 to compute a CRC from the received data and compare the computed CRC with the received CRC.
  • In various instances, the primary processor 4702, the safety processor 4704, and/or the shaft processor 4706 may comprise security code generator modules and/or security code verification modules. Security codes can be generated by CHECK-SUM, HASH, or other suitable protocols. The security code generation module and/or the security code verification module may be implemented in hardware, firmware, software or any combination thereof. Ensuring the validity of the communications between the primary processor 4702, the safety processor 4704, and/or the shaft processor 4706 is important because body fluids may interfere with communicated signals between such processors.
  • As described above, the shaft processor 4706 can be configured to send a STOP command to the primary processor 4702 and/or the safety processor 4704 via a CRC communication. In one example, the shaft processor 4706 includes a security code generator configured to generate a security code and attached the security code to the STOP command transmitted to the primary processor 4702, for example. The primary processor 4702 includes a security code verification module configured to verify the integrity of the transmission received from the shaft processor 4706. The security code verification module is configured to compute a security code based on the received STOP command data and compare the computed security code to the security code received with the STOP command data. If the primary processor 4702 confirms the integrity of the received message, the primary processor 4702 may activate a stop mode 4688, for example.
  • In certain instances, the safety processor 4704 may be tasked with ensuring the integrity of messages transmitted to the primary processor 4702. In one example, the safety processor 4704 includes a security code verification module configured to verify the integrity of a message transmission from the shaft processor 4706. The security code verification module of the safety processor 4704 is configured to compute a security code based on the received STOP command data and compare the computed security code to the security code received with the STOP command data. If the safety processor 4704 confirms the integrity of the received message, the safety processor 4704 may activate a stop mode 4688 (FIG. 124), for example.
  • Turning now to FIG. 121, a circuit 4600 is configured to control a powered surgical instrument, such as the surgical instrument 4500 illustrated in FIG. 118. The circuit 4600 is configured to control one or more operations of the powered surgical instrument 4500. The circuit 4600 includes a safety processor 4604 and a main or primary processor 4602, which are similar in many respects to the safety processor 4704 and the primary processor 4702, respectively. The safety processor 4604 and/or the primary processor 4602 are configured to interact with one or more additional circuit elements to control operation of the powered surgical instrument 4500. The primary processor 4602 comprises a plurality of inputs coupled to one or more circuit elements. The circuit 4600 can be a segmented circuit. In various instances, the circuit 4600 may be implemented by any suitable circuit, such as a printed circuit board assembly (PCBA) within the powered surgical instrument 4500.
  • The circuit 4600 comprises a feedback element in the form of a display 4609. The display 4609 comprises a display connector coupled to the primary processor 4602. The display connector couples the primary processor 4602 to a display 4609 through one or more display driver integrated circuits. The display driver integrated circuits may be integrated with the display 4609 and/or may be located separately from the display 4609. The display 4609 may comprise any suitable display, such as an organic light-emitting diode (OLED) display, a liquid-crystal display (LCD), and/or any other suitable display. In some embodiments, the display 4609 is coupled to the safety processor 4604. Furthermore, the circuit 4600 further comprises one or more user controls 4611, for example.
  • The safety processor 4604 is configured to implement a watchdog function with respect to one or more operations of the powered surgical instrument 4500. In this regard, the safety processor 4604 employs the watchdog function to detect and recover from malfunctions of the primary processor 4602. During normal operation, the safety processor 4604 is configured to monitor for hardware faults or program errors of the primary processor 4602 and to initiate corrective action or actions. The corrective actions may include placing the primary processor 4602 in a safe state and restoring normal system operation.
  • In at least one aspect, the primary processor 4602 and the safety processor 4604 operate in a redundant mode. The primary processor 4602 and the safety processor 4604 are coupled to at least a first sensor. The first sensor measures a first property of the surgical instrument 4500. The primary processor 4602 is configured to determine an output based on the measured first property of the surgical instrument 4500 and compare the output to a predetermined value. Likewise, the safety processor 4604 is configured to separately determine an output based on the measured first property of the surgical instrument 4500 and compare the output to the same predetermined value. The safety processor 4604 and the primary processor 4602 are configured to provide a signal indicative of the value of their determined outputs. When either the safety processor 4604 or the primary processor 4602 indicates a value outside of an acceptable range, appropriate safety measures can be activated. In certain instances, the primary processor 4602 and the safety processor 4604 receive their inputs from separate sensors that are configured to separately measure the first property of the surgical instrument 4500. In certain instances, when at least one of the safety processor 4604 and the primary processor 4602 indicates a value within an acceptable range, the surgical instrument 4500 is allowed to continue in a normal mode of operation. For example, the firing system 4056 can be allowed to complete a firing stroke of the surgical instrument 4500 when at least one of the safety processor 4604 and the primary processor 4602 indicates a value within an acceptable range. In such instances, a discrepancy between the values or results determined by the safety processor 4604 and the primary processor 4602 can be attributed to a faulty sensor or a calculation error, for example.
  • As illustrated in FIG. 121, linear position encoders 4640 and 4641 are coupled to the primary processor 4602 and the safety processor 4604, respectively. The position encoder 4640 provides speed and position information about a firing member of the powered surgical instrument 4500 to the primary processor 4602 an analog to digital converters 4623 a (ADCs). Likewise, the position encoder 4640 provides speed and position information about a firing member of the powered surgical instrument 4500 to the safety processor 4604 through a separate analog to digital converter 4623 b (ADCs). The primary processor 4602 and the safety processor 4604 are configured to execute an algorithm for calculating at least one acceleration of the firing member based on the information derived from the linear position encoders 4640 and 4641. The acceleration of the firing member can be determined based on the following equation:
  • a = v 2 - v 1 t 2 - v 1
  • wherein a is the current acceleration of the firing member, wherein v2 is a current velocity of the firing member recorded at time t2, and wherein v1 is a previous velocity of the firing member at a previous time t1.
  • The acceleration of the firing member can also be determined based on the following equation:
  • a = d 2 - d 1 ( t 2 - t 1 ) 2
  • wherein a is the current acceleration of the firing member, wherein d2 is a distance traveled by the firing member between an initial position and a current position during a time t2, and wherein d1 is a distance traveled by the firing member between an initial position a previous position during a time t1.
  • The primary processor 4602 is further configured to compare the determined acceleration value to a predetermined threshold acceleration which can be stored in a memory unit in communication with the primary processor 4602, for example. Likewise, the safety processor 4604 is configured to compare its determined acceleration value to a predetermined threshold acceleration which can be stored in a memory unit in communication with the safety processor 4604, for example. In the event the primary processor 4602 and/or the safety processor 4604 determine that the determined acceleration values are beyond the a predetermined threshold acceleration, appropriate safety measures can be taken such as, for example, stopping power delivery to the motor 4514 and/or resetting the firing system 4056. Alternatively, in certain instances, when at least one of the safety processor 4604 and the primary processor 4602 indicates an acceptable acceleration value, the surgical instrument 4500 is allowed to continue in a normal mode of operation. For example, the firing system 4056 can be allowed to complete a firing stroke of the surgical instrument 4500 when at least one of the safety processor 4604 and the primary processor 4602 reports an acceptable acceleration. In such instances, a discrepancy between the values or results determined by the safety processor 4604 and the primary processor 4602 can be attributed to a faulty sensor or a calculation error, for example.
  • As described above, the primary processor 4602 and the safety processor 4604 are further configured to compare the determined acceleration values to a predetermined threshold acceleration which can be stored in a memory unit, for example. The threshold acceleration can be determined from a threshold force corresponding to a failure load of a lockout mechanism of the firing system 4056. In certain instances, the failure load is known to be about 100 lbf. In such instances, Newton's second law of motion can be employed to determine the corresponding threshold acceleration based on the equation:

  • F=m×a,
  • wherein F is the threshold force, and m is the mass exerting the force.
  • Acceleration of the firing member of the firing system 4056 can also be assessed by tracking the electrical current drawn by a motor 4514 during a firing stroke. The load on a firing member driven by the motor 4514 through a firing stroke is directly related the electrical current drawn by a motor 4514. Accordingly, the load experienced by the firing member can be assessed by measuring the electrical current drawn by the motor 4514 during a firing stroke. Newton's second law of motion can be employed to calculate the acceleration of the firing member based on the load experienced by the firing member which can be assessed by tracking the electrical current drawn by a motor 4514 during the firing stroke.
  • As illustrated in FIG. 122A, a sensor 4617 can be coupled to a motor control circuit 4619 to measure the current drawn by the motor 4514 during the firing stroke. In at least one instance, the sensor 4617 can be a current sensor or a Hall effect sensor, for example. The readings of the sensor 4617 can be amplified using a buffer amplifier 4625, digitized using an ADC 4623, and transmitted to the primary processor 4602 (FIG. 121) and the safety processor 4604 (FIG. 121) which are configured to execute an algorithm to determine the corresponding load on the firing member and determine an acceleration of the firing member based on Newton's second law of motion.
  • Referring to FIG. 122A, the sensor 4617 can be coupled to the motor control circuit 4619 to measure the current drawn by the motor 4514 during the firing stroke. During normal operation of the motor 4514, the readings of the sensor 4617 are expected to be within a normal predetermined range. As illustrated in FIG. 122B, the normal range can have a minimum threshold of about 0.5 A, for example, and a maximum threshold of about 5.0 A, for example. A sensor reading above the maximum threshold or a sensor reading above zero but below the minimum threshold can indicate a failure in the sensor 4617. The maximum threshold can be any value selected from a range of about 4.0 A, for example, to 6.0 A, for example. The minimum threshold can be any value selected from a range of about 0.4 A, for example, to 0.6 A, for example.
  • As described above, the readings of the sensor 4617 can be amplified using a buffer amplifier 4625, digitized using an ADC 4623, and transmitted to the primary processor 4602 which is configured to execute an algorithm to determine whether the readings of the sensor 4617 are within a predetermined normal range. In the event it is determined that the readings of the sensor 4617 is beyond the predetermined normal range, appropriate safety measures can be taken by the primary processor 4602. In one example, the primary processor 4602 may permit completion of the firing stroke in a safe mode because the abnormal motor current readings are likely due to a faulty sensor 4617. In another example, the primary processor may cause power delivery to the motor 4514 to be stopped and alert a user to utilize a mechanical bailout feature. The primary processor 4602 may alert a user through the display 4058 to contact a service department to replace the faulty sensor 4617. The primary processor 4602 may provide instructions on how to replace the faulty sensor 4617.
  • In certain instances, the safety processor 4604 can be configured to receive readings from another sensor, independent from the sensor 4617, configured to separately measure the current drawn by the motor 4514 during the firing stroke. Like the primary processor 4602, the safety processor 4604 can be configured to execute an algorithm to determine whether the readings of the other sensor are within a predetermined normal range. If at least one of the primary processor 4602 and the secondary processor 4604 determines that the current drawn by the motor 4514 is within the predetermined normal range, the motor 4514 is allowed to complete the firing stroke. In such instances, a discrepancy between the values or results determined by the safety processor 4604 and the primary processor 4602 are attributed to a faulty sensor or a calculation error, for example.
  • In certain instances, the primary processor 4602 and the safety processor 4604 can be configured to track or determine at least one acceleration of a firing member of the firing system 4056 using different techniques. If at least one of the primary processor 4602 and the safety processor 4604 determines that the acceleration of the firing member is within a normal range, the firing member is allowed to complete the firing stroke. A discrepancy between the acceleration values determined by the safety processor 4604 and the primary processor 4602 can be attributed to a faulty sensor or a calculation error. This ensures unnecessary interruptions of the firing system 4056 that are due to a faulty sensor or a calculation error.
  • In one example, the primary processor 4602 can be configured to determine or track an acceleration of a firing member of the firing system 4056 using a first technique. For example, the primary processor 4602 can be configured to determine or track an acceleration of the firing member by employing the sensor 4617 to measure the current drawn by the motor 4514. The primary processor 4602 can then execute an algorithm for calculating at least one acceleration of the firing member based on input from the sensor 4617, as described above. On the other hand, the safety processor 4604 can be configured to determine or track the acceleration of the firing member using a second technique, different than the first technique. For example, the safety processor 4604 can be configured to determine or track the same acceleration of the firing member by employing the position encoders 4640 to detect the position of the firing member during a firing stroke. The safety processor 4604 can execute an algorithm for calculating at least one acceleration of the firing member based on input from the position encoders 4640, as described above. The calculated accelerations can be compared against a predetermined normal range. In the event, the primary processor 4602 and the safety processor 4604 are in agreement that their respective acceleration values are within the normal range, the firing member is allowed to complete the firing stroke. If, however, the primary processor 4602 and the safety processor 4604 are in agreement that their respective acceleration values are outside the normal range, appropriate safety measures can be taken by the primary processor 4602, for example, as described above. In the event of a discrepancy between the outcomes determined by the primary processor 4602 and the safety processor 4604 with regard to the acceleration of the firing member, the firing member is allowed to complete the firing stroke.
  • Firing the powered surgical cutting and stapling instrument 4500 involves a mechanical component, where a firing trigger is squeezed by a user, and an electrical component, where an electrical current flows to the motor 4514 in response to a transition of the motor control circuit 4515 from an open configuration to a closed configuration when the firing trigger is squeezed by the user. A trigger-sensing control circuit 4627 (FIG. 122A) of the powered surgical cutting and stapling instrument 4500 includes a firing-trigger Hall effect sensor 4629 which is configured to detect the transition of the firing trigger 4550 between an open configuration and a closed configuration. In addition, the trigger-sensing control circuit 4627 also includes a verification-trigger Hall effect sensor 4631 configured to detect current drawn by the motor 4514 when the firing trigger is transitioned to the closed configuration. The sensors 4629 and 4631 are in signal communication with the primary processor 4602 and/or the safety processor 4604. The readings of the sensor 4629 and 4631 are amplified using buffer amplifiers 4625, digitized using ADCs 4623 and transmitted to the primary processor 4602 and/or the safety processor 4604 for analysis and comparison.
  • During normal operation, the transmitted readings of the sensors 4629 and 4631 provide a redundant assurance to the primary processor 4602 that the mechanical and electrical components involved in the firing of the powered surgical cutting and stapling instrument 4500 are functioning properly. In the event of a disagreement, where the sensor 4629 indicates that firing trigger has been squeezed while the sensor 4631 indicates that no current is being drawn by the motor 4514, the primary processor 4602 may determine that the sensor 4631 is not functioning properly. Where the sensor 4629 fails to indicate that firing trigger has been squeezed while the sensor 4631 indicates that current is being drawn by the motor 4514, the primary processor 4602 may determine that the sensor 4629 is not functioning properly. In one aspect, the primary processor 4602 may permit completion of the firing stroke in a safe mode because the disagreement is attributed to a faulty sensor. In another example, the primary processor may cause power delivery to the motor 4514 to be stopped and alert a user, for example, to utilize a mechanical bailout feature. The primary processor 4602 may alert a user through the display 4058 to contact a service department to replace the faulty sensor. The primary processor 4602 may provide instructions on how to replace the faulty sensor.
  • As illustrated in FIG. 121, the primary processor 4602 and/or the safety processor 4604 are in signal communication with one or more linear position encoders 4640 and/or one or more rotary position encoders 4641. The rotary position encoder 4641 is configured to identify the rotational position and/or speed of a motor 4514. In addition, the linear position encoder 4640 is configured to identify the position and/or speed of the firing member which is driven by the motor 4514 during a firing stroke of the surgical cutting and stapling instrument 4500.
  • During normal operation, the readings of the rotary position encoder 4641 are in correlation with the readings of the linear position encoders 4640. This is because the motor 4514 is operably coupled to the firing member such that the rotation of the motor 4514 causes the firing member to be advanced during the firing stroke. The readings of the rotary position encoder 4641 may not correlate with the readings of the linear position encoders 4640 if the advancement speed of the firing member is outside a tolerance band as measured by the linear position encoder 4640. Upon detecting a loss in the correlation between the readings of the rotary position encoder 4641 and the readings of the linear position encoders 4640, appropriate safety measures can be activated by the primary processor 4602 and/or the safety processor 4604.
  • In various instances, an input member such as, for example, a sensor or switch can be positioned in parallel with a first resistive element and in series with a second resistive element to insure that the detection of failure of the sensor or interruption of its circuit is not merely lack of signal output. Referring to FIG. 123, an electrical circuit 4650 includes a beginning-of-stroke switch 4652 positioned in parallel with a first resistive element 4654 and in series with a second resistive element 4656. In addition, the electrical circuit 4650 includes an end-of-stroke switch 4662 positioned in parallel with a first resistive element 4664 and in series with a second resistive element 4666. Examples of beginning and end of stroke switches are described in U.S. Pat. No. 8,210,411, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, issued on Jul. 3, 2012, which is incorporated herein by reference its entirety.
  • The electrical circuit 4650 also includes a voltage source 4660 providing an input voltage of 5 volts, for example. As illustrated in FIG. 123, output voltages 4659 and 4669 can be processed by buffer amplifiers 4625 and ADCs 4623 to generate digital outputs which can be communicated to the primary processor 4602. The primary processor 4602 is configured to execute an algorithm to assess one or more statuses of the circuit 4650 based on the received digital outputs. In the event the output voltage 4659 is equal to the input voltage of the voltage source 4660, the primary processor 4602 determines that connection wires 4658 are disconnected. In the event the output voltage 4659 is equal to half of the input voltage of the voltage source 4660, the primary processor 4602 determines that connection wires 4658 are connected but the beginning-of-stroke switch 4652 is in an open configuration. In the event the output voltage 4659 is equal to one third of the input voltage of the voltage source 4660, the primary processor 4602 determines that connection wires 4658 are connected and the beginning-of-stroke switch 4652 is in a closed configuration. In the event the output voltage 4659 is equal to zero, the primary processor 4602 determines that there is a short in the circuit 4650. In certain instances, determining that the output voltage 4659 is equal to zero indicates a failure of the end-of-stroke switch 4652. In certain instances, determining that the output voltage 4659 is equal to the input voltage indicates a failure of the end-of-stroke switch 4652.
  • In the event the output voltage 4669 is equal to the input voltage of the voltage source 4660, the primary processor 4602 determines that connection wires 4668 are disconnected. In the event the output voltage 4669 is equal to half of the input voltage of the voltage source 4660, the primary processor 4602 determines that connection wires 4668 are connected but the end-of-stroke switch 4662 is in an open configuration. In the event the output voltage 4669 is equal to one third of the input voltage of the voltage source 4660, the primary processor 4602 determines that connection wires 4668 are connected and the end-of-stroke switch 4662 is in a closed configuration. In the event the output voltage 4669 is equal to zero, the primary processor 4602 determines that there is a short in the circuit 4650. In certain instances, determining that the output voltage 4669 is equal to zero indicates a failure of the end-of-stroke switch 4662. In certain instances, determining that the output voltage 4669 is equal to the input voltage indicates a failure of the end-of-stroke switch 4662.
  • Referring now to FIGS. 124-127, a powered surgical stapling and cutting instrument 4500 may comprise a failure response system 4681 that includes a number of operational modes that can be selectively engaged in response to input, or the lack thereof, from the above-described positions encoders, sensors, and/or switches of the powered surgical stapling and cutting instrument 4500. As illustrated in FIG. 124, a warning mode 4682 is activated if the readings of the sensor 4617, which represent current drawn by the motor 4514, are beyond a predetermined normal range. The warning mode 4682 is also activated if a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected.
  • The warning mode 4682 is limited to providing a user of the powered surgical cutting and stapling instrument 4500 with a warning without taking additional steps to stop or modify the progress or parameters of a firing stroke. The warning mode 4682 is activated in situations where aborting a firing stroke is unnecessary. For example, the warning mode 4682 is activated when a detected error is deemed to be attributed to a failed sensor or switch. The warning mode 4682 employs the user interface 4058 to deliver a visual, audio, and/or haptic warning.
  • The powered surgical cutting and stapling instrument 4500 further includes a warning/back-up system mode 4680. The warning/back-up system mode 4680 is activated if the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641. Like the warning mode 4682, the warning/back-up system mode 4680 employs the user interface 4058 to deliver a visual, audio, and/or haptic warning. In addition, warning/back-up system mode 4680 causes a back-up system to be activated. During normal operation, a normal mode 4684 employs a primary system that includes primary sensors and primary control means. However, a back-up system which comprises secondary sensors and/or secondary control means is used in lieu of the primary system if an error is detected that warrants activation of the warning/back-up system mode 4680.
  • Further to the above, the powered surgical cutting and stapling instrument 4500 also includes a limp mode 4686 which is a failure response mode or state that is triggered if (i) the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641 and (ii) a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected. Like the warning mode 4682, the limp mode 4686 employs the user interface 4058 to deliver a visual, audio, and/or haptic warning. In addition, the limp mode 4686 slows the progress of the firing stroke.
  • In certain instances, the limp mode 4686 can reduce a current rotational speed of the motor 4514 by any percentage selected from a range of about 75% to about 25%. In one example, the limp mode 4686 can reduce a current rotational speed of the motor 4514 by 50%. In one example, the limp mode 4686 can reduce the current rotational speed of the motor 4514 by 75%. The limp mode 4686 may cause a current torque of the motor 4514 to be reduced by any percentage selected from a range of about 75% to about 25%. In one example, the limp mode 4686 may cause a current torque of the motor 4514 to be reduced by 50%.
  • Further to the above, the powered surgical cutting and stapling instrument 4500 also includes a stop mode 4688 which is an escalated failure response mode or state that is triggered if (i) the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641, (ii) a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected, and (iii) the readings of the sensor 4617, which represent current drawn by the motor 4514, are beyond a predetermined normal range. Like the warning mode 4682, the stop mode 4688 employs the user interface 4058 to deliver a visual, audio, and/or haptic warning. In addition, when triggered, the stop mode 4688 causes the motor 4514 to be deactivated or stopped leaving only a mechanical bailout system available for use to retract the firing member to a starting position. The stop mode 4688 employs the user interface 4058 to provide a user with instructions on operating the bailout system. Examples of suitable bailout systems are described in U.S. Patent Application Publication No. 2015/0272569, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, filed Mar. 26, 2014, which is incorporated herein by reference in its entirety.
  • The above-identified operational modes of the powered surgical stapling and cutting instrument 4500 create redundant electronic control pathways that enable operation of the powered surgical stapling and cutting instrument 4500 even as some of the inputs, switches, and/or sensors fail integrity checks. For example, as illustrated in FIG. 124, triggering the limp mode 4686 requires detecting two separate and discrete failures, and triggering the stop mode 4688 requires detecting three separate and discrete failures. A single failure, however, only triggers the warning mode 4682. In other words, the failure response system 4681 of the powered surgical stapling and cutting instrument 4500 is configured to escalate to a more secure mode of operation in response to an escalation in detected failures.
  • The failure response system 4681 can be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, controllers, integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate arrays (FPGA), logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontroller, system-on-chip (SoC), and/or system-in-package (SIP). Examples of discrete hardware elements may include circuits and/or circuit elements (e.g., logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, relay and so forth). In other embodiments, one or more controllers of the present disclosure may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
  • In at least one instance, the failure response system 4681 can be implemented by a circuit including a controller that comprises one or more processors (e.g., microprocessor, microcontroller) coupled to at least one memory circuit. The at least one memory circuit stores machine executable instructions that when executed by the processor, cause the processor to execute machine instructions to implement one or more of the functions performed by the failure response system 4681. The processor may be any one of a number of single or multi-core processors known in the art. The memory circuit may comprise volatile and non-volatile storage media. The processor may include an instruction processing unit and an arithmetic unit. The instruction processing unit may be configured to receive instructions from the one memory circuit.
  • In at least one aspect, the failure response system 4681 may comprise a finite state machine comprising a combinational logic circuit configured to implement one or more of the functions performed the failure response system 4681. In one embodiment, a failure response system 4681 may comprise a finite state machine comprising a sequential logic circuit. The sequential logic circuit may comprise the combinational logic circuit and at least one memory circuit, for example. The at least one memory circuit can store a current state of the finite state machine. The sequential logic circuit or the combinational logic circuit can be configured to implement one or more of the functions performed by one or more controllers of the present disclosure such as, for example, the controller. In certain instances, the sequential logic circuit may be synchronous or asynchronous.
  • In at least one aspect, as illustrated in FIG. 124, the failure response system 4681 is implemented, at least in part, using a number of logic gates. A logic circuit 4691 can be configured to deliver a binary input to an AND logic gate 4690 as to whether the readings of the linear position encoder 4640 correlate with the readings of the rotary position encoder 4641. The second input of the AND gate 4690 is delivered through an OR logic gate 4692 which receives inputs from the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662. The OR logic gate 4692 delivers a high output to the AND logic gate 4690 if a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected. The AND logic gate 4690 delivers a high output, which causes the limp mode 4686 to be activated, if the logic circuit 4691 and the OR logic gate 4692 deliver high outputs to the AND logic gate 4690.
  • Further to the above, a logic inverter or a NOT logic gate 4694 maintains the normal mode 4684 in the absence of a high output from the AND logic gate 4690. An AND gate 4696 is responsible for causing the stop mode 4688 to be activated upon receiving a high output from the AND logic gate 4690 and a high output from a high output from a logic circuit 4698 configured to monitor current drawn by the motor 4514. The logic circuit 4698 is configured to receive the readings of the sensor 4617, which represent current drawn by the motor 4514, and deliver a high output when such readings are beyond a predetermined normal range which indicates a sensor failure. An OR logic gate 4699 is configured to cause the warning mode 4682 to be activated upon receiving a high output from one of the logic circuit 4698 and the OR logic gate 4692.
  • Referring to FIG. 125, an alternative embodiment of a failure response system 4681′ is depicted. The failure response system 4681′ is similar in many respects to the failure response system 4681 and includes the normal mode 4684, the limp mode 4686, and the stop mode 4688. The failure response system 4681′ includes the AND logic gate 4690, the OR logic gate 4692, and an AND logic gate 4674. A logic circuit 4670, which can be configured to implement a decision block, is configured to receive an input from the AND logic gate 4690. The logic circuit 4670 is configured to activate the limp mode 4686 if the logic circuit 4670 receives positive input from the AND logic gate 4690. However, if the logic circuit 4670 does not receive a positive input from the AND logic gate 4690, the normal mode 4684 remains active.
  • Further to the above, the failure response system 4681′ includes a second logic circuit 4672, which can be configured to implement a decision block. The second logic circuit 4672 is configured to receive an input from an AND logic gate 4674. The AND logic gate 4674 delivers a positive output if the limp mode 4686 is active and the logic circuit 4698 determines that the readings of the sensor 4617, which represent current drawn by the motor 4514, are beyond a predetermined normal range. If, however, the AND logic gate 4674 does not deliver an output to the logic circuit 4672, the limp mode 4686 remains active.
  • Referring to FIG. 126, a failure response system 5001 is similar in many respects to the failure response system 4681, and includes the limp mode 4686 and the stop mode 4688. The failure response system 5001 is configured to transition the powered surgical stapling and cutting instrument 4500 from the limp mode 4686 to a stop mode 4688 if (i) the trigger-sensing control circuit 4627 determines that the readings of the firing-trigger Hall sensor 4629 and the verification-trigger Hall effect sensor 4631 do not correlate, and (ii)(a) the beginning-stroke-switch 4652 is in a closed configuration (FIG. 123) or (ii)(b) the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641.
  • As illustrated in FIG. 126, the failure response system 5001 includes an OR logic gate configured to receive a positive input 5008 if the readings of the linear position encoder 4640 do not correlate with the readings of the rotary position encoder 4641. The OR logic gate 5004 is also configured to receive a positive input 5006 from the electrical circuit 4650 (FIG. 123) if the beginning-stroke-switch 4652 is in a closed configuration. The failure response system 5001 further includes an AND logic gate 5010 configured to receive a positive input 5012 from the trigger-sensing control circuit 4627 if the trigger-sensing control circuit 4627 determines that the readings of the firing-trigger Hall sensor 4629 and the verification-trigger Hall effect sensor 4631 do not correlate. The OR logic gate 5004 is configured to deliver a positive input to the AND logic gate 5010 in response to receiving one of the inputs 5006 and 5008.
  • The failure response system 5001 further includes a logic circuit 5002, which is configured to implement a decision block. The logic circuit 5002 is configured to maintain a limp mode 4686 in the absence of a positive output of the AND logic gate 5010. The logic circuit 5002 is further configured to transition from the limp mode 4686 to the stop mode 4688 in the presence of a positive output from the AND logic gate 5010.
  • Referring to FIG. 127, an alternative embodiment of a failure response system 5021 is depicted. The failure response system 5021 is similar in many respects to the failure response system 4681 and includes the normal mode 4684 and the stop mode 4688. The failure response system 5021 is configured to maintain the powered surgical stapling and cutting instrument 4500 in the normal mode 4684 until three separate failures are detected, as described in greater detail below. Upon detecting such failures, the failure response system 5021 causes the stop mode 4688 to be activated.
  • Further to the above, the failure response system 5021 includes an AND logic gate 5024, an OR logic gate 5026, and an AND logic gate 5028. A logic circuit 5022, which can be configured to implement a decision block, is configured to receive an input from the AND logic gate 5024. The logic circuit 5022 is configured to activate the stop mode 4688 if the logic circuit 5022 receives a positive input from the AND logic gate 5024. However, if the logic circuit 5024 does not receive a positive input from the AND logic gate 5024, the normal mode 4684 remains active.
  • As illustrated in FIG. 127, the AND logic gate 5024 is coupled to the logic circuit 4691, which is configured to deliver a binary input to an AND logic gate 5024 as to whether the readings of the linear position encoder 4640 correlate with the readings of the rotary position encoder 4641. The second input of the AND gate 5024 is delivered through the AND logic gate 5026 which is which is coupled to the logic circuit 4698. The logic circuit 4698 is configured to deliver a binary output to the AND logic gate 5026 as to whether the readings of the sensor 4617, which represent current drawn by the motor 4514, are beyond a predetermined normal range. The second input of the AND gate 5026 is delivered through an OR logic gate 5028 which receives inputs from the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662. The OR logic gate 5028 delivers a high output to the AND logic gate 4690 if a failure of at least one of the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662 is detected.
  • Accordingly, the failure response system 5021 protects against malfunctions that are based on sensor and/or switch errors by requiring a plurality of sensor and/or switch errors to be detected before activating the stop mode 4688. This ensures that a single point failure such as a failure of a sensor and/or a switch will not by itself render the powered surgical stapling and cutting instrument 4500 inoperable. The failure response system 5021 requires a plurality of inputs to indicate failures prior to activating the stop mode 4688. When one failure is reported such as, for example, a lack of correlation between the readings of the linear position encoder 4640 the readings of the rotary position encoder 4641, the failure response system 5021 is configured to look for failures in other related or relevant inputs such as, for example, motor current inputs, inputs from the beginning-of-stroke switch 4652 and the end-of-stroke switch 4662, before activating the stop mode 4688.
  • In at least one instance, a first circuit and a second circuit are configured to separately assess or detect an operational parameter of a powered surgical stapling and cutting instrument 4500 such as, for example, an operational parameter in connection with the performance of a firing member during a firing stroke of the powered surgical stapling and cutting instrument 4500. In at least one instance, the second circuit output can be used to verify and/or as a substitute, within a control loop of the firing stroke, for the output of the first circuit should the output of the first circuit be identified as erroneous.
  • For example, the primary processor 4702 can be configured to track a first operational parameter by assessing the current drawn by the motor 4514 during the firing stroke, and the safety processor 4704 can be configured to track a second operational parameter by assessing correlation between the rotational motion of the motor 4514 and the linear motion of the firing member during the firing stroke. Under normal operating conditions, the current drawn by the motor 4514 corresponds to the speed of the firing member and/or falls within a normal predetermined range. Also, under normal operating conditions, the rotational motion of the motor 4514 correlates with the linear motion of the firing member. Accordingly, the primary processor 4702 and the safety processor 4704 separately track separate operational parameters of the powered surgical stapling and cutting instrument 4500 that provide feedback as to the performance of the firing member within a control loop of the firing stroke.
  • The primary processor 4702 and/or the safety processor 4704 may be configured to generate outputs indicative of whether their respective operational parameters are within normal operating conditions. In one example, the output of the safety processor 4704 can be used to verify and/or as a substitute, within a control loop of the firing stroke, for the output of the primary processor 4702 should the assessment of operational parameter of the safety processor 4704 be identified as erroneous or indicative of abnormal operating conditions while the second operational parameter indicates normal operating conditions.
  • The outputs of the primary processor 4702 and/or the safety processor 4704 may comprise activating an operational mode of the powered surgical stapling and cutting instrument 4500 selected from a group comprising a normal mode, a warning mode, a limp mode, and a stop mode. In one example, the output of the primary processor 4702 may comprise activating a failure response mode such as, for example, a limp mode or a stop mode but if the output of the safety processor 4704 comprises activating/continuing a normal mode of operation, the normal mode is used as a substitute for the failure response mode. Accordingly, the powered surgical stapling and cutting instrument 4500 will continue to operate in normal mode in spite of the error identified based on the assessment of the operational parameter tracked by the primary processor 4702.
  • In one example, a failure response system can be configured to activate a first failure response mode if a first error is detected, a second failure response mode if a second error is detected in addition to the first error, and a third failure response mode if a third error is detected in addition to the first and second errors. In at least one instances, a powered surgical stapling and cutting instrument 4500 remain operational in the first failure response mode and the second failure response mode, and is deactivated in the third failure response mode.
  • In one example, a failure response system can be configured to elevate or escalate a failure response to accommodate an escalation in detected failures. In one example, a failure response system is configured to transition from a first failure response mode to a second response failure response mode in response to an increase in detected errors, wherein the detected errors include at least one sensor failure and/or at least one switch failures. In one example, a failure response system is configured to activate transition from a first failure response mode to a second failure response mode in response to an increase in detected errors, wherein the detected errors include at least one measurement outside a predetermine normal range.
  • In one example, a failure response system is configured to activate a first failure response mode if a first error is detected and is configured to transition from the first failure response mode to a second failure response mode if a second error is detected in addition to the first error. In one example, a failure response system is configured to activate a first failure response mode if a first plurality of errors are detected and is configured to transition from the first failure response mode to a second failure response mode if a second plurality of errors are detected, wherein the second plurality of errors are greater than the first plurality of errors, and wherein the second plurality of errors encompasses the first plurality of errors. In one example, the second failure response mode involves a greater number of restrictions on operation of the powered surgical stapling and cutting instrument 4500 than the first failure response mode.
  • FIGS. 128-133 depict a forming pocket arrangement 10100 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10100 comprises a proximal forming pocket 10110 and a distal forming pocket 10130 defined in a planar, or tissue-engaging, surface 10107 of an anvil 10101. The pockets 10110, 10130 are aligned along a longitudinal pocket axis 10103 of the forming pocket arrangement 10100. A staple is intended to be formed along the pocket axis 10103 by the forming pocket arrangement 10100 when deployed from a staple cartridge. Referring to FIGS. 129 and 130, the forming pocket arrangement 10100 further comprises a bridge, or ridge, portion 10105 defined between the forming pockets 10110, 10130. In this instance, the bridge portion 10105 is part of the planar surface 10107 of the anvil 10101. The bridge portion 10105 comprises a bridge width “W”. The forming pocket arrangement 10100 comprises a center “C” defined within the bridge portion 10105. The forming pocket arrangement 10100 is bilaterally symmetric with respect to the bridge portion 10105, bilaterally symmetric with respect to the pocket axis 10103, and rotationally symmetric with respect to the center “C”.
  • The forming pocket 10110 comprises a pair of pocket sidewalls 10113 and the forming pocket 10130 comprises a pair of pocket sidewalls 10133. The pocket sidewalls 10113, 10133 are configured to direct the tips and the legs of the staples toward the forming surfaces of the pockets 10110, 10130 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10113, 10133 of the pockets 10110, 10130. Referring to FIGS. 131-133, the sidewalls 10113, 10133 extend from the planar surface 10107 of the anvil 10101 toward the forming surfaces of each pocket 10110, 10130. The sidewalls 10113, 10133 of the forming pockets 10110, 10130 are angled with respect to the planar surface 10107 of the anvil 10101 at angle θ in order to direct, or channel, the staple legs and/or the tips of the staples toward the forming surfaces. The sidewalls 10113, 10133 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10103 as the staples are formed against the forming surfaces of the pockets 10110, 10130.
  • Referring again to FIG. 129, the forming surfaces of the pockets 10110, 10130 comprise an entry zone forming surface 10111, 10131 and an exit zone forming surface 10112, 10132, respectively. In this instance, the amount of surface area of the forming surfaces that the entry zone forming surfaces 10111, 10131 cover is equal to the amount of surface area of the forming surfaces that the exit zone forming surfaces 10112, 10132 cover. As a result, the entry zone forming surfaces 10111, 10131 transition to the exit zone forming surfaces 10112, 10132 in the center of each pocket 10110, 10130. The transitions between the entry zone forming surfaces 10111, 10131 and the exit zone forming surfaces 10112, 10132 define a valley, or trough of each pocket 10110, 10130. The valleys of the forming pockets 10110, 10130 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10107.
  • Referring to FIG. 130, the forming surfaces of each pocket 10110, 10130 comprise a longitudinal radius of curvature 10117, 10137, respectively. In this instance, the longitudinal radius of curvature 10117 is equal to the radius of curvature 10137. Also, in this instance, the longitudinal radius of curvature 10117 and the longitudinal radius of curvature 10137 can form a symmetric staple. In other embodiments, the longitudinal radius of curvature 10117 and the longitudinal radius of curvature 10137 are different and can form an asymmetric staple.
  • The valleys of the forming pockets 10110, 10130 also define the narrowest portion of the forming surfaces of each pocket 10110, 10130. FIG. 132 is a cross-sectional view of the distal forming pocket 10130 taken along line 132-132 in FIG. 129. This view illustrates the valley, or trough, of the distal forming pocket 10130. The outer edges of each pocket 10110, 10130 define the widest portion of the forming surfaces of each pocket 10110, 10130. FIG. 131 illustrates a cross-sectional view of the distal forming pocket 10130 taken along line 131-131 in FIG. 129 which is within the exit zone forming surface 10132 of the distal forming pocket 10130. FIG. 133 is a cross-sectional view of the distal forming pocket 10130 taken along line 133-133 in FIG. 129 which is within the entry zone forming surface 10132 of the distal forming pocket 10130. A proximal staple leg is configured to land in the entry zone forming surface 10111 of the proximal forming pocket 10110 and exit in the exit zone forming surface 10112 of the proximal forming pocket 10110. Similarly, a distal staple leg is configured to land in the entry zone forming surface 10131 of the distal forming pocket 10130 and exit in the exit zone forming surface 10132 of the distal forming pocket 10130.
  • FIGS. 134-139 depict a forming pocket arrangement 10200 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10200 comprises a proximal forming pocket 10210 and a distal forming pocket 10230 defined in a planar, or tissue-engaging, surface 10207 of an anvil 10201. The pockets 10210, 10230 are aligned along a longitudinal pocket axis 10203 of the forming pocket arrangement 10200. A staple is intended to be formed along the pocket axis 10203 by the forming pocket arrangement 10200 when deployed from a staple cartridge. Referring to FIGS. 135 and 136, the forming pocket arrangement 10200 further comprises a bridge portion 10205 defined between the forming pockets 10210, 10230. In this instance, the bridge portion 10205 is recessed with respect to the planar surface 10207 of the anvil 10201. The bridge portion 10205 comprises a bridge width “W” and a bridge depth “D”. The bridge depth “D” is the distance that the bridge portion 10205 is recessed with respect to the planar surface 10207. The forming pocket arrangement 10200 comprises a center “C” defined within the bridge portion 10205. The forming pocket arrangement 10200 is bilaterally symmetric with respect to the bridge portion 10205, bilaterally symmetric with respect to pocket axis 10203, and rotationally symmetric with respect to the center “C”.
  • The forming pocket arrangement 10200 further comprises a pair of primary sidewalls 10208 extending from the planar surface 10207 of the anvil 10201 toward the pockets 10210, 10230 and the bridge portion 10205. The primary sidewalls 10208 are angled at angle θ2 with respect to the planar surface 10207 of the anvil 10201. The forming pocket arrangement 10200 further comprises edge features 10215, 10235 which provide a transition feature between the outer edges of the pockets 10210, 10230 and the planar surface 10207, between the longitudinal edges of the pockets 10210, 10230 and the primary sidewalls 10208, and between the inner edges of pockets 10210, 10230 and the bridge portion 10205. These edges 10215, 10235 can be rounded, and/or chamfered, for example. The edge features 10215, 10235 may help prevent staple tips from sticking, as discussed in greater detail below.
  • The forming pocket 10210 comprises a pair of pocket sidewalls 10213 and the forming pocket 10230 comprises a pair of pocket sidewalls 10233. The pocket sidewalls 10213, 10233 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10210, 10230 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10213, 10233 of the pockets 10210, 10230. The sidewalls 10213, 10233 extend from the transition edges 10215, 10235 toward the forming surfaces of each pocket 10210, 10230. The sidewalls 10213, 10233 of the forming pockets 10210, 10230 are angled with respect to the planar surface 10207 of the anvil 10201 at angle θ1 in order to direct, or channel, the legs and/or the staple tips of the staples toward the forming surfaces of the pockets 10210, 10230. The sidewalls 10213, 10233 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10203 as the staples are formed against the forming surfaces of the pockets 10210, 10230. Collectively, the primary sidewalls 10208 and the pocket sidewalls 10213, 10233 can provide a funnel-like configuration for directing staple tips. Referring to FIGS. 137 and 138, the angle θ1 is greater than the angle θ2.
  • The pockets 10210, 10230 further comprise transition edges 10214, 10234 which provide a transition feature between the pocket sidewalls 10213, 10233 and the forming surfaces, as discussed in greater detail below. In various instances, the transition edges 10214, 10234 can comprise a similar profile as the transition edges 10215, 10235. In other instances, the transition edges 10214, 10234 can comprise a different profile than the transition edges 10215, 10235. That said, the edges 10214, 10234 can be rounded, or chamfered, for example. The edges 10214, 10234 comprise a first end where the edges 10214, 10234 meet the outer ends of the pockets 10210, 10230 and a second end where the edges 10214, 10234 approach the bridge portion 10205, or the inner ends of the pockets 10210, 10230. The edges 10214, 10234 may transition into the transition edges 10215, 10235 near the bridge portion 10205. The edge features 10214, 10234 may also help prevent staple tips from sticking in the pockets 10210, 10230 when forming, as discussed in greater detail below.
  • Referring again to FIG. 135, the forming surfaces of the pockets 10210, 10230 comprise an entry zone forming surface 10211, 10231 and an exit zone forming surface 10212, 10232, respectively. In this instance, the amount of surface area of the forming surfaces that the entry zone forming surfaces 10211, 10231 cover is greater than the amount of surface area of the forming surfaces that the exit zone forming surfaces 10212, 10232 cover. As a result, the entry zone forming surfaces 10211, 10231 do not transition to the exit zone forming surfaces 10212, 10232 in the center of each pocket 10210, 10230. Rather, the transition points where the entry zones 10211, 10231 transition to the exit zones 10212, 10232 are closer to the bridge portion 10205. The transitions between the entry zone forming surfaces 10211, 10231 and the exit zone forming surfaces 10212, 10232 define a valley, or trough of each pocket 10210, 10230. The valleys of the forming pockets 10210, 10230 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10207.
  • Referring to FIG. 136, the forming surfaces of each pocket 10210, 10230 comprise more than one radius of curvature. Specifically, the pocket 10210 comprises an entry radius of curvature 10217 corresponding to the entry zone forming surface 10211 and an exit radius of curvature 10218 corresponding to the exit zone forming surface 10212. Similarly, the pocket 10230 comprises an entry radius of curvature 10237 corresponding to the entry zone forming surface 10231 and an exit radius of curvature 10238 corresponding to the exit zone forming surface 10232. In this instance, the entry radii of curvature 10217, 10237 are larger than the exit radii of curvature 10218, 10238, respectively. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • In addition to defining the transition points where the entry zones transition to the exit zones, the valleys of the forming pockets 10210, 10230 also define the narrowest portion of the forming surfaces of each pocket 10210, 10230. The outer edges of each pocket 10210, 10230, also referred to as entry edges because they define the beginning of the entry zone forming surfaces 10211, 10231, comprise an entry width. The inner edges of each pocket 10210, 10230, also referred to as exit edges because they define the end of the exit zone forming surfaces 10212, 10232, comprise an exit width. In this instance, the entry width is greater than the exit width. Also, the exit width is greater than the valley width, or the narrowest portion of the forming surfaces. FIG. 138 is a cross-sectional view of the distal forming pocket 10230 taken along line 138-138 in FIG. 135. This view illustrates the valley, or trough, of the distal forming pocket 10230. This valley, or trough, is also the transition between the entry zone forming surface 10231 and the exit zone forming surface 10232. FIG. 137 illustrates a cross-sectional view of the distal forming pocket 10230 taken along line 137-137 in FIG. 135 which is located within the exit zone forming surface 10232 of the forming pocket 10230. FIG. 139 is a cross-sectional view of the distal forming pocket 10230 taken along line 139-139 in FIG. 135 which is within the entry zone forming surface 10232 of the distal forming pocket 10230.
  • The forming pocket arrangement 10200, and various other forming pocket arrangements disclosed herein, are configured to be used with staples with various diameters. The diameters of staples to be used with the forming pocket arrangement 10200 can vary between about 0.0079 inches and about 0.0094 inches, for example. Additionally, the entry radius of curvature and the exit radius of curvature of each forming surface comprise a ratio of about 1.5:1 to about 3:1 when the entry radius is between about 8× the staple diameter and 10× the staple diameter, for example. In at least one instance, the entry radius of curvature and the exit radius of curvature of each forming surface comprise a ratio of about 2:1 when the entry radius is 9× the staple diameter, for example. In other instances, the entry radius of curvature and the exit radius of curvature of each forming surface comprise a ratio of about 1.5:1 to about 3:1 when the entry radius is above about 0.6× the staple crown length and the ridge, or bridge, width is less than 1× the staple diameter, for example. In at least one instance, the entry radius of curvature and the exit radius of curvature of each forming surface comprise a ratio of about 2:1 when the entry radius is above about 0.6× the staple crown length and the ridge, or bridge, width is less than 1× the staple diameter. The exit radius of curvature is between about 4× the staple diameter and about 6× diameter, for example. In at least one instance, the exit radius of curvature is about 4.5× the staple diameter.
  • FIGS. 140-145 depict a forming pocket arrangement 10300 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10300 comprises a proximal forming pocket 10310 and a distal forming pocket 10330 defined in a planar, or tissue-contacting, surface 10307 of an anvil 10301. The pockets 10310, 10330 are aligned along a longitudinal pocket axis 10303 of the forming pocket arrangement 10300. A staple is intended to be formed along the pocket axis 10303 by the forming pocket arrangement 10300 when deployed from a staple cartridge. Referring to FIGS. 141 and 142, the forming pocket arrangement 10300 further comprises a bridge portion 10305 defined between the forming pockets 10310, 10330. In this instance, the bridge portion 10305 is recessed with respect to the planar surface 10307 of the anvil 10301. The bridge portion 10305 comprises a bridge width “W” and a bridge depth “D”. The bridge depth “D” is the distance that the bridge portion 10305 is recessed with respect to the planar surface 10307. The forming pocket arrangement 10300 comprises a center “C” defined within the bridge portion 10305. The forming pocket arrangement 10300 is bilaterally symmetric with respect to the bridge portion 10305, bilaterally symmetric with respect to pocket axis 10303, and rotationally symmetric with respect to the center “C”.
  • The forming pocket arrangement 10300 further comprises a pair of primary sidewalls 10308 extending from the planar surface 10307 of the anvil 10301 toward the pockets 10310, 10330 and the bridge portion 10305. The primary sidewalls 10308 are angled at angle θ2 with respect to the planar surface 10307 of the anvil 10301. The forming pocket arrangement 10300 further comprises a pair of edge features 10309 which provide a transition feature between the lateral edges of the pockets 10310, 10330 and the primary sidewalls 10308. The edges 10309 also provide a transition feature between central portions of the primary sidewalls 10308 and the bridge portion 10305. These edges 10309 can be rounded, and/or chamfered, for example. The edge features 10309 may help prevent staple tips from sticking, as discussed in greater detail below.
  • The forming pocket 10310 comprises a pair of pocket sidewalls 10313 and the forming pocket 10330 comprises a pair of pocket sidewalls 10333. The pocket sidewalls 10313, 10333 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10310, 10330 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10313, 10333 of the pockets 10310, 10330. The sidewalls 10313, 10333 extend from the transition edges 10309 toward the forming surfaces of each pocket 10310, 10330. The sidewalls 10313, 10333 of the forming pockets 10310, 10330 are angled with respect to the planar surface 10307 of the anvil 10301 at angle θ1 in order to direct, or channel, the legs and/or staple tips of the staples toward the forming surfaces of the pockets 10310, 10330. The sidewalls 10313, 10333 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10303 as the staples are formed against the forming surfaces of the pockets 10310, 10330. Collectively, the primary sidewalls 10308 and the pocket sidewalls 10313, 10333 can provide a funnel-like configuration for corresponding staple tips. Referring to FIGS. 143 and 144, the angle θ1 is greater than the angle θ2. In this instance, the pocket sidewalls 10313, 10333 can be considered aggressive. For example, the angle θ1 is 80 degrees. Similarly, the angle θ2 is significantly less aggressive than the angle θ1. For example the angle θ2 is 4 degrees. Angle θ3 (FIG. 144) is defined as the angle between the sidewalls 10333 is between about 0 degrees and about 10 degrees. In various instances, the angle θ3 is 0 degrees and the walls 10333 are at least substantially parallel to each other.
  • The pockets 10310, 10330 further comprise transition edges 10306 which provide a transition feature between the pocket sidewalls 10313, 10333 and the forming surfaces, as discussed in greater detail below. In various instances, the transition edges 10306 can comprise a similar profile as the transition edges 10309. In other instances, the transition edges 10306 can comprise a different profile than the transition edges 10309. That said, the edges 10307 can be rounded, or chamfered, for example. The edges 10306, 10309 comprise a first end where the edges 10306, 10309 meet the outer ends of the pockets 10310, 10330 and a second end where the edges 10306, 10309 approach the bridge portion 10305, or the inner ends of the pockets 10310, 10330. The edges 10306 may transition into the transition edges 10309 near the bridge portion 10305. The edge features 10306 may also help prevent staple tips from sticking in the pockets 10310, 10330 when forming, as discussed in greater detail below.
  • Referring again to FIG. 141, the forming surfaces of the pockets 10310, 10330 comprise an entry zone forming surface 10311, 10331 and an exit zone forming surface 10312, 10332, respectively. In this instance, the amount of surface area of the forming surfaces that the entry zone forming surfaces 10311, 10331 cover is greater than the amount of surface area of the forming surfaces that the exit zone forming surfaces 10312, 10332 cover. As a result, the entry zone forming surfaces 10311, 10331 do not transition to the exit zone forming surfaces 10312, 10332 in the center of each pocket 10310, 10330. Rather, the transition points where the entry zones 10311, 10331 transition to the exit zones 10312, 10332 are closer to the bridge portion 10305. The transitions between the entry zone forming surfaces 10311, 10331 and the exit zone forming surfaces 10312, 10332 define a valley, or trough of each pocket 10310, 10330. The valleys of the forming pockets 10310, 10330 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10307. Note, when using the term “entry”, “entry” corresponds to the intended “entry” feature where a staple tip is intended to enter a staple pocket during the staple firing process. Similarly, when using the term “exit”, “exit” corresponds to the intended “exit” feature where a staple tip is intended to exit a staple pocket during the staple firing process.
  • Referring to FIG. 142, the forming surfaces of each pocket 10310, 10330 comprise more than one radius of curvature. Specifically, the pocket 10310 comprises an entry radius of curvature 10317 corresponding to the entry zone forming surface 10311 and an exit radius of curvature 10318 corresponding to the exit zone forming surface 10312. Similarly, the pocket 10330 comprises an entry radius of curvature 10337 corresponding to the entry zone forming surface 10331 and an exit radius of curvature 10338 corresponding to the exit zone forming surface 10332. In this instance, the entry radii of curvature 10317, 10337 are larger than the exit radii of curvature 10318, 10338. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • The outer edges of each pocket 10310, 10330, also referred to as entry edges because they define the beginning of the entry zone forming surfaces 10311, 10331, comprise an entry width which is the largest width of the forming surfaces of each pocket 10310, 10330. The inner edges of each pocket 10310, 10330, also referred to as exit edges because they define the end of the exit zone forming surfaces 10312, 10332, comprise an exit width which is the narrowest section of the forming surfaces of each pocket 10310, 10330. In various instances, the exit widths are larger than the largest diameter staple configured for use with the forming pocket arrangement 10300. The transitions between entry and exit zones comprise a transition width which is less than the entry width but greater than the exit width. FIG. 144 is a cross-sectional view of the distal forming pocket 10330 taken along line 144-144 in FIG. 141. This view illustrates the valley, or trough, of the distal forming pocket 10330. This valley, or trough, is also the transition between the entry zone forming surface 10331 and the exit zone forming surface 10332. FIG. 143 illustrates a cross-sectional view of the distal forming pocket 10330 taken along line 143-143 in FIG. 141 which is located within the exit zone forming surface 10332 of the forming pocket 10330. FIG. 145 is a cross-sectional view of the distal forming pocket 10330 taken along line 145-145 in FIG. 141 which is within the entry zone forming surface 10332 of the distal forming pocket 10330.
  • FIGS. 146-151 depict a forming pocket arrangement 10400 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10400 comprises a proximal forming pocket 10410 and a distal forming pocket 10430 defined in a planar, or tissue-contacting, surface 10407 of an anvil 10401. The pockets 10410, 10430 are aligned along a longitudinal pocket axis 10403 of the forming pocket arrangement 10400. A staple is intended to be formed along the pocket axis 10403 by the forming pocket arrangement 10400 when deployed from a staple cartridge. Referring to FIGS. 147 and 148, the forming pocket arrangement 10400 further comprises a bridge portion 10405 defined between the forming pockets 10410, 10430. In this instance, the bridge portion 10405 is recessed with respect to the planar surface 10407 of the anvil 10401. The bridge portion 10405 comprises a bridge width “W” and a bridge depth “D”. The bridge depth “D” is the distance that the bridge portion 10405 is recessed with respect to the planar surface 10407. The forming pocket arrangement 10400 comprises a center “C” defined within the bridge portion 10405. The forming pocket arrangement 10400 is bilaterally symmetric with respect to the bridge portion 10405, bilaterally symmetric with respect to pocket axis 10403, and rotationally symmetric with respect to the center “C”.
  • The forming pocket arrangement 10400 further comprises a pair of primary sidewalls 10408 extending from the planar surface 10407 of the anvil 10401 toward the pockets 10410, 10430 and the bridge portion 10405. Specifically, each sidewall 10408 shares an edge with only a portion of each pocket, as discussed in greater detail below. The primary sidewalls 10408 are angled at angle θ4 with respect to the planar surface 10407 of the anvil 10401.
  • Each forming pocket 10410, 10430 comprises a pair of pocket sidewalls, wherein each pocket sidewall of each pair comprises discrete, sidewall portions. For example, the proximal forming pocket 10410 comprises a pair of pocket sidewalls, each comprising discrete sidewall portions 10413 and 10416. The sidewall portions 10413 may be referred to as entry sidewalls portions and the sidewalls portions 10416 may be referred to as exit sidewalls portions. Similarly, the distal forming pocket 10430 comprises a pair of pocket sidewalls, each comprising discrete sidewall portions 10433 and 10436 respectively. The sidewall portions 10433 may be referred to as entry sidewalls portions and the sidewalls portions 10436 may be referred to as exit sidewalls portions. The pocket sidewalls 10413, 10416, 10433, 10436 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10410, 10430 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10413, 10416, 10433, 10436 of the pockets 10410, 10430.
  • The sidewall portions 10413 extend from the planar surface 10407 toward the forming surface of the proximal forming pocket 10410. The sidewall portions 10413 transition into the forming surface via transition feature 10414. Another transition feature 10417 is provided between the discrete sidewall portions 10413 and 10416 to provide the discrete, sidewall features. The transition features 10414, 10417 may comprise rounded and/or chamfered surfaces, for example. The transition features 10414, 10417 may, instead, comprise a discrete edge. The sidewall portions 10416 share an edge with the primary sidewalls 10408 and extend from the primary sidewalls 10408 toward the forming surface of the proximal forming pocket 10410. The sidewalls 10413 and 10416 are orientated at different angles with respect to the pocket axis 10403. In this instance, the sidewall portion 10413 is at least substantially parallel with respect to the pocket axis 10403 and the sidewall portion 10416 is angled at angle θ3 with respect to the pocket axis 10403. The phrase “substantially parallel” refers to an orientation that is nearly parallel to, or parallel to, the pocket axis 10403.
  • The sidewall portions 10433 extend from the planar surface 10407 toward the forming surface of the distal forming pocket 10430. The sidewall portions 10433 transition into the forming surface via transition feature 10434. Another transition feature 10437 is provided between the discrete sidewall portions 10433 and 10436 to provide the discrete, sidewall features. The transition features 10434, 10437 may comprise rounded and/or chamfered surfaces, for example. The transition features 10434, 10437 may, instead, comprise a discrete edge. The sidewall portions 10436 share an edge with the primary sidewalls 10408 and extend from the primary sidewalls 10408 toward the forming surface of the distal forming pocket 10430. The sidewalls 10433 and 10436 are orientated at different angles with respect to the pocket axis 10403. In this instance, the sidewall portion 10433 is at least substantially parallel with respect to the pocket axis 10403 and the sidewall portion 10436 is angled at angle θ3 with respect to the pocket axis 10403. The phrase “substantially parallel” refers to an orientation that is nearly parallel to, or parallel to, the pocket axis 10403.
  • Referring now to FIGS. 149-151, the sidewall portions 10413, 10433 are angled with respect to the planar surface 10407 of the anvil 10401 at a different angle than the sidewall portions 10416, 10436. For the sake of brevity, only the configuration of the sidewalls of the distal forming pocket 10430 will be discussed; however, it should be noted that due to the symmetry of the pockets 10410, 10430 discussed above, the proximal forming pocket 10410 comprises a configuration symmetric of the distal forming pocket 10430. Beginning with FIG. 151, the entry sidewall portions 10433 are angled with respect to the planar surface 10407 at angle θ1. Referring now to FIG. 150, the exit sidewall portions 10436 are angled with respect to the planar surface 10407 at angle θ2. Angle θ2 is greater than angle θ1. Angle θ2 is between about 60 degrees and about 90 degrees, for example. In various instances, angle θ2 is about 80 degrees. In other instances, angle θ2 is about 90 degrees. As can be seen in the figures, the exit sidewall portions 10436 are more aggressively angled, or more vertical, than the entry sidewall portions 10433. Collectively, the sidewall portions 10433, 10436 are angled with respect to the planar surface 10407 of the anvil 10401 in order to direct, or channel, the legs and/or staple tips of the staples toward the forming surface of the distal pocket 10430 and, additionally, control the forming of the legs, as discussed in greater detail below. Also, collectively, the primary sidewalls 10408 and the pocket sidewalls 10413, 10416, 10433, 10436 can provide a funnel-like configuration for corresponding staple tips.
  • Further to the above, the transition edges 10414, 10434 provide a transition feature between the pocket sidewall portions 10413, 10416, 10433, 10436 and the forming surfaces. The edges 10414, 10434 comprise a first end where the edges 10414, 10434 meet the outer ends of the pockets 10410, 10430 and a second end where the edges 10414, 10434 meet the bridge portion 10405, or the inner ends of the pockets 10410, 10430. The edge features 10414, 10434 may help prevent staple tips from sticking in the pockets 10410, 10430 when forming, as discussed in greater detail below.
  • Referring again to FIG. 147, the forming surfaces of the pockets 10410, 10430 comprise an entry zone forming surface 10411, 10431 and an exit zone forming surface 10412, 10432, respectively. In this instance, the amount of surface area of the forming surfaces that the entry zone forming surfaces 10411, 10431 cover is greater than the amount of surface area of the forming surfaces that the exit zone forming surfaces 10412, 10432 cover. As a result, the entry zone forming surfaces 10411, 10431 do not transition to the exit zone forming surfaces 10412, 10432 in the center of each pocket 10410, 10430. Rather, the transition points where the entry zones 10411, 10431 transition to the exit zones 10412, 10432 are closer to the bridge portion 10405. The transitions between the entry zone forming surfaces 10411, 10431 and the exit zone forming surfaces 10412, 10432 define a valley, or trough of each pocket 10410, 10430. The valleys of the forming pockets 10410, 10430 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10407. In this instance, the transition between the entry zone forming surfaces 10411, 10431 and the exit zone forming surfaces 10412, 10432 occurs at the transition features 10417, 10437.
  • Referring to FIG. 148, the forming surfaces of each pocket 10410, 10430 comprise more than one radius of curvature. Specifically, the pocket 10410 comprises an entry radius of curvature 10418 corresponding to the entry zone forming surface 10411 and an exit radius of curvature 10419 corresponding to the exit zone forming surface 10412. Similarly, the pocket 10430 comprises an entry radius of curvature 10438 corresponding to the entry zone forming surface 10431 and an exit radius of curvature 10439 corresponding to the exit zone forming surface 10432. In this instance, the entry radii of curvature 10418, 10438 are larger than the exit radii of curvature 10419, 10439. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • The outer edges of each pocket 10410, 10430, also referred to as entry edges because they define the beginning of the entry zone forming surfaces 10411, 10431, comprise an entry width which is the largest width of the forming surfaces of each pocket 10410, 10430. The inner edges of each pocket 10410, 10430, also referred to as exit edges because they define the end of the exit zone forming surfaces 10412, 10432, comprise an exit width which is narrower than the entry width of the forming surfaces of each pocket 10410, 10430. The transitions between entry and exit zones comprise a transition width which is less than the entry width. In various instances, the transition width is similar to the exit width (FIG. 147). The exit zone forming surfaces 10412, 10413 comprise the narrowest sections of the forming surfaces of each pocket 10410, 10430. In this instance, the narrowest section is the valley, or trough, of each pocket 10410, 10430. In various instances, the valley comprises a width greater than the largest diameter staple configured for use with the forming pocket arrangement 10400. FIG. 150 is a cross-sectional view of the distal forming pocket 10430 taken along line 150-150 in FIG. 147. This view is taken along a section of the entry zone forming surface 10431 and illustrates the transition of each discrete, sidewall portions 10433, 10436. FIG. 149 illustrates a cross-sectional view of the distal forming pocket 10430 taken along line 149-149 in FIG. 147 which is located within the exit zone forming surface 10432 of the forming pocket 10430. FIG. 151 is a cross-sectional view of the distal forming pocket 10430 taken along line 151-151 in FIG. 147 which is within the entry zone forming surface 10432 of the distal forming pocket 10430.
  • FIGS. 152-157 depict a forming pocket arrangement 10500 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10500 comprises a proximal forming pocket 10510 and a distal forming pocket 10530 defined in a planar, or tissue-contacting, surface 10507 of an anvil 10501. The pockets 10510, 10530 are aligned along a longitudinal pocket axis 10503 of the forming pocket arrangement 10500. A staple is intended to be formed along the pocket axis 10503 by the forming pocket arrangement 10500 when deployed from a staple cartridge. Referring to FIGS. 153 and 154, the forming pocket arrangement 10500 further comprises a bridge portion 10505 defined between the forming pockets 10510, 10530. In this instance, the bridge portion 10505 is recessed with respect to the planar surface 10507 of the anvil 10501. The bridge portion 10505 comprises a bridge width “W” and a bridge depth “D”. The bridge portion 10505 is substantially V-shaped with a rounded bottom portion. The bridge depth “D” is the distance that the bottom portion of the bridge portion 10505 is recessed with respect to the planar surface 10507. The forming pocket arrangement 10500 comprises a center “C” defined within the bridge portion 10505. The forming pocket arrangement 10500 is bilaterally symmetric with respect to the bridge portion 10505, bilaterally symmetric with respect to pocket axis 10503, and rotationally symmetric with respect to the center “C”.
  • The forming pocket arrangement 10500 further comprises a pair of primary sidewalls 10508 extending from the planar surface 10507 of the anvil 10501 toward the pockets 10510, 10530 and the bridge portion 10505. The primary sidewalls 10508 are angled at angle θ1 with respect to the planar surface 10507 of the anvil 10501. The primary sidewalls 10508 comprise inner edges that are curved, or contoured, with respect to the pockets 10510, 10530.
  • The forming pocket 10510 comprises a pair of pocket sidewalls 10513 and the forming pocket 10530 comprises a pair of pocket sidewalls 10533. The pocket sidewalls 10513, 10533 comprise curved, or contoured, profiles and are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10510, 10530 as well as help control the forming process of the staples. The sidewalls 10513, 10533 extend from the primary sidewalls 10508 and the planar surface 10507 toward the forming surfaces of each pocket 10510, 10530. The sidewalls 10513, 10533 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10503 as the staples are formed against the forming surfaces of the pockets 10510, 10530. Collectively, the primary sidewalls 10508 and the pocket sidewalls 10513, 10533 cooperate to funnel corresponding staple tips toward the lateral center of each pocket 10510, 10530. Discussed in greater detail below, the sidewalls 10513, 10533 comprise entry portions and exit portions where the entry portions comprise a less aggressive channeling configuration than the exit portions.
  • Referring again to FIG. 153, the forming surfaces of the pockets 10510, 10530 comprise an entry zone forming surface 10511, 10531 and an exit zone forming surface 10512, 10532, respectively. The entry zone forming surfaces 10511, 10531 can coincide with the less aggressive channeling portions of the sidewalls 10513, 10533. Similarly, the exit zone forming surfaces 10512, 10532 can coincide with the more aggressive channeling portions of the sidewalls 10513, 10533. The pockets 10510, 10530 further comprise a forming, or guiding, groove 10515, 10535, also referred to as a tip control channel, extending the entire longitudinal length of each pocket 10510, 10530 and positioned centrally with respect to the outer lateral edges of the pockets 10510, 10530. The grooves 10515, 10535 are narrower at the outer longitudinal edges of the pockets 10510, 10530 than the inner longitudinal edges of the pockets 10510, 10530. The grooves 10515, 10535 meet at the bridge portion 10505 to encourage the staple tips, and staple legs, to contact each other during the forming process, as discussed in greater detail below. In some instances, grooves defined in the forming surfaces of forming pockets can have a similar effect in staple forming as more aggressively-angled exit walls and/or narrowly-configured exit walls.
  • Referring to FIG. 154, the forming surfaces of each pocket 10510, 10530 comprise more than one radius of curvature. Specifically, the pocket 10510 comprises an entry radius of curvature 10517 corresponding to the entry zone forming surface 10511 and an exit radius of curvature 10518 corresponding to the exit zone forming surface 10512. Similarly, the pocket 10530 comprises an entry radius of curvature 10537 corresponding to the entry zone forming surface 10531 and an exit radius of curvature 10538 corresponding to the exit zone forming surface 10532. In this instance, the entry radii of curvature 10517, 10537 are larger than the exit radii of curvature 10518, 10538. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • Referring now to FIGS. 155-157, the outer longitudinal edges of each pocket 10510, 10530 are referred to as entry edges because they define the beginning of the entry zone forming surfaces 10511, 10531. The entry edges comprise an entry width which is the largest width of the forming surfaces of each pocket 10510, 10530. The inner edges of each pocket 10510, 10530 are referred to as exit edges because they define the end of the exit zone forming surfaces 10512, 10532. The exit edges comprise an exit width, also referred to as the bridge width “W” which is the narrowest section of the forming surfaces of each pocket 10510, 10530. The transitions between entry and exit zones comprise a transition width which is less than the entry width but greater than the exit width. FIG. 156 is a cross-sectional view of the distal forming pocket 10530 taken along line 156-156 in FIG. 153. This view is taken near the valley, or trough, of the distal forming pocket 10530. This valley, or trough, is also the transition between the entry zone forming surface 10531 and the exit zone forming surface 10532. In various instances, the transition between entry and exit zones does not occur at the valley, or trough, of the pocket. FIG. 155 illustrates a cross-sectional view of the distal forming pocket 10530 taken along line 155-155 in FIG. 153 which is located within the exit zone forming surface 10532 of the forming pocket 10530. FIG. 157 is a cross-sectional view of the distal forming pocket 10530 taken along line 157-157 in FIG. 153 which is within the entry zone forming surface 10532 of the distal forming pocket 10530. The sidewalls 10533 are illustrated in this figure as linear, or at least substantially linear, and are angled at angle θ2 with respect to the planar surface 10507. Angle θ2 is greater than angle θ1.
  • Groove widths may be narrower than the largest-diameter staple that is configured for use with the forming pocket arrangement and larger than the smallest-diameter staple that is configured for use with the forming pocket arrangement. In other instances, the groove width may be narrower than the smallest-diameter staple configured for use with the forming pocket arrangement. Yet, in other instances, the groove width may be wider than the largest-diameter staple configured for use with the forming pocket arrangement. Additionally, grooves defined in the forming pockets may comprise multiple widths corresponding to the entry zone and the exit zone, accordingly. For example, a portion of the groove residing in the entry zone can comprise a width which is less than the width of a portion of the groove residing in the exit zone. In another example, a portion of the groove residing in the entry zone can comprise a width which is greater than the width of a portion of the groove residing in the exit zone. In other instances, a groove only residing in one of the zones can comprise multiple widths.
  • FIGS. 158-163 depict a forming pocket arrangement 10600 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10600 is similar in many respects to the forming pocket arrangement 10100. The forming pocket arrangement 10600 comprises a proximal forming pocket 10610 and a distal forming pocket 10630 defined in a planar, or tissue-contacting, surface 10607 of an anvil 10601. The pockets 10610, 10630 are aligned along a longitudinal pocket axis 10603 of the forming pocket arrangement 10600. A staple is intended to be formed along the pocket axis 10603 by the forming pocket arrangement 10600 when deployed from a staple cartridge. Referring to FIG. 159, the forming pocket arrangement 10600 further comprises a bridge portion 10605 defined between the forming pockets 10610, 10630. In this instance, the bridge portion 10605 is part of the planar surface 10607 of the anvil 10601. The bridge portion 10605 comprises an inner bridge width “W1” and an outer bridge width “W2”. The inner bridge width “W1” is less than the outer bridge width “W2”. The forming pocket arrangement 10600 comprises a center “C” defined within the bridge portion 10605. The forming pocket arrangement 10600 is bilaterally symmetric with respect to the bridge portion 10605, bilaterally symmetric with respect to the pocket axis 10603, and rotationally symmetric with respect to the center “C”.
  • The forming pocket 10610 comprises a pair of pocket sidewalls 10613 and the forming pocket 10630 comprises a pair of pocket sidewalls 10633. The pocket sidewalls 10613, 10633 are configured to direct the tips and legs of a staple toward the forming surfaces of the pockets 10610, 10630 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10613, 10633 of the pockets 10610, 10630. Referring to FIGS. 161-163, the sidewalls 10613, 10633 extend from the planar surface 10607 of the anvil 10601 toward the forming surfaces of each pocket 10610, 10630. The sidewalls 10613, 10633 of the forming pockets 10610, 10630 are angled with respect to the planar surface 10607 of the anvil 10601 at angle θ in order to direct, or channel, the legs and/or tips of a staple toward the forming surfaces. The sidewalls 10613, 10633 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10603 as the staples are formed against the forming surfaces of the pockets 10610, 10630.
  • Referring again to FIG. 158, the forming surfaces of the pockets 10610, 10630 comprise an entry zone forming surface 10611, 10631, an exit zone forming surface 10612, 10632, and a groove, or channel, 10615, 10635 defined in the forming surfaces, respectively. In this instance, the amount of surface area of the forming surfaces that the entry zone forming surfaces 10611, 10631 cover is equal to the amount of surface area of the forming surfaces that the exit zone forming surfaces 10612, 10632 cover. As a result, the entry zone forming surfaces 10611, 10631 transition to the exit zone forming surfaces 10612, 10632 in the center of each pocket 10610, 10630. The transitions between the entry zone forming surfaces 10611, 10631 and the exit zone forming surfaces 10612, 10632 define a valley, or trough of each pocket 10610, 10630. The valleys of the forming pockets 10610, 10630 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10607.
  • The forming surfaces also comprise transition features 10616, 10636 surrounding the grooves 10615, 10635, respectively, as well as transition features 10617, 10637 at the inner and outer longitudinal edges of the pockets 10610, 10630, respectively. In this instance, the transition features 10616, 10617, 10636, 10637 are rounded, however, the transition features 10616, 10617, 10636, 10637 can comprise any suitable profile in addition to, or in lieu of, a rounded edge. The transition features 10616, 10636 provide a transition between the grooves 10615, 10635 and the forming surfaces of each pocket 10610, 10630. Toward the central region of each pocket 10610, 10630, the transition features 10616, 10636 may provide a transition between the grooves 10615, 10635 and the sidewalls 10613, 10633. The transition features 10617, 10637 provide a transition between the forming surfaces and the planar surface 10607. The transition features 10617, 10637 comprise extension portions 10618, 10638 positioned at the proximal and distal ends of each groove 10615, 10635.
  • The valleys of the forming pockets 10610, 10630 also define the narrowest portion of the forming surfaces of each pocket 10610, 10630. FIG. 162 is a cross-sectional view of the distal forming pocket 10630 taken along line 162-162 in FIG. 158. This view illustrates the valley, or trough, of the distal forming pocket 10630. The outer longitudinal edges of each pocket 10610, 10630 define the widest portion of the forming surfaces of each pocket 10610, 10630. FIG. 161 illustrates a cross-sectional view of the distal forming pocket 10630 taken along line 161-161 in FIG. 158 which is within the exit zone forming surface 10632 of the distal forming pocket 10630. FIG. 163 is a cross-sectional view of the distal forming pocket 10630 taken along line 163-163 in FIG. 158 which is within the entry zone forming surface 10632 of the distal forming pocket 10630.
  • FIGS. 164-168 depict a forming pocket arrangement 10700 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10700 is similar in many respects to the forming pocket arrangement 10600. The forming pocket arrangement 10700 comprises a proximal forming pocket 10710 and a distal forming pocket 10730 defined in a planar, or tissue-contacting, surface 10707 of an anvil 10701. The pockets 10710, 10730 are aligned along a longitudinal pocket axis 10703 of the forming pocket arrangement 10700. A staple is intended to be formed along the pocket axis 10703 by the forming pocket arrangement 10700 when deployed from a staple cartridge. Referring to FIG. 165, the forming pocket arrangement 10700 further comprises a bridge portion 10705 defined between the forming pockets 10710, 10730. In this instance, the bridge portion 10705 is part of the planar surface 10707 of the anvil 10701. The bridge portion 10705 comprises an inner bridge width “W1” and an outer bridge width “W2”. The inner bridge width “W1” is less than the outer bridge width “W2”. The forming pocket arrangement 10700 comprises a center “C” defined within the bridge portion 10705. The forming pocket arrangement 10700 is bilaterally symmetric with respect to the bridge portion 10705, bilaterally symmetric with respect to the pocket axis 10703, and rotationally symmetric with respect to the center “C”.
  • The forming pocket 10710 comprises a pair of pocket sidewalls 10713 and the forming pocket 10730 comprises a pair of pocket sidewalls 10733. The pocket sidewalls 10713, 10733 are configured to direct the staple tips and the legs of staples toward the forming surfaces of the pockets 10710, 10730 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10713, 10733 of the pockets 10710, 10730. Referring to FIGS. 166-168, the sidewalls 10713, 10733 extend from the planar surface 10707 of the anvil 10701 toward the forming surfaces of each pocket 10710, 10730. The sidewalls 10713, 10733 of the forming pockets 10710, 10730 are angled with respect to the planar surface 10707 of the anvil 10701 at angle θ in order to direct, or channel, the legs and/or staple tips of the staples toward the forming surfaces. The sidewalls 10713, 10733 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10703 as the staples are formed against the forming surfaces of the pockets 10710, 10730.
  • Referring again to FIG. 164, the forming surfaces of the pockets 10710, 10730 comprise an entry zone forming surface 10711, 10731, an exit zone forming surface 10712, 10732, and a groove, or channel, 10715, 10735 defined in the forming surfaces, respectively. In this instance, the amount of surface area of the forming surfaces that the entry zone forming surfaces 10711, 10731 cover is equal to the amount of surface area of the forming surfaces that the exit zone forming surfaces 10712, 10732 cover. As a result, the entry zone forming surfaces 10711, 10731 transition to the exit zone forming surfaces 10712, 10732 in the center of each pocket 10710, 10730. The transitions between the entry zone forming surfaces 10711, 10731 and the exit zone forming surfaces 10712, 10732 define a valley, or trough of each pocket 10710, 10730. The valleys of the forming pockets 10710, 10730 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10707.
  • The grooves 10715, 10735, which are aligned with the pocket axis 10703, are defined only within a portion of each pocket 10710, 10730. In this instance, the grooves 10715, 10735 are positioned entirely within the exit zone forming surfaces 10712, 10732. In other instances, the grooves can be positioned entirely within the entry zones. The grooves 10715, 10735 comprise edges 10716, 10736 which provide a transition between the grooves 10715, 10735 and their respective forming surfaces. The edges 10716, 10736 comprise a rounded profile, however, flat, curved, and/or irregular profiles are contemplated, for example. The rounded profile may help prevent staple tip sticking, as discussed in greater detail below. The grooves 10715, 10735 extend from a central portion of their forming surface toward the bridge portion 10705 of the pocket arrangement 10700. The grooves 10715, 10735 extend into the bridge portion 10705 of the pocket arrangement 10700. In other words, the grooves 10715, 10735 extend beyond the inner longitudinal edges 10717, 10737 of each pocket 10710, 10730.
  • Referring to FIG. 166, the groove 10735 and a staple “S” are illustrated. FIG. 166 is a cross-sectional view of the distal forming pocket 10730 taken along line 166-166 in FIG. 164. This cross-sectional view is taken within the exit zone forming surface 10732. The diameter of the staple “S” is larger than the width, or diameter, of the groove 10735. However, the diameter of the staple “S” is smaller than the width of the groove 10735 plus the transition edges 10736. This prevents the body of the staple “S” from contacting the bottom of the groove 10735. This configuration may help maintain minimal, dual-tangent contact between the staple “S” as it forms within the exit zone forming surface 10732 and exits the distal pocket 10730. Minimal contact between the staple and the pocket may help prevent staple tip sticking and provide a more continuously formed staple, as discussed in greater detail below. Staples used with this forming pocket arrangement may comprise a diameter larger than the width of the groove 10735 plus the width of the edges 10736. In this instance, among others, a similar dual-tangent contact would occur.
  • The valleys of the forming pockets 10710, 10730 also define the narrowest portion of the forming surfaces of each pocket 10710, 10730. FIG. 167 is a cross-sectional view of the distal forming pocket 10730 taken along line 167-167 in FIG. 164. This view illustrates the valley, or trough, of the distal forming pocket 10730. The outer longitudinal edges of each pocket 10710, 10730 define the widest portion of the forming surfaces of each pocket 10710, 10730. FIG. 168 is a cross-sectional view of the distal forming pocket 10730 taken along line 168-168 in FIG. 164 which is within the entry zone forming surface 10732 of the distal forming pocket 10730.
  • FIGS. 169-173 depict a forming pocket arrangement 10800 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10800 is similar in many respects to the forming pocket arrangement 10600. The forming pocket arrangement 10800 comprises a proximal forming pocket 10810 and a distal forming pocket 10830 defined in a planar, or tissue-contacting, surface 10807 of an anvil 10801. The pockets 10810, 10830 are aligned along a longitudinal pocket axis 10803 of the forming pocket arrangement 10800. However, a staple is not intended to be formed along the pocket axis 10803 when deployed from a staple cartridge. Rather, a staple is intended to be formed away from the pocket axis 10803. Referring to FIG. 169, the forming pocket arrangement 10800 further comprises a bridge portion 10805 defined between the forming pockets 10810, 10830. In this instance, the bridge portion 10805 is part of the planar surface 10807 of the anvil 10801. The bridge portion 10805 comprises an inner bridge width “W1” and an outer bridge width “W2”. The inner bridge width “W1” is less than the outer bridge width “W2”. The forming pocket arrangement 10800 comprises a center “C” defined within the bridge portion 10805. The forming pocket arrangement 10800 is bilaterally asymmetric with respect to the bridge portion 10805, bilaterally asymmetric with respect to the pocket axis 10803, and rotationally symmetric with respect to the center “C”.
  • The forming pocket 10810 comprises a pair of pocket sidewalls 10813 and the forming pocket 10830 comprises a pair of pocket sidewalls 10833. The pocket sidewalls 10813, 10833 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10810, 10830 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10813, 10833 of the pockets 10810, 10830. Referring to FIGS. 171-173, the sidewalls 10813, 10833 extend from the planar surface 10807 of the anvil 10801 toward the forming surfaces of each pocket 10810, 10830. The sidewalls 10813, 10833 of the forming pockets 10810, 10830 are angled with respect to the planar surface 10807 of the anvil 10801 at angle θ in order to direct, or channel, the legs and/or staple tips of the staples toward the forming surfaces. The sidewalls 10813, 10833 are configured to push, or guide, the staple tips and/or the legs of staples toward the forming surfaces of the pockets 10810, 10830.
  • Referring again to FIG. 169, the forming surfaces of the pockets 10810, 10830 comprise an entry zone forming surface 10811, 10831, an exit zone forming surface 10812, 10832, and a groove, or channel, 10815, 10835 defined in the forming surfaces, respectively. In this instance, the amount of surface area of the forming surfaces that the entry zone forming surfaces 10811, 10831 cover is equal to the amount of surface area of the forming surfaces that the exit zone forming surfaces 10812, 10832 cover. As a result, the entry zone forming surfaces 10811, 10831 transition to the exit zone forming surfaces 10812, 10832 in the center of each pocket 10810, 10830. The transitions between the entry zone forming surfaces 10811, 10831 and the exit zone forming surfaces 10812, 10832 define a valley, or trough of each pocket 10810, 10830. The valleys of the forming pockets 10810, 10830 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10807.
  • The forming surfaces also comprise transition features 10816, 10836 surrounding the grooves 10815, 10835 as well as transition features 10817, 10837 at the inner and outer longitudinal edges of each pocket 10810, 10830. In this instance, the transition features 10816, 10817, 10836, 10837 are rounded, however, the transition features 10816, 10817, 10836, 10837 can comprise any suitable profile in addition to, or in lieu of, a rounded edge, for example. The transition features 10816, 10836 provide a transition between the grooves 10815, 10835 and the forming surfaces of the pockets 10810, 10830, respectively. Toward the central region of the pockets 10810, 10830, the transition features 10816, 10836 may provide a transition between the grooves 10815, 10835 and the sidewalls 10813, 10833. The transition features 10817, 10837 provide a transition between the forming surfaces and the planar surface 10807. The transition features 10817, 10837 comprise extension portions positioned at the proximal and distal ends of the grooves 10815, 10835.
  • The grooves 10815, 10835 are angled with respect to the pocket axis 10803. The grooves 10815, 10835 each comprise an entry portion and an exit portion where the entry portion of the groove 10815 and the entry portion of the groove 10835 are on opposite sides of the pocket axis 10803 and the exit portion of the groove 10815 and the exit portion of the groove 10835 are on opposite sides of the pocket axis 10803. This configuration encourages legs to form away from each other. For example, instead of head to head contact between a pair of corresponding legs, the legs are configured to form offset with respect to and on opposite sides of the pocket axis 10803.
  • The valleys of the forming pockets 10810, 10830 also define the narrowest portion of the forming surfaces of each pocket 10810, 10830. FIG. 172 is a cross-sectional view of the distal forming pocket 10830 taken along line 172-172 in FIG. 169. This view illustrates the valley, or trough, of the distal forming pocket 10830. The outer longitudinal edges of each pocket 10810, 10830 define the widest portion of the forming surfaces of each pocket 10810, 10830. FIG. 171 illustrates a cross-sectional view of the distal forming pocket 10830 taken along line 171-171 in FIG. 169 which is within the exit zone forming surface 10832 of the distal forming pocket 10830. FIG. 173 is a cross-sectional view of the distal forming pocket 10830 taken along line 173-173 in FIG. 169 which is within the entry zone forming surface 10832 of the distal forming pocket 10830.
  • FIGS. 174-178 depict a forming pocket arrangement 10900 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 10900 may be similar to the forming pocket arrangement 10200 in many respects. The forming pocket arrangement 10900 comprises a proximal forming pocket 10910 and a distal forming pocket 10930 defined in a planar, or tissue-contacting, surface 10907 of an anvil 10901. The pockets 10910, 10930 are aligned along a longitudinal pocket axis 10903 of the forming pocket arrangement 10900. A staple is intended to be formed along the pocket axis 10903 by the forming pocket arrangement 10900 when deployed from a staple cartridge. Referring to FIGS. 174 and 175, the forming pocket arrangement 10900 further comprises a bridge portion 10905 defined between the forming pockets 10910, 10930. In this instance, the bridge portion 10905 is recessed with respect to the planar surface 10907 of the anvil 10901. The bridge portion 10905 comprises a first bridge width “W1” and a second bridge width “W2”. The first width “W1” is greater than the second width “W2”. The bridge portion also comprises a bridge depth “D”. The bridge depth “D” is the distance that the bridge portion 10905 is recessed with respect to the planar surface 10907. The forming pocket arrangement 10900 comprises a center “C” defined within the bridge portion 10905. The forming pocket arrangement 10900 is bilaterally symmetric with respect to the bridge portion 10905, bilaterally symmetric with respect to pocket axis 10903, and rotationally symmetric with respect to the center “C”.
  • The forming pocket arrangement 10900 further comprises a pair of primary sidewalls 10908 extending from the planar surface 10907 of the anvil 10901 toward the pockets 10910, 10930 and the bridge portion 10905. The primary sidewalls 10908 are angled at angle θ2 with respect to the planar surface 10907 of the anvil 10901. The forming pocket arrangement 10900 further comprises edge features 10915, 10935 which provide a transition feature between the outer edges of the pockets 10910, 10930 and the planar surface 10907 and between the longitudinal edges of the pockets 10910, 10930 and the primary sidewalls 10908. These edges 10915, 10935 can be rounded, and/or chamfered, for example. The edge features 10915, 10935 may help prevent staple tips from sticking, as discussed in greater detail below.
  • The forming pocket 10910 comprises a pair of pocket sidewalls 10913 and the forming pocket 10930 comprises a pair of pocket sidewalls 10933. The pocket sidewalls 10913, 10933 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 10910, 10930 in the event that the staple tips and/or the legs of the staples initially strike the sidewalls 10913, 10933 of the pockets 10910, 10930. The sidewalls 10913, 10933 extend from the transition edges 10915, 10935 toward the forming surfaces of each pocket 10910, 10930. The sidewalls 10913, 10933 of the forming pockets 10910, 10930 are angled with respect to the planar surface 10907 of the anvil 10901 at angle θ1 in order to direct, or channel, the legs and/or staple tips of the staples toward the forming surfaces of the pockets 10910, 10930. The sidewalls 10913, 10933 are configured to encourage the staple tips and/or the legs of the staples to form along the pocket axis 10903 as the staples are formed against the forming surfaces of the pockets 10910, 10930. Collectively, the primary sidewalls 10908 and the pocket sidewalls 10913, 10933 can provide a funnel-like configuration for receiving two staple tips. Referring to FIGS. 176 and 177, the angle θ1 is greater than the angle θ2.
  • The pockets 10910, 10930 further comprise transition edges 10914, 10934 which provide a transition feature between the pocket sidewalls 10913, 10933 and the forming surfaces, as discussed in greater detail below. In various instances, the transition edges 10914, 10934 can comprise a similar profile as the transition edges 10915, 10935. In other instances, the transition edges 10914, 10934 can comprise a different profile than the transition edges 10915, 10935. In either event, the edges 10914, 10934 can be rounded, or chamfered, for example. The edges 10914, 10934 comprise a first end where the edges 10914, 10934 meet the outer corners of the pockets 10910, 10930 and a second end where the edges 10914, 10934 approach the bridge portion 10905, or the inner ends of the pockets 10910, 10930. The edges 10914, 10934 may transition into the transition edges 10915, 10935 near the bridge portion 10905. The edge features 10914, 10934 may also help prevent staple tips from sticking in the pockets 10910, 10930 when forming, as discussed in greater detail below.
  • Referring again to FIGS. 174 and 175, the forming surfaces of the pockets 10910, 10930 comprise an entry zone forming surface 10911, 10931 and an exit zone forming surface 10912, 10932, respectively. In this instance, the amount of surface area of the forming surfaces that the entry zone forming surfaces 10911, 10931 cover is greater than the amount of surface area of the forming surfaces that the exit zone forming surfaces 10912, 10932 cover. As a result, the entry zone forming surfaces 10911, 10931 do not transition to the exit zone forming surfaces 10912, 10932 in the center of each pocket 10910, 10930. Rather, the transition points where the entry zones 10911, 10931 transition to the exit zones 10912, 10932 are closer to the bridge portion 10905. The transitions between the entry zone forming surfaces 10911, 10931 and the exit zone forming surfaces 10912, 10932 define a valley, or trough of each pocket 10910, 10930. The valleys of the forming pockets 10910, 10930 define a portion, or segment, of the forming surfaces having the greatest vertical distance from the planar surface 10907.
  • Referring to FIG. 175, the forming surfaces of each pocket 10910, 10930 comprise more than one radius of curvature. Specifically, the pocket 10910 comprises an entry radius of curvature 10918 corresponding to the entry zone forming surface 10911 and an exit radius of curvature 10919 corresponding to the exit zone forming surface 10912. Similarly, the pocket 10930 comprises an entry radius of curvature 10938 corresponding to the entry zone forming surface 10931 and an exit radius of curvature 10939 corresponding to the exit zone forming surface 10932. In this instance, the entry radii of curvature 10918, 10938 are larger than the exit radii of curvature 10919, 10939. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • The forming surfaces of each pocket 10910, 10930 also comprise grooves, or channels, 10916, 10936 defined in the entire longitudinal length of each form pocket 10910, 10930, respectively. The forming surfaces may comprise a main forming surface length and the grooves may comprise a groove length which is greater than the main forming surface length. The grooves 10916, 10936 are configured to guide staple tips and/or legs during the forming process. The grooves also comprise transition edges 10917, 10937 providing a transition between the forming surfaces and the grooves 10916, 10936 and between the grooves 10916, 10936 and the sidewalls 10913, 10933. The transition edges 10917, 10937 may comprise a rounded profile and/or a chamfered profile, for example. Referring to FIG. 176, a staple “S” is shown. FIG. 176 is a cross-sectional view of the distal forming pocket 10930 taken along line 176-176 in FIG. 174. This cross-sectional view is taken within the exit zone forming surface 10932. The diameter of the staple “S” is larger than the width of the groove 10936. However, the diameter of the staple “S” is smaller than the width of the groove 10936 plus the transition edges 10937. This prevents the body of the staple “S” from contacting the deepest portion of the groove 10936. This configuration may help maintain minimal contact between the staple “S” as it forms against the forming surface. Minimal contact between the staple and the pocket may help prevent staple tip sticking and provide a more continuously formed staple, as discussed in greater detail below. The forming pocket arrangement 10900 is configured to be employed with staples of varying diameter. In one instance, the diameter of the staple may be less than that of the width of the grooves 10916, 10936 such that the staple can enter and contact the deepest portion of the grooves 10916, 10936.
  • In addition to defining the transition points where the entry zones transition to the exit zones, the valleys of the forming pockets 10910, 10930 also define the narrowest portion of the forming surfaces of each pocket 10910, 10930. The outer longitudinal edges of each pocket 10910, 10930, also referred to as entry edges because they define the beginning of the entry zone forming surfaces 10911, 10931, comprise an entry width. The inner longitudinal edges of each pocket 10910, 10930, also referred to as exit edges because they define the end of the exit zone forming surfaces 10912, 10932, comprise an exit width. In this instance, the entry width is greater than the exit width. Also, the exit width is greater than the valley width, or the narrowest portion of the forming surfaces. FIG. 177 is a cross-sectional view of the distal forming pocket 10930 taken along line 177-177 in FIG. 174. This view illustrates the valley, or trough, of the distal forming pocket 10930. This valley, or trough, is also the transition between the entry zone forming surface 10931 and the exit zone forming surface 10932. FIG. 178 is a cross-sectional view of the distal forming pocket 10930 taken along line 178-178 in FIG. 174 which is within the entry zone forming surface 10932 of the distal forming pocket 10930.
  • FIGS. 179-183 depict a forming pocket arrangement 11000 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 11000 comprises a proximal forming pocket 11010 and a distal forming pocket 11030 defined in a planar, or tissue-contacting, surface 11007 of an anvil 11001. The pockets 11010, 11030 are aligned along a longitudinal pocket axis 11003 of the forming pocket arrangement 11000. A staple is intended to be formed away from the pocket axis 11003 by the forming pocket arrangement 11000 when deployed from a staple cartridge. Referring to FIGS. 179 and 180, the forming pocket arrangement 11000 further comprises a bridge portion 11005 defined between the forming pockets 11010, 11030. In this instance, the bridge portion 11005 is recessed with respect to the planar surface 11007 of the anvil 11001 and angled with respect to the pocket axis 11003. The bridge portion 11005 comprises a bridge width “W” and a bridge depth “D”. The bridge portion 11005 is substantially U-shaped with a substantial planar bottom portion. The bridge depth “D” is the distance that the planar portion of the bridge portion 11005 is recessed with respect to the planar surface 11007. The forming pocket arrangement 11000 comprises a center “C” defined within the bridge portion 11005. The forming pocket arrangement 11000 is bilaterally asymmetric with respect to the bridge portion 11005, bilaterally asymmetric with respect to pocket axis 11003, and rotationally symmetric with respect to the center “C”.
  • The forming pocket arrangement 11000 further comprises a pair of primary sidewalls 11008 extending from the planar surface 11007 of the anvil 11001 toward the pockets 11010, 11030 and the bridge portion 11005. The primary sidewalls 11008 are angled at angle θ2 with respect to the planar surface 11007 of the anvil 11001. The primary sidewalls 11008 comprise inner edges that are curved, or contoured, with respect to the pockets 11010, 11030.
  • The forming pocket 11010 comprises a pair of pocket sidewalls 11013 and the forming pocket 11030 comprises a pair of pocket sidewalls 11033. The pocket sidewalls 11013, 11033 comprise a substantially V-shaped profile near the entry portion and a curved, or contoured, profile. The sidewalls 11013, 11033 are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 11010, 11030 as well as help control the forming process of the staples. The sidewalls 11013, 11033 extend from the primary sidewalls 11008 and the planar surface 11007 toward the forming surfaces of each pocket 11010, 11030. Collectively, the primary sidewalls 11008 and the pocket sidewalls 11013, 11033 cooperate to funnel corresponding staple tips toward the forming surfaces each pocket 11010, 11030. Discussed in greater detail below, the sidewalls 11013, 11033 comprise entry portions and exit portions where the entry portions comprise a less aggressive channeling configuration than the exit portions.
  • Referring again to FIG. 179, the forming surfaces of the pockets 11010, 11030 comprise an entry zone forming surface 11011, 11031 and an exit zone forming surface 11012, 11032, respectively. The entry zone forming surfaces 11011, 11031 can coincide with the less aggressive channeling portions of the sidewalls 11013, 11033. The entry zone forming surfaces 11011, 11031 can also coincide with the substantially V-shaped profile of each pocket 11010, 11030. Similarly, the exit zone forming surfaces 11012, 11032 can coincide with the more aggressive channeling portions of the sidewalls 11013, 11033. The exit zone forming surfaces 11012, 11032 can also coincide with the curved, or contoured, profile of each pocket 11010, 11030. The pockets 11010, 11030 further comprise a forming, or guiding, groove 11015, 11035, respectively, which extend the entire longitudinal length of the pockets 11010, 11030 and are positioned on only one side of the pocket axis 11003. The grooves 11015, 11035 are angled with respect to the pocket axis 11003. The grooves 11015, 11035 are narrower at the outer longitudinal edges of the pockets 11010, 11030 than the inner longitudinal edges of the pockets 11010, 11030. The grooves 11015, 11035 are also parallel, or at least substantially parallel, to each other.
  • Referring to FIG. 180, the forming surfaces of each pocket 11010, 11030 comprise more than one radius of curvature. Specifically, the pocket 11010 comprises an entry radius of curvature 11017 corresponding to the entry zone forming surface 11011 and an exit radius of curvature 11018 corresponding to the exit zone forming surface 11012. Similarly, the pocket 11030 comprises an entry radius of curvature 11037 corresponding to the entry zone forming surface 11031 and an exit radius of curvature 11038 corresponding to the exit zone forming surface 11032. In this instance, the entry radii of curvature 11017, 11037 are larger than the exit radii of curvature 11018, 11038. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • Referring now to FIGS. 181-183, the outer longitudinal edges of each pocket 11010, 11030 are referred to as entry edges because they define the beginning of the entry zone forming surfaces 11011, 11031. The entry edges comprise an entry width which is the largest width of the forming surfaces of each pocket 11010, 11030. The inner longitudinal edges of each pocket 11010, 11030 are referred to as exit edges because they define the end of the exit zone forming surfaces 11012, 11032. The exit edges comprise an exit width which is the narrowest section of the forming surfaces of each pocket 11010, 11030. The transitions between entry and exit zones comprise a transition width which is less than the entry width but greater than the exit width.
  • FIG. 181 is a cross-sectional view of the distal forming pocket 11030 taken along line 181-181 in FIG. 179. This view is taken within the exit zone forming surface 11032 of the forming pocket 11030. The sidewall 11033 which the groove 11035 is angled toward is curved more and more aggressively sloped than the other sidewall 11033 which the groove 11035 is angled away from. FIG. 182 is a cross-sectional view of the distal forming pocket 11030 taken along line 182-182 in FIG. 179. This view is taken near the valley, or trough, of the forming pocket 11030. The curvature, or contoured, profile of each sidewall 11033 is substantially similar near this section of the pocket 11030 though, the sidewall 11033 which the groove 11035 is angled toward is, still, curved more and more aggressively sloped than the other sidewall 11033 which the groove 11035 is angled away from. FIG. 183 is cross-sectional view of the distal forming pocket 11030 taken along line 183-183 in FIG. 179. This view is taken within the entry zone forming surface 11031 of the forming pocket 11030. In this section of the pocket, the sidewalls 11033 are substantially flat. However, it can be seen that the sidewall 11033 which the groove 11035 is angled toward is still curved slightly. The sidewall 11033 which the groove 11035 is angled away from is planar in this section and is angled at angle θ1 with respect to the planar surface 11007. Angle θ1 is greater than angle θ2.
  • FIGS. 184-188 depict a forming pocket arrangement 11100 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 11100 comprises a proximal forming pocket 11110 and a distal forming pocket 11130 defined in a planar, or tissue-contacting, surface 11107 of an anvil 11101. The pockets 11110, 11130 are aligned along a longitudinal pocket axis 11103 of the forming pocket arrangement 11100. Referring to FIGS. 184 and 185, the forming pocket arrangement 11100 further comprises a bridge portion 11105 defined between the forming pockets 11110, 11130. In this instance, the bridge portion 11105 is part of the planar surface 11107 of the anvil 11101. The bridge portion 11105 comprises a bridge width “W”. The forming pocket arrangement 11100 comprises a center “C” defined within the bridge portion 11105. The forming pocket arrangement 11100 is bilaterally symmetric with respect to the bridge portion 11105, bilaterally asymmetric with respect to pocket axis 11103, and rotationally asymmetric with respect to the center “C”.
  • Each forming pocket 11110, 11130 comprises a filleted edge 11114, 11134, respectively, extending around the perimeter of each pocket 11110, 11130. The edges 11114, 11134 provide a curved transition between the planar surface 11107 and the pockets 11110, 11130. Specifically, the edges 11114, 11134 transition the planar surface 11107 into pocket sidewalls 11113A, 11113B of the pocket 11110 and pocket sidewalls 11133A, 11133B of the pocket 11130. The edges 11114, 11134 also transition the planar surface 11107 into the entry and exit portions of the forming surfaces of each pocket 11110, 11130.
  • The sidewalls 11113A, 11133A are angled with respect to the pocket axis 11103 at angle θ. The sidewalls 11113B, 11133B comprise distinct sidewall portions 11121, 11122, 11123 and 11141, 11142, 11143, respectively. The sidewall portions 11121, 11141 are angled with respect to the pocket axis 11103 at a different angle than the angle at which the sidewall portions 11113A, 11133A are angled with respect to the pocket axis 11103. The sidewall portions 11122, 11142 are parallel, or at least substantially parallel, to the pocket axis 11103. The sidewall portions 11123, 11143 are parallel, or at least substantially parallel, to the sidewalls 11113A, 11133A. The sidewalls 11113A, 11113B, 11133A, 11133B are configured to direct the staple tips and the legs of the staples toward the forming surfaces of the pockets 11110, 11130 as well as help control the forming process of the staples.
  • The sidewalls 11113A, 11113B, 11133A, 11133B extend from the transition edges 11114, 11134 to transition edges 11116, 11136. These edges 11116, 11136 provide a rounded, or smoothed, transition feature between the sidewalls 11113A, 11113B, 11133A, 11133B and the forming surfaces of each pocket 11110, 11130. The edges 11116, 11136 may comprise rounded and/or flat profiles.
  • Referring again to FIG. 184, the forming surfaces of the pockets 11110, 11130 comprise an entry zone forming surface 11111, 11131 and an exit zone forming surface 11112, 11132, respectively. The pockets 11110, 11130 further comprise a forming, or guiding, groove 11115, 11135 defined in the forming pockets 11110, 11130, respectively. Specifically, the grooves 11115, 11135 extend parallel, or at least substantially parallel, to the pocket axis 11103 and reside only in the entry zone forming surface 11111, 11131. The pockets 11110, 11130 also comprise filleted transition edges extending around the perimeter of the grooves 11115, 11135, respectively, to provide a smooth a transition between the forming surfaces and the grooves 11115, 11135. The filleted transition edges may aid in ensuring two-point forming contact, as discussed in greater detail below. The grooves 11115, 11135 also reside entirely on one side of the pocket axis 11103.
  • Referring to FIG. 185, the forming surfaces of each pocket 11110, 11130 comprise more than one radius of curvature. Specifically, the proximal pocket 11110 comprises an entry radius of curvature 11127 corresponding to the entry zone forming surface 11111 and an exit radius of curvature 11128 corresponding to the exit zone forming surface 11112. Similarly, the distal pocket 11130 comprises an entry radius of curvature 11147 corresponding to the entry zone forming surface 11131 and an exit radius of curvature 11148 corresponding to the exit zone forming surface 11132. In this instance, the entry radii of curvature 11117, 11137 are larger than the exit radii of curvature 11118, 11138. Additionally, the forming surfaces comprise a transition point where the radii of curvature switch from entry radii of curvature 11127, 11147 to exit radii of curvature 11128, 11148. In this instance, this transition point occurs at the ends of the grooves 11115, 11135 which are closer to the bridge portion 11105. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • The outer longitudinal edges of each pocket 11110, 11130 are referred to as entry edges because they define the beginning of the entry zone forming surfaces 11111, 11131. The entry edges comprise an entry width which is the largest width of the forming surfaces of each pocket 11110, 11130. The inner longitudinal edges of each pocket 11110, 11130 are referred to as exit edges because they define the end of the exit zone forming surfaces 11112, 11132. The exit edges comprise an exit width which is the narrowest section of the forming surfaces of each pocket 11110, 11130. The transition point where the entry zone transitions to the exit zone comprises a transition width which is less than the entry width but greater than the exit width.
  • FIG. 186 is a cross-sectional view of the distal forming pocket 11130 taken along line 186-186 in FIG. 184. This view is taken within the exit zone forming surface 11132 of the forming pocket 11130. FIG. 187 is a cross-sectional view of the distal forming pocket 11130 taken along line 187-187 in FIG. 184. This view is taken near the valley, or trough, of the forming pocket 11130. In this view, it can be seen that the groove 11135 may be considered an extension of the sidewall portion 11142. FIG. 188 is cross-sectional view of the distal forming pocket 11130 taken along line 188-188 in FIG. 184.
  • FIGS. 189-196 depict a forming pocket arrangement 11200 that is configured to deform a staple during a surgical stapling procedure. The forming pocket arrangement 11200 comprises a proximal forming pocket 11210 and a distal forming pocket 11230 defined in a planar, or tissue-contacting, surface 11207 of an anvil 11201. The pockets 11210, 11230 are aligned along a longitudinal pocket axis 11203 of the forming pocket arrangement 11200. Referring to FIGS. 189 and 190, the forming pocket arrangement 11200 further comprises a bridge portion 11205 defined between the forming pockets 11210, 11230. In this instance, the bridge portion 11205 is recessed with respect to the planar surface 11207 of the anvil 11201. The bridge portion 11205 comprises a bridge width “W” and a bridge depth “D”. The bridge depth “D” is the distance that the bridge portion 11205 is recessed with respect to the planar surface 11207. The forming pocket arrangement 11200 comprises a center “C” defined within the bridge portion 11205. In this instance, the center “C” is not the geometrical center of the pocket arrangement 11200, rather, the center “C” is identified as being near the central portion of the bridge portion 11205 to define an intermediate reference point between the pockets to describe, in this case, the lack of symmetry of the pocket arrangement 11200. Specifically, the forming pocket arrangement 11200 is bilaterally asymmetric with respect to the bridge portion 11205, bilaterally symmetric with respect to pocket axis 11203, and rotationally asymmetric with respect to the center “C”. The pockets 11210, 11230 are different in many respects, as discussed in greater detail below.
  • The forming pocket arrangement 11200 further comprises a pair of primary sidewalls 11208 extending from the planar surface 11207 of the anvil 11201 toward the pockets 11210, 11230 and the bridge portion 11205. The primary sidewalls 11208 are angled at angle θ with respect to the planar surface 11207 of the anvil 11201.
  • The proximal forming pocket 11210 comprises a pair of pocket sidewalls 11213 configured to direct staple tips and/or legs toward a forming surface of the pocket as well as control the forming of the staples. The pocket sidewalls 11213 are substantially vertical. In other words, the sidewalls 11213 are oriented 90 degrees, or approximately 90 degrees, with respect to the planar surface 11207 of the anvil 11201. The pocket sidewalls 11213 extend from the primary sidewalls 11208 toward the forming surface of the proximal pocket 11210. Collectively, the primary sidewalls 11208 and the pocket sidewalls 11213 cooperate to funnel corresponding staple tips toward the forming surface of the proximal pocket 11210. Extending from the sidewalls 11213 to the forming surface of the proximal forming pocket 11210 are transition features 11214. In this instance, the features 11214 are curved, however, the features 11214 may be flat in addition to, or in lieu of, being curved. These features 11214 may help prevent staple tip sticking, as discussed in greater detail below.
  • The forming surface of the proximal forming pocket 11210 comprises an entry zone forming surface 11211 and an exit zone forming surface 11212. The entry zone forming surface 11211 corresponds with a proximal portion of the proximal pocket 11210. The exit zone forming 11212 corresponds with a distal portion of the proximal pocket 11210. Similarly, the entry zone forming surface 11211 corresponds to a portion of the pocket 11210 of which the corresponding staple tip is intended to enter, or strike, the pocket 11210 and begin forming. The exit zone forming surface 11212 corresponds to a portion of the pocket 11210 where the corresponding staple tip is intended to exit the pocket 11210.
  • The forming surface of the proximal forming pocket 11210 also comprises a forming surface length L1 and a forming surface depth V1. The length L1 is identified as the distance between the entry edge of the pocket 11210 and the exit edge of the pocket 11210. The forming surface depth V1 is identified as the deepest portion of the pocket 11210, or the trough of the pocket 11210, also referred to as the valley of the pocket 11210.
  • In many respects, the distal forming pocket 11230 is different than the proximal forming pocket 11210. The distal forming pocket 11230 comprises a pair of pocket sidewalls 11233 configured to direct staple tips and/or legs toward a forming surface of the pocket as well as control the forming of the staples. The sidewalls 11233 comprise discrete sidewall portions angled at different angles with respect to the pocket axis 11203. The pocket sidewalls 11233 are substantially vertical. In other words, the sidewalls 11233 are oriented 90 degrees, or at least substantially 90 degrees, with respect to the planar surface 11207 of the anvil 11201. The pocket sidewalls 11233 extend from the primary sidewalls 11208 toward the forming surface of the distal pocket 11230. Collectively, the primary sidewalls 11208 and the pocket sidewalls 11233 cooperate to funnel corresponding staple tips toward the forming surface of the distal pocket 11230. Extending from the sidewalls 11233 to the forming surface of the proximal forming pocket 11230 are transition features 11234. In this instance the features 11234 are curved, however, the features 11234 may be flat in addition to, or in lieu of, being curved. These features 11234 may help prevent staple tip sticking, as discussed in greater detail below. The features 11234 of the distal forming pocket 11230 comprise a smaller radius of curvature than the features 11213 of the proximal forming pocket 11210.
  • The forming surface of the distal forming pocket 11230 comprises an entry zone forming surface 11231 and an exit zone forming surface 11232. The entry zone forming surface 11231 corresponds with a distal portion of the distal pocket 11230. The exit zone forming 11232 corresponds with a proximal portion of the distal pocket 11230. Similarly, the entry zone forming surface 11231 corresponds to a portion of the pocket 11230 of which the corresponding staple tip is intended to enter, or strike, the pocket 11230 and begin forming. The exit zone forming surface 11232 corresponds to a portion of the pocket 11230 where the corresponding staple tip is intended to exit the pocket 11230.
  • The forming surface of the distal forming pocket 11210 also comprises a forming surface length L2 and a forming surface depth V2. The length L2 is identified as the distance between the entry edge of the pocket 11230 and the exit edge of the pocket 11230. The forming surface depth V2 is identified as the deepest portion of the pocket 11230, or the trough of the pocket 11230, also referred to as the valley of the pocket 11230. The forming surface length L2 of the distal pocket 11230 is greater than the forming surface length L1 of the proximal pocket 11210. Additionally, the forming surface depth V1 of the proximal pocket 11210 is greater than the forming surface depth V2 of the distal pocket 11230. In other instances, the forming surface depth V1 of the proximal pocket 11210 may be less than the forming surface depth V2 of the distal pocket 11230.
  • The difference in forming surface lengths between two pockets in a pocket arrangement intended to form one staple can be advantageous. In certain instances, tissue can be pushed forward during a firing stroke owing to the advancement of the tissue-cutting knife, for example, and, consequently, tissue may be urged forward during firing of the staples. If the staples are being ejected from the cartridge and into the tissue as the tissue is moving longitudinally relative to the deck, this may cause the staple legs and/or staple tips to bend distally with respect to their bases owing to the tissue flow. In this instance, a distal forming pocket having a greater forming surface length than the proximal forming pocket may be able to account for this longitudinal deflection of the staple legs.
  • Referring to FIG. 190, the forming surfaces of each pocket 11210, 11230 comprise more than one radius of curvature. Specifically, the proximal pocket 11210 comprises an entry radius of curvature 11216 corresponding to the entry zone forming surface 11211 and an exit radius of curvature 11217 corresponding to the exit zone forming surface 11212. Similarly, the distal pocket 11230 comprises an entry radius of curvature 11236 corresponding to the entry zone forming surface 11231 and an exit radius of curvature 11237 corresponding to the exit zone forming surface 11232. In this instance, the entry radii of curvature 11216, 11236 are larger than the exit radii of curvature 11217, 11237. Additionally, the entry radii of curvature 11216, 11236 are different and the exit radii of curvature 11217, 11237 are different. Specific relationships between the radii of curvature and various pocket features will be discussed in greater detail below along with some potential advantages and patterns of the specific relationships.
  • Turning to FIGS. 194-196, the outer longitudinal edge of the proximal pocket 11210 is referred to as an entry edge because it defines the beginning of the entry zone forming surface 11211. The entry edge comprises an entry width which is the largest width of the forming surface of the proximal pocket 11210. The entry width of the forming surface of the proximal pocket 11210 is also greater than the bridge width “W”. The inner longitudinal edge of the proximal pocket 11210 is referred to as an exit edge because it defines the end of the exit zone forming surface 11212. The exit edge comprises an exit width which is the narrowest section of the forming surface of the proximal pocket 11210. The transition between the entry zone forming surface 11211 and the exit zone forming surface 11212 comprise a transition width which is less than the entry width but greater than the exit width. The exit width and the transition width of the forming surface of the proximal pocket 11210 are both less than the bridge width “W”.
  • FIG. 194 is a cross-sectional view of the proximal forming pocket 11210 taken along line 194-194 in FIG. 189. This view is taken within the exit zone forming surface 11212 of the forming pocket 11210. FIG. 195 is a cross-sectional view of the proximal forming pocket 11210 taken along line 195-195 in FIG. 189. This view is taken at, or near, the valley, or trough, of the forming pocket 11210. FIG. 196 is cross-sectional view of the proximal forming pocket 11210 taken along line 196-196 in FIG. 189. This view is taken within the entry zone forming surface 11211 of the forming pocket 11210.
  • Turning to FIGS. 191-193, the outer longitudinal edge of the distal pocket 11230 is referred to as an entry edge because it defines the beginning of the entry zone forming surface 11231. The entry edge comprises an entry width which is the largest width of the forming surface of the distal pocket 11230. The entry width of the forming surface of the distal pocket 11230 is greater than the bridge width “W”. The inner longitudinal edge of the distal pocket 11230 is referred to as an exit edge because it defines the end of the exit zone forming surface 11232. The exit edge comprises an exit width which is the narrowest section of the forming surface of the distal pocket 11230. The transition between the entry zone forming surface 11231 and the exit zone forming surface 11232 comprise a transition width which is less than the entry width but greater than the exit width. The exit width and the transition width of the forming surface of the distal pocket 11230 are both less than the bridge width “W”. Though, with respect to pocket width (distance between outer lateral edges) at these locations, the pocket 11230 is wider than the bridge portion 11205.
  • FIG. 191 is a cross-sectional view of the distal forming pocket 11230 taken along line 191-191 in FIG. 189. This view is taken within the exit zone forming surface 11232 of the forming pocket 11230. FIG. 192 is a cross-sectional view of the distal forming pocket 11230 taken along line 192-192 in FIG. 189. This view is taken at, or near, the valley, or trough, of the forming pocket 11230. FIG. 193 is cross-sectional view of the distal forming pocket 11230 taken along line 193-193 in FIG. 189. This view is taken within the entry zone forming surface 11231 of the forming pocket 11230.
  • Another asymmetric property of the forming pocket arrangement 11200 involves the size of the landing zones of each pocket and the exit zones of each pocket. For example, the proximal pocket comprises a smaller landing zone and exit zone than the landing zone and exit zone of the distal pocket. Additionally, the center “C” of the arrangement does not correspond to the geometric center of the staple crown. Tuning certain features of forming pocket arrangements to better accommodate for expected tissue flow which ultimately can effect the proximal and distal staple legs differently, for example, can lead to asymmetric, but potentially optimal, forming pocket arrangements.
  • The difference in forming surface depths between two pockets in a pocket arrangement intended to form a single staple can be advantageous. Turning now to FIGS. 197-200, two different stapling assembly arrangements 11300 and 11300′ are illustrated. One of the arrangements 11300 (FIG. 197) comprises forming pockets with identical forming surface, or valley, depths. The other arrangement 11300′ (FIG. 199) comprises forming pockets with different forming surface depths. Both arrangements 11300, 11300′ are depicted in a scenario where the anvil has not been clamped to be substantially parallel to the top surface, or deck, of the staple cartridge.
  • The stapling assembly 11300 depicted in FIG. 197 comprises a first jaw 11310 comprising a staple cartridge 11311, a second jaw 11320 comprising an anvil 11321, and staples 11301 removably stored within the cartridge 11311 configured to be ejected from the cartridge 11311 by a sled 11312. The sled 11312 comprises a cam, or pusher surface, 11313 configured to contact a driving surface 11303 of the staple 11301 and push the staples 11301 toward forming pockets 11323 of the anvil 11321 to form the staple legs 11304 (proximal leg) and 11305 (distal leg) which extend from a staple base portion 11302 of each staple 11301. As discussed above, the forming pockets 11323 of this arrangement 11300 comprise identical forming surface depths. This depth is the distance between a planar anvil surface 11322 and the valley, or trough, of the pocket 11323. When forming the staple 11301 with the anvil 11321 of the arrangement 11300 when the anvil is angled at angle θ with respect to the cartridge deck 11314, the distal leg 11305 will form with a larger forming height than the proximal leg 11304 (FIG. 198). This may also be described as the distal leg 11305 not being completely formed due to the fact that the anvil 11321 was not clamped into a position such that the planar anvil surface 11322 was parallel to the cartridge deck 11314.
  • The stapling assembly 11300′ depicted in FIG. 199 comprises all of the same elements as the stapling assembly 11300 with the exception of the second jaw 11320. The stapling assembly 11300′ comprises a second jaw 11320′ comprising an anvil 11321′ including a planar anvil surface 11322′ and a plurality of forming pockets 11323A, 11323B defined in the anvil 11321′. As discussed above, the forming pockets 11323A, 11323B of this arrangement 11300′ comprise different forming surface depths. The proximal pockets 11323A, configured to form proximal staple legs such as the proximal staple leg 11304, comprise a deeper forming surface depth than the distal pockets 11323B. The distal pockets 11323B, configured to form distal staple legs such as the distal staple leg 11305, comprise a forming surface depth shallower than that of the proximal pockets 11323A in order to account for a potentially-angled jaw 11320′. When forming the staples 11301 with the anvil 11321′ of the arrangement 11300′ when the anvil is angled at angle θ with respect to the cartridge deck 11314, the proximal leg 11304 and the distal leg 11305 may form with identical, or substantially the same, forming heights (FIG. 201).
  • Although the anvil is intended to be clamped into a position placing the anvil surface substantially parallel to the deck of the cartridge, this is does not always happen. For example, due to unexpected tissue behavior and/or the nature of a surgical stapling procedure, thicker tissue sections may end up in the distal portion of the end effector (this can occur with already stapled tissue that ends up re-clamped in a proximal section of the end effector for a subsequent firing that is thinner and more compact than the tissue at the distal end of the next section of tissue to be stapled). Consequently, the anvil may not be able to be clamped into a substantially parallel configuration with respect to the cartridge. As a result, staples may form like staple 11301 in FIG. 1 having one partially-formed leg 11305 and one fully-formed leg 11304. Instead of designing the anvil to ensure parallel alignment with the cartridge when clamped, one solution may be to embrace the likelihood of non-parallel alignment and design the forming pocket arrangement, or forming pocket pairs, as described above. Moreover, in the event that the anvil shown in the arrangement 11300′ depicted in FIG. 199 is clamped at least substantially parallel to the deck 11314, the distal leg of the staple may over form. Over-forming a staple may, in some circumstances, be more advantageous than under, or partially, forming (FIG. 198) a staple. Providing a valley depth difference between pocket pairs can prevent modifications between proximal and distal legs of staples.
  • FIGS. 201-204 depict various anvils to be employed with a surgical instrument for forming surgical staples. FIG. 201 depicts an anvil 11400 comprising a cartridge-facing portion 11401. The anvil 11400 comprises a pair of longitudinal, inner rows 11407A, 11407B of forming pockets 11405, a pair of longitudinal, intermediate rows 11408A, 11408B of forming pockets 11405, and a pair of longitudinal, outer rows 11409A, 11409B of forming pockets 11405. The rows 11407A, 11407B, 11408A, 11408B, 11409A, 11409B are aligned with, or substantially parallel to, a longitudinal anvil axis 11403. The forming pockets 11405 are defined in the cartridge-facing portion 11401. The cartridge-facing portion 11401 may be planar or may comprise multiple stepped surfaces, for instance. For example, the cartridge-facing portion 11401 may comprise two different stepped surfaces where the inner rows 11407A, 11407B and intermediate rows 11408A, 11408B of forming pockets 11405 are defined in one of the steps and the outer rows 11409A, 11409B of forming pockets 11405 are defined in the other step. Another example may include three different stepped surfaces: the inner rows 11407A, 11407B of forming pockets 11405 defined in a first step, the intermediate rows 11408A, 11408B of forming pockets 11405 defined in a second step, and the outer rows 11409A, 11409B of forming pockets 11405 defined in a third step.
  • FIG. 202 depicts an anvil 11410 comprising a cartridge-facing portion 11411 and laterally changing pairs of forming pockets defined therein. The anvil 11410 comprises a pair of longitudinal, inner rows 11417A, 11417B of forming pocket pairs 11421, a pair of longitudinal, intermediate rows 11418A, 11418B of forming pocket pairs 11423, and a pair of longitudinal, outer rows 11419A, 11419B of forming pocket pairs 11425. The rows 11417A, 11417B, 11418A, 11418B, 11419A, 11419B are aligned with, or substantially parallel to, a longitudinal anvil axis 11413. The forming pocket pairs 11421, 11423, 11425 are defined in the cartridge-facing portion 11401. The pocket pairs 11421 are comprised of a first type of forming pockets 11422. These forming pockets 11422 may be similar in many respects to the forming pockets 10210, 10230, for example. The pocket pairs 11423 are comprised of a second type of forming pockets 11424A (proximal), 11424B (distal) which are asymmetric. The forming pockets 11424A, 11424B may be similar in many respects to the forming pockets 11210, 11230, respectively, for example. The pocket pairs 11425 are comprised of a third type of forming pockets 11426. These forming pockets 11422 may be similar in many respects to the forming pockets 10110, 10130, for example. The anvil 11410 may also comprise various stepped configurations as discussed in connection with the anvil 11400, among others.
  • FIG. 203 depicts an anvil 11430 comprising a cartridge-facing portion 11431 and longitudinally changing pairs of forming pockets defined therein. The anvil 11430 comprises a pair of longitudinal, inner rows 11437A, 11437B which include forming pocket pairs 11441, 11443, 11445, a pair of longitudinal, intermediate rows 11438A, 11438B which include forming pocket pairs 11441, 11443, 11445, and a pair of longitudinal, outer rows 11439A, 11439B which include forming pocket pairs 11441, 11443, 11445. The rows 11437A, 11437B, 11438A, 11438B, 11439A, 11439B are aligned with, or substantially parallel to, a longitudinal anvil axis 11433. The forming pocket pairs 11441, 11443, 11445 are defined in the cartridge-facing portion 11431. The pocket pairs 11441 are comprised of a first type of forming pockets 11442. These forming pockets 11442 may be similar in many respects to the forming pockets 10210, 10230, for example. The pocket pairs 11443 are comprised of a second type of forming pockets 11444. These forming pockets 11444 may be similar in many respects to the forming pockets 10110, 10130, for example. The pocket pairs 11445 are comprised of a third type of forming pockets 11446A (proximal), 11446B (distal) which are asymmetric. The forming pockets 11446A, 11446B may be similar in many respects to the forming pockets 11210, 11230, respectively, for example. The anvil 11430 may also comprise various stepped configurations as discussed in connection with the anvil 11400, among others.
  • FIG. 204 depicts an anvil 11450 comprising a cartridge-facing portion 11451 and forming pocket pairs that vary longitudinally and laterally on the anvil 11450. The anvil 11450 comprises a pair of longitudinal, inner rows 11457A, 11457B of forming pocket pairs 11461, a pair of longitudinal, intermediate rows 11458A, 11458B of forming pocket pairs 11463, 11465, and a pair of longitudinal, outer rows 11459A, 11459B of forming pocket pairs 11467. The rows 11457A, 11457B, 11458A, 11458B, 11459A, 11459B are aligned with, or substantially parallel to, a longitudinal anvil axis 11453. The forming pocket pairs 11461, 11463, 11465, 11467 are defined in the cartridge-facing portion 11451. The pocket pairs 11461 are comprised of a first type of forming pockets 11462. These forming pockets 11462 may be similar in many respects to the forming pockets 10510, 10530, for example. The pocket pairs 11463 are comprised of a second type of forming pockets 11464. These forming pockets 11464 may be similar in many respects to the forming pockets 10210, 10230, for example. The pocket pairs 11465 are comprised of a third type of forming pockets 11466A (proximal), 11466B (distal) which are asymmetric. The forming pockets 11466A, 11466B may be similar in many respects to the forming pockets 11210, 11230, respectively, for example. The pocket pairs 11467 are comprised of a fourth type of forming pockets 11468. These forming pockets 11468 may be similar in many respects to the forming pockets 10110, 10130, for example. The anvil 11450 may also comprise various stepped configurations as discussed in connection with the anvil 11400, among others.
  • In addition to, or in lieu of, laterally and/or longitudinally changing pocket pairs, an anvil may comprise one type of forming pockets on one side of the anvil axis and another type of forming pockets on the other side of the anvil axis. Also, one type of forming pockets may be associated with a proximal portion of the anvil corresponding to an initial stage of firing of the surgical instrument, a second type of forming pockets may be associated with an intermediate portion of the anvil corresponding to a stage of firing that is subsequent the initial stage of firing, and a third type of forming pockets may be associated with a third and final stage of firing that is subsequent the intermediate stage of firing and the initial stage of firing. The pockets may be strategically positioned on the anvil to increase the overall performance of the pockets. For example, one type of forming pockets may form taller staples more consistently and overall better than it forms shorter staples, or vice versa. In another example, with a cartridge having multiple staples with different diameters it may be advantageous to have the forming pockets that form staples with smaller diameters form the smaller staples in the cartridge and, similarly, have the forming pockets that form staples with larger diameters form the larger staples in the cartridge.
  • Turning now to FIG. 205, a table 12000 is shown identifying features of various forming pocket arrangements. The table identifies features for forming pocket arrangement 10100 and forming pocket arrangement 10200. The table also identifies features for other forming pocket arrangements tested in a finite element analysis environment that may be similar to the forming pocket arrangements 10100, 10200 in many respects. Forming pocket arrangements A1, A2 are similar to forming pocket arrangement 10100 and forming pocket arrangements B1, B2 are similar to forming pocket arrangement 10200. The table 12000 also identifies features of the forming pocket arrangements 12100.
  • Referring also to FIG. 206, features 12001, 12003, 12005, 12007, and 12009 are referenced with respect to some of the forming pocket arrangements identified in the table 12000 as well as another forming pocket arrangement in accordance with at least one embodiment. From top to bottom in FIG. 206, cross-sectional views of the forming pocket arrangement 10100, the forming pocket arrangement 12100, the forming pocket arrangement 10200, and the forming pocket arrangement 10400 are illustrated. The feature 12001 represents the longitudinal enter radius of each forming pocket. The feature 12003 represents the longitudinal exit radius of each forming pocket. The feature 12005 represents the distance between the valleys of the forming pocket pairs. In other words, the feature 12005 represents the distance between the deepest point of the pockets in each forming pocket arrangement. The feature 12007 represents the width of the ridge, or bridge, of each forming pocket arrangement. The feature 12009 represents the depth of the ridge, or bridge, of each forming pocket arrangement.
  • FIG. 207 depicts three forming pocket arrangements 10100, 10200, 10400 and corresponding staples 10100′, 10200′, 10400′ formed with the forming pocket arrangements 10100, 10200, 10400, respectively. The pocket arrangement 10200 requires the least amount of force to fully form the staple 10200′. In other words, the maximum force required to form the staple 10200′ with the forming pocket arrangement 10200 is less than the maximum force required to form the other staples 10100′, 10400′ with the forming pocket arrangements 10100, 10400. This can be advantageous in that minimizing overall staple firing force can minimize stress and strain on other components within the surgical stapling assembly. Minimizing mechanical stress and strain can reduce the likelihood of elements failing prematurely. Lessening the necessary firing force can also contribute to decreasing the size of shaft diameters by requiring smaller parts that do not need to be as strong. Buckling of the firing member, for example, is a well-recognized issue when trying to minimize the size of shaft diameters.
  • FIG. 208 is a table 12200 identifying additional features of various forming pocket arrangements discussed above. Column 12201 identifies various maximum forces to fire to fully form a staple with different forming pocket arrangements. Column 12203 identifies various maximum forces to fire to overdrive a staple with different forming pocket arrangements.
  • FIG. 209 depicts a staple 12301 in a B-formed configuration 12300 and in a overdrive configuration 12300′ formed with the forming pocket arrangement 10100. The staple 12301 comprises a staple base 12302 and a pair of staple legs 12303 extending from the staple base 12302. Each staple leg 12303 comprises a staple tip 12304 configured to contact a forming pocket when the staple 12301 is driven toward the anvil of a surgical instrument. The staple 12301 comprises various bend regions, or zones, 12305, 12306, which, when formed by certain forming pocket arrangements, can bend into predictable bend profiles. The forming pocket arrangement 10100 causes the bend regions 12305, 12306, to bend into a discrete profile. The staple 12301 in the fully-formed configuration, for instance, comprises a boxy structure rather than a continuously formed structure. The bend regions 12305, 12306 comprise sharp bend portions. As a result, there is a significant gap distance 12307 between the bend portions 12306 of the legs 12303. Additionally, the gap distance 12308 between the tips 12304 of the legs 12303 is significant. In various tissue-fastening scenarios, these gaps 12307, 12308 between the bend portions 12606 and the staple tips 12304 can less effectively seal tissue.
  • The force F required to form the staple 12301 with the forming pocket arrangement 10100 is illustrated in the graph 12310 of FIG. 209. The force profile comprises specific zones and peaks 12302, 12303, 12304, 12305, 12306. The initial peak 12302 represents tip strike, or tip contact, with its corresponding forming pocket. Once the staple tips strike the pockets and stick in the exit zones of the pockets, the legs 12303 will then buckle and begin bending at the bend regions 12306. The bending of these bend regions 12306 corresponds to the portion 12313 of the graph 12310. The legs 12303 will then progress to a second buckling stage once the bend regions 12306 are fully, or mostly, formed and the bend regions 12306 contact the entry zone forming surfaces of the pockets. Once the bend regions 12306 contact the forming pockets, the legs 12303 will buckle into a B-shape forming the bend regions 12305. This second buckling stage produces a second force peak 12314.
  • When the staple 12301 is formed beyond its B-formed configuration 12300, the staple is in an overdrive configuration 12300′. This can happen for various reasons. One reason may be that, the staple 12301 is lifted above the deck of the staple cartridge to fully eject the staple 12301 from the staple cartridge. With respect to the overdrive configuration 12300′ of the staple 12301, the gap 12308 has significantly increased in distance between the staple tips 12304. Additionally, the legs 12303 of the staple 12301 have began to form additional overdrive bend regions between the staple base 12302 and the bend regions 12305. When this region bends, the formed staple height can decrease which can also contribute to less effectively sealed tissue. Moreover, when this region bends, bowing “B” of the staple legs 12303 can occur. This bowing “B” comprises a width that, when increased, can cause the staple 12301 to less effectively seal tissue. Referring to the graph 12310, a second force peak 12316 represents the force required to overdrive the staple 12301. This force is significantly more than the force required to B-form the staple 12301 at peak 12314.
  • FIG. 210 depicts a staple 12321 in a B-formed configuration 12320 and in a overdrive configuration 12320′ formed with the forming pocket arrangement 10200. The staple 12321 comprises a staple base 12322 and a pair of staple legs 12323 extending from the staple base 12322. Each staple leg 12323 comprises a staple tip 12324 configured to contact corresponding forming pockets when the staple 12321 is driven toward the anvil of a surgical instrument. The staple 12321 comprises various bend regions, or zones, 12325, 12326, which, when formed by certain forming pocket arrangements, can bend into predictable bend profiles. The forming pocket arrangement 10200 causes the bend regions 12325, 12326 to bend into a more continuous profile than the bend regions 12305, 12306 of the staple 12301 formed with the forming pocket arrangement 10100. In other words, the staple 12321 in the B-formed configuration comprises a profile closer to an actual “B” staple configuration than the fully-formed, discrete bend configuration of the staple 12301. The bend regions 12325, 12326 comprise larger bend radii of curvature than the bend regions 12305, 12306. As a result, the gap distance 12327 between the bend portions 12326 of the legs 12323 is less than the gap distance 12307. Moreover, the gap distance 12328 between the tips 12324 of the legs 12323 is less than the gap distance 12308. In various tissue-fastening scenarios, the smaller gaps 12327, 12328 between the bend portions 12626 and the staple tips 12324 can aid in sealing tissue more effectively than the staple 12301. Minimizing these gap distances may increase the tissue capturing ability of the staple 12321.
  • The force F required to form the staple 12321 with the forming pocket arrangement 10200 is illustrated in the graph 12330 of FIG. 210. The force profile comprises specific zones 12333, 12335 and peaks 12332, 12334, 12336. The initial peak 12332 represents tip strike, or tip contact, with its corresponding forming pocket. Once the staple tips strike the pockets and stick in the exit zones of the pockets, the legs 12323 will then buckle and begin bending at the bend regions 12326. The bending of these bend regions 12326 corresponds to the portion 12333 of the graph 12330. The legs 12323 will then progress to a second buckling stage once the bend regions 12326 are fully, or mostly, formed and the bend regions 12326 contact and glide within the entry zone forming surfaces of the pockets. Once the bend regions 12326 contact the forming pockets, the legs 12323 will buckle into a B-shape forming the bend regions 12325. This second buckling stage produces a second force peak 12334. Compared to the staple 12301, the staple 12321 formed with the forming pocket arrangement 10200 requires less force to fully form.
  • In a situation where the staple 12321 is formed beyond its B-formed configuration 12320 can be referred to as an overdrive configuration 12320′. With respect to the overdrive configuration 12320′ of the staple 12321, the gap distance 12328 has increased in distance between the staple tips 12304, however, the gap is not as significant as the gap distance between the tips 12304 of the staple 12301 in its overdrive configuration 12300′. The gap distance 12327 between the bend regions 12326 has decreased. Additionally, the legs 12323 of the staple 12321 have began to form additional overdrive bend regions between the staple base 12322 and the bend regions 12325. However, compared to the staple 12301, the bowing “B” of the staple legs 12323 is less than the bowing “B” of the staple legs 12303 in its overdrive configuration 12300′. Referring to the graph 12330 in FIG. 210, another force peak 12336 represents the force required to overdrive the staple 12321. The force 12336 is similar to the force 12334 required to B-form the staple 12301. As a result, the force to fire the staple 12321 in an overdrive situation is not as critical to the rest of the instrument as the force to fire the staple 12301 in an overdrive situation.
  • The forming pocket arrangement 10100 and staple 12301 are illustrated in FIGS. 211 and 212 in a tip strike stage 12400, a first bend stage 12400′, a second bend stage 12400″, and a B, or fully, formed stage 12400′″. During the tip strike stage 12400, the legs of the staple 12301 are configured to buckle into the first bend stage 12400′. After buckling, the legs bend creating first bend regions. The legs are configured to buckle a second time when the first bend regions contact the forming pockets into the second bend stage 12400″. After buckling a second time, the legs bend again creating second bend regions. The staple 12301 then finishes forming and, desirably, attains a fully formed stage 12400′″. As can be seen in FIG. 212, the fully formed stage 12400′″ illustrates the staple 12301 with discretely bent legs.
  • The forming pocket arrangement 10200 and staple 12321 are illustrated in FIGS. 213 and 214 in a tip strike stage 12500, a first bend stage 12500′, a second bend stage 12500″, and a fully formed stage 12500′″. During the tip strike stage 12500, the legs of the staple 12501 are configured to buckle into the first bend stage 12500′. After buckling, the legs bend creating first bend regions. The first bend regions of the staple 12321 comprise greater radii of curvature than the first bend regions of the staple 12301. The legs are configured to buckle a second time when the first bend regions contact the forming pockets into the second bend stage 12500″. After buckling a second time, the legs bend again creating second bend regions. The second bend regions of the staple 12321 comprise a greater radius of curvature than the second bend regions of the staple 12301. Because the bend regions of the staple 12321 comprise a greater radius of curvature than the bend regions of the staple 12301, the legs of the staple 12321 comprise more continuously formed staple legs. The staple 12321 then finishes forming and, desirably, attains a fully formed stage 12500′″. As can be seen in FIG. 214, the fully-formed stage 12500′″ illustrates the staple 12321 with more continuously-formed staple legs than the staple 12301. As a result, the staple 12321 more closely resembles a true “B” formation than the staple 12301.
  • Compared to the staple 12301 and its respective forming pocket arrangement 10100, the staple 12321 forms with less of a tissue path, or footprint, than the staple 12301. A large tissue path footprint can cause excessive tissue stretching and/or ripping during the forming of the staple. Because of the more continuous curvature of the profile of the formed staple 12321, the legs 12323 form and follow closer to the path of the tips 12324 than the legs 12303 and the tips 12304.
  • FIGS. 215 and 216 depict the staples 12301, 12321 forming from their tip strike stage to a partially-formed stage. This partially-formed stage may also be referred to as a tip sticking stage. As can be seen in FIG. 215, the legs 12303 are configured to buckle creating the bend regions 12306. The loads experienced by the legs 12303 when formed with the forming pocket arrangement 10100 comprise a first eccentricity. As can be seen in FIG. 216, the legs 12323 are configured to buckle creating the bend regions 12326. The loads experienced by the legs 12323 when formed with the forming pocket arrangement 10200 comprise a second eccentricity. Due to the differences in pocket shape of the forming pocket arrangements 10100, 10200, the second eccentricity is greater than the first eccentricity. This relationship causes differing locations of deflection. For example, the legs 12303 deflect at the bend regions 12306 a distance D1 from a datum D. The legs 12323 deflect at the bend regions 12326 a distance D2 from a datum D. The distance D2 is less than the distance D1. Lowering the deflection, or the bend regions 12326 causes the legs 12323 to buckle and form with greater radii of curvature thus creating more continuously formed staple legs.
  • Referring now to FIGS. 217-224, forming of staples formed with various forming pocket arrangements discussed above will now be described. Staples do not always contact their respective forming pockets in an aligned state. Providing forming pocket arrangements which can counter poor formation of a staple in the event that the staple is not aligned with its corresponding forming pockets during forming can be advantageous.
  • FIG. 217 depicts a side view 12700 and a bottom view 12700′ of a staple 12701 in a fully-formed configuration formed with the forming pocket arrangement 10200. However, this staple 12701 was not aligned with the pocket axis 10203 of the forming pocket arrangement 10200 during the forming process. The staple 12701 was driven off plane with respect to the pocket axis 10203. The tips 12704 did not strike the forming pocket arrangement 10200 along the pocket axis 10203 nor was the crown, or base, 12702 of the staple 12701 aligned with the pocket axis 10203 during forming.
  • The staple 12701 comprises a first tip alignment axis TA1, a second tip alignment axis TA2, and a crown alignment axis CA. The tips 12704 are configured to cross the first tip alignment axis TA1 and, as a result, overlap, or cross each other. The fully formed location of the tips 12704 defines the second tip alignment axis TA2. This axis can be defined as an axis parallel to the crown alignment axis CA defined by the crown 12702 and aligned with an average point between the tips 12704. Minimizing the distance between the crown alignment axis CA and the second tip alignment axis TA2 can be advantageous in that the closer that these axes are to each other, the more effective the tissue capturing and/or sealing ability of the staple 12701.
  • FIG. 218 is a comparison of the staple 12701 and forming pocket arrangement 10200 of FIG. 217 and a staple 12801 formed with forming pocket arrangement 10100. As can be seen from FIG. 217, the distance between the second tip alignment axis TA2 and the crown alignment axis CA of the staple 12801 is greater than the distance between the second tip alignment axis TA2 and the crown alignment axis CA of the staple 12701. Moreover, the tips 12804 of the staple 12801 do not overlap in this misalignment forming scenario of the staple 12801. The staple 12801 formed on a path 12805 directed away from the crown alignment axis CA whereas the staple 12701 formed on a path 12705 more aligned with the crown alignment axis CA.
  • FIG. 219 depicts a side view 12900 and a bottom view 12900′ of a staple 12901 in a fully-formed configuration formed with the forming pocket arrangement 10400. However, this staple 12901 was not aligned with the pocket axis 10403 of the forming pocket arrangement 10400 during the forming process. The staple 12901 was driven off plane with respect to the pocket axis 10403. The tips 12904 did not strike the forming pocket arrangement 10400 along the pocket axis 10403 nor was the crown, or base, 12902 of the staple 12901 aligned with the pocket axis 10403 during forming.
  • The staple 12901 comprises a first tip alignment axis TA1, a second tip alignment axis TA2, and a crown alignment axis CA. The tips 12904 are configured to partially, and/or fully, cross the first tip alignment axis TA1 and, as a result, partially cross each other. The fully formed location of the tips 12904 defines the second tip alignment axis TA2. This axis can be defined as an axis parallel to the crown alignment axis CA defined by the crown 12902 and aligned with an average point between the tips 12904. Minimizing the distance between the crown alignment axis CA and the second tip alignment axis TA2 can be advantageous in that the closer that these axes are to each other, the more effective the tissue capturing and/or sealing ability of the staple 12901. Compared to the forming pocket arrangement 10200 of FIG. 217, for example, the narrowly-spaced exit walls and/or the aggressively-angled exit walls of the forming pocket arrangement 10400 can encourage legs of staples to form closer to their crowns. In other words, the forming pocket arrangement 10400 can encourage planar forming in at least the event of misalignment.
  • FIG. 220 depicts a side view 13000 and a bottom view 13000′ of a staple 13001 in a fully-formed configuration formed with the forming pocket arrangement 10300. However, this staple 13001 was not aligned with the pocket axis 10303 of the forming pocket arrangement 10300 during the forming process. The staple 13001 was driven off plane with respect to the pocket axis 10303. The tips 13004 did not strike the forming pocket arrangement 10300 along the pocket axis 10303 nor was the crown, or base, 13002 of the staple 13001 aligned with the pocket axis 10303 during forming.
  • The staple 13001 comprises a first tip alignment axis TA1, a second tip alignment axis TA2, and a crown alignment axis CA. The legs 13003 are configured to be formed into a position in which they the legs are at least substantially aligned with the first tip alignment axis TA1. In some instances, the tips 13004 and/or legs may contact each other during forming which may prevent the legs 13003 from crossing the first tip alignment axis TA1. The fully-formed location of the tips 13004 defines the second tip alignment axis TA2. This axis can be defined as an axis parallel to the crown alignment axis CA defined by the crown 13002 and aligned with an average point between the tips 13004. Minimizing the distance between the crown alignment axis CA and the second tip alignment axis TA2 can be advantageous in that the closer that these axes are to each other, the more effective the tissue capturing and/or sealing ability of the staple 13001. Compared to the forming pocket arrangement 10200 of FIG. 217, for example, the narrowly-spaced exit walls and/or the aggressively-angled exit walls of the forming pocket arrangement 10300 can encourage legs of staples to form closer to their crowns. In other words, the forming pocket arrangement 10300 can encourage planar forming in the event of misalignment.
  • FIGS. 221 and 222 depict staples formed with the forming pocket arrangement 10500 where one staple was aligned with the pocket axis 10503 of the forming pocket arrangement 10500 and the other staple was misaligned with the pocket axis 10503 of the forming pocket arrangement 10500. FIG. 221 depicts a side view 13100 and a bottom view 13100′ of a staple 13101 in a fully-formed configuration formed with the forming pocket arrangement 10500. This staple 13101 was aligned with the pocket axis 10503 of the forming pocket arrangement 10500 during the forming process. The tips 13104 struck the forming pocket arrangement 10500 along the pocket axis 10503.
  • The staple 13101 comprises a first tip alignment axis TA1, a second tip alignment axis TA2, and a crown alignment axis CA. When aligned with the pocket axis 10503, the staple 13101 forms such that the second tip alignment axis TA2 and the crown alignment axis CA are substantially aligned or, in other words, the staple 13101 assumes a substantially planar configuration. The force to fire the staple 13101 is illustrated in the graph 13110.
  • FIG. 222 depicts a side view 13120 and a bottom view 13120′ of a staple 13121 in a fully formed configuration formed with the forming pocket arrangement 10500. This staple 13121 was misaligned with the pocket axis 10503 of the forming pocket arrangement 10500 during the forming process. The staple 13121 was driven off plane with respect to the pocket axis 10503. The tips 13124 did not strike the forming pocket arrangement 10500 along the pocket axis 10503 nor was the crown, or base, 13122 of the staple 13121 aligned with the pocket axis 10503 during forming.
  • The staple 13121 comprises a first tip alignment axis TA1, a second tip alignment axis TA2, and a crown alignment axis CA. When misaligned with the pocket axis 10503, the staple 13121 forms such that the second tip alignment axis TA2 and the crown alignment axis CA are substantially aligned with each other or, in other words, the staple 13121 assumes a substantially planar configuration. Compared to FIG. 221 where the staple 13101 was aligned with the pocket axis 10503, the staple 13121 forms into a fully-formed configuration that may be more acceptable to a surgeon to more adequately seal tissue than staples formed with other forming pocket arrangements which form in a misaligned state.
  • FIGS. 223 and 224 depict staples formed with the forming pocket arrangement 11000 where one staple was aligned with the pocket axis 11003 of the forming pocket arrangement 11000 and the other staple was misaligned with the pocket axis 11003 of the forming pocket arrangement 11000. FIG. 223 depicts a side view 13200 and a bottom view 13200′ of a staple 13201 in a fully-formed configuration formed with the forming pocket arrangement 11000. This staple 13201 was aligned with the pocket axis 11003 of the forming pocket arrangement 11000 during the forming process. The tips 13204 struck the forming pocket arrangement 11000 along the pocket axis 11003.
  • The staple 13201 comprises a first tip alignment axis TA1, a second tip alignment axis TA2, and a crown alignment axis CA. When aligned with the pocket axis 11003, the staple 13101 forms such that the second tip alignment axis TA2 and the crown alignment axis CA are substantially aligned, however, the axes TA2, CA are also non-parallel. One leg 13204 formed on one side of the crown 13203 and the other leg 13204 formed on the other side of the crown 13203. The force to fire the staple 13201 is illustrated in the graph 13210. It can be seen in the graph 13210 that the force to fire the staple 13201 does not comprise two distinct, substantial force peaks as graphs related to other forming pocket arrangements discussed above. The staple 13201 is configured to contact multiple points of the pockets of the forming pocket arrangement 11000 simultaneously during forming. This dual-tangent contact with the forming pockets can help reduce staple tip and/or leg sticking as well as the force to fire the staple 13201.
  • FIG. 224 depicts a side view 13220 and a bottom view 13220′ of a staple 13221 in a fully-formed configuration formed with the forming pocket arrangement 11000. This staple 13221 was misaligned with the pocket axis 11003 of the forming pocket arrangement 11000 during the forming process. The staple 13221 was driven off plane with respect to the pocket axis 11003. The tips 13224 did not strike the forming pocket arrangement 11000 along the pocket axis 11003 nor was the crown, or base, 13222 of the staple 13221 aligned with the pocket axis 11003 during forming.
  • The staple 13221 comprises a first tip alignment axis TA1, a second tip alignment axis TA2, and a crown alignment axis CA. When misaligned with the pocket axis 11003, the staple 13221 forms such that the second tip alignment axis TA2 and the crown alignment axis CA are substantially aligned with each other or, in other words, the staple 13221 assumes a substantially planar configuration. The axes TA2, CA are parallel. Compared to FIG. 223 where the staple 13201 was aligned with the pocket axis 11003, the staple 13221 forms into a fully-formed configuration that may be more acceptable to a surgeon to more adequately seal tissue than staples formed with other forming pocket arrangements which form in a misaligned state. The force to fire the staple 13221 is illustrated in the graph 13230. Similar to the staple 13201, the force to fire the staple 13201 does not comprise two distinct, substantial force peaks as graphs related to other forming pocket arrangements discussed above.
  • Still referring to FIG. 224, a cross section of a forming pocket 11030 of the forming pocket arrangement 11000 is illustrated with various diameter staple profiles 11041, 11042, 11043. Various sizes of staples are configured to be formed with the forming pocket arrangement 11000. Larger staple diameters may provide the dual-tangent contact with the forming pocket sidewalls as discussed above. Smaller diameter staples may provide full contact with the bottom 11035 of the forming pocket 11030 during forming.
  • Having grooves formed in forming surfaces of forming pockets can encourage staples to form more planar than staples formed with forming pockets without grooves formed in their forming surfaces especially when the staples are misaligned with the forming pocket axis during forming. Turning now to FIGS. 225 and 226, a staple 13301 is illustrated in a fully-formed configuration formed with the forming pocket arrangement 10100 (FIG. 225) and a staple 13401 is illustrated in a fully-formed configuration formed with the forming pocket arrangement 10600 (FIG. 226). The staples 13301, 13401 were misaligned with their respective pocket axes 10103, 10603 during forming. As can be seen from the side views 13300, 13400 of the fully formed staples 13301, 13401, a forming surface groove may not effect the resultant forming configuration in this plane. Turning now to the bottom views 13300′, 13400′ of the staples 13301, 13401, the staple 13401 comprises a more planar fully formed configuration than the staple 13301. The tips 13304 of the staple 13301 may exit the forming pocket arrangement 10100 in a direction pointed away from the pocket axis 10103. The legs 13303 of the staple 13301 may form away from the crown 13302 defining a tip-forming offset distance 13305. The tips 13404 of the staple 13401 are encouraged to exit the forming pocket arrangement 10600 along the pocket axis 10603. The legs 13403 of the staple 13401 may form away from the crown 13402 less than those of the staple 13301 defining a tip-forming offset distance 13405 which, in this instance, is less than the tip-forming offset distance 13305.
  • Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail.
  • The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
  • The entire disclosures of:
      • U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
      • U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
      • U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
      • U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
      • U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
      • U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;
      • U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
      • U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES; now U.S. Pat. No. 7,845,537;
      • U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
      • U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;
      • U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;
      • U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;
      • U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009; now U.S. Pat. No. 8,220,688;
      • U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;
      • U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;
      • U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;
      • U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012; now U.S. Pat. No. 9,101,358;
      • U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Pat. No. 9,345,481;
      • U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;
      • U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
      • U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.
  • Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one ore more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
  • The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
  • The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.
  • While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
  • Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials do not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims (21)

What is claimed is:
1. A method of using a surgical instrument system comprising the steps of:
obtaining a surgical instrument, comprising:
an end effector configurable in an open configuration and a closed configuration, wherein the end effector comprises:
an anvil jaw including a cam surface and an array of forming pockets; and
a cartridge jaw configured to receive a staple cartridge;
a closure member configured to engage the cam surface of the anvil jaw; and
a firing member;
inserting a first staple cartridge into the cartridge jaw when a staple cartridge is not in the cartridge jaw, wherein the first staple cartridge comprises a plurality of first staples stored therein, and wherein the first staples are formed from wire;
closing the end effector by moving the closure member through a closure stroke to engage the cam surface of the anvil jaw;
moving the firing member through a firing stroke to eject the first staples from the first staple cartridge;
deforming the first staples against the forming pockets;
inserting a second staple cartridge into the cartridge jaw when the first staple cartridge is not in the cartridge jaw, wherein the second staple cartridge comprises a plurality of second staples stored therein, and wherein the second staples are stamped from at least one sheet of material;
closing the end effector by moving the closure member through a closure stroke to engage the cam surface of the anvil jaw;
moving the firing member through a firing stroke to eject the second staples from the second staple cartridge; and
deforming the second staples against the forming pockets.
2. The method of claim 1, wherein the first staples have a first unformed height, wherein the second staples have a second unformed height, and wherein the first unformed height and the second unformed height are the same.
3. The method of claim 2, wherein said step of deforming the first staples and said step of deforming the second staples comprises deforming the first staples and the second staples to the same formed height.
4. The method of claim 2, wherein said step of deforming the first staples and said step of deforming the second staples comprises deforming the first staples and the second staples to different formed heights.
5. The method of claim 1, wherein the first staples have a first unformed height, wherein the second staples have a second unformed height, and wherein the first unformed height and the second unformed height are different.
6. The method of claim 5, wherein said step of deforming the first staples and said step of deforming the second staples comprises deforming the first staples and the second staples to the same formed height.
7. The method of claim 5, wherein said step of deforming the first staples and said step of deforming the second staples comprises deforming the first staples and the second staples to different formed heights.
8. The method of claim 1, wherein said steps of moving the firing member comprise controlling the position of the anvil jaw relative to the cartridge jaw.
9. The method of claim 1, wherein said steps of closing the end effector comprise moving the anvil jaw relative to the cartridge jaw.
10. The method of claim 1, wherein said steps of closing the end effector comprise moving the cartridge jaw relative to the anvil jaw.
11. The method of claim 1, wherein said steps of closing the end effector comprise pivoting the cartridge jaw relative to the anvil jaw.
12. The method of claim 1, wherein said steps of closing the end effector comprise rotating and translating the cartridge jaw relative to the anvil jaw.
13. The method of claim 1, wherein said steps of closing the end effector comprise pivoting the anvil jaw relative to the cartridge jaw.
14. The method of claim 1, wherein said steps of closing the end effector comprise rotating and translating the anvil jaw relative to the cartridge jaw.
15. The method of claim 1, wherein the closure member comprises a tube configured to partially surround the anvil jaw and the cartridge jaw.
16. The method of claim 1, wherein the firing member comprises a first cam configured to engage the anvil jaw and a second cam configured to engage the cartridge jaw.
17. A method of using a surgical instrument system comprising the steps of:
obtaining a surgical instrument, comprising:
an end effector configurable in an open configuration and a closed configuration, wherein the end effector comprises:
an anvil jaw including an array of forming pockets; and
a cartridge jaw configured to receive a staple cartridge;
a closure member comprising a cam surface configured to engage the end effector; and
a firing member;
inserting a first staple cartridge into the cartridge jaw, wherein the first staple cartridge comprises a plurality of first staples stored therein;
moving the closure member through a first closure stroke to cam the end effector into its closed configuration;
moving the firing member through a first firing stroke to eject the first staples from the first staple cartridge;
deforming the first staples with the forming pockets;
removing the first staple cartridge from the cartridge jaw after deforming the first staples;
inserting a second staple cartridge into the cartridge jaw, wherein the second staple cartridge comprises a plurality of second staples stored therein, and wherein the second staples have a different overall configuration than the first staples;
moving the closure member through another closure stroke to cam the end effector into its closed configuration;
moving the firing member through another firing stroke to eject the second staples from the second staple cartridge; and
deforming the second staples with the forming pockets.
18. The method of claim 17, wherein the first staples are comprised of wire, and wherein the second staples are stamped from at least one sheet of metal.
19. The method of claim 17, wherein the first staples have a first unformed height and the second staples have a second unformed height, and wherein the first unformed height and the second unformed height are the same.
20. A method of providing a surgical instrument system comprising the steps of:
providing a surgical instrument, comprising:
an end effector configurable in an open configuration and a closed configuration, wherein the end effector comprises:
an anvil jaw including a cam surface and an array of forming pockets; and
a cartridge jaw configured to receive a staple cartridge;
a closure member configured to engage the cam surface of the anvil jaw and place the end effector into the closed configuration during a closing stroke; and
a firing member configured to perform a firing stroke;
providing a first staple cartridge configured to be removably inserted into the cartridge jaw, wherein the first staple cartridge comprises a plurality of first staples removably stored therein which are deformable by the forming pockets, wherein the first staples comprise a first configuration; and
providing a second staple cartridge configured to be removably inserted into the cartridge jaw, wherein the second staple cartridge comprises a plurality of second staples removably stored therein which are deformable by the forming pockets, and wherein the second staples comprise a second configuration which is different than the first configuration.
21. The method of claim 20, wherein the first configuration comprises a first longitudinal width, wherein the second configuration comprises a second longitudinal width, and wherein the first longitudinal width is different than the second longitudinal width.
US15/385,914 2016-12-21 2016-12-21 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument Abandoned US20180168615A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US15/385,914 US20180168615A1 (en) 2016-12-21 2016-12-21 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
PCT/US2017/066377 WO2018118636A1 (en) 2016-12-21 2017-12-14 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
BR112019012220-6A BR112019012220B1 (en) 2016-12-21 2017-12-14 SURGICAL INSTRUMENT
CN201780079991.9A CN110099639A (en) 2016-12-21 2017-12-14 Made to follow closely the method deformed from two distinct types of nail bin with same surgery suturing appliance
JP2019533444A JP2020501782A (en) 2016-12-21 2017-12-14 Method of deforming staples from two different types of staple cartridges using the same surgical stapling instrument
MX2019007427A MX2019007427A (en) 2016-12-21 2017-12-14 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument.
EP17209330.4A EP3338657A1 (en) 2016-12-21 2017-12-21 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US17/361,596 US11766259B2 (en) 2016-12-21 2021-06-29 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP2022119430A JP2022153543A (en) 2016-12-21 2022-07-27 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US18/373,042 US20240016494A1 (en) 2016-12-21 2023-09-26 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/385,914 US20180168615A1 (en) 2016-12-21 2016-12-21 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/361,596 Continuation US11766259B2 (en) 2016-12-21 2021-06-29 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument

Publications (1)

Publication Number Publication Date
US20180168615A1 true US20180168615A1 (en) 2018-06-21

Family

ID=60702499

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/385,914 Abandoned US20180168615A1 (en) 2016-12-21 2016-12-21 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US17/361,596 Active 2037-08-20 US11766259B2 (en) 2016-12-21 2021-06-29 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US18/373,042 Pending US20240016494A1 (en) 2016-12-21 2023-09-26 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/361,596 Active 2037-08-20 US11766259B2 (en) 2016-12-21 2021-06-29 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US18/373,042 Pending US20240016494A1 (en) 2016-12-21 2023-09-26 Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument

Country Status (6)

Country Link
US (3) US20180168615A1 (en)
EP (1) EP3338657A1 (en)
JP (2) JP2020501782A (en)
CN (1) CN110099639A (en)
MX (1) MX2019007427A (en)
WO (1) WO2018118636A1 (en)

Cited By (627)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
WO2019186434A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
WO2019186466A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
WO2019186470A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
WO2019186474A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
WO2019186472A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Rotary driven firing members with different anvil and channel engagement features
WO2019186467A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with improved rotary driven closure systems
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
EP3613355A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
EP3613354A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapling devices with improved closure members
EP3613358A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Fabricating techniques for surgical stapler anvils
EP3613359A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapler anvils with staple directing protrusions and tissue stability features
EP3613357A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
EP3613361A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical instruments with progressive jaw closure arrangements
EP3613368A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Switching arrangements for motor powered articulatable surgical instruments
EP3613356A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
EP3613360A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
EP3613362A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Reinforced deformable anvil tip for surgical stapler anvil
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10588624B2 (en) 2013-12-23 2020-03-17 Ethicon Llc Surgical staples, staple cartridges and surgical end effectors
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD896380S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US10772651B2 (en) 2017-10-30 2020-09-15 Ethicon Llc Surgical instruments comprising a system for articulation and rotation compensation
USD896379S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
EP3714806A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
EP3714804A2 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
EP3714805A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
EP3714803A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Articulation drive arrangements for surgical systems
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
EP3733081A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation actuators for a surgical instrument
EP3733083A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Rotatable jaw tip for a surgical instrument
EP3733080A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Shaft rotation actuator on a surgical instrument
EP3733079A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation control mapping for a surgical instrument
EP3733113A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Intelligent firing associated with a surgical instrument
EP3733097A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Surgical instrument comprising an articulation pin having a retention head
EP3733084A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation directional lights on a surgical instrument
EP3733082A2 (en) 2019-04-30 2020-11-04 Ethicon LLC Intelligent firing associated with a surgical instrument
WO2020222082A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Tissue stop for a surgical instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US10925599B2 (en) 2013-12-23 2021-02-23 Ethicon Llc Modular surgical instruments
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11026687B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Clip applier comprising clip advancing systems
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11114195B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Surgical instrument with a tissue marking assembly
US11123065B2 (en) 2013-12-23 2021-09-21 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11298148B2 (en) 2018-03-08 2022-04-12 Cilag Gmbh International Live time tissue classification using electrical parameters
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
WO2022090926A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
WO2022090919A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
WO2022090911A2 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an articulation indicator
WO2022090925A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
WO2022090922A2 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising sealable interface
WO2022090913A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a limited travel switch
WO2022090929A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
WO2022090930A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
WO2022090924A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an articulation lock
WO2022090928A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11382624B2 (en) 2015-09-02 2022-07-12 Cilag Gmbh International Surgical staple cartridge with improved staple driver configurations
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
WO2022180540A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
WO2022180539A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Distal communication array to tune frequency of rf systems
WO2022180519A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
WO2022180533A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
WO2022180530A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a sensor array
WO2022180525A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
WO2022180541A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising an information access control system
WO2022180543A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
WO2022180528A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a power management circuit
WO2022180520A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Stapling instrument comprising a signal antenna
WO2022180538A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Adjustment to transfer parameters to improve available power
WO2022180537A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of manufacturing life-cycle
WO2022180529A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
WO2022200955A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
WO2022200954A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US20220304682A1 (en) * 2021-03-24 2022-09-29 Ethicon Llc Fastener cartridge with non-repeating fastener rows
WO2022200956A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising a firing lockout
WO2022200952A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
WO2022200958A2 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Stapling instrument comprising tissue compression systems
WO2022200953A2 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
WO2022200951A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
WO2022229866A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Shaft system for surgical instrument
WO2022229865A2 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Staple cartridge comprising staple drivers and stability supports
WO2022229871A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a closure bar and a firing bar
WO2022229869A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Articulation system for surgical instrument
WO2022229862A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Electrosurgical techniques for sealing, short circuit detection, and system determination of power level
WO2022229861A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising end effector with longitudinal sealing step
WO2022229855A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical systems configured to control therapeutic energy application to tissue based on cartridge and tissue parameters
WO2022229858A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising independently activatable segmented electrodes
WO2022229857A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising end effector with energy sensitive resistance elements
WO2022229870A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
WO2022229860A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical systems configured to cooperatively control end effector function and application of therapeutic energy
WO2022229864A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Interchangeable end effector reloads
WO2022229868A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical staple for use with combination electrosurgical instruments
WO2022229872A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
WO2022229867A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Staple cartridge comprising formation support features
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
WO2022238844A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable surgical staple comprising a coating
WO2022238836A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Bioabsorbable staple comprising mechanisms for slowing the absorption of the staple
WO2022238843A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable staple comprising strain limiting features
WO2022238840A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International System of surgical staple cartridges comprising absorbable staples
WO2022238847A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Adaptive control of surgical stapling instrument based on staple cartridge type
WO2022238845A2 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Dissimilar staple cartridges with different bioabsorbable components
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
WO2022249092A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising an articulation control display
WO2022249094A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a control system that controls a firiing stroke length
WO2022249086A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising jaw mounts
WO2022249099A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
WO2022249091A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
WO2022249088A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11559304B2 (en) * 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11589932B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11596291B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws
USD980425S1 (en) * 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
WO2023067463A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
WO2023067458A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
WO2023067461A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Row-to-row staple array variations
WO2023067459A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Anvil comprising an arrangement of forming pockets proximal to tissue stop
WO2023067464A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Cable-driven actuation system for robotic surgical tool attachment
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
WO2023073540A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Method and device for transmitting uart communications over a security short range wireless communication
WO2023073537A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Staple cartridge identification systems
WO2023073543A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Surgical instrument cartridge with unique resistor for surgical instrument identification
WO2023073546A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Surgical device with internal communication that combines multiple signals per wire
WO2023073549A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Electrical lead arrangements for surgical instruments
WO2023073545A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Alternate means to establish resistive load force
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11896221B2 (en) 2017-06-28 2024-02-13 Cilag GmbH Intemational Surgical cartridge system with impedance sensors
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11963682B2 (en) 2015-08-26 2024-04-23 Cilag Gmbh International Surgical staples comprising hardness variations for improved fastening of tissue
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11974772B2 (en) 2016-01-15 2024-05-07 Cilag GmbH Intemational Modular battery powered handheld surgical instrument with variable motor control limits
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11998230B2 (en) 2016-11-29 2024-06-04 Cilag Gmbh International End effector control and calibration
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US12004745B2 (en) 2016-12-21 2024-06-11 Cilag Gmbh International Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US12029506B2 (en) 2017-12-28 2024-07-09 Cilag Gmbh International Method of cloud based data analytics for use with the hub
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US12035890B2 (en) 2017-12-28 2024-07-16 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12062442B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Method for operating surgical instrument systems
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US12114914B2 (en) 2016-08-05 2024-10-15 Cilag Gmbh International Methods and systems for advanced harmonic energy
US12121255B2 (en) 2018-08-24 2024-10-22 Cilag Gmbh International Electrical power output control based on mechanical forces

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236087B (en) * 2018-03-28 2024-06-04 爱惜康有限责任公司 Suturing apparatus including a deactivatable closure
US11116508B2 (en) 2019-03-08 2021-09-14 Cilag Gmbh International Electrical potential shifting circuit for powered surgical stapler
US11224432B2 (en) 2019-03-08 2022-01-18 Cilag Gmbh International Timer circuit to control firing of powered surgical stapler
US11123075B2 (en) 2019-03-08 2021-09-21 Cilag Gmbh International Circular surgical stapler
US11147559B2 (en) 2019-03-08 2021-10-19 Cilag Gmbh International Staple height indicator for powered surgical stapler
US12082817B2 (en) * 2019-03-08 2024-09-10 Cilag Gmbh International Power control circuit for powered surgical stapler
US11853835B2 (en) 2019-06-28 2023-12-26 Cilag Gmbh International RFID identification systems for surgical instruments
US11992210B2 (en) 2021-08-16 2024-05-28 Cilag Gmbh International Multiple-sensor firing lockout mechanism for powered surgical stapler
US12102321B2 (en) 2021-08-16 2024-10-01 Cilag Gmbh International Methods of operating a robotic surgical stapler
WO2023230966A1 (en) * 2022-06-01 2023-12-07 Covidien Lp Anvil assembly for surgical stapling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090206140A1 (en) * 2008-02-15 2009-08-20 Ethicon Endo-Surgery,Inc. End effectors for a surgical cutting and stapling instrument
US20130075449A1 (en) * 2011-09-23 2013-03-28 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US20130334284A1 (en) * 2005-08-31 2013-12-19 Ethicon Endo-Surgery, Inc. Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20150173748A1 (en) * 2013-12-19 2015-06-25 Covidien Lp Surgical staples and end effectors for deploying the same
US20150216525A1 (en) * 2014-02-04 2015-08-06 Covidien Lp Authentication system for reusable surgical instruments

Family Cites Families (6093)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US66052A (en) 1867-06-25 smith
US2120951A (en) 1938-06-14 Steering repeater compass
DE273689C (en) 1913-08-07 1914-05-08
US1314601A (en) 1919-09-02 Flexible shaft
US1306107A (en) 1919-06-10 Assigotob to amebxcak
US662587A (en) 1900-05-18 1900-11-27 Charles Chandler Blake Insulated support for electric conductors.
US670748A (en) 1900-10-25 1901-03-26 Paul Weddeler Flexible shafting.
US719487A (en) 1901-09-16 1903-02-03 William E Minor Dilator.
US804229A (en) 1904-07-27 1905-11-14 Thomas C Hutchinson Forceps and the like.
US903739A (en) 1908-07-30 1908-11-10 William Lesemann Gearing.
US951393A (en) 1909-04-06 1910-03-08 John N Hahn Staple.
FR459743A (en) 1912-09-14 1913-11-12 Bariquant Et Marre Des Atel Flexible transmission
US1082105A (en) 1912-10-17 1913-12-23 George A Anderson Releasable driving mechanism.
US1075556A (en) 1913-05-12 1913-10-14 American Carbon & Battery Company Battery.
US1188721A (en) 1915-05-05 1916-06-27 Frank Bittner Pipe-wrench.
US1466128A (en) 1921-11-28 1923-08-28 Baker Bros Drill-press control
US1677337A (en) 1924-09-27 1928-07-17 Thomas E Grove Antrum drill
US1849427A (en) 1927-10-17 1932-03-15 Westminster Tool And Electric Handle of tools driven by flexible shafts
US1794907A (en) 1929-07-19 1931-03-03 Joseph N Kelly Worm and gear
US1944116A (en) 1930-05-26 1934-01-16 Edward A Stratman Lever locking device
US1954048A (en) 1931-01-06 1934-04-10 Jeffrey Mfg Co Tool holder
US1912783A (en) 1931-04-20 1933-06-06 Meyer Josephine Sanitary pad holder
US2028635A (en) 1933-09-11 1936-01-21 Wappler Frederick Charles Forcipated surgical instrument
US2037727A (en) 1934-12-27 1936-04-21 United Shoe Machinery Corp Fastening
US2132295A (en) 1937-05-05 1938-10-04 Hawkins Earl Stapling device
US2211117A (en) 1937-09-06 1940-08-13 Rieter Joh Jacob & Cie Ag Device for drawing rovings in speeders and spinning machines
US2256295A (en) 1937-11-26 1941-09-16 H A Douglas Mfg Co Electric switch
US2161632A (en) 1937-12-20 1939-06-06 Martin L Nattenheimer Fastening device
US2214870A (en) 1938-08-10 1940-09-17 William J West Siding cutter
US2224108A (en) 1939-04-15 1940-12-03 Ingersoll Milling Machine Co Machine tool
US2224882A (en) 1939-08-01 1940-12-17 Herbert G Peck Umbrella
US2329440A (en) 1941-04-02 1943-09-14 Bocjl Corp Fastener
US2318379A (en) 1941-04-17 1943-05-04 Walter S Davis Suture package
US2406389A (en) 1942-11-30 1946-08-27 Lee Engineering Res Corp Electric motor
US2420552A (en) 1942-12-05 1947-05-13 Gen Electric Driving mechanism
US2377581A (en) 1944-03-09 1945-06-05 Matthew J Shaffrey Divided nut construction
US2441096A (en) 1944-09-04 1948-05-04 Singer Mfg Co Control means for portable electric tools
US2448741A (en) 1945-04-25 1948-09-07 American Cystoscope Makers Inc Endoscopic surgical instrument
US2578686A (en) 1945-04-27 1951-12-18 Tubing Appliance Co Inc Open-sided-socket ratchet wrench
US2450527A (en) 1945-10-27 1948-10-05 P & V Quicklocking Co Semiautomatic coupling
US2507872A (en) 1946-01-18 1950-05-16 Unsinger Ap Corp Implement or toolholder
US2491872A (en) 1946-06-15 1949-12-20 Int Resistance Co Liquid cooled resistor
US2526902A (en) 1947-07-31 1950-10-24 Norman C Rublee Insulating staple
US2527256A (en) 1947-11-07 1950-10-24 Earle R Jackson Connector for brushes, brooms, and the like
FR999646A (en) 1949-11-16 1952-02-04 Cable clamp device
US2742955A (en) 1951-01-13 1956-04-24 Richard A Dominguez Collapsible seat structure
US2638901A (en) 1951-07-30 1953-05-19 Everett D Sugarbaker Surgical clamp
US2701489A (en) 1951-09-12 1955-02-08 Leonard C Osborn Cam-actuated slidable jaw wrench
US2674149A (en) 1952-03-01 1954-04-06 Jerry S Benson Multiple pronged fastener device with spreading means
US2711461A (en) 1953-12-24 1955-06-21 Singer Mfg Co Portable electric tool handle assemblies
US2724289A (en) 1954-04-27 1955-11-22 Janette Electric Mfg Co Coupling apparatus
US2804848A (en) 1954-09-30 1957-09-03 Chicago Pneumatic Tool Co Drilling apparatus
FR1112936A (en) 1954-10-20 1956-03-20 Electric motor and three-speed control enclosed in a sheath
US2887004A (en) 1954-11-04 1959-05-19 William H Stewart Staple having flat depressed head with reinforcing ridge
US2825178A (en) 1955-10-07 1958-03-04 Havilah S Hawkins Articulated toy set of building blocks
US2808482A (en) 1956-04-12 1957-10-01 Miniature Switch Corp Toggle switch construction
US2853074A (en) 1956-06-15 1958-09-23 Edward A Olson Stapling instrument for surgical purposes
US2856192A (en) 1956-10-29 1958-10-14 Hi Shear Rivet Tool Company Collet with spring jaws
US3060972A (en) 1957-08-22 1962-10-30 Bausch & Lomb Flexible tube structures
US3972734A (en) 1957-12-27 1976-08-03 Catalyst Research Corporation Thermal deferred action battery
US2959974A (en) 1958-05-28 1960-11-15 Melvin H Emrick Forward and reverse friction drive tapping attachment
US2957353A (en) 1958-08-26 1960-10-25 Teleflex Inc Connector
US3032769A (en) 1959-08-18 1962-05-08 John R Palmer Method of making a bracket
US3078465A (en) 1959-09-09 1963-02-26 Bobrov Boris Sergueevitch Instrument for stitching gastric stump
US3080564A (en) 1959-09-10 1963-03-12 Strekopitov Alexey Alexeevich Instrument for stitching hollow organs
GB939929A (en) 1959-10-30 1963-10-16 Vasilii Fedotovich Goodov Instrument for stitching blood vessels, intestines, bronchi and other soft tissues
US3079606A (en) 1960-01-04 1963-03-05 Bobrov Boris Sergeevich Instrument for placing lateral gastrointestinal anastomoses
US3035256A (en) 1960-02-02 1962-05-15 Thompson Ramo Wooldridge Inc Remote frequency indicator
US3075062A (en) 1960-02-02 1963-01-22 J B T Instr Inc Toggle switch
US4034143A (en) 1960-02-24 1977-07-05 Catalyst Research Corporation Thermal deferred action battery with interconnecting, foldable electrodes
SU143738A1 (en) 1960-06-15 1960-11-30 А.А. Стрекопытов Method of suturing lung tissue by double-sided immersion sutures
US3026744A (en) 1960-07-14 1962-03-27 Cutler Hammer Inc Motor operated and overriding manual drive for rotatable shaft operated devices
US3204731A (en) 1961-05-26 1965-09-07 Gardner Denver Co Positive engaging jaw clutch or brake
US3187308A (en) 1961-07-03 1965-06-01 Gen Electric Information storage system for microwave computer
US3157308A (en) 1961-09-05 1964-11-17 Clark Mfg Co J L Canister type container and method of making the same
US3196869A (en) 1962-06-13 1965-07-27 William M Scholl Buttress pad and method of making the same
US3166072A (en) 1962-10-22 1965-01-19 Jr John T Sullivan Barbed clips
US3180236A (en) 1962-12-20 1965-04-27 Beckett Harcum Co Fluid motor construction
US3252643A (en) 1962-12-24 1966-05-24 Strekopytov Alexey Alexcevich Instrument for suturing living tissue
US3266494A (en) 1963-08-26 1966-08-16 Possis Machine Corp Powered forceps
US3317105A (en) 1964-03-25 1967-05-02 Niiex Khirurgicheskoi Apparatu Instrument for placing lateral intestinal anastomoses
US3269630A (en) 1964-04-30 1966-08-30 Fleischer Harry Stapling instrument
US3269631A (en) 1964-06-19 1966-08-30 Takaro Timothy Surgical stapler
US3359978A (en) 1964-10-26 1967-12-26 Jr Raymond M Smith Guide needle for flexible catheters
US3317103A (en) 1965-05-03 1967-05-02 Cullen Apparatus for handling hose or similar elongate members
US3275211A (en) 1965-05-10 1966-09-27 United States Surgical Corp Surgical stapler with replaceable cartridge
US3357296A (en) 1965-05-14 1967-12-12 Keuneth W Lefever Staple fastener
US3315863A (en) 1965-07-06 1967-04-25 United States Surgical Corp Medical instrument
US3726755A (en) 1966-09-29 1973-04-10 Owens Corning Fiberglass Corp High-strength foam material
US3509629A (en) 1966-10-01 1970-05-05 Mitsubishi Electric Corp Portable and adjustable contra-angle dental instrument
GB1210522A (en) 1966-10-10 1970-10-28 United States Surgical Corp Instrument for placing lateral gastro-intestinal anastomoses
US3490675A (en) 1966-10-10 1970-01-20 United States Surgical Corp Instrument for placing lateral gastrointestinal anastomoses
US3494533A (en) 1966-10-10 1970-02-10 United States Surgical Corp Surgical stapler for stitching body organs
US3377893A (en) 1967-03-06 1968-04-16 John A. Shorb Wrench having pivoted jaws adjustable by a lockable exterior camming sleeve
US3499591A (en) 1967-06-23 1970-03-10 United States Surgical Corp Instrument for placing lateral gastro-intestinal anastomoses
US3480193A (en) 1967-09-15 1969-11-25 Robert E Ralston Power-operable fastener applying device
DE1791114B1 (en) 1967-09-19 1971-12-02 Vnii Chirurgitscheskoj Apparat Surgical device for stapling tissues
US3503396A (en) 1967-09-21 1970-03-31 American Hospital Supply Corp Atraumatic surgical clamp
GB1217159A (en) 1967-12-05 1970-12-31 Coventry Gauge & Tool Co Ltd Torque limiting device
US3583393A (en) 1967-12-26 1971-06-08 Olympus Optical Co Bendable tube assembly
JPS4711908Y1 (en) 1968-01-18 1972-05-02
DE1775926A1 (en) 1968-08-28 1972-01-27 Ver Deutsche Metallwerke Ag Verfaerkungen for plastic Bowden cable guide hoses without wire reinforcement
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3551987A (en) 1968-09-12 1971-01-05 Jack E Wilkinson Stapling clamp for gastrointestinal surgery
US4369013A (en) 1969-02-13 1983-01-18 Velo-Bind, Inc. Bookbinding strips
US3640317A (en) 1969-03-21 1972-02-08 Jack Panfili Clip for closing fragile stuffed casings
US3661339A (en) 1969-03-27 1972-05-09 Nippon Kogaku Kk Film rewinding mechanism for cameras
US3572159A (en) 1969-06-12 1971-03-23 Teleflex Inc Motion transmitting remote control assembly
US3635394A (en) 1969-07-30 1972-01-18 Rohe Scientific Corp Automated clinical laboratory
US3604561A (en) 1969-08-07 1971-09-14 Codman & Shurtleff Multiple stapler cartridge
US3643851A (en) 1969-08-25 1972-02-22 United States Surgical Corp Skin stapler
US3688966A (en) 1969-11-10 1972-09-05 Spotnails Magazine and feed assembly for a fastener-driving tool
US3709221A (en) 1969-11-21 1973-01-09 Pall Corp Microporous nonadherent surgical dressing
US3598943A (en) 1969-12-01 1971-08-10 Illinois Tool Works Actuator assembly for toggle switch
US3744495A (en) 1970-01-02 1973-07-10 M Johnson Method of securing prolapsed vagina in cattle
US3608549A (en) 1970-01-15 1971-09-28 Merrill Edward Wilson Method of administering drugs and capsule therefor
US3662939A (en) 1970-02-26 1972-05-16 United States Surgical Corp Surgical stapler for skin and fascia
FR2084475A5 (en) 1970-03-16 1971-12-17 Brumlik George
US3618842A (en) 1970-03-20 1971-11-09 United States Surgical Corp Surgical stapling cartridge with cylindrical driving cams
US3902247A (en) 1970-05-15 1975-09-02 Siemens Ag Device for operating dental hand pieces
US3638652A (en) 1970-06-01 1972-02-01 James L Kelley Surgical instrument for intraluminal anastomosis
US3695646A (en) 1970-06-18 1972-10-03 Metal Matic Inc Ball and socket pipe joint with clip spring
US3685250A (en) 1970-07-09 1972-08-22 Woodman Co Cam interrupted sealing jaws for product stripping
US3661666A (en) 1970-08-06 1972-05-09 Philip Morris Inc Method for making swab applicators
US3650453A (en) 1970-08-13 1972-03-21 United States Surgical Corp Staple cartridge with drive belt
US3740994A (en) 1970-10-13 1973-06-26 Surgical Corp Three stage medical instrument
BE758685A (en) 1970-10-14 1971-05-10 Vnii Khirurgicheskoi Apparatur SURGICAL APPARATUS FOR TISSUE SUTURE WITH STAPLES
US3717294A (en) 1970-12-14 1973-02-20 Surgical Corp Cartridge and powering instrument for stapling skin and fascia
US3837555A (en) 1970-12-14 1974-09-24 Surgical Corp Powering instrument for stapling skin and fascia
US3799151A (en) 1970-12-21 1974-03-26 Olympus Optical Co Controllably bendable tube of an endoscope
US3727904A (en) 1971-03-12 1973-04-17 E Gabbey Concentricity coil for screw threads
US3746002A (en) 1971-04-29 1973-07-17 J Haller Atraumatic surgical clamp
US3724237A (en) 1971-06-07 1973-04-03 Black & Decker Mfg Co Attachment coupling for power tool
US3836171A (en) 1971-07-07 1974-09-17 Tokai Rika Co Ltd Safety belt locking device
CA960189A (en) 1971-07-12 1974-12-31 Hilti Aktiengesellschaft Nail holder assembly
US3752161A (en) 1971-08-02 1973-08-14 Minnesota Mining & Mfg Fluid operated surgical tool
US3747692A (en) 1971-08-30 1973-07-24 Parrott Bell Seltzer Park & Gi Stonesetter{40 s hand tool
US3851196A (en) 1971-09-08 1974-11-26 Xynetics Inc Plural axis linear motor structure
US3747603A (en) 1971-11-03 1973-07-24 B Adler Cervical dilators
US3883624A (en) 1971-11-18 1975-05-13 Grandview Ind Limited Recovery and utilization of scrap in production of foamed thermoplastic polymeric products
US3734207A (en) 1971-12-27 1973-05-22 M Fishbein Battery powered orthopedic cutting tool
US3940844A (en) 1972-02-22 1976-03-02 Pci Group, Inc. Method of installing an insulating sleeve on a staple
US3751902A (en) 1972-02-22 1973-08-14 Emhart Corp Apparatus for installing insulation on a staple
US4198734A (en) 1972-04-04 1980-04-22 Brumlik George C Self-gripping devices with flexible self-gripping means and method
GB1339394A (en) 1972-04-06 1973-12-05 Vnii Khirurgicheskoi Apparatur Dies for surgical stapling instruments
USRE28932E (en) 1972-09-29 1976-08-17 United States Surgical Corporation Surgical stapling instrument
US3819100A (en) 1972-09-29 1974-06-25 United States Surgical Corp Surgical stapling instrument
US3892228A (en) 1972-10-06 1975-07-01 Olympus Optical Co Apparatus for adjusting the flexing of the bending section of an endoscope
US3821919A (en) 1972-11-10 1974-07-02 Illinois Tool Works Staple
US3887393A (en) 1972-12-15 1975-06-03 Bell & Howell Co Battery holder assembly
US3822818A (en) 1973-02-20 1974-07-09 A Strekopytov Surgical instrument for joining osseous tissues by staples
US3959879A (en) 1973-02-26 1976-06-01 Rockwell International Corporation Electrically powered grass trimmer
US3944163A (en) 1973-03-24 1976-03-16 Kabushiki Kaisha Tokai Rika Denki Seisakusho Seat belt retractor
US3826978A (en) 1973-04-03 1974-07-30 Dynalysis Of Princeton Waveguide refractometer
US3863940A (en) 1973-04-04 1975-02-04 Philip T Cummings Wide opening collet
US3808452A (en) 1973-06-04 1974-04-30 Gte Automatic Electric Lab Inc Power supply system having redundant d. c. power supplies
SU511939A1 (en) 1973-07-13 1976-04-30 Центральная Научно-Исследовательская Лаборатория При 4-М Главном Управлении Apparatus for imposing arcuate suture on the greater curvature of the stomach
JPS5033988U (en) 1973-07-21 1975-04-11
US3885491A (en) 1973-12-21 1975-05-27 Illinois Tool Works Locking staple
US3899829A (en) 1974-02-07 1975-08-19 Fred Storm Ind Designs Inc Holder and actuator means for surgical instruments
JPS552966Y2 (en) 1974-02-08 1980-01-24
JPS543B2 (en) 1974-02-28 1979-01-05
US3952747A (en) 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
US3863639A (en) 1974-04-04 1975-02-04 Richard N Kleaveland Disposable visceral retainer
CA1015829A (en) 1974-05-23 1977-08-16 Kurt Pokrandt Current sensing circuitry
US4459519A (en) 1974-06-24 1984-07-10 General Electric Company Electronically commutated motor systems and control therefor
US4169990A (en) 1974-06-24 1979-10-02 General Electric Company Electronically commutated motor
US3894174A (en) 1974-07-03 1975-07-08 Emhart Corp Insulated staple and method of making the same
US3973179A (en) 1974-08-23 1976-08-03 The Black And Decker Manufacturing Company Modular cordless tools
DE2442260A1 (en) 1974-09-04 1976-03-18 Bosch Gmbh Robert CRAFT MACHINE
US3955581A (en) 1974-10-18 1976-05-11 United States Surgical Corporation Three-stage surgical instrument
DE2530261C2 (en) 1974-10-22 1986-10-23 Asea S.p.A., Mailand/Milano Programming device for a manipulator
US4129059A (en) 1974-11-07 1978-12-12 Eck William F Van Staple-type fastener
US3950686A (en) 1974-12-11 1976-04-13 Trw Inc. Series redundant drive system
US3999110A (en) 1975-02-06 1976-12-21 The Black And Decker Manufacturing Company Battery pack and latch
GB1491083A (en) 1975-03-19 1977-11-09 Newage Kitchens Ltd Joint assemblies
US4108211A (en) 1975-04-28 1978-08-22 Fuji Photo Optical Co., Ltd. Articulated, four-way bendable tube structure
SU566574A1 (en) 1975-05-04 1977-07-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for applying linear agraffe suture on organs and tissue
US4185701A (en) 1975-05-19 1980-01-29 Sps Technologies, Inc. Tightening apparatus
US4060089A (en) 1975-09-03 1977-11-29 United States Surgical Corporation Surgical fastening method and device therefor
US4027746A (en) 1975-09-05 1977-06-07 Shimano Industrial Company, Limited Center-pull type caliper brake for a bicycle
US4085337A (en) 1975-10-07 1978-04-18 Moeller Wolfgang W Electric drill multi-functional apparatus
US4047654A (en) 1976-06-23 1977-09-13 Alfredo Alvarado Surgical stapler
DE2628508A1 (en) 1976-06-25 1977-12-29 Hilti Ag SWIVEL NUT WITH TWO U-SHAPED DISCS
US4054108A (en) 1976-08-02 1977-10-18 General Motors Corporation Internal combustion engine
US4100820A (en) 1976-09-13 1978-07-18 Joel Evett Shift lever and integral handbrake apparatus
US4226242A (en) 1977-09-13 1980-10-07 United States Surgical Corporation Repeating hemostatic clip applying instruments and multi-clip cartridges therefor
AU518664B2 (en) 1976-10-08 1981-10-15 K. Jarvik Robert Surgical' clip applicator
US4127227A (en) 1976-10-08 1978-11-28 United States Surgical Corporation Wide fascia staple cartridge
DE2649052C2 (en) 1976-10-28 1979-01-25 Roland Offsetmaschinenfabrik Faber & Schleicher Ag, 6050 Offenbach Device for switching off the bearing play on printing cylinders of printing machines, in particular rotary offset printing machines
SU674747A1 (en) 1976-11-24 1979-07-25 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for mechanical suturing of tissues
FR2446509A1 (en) 1977-04-29 1980-08-08 Garret Roger PROGRAMMER
SU728848A1 (en) 1977-05-24 1980-04-25 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing arrangement
US4304236A (en) 1977-05-26 1981-12-08 United States Surgical Corporation Stapling instrument having an anvil-carrying part of particular geometric shape
US4573468A (en) 1977-05-26 1986-03-04 United States Surgical Corporation Hollow body organ stapling instrument and disposable cartridge employing relief vents
US4135517A (en) 1977-07-21 1979-01-23 Minnesota Mining And Manufacturing Company Femoral prosthesis trial fitting device
CA1124605A (en) 1977-08-05 1982-06-01 Charles H. Klieman Surgical stapler
US4452376A (en) 1977-08-05 1984-06-05 Charles H. Klieman Hemostatic clip applicator
USD261356S (en) 1977-09-07 1981-10-20 Ofrex Group Limited Strip of insulated cable clips
US5133727A (en) 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
US6264617B1 (en) 1977-09-12 2001-07-24 Symbiosis Corporation Radial jaw biopsy forceps
US4154122A (en) 1977-09-16 1979-05-15 Severin Hubert J Hand-powered tool
US4106620A (en) 1977-10-03 1978-08-15 Brimmer Frances M Surgical blade dispenser
JPS6060024B2 (en) 1977-10-19 1985-12-27 株式会社日立製作所 Engine control method
US4203444A (en) 1977-11-07 1980-05-20 Dyonics, Inc. Surgical instrument suitable for closed surgery such as of the knee
US4241861A (en) 1977-12-20 1980-12-30 Fleischer Harry N Scissor-type surgical stapler
US4160857A (en) 1978-02-16 1979-07-10 Codman & Shurtleff, Inc. Canister and removable battery pack unit therefor
US4900303A (en) 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4190042A (en) 1978-03-16 1980-02-26 Manfred Sinnreich Surgical retractor for endoscopes
US4321002A (en) 1978-03-27 1982-03-23 Minnesota Mining And Manufacturing Company Medical stapling device
US4207898A (en) 1978-03-27 1980-06-17 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4274304A (en) 1978-03-29 1981-06-23 Cooper Industries, Inc. In-line reversing mechanism
US4198982A (en) 1978-03-31 1980-04-22 Memorial Hospital For Cancer And Allied Diseases Surgical stapling instrument and method
SU1036324A1 (en) 1978-03-31 1983-08-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing device
GB2024012B (en) 1978-04-10 1982-07-28 Johnson & Johnson Oxygen-generating surgical dressing
DE2815486C2 (en) 1978-04-10 1986-10-30 Thermo Murg KG Apparatebau, 7886 Murg Burner furnace
US4180285A (en) 1978-05-11 1979-12-25 Reneau Bobby J Articulated ball connector for use with pipeline
DE2839990C2 (en) 1978-09-14 1980-05-14 Audi Nsu Auto Union Ag, 7107 Neckarsulm Method for remelt hardening the surface of a workpiece rotating about its axis of rotation, which surface is at a different distance from the axis of rotation
US4321746A (en) 1978-11-01 1982-03-30 White Consolidated Industries, Inc. Tool changer for vertical boring machine
SU886897A1 (en) 1978-12-25 1981-12-07 Всесоюзный Научно-Исследовательский Институт Медицинской Техники Surgical apparatus for applying side gastroenterostomy
SE419421B (en) 1979-03-16 1981-08-03 Ove Larson RESIDENTIAL ARM IN SPECIAL ROBOT ARM
US4340331A (en) 1979-03-26 1982-07-20 Savino Dominick J Staple and anviless stapling apparatus therefor
SU886900A1 (en) 1979-03-26 1981-12-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for applying line sutures
JPS55138634A (en) 1979-04-16 1980-10-29 Kansai Electric Power Co Inc:The Fault diagnosis apparatus of apparatus
US4512038A (en) 1979-04-27 1985-04-23 University Of Medicine And Dentistry Of New Jersey Bio-absorbable composite tissue scaffold
US4261244A (en) 1979-05-14 1981-04-14 Senco Products, Inc. Surgical staple
US4274398A (en) 1979-05-14 1981-06-23 Scott Jr Frank B Surgical retractor utilizing elastic tubes frictionally held in spaced notches
US4289131A (en) 1979-05-17 1981-09-15 Ergo Instruments, Inc. Surgical power tool
US4272662A (en) 1979-05-21 1981-06-09 C & K Components, Inc. Toggle switch with shaped wire spring contact
US4275813A (en) 1979-06-04 1981-06-30 United States Surgical Corporation Coherent surgical staple array
US4272002A (en) 1979-07-23 1981-06-09 Lawrence M. Smith Internal surgical stapler
US4296654A (en) 1979-08-20 1981-10-27 Mercer Albert E Adjustable angled socket wrench extension
US4250436A (en) 1979-09-24 1981-02-10 The Singer Company Motor braking arrangement and method
SU942719A1 (en) 1979-11-23 1982-07-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus for application of linear sutures
US4357940A (en) 1979-12-13 1982-11-09 Detroit Neurosurgical Foundation Tissue pneumatic separator structure
SU1022703A1 (en) 1979-12-20 1983-06-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Device for correcting and fixing vertebral column of patients ill with scoliosis surgical apparatus for applying compression sutures
US4278091A (en) 1980-02-01 1981-07-14 Howmedica, Inc. Soft tissue retainer for use with bone implants, especially bone staples
CA1205525A (en) 1980-02-01 1986-06-03 Russell H. Taggart Current detector
AU534210B2 (en) 1980-02-05 1984-01-12 United States Surgical Corporation Surgical staples
US4376380A (en) 1980-02-05 1983-03-15 John D. Brush & Co., Inc. Combination lock
US4429695A (en) 1980-02-05 1984-02-07 United States Surgical Corporation Surgical instruments
JPS56112235A (en) 1980-02-07 1981-09-04 Vnii Ispytatel Med Tech Surgical suturing implement for suturing staple
SU1042742A1 (en) 1980-02-08 1983-09-23 Всесоюзный Научно-Исследовательский Институт Клинической И Экспериментальной Хирургии Surgical suturing apparatus for application of linear suture
US4368731A (en) 1980-02-12 1983-01-18 Schramm Heinrich W Pistol-type syringe
US4396139A (en) 1980-02-15 1983-08-02 Technalytics, Inc. Surgical stapling system, apparatus and staple
US4317451A (en) 1980-02-19 1982-03-02 Ethicon, Inc. Plastic surgical staple
US4319576A (en) 1980-02-26 1982-03-16 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4312363A (en) 1980-02-26 1982-01-26 Senco Products, Inc. Surgical tissue thickness measuring instrument
US4361057A (en) 1980-02-28 1982-11-30 John Sigan Handlebar adjusting device
US4289133A (en) 1980-02-28 1981-09-15 Senco Products, Inc. Cut-through backup washer for the scalpel of an intraluminal surgical stapling instrument
US4296881A (en) 1980-04-03 1981-10-27 Sukoo Lee Surgical stapler using cartridge
US4428376A (en) 1980-05-02 1984-01-31 Ethicon Inc. Plastic surgical staple
US4331277A (en) 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US5445604A (en) 1980-05-22 1995-08-29 Smith & Nephew Associated Companies, Ltd. Wound dressing with conformable elastomeric wound contact layer
US4293604A (en) 1980-07-11 1981-10-06 Minnesota Mining And Manufacturing Company Flocked three-dimensional network mat
US4380312A (en) 1980-07-17 1983-04-19 Minnesota Mining And Manufacturing Company Stapling tool
US4606343A (en) 1980-08-18 1986-08-19 United States Surgical Corporation Self-powered surgical fastening instrument
US4328839A (en) 1980-09-19 1982-05-11 Drilling Development, Inc. Flexible drill pipe
US4353371A (en) 1980-09-24 1982-10-12 Cosman Eric R Longitudinally, side-biting, bipolar coagulating, surgical instrument
DE3036217C2 (en) 1980-09-25 1986-12-18 Siemens AG, 1000 Berlin und 8000 München Remote-controlled medical device
US4349028A (en) 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
AU542936B2 (en) 1980-10-17 1985-03-28 United States Surgical Corporation Self centering staple
JPS5778844A (en) 1980-11-04 1982-05-17 Kogyo Gijutsuin Lasre knife
US4500024A (en) 1980-11-19 1985-02-19 Ethicon, Inc. Multiple clip applier
US4430997A (en) 1980-11-19 1984-02-14 Ethicon, Inc. Multiple clip applier
US4347450A (en) 1980-12-10 1982-08-31 Colligan Wallace M Portable power tool
SU1235495A1 (en) 1980-12-29 1986-06-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for placing compression anastomoses
US4451743A (en) 1980-12-29 1984-05-29 Citizen Watch Company Limited DC-to-DC Voltage converter
US4394613A (en) 1981-01-19 1983-07-19 California Institute Of Technology Full-charge indicator for battery chargers
US4409057A (en) 1981-01-19 1983-10-11 Minnesota Mining & Manufacturing Company Staple supporting and removing strip
US4382326A (en) 1981-01-19 1983-05-10 Minnesota Mining & Manufacturing Company Staple supporting and staple removing strip
US4348603A (en) 1981-01-29 1982-09-07 Black & Decker Inc. Printed-circuit board and trigger-switch arrangement for a portable electric tool
FR2499395A1 (en) 1981-02-10 1982-08-13 Amphoux Andre DEFORMABLE CONDUIT SUCH AS GAS FLUID SUCTION ARM
FR2499782A1 (en) 1981-02-11 1982-08-13 Faiveley Sa METHOD FOR ADJUSTING THE POWER SUPPLY OF A DC MOTOR AND DEVICE FOR IMPLEMENTING SAID METHOD
US4379457A (en) 1981-02-17 1983-04-12 United States Surgical Corporation Indicator for surgical stapler
US4350151A (en) 1981-03-12 1982-09-21 Lone Star Medical Products, Inc. Expanding dilator
SU1009439A1 (en) 1981-03-24 1983-04-07 Предприятие П/Я Р-6094 Surgical suturing device for application of anastomosis on digestive tract
US4389963A (en) 1981-03-26 1983-06-28 Pearson Richard W Apparatus and method for monitoring periodic dispensation of pills
US4526174A (en) 1981-03-27 1985-07-02 Minnesota Mining And Manufacturing Company Staple and cartridge for use in a tissue stapling device and a tissue closing method
SU982676A1 (en) 1981-04-07 1982-12-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical cramp
DE3115192C2 (en) 1981-04-15 1983-05-19 Christian Prof. Dr.med. 2400 Lübeck Krüger Medical instrument
US4406621A (en) 1981-05-04 1983-09-27 Young Dental Manufacturing Company, Inc. Coupling ensemble for dental handpiece
US4383634A (en) 1981-05-26 1983-05-17 United States Surgical Corporation Surgical stapler apparatus with pivotally mounted actuator assemblies
JPS57211361A (en) 1981-06-23 1982-12-25 Terumo Corp Liquid injecting apparatus
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4421264A (en) 1981-06-26 1983-12-20 International Business Machines Corporation Variable thickness set compensation for stapler
US4486928A (en) 1981-07-09 1984-12-11 Magnavox Government And Industrial Electronics Company Apparatus for tool storage and selection
FR2509490B1 (en) 1981-07-09 1985-02-22 Tractel Sa RELEASE MECHANISM FOR TRACTION EQUIPMENT ACTING ON A CABLE THROUGH IT
US4373147A (en) 1981-07-23 1983-02-08 General Signal Corporation Torque compensated electric motor
US4475679A (en) 1981-08-07 1984-10-09 Fleury Jr George J Multi-staple cartridge for surgical staplers
US4632290A (en) 1981-08-17 1986-12-30 United States Surgical Corporation Surgical stapler apparatus
US4417890A (en) 1981-08-17 1983-11-29 Baxter Travenol Laboratories, Inc. Antibacterial closure
US4576167A (en) 1981-09-03 1986-03-18 United States Surgical Corporation Surgical stapler apparatus with curved shaft
US4461305A (en) 1981-09-04 1984-07-24 Cibley Leonard J Automated biopsy device
JPS5844033A (en) 1981-09-11 1983-03-14 富士写真光機株式会社 Adaptor type treating tool introducing apparatus for endoscope
AU548370B2 (en) 1981-10-08 1985-12-05 United States Surgical Corporation Surgical fastener
JPS5861747A (en) 1981-10-08 1983-04-12 馬渕 健一 Beauty tool
DE3277287D1 (en) 1981-10-15 1987-10-22 Olympus Optical Co Endoscope system with an electric bending mechanism
US4483562A (en) 1981-10-16 1984-11-20 Arnold Schoolman Locking flexible shaft device with live distal end attachment
US4809695A (en) 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4416276A (en) 1981-10-26 1983-11-22 Valleylab, Inc. Adaptive, return electrode monitoring system
US4415112A (en) 1981-10-27 1983-11-15 United States Surgical Corporation Surgical stapling assembly having resiliently mounted anvil
JPS5878639A (en) 1981-11-04 1983-05-12 オリンパス光学工業株式会社 Endoscope
US4423456A (en) 1981-11-13 1983-12-27 Medtronic, Inc. Battery reversal protection
JPS5887494U (en) 1981-12-05 1983-06-14 株式会社モリタ製作所 Speed control device for small medical motors
US4442964A (en) 1981-12-07 1984-04-17 Senco Products, Inc. Pressure sensitive and working-gap controlled surgical stapling instrument
US4471781A (en) 1982-02-03 1984-09-18 Ethicon, Inc. Surgical instrument with rotatable front housing and latch mechanism
US4724840A (en) 1982-02-03 1988-02-16 Ethicon, Inc. Surgical fastener applier with rotatable front housing and laterally extending curved needle for guiding a flexible pusher
US4586502A (en) 1982-02-03 1986-05-06 Ethicon, Inc. Surgical instrument actuator with non-collinear hydraulic pistons
US4448194A (en) 1982-02-03 1984-05-15 Ethicon, Inc. Full stroke compelling mechanism for surgical instrument with drum drive
US4471780A (en) 1982-02-05 1984-09-18 Ethicon, Inc. Multiple ligating clip applier instrument
US4480641A (en) 1982-02-05 1984-11-06 Ethicon, Inc. Tip configuration for a ligating clip applier
US4478220A (en) 1982-02-05 1984-10-23 Ethicon, Inc. Ligating clip cartridge
DE3204532C2 (en) 1982-02-10 1983-12-08 B. Braun Melsungen Ag, 3508 Melsungen Surgical skin staple
SU1114405A1 (en) 1982-02-23 1984-09-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus for placing compression anastomoses on the organs of digestive tract
US4425915A (en) 1982-02-26 1984-01-17 Ethicon, Inc. Surgical clip applier with in-line cartridge and interruptable biased feeder
DE3210466A1 (en) 1982-03-22 1983-09-29 Peter Dipl.-Kfm. Dr. 6230 Frankfurt Gschaider Method and device for carrying out handling processes
USD278081S (en) 1982-04-02 1985-03-19 United States Surgical Corporation Linear anastomosis surgical staple cartridge
US4408692A (en) 1982-04-12 1983-10-11 The Kendall Company Sterile cover for instrument
US4664305A (en) 1982-05-04 1987-05-12 Blake Joseph W Iii Surgical stapler
US4473077A (en) 1982-05-28 1984-09-25 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4485817A (en) 1982-05-28 1984-12-04 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4467805A (en) 1982-08-25 1984-08-28 Mamoru Fukuda Skin closure stapling device for surgical procedures
US4488523A (en) 1982-09-24 1984-12-18 United States Surgical Corporation Flexible, hydraulically actuated device for applying surgical fasteners
JPS5949356U (en) 1982-09-25 1984-04-02 新正工業株式会社 Cassette type battery case
US4476864A (en) 1982-09-29 1984-10-16 Jirayr Tezel Combined multiple punch and single punch hair transplant cutting device
FR2534801A1 (en) 1982-10-21 1984-04-27 Claracq Michel DEVICE FOR PARTIALLY OCCLUDING A VESSEL, PARTICULARLY OF THE CAUDAL CAVE VEIN, AND CONSTITUENT PART THEREOF
US4604786A (en) 1982-11-05 1986-08-12 The Grigoleit Company Method of making a composite article including a body having a decorative metal plate attached thereto
US4790225A (en) 1982-11-24 1988-12-13 Panduit Corp. Dispenser of discrete cable ties provided on a continuous ribbon of cable ties
US4676245A (en) 1983-02-09 1987-06-30 Mamoru Fukuda Interlocking surgical staple assembly
JPS59163608A (en) 1983-03-08 1984-09-14 Hitachi Koki Co Ltd Jigsaw
JPS59168848A (en) 1983-03-11 1984-09-22 エチコン・インコ−ポレ−テツド Antiseptic surgical apparatus made of nonmetal having affinity to organism
US4652820A (en) 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
US4569346A (en) 1983-03-30 1986-02-11 United States Surgical Corporation Safety apparatus for surgical occluding and cutting device
US4506671A (en) 1983-03-30 1985-03-26 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US4556058A (en) 1983-08-17 1985-12-03 United States Surgical Corporation Apparatus for ligation and division with fixed jaws
US4481458A (en) 1983-04-11 1984-11-06 Levitt-Safety Limited Miners lamp power pack
US4530357A (en) 1983-04-18 1985-07-23 Pawloski James A Fluid actuated orthopedic tool
GB2138298B (en) 1983-04-21 1986-11-05 Hundon Forge Ltd Pellet implanter
US4522327A (en) 1983-05-18 1985-06-11 United States Surgical Corporation Surgical fastener applying apparatus
US4527724A (en) 1983-06-10 1985-07-09 Senmed, Inc. Disposable linear surgical stapling instrument
US4693248A (en) 1983-06-20 1987-09-15 Ethicon, Inc. Two-piece tissue fastener with deformable retaining receiver
US4532927A (en) 1983-06-20 1985-08-06 Ethicon, Inc. Two-piece tissue fastener with non-reentry bent leg staple and retaining receiver
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4531522A (en) 1983-06-20 1985-07-30 Ethicon, Inc. Two-piece tissue fastener with locking top and method for applying same
US4573469A (en) 1983-06-20 1986-03-04 Ethicon, Inc. Two-piece tissue fastener with coinable leg staple and retaining receiver and method and instrument for applying same
GR81919B (en) 1983-06-20 1984-12-12 Ethicon Inc
DE3325282C2 (en) 1983-07-13 1986-09-25 Howmedica International, Inc., 2301 Schönkirchen Procedure for charging an accumulator
SU1175891A1 (en) 1983-08-16 1985-08-30 Предприятие П/Я А-7840 Device for moulding articles
US4944443A (en) 1988-04-22 1990-07-31 Innovative Surgical Devices, Inc. Surgical suturing instrument and method
US4669647A (en) 1983-08-26 1987-06-02 Technalytics, Inc. Surgical stapler
US4667674A (en) 1983-10-04 1987-05-26 United States Surgical Corporation Surgical fastener exhibiting improved hemostasis
US4589416A (en) 1983-10-04 1986-05-20 United States Surgical Corporation Surgical fastener retainer member assembly
US4530453A (en) 1983-10-04 1985-07-23 United States Surgical Corporation Surgical fastener applying apparatus
US4505414A (en) 1983-10-12 1985-03-19 Filipi Charles J Expandable anvil surgical stapler
US4610383A (en) 1983-10-14 1986-09-09 Senmed, Inc. Disposable linear surgical stapler
US4571213A (en) 1983-11-17 1986-02-18 Nikko Co., Ltd. Direction-converting device for a toy car
JPS60113007A (en) 1983-11-24 1985-06-19 Nissan Motor Co Ltd Control device of intake and exhaust valve in internal- combustion engine
US4565109A (en) 1983-12-27 1986-01-21 Tsay Chi Chour Instantaneous direction changing rotation mechanism
US4576165A (en) 1984-01-23 1986-03-18 United States Surgical Corporation Surgical ligation and cutting device with safety means
US4635638A (en) 1984-02-07 1987-01-13 Galil Advanced Technologies Ltd. Power-driven gripping tool particularly useful as a suturing device
USD287278S (en) 1984-02-21 1986-12-16 Senmed, Inc. Flexible surgical stapler
US4589870A (en) 1984-02-21 1986-05-20 Indicon, Inc. Incremental actuator for syringe
JPS60137406U (en) 1984-02-24 1985-09-11 シ−アイ化成株式会社 magnetic sheet
US4600037A (en) 1984-03-19 1986-07-15 Texas Eastern Drilling Systems, Inc. Flexible drill pipe
US4612933A (en) 1984-03-30 1986-09-23 Senmed, Inc. Multiple-load cartridge assembly for a linear surgical stapling instrument
US4608980A (en) 1984-04-13 1986-09-02 Osada Electric Co., Ltd. Laser hand piece
US4619391A (en) 1984-04-18 1986-10-28 Acme United Corporation Surgical stapling instrument
US4607638A (en) 1984-04-20 1986-08-26 Design Standards Corporation Surgical staples
JPS60232124A (en) 1984-05-04 1985-11-18 旭光学工業株式会社 Curving operation apparatus of endoscope
US5002553A (en) 1984-05-14 1991-03-26 Surgical Systems & Instruments, Inc. Atherectomy system with a clutch
US4894051A (en) 1984-05-14 1990-01-16 Surgical Systems & Instruments, Inc. Atherectomy system with a biasing sleeve and method of using the same
US4628636A (en) 1984-05-18 1986-12-16 Holmes-Hally Industries, Inc. Garage door operator mechanism
US5464013A (en) 1984-05-25 1995-11-07 Lemelson; Jerome H. Medical scanning and treatment system and method
US4781186A (en) 1984-05-30 1988-11-01 Devices For Vascular Intervention, Inc. Atherectomy device having a flexible housing
GB8417562D0 (en) 1984-07-10 1984-08-15 Surgical Design Services Fasteners
IN165375B (en) 1984-07-16 1989-10-07 Ethicon Inc
US4741336A (en) 1984-07-16 1988-05-03 Ethicon, Inc. Shaped staples and slotted receivers (case VII)
DE3426173A1 (en) 1984-07-16 1986-01-23 Hilti Ag, Schaan DRIVING DEVICE FOR FASTENING ELEMENTS, LIKE NAILS, CLIPS AND THE LIKE
US4605004A (en) 1984-07-16 1986-08-12 Ethicon, Inc. Surgical instrument for applying fasteners said instrument including force supporting means (case IV)
US4607636A (en) 1984-07-16 1986-08-26 Ethicon, Inc. Surgical instrument for applying fasteners having tissue locking means for maintaining the tissue in the instrument while applying the fasteners (case I)
US4585153A (en) 1984-07-16 1986-04-29 Ethicon, Inc. Surgical instrument for applying two-piece fasteners comprising frictionally held U-shaped staples and receivers (Case III)
US4591085A (en) 1984-07-16 1986-05-27 Ethicon, Inc. Surgical instrument for applying fasteners, said instrument having an improved trigger interlocking mechanism (Case VI)
DE3427329A1 (en) 1984-07-25 1986-01-30 Mannesmann Kienzle GmbH, 7730 Villingen-Schwenningen METHOD FOR POSITIONING A SWITCH ASSOCIATED WITH A SPEED LIMITER
US4655222A (en) 1984-07-30 1987-04-07 Ethicon, Inc. Coated surgical staple
US4754909A (en) 1984-08-09 1988-07-05 Barker John M Flexible stapler
US4671445A (en) 1984-08-09 1987-06-09 Baxter Travenol Laboratories, Inc. Flexible surgical stapler assembly
US4589582A (en) 1984-08-23 1986-05-20 Senmed, Inc. Cartridge and driver assembly for a surgical stapling instrument
US4560915A (en) 1984-08-23 1985-12-24 Wen Products, Inc. Electronic charging circuit for battery operated appliances
IL73079A (en) 1984-09-26 1989-01-31 Porat Michael Gripper means for medical instruments
USD286180S (en) 1984-10-16 1986-10-14 United States Surgical Corporation Surgical fastener
US4580712A (en) 1984-10-19 1986-04-08 United States Surgical Corporation Surgical fastener applying apparatus with progressive application of fastener
US4633874A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4605001A (en) 1984-10-19 1986-08-12 Senmed, Inc. Surgical stapling instrument with dual staple height mechanism
US4573622A (en) 1984-10-19 1986-03-04 United States Surgical Corporation Surgical fastener applying apparatus with variable fastener arrays
US4566620A (en) 1984-10-19 1986-01-28 United States Surgical Corporation Articulated surgical fastener applying apparatus
US4767044A (en) 1984-10-19 1988-08-30 United States Surgical Corporation Surgical fastener applying apparatus
US4633861A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw clamping mechanism
US4608981A (en) 1984-10-19 1986-09-02 Senmed, Inc. Surgical stapling instrument with staple height adjusting mechanism
IT1180106B (en) 1984-11-05 1987-09-23 Olivetti & Co Spa CIRCUIT FOR PILOTING ELECTRIC MOTORS OF TABULATION SELECTION AND INTERLINE OF A ELECTRONIC WRITING MACHINE
US4787387A (en) 1984-11-08 1988-11-29 American Cyanamid Company Surgical closure element
US4949707A (en) 1984-11-08 1990-08-21 Minnesota Scientific, Inc. Retractor apparatus
DE3543096A1 (en) 1984-12-05 1986-06-05 Olympus Optical Co., Ltd., Tokio/Tokyo DEVICE FOR THE CRUSHING OF STONES, LIKE KIDNEY AND GALLET STONES OR THE LIKE
US4646722A (en) 1984-12-10 1987-03-03 Opielab, Inc. Protective endoscope sheath and method of installing same
SU1271497A1 (en) 1985-01-07 1986-11-23 Научно-производственное объединение "Мединструмент" Apparatus for bringing together the wound edges
US4828542A (en) 1986-08-29 1989-05-09 Twin Rivers Engineering Foam substrate and micropackaged active ingredient particle composite dispensing materials
US4671278A (en) 1985-01-14 1987-06-09 Thomas J. Fogarty Scalp hemostatic clip and dispenser therefor
US4641076A (en) 1985-01-23 1987-02-03 Hall Surgical-Division Of Zimmer, Inc. Method and apparatus for sterilizing and charging batteries
US4705038A (en) 1985-01-23 1987-11-10 Dyonics, Inc. Surgical system for powered instruments
US4643173A (en) 1985-01-29 1987-02-17 Bell John H Heated traction belt
JPS61129692U (en) 1985-02-02 1986-08-14
US4651734A (en) 1985-02-08 1987-03-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical device for both mechanical cutting and coagulation of bleeding
JPH0663165B2 (en) 1985-11-20 1994-08-17 ユニ・チヤ−ム株式会社 Nonwoven fabric manufacturing method and apparatus
US4569469A (en) 1985-02-15 1986-02-11 Minnesota Mining And Manufacturing Company Bone stapler cartridge
IL74405A0 (en) 1985-02-21 1985-05-31 Moshe Meller Illuminated dental drill
JPS61209647A (en) 1985-03-14 1986-09-17 須广 久善 Incision opening retractor for connecting blood vessel
JPS635697Y2 (en) 1985-04-04 1988-02-17
JPS61235446A (en) 1985-04-11 1986-10-20 Karupu Kogyo Kk Jacket tube for industrial robot
SU1377052A1 (en) 1985-04-17 1988-02-28 Всесоюзный онкологический научный центр Arrangement for connecting hollow organs
US4833937A (en) 1985-04-22 1989-05-30 Shimano Industrial Company Limited Adjusting device for a control cable for a bicycle
US4807628A (en) 1985-04-26 1989-02-28 Edward Weck & Company, Inc. Method and apparatus for storing, dispensing, and applying surgical staples
DE3515659C1 (en) 1985-05-02 1986-08-28 Goetze Ag, 5093 Burscheid Piston ring
US4671280A (en) 1985-05-13 1987-06-09 Ethicon, Inc. Surgical fastening device and method for manufacture
US4642618A (en) 1985-07-23 1987-02-10 Ibm Corporation Tool failure detector
US5012411A (en) 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US4665916A (en) 1985-08-09 1987-05-19 United States Surgical Corporation Surgical stapler apparatus
US4643731A (en) 1985-08-16 1987-02-17 Alza Corporation Means for providing instant agent from agent dispensing system
US4750902A (en) 1985-08-28 1988-06-14 Sonomed Technology, Inc. Endoscopic ultrasonic aspirators
US4750488A (en) 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
US4728020A (en) 1985-08-30 1988-03-01 United States Surgical Corporation Articulated surgical fastener applying apparatus
SE457228B (en) 1985-09-10 1988-12-12 Vnii Ispytatel Med Tech SURGICAL INSTRUMENT FOR APPLICATION OF LINERABLE HANGING SEWINGS
SU1377053A1 (en) 1985-10-02 1988-02-28 В. Г. Сахаутдинов, Р. А. Талипов, Р. М. Халиков и 3. X. Гарифуллин Surgical suturing apparatus
US4610250A (en) 1985-10-08 1986-09-09 United States Surgical Corporation Two-part surgical fastener for fascia wound approximation
US4715520A (en) 1985-10-10 1987-12-29 United States Surgical Corporation Surgical fastener applying apparatus with tissue edge control
US4721099A (en) 1985-10-30 1988-01-26 Kabushiki Kaisha Machida Seisakusho Operating mechanism for bendable section of endoscope
DE3671185D1 (en) 1985-12-06 1990-06-21 Desoutter Ltd TWO-SPEED TRANSMISSION.
SU1333319A2 (en) 1985-12-10 1987-08-30 Петрозаводский государственный университет им.О.В.Куусинена Suture appliance for hollow organs
US4634419A (en) 1985-12-13 1987-01-06 Cooper Lasersonics, Inc. Angulated ultrasonic surgical handpieces and method for their production
USD297764S (en) 1985-12-18 1988-09-20 Ethicon, Inc. Surgical staple cartridge
US4679719A (en) 1985-12-27 1987-07-14 Senco Products, Inc. Electronic control for a pneumatic fastener driving tool
USD286442S (en) 1985-12-31 1986-10-28 United States Surgical Corporation Surgical fastener
US4763669A (en) 1986-01-09 1988-08-16 Jaeger John C Surgical instrument with adjustable angle of operation
US4728876A (en) 1986-02-19 1988-03-01 Minnesota Mining And Manufacturing Company Orthopedic drive assembly
US4672964A (en) 1986-02-21 1987-06-16 Dee Robert N Scalpel with universally adjustable blade
US4662555A (en) 1986-03-11 1987-05-05 Edward Weck & Company, Inc. Surgical stapler
US4675944A (en) 1986-03-17 1987-06-30 Wells Daryl F Pneumatic meat saw
JPS62221897A (en) 1986-03-24 1987-09-29 Mitsubishi Electric Corp Motor control apparatus
US4700703A (en) 1986-03-27 1987-10-20 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4903697A (en) 1986-03-27 1990-02-27 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4909789A (en) 1986-03-28 1990-03-20 Olympus Optical Co., Ltd. Observation assisting forceps
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4988334A (en) 1986-04-09 1991-01-29 Valleylab, Inc. Ultrasonic surgical system with aspiration tubulation connector
US4747820A (en) 1986-04-09 1988-05-31 Cooper Lasersonics, Inc. Irrigation/aspiration manifold and fittings for ultrasonic surgical aspiration system
JPS62170011U (en) 1986-04-16 1987-10-28
ATE96633T1 (en) 1986-04-21 1993-11-15 Globe Control Finanz Aktienges DEVICE FOR MAKING AN ANASTOMOSE.
SU1561964A1 (en) 1986-04-24 1990-05-07 Благовещенский государственный медицинский институт Surgical suturing apparatus
US4688555A (en) 1986-04-25 1987-08-25 Circon Corporation Endoscope with cable compensating mechanism
US4691703A (en) 1986-04-25 1987-09-08 Board Of Regents, University Of Washington Thermal cautery system
EP0251444A1 (en) 1986-04-30 1988-01-07 Minnesota Mining And Manufacturing Company Anvil assembly
FR2598905B1 (en) 1986-05-22 1993-08-13 Chevalier Jean Michel DEVICE FOR INTERRUPTING THE CIRCULATION OF A FLUID IN A FLEXIBLE WALL CONDUIT, IN PARTICULAR A HOLLOW VISCERE AND CLIP ASSEMBLY COMPRISING THIS DEVICE
US4709120A (en) 1986-06-06 1987-11-24 Pearson Dean C Underground utility equipment vault
USD298967S (en) 1986-06-09 1988-12-13 Ethicon, Inc. Surgical staple cartridge
US5190544A (en) 1986-06-23 1993-03-02 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US4744363A (en) 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
DE8620714U1 (en) 1986-08-01 1986-11-20 C. & E. Fein GmbH & Co KG, 70176 Stuttgart Sterilizable battery
US4727308A (en) 1986-08-28 1988-02-23 International Business Machines Corporation FET power converter with reduced switching loss
US4743214A (en) 1986-09-03 1988-05-10 Tai Cheng Yang Steering control for toy electric vehicles
US4875486A (en) 1986-09-04 1989-10-24 Advanced Techtronics, Inc. Instrument and method for non-invasive in vivo testing for body fluid constituents
US4890613A (en) 1986-09-19 1990-01-02 Ethicon, Inc. Two piece internal organ fastener
US4752024A (en) 1986-10-17 1988-06-21 Green David T Surgical fastener and surgical stapling apparatus
US4893622A (en) 1986-10-17 1990-01-16 United States Surgical Corporation Method of stapling tubular body organs
CH674058A5 (en) 1986-10-22 1990-04-30 Festo Kg
US4933843A (en) 1986-11-06 1990-06-12 Storz Instrument Company Control system for ophthalmic surgical instruments
US4954960A (en) 1986-11-07 1990-09-04 Alcon Laboratories Linear power control for ultrasonic probe with tuned reactance
US4970656A (en) 1986-11-07 1990-11-13 Alcon Laboratories, Inc. Analog drive for ultrasonic probe with tunable phase angle
JPH0418209Y2 (en) 1986-11-14 1992-04-23
JPH0755222B2 (en) 1986-12-12 1995-06-14 オリンパス光学工業株式会社 Treatment tool
SE457680B (en) 1987-01-15 1989-01-16 Toecksfors Verkstads Ab ELECTRONIC SWITCH INCLUDING ONE IN A MUCH MOVABLE MANUAL
US4832158A (en) 1987-01-20 1989-05-23 Delaware Capital Formation, Inc. Elevator system having microprocessor-based door operator
US4865030A (en) 1987-01-21 1989-09-12 American Medical Systems, Inc. Apparatus for removal of objects from body passages
EP0302093A4 (en) 1987-02-10 1989-08-30 Vaso Products Australia Pty Lt Venous cuff applicator, cartridge and cuff.
US4873977A (en) 1987-02-11 1989-10-17 Odis L. Avant Stapling method and apparatus for vesicle-urethral re-anastomosis following retropubic prostatectomy and other tubular anastomosis
US4719917A (en) 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US5217478A (en) 1987-02-18 1993-06-08 Linvatec Corporation Arthroscopic surgical instrument drive system
GB8704265D0 (en) 1987-02-24 1987-04-01 Yang T H Manual electric tools(1)
US4950268A (en) 1987-02-27 1990-08-21 Xintec Corporation Laser driver and control circuit
DE3807004A1 (en) 1987-03-02 1988-09-15 Olympus Optical Co ULTRASONIC TREATMENT DEVICE
DE3709067A1 (en) 1987-03-19 1988-09-29 Ewald Hensler Medical, especially surgical, instrument
US5001649A (en) 1987-04-06 1991-03-19 Alcon Laboratories, Inc. Linear power control for ultrasonic probe with tuned reactance
US4777780A (en) 1987-04-21 1988-10-18 United States Surgical Corporation Method for forming a sealed sterile package
US4730726A (en) 1987-04-21 1988-03-15 United States Surgical Corporation Sealed sterile package
SU1443874A1 (en) 1987-04-23 1988-12-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for applying compression anastomoses
JPS63270040A (en) 1987-04-28 1988-11-08 Haruo Takase Suturing method and device in surgical operation
US4941623A (en) 1987-05-12 1990-07-17 United States Surgical Corporation Stapling process and device for use on the mesentery of the abdomen
US5542949A (en) 1987-05-14 1996-08-06 Yoon; Inbae Multifunctional clip applier instrument
US4928699A (en) 1987-05-18 1990-05-29 Olympus Optical Co., Ltd. Ultrasonic diagnosis device
US4838859A (en) 1987-05-19 1989-06-13 Steve Strassmann Steerable catheter
US5158222A (en) 1987-05-26 1992-10-27 United States Surgical Corp. Surgical stapler apparatus
US5285944A (en) 1987-05-26 1994-02-15 United States Surgical Corporation Surgical stapler apparatus
USD309350S (en) 1987-06-01 1990-07-17 Pfizer Hospital Products Group, Inc. Surgical sternotomy band tightening instrument
US4844068A (en) 1987-06-05 1989-07-04 Ethicon, Inc. Bariatric surgical instrument
US4761326A (en) 1987-06-09 1988-08-02 Precision Fabrics Group, Inc. Foam coated CSR/surgical instrument wrap fabric
SU1475611A1 (en) 1987-06-10 1989-04-30 Предприятие П/Я А-3697 Device for joining tubular organs
US4930503A (en) 1987-06-11 1990-06-05 Pruitt J Crayton Stapling process and device for use on the mesenteries of the abdomen
US4848637A (en) 1987-06-11 1989-07-18 Pruitt J Crayton Staple device for use on the mesenteries of the abdomen
US5027834A (en) 1987-06-11 1991-07-02 United States Surgical Corporation Stapling process for use on the mesenteries of the abdomen
US4773420A (en) 1987-06-22 1988-09-27 U.S. Surgical Corporation Purse string applicator
JPS63318824A (en) 1987-06-22 1988-12-27 Oki Electric Ind Co Ltd Capacity coupled rotary coupler
DE3723310A1 (en) 1987-07-15 1989-01-26 John Urquhart PHARMACEUTICAL PREPARATION AND METHOD FOR THE PRODUCTION THEREOF
US4817643A (en) 1987-07-30 1989-04-04 Olson Mary Lou C Chinese finger cuff dental floss
US4821939A (en) 1987-09-02 1989-04-18 United States Surgical Corporation Staple cartridge and an anvilless surgical stapler
US5158567A (en) 1987-09-02 1992-10-27 United States Surgical Corporation One-piece surgical staple
SU1509051A1 (en) 1987-09-14 1989-09-23 Институт прикладной физики АН СССР Appliance for suturing organs
GB2209673B (en) 1987-09-15 1991-06-12 Wallace Ltd H G Catheter and cannula assembly
US5025559A (en) 1987-09-29 1991-06-25 Food Industry Equipment International, Inc. Pneumatic control system for meat trimming knife
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4921479A (en) 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
US4834096A (en) 1987-10-26 1989-05-30 Edward Weck Incorporated Plastic ligating clips
US4805617A (en) 1987-11-05 1989-02-21 Ethicon, Inc. Surgical fastening systems made from polymeric materials
US4830855A (en) 1987-11-13 1989-05-16 Landec Labs, Inc. Temperature-controlled active agent dispenser
GB2212433B (en) 1987-11-16 1992-07-29 Canon Kk A sheet stapler
FR2622429A1 (en) 1987-11-16 1989-05-05 Blagoveschensky G SURGICAL SUTURE APPARATUS
US5106627A (en) 1987-11-17 1992-04-21 Brown University Research Foundation Neurological therapy devices
US5018515A (en) 1987-12-14 1991-05-28 The Kendall Company See through absorbent dressing
US5062491A (en) 1987-12-23 1991-11-05 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling nut runner
US4834720A (en) 1987-12-24 1989-05-30 Becton, Dickinson And Company Implantable port septum
US4951860A (en) 1987-12-28 1990-08-28 Edward Weck & Co. Method and apparatus for storing, dispensing and applying surgical staples
US4819853A (en) 1987-12-31 1989-04-11 United States Surgical Corporation Surgical fastener cartridge
US5100420A (en) 1989-07-18 1992-03-31 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5383881A (en) 1989-07-18 1995-01-24 United States Surgical Corporation Safety device for use with endoscopic instrumentation
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5197970A (en) 1988-01-15 1993-03-30 United States Surgical Corporation Surgical clip applicator
US5030226A (en) 1988-01-15 1991-07-09 United States Surgical Corporation Surgical clip applicator
GB8800909D0 (en) 1988-01-15 1988-02-17 Ethicon Inc Gas powered surgical stapler
JPH01182196A (en) 1988-01-18 1989-07-20 Sanshin Ind Co Ltd Auxiliary shift device
DE3805179A1 (en) 1988-02-19 1989-08-31 Wolf Gmbh Richard DEVICE WITH A ROTATING DRIVEN SURGICAL INSTRUMENT
US5060658A (en) 1988-02-23 1991-10-29 Vance Products Incorporated Fine-needle aspiration cell sampling apparatus
US4860644A (en) 1988-02-29 1989-08-29 Donaldson Company, Inc. Articulatable fume exhauster trunk
US4827552A (en) 1988-03-14 1989-05-09 Better Health Concepts, Inc. Rotary electric toothbrush
US4862891A (en) 1988-03-14 1989-09-05 Canyon Medical Products Device for sequential percutaneous dilation
FR2628488B1 (en) 1988-03-14 1990-12-28 Ecia Equip Composants Ind Auto QUICK ATTACHMENT OF THE IMPROVED BAYONET TYPE
US4790314A (en) 1988-03-16 1988-12-13 Kenneth Weaver Orifice dilator
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US4856078A (en) 1988-03-23 1989-08-08 Zenith Electronics Corporation DC fan speed control
FR2631396B1 (en) 1988-05-11 1991-01-04 Marot Jacques ASSEMBLY DEVICE FOR REMOVABLE OR MODULAR ELEMENTS
US4880015A (en) 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US4933800A (en) 1988-06-03 1990-06-12 Yang Tai Her Motor overload detection with predetermined rotation reversal
GB2220919B (en) 1988-06-10 1992-04-08 Seikosha Kk Automatic feeder
JPH01313783A (en) 1988-06-14 1989-12-19 Philips Kk Measuring circuit for capacity of battery
US5193731A (en) 1988-07-01 1993-03-16 United States Surgical Corporation Anastomosis surgical stapling instrument
KR920001244Y1 (en) 1988-07-06 1992-02-20 이재희 Stapler
US5185717A (en) 1988-08-05 1993-02-09 Ryoichi Mori Tamper resistant module having logical elements arranged in multiple layers on the outer surface of a substrate to protect stored information
US5444113A (en) 1988-08-08 1995-08-22 Ecopol, Llc End use applications of biodegradable polymers
ES2011110A6 (en) 1988-09-02 1989-12-16 Lopez Hervas Pedro Hydraulic device with flexible body for surgical anastomosts
CA1327424C (en) 1988-09-16 1994-03-08 James C. Armour Compact tampon applicator
DE3831607A1 (en) 1988-09-17 1990-03-22 Haubold Kihlberg Gmbh STRIKE DEVICE OPERATED BY COMPRESSED AIR WITH BLEEDING VALVE FOR THE MAIN VALVE
US5024671A (en) 1988-09-19 1991-06-18 Baxter International Inc. Microporous vascular graft
US5071052A (en) 1988-09-22 1991-12-10 United States Surgical Corporation Surgical fastening apparatus with activation lockout
US5024652A (en) 1988-09-23 1991-06-18 Dumenek Vladimir A Ophthalmological device
DE3832528C1 (en) 1988-09-24 1989-11-16 Fresenius Ag, 6380 Bad Homburg, De
US4869415A (en) 1988-09-26 1989-09-26 Ethicon, Inc. Energy storage means for a surgical stapler
US4948327A (en) 1988-09-28 1990-08-14 Crupi Jr Theodore P Towing apparatus for coupling to towed vehicle undercarriage
CA1308782C (en) 1988-10-13 1992-10-13 Gyrus Medical Limited Screening and monitoring instrument
JP2625176B2 (en) 1988-10-14 1997-07-02 株式会社テック Rechargeable electric razor
US4892244A (en) 1988-11-07 1990-01-09 Ethicon, Inc. Surgical stapler cartridge lockout device
US4962681A (en) 1988-11-09 1990-10-16 Yang Tai Her Modular manual electric appliance
DE68924692T2 (en) 1988-11-11 1996-04-25 United States Surgical Corp Surgical instrument.
US5197648A (en) 1988-11-29 1993-03-30 Gingold Bruce S Surgical stapling apparatus
US4915100A (en) 1988-12-19 1990-04-10 United States Surgical Corporation Surgical stapler apparatus with tissue shield
US4978333A (en) 1988-12-20 1990-12-18 Valleylab, Inc. Resonator for surgical handpiece
US4986808A (en) 1988-12-20 1991-01-22 Valleylab, Inc. Magnetostrictive transducer
US5098360A (en) 1988-12-26 1992-03-24 Tochigifujisangyo Kabushiki Kaisha Differential gear with limited slip and locking mechanism
US5108368A (en) 1990-01-04 1992-04-28 Pilot Cardiovascular System, Inc. Steerable medical device
US5111987A (en) 1989-01-23 1992-05-12 Moeinzadeh Manssour H Semi-disposable surgical stapler
US5089606A (en) 1989-01-24 1992-02-18 Minnesota Mining And Manufacturing Company Water-insoluble polysaccharide hydrogel foam for medical applications
US4919679A (en) 1989-01-31 1990-04-24 Osteonics Corp. Femoral stem surgical instrument system
US5077506A (en) 1989-02-03 1991-12-31 Dyonics, Inc. Microprocessor controlled arthroscopic surgical system
US5061269A (en) 1989-02-07 1991-10-29 Joseph J. Berke Surgical rongeur power grip structure and method
EP0389102B1 (en) 1989-02-22 1995-05-10 United States Surgical Corporation Skin fastener
US4930674A (en) 1989-02-24 1990-06-05 Abiomed, Inc. Surgical stapler
US5186711A (en) 1989-03-07 1993-02-16 Albert Einstein College Of Medicine Of Yeshiva University Hemostasis apparatus and method
US5522817A (en) 1989-03-31 1996-06-04 United States Surgical Corporation Absorbable surgical fastener with bone penetrating elements
US5062563A (en) 1989-04-10 1991-11-05 United States Surgical Corporation Fascia stapler
US5104397A (en) 1989-04-14 1992-04-14 Codman & Shurtleff, Inc. Multi-position latching mechanism for forceps
US5038247A (en) 1989-04-17 1991-08-06 Delco Electronics Corporation Method and apparatus for inductive load control with current simulation
US5119009A (en) 1989-04-20 1992-06-02 Motorola, Inc. Lithium battery deactivator
US5164652A (en) 1989-04-21 1992-11-17 Motorola, Inc. Method and apparatus for determining battery type and modifying operating characteristics
US6200320B1 (en) 1989-04-24 2001-03-13 Gary Karlin Michelson Surgical rongeur
US5009661A (en) 1989-04-24 1991-04-23 Michelson Gary K Protective mechanism for surgical rongeurs
AU5534090A (en) 1989-05-03 1990-11-29 Intra-Sonix, Inc. Instrument and method for intraluminally relieving stenosis
US5222976A (en) 1989-05-16 1993-06-29 Inbae Yoon Suture devices particularly useful in endoscopic surgery
SU1708312A1 (en) 1989-05-16 1992-01-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for suturing bone tissue
US4978049A (en) 1989-05-26 1990-12-18 United States Surgical Corporation Three staple drive member
US5100422A (en) 1989-05-26 1992-03-31 Impra, Inc. Blood vessel patch
US4955959A (en) 1989-05-26 1990-09-11 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5104400A (en) 1989-05-26 1992-04-14 Impra, Inc. Blood vessel patch
US5106008A (en) 1989-05-26 1992-04-21 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5318221A (en) 1989-05-26 1994-06-07 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5031814A (en) 1989-05-26 1991-07-16 United States Surgical Corporation Locking mechanism for surgical fastening apparatus
US5040715B1 (en) 1989-05-26 1994-04-05 United States Surgical Corp Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5413268A (en) 1989-05-26 1995-05-09 United States Surgical Corporation Apparatus and method for placing stables in laparoscopic or endoscopic procedures
US5505363A (en) 1989-05-26 1996-04-09 United States Surgical Corporation Surgical staples with plated anvils
US5035040A (en) 1989-05-30 1991-07-30 Duo-Fast Corporation Hog ring fastener, tool and methods
DE4017626A1 (en) 1989-05-31 1990-12-06 Kyocera Corp BLUTGEFAESSKOAGULATIONS - / - hemostatic DEVICE
JPH034831A (en) 1989-06-01 1991-01-10 Toshiba Corp Endoscope device
US4946067A (en) 1989-06-07 1990-08-07 Wickes Manufacturing Company Inflation valve with actuating lever interlock
US4987049A (en) 1989-07-21 1991-01-22 Konica Corporation Image-receiving element for heat transfer type dye image
US5009222A (en) 1989-07-24 1991-04-23 Her Ming Long Diving case massager
USD327323S (en) 1989-08-02 1992-06-23 Ethicon,Inc. Combination skin stapler and rotating head
US6004330A (en) 1989-08-16 1999-12-21 Medtronic, Inc. Device or apparatus for manipulating matter
US4932960A (en) 1989-09-01 1990-06-12 United States Surgical Corporation Absorbable surgical fastener
DE3929575A1 (en) 1989-09-06 1991-03-07 Vascomed Kathetertech DILATATION CATHETER FOR EXTENDING BLOOD VESSELS WITH MOTOR DRIVE
US5155941A (en) 1989-09-18 1992-10-20 Olympus Optical Co., Ltd. Industrial endoscope system having a rotary treatment member
US4965709A (en) 1989-09-25 1990-10-23 General Electric Company Switching converter with pseudo-resonant DC link
US4984564A (en) 1989-09-27 1991-01-15 Frank Yuen Surgical retractor device
CH677728A5 (en) 1989-10-17 1991-06-28 Bieffe Medital Sa
US5264218A (en) 1989-10-25 1993-11-23 C. R. Bard, Inc. Modifiable, semi-permeable, wound dressing
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5239981A (en) 1989-11-16 1993-08-31 Effner Biomet Gmbh Film covering to protect a surgical instrument and an endoscope to be used with the film covering
US5188126A (en) 1989-11-16 1993-02-23 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5176677A (en) 1989-11-17 1993-01-05 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
JPH0737603Y2 (en) 1989-11-30 1995-08-30 晴夫 高瀬 Surgical suture instrument
US5098004A (en) 1989-12-19 1992-03-24 Duo-Fast Corporation Fastener driving tool
JPH0527929Y2 (en) 1989-12-19 1993-07-16
US5156609A (en) 1989-12-26 1992-10-20 Nakao Naomi L Endoscopic stapling device and method
US5109722A (en) 1990-01-12 1992-05-05 The Toro Company Self-detenting transmission shift key
US5195968A (en) 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
US6033378A (en) 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
AU7082091A (en) 1990-02-13 1991-08-15 Ethicon Inc. Rotating head skin stapler
US5100042A (en) 1990-03-05 1992-03-31 United States Surgical Corporation Surgical fastener apparatus
US5217457A (en) 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5244462A (en) 1990-03-15 1993-09-14 Valleylab Inc. Electrosurgical apparatus
US5088997A (en) 1990-03-15 1992-02-18 Valleylab, Inc. Gas coagulation device
US5014899A (en) 1990-03-30 1991-05-14 United States Surgical Corporation Surgical stapling apparatus
SU1722476A1 (en) 1990-04-02 1992-03-30 Свердловский Филиал Научно-Производственного Объединения "Фтизиопульмонология" Appliance for temporary occlusion of tubular organs
US5005754A (en) 1990-04-04 1991-04-09 Ethicon, Inc. Bladder and mandrel for use with surgical stapler
US5002543A (en) 1990-04-09 1991-03-26 Bradshaw Anthony J Steerable intramedullary fracture reduction device
US5343391A (en) 1990-04-10 1994-08-30 Mushabac David R Device for obtaining three dimensional contour data and for operating on a patient and related method
US5124990A (en) 1990-05-08 1992-06-23 Caterpillar Inc. Diagnostic hardware for serial datalink
US5613499A (en) 1990-05-10 1997-03-25 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
US5431645A (en) 1990-05-10 1995-07-11 Symbiosis Corporation Remotely activated endoscopic tools such as endoscopic biopsy forceps
US5331971A (en) 1990-05-10 1994-07-26 Symbiosis Corporation Endoscopic surgical instruments
US5454378A (en) 1993-02-11 1995-10-03 Symbiosis Corporation Biopsy forceps having a detachable proximal handle and distal jaws
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
CA2042006C (en) 1990-05-11 1995-08-29 Morito Idemoto Surgical ultrasonic horn
US5290271A (en) 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5116349A (en) 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5396635A (en) 1990-06-01 1995-03-07 Vadem Corporation Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system
US5074454A (en) 1990-06-04 1991-12-24 Peters Ronald L Surgical stapler
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
NL9001564A (en) 1990-07-09 1992-02-03 Optische Ind De Oude Delft Nv BODY CONTAINABLE TUBE EQUIPPED WITH A MANIPULATOR.
SU1752361A1 (en) 1990-07-10 1992-08-07 Производственное Объединение "Челябинский Тракторный Завод Им.В.И.Ленина" Surgical sutural material
RU2008830C1 (en) 1990-07-13 1994-03-15 Константин Алексеевич Додонов Electrosurgical apparatus
US5163598A (en) 1990-07-23 1992-11-17 Rudolph Peters Sternum stapling apparatus
US5033552A (en) 1990-07-24 1991-07-23 Hu Cheng Te Multi-function electric tool
US5234447A (en) 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5094247A (en) 1990-08-31 1992-03-10 Cordis Corporation Biopsy forceps with handle having a flexible coupling
US5389102A (en) 1990-09-13 1995-02-14 United States Surgical Corporation Apparatus and method for subcuticular stapling of body tissue
US5253793A (en) 1990-09-17 1993-10-19 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5156614A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5653373A (en) 1990-09-17 1997-08-05 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5156315A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5080556A (en) 1990-09-28 1992-01-14 General Electric Company Thermal seal for a gas turbine spacer disc
US5104025A (en) 1990-09-28 1992-04-14 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
DE9117288U1 (en) 1990-10-05 1999-10-21 United States Surgical Corp. (N.D.Ges.D.Staates Delaware), Norwalk, Conn. Surgical stapling instrument
US5088979A (en) 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
USD330699S (en) 1990-10-19 1992-11-03 W. W. Cross, Inc. Insulated staple
FR2668361A1 (en) 1990-10-30 1992-04-30 Mai Christian OSTEOSYNTHESIS CLIP AND PLATE WITH SELF-RETENTIVE DYNAMIC COMPRESSION.
US5344454A (en) 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5658307A (en) 1990-11-07 1997-08-19 Exconde; Primo D. Method of using a surgical dissector instrument
GB9025131D0 (en) 1990-11-19 1991-01-02 Ofrex Group Holdings Plc Improvements in or relating to a stapling machine
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
CA2055943C (en) 1990-12-06 2003-09-23 Daniel P. Rodak Surgical fastening apparatus with locking mechanism
US5470009A (en) 1990-12-06 1995-11-28 United States Surgical Corporation Surgical fastening apparatus with locking mechanism
USRE36720E (en) 1990-12-13 2000-05-30 United States Surgical Corporation Apparatus and method for applying latchless surgical clips
US5209747A (en) 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
US7384417B2 (en) 1990-12-14 2008-06-10 Cucin Robert L Air-powered tissue-aspiration instrument system employing curved bipolar-type electro-cauterizing dual cannula assembly
US5122156A (en) 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
US5083695A (en) 1990-12-18 1992-01-28 Minnesota Mining And Manufacturing Company Stapler and firing device
AU662719B2 (en) 1990-12-18 1995-09-14 United States Surgical Corporation Safety device for a surgical stapler cartridge
US5141144A (en) 1990-12-18 1992-08-25 Minnesota Mining And Manufacturing Company Stapler and firing device
CA2055985A1 (en) 1990-12-20 1992-06-21 Daniel Shichman Fascia clip
US5195505A (en) 1990-12-27 1993-03-23 United States Surgical Corporation Surgical retractor
EP0566694A1 (en) 1991-01-09 1993-10-27 EndoMedix Corporation Method and device for intracorporeal liquidization of tissue and/or intracorporeal fragmentation of calculi during endoscopic surgical procedures
US5354303A (en) 1991-01-09 1994-10-11 Endomedix Corporation Devices for enclosing, manipulating, debulking and removing tissue through minimal incisions
US5222963A (en) 1991-01-17 1993-06-29 Ethicon, Inc. Pull-through circular anastomosic intraluminal stapler with absorbable fastener means
US5188111A (en) 1991-01-18 1993-02-23 Catheter Research, Inc. Device for seeking an area of interest within a body
US5425355A (en) 1991-01-28 1995-06-20 Laserscope Energy discharging surgical probe and surgical process having distal energy application without concomitant proximal movement
US5342385A (en) 1991-02-05 1994-08-30 Norelli Robert A Fluid-expandable surgical retractor
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5690675A (en) 1991-02-13 1997-11-25 Fusion Medical Technologies, Inc. Methods for sealing of staples and other fasteners in tissue
US5329923A (en) 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
DE4104755A1 (en) 1991-02-15 1992-08-20 Heidmueller Harald SURGICAL INSTRUMENT
US5168605A (en) 1991-02-15 1992-12-08 Russell Bartlett Method and apparatus for securing a tarp
US5571285A (en) 1991-02-19 1996-11-05 Ethicon, Inc. Surgical staple for insertion into tissue
CA2061319A1 (en) 1991-02-19 1992-08-20 Hector Chow Surgical staple for insertion into tissue
US5324489A (en) 1991-03-04 1994-06-28 Johnson & Johnson Medical, Inc. Medical instrument sterilization container with a contaminant plug
US5219111A (en) 1991-03-11 1993-06-15 Ethicon, Inc. Pneumatically actuated linear stapling device
US5438997A (en) 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5445155A (en) 1991-03-13 1995-08-29 Scimed Life Systems Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5353798A (en) 1991-03-13 1994-10-11 Scimed Life Systems, Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5336232A (en) 1991-03-14 1994-08-09 United States Surgical Corporation Approximating apparatus for surgical jaw structure and method of using the same
CA2061885A1 (en) 1991-03-14 1992-09-15 David T. Green Approximating apparatus for surgical jaw structure
JP2760666B2 (en) 1991-03-15 1998-06-04 株式会社東芝 Method and apparatus for controlling PWM converter
US5217453A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5170925A (en) 1991-03-18 1992-12-15 Ethicon, Inc. Laparoscopic stapler with knife means
SU1814161A1 (en) 1991-03-19 1993-05-07 Penzen Nii Elektronno Mekh Pri Electric motor
USD338729S (en) 1991-03-22 1993-08-24 Ethicon, Inc. Linear surgical stapler
US5171253A (en) 1991-03-22 1992-12-15 Klieman Charles H Velcro-like closure system with absorbable suture materials for absorbable hemostatic clips and surgical strips
US5065929A (en) 1991-04-01 1991-11-19 Ethicon, Inc. Surgical stapler with locking means
US5171247A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier with rotating shaft
US5359993A (en) 1992-12-31 1994-11-01 Symbiosis Corporation Apparatus for counting the number of times a medical instrument has been used
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
US5246156A (en) 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5470010A (en) 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
JPH05226945A (en) 1991-04-09 1993-09-03 Olympus Optical Co Ltd Voltage current conversion circuit and differential amplifier circuit having same circuit
JPH05208014A (en) 1991-04-10 1993-08-20 Olympus Optical Co Ltd Treating tool
US5297714A (en) 1991-04-17 1994-03-29 Ethicon, Inc. Surgical staple with modified "B" shaped configuration
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5338317A (en) 1991-05-03 1994-08-16 Vance Products Incorporated Rotational surgical instrument handle
US5257713A (en) 1991-05-07 1993-11-02 United States Surgical Corporation Surgical fastening device
AU671685B2 (en) 1991-05-14 1996-09-05 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5413267A (en) 1991-05-14 1995-05-09 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5137198A (en) 1991-05-16 1992-08-11 Ethicon, Inc. Fast closure device for linear surgical stapling instrument
DE4116343A1 (en) 1991-05-18 1992-11-19 Bosch Gmbh Robert HAND-MADE ELECTRIC TOOL, ESPECIALLY DRILLING MACHINE
US5181514A (en) 1991-05-21 1993-01-26 Hewlett-Packard Company Transducer positioning system
JP2581082Y2 (en) 1991-05-24 1998-09-17 三洋電機株式会社 Battery device
FI93607C (en) 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
FR2677167B1 (en) 1991-05-29 1994-07-08 Dav ELECTRIC SWITCH, PARTICULARLY FOR THE CONTROL OF AUTOMOTIVE EQUIPMENT AND ACCESSORIES.
US5361752A (en) 1991-05-29 1994-11-08 Origin Medsystems, Inc. Retraction apparatus and methods for endoscopic surgery
US5527264A (en) 1991-05-29 1996-06-18 Origin Medsystem, Inc. Methods of using endoscopic inflatable retraction devices
US5370134A (en) 1991-05-29 1994-12-06 Orgin Medsystems, Inc. Method and apparatus for body structure manipulation and dissection
US5258010A (en) 1991-05-30 1993-11-02 United States Surgical Corporation Anvilless surgical apparatus for applying surgical fasteners
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5221036A (en) 1991-06-11 1993-06-22 Haruo Takase Surgical stapler
US5190560A (en) 1991-06-20 1993-03-02 Woods John B Instrument for ligation and castration
US5262678A (en) 1991-06-21 1993-11-16 Lutron Electronics Co., Inc. Wallbox-mountable switch and dimmer
US5268622A (en) 1991-06-27 1993-12-07 Stryker Corporation DC powered surgical handpiece having a motor control circuit
US5207697A (en) 1991-06-27 1993-05-04 Stryker Corporation Battery powered surgical handpiece
US5735290A (en) 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5176688A (en) 1991-07-17 1993-01-05 Perinchery Narayan Stone extractor and method
US5261877A (en) 1991-07-22 1993-11-16 Dow Corning Wright Method of performing a thrombectomy procedure
US5190657A (en) 1991-07-22 1993-03-02 Lydall, Inc. Blood filter and method of filtration
US5173133A (en) 1991-07-23 1992-12-22 United States Surgical Corporation Method for annealing stapler anvils
US5187422A (en) 1991-07-31 1993-02-16 Stryker Corporation Charger for batteries of different type
US5251801A (en) 1991-08-05 1993-10-12 Edward Weck Incorporated Surgical stapler
US5391180A (en) 1991-08-05 1995-02-21 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5383888A (en) 1992-02-12 1995-01-24 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5490819A (en) 1991-08-05 1996-02-13 United States Surgical Corporation Articulating endoscopic surgical apparatus
AU2063592A (en) 1991-08-09 1993-02-11 Emerson Electric Co. Cordless power tool
US5282829A (en) 1991-08-15 1994-02-01 United States Surgical Corporation Hollow body implants
US5302148A (en) 1991-08-16 1994-04-12 Ted Heinz Rotatable demountable blocks of several shapes on a central elastic anchor
GR920100358A (en) 1991-08-23 1993-06-07 Ethicon Inc Surgical anastomosis stapling instrument.
US5333773A (en) 1991-08-23 1994-08-02 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
US5350104A (en) 1991-08-23 1994-09-27 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
US5259835A (en) 1991-08-29 1993-11-09 Tri-Point Medical L.P. Wound closure means and method using flowable adhesive
US5263973A (en) 1991-08-30 1993-11-23 Cook Melvin S Surgical stapling method
US5142932A (en) 1991-09-04 1992-09-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible robotic arm
US5200280A (en) 1991-09-05 1993-04-06 Black & Decker Inc. Terminal cover for a battery pack
IT1251206B (en) 1991-09-18 1995-05-04 Magneti Marelli Spa ELECTRICAL SYSTEM OF A MOTOR VEHICLE, INCLUDING AT LEAST A SUPER CAPACITOR.
CA2075319C (en) 1991-09-26 1998-06-30 Ernie Aranyi Handle for surgical instruments
US5476479A (en) 1991-09-26 1995-12-19 United States Surgical Corporation Handle for endoscopic surgical instruments and jaw structure
US5431654A (en) 1991-09-30 1995-07-11 Stryker Corporation Bone cement injector
US5220269A (en) 1991-10-04 1993-06-15 Innova Electronics Corporation Power supply unit
US5369565A (en) 1991-10-04 1994-11-29 Innova Electronics Corp. Modular power supply system
JP2817749B2 (en) 1991-10-07 1998-10-30 三菱電機株式会社 Laser processing equipment
US5697909A (en) 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
USD348930S (en) 1991-10-11 1994-07-19 Ethicon, Inc. Endoscopic stapler
USD347474S (en) 1991-10-11 1994-05-31 Ethicon, Inc. Endoscopic stapler
US5275608A (en) 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
CA2075141C (en) 1991-10-17 1998-06-30 Donald A. Morin Anvil for surgical staplers
CA2078794C (en) 1991-10-18 1998-10-06 Frank J. Viola Locking device for an apparatus for applying surgical fasteners
CA2075227C (en) 1991-10-18 2004-02-10 Robert J. Geiste Surgical fastening apparatus with shipping interlock
US5497933A (en) 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5395312A (en) 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
US5474223A (en) 1991-10-18 1995-12-12 United States Surgical Corporation Surgical fastener applying apparatus
US5443198A (en) 1991-10-18 1995-08-22 United States Surgical Corporation Surgical fastener applying apparatus
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5307976A (en) 1991-10-18 1994-05-03 Ethicon, Inc. Linear stapling mechanism with cutting means
US6250532B1 (en) 1991-10-18 2001-06-26 United States Surgical Corporation Surgical stapling apparatus
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5364001A (en) 1991-10-18 1994-11-15 United States Surgical Corporation Self contained gas powered surgical apparatus
AU657364B2 (en) 1991-10-18 1995-03-09 United States Surgical Corporation Self contained gas powered surgical apparatus
US5397046A (en) 1991-10-18 1995-03-14 United States Surgical Corporation Lockout mechanism for surgical apparatus
US5326013A (en) 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
AU660712B2 (en) 1991-10-18 1995-07-06 United States Surgical Corporation Apparatus for applying surgical fasteners
US5431322A (en) 1991-10-18 1995-07-11 United States Surgical Corporation Self contained gas powered surgical apparatus
US5579978A (en) 1991-10-18 1996-12-03 United States Surgical Corporation Apparatus for applying surgical fasteners
US5711472A (en) 1991-10-18 1998-01-27 United States Surgical Corporation Self contained gas powered surgical apparatus
US5356064A (en) 1991-10-18 1994-10-18 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5308576A (en) 1991-10-18 1994-05-03 United States Surgical Corporation Injection molded anvils
US5332142A (en) 1991-10-18 1994-07-26 Ethicon, Inc. Linear stapling mechanism with cutting means
US5366134A (en) 1991-10-18 1994-11-22 United States Surgical Corporation Surgical fastening apparatus
ES2041610T3 (en) 1991-10-18 1997-05-16 United States Surgical Corp APPARATUS TO APPLY SURGICAL FASTENING CLAMPS.
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
EP0540461A1 (en) 1991-10-29 1993-05-05 SULZER Medizinaltechnik AG Sterile puncturing apparatus for blood vessels with non-sterile ultrasound probe and device for preparing the apparatus
US5197649A (en) 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5350400A (en) * 1991-10-30 1994-09-27 American Cyanamid Company Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple
ES2217252T3 (en) 1991-10-30 2004-11-01 Sherwood Services Ag MALEABLE, BIOABSORBIBLE AND METHOD PASSIVE STAPLE AND APPARATUS TO DEFORM A CLIP OF THIS TYPE.
US5240163A (en) 1991-10-30 1993-08-31 American Cyanamid Company Linear surgical stapling instrument
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5665085A (en) 1991-11-01 1997-09-09 Medical Scientific, Inc. Electrosurgical cutting tool
EP0610326B1 (en) 1991-11-01 2002-09-18 Medical Scientific, Inc. Electrosurgical cutting tool
JPH05123325A (en) 1991-11-01 1993-05-21 Olympus Optical Co Ltd Treating tool
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5741271A (en) 1991-11-05 1998-04-21 Nakao; Naomi L. Surgical retrieval assembly and associated method
US5395034A (en) 1991-11-07 1995-03-07 American Cyanamid Co. Linear surgical stapling instrument
JP3530528B2 (en) 1991-11-08 2004-05-24 ボストン サイエンティフィック リミテッド Ablation electrode with insulated temperature sensing element
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
RU2069981C1 (en) 1991-11-15 1996-12-10 Ялмар Яковлевич Татти Surgical suture appliance
US5476481A (en) 1991-11-15 1995-12-19 Robert Ley Electrotherapy apparatus with superimposed AC fields
US5236629A (en) 1991-11-15 1993-08-17 Xerox Corporation Conductive composite particles and processes for the preparation thereof
US5242456A (en) 1991-11-21 1993-09-07 Kensey Nash Corporation Apparatus and methods for clamping tissue and reflecting the same
US5173053A (en) 1991-11-26 1992-12-22 Caterpillar Inc. Electrical connector for an electromechanical device
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
US5458579A (en) 1991-12-31 1995-10-17 Technalytics, Inc. Mechanical trocar insertion apparatus
WO1993013704A1 (en) 1992-01-09 1993-07-22 Endomedix Corporation Bi-directional miniscope
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5383880A (en) 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
US6963792B1 (en) 1992-01-21 2005-11-08 Sri International Surgical method
WO1993013718A1 (en) 1992-01-21 1993-07-22 Valleylab, Inc. Electrosurgical control for a trocar
US5631973A (en) 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
JP3583777B2 (en) 1992-01-21 2004-11-04 エス・アール・アイ・インターナシヨナル Teleoperator system and telepresence method
US5284128A (en) 1992-01-24 1994-02-08 Applied Medical Resources Corporation Surgical manipulator
AU3610693A (en) 1992-02-07 1993-09-03 Nakao, Naomi Endoscope with disposable insertion member
US5271543A (en) 1992-02-07 1993-12-21 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
KR950700131A (en) 1992-02-07 1995-01-16 알렌 제이. 스피겔 Ultrasonic Piezoelectric Crystal Transducer Control Systems for Monitoring Electrical and Electronic Control Loops and Their Combination Systems (ULTRASONIC SURGICAL APPARATUS)
US5348259A (en) 1992-02-10 1994-09-20 Massachusetts Institute Of Technology Flexible, articulable column
US5514157A (en) 1992-02-12 1996-05-07 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5626595A (en) 1992-02-14 1997-05-06 Automated Medical Instruments, Inc. Automated surgical instrument
US5350355A (en) 1992-02-14 1994-09-27 Automated Medical Instruments, Inc. Automated surgical instrument
CA2117379C (en) 1992-02-14 1999-11-16 Kypriacos A. Athanasiou Multi-phase bioerodible implant/carrier and method of manufacturing and using same
US5261922A (en) 1992-02-20 1993-11-16 Hood Larry L Improved ultrasonic knife
US5282806A (en) 1992-08-21 1994-02-01 Habley Medical Technology Corporation Endoscopic surgical instrument having a removable, rotatable, end effector assembly
CA2089999A1 (en) 1992-02-24 1993-08-25 H. Jonathan Tovey Resilient arm mesh deployer
US5658238A (en) 1992-02-25 1997-08-19 Olympus Optical Co., Ltd. Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned
US5282826A (en) 1992-03-05 1994-02-01 Quadtello Corporation Dissector for endoscopic and laparoscopic use
US5352235A (en) 1992-03-16 1994-10-04 Tibor Koros Laparoscopic grasper and cutter
GR1002537B (en) 1992-03-30 1997-01-27 Ethicon Inc. Surgical staple for insertion into tissue.
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5484095A (en) 1992-03-31 1996-01-16 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
US5478308A (en) 1992-04-02 1995-12-26 New Dimensions In Medicine, Inc. Wound packing and package therefor
US5223675A (en) 1992-04-02 1993-06-29 Taft Anthony W Cable fastener
DE4211230C2 (en) 1992-04-03 1997-06-26 Ivoclar Ag Rechargeable light curing device
US5314424A (en) 1992-04-06 1994-05-24 United States Surgical Corporation Surgical instrument locking mechanism
US5411481A (en) 1992-04-08 1995-05-02 American Cyanamid Co. Surgical purse string suturing instrument and method
FR2689749B1 (en) 1992-04-13 1994-07-22 Toledano Haviv FLEXIBLE SURGICAL STAPLING INSTRUMENT FOR CIRCULAR ANASTOMOSES.
US5602449A (en) 1992-04-13 1997-02-11 Smith & Nephew Endoscopy, Inc. Motor controlled surgical system and method having positional control
US5563481A (en) 1992-04-13 1996-10-08 Smith & Nephew Endoscopy, Inc. Brushless motor
WO1993020886A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Articulated systems for cardiac ablation
US5314466A (en) 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
US5672945A (en) 1992-04-13 1997-09-30 Smith & Nephew Endoscopy, Inc. Motor controlled surgical system and method having self clearing motor control
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
DK50592A (en) 1992-04-15 1993-10-16 Jane Noeglebaek Christensen BACENTIAL TRAINING APPARATUS
US5355897A (en) 1992-04-16 1994-10-18 Ethicon, Inc. Method of performing a pyloroplasty/pylorectomy using a stapler having a shield
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5417203A (en) 1992-04-23 1995-05-23 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5261135A (en) 1992-05-01 1993-11-16 Mitchell Brent R Screw gun router for drywall installation
GR1002336B (en) 1992-05-06 1996-05-21 Ethicon Inc. Endoscopic surgical apparatus capable of ligation and division.
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
US5211655A (en) 1992-05-08 1993-05-18 Hasson Harrith M Multiple use forceps for endoscopy
US5484451A (en) 1992-05-08 1996-01-16 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
US5258007A (en) 1992-05-14 1993-11-02 Robert F. Spetzler Powered surgical instrument
JPH0630945A (en) 1992-05-19 1994-02-08 Olympus Optical Co Ltd Suturing apparatus
US5344059A (en) 1992-05-19 1994-09-06 United States Surgical Corporation Surgical apparatus and anvil delivery system therefor
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5197966A (en) 1992-05-22 1993-03-30 Sommerkamp T Greg Radiodorsal buttress blade plate implant for repairing distal radius fractures
US5192288A (en) 1992-05-26 1993-03-09 Origin Medsystems, Inc. Surgical clip applier
US5906625A (en) 1992-06-04 1999-05-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
JPH0647050A (en) 1992-06-04 1994-02-22 Olympus Optical Co Ltd Tissue suture and ligature device
US5236424A (en) 1992-06-05 1993-08-17 Cardiac Pathways Corporation Catheter with retractable cannula for delivering a plurality of chemicals
US5389072A (en) 1992-06-05 1995-02-14 Mircor Biomedical, Inc. Mechanism for manipulating a tool and flexible elongate device using the same
JP3442423B2 (en) 1992-06-05 2003-09-02 積水化学工業株式会社 Simple corset and simple corset stuck body
US5279416A (en) 1992-06-05 1994-01-18 Edward Weck Incorporated Ligating device cartridge with separable retainer
US5361902A (en) 1992-06-05 1994-11-08 Leonard Bloom Surgical blade dispenser and disposal system for use during an operating procedure and method thereof
US7928281B2 (en) 1992-06-19 2011-04-19 Arizant Technologies Llc Wound covering
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5258012A (en) 1992-06-30 1993-11-02 Ethicon, Inc. Surgical fasteners
US5258009A (en) 1992-06-30 1993-11-02 American Cyanamid Company Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple
US5221281A (en) 1992-06-30 1993-06-22 Valleylab Inc. Electrosurgical tubular trocar
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5368606A (en) 1992-07-02 1994-11-29 Marlow Surgical Technologies, Inc. Endoscopic instrument system
US5222975A (en) 1992-07-13 1993-06-29 Lawrence Crainich Surgical staples
JPH0636757A (en) 1992-07-21 1994-02-10 Ricoh Co Ltd Battery packing device
US5360428A (en) 1992-07-22 1994-11-01 Hutchinson Jr William B Laparoscopic instrument with electrical cutting wires
US5313967A (en) 1992-07-24 1994-05-24 Medtronic, Inc. Helical guidewire
US5258008A (en) 1992-07-29 1993-11-02 Wilk Peter J Surgical stapling device and associated method
US5511564A (en) 1992-07-29 1996-04-30 Valleylab Inc. Laparoscopic stretching instrument and associated method
US5330486A (en) 1992-07-29 1994-07-19 Wilk Peter J Laparoscopic or endoscopic anastomosis technique and associated instruments
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5524180A (en) 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
AU675077B2 (en) 1992-08-14 1997-01-23 British Telecommunications Public Limited Company Position location system
US5375588A (en) 1992-08-17 1994-12-27 Yoon; Inbae Method and apparatus for use in endoscopic procedures
US5291133A (en) 1992-08-24 1994-03-01 General Motors Corporation Multi-bit encoder signal conditioning circuit having common mode disturbance compensation
US5308358A (en) 1992-08-25 1994-05-03 Bond Albert L Rigid-shaft surgical instruments that can be disassembled for improved cleaning
DE4228909C2 (en) 1992-08-28 1994-06-09 Ethicon Gmbh Endoscopic instrument for the application of ligature binders and ligature binders
US5308353A (en) 1992-08-31 1994-05-03 Merrimac Industries, Inc. Surgical suturing device
CA2143639C (en) 1992-09-01 2004-07-20 Edwin L. Adair Sterilizable endoscope with separable disposable tube assembly
US5630782A (en) 1992-09-01 1997-05-20 Adair; Edwin L. Sterilizable endoscope with separable auxiliary assembly
CA2104345A1 (en) 1992-09-02 1994-03-03 David T. Green Surgical clamp apparatus
US5368215A (en) 1992-09-08 1994-11-29 United States Surgical Corporation Surgical apparatus and detachable anvil rod therefor
US5285381A (en) 1992-09-09 1994-02-08 Vanderbilt University Multiple control-point control system and method of use
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
CA2437777C (en) 1992-09-21 2006-11-28 United States Surgical Corporation Device for applying a meniscal staple
US5485952A (en) 1992-09-23 1996-01-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5465819A (en) 1992-09-29 1995-11-14 Borg-Warner Automotive, Inc. Power transmitting assembly
US5281400A (en) 1992-09-30 1994-01-25 Carr Metal Products Plastic autoclave tray and lid combination
US5573169A (en) 1992-10-02 1996-11-12 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5423471A (en) 1992-10-02 1995-06-13 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5383460A (en) 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US5569161A (en) 1992-10-08 1996-10-29 Wendell V. Ebling Endoscope with sterile sleeve
US5368599A (en) 1992-10-08 1994-11-29 United States Surgical Corporation Surgical fastening apparatus with suture array
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5431323A (en) 1992-10-09 1995-07-11 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
US5381943A (en) 1992-10-09 1995-01-17 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
US5662662A (en) 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5454824A (en) 1992-10-09 1995-10-03 United States Surgical Corporation Fragmentable ring applier
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5286253A (en) 1992-10-09 1994-02-15 Linvatec Corporation Angled rotating surgical instrument
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
US5222945A (en) 1992-10-13 1993-06-29 Basnight Robert W Hypodermic syringe with protective shield
US5350391A (en) 1992-10-19 1994-09-27 Benedetto Iacovelli Laparoscopic instruments
US5718548A (en) 1992-10-20 1998-02-17 Clipmaster Corporation Pty Ltd Staple assembly
CA2108605A1 (en) 1992-10-21 1994-04-22 Nagabhushanam Totakura Bioabsorbable foam pledget
US5309927A (en) 1992-10-22 1994-05-10 Ethicon, Inc. Circular stapler tissue retention spring method
US5578052A (en) 1992-10-27 1996-11-26 Koros; Tibor Insulated laparoscopic grasper with removable shaft
US5259366A (en) 1992-11-03 1993-11-09 Boris Reydel Method of using a catheter-sleeve assembly for an endoscope
US5409498A (en) 1992-11-05 1995-04-25 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
GB2272159A (en) 1992-11-10 1994-05-11 Andreas G Constantinides Surgical/diagnostic aid
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5389104A (en) 1992-11-18 1995-02-14 Symbiosis Corporation Arthroscopic surgical instruments
US5346504A (en) 1992-11-19 1994-09-13 Ethicon, Inc. Intraluminal manipulator with a head having articulating links
CA2150487C (en) 1992-11-30 2000-11-21 Michael D. Olichney An ultrasonic surgical handpiece and an energy initiator to maintain thevibration and linear dynamics
US5372602A (en) 1992-11-30 1994-12-13 Device For Vascular Intervention, Inc. Method of removing plaque using catheter cutter with torque control
US5333422A (en) 1992-12-02 1994-08-02 The United States Of America As Represented By The United States Department Of Energy Lightweight extendable and retractable pole
US5769640A (en) 1992-12-02 1998-06-23 Cybernet Systems Corporation Method and system for simulating medical procedures including virtual reality and control method and system for use therein
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5356006A (en) 1992-12-16 1994-10-18 Ethicon, Inc. Sterile package for surgical devices
US5330487A (en) 1992-12-17 1994-07-19 Tfi Acquistion Corp. Drive mechanism for surgical instruments
JP3042816B2 (en) 1992-12-18 2000-05-22 矢崎総業株式会社 Power supply connector
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5807393A (en) 1992-12-22 1998-09-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
FR2699806B1 (en) 1992-12-30 1995-03-24 Duthoit Francois Instrument, intended in particular to allow the extraction of pathological venous sections such as varicose veins.
US5313935A (en) 1992-12-31 1994-05-24 Symbiosis Corporation Apparatus for counting the number of times a surgical instrument has been used
EP0604789A1 (en) 1992-12-31 1994-07-06 K. Widmann Ag Surgical clamping element for making a purse string
US5236269A (en) 1993-01-14 1993-08-17 Mattel, Inc. Battery-powered dispenser for hot melt adhesive
US5468253A (en) 1993-01-21 1995-11-21 Ethicon, Inc. Elastomeric medical device
US5358510A (en) 1993-01-26 1994-10-25 Ethicon, Inc. Two part surgical fastener
JP2857555B2 (en) 1993-01-27 1999-02-17 三菱電機株式会社 Electric power steering device
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
US5304204A (en) 1993-02-09 1994-04-19 Ethicon, Inc. Receiverless surgical fasteners
US5336229A (en) 1993-02-09 1994-08-09 Laparomed Corporation Dual ligating and dividing apparatus
US5383895A (en) 1993-02-10 1995-01-24 Unisurge, Inc. Endoscopic surgical grasper and method
US5553624A (en) 1993-02-11 1996-09-10 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
US5263937A (en) 1993-02-11 1993-11-23 Shipp John I Trocar with profile to reduce insertion force
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
JPH06237937A (en) 1993-02-12 1994-08-30 Olympus Optical Co Ltd Suturing device for surgery
DE4304571A1 (en) 1993-02-16 1994-08-18 Mdc Med Diagnostic Computing Procedures for planning and controlling a surgical procedure
US5403276A (en) 1993-02-16 1995-04-04 Danek Medical, Inc. Apparatus for minimally invasive tissue removal
JPH08502438A (en) 1993-02-22 1996-03-19 ヴァリーラブ・インコーポレーテッド Laparoscopic distraction tension retractor device and method
US5613937A (en) 1993-02-22 1997-03-25 Heartport, Inc. Method of retracting heart tissue in closed-chest heart surgery using endo-scopic retraction
US5749968A (en) 1993-03-01 1998-05-12 Focal, Inc. Device for priming for improved adherence of gels to substrates
US5643294A (en) 1993-03-01 1997-07-01 United States Surgical Corporation Surgical apparatus having an increased range of operability
JP2672713B2 (en) 1993-03-02 1997-11-05 ホロビーム インコーポレイティド Surgical equipment
US5342396A (en) 1993-03-02 1994-08-30 Cook Melvin S Staples
DE4306786C1 (en) 1993-03-04 1994-02-10 Wolfgang Daum Hand-type surgical manipulator for areas hard to reach - has distal components actuated by fingers via Bowden cables
US5336130A (en) 1993-03-04 1994-08-09 Metal-Fab, Inc. Adjustable exhauster arm assembly
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5397324A (en) 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
DE4308454A1 (en) 1993-03-17 1994-09-22 Ferdinand Dr Koeckerling Surgical suture clip, in particular tobacco pouch suture clip
US5360305A (en) 1993-03-19 1994-11-01 Duo-Fast Corporation Clinch staples and method of manufacturing and applying clinch staples
US5343382A (en) 1993-04-05 1994-08-30 Delco Electronics Corp. Adaptive current control
US5312329A (en) 1993-04-07 1994-05-17 Valleylab Inc. Piezo ultrasonic and electrosurgical handpiece
US5456917A (en) 1993-04-12 1995-10-10 Cambridge Scientific, Inc. Method for making a bioerodible material for the sustained release of a medicament and the material made from the method
US5303606A (en) 1993-04-15 1994-04-19 Kokinda Mark A Anti-backlash nut having a free floating insert for applying an axial force to a lead screw
US5370645A (en) 1993-04-19 1994-12-06 Valleylab Inc. Electrosurgical processor and method of use
USD352780S (en) 1993-04-19 1994-11-22 Valleylab Inc. Combined suction, irrigation and electrosurgical handle
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
DE69406845T2 (en) 1993-04-20 1998-04-09 United States Surgical Corp Surgical stapling instrument
CA2121861A1 (en) 1993-04-23 1994-10-24 William D. Fox Mechanical morcellator
EP0622048B1 (en) 1993-04-27 1997-05-21 American Cyanamid Company Automatic laparoscopic ligation clip applicator
JPH06304176A (en) 1993-04-27 1994-11-01 Olympus Optical Co Ltd Suturing and ligating device
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
US5464300A (en) 1993-04-29 1995-11-07 Crainich; Lawrence Medical instrument and coupling apparatus for same
US5407293A (en) 1993-04-29 1995-04-18 Crainich; Lawrence Coupling apparatus for medical instrument
US5431668A (en) 1993-04-29 1995-07-11 Ethicon, Inc. Ligating clip applier
US6716232B1 (en) 1993-04-30 2004-04-06 United States Surgical Corporation Surgical instrument having an articulated jaw structure and a detachable knife
JP3559561B2 (en) 1993-04-30 2004-09-02 ユナイテッド・ステイツ・サージカル・コーポレイション Surgical instrument with articulated jaw structure and removable knife
US5447265A (en) 1993-04-30 1995-09-05 Minnesota Mining And Manufacturing Company Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
GB9309151D0 (en) 1993-05-04 1993-06-16 Zeneca Ltd Syringes and syringe pumps
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
US5364003A (en) 1993-05-05 1994-11-15 Ethicon Endo-Surgery Staple cartridge for a surgical stapler
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5509918A (en) 1993-05-11 1996-04-23 David Romano Method and apparatus for drilling a curved bore in an object
US5352229A (en) 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
US5449370A (en) 1993-05-12 1995-09-12 Ethicon, Inc. Blunt tipped ultrasonic trocar
EP0699053B1 (en) 1993-05-14 1999-03-17 Sri International Surgical apparatus
US6406472B1 (en) 1993-05-14 2002-06-18 Sri International, Inc. Remote center positioner
US5549621A (en) 1993-05-14 1996-08-27 Byron C. Sutherland Apparatus and method for performing vertical banded gastroplasty
US5791231A (en) 1993-05-17 1998-08-11 Endorobotics Corporation Surgical robotic system and hydraulic actuator therefor
JPH06327684A (en) 1993-05-19 1994-11-29 Olympus Optical Co Ltd Surgical suture instrument
CA2124109A1 (en) 1993-05-24 1994-11-25 Mark T. Byrne Endoscopic surgical instrument with electromagnetic sensor
JP3172977B2 (en) 1993-05-26 2001-06-04 富士重工業株式会社 In-vehicle battery capacity meter
US5601604A (en) 1993-05-27 1997-02-11 Inamed Development Co. Universal gastric band
US5404870A (en) 1993-05-28 1995-04-11 Ethicon, Inc. Method of using a transanal inserter
US5489290A (en) 1993-05-28 1996-02-06 Snowden-Pencer, Inc. Flush port for endoscopic surgical instruments
US5381649A (en) 1993-06-04 1995-01-17 Webb; Stephen A. Medical staple forming die and punch
US5443197A (en) 1993-06-16 1995-08-22 United States Surgical Corporation Locking mechanism for a skin stapler cartridge
RU2066128C1 (en) 1993-06-21 1996-09-10 Иван Александрович Корольков Surgical suture appliance
US5409703A (en) 1993-06-24 1995-04-25 Carrington Laboratories, Inc. Dried hydrogel from hydrophilic-hygroscopic polymer
US5341724A (en) 1993-06-28 1994-08-30 Bronislav Vatel Pneumatic telescoping cylinder and method
US6063025A (en) 1993-07-09 2000-05-16 Bioenterics Corporation Apparatus for holding intestines out of an operative field
US5651762A (en) 1993-07-09 1997-07-29 Bridges; Doye R. Apparatus for holding intestines out of an operative field
GB9314391D0 (en) 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
US5478354A (en) 1993-07-14 1995-12-26 United States Surgical Corporation Wound closing apparatus and method
DE4323585A1 (en) 1993-07-14 1995-01-19 Delma Elektro Med App Bipolar high-frequency surgical instrument
DE9310601U1 (en) 1993-07-15 1993-09-02 Siemens AG, 80333 München Cassette for holding medical, in particular dental, instruments
US5501654A (en) 1993-07-15 1996-03-26 Ethicon, Inc. Endoscopic instrument having articulating element
DE4323815C2 (en) 1993-07-15 1997-09-25 Siemens Ag Method and device for the hygienic preparation of medical, in particular dental, instruments
US5805140A (en) 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
US5792165A (en) 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
US5582617A (en) 1993-07-21 1996-12-10 Charles H. Klieman Surgical instrument for endoscopic and general surgery
US5827323A (en) 1993-07-21 1998-10-27 Charles H. Klieman Surgical instrument for endoscopic and general surgery
WO1995003001A1 (en) 1993-07-21 1995-02-02 Klieman Charles H Surgical instrument for endoscopic and general surgery
US5810811A (en) 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
GR940100335A (en) 1993-07-22 1996-05-22 Ethicon Inc. Electrosurgical device for placing staples.
US5709680A (en) 1993-07-22 1998-01-20 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5693051A (en) 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
JPH079622U (en) 1993-07-27 1995-02-10 和光化成工業株式会社 Vehicle sun visor holder structure
US5372596A (en) 1993-07-27 1994-12-13 Valleylab Inc. Apparatus for leakage control and method for its use
US5441494A (en) 1993-07-29 1995-08-15 Ethicon, Inc. Manipulable hand for laparoscopy
US5503320A (en) 1993-08-19 1996-04-02 United States Surgical Corporation Surgical apparatus with indicator
US5447417A (en) 1993-08-31 1995-09-05 Valleylab Inc. Self-adjusting pump head and safety manifold cartridge for a peristaltic pump
USD357981S (en) 1993-09-01 1995-05-02 United States Surgical Corporation Surgical stapler
DE4432596A1 (en) 1993-09-16 1995-03-23 Whitaker Corp Modular electrical contact arrangement
US5441193A (en) 1993-09-23 1995-08-15 United States Surgical Corporation Surgical fastener applying apparatus with resilient film
DE69426414T2 (en) 1993-09-24 2001-05-03 Takiron Co. Ltd., Osaka IMPLANT MATERIAL
US5419766A (en) 1993-09-28 1995-05-30 Critikon, Inc. Catheter with stick protection
CA2133159A1 (en) 1993-09-30 1995-03-31 Eric J. Butterfield Surgical instrument having improved manipulating means
US5405344A (en) 1993-09-30 1995-04-11 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
DE4333983A1 (en) 1993-10-05 1995-04-06 Delma Elektro Med App High frequency electrosurgical instrument
US5542594A (en) 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
US5439155A (en) 1993-10-07 1995-08-08 United States Surgical Corporation Cartridge for surgical fastener applying apparatus
CA2132917C (en) 1993-10-07 2004-12-14 John Charles Robertson Circular anastomosis device
US6210403B1 (en) 1993-10-07 2001-04-03 Sherwood Services Ag Automatic control for energy from an electrosurgical generator
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5487499A (en) 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US5725554A (en) 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
US5607436A (en) 1993-10-08 1997-03-04 United States Surgical Corporation Apparatus for applying surgical clips
US5560532A (en) 1993-10-08 1996-10-01 United States Surgical Corporation Apparatus and method for applying surgical staples to body tissue
US5562682A (en) 1993-10-08 1996-10-08 Richard-Allan Medical Industries, Inc. Surgical Instrument with adjustable arms
RU2098025C1 (en) 1993-10-11 1997-12-10 Аркадий Вениаминович Дубровский Rotary device
US5556416A (en) 1993-10-12 1996-09-17 Valleylab, Inc. Endoscopic instrument
US5724025A (en) 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5427298A (en) 1993-10-28 1995-06-27 Tegtmeier; C. Allen Method and apparatus for indicating quantity of fasteners in a fastening device
GB9322464D0 (en) 1993-11-01 1993-12-22 Gyrus Medical Ltd Electrosurgical apparatus
US5571100B1 (en) 1993-11-01 1998-01-06 Gyrus Medical Ltd Electrosurgical apparatus
JP3414455B2 (en) 1993-11-02 2003-06-09 オリンパス光学工業株式会社 Suture device
US5376095A (en) 1993-11-04 1994-12-27 Ethicon Endo-Surgery Endoscopic multi-fire flat stapler with low profile
US5531305A (en) 1993-11-05 1996-07-02 Borg-Warner Automotive, Inc. Synchronizer clutch assembly for multiple ratio gearing
US5487377A (en) 1993-11-05 1996-01-30 Clinical Innovation Associates, Inc. Uterine manipulator and manipulator tip assembly
US5658298A (en) 1993-11-09 1997-08-19 Inamed Development Company Laparoscopic tool
US5503635A (en) 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5562690A (en) 1993-11-12 1996-10-08 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5449355A (en) 1993-11-24 1995-09-12 Valleylab Inc. Retrograde tissue splitter and method
US5633374A (en) 1993-11-26 1997-05-27 The Upjohn Company Pyrimidine, cyanoguanidines as K-channel blockers
DE4340707C2 (en) 1993-11-30 1997-03-27 Wolf Gmbh Richard manipulator
US5514129A (en) 1993-12-03 1996-05-07 Valleylab Inc. Automatic bipolar control for an electrosurgical generator
US5465894A (en) 1993-12-06 1995-11-14 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
US5405073A (en) 1993-12-06 1995-04-11 Ethicon, Inc. Flexible support shaft assembly
US5543695A (en) 1993-12-15 1996-08-06 Stryker Corporation Medical instrument with programmable torque control
US5743456A (en) 1993-12-16 1998-04-28 Stryker Corporation Hand actuable surgical handpiece
US5470008A (en) 1993-12-20 1995-11-28 United States Surgical Corporation Apparatus for applying surgical fasteners
US5422567A (en) 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
US5643293A (en) 1993-12-29 1997-07-01 Olympus Optical Co., Ltd. Suturing instrument
US5564658A (en) 1993-12-29 1996-10-15 B-Line Systems, Inc. Support system for data transmission lines
US5441191A (en) 1993-12-30 1995-08-15 Linden; Gerald E. Indicating "staples low" in a paper stapler
JPH09500812A (en) 1993-12-30 1997-01-28 ヴァリーラブ・インコーポレーテッド Bipolar ultrasonic surgery
US5782397A (en) 1994-01-04 1998-07-21 Alpha Surgical Technologies, Inc. Stapling device
US5437681A (en) 1994-01-13 1995-08-01 Suturtek Inc. Suturing instrument with thread management
US5382247A (en) 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
US5452837A (en) 1994-01-21 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
DE9490471U1 (en) 1994-01-31 1996-09-26 Valleylab, Inc., Boulder, Col. Telescopic bipolar electrode for non-invasive medical procedures
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5487500A (en) 1994-02-03 1996-01-30 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5452836A (en) 1994-02-07 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism
US5503638A (en) 1994-02-10 1996-04-02 Bio-Vascular, Inc. Soft tissue stapling buttress
US5527320A (en) 1994-02-10 1996-06-18 Pilling Weck Inc. Surgical clip applying instrument
US5413107A (en) 1994-02-16 1995-05-09 Tetrad Corporation Ultrasonic probe having articulated structure and rotatable transducer head
US5507773A (en) 1994-02-18 1996-04-16 Ethicon Endo-Surgery Cable-actuated jaw assembly for surgical instruments
US5431666A (en) 1994-02-24 1995-07-11 Lasersurge, Inc. Surgical suture instrument
JPH0833642A (en) 1994-02-25 1996-02-06 Ethicon Endo Surgery Inc Improved anvil receiving port for surgical stapler
WO1995023557A1 (en) 1994-03-01 1995-09-08 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
CA2143560C (en) 1994-03-02 2007-01-16 Mark Fogelberg Sterile occlusion fasteners and instrument and method for their placement
US5445142A (en) 1994-03-15 1995-08-29 Ethicon Endo-Surgery, Inc. Surgical trocars having optical tips defining one or more viewing ports
CA2144211C (en) 1994-03-16 2005-05-24 David T. Green Surgical instruments useful for endoscopic spinal procedures
DE9404459U1 (en) 1994-03-16 1994-07-14 Chr. Renz GmbH & Co, 73540 Heubach Device for packaging binding elements
JP3421117B2 (en) 1994-03-17 2003-06-30 テルモ株式会社 Surgical instruments
US5484398A (en) 1994-03-17 1996-01-16 Valleylab Inc. Methods of making and using ultrasonic handpiece
RU2052979C1 (en) 1994-03-22 1996-01-27 Товарищество с ограниченной ответственностью "Дипы" ЛТД Apparatus for application of clamping clips and magazine for suturing staples or clamping clips
US5561881A (en) 1994-03-22 1996-10-08 U.S. Philips Corporation Electric toothbrush
US5472442A (en) 1994-03-23 1995-12-05 Valleylab Inc. Moveable switchable electrosurgical handpiece
US5860581A (en) 1994-03-24 1999-01-19 United States Surgical Corporation Anvil for circular stapler
US5541376A (en) 1994-03-28 1996-07-30 Valleylab Inc Switch and connector
CA2145723A1 (en) 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5715987A (en) 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
US5695524A (en) 1994-04-05 1997-12-09 Tracor Aerospace, Inc. Constant width, adjustable grip, staple apparatus and method
US5415335A (en) 1994-04-07 1995-05-16 Ethicon Endo-Surgery Surgical stapler cartridge containing lockout mechanism
CA2144818C (en) 1994-04-07 2006-07-11 Henry Bolanos Graduated anvil for surgical stapling instruments
US5626979A (en) 1994-04-08 1997-05-06 Sony Corporation Battery device and electronic equipment employing the battery device as power source
US5653677A (en) 1994-04-12 1997-08-05 Fuji Photo Optical Co. Ltd Electronic endoscope apparatus with imaging unit separable therefrom
JPH07285089A (en) 1994-04-14 1995-10-31 Mitsubishi Heavy Ind Ltd Pentadactylic hand arm mechanism
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5470007A (en) 1994-05-02 1995-11-28 Minnesota Mining And Manufacturing Company Laparoscopic stapler with overload sensor and interlock
US5489058A (en) 1994-05-02 1996-02-06 Minnesota Mining And Manufacturing Company Surgical stapler with mechanisms for reducing the firing force
US5474566A (en) 1994-05-05 1995-12-12 United States Surgical Corporation Self-contained powered surgical apparatus
CA2148667A1 (en) 1994-05-05 1995-11-06 Carlo A. Mililli Self-contained powered surgical apparatus
US5628446A (en) 1994-05-05 1997-05-13 United States Surgical Corporation Self-contained powered surgical apparatus
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5498164A (en) 1994-05-09 1996-03-12 Ward; Mark C. Automotive steering column electrical connector
US5480409A (en) 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US5782749A (en) 1994-05-10 1998-07-21 Riza; Erol D. Laparoscopic surgical instrument with adjustable grip
US6704210B1 (en) 1994-05-20 2004-03-09 Medtronic, Inc. Bioprothesis film strip for surgical stapler and method of attaching the same
US5454827A (en) 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
USRE38335E1 (en) 1994-05-24 2003-11-25 Endius Incorporated Surgical instrument
EP0690520B1 (en) 1994-05-30 1999-08-18 Canon Kabushiki Kaisha Rechargeable batteries
US5814057A (en) 1994-06-03 1998-09-29 Gunze Limited Supporting element for staple region
GB9411429D0 (en) 1994-06-08 1994-07-27 Seton Healthcare Group Plc Wound dressings
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
US5522831A (en) 1994-06-13 1996-06-04 Dennis R. Sleister Incising trocar and cannula assembly
US5473204A (en) 1994-06-16 1995-12-05 Temple; Thomas D. Time delay switch
JP3568207B2 (en) 1994-06-17 2004-09-22 ハートポート インコーポレイテッド Surgical stapling instrument
US5732872A (en) 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5881943A (en) 1994-06-17 1999-03-16 Heartport, Inc. Surgical anastomosis apparatus and method thereof
US5807376A (en) 1994-06-24 1998-09-15 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
US5746224A (en) 1994-06-24 1998-05-05 Somnus Medical Technologies, Inc. Method for ablating turbinates
US5558665A (en) 1994-06-24 1996-09-24 Archimedes Surgical, Inc. Surgical instrument and method for intraluminal retraction of an anatomic structure
US5651821A (en) 1994-06-27 1997-07-29 Ricoh Company, Ltd. Battery disposal and collection apparatus
DE4422621C1 (en) 1994-06-28 1995-08-31 Aesculap Ag Surgical instrument for gripping, transporting or fixing objects
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
US5833695A (en) 1994-07-13 1998-11-10 Yoon; Inbae Surgical stapling system and method of applying staples from multiple staple cartridges
US5551622A (en) 1994-07-13 1996-09-03 Yoon; Inbae Surgical stapler
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5533521A (en) 1994-07-15 1996-07-09 United States Surgical Corporation Interchangeable tissue measuring device
US5629577A (en) 1994-07-15 1997-05-13 Micro Medical Devices Miniature linear motion actuator
US5712460A (en) 1994-07-19 1998-01-27 Linvatec Corporation Multi-function surgical device control system
US5583114A (en) 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
US5544802A (en) 1994-07-27 1996-08-13 Crainich; Lawrence Surgical staple and stapler device therefor
US5582907A (en) 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
DE9412228U1 (en) 1994-07-28 1994-09-22 Loctite Europa E.E.I.G. (E.W.I.V.), 85748 Garching Peristaltic pump for precise dosing of small amounts of liquid
AU694225B2 (en) 1994-08-02 1998-07-16 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
RU2104671C1 (en) 1994-08-03 1998-02-20 Виктор Алексеевич Липатов Surgical suturing device
US5779130A (en) 1994-08-05 1998-07-14 United States Surgical Corporation Self-contained powered surgical apparatus
US5507426A (en) 1994-08-05 1996-04-16 United States Surgical Corporation Apparatus for applying surgical fasteners
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5509916A (en) 1994-08-12 1996-04-23 Valleylab Inc. Laser-assisted electrosurgery system
US5480089A (en) * 1994-08-19 1996-01-02 United States Surgical Corporation Surgical stapler apparatus with improved staple pockets
CA2146508C (en) 1994-08-25 2006-11-14 Robert H. Schnut Anvil for circular stapler
US6120433A (en) 1994-09-01 2000-09-19 Olympus Optical Co., Ltd. Surgical manipulator system
JPH08136626A (en) 1994-09-16 1996-05-31 Seiko Epson Corp Residual capacity meter for battery, and method for calculating residual capacity of battery
US5569284A (en) 1994-09-23 1996-10-29 United States Surgical Corporation Morcellator
US5609601A (en) 1994-09-23 1997-03-11 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
DE4434864C2 (en) 1994-09-29 1997-06-19 United States Surgical Corp Surgical staple applicator with interchangeable staple magazine
US5916225A (en) 1994-09-29 1999-06-29 Surgical Sense, Inc. Hernia mesh patch
US5571116A (en) 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5685474A (en) 1994-10-04 1997-11-11 United States Surgical Corporation Tactile indicator for surgical instrument
US5797538A (en) 1994-10-05 1998-08-25 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5901895A (en) 1994-10-05 1999-05-11 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5540374A (en) 1994-10-06 1996-07-30 Minnesota Mining And Manufacturing Company Bone stapler cartridge
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
US5575805A (en) 1994-10-07 1996-11-19 Li Medical Technologies, Inc. Variable tip-pressure surgical grasper
US5571090A (en) 1994-10-07 1996-11-05 United States Surgical Corporation Vascular suturing apparatus
CA2157744C (en) 1994-10-07 2005-08-23 Charles R. Sherts Endoscopic vascular suturing apparatus
US5718714A (en) 1994-10-11 1998-02-17 Circon Corporation Surgical instrument with removable shaft assembly
CN1163558A (en) 1994-10-11 1997-10-29 查尔斯·H·克利曼 Endoscopic instrument with detachable end effector
US5562694A (en) 1994-10-11 1996-10-08 Lasersurge, Inc. Morcellator
US5591170A (en) 1994-10-14 1997-01-07 Genesis Orthopedics Intramedullary bone cutting saw
US5752973A (en) 1994-10-18 1998-05-19 Archimedes Surgical, Inc. Endoscopic surgical gripping instrument with universal joint jaw coupler
US5599852A (en) 1994-10-18 1997-02-04 Ethicon, Inc. Injectable microdispersions for soft tissue repair and augmentation
AU706434B2 (en) 1994-10-18 1999-06-17 Ethicon Inc. Injectable liquid copolymers for soft tissue repair and augmentation
US5549627A (en) 1994-10-21 1996-08-27 Kieturakis; Maciej J. Surgical instruments and method for applying progressive intracorporeal traction
US5620454A (en) 1994-10-25 1997-04-15 Becton, Dickinson And Company Guarded surgical scalpel
USD381077S (en) 1994-10-25 1997-07-15 Ethicon Endo-Surgery Multifunctional surgical stapling instrument
US5575789A (en) 1994-10-27 1996-11-19 Valleylab Inc. Energizable surgical tool safety device and method
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
JPH08136628A (en) 1994-11-11 1996-05-31 Fujitsu Ltd Device for monitoring capacity of battery
US5989244A (en) 1994-11-15 1999-11-23 Gregory; Kenton W. Method of use of a sheet of elastin or elastin-based material
US5891558A (en) 1994-11-22 1999-04-06 Tissue Engineering, Inc. Biopolymer foams for use in tissue repair and reconstruction
US5709934A (en) 1994-11-22 1998-01-20 Tissue Engineering, Inc. Bipolymer foams having extracellular matrix particulates
US6206897B1 (en) 1994-12-02 2001-03-27 Ethicon, Inc. Enhanced visualization of the latching mechanism of latching surgical devices
US7235089B1 (en) 1994-12-07 2007-06-26 Boston Scientific Corporation Surgical apparatus and method
US5868760A (en) 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US5569270A (en) 1994-12-13 1996-10-29 Weng; Edward E. Laparoscopic surgical instrument
JPH08164141A (en) 1994-12-13 1996-06-25 Olympus Optical Co Ltd Treating tool
US5988479A (en) 1994-12-13 1999-11-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5636779A (en) 1994-12-13 1997-06-10 United States Surgical Corporation Apparatus for applying surgical fasteners
US5541489A (en) 1994-12-15 1996-07-30 Intel Corporation Smart battery power availability feature based on battery-specific characteristics
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5713505A (en) 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5492671A (en) 1994-12-20 1996-02-20 Zimmer, Inc. Sterilization case and method of sterilization
US5628743A (en) 1994-12-21 1997-05-13 Valleylab Inc. Dual mode ultrasonic surgical apparatus
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
US5613966A (en) 1994-12-21 1997-03-25 Valleylab Inc System and method for accessory rate control
AU701320B2 (en) 1994-12-22 1999-01-28 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5620452A (en) 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
US5695494A (en) 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
US5713895A (en) 1994-12-30 1998-02-03 Valleylab Inc Partially coated electrodes
US5466020A (en) 1994-12-30 1995-11-14 Valleylab Inc. Bayonet connector for surgical handpiece
US6430298B1 (en) 1995-01-13 2002-08-06 Lonnie Joe Kettl Microphone mounting structure for a sound amplifying respirator and/or bubble suit
US5637110A (en) 1995-01-31 1997-06-10 Stryker Corporation Electrocautery surgical tool with relatively pivoted tissue engaging jaws
CA2168404C (en) 1995-02-01 2007-07-10 Dale Schulze Surgical instrument with expandable cutting element
AU4763296A (en) 1995-02-03 1996-08-21 Inbae Yoon Cannula with distal end valve
EP0806914B1 (en) 1995-02-03 2001-09-19 Sherwood Services AG Electrosurgical aspirator combined with a pencil
USD372086S (en) 1995-02-03 1996-07-23 Valleylab Inc. Aspirator attachment for a surgical device
DE69610723T2 (en) 1995-02-10 2001-10-18 The Raymond Corp., Greene Industrial truck with internal temperature monitoring
US5669907A (en) 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6110187A (en) 1995-02-24 2000-08-29 Heartport, Inc. Device and method for minimizing heart displacements during a beating heart surgical procedure
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6213999B1 (en) 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US5735445A (en) 1995-03-07 1998-04-07 United States Surgical Corporation Surgical stapler
US5669904A (en) 1995-03-07 1997-09-23 Valleylab Inc. Surgical gas plasma ignition apparatus and method
US5681341A (en) 1995-03-14 1997-10-28 Origin Medsystems, Inc. Flexible lifting apparatus
DE19509115C2 (en) 1995-03-16 1997-11-27 Deutsche Forsch Luft Raumfahrt Surgical device for preparing an anastomosis using minimally invasive surgical techniques
DE19509116C2 (en) 1995-03-16 2000-01-05 Deutsch Zentr Luft & Raumfahrt Flexible structure
US5575799A (en) 1995-03-30 1996-11-19 United States Surgical Corporation Articulating surgical apparatus
US5599350A (en) 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5618307A (en) 1995-04-03 1997-04-08 Heartport, Inc. Clamp assembly and method of use
US6669690B1 (en) 1995-04-06 2003-12-30 Olympus Optical Co., Ltd. Ultrasound treatment system
US5619992A (en) 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
US6056735A (en) 1996-04-04 2000-05-02 Olympus Optical Co., Ltd. Ultrasound treatment system
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
DE69625660T2 (en) 1995-04-21 2003-11-06 W.L. Gore & Associates, Inc. DISPENSING DEVICE FOR SURGICAL FIXING PLATES
JPH08289895A (en) 1995-04-21 1996-11-05 Olympus Optical Co Ltd Suture device
US5553765A (en) 1995-04-28 1996-09-10 Ethicon Endo-Surgery, Inc. Surgical stapler with improved operating lever mounting arrangement
US5773991A (en) 1995-05-02 1998-06-30 Texas Instruments Incorporated Motor current sense circuit using H bridge circuits
US5657417A (en) 1995-05-02 1997-08-12 Burndy Corporation Control for battery powered tool
JP3795100B2 (en) 1995-05-08 2006-07-12 株式会社伊垣医療設計 Medical suture material
JP3526487B2 (en) 1995-05-08 2004-05-17 株式会社伊垣医療設計 Medical sutures
AU5741296A (en) 1995-05-12 1996-11-29 Rodney C. Perkins Translumenal circumferential injector
US5540705A (en) 1995-05-19 1996-07-30 Suturtek, Inc. Suturing instrument with thread management
CA2176047C (en) 1995-05-22 2000-04-11 Mohi Sobhani Spring loaded rotary connector
US6123241A (en) 1995-05-23 2000-09-26 Applied Tool Development Corporation Internal combustion powered tool
US5630540A (en) 1995-05-24 1997-05-20 United States Surgical Corporation Surgical staple and staple drive member
US5678748A (en) 1995-05-24 1997-10-21 Vir Engineering Surgical stapler with improved safety mechanism
US5628745A (en) 1995-06-06 1997-05-13 Bek; Robin B. Exit spark control for an electrosurgical generator
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
AU710400B2 (en) 1995-06-06 1999-09-16 Sherwood Services Ag Digital waveform generation for electrosurgical generators
AU5700796A (en) 1995-06-06 1996-12-24 Valleylab, Inc. Power control for an electrosurgical generator
US5599344A (en) 1995-06-06 1997-02-04 Valleylab Inc. Control apparatus for electrosurgical generator power output
US5814038A (en) 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
US5614887A (en) 1995-06-07 1997-03-25 Buchbinder; Dale Patient monitoring system and method thereof
US5667864A (en) 1995-06-07 1997-09-16 Landoll; Leo M. Absorbant laminates and method of making same
US5649956A (en) 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
US5620326A (en) 1995-06-09 1997-04-15 Simulab Corporation Anatomical simulator for videoendoscopic surgical training
DE19521257C2 (en) 1995-06-10 1999-01-28 Winter & Ibe Olympus Surgical forceps
FR2735350B1 (en) 1995-06-15 1997-12-26 Maurice Lanzoni DEVICE FOR DEVELOPING EFFORTS OF A CUTTER
US5849011A (en) 1995-06-19 1998-12-15 Vidamed, Inc. Medical device with trigger actuation assembly
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
DE69611912T3 (en) 1995-06-23 2005-06-09 Gyrus Medical Ltd. ELECTRO-SURGICAL INSTRUMENT
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
GB9604770D0 (en) 1995-06-23 1996-05-08 Gyrus Medical Ltd An electrosurgical generator and system
IL122713A (en) 1995-06-23 2001-04-30 Gyrus Medical Ltd Electrosurgical instrument
GB9600377D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6185356B1 (en) 1995-06-27 2001-02-06 Lumitex, Inc. Protective cover for a lighting device
US6077280A (en) 1995-06-29 2000-06-20 Thomas Jefferson University Surgical clamp
WO1997001989A1 (en) 1995-07-03 1997-01-23 Frater Dirk A System for mounting bolster material on tissue staplers
US5878607A (en) 1995-07-06 1999-03-09 Johnson & Johnson Professional, Inc. Surgical cast cutter
US5752644A (en) 1995-07-11 1998-05-19 United States Surgical Corporation Disposable loading unit for surgical stapler
USRE38708E1 (en) 1995-07-11 2005-03-01 United States Surgical Corporation Disposable loading unit for surgical stapler
US5591187A (en) 1995-07-14 1997-01-07 Dekel; Moshe Laparoscopic tissue retrieval device and method
US5706998A (en) 1995-07-17 1998-01-13 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
JPH11509752A (en) 1995-07-18 1999-08-31 エドワーズ,ガーランド,ユー. Flexible shaft
US6447518B1 (en) 1995-07-18 2002-09-10 William R. Krause Flexible shaft components
US5749896A (en) 1995-07-18 1998-05-12 Cook; Melvin S. Staple overlap
US5702409A (en) 1995-07-21 1997-12-30 W. L. Gore & Associates, Inc. Device and method for reinforcing surgical staples
US5810855A (en) 1995-07-21 1998-09-22 Gore Enterprise Holdings, Inc. Endoscopic device and method for reinforcing surgical staples
US5556020A (en) 1995-07-21 1996-09-17 Hou; Chang F. Power staple gun
JP3264607B2 (en) 1995-07-28 2002-03-11 株式会社モリタ製作所 Motor control device for dental handpiece
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5810846A (en) 1995-08-03 1998-09-22 United States Surgical Corporation Vascular hole closure
RU2110965C1 (en) 1995-08-03 1998-05-20 Ярослав Петрович Кулик Apparatus for laparoscopic interventions
US5549583A (en) 1995-08-04 1996-08-27 Adam Spence Corporation Surgical connector
JP3359472B2 (en) 1995-08-07 2002-12-24 京セラ株式会社 Battery pack
US5611709A (en) 1995-08-10 1997-03-18 Valleylab Inc Method and assembly of member and terminal
US5715988A (en) 1995-08-14 1998-02-10 United States Surgical Corporation Surgical stapler with lockout mechanism
US5718359A (en) 1995-08-14 1998-02-17 United States Of America Surgical Corporation Surgical stapler with lockout mechanism
US5839639A (en) 1995-08-17 1998-11-24 Lasersurge, Inc. Collapsible anvil assembly and applicator instrument
US5931853A (en) 1995-08-25 1999-08-03 Mcewen; James A. Physiologic tourniquet with safety circuit
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US5762256A (en) 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US6032849A (en) 1995-08-28 2000-03-07 United States Surgical Surgical stapler
US5574431A (en) 1995-08-29 1996-11-12 Checkpoint Systems, Inc. Deactivateable security tag
US5664404A (en) 1995-08-31 1997-09-09 Ethicon, Inc. Automatic zipper package winding and packaging machine
US5667526A (en) 1995-09-07 1997-09-16 Levin; John M. Tissue retaining clamp
US5891094A (en) 1995-09-07 1999-04-06 Innerdyne, Inc. System for direct heating of fluid solution in a hollow body organ and methods
US6075441A (en) 1996-09-05 2000-06-13 Key-Trak, Inc. Inventoriable-object control and tracking system
DE19534043A1 (en) 1995-09-14 1997-03-20 Carisius Christensen Gmbh Dr Surgical machine with inductively stored electric energy driven electric motor
DE19534112A1 (en) 1995-09-14 1997-03-20 Wolf Gmbh Richard Endoscopic instrument with steerable distal end
US5704087A (en) 1995-09-19 1998-01-06 Strub; Richard Dental care apparatus and technique
US5662667A (en) 1995-09-19 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5776130A (en) 1995-09-19 1998-07-07 Valleylab, Inc. Vascular tissue sealing pressure control
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5827271A (en) 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5797959A (en) 1995-09-21 1998-08-25 United States Surgical Corporation Surgical apparatus with articulating jaw structure
DE19535179A1 (en) 1995-09-22 1997-03-27 Wolf Gmbh Richard Angled pipe and process for its manufacture
US5797927A (en) 1995-09-22 1998-08-25 Yoon; Inbae Combined tissue clamping and suturing instrument
US5772659A (en) 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5702387A (en) 1995-09-27 1997-12-30 Valleylab Inc Coated electrosurgical electrode
US5732821A (en) 1995-09-28 1998-03-31 Biomet, Inc. System for sterilizing medical devices
US5707392A (en) 1995-09-29 1998-01-13 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US5796188A (en) 1995-10-05 1998-08-18 Xomed Surgical Products, Inc. Battery-powered medical instrument with power booster
US5804726A (en) 1995-10-16 1998-09-08 Mtd Products Inc. Acoustic signature analysis for a noisy enviroment
US5809441A (en) 1995-10-19 1998-09-15 Case Corporation Apparatus and method of neutral start control of a power transmission
US5697542A (en) 1995-10-19 1997-12-16 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
US5653721A (en) 1995-10-19 1997-08-05 Ethicon Endo-Surgery, Inc. Override mechanism for an actuator on a surgical instrument
US5839369A (en) 1995-10-20 1998-11-24 Eastman Kodak Company Method of controlled laser imaging of zirconia alloy ceramic lithographic member to provide localized melting in exposed areas
US5700270A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
US5997552A (en) 1995-10-20 1999-12-07 United States Surgical Corporation Meniscal fastener applying device
GB9521772D0 (en) 1995-10-24 1996-01-03 Gyrus Medical Ltd An electrosurgical instrument
CA2188738A1 (en) 1995-10-27 1997-04-28 Lisa W. Heaton Surgical stapler having interchangeable loading units
US5651491A (en) 1995-10-27 1997-07-29 United States Surgical Corporation Surgical stapler having interchangeable loading units
US5941442A (en) 1995-10-27 1999-08-24 United States Surgical Surgical stapler
US5804936A (en) 1995-10-31 1998-09-08 Smith & Nephew, Inc. Motor controlled surgical system
US5827298A (en) 1995-11-17 1998-10-27 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US5860953A (en) 1995-11-21 1999-01-19 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
JPH09149941A (en) 1995-12-01 1997-06-10 Tokai Rika Co Ltd Sensor for intra-corporeal medical instrument
US5658281A (en) 1995-12-04 1997-08-19 Valleylab Inc Bipolar electrosurgical scissors and method of manufacture
US5656917A (en) 1995-12-14 1997-08-12 Motorola, Inc. Battery identification apparatus and associated method
US5638582A (en) 1995-12-20 1997-06-17 Flexible Steel Lacing Company Belt fastener with pre-set staples
US5865638A (en) 1995-12-21 1999-02-02 Alcoa Fujikura Ltd. Electrical connector
US5971916A (en) 1995-12-27 1999-10-26 Koren; Arie Video camera cover
BR9612395A (en) 1995-12-29 1999-07-13 Gyrus Medical Ltd Electrosurgical instrument and an electrosurgical electrode set
GB9600354D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US5755717A (en) 1996-01-16 1998-05-26 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with improved coagulation feedback
US5738648A (en) 1996-01-23 1998-04-14 Valleylab Inc Method and apparatus for a valve and irrigator
US6015417A (en) 1996-01-25 2000-01-18 Reynolds, Jr.; Walker Surgical fastener
DE19603889C2 (en) 1996-02-03 1999-05-06 Aesculap Ag & Co Kg Surgical application device
US20070244496A1 (en) 1996-02-07 2007-10-18 Hellenkamp Johann F Automatic surgical device and control assembly for cutting a cornea
US7166117B2 (en) 1996-02-07 2007-01-23 Hellenkamp Johann F Automatic surgical device and control assembly for cutting a cornea
GB9602580D0 (en) 1996-02-08 1996-04-10 Dual Voltage Ltd Plastics flexible core
US5624398A (en) 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
US5620289A (en) 1996-02-09 1997-04-15 Curry; Rinda M. Colored staples
US5749889A (en) 1996-02-13 1998-05-12 Imagyn Medical, Inc. Method and apparatus for performing biopsy
WO1997029680A1 (en) 1996-02-13 1997-08-21 Imagyn Medical, Inc. Surgical access device and method of constructing same
US5713128A (en) 1996-02-16 1998-02-03 Valleylab Inc Electrosurgical pad apparatus and method of manufacture
US5762255A (en) 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6063095A (en) 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5894843A (en) 1996-02-20 1999-04-20 Cardiothoracic Systems, Inc. Surgical method for stabilizing the beating heart during coronary artery bypass graft surgery
CA2197614C (en) 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US5725536A (en) 1996-02-20 1998-03-10 Richard-Allen Medical Industries, Inc. Articulated surgical instrument with improved articulation control mechanism
US6010054A (en) 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5820009A (en) 1996-02-20 1998-10-13 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved jaw closure mechanism
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5797537A (en) 1996-02-20 1998-08-25 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved firing mechanism
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US5800379A (en) 1996-02-23 1998-09-01 Sommus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US5868664A (en) 1996-02-23 1999-02-09 Envision Medical Corporation Electrically isolated sterilizable endoscopic video camera head
US5891160A (en) 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
US6099537A (en) 1996-02-26 2000-08-08 Olympus Optical Co., Ltd. Medical treatment instrument
DE19607123C2 (en) 1996-02-26 1998-07-16 Aesculap Ag & Co Kg Drilling machine for surgical purposes
US5951575A (en) 1996-03-01 1999-09-14 Heartport, Inc. Apparatus and methods for rotationally deploying needles
US5810721A (en) 1996-03-04 1998-09-22 Heartport, Inc. Soft tissue retractor and method for providing surgical access
US5673842A (en) 1996-03-05 1997-10-07 Ethicon Endo-Surgery Surgical stapler with locking mechanism
US5697543A (en) 1996-03-12 1997-12-16 Ethicon Endo-Surgery, Inc. Linear stapler with improved firing stroke
US5605272A (en) 1996-03-12 1997-02-25 Ethicon Endo-Surgery, Inc. Trigger mechanism for surgical instruments
US5810240A (en) 1996-03-15 1998-09-22 United States Surgical Corporation Surgical fastener applying device
IL117607A0 (en) 1996-03-21 1996-07-23 Dev Of Advanced Medical Produc Surgical stapler and method of surgical fastening
WO1997035533A1 (en) 1996-03-25 1997-10-02 Enrico Nicolo Surgical mesh prosthetic material and methods of use
US5747953A (en) 1996-03-29 1998-05-05 Stryker Corporation Cordless, battery operated surical tool
US5772099A (en) 1996-04-01 1998-06-30 United States Surgical Corporation Surgical fastening apparatus with alignment pin
USD416089S (en) 1996-04-08 1999-11-02 Richard-Allan Medical Industries, Inc. Endoscopic linear stapling and dividing surgical instrument
US5785232A (en) 1996-04-17 1998-07-28 Vir Engineering Surgical stapler
US5728121A (en) 1996-04-17 1998-03-17 Teleflex Medical, Inc. Surgical grasper devices
US5836503A (en) 1996-04-22 1998-11-17 United States Surgical Corporation Insertion device for surgical apparatus
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
US6050472A (en) 1996-04-26 2000-04-18 Olympus Optical Co., Ltd. Surgical anastomosis stapler
JP3791856B2 (en) 1996-04-26 2006-06-28 オリンパス株式会社 Medical suture device
US6221007B1 (en) 1996-05-03 2001-04-24 Philip S. Green System and method for endoscopic imaging and endosurgery
US5928137A (en) 1996-05-03 1999-07-27 Green; Philip S. System and method for endoscopic imaging and endosurgery
US5741305A (en) 1996-05-06 1998-04-21 Physio-Control Corporation Keyed self-latching battery pack for a portable defibrillator
DE19618291A1 (en) 1996-05-07 1998-01-29 Storz Karl Gmbh & Co Instrument with a bendable handle
US5823066A (en) 1996-05-13 1998-10-20 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5797900A (en) 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5772379A (en) 1996-05-24 1998-06-30 Evensen; Kenneth Self-filling staple fastener
JPH09323068A (en) 1996-06-07 1997-12-16 Chowa Kogyo Kk Method for controlling phase difference of eccentric weight for excitation and mechanism for controlling the same phase
US6119913A (en) 1996-06-14 2000-09-19 Boston Scientific Corporation Endoscopic stapler
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
US5735874A (en) 1996-06-21 1998-04-07 Ethicon Endo-Surgery, Inc. Variable position handle locking mechanism
US6911916B1 (en) 1996-06-24 2005-06-28 The Cleveland Clinic Foundation Method and apparatus for accessing medical data over a network
US5736271A (en) 1996-06-28 1998-04-07 Telxon Corporation Battery pack for portable electronic device
US5853366A (en) 1996-07-08 1998-12-29 Kelsey, Inc. Marker element for interstitial treatment and localizing device and method using same
US5782748A (en) 1996-07-10 1998-07-21 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
US5957831A (en) 1996-07-12 1999-09-28 Adair; Edwin L. Sterile encapsulated endoscopic video monitor
US5765565A (en) 1996-07-12 1998-06-16 Adair; Edwin L. Sterile encapsulated operating room video monitor and video monitor support device
US5732712A (en) 1996-07-12 1998-03-31 Adair; Edwin L. Sterile encapsulated operating room video monitor and video monitor support device
US5812188A (en) 1996-07-12 1998-09-22 Adair; Edwin L. Sterile encapsulated endoscopic video monitor
US5702408A (en) 1996-07-17 1997-12-30 Ethicon Endo-Surgery, Inc. Articulating surgical instrument
US6083234A (en) 1996-07-23 2000-07-04 Surgical Dynamics, Inc. Anastomosis instrument and method
US6024748A (en) 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US6440146B2 (en) 1996-07-23 2002-08-27 United States Surgical Corporation Anastomosis instrument and method
US5785647A (en) 1996-07-31 1998-07-28 United States Surgical Corporation Surgical instruments useful for spinal surgery
US6054142A (en) 1996-08-01 2000-04-25 Cyto Therapeutics, Inc. Biocompatible devices with foam scaffolds
JP3752737B2 (en) 1996-08-12 2006-03-08 トヨタ自動車株式会社 Angular velocity detector
US5830598A (en) 1996-08-15 1998-11-03 Ericsson Inc. Battery pack incorporating battery pack contact assembly and method
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
USD393067S (en) 1996-08-27 1998-03-31 Valleylab Inc. Electrosurgical pencil
US5997528A (en) 1996-08-29 1999-12-07 Bausch & Lomb Surgical, Inc. Surgical system providing automatic reconfiguration
US5873885A (en) 1996-08-29 1999-02-23 Storz Instrument Company Surgical handpiece
US6065679A (en) 1996-09-06 2000-05-23 Ivi Checkmate Inc. Modular transaction terminal
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US5730758A (en) 1996-09-12 1998-03-24 Allgeyer; Dean O. Staple and staple applicator for use in skin fixation of catheters
US20050143769A1 (en) 2002-08-19 2005-06-30 White Jeffrey S. Ultrasonic dissector
US5833696A (en) 1996-10-03 1998-11-10 United States Surgical Corporation Apparatus for applying surgical clips
US6036667A (en) 1996-10-04 2000-03-14 United States Surgical Corporation Ultrasonic dissection and coagulation system
US6109500A (en) 1996-10-04 2000-08-29 United States Surgical Corporation Lockout mechanism for a surgical stapler
US5843132A (en) 1996-10-07 1998-12-01 Ilvento; Joseph P. Self-contained, self-powered temporary intravenous pacing catheter assembly
US5904647A (en) 1996-10-08 1999-05-18 Asahi Kogyo Kabushiki Kaisha Treatment accessories for an endoscope
US5851179A (en) 1996-10-10 1998-12-22 Nellcor Puritan Bennett Incorporated Pulse oximeter sensor with articulating head
JP3091420B2 (en) 1996-10-18 2000-09-25 株式会社貝印刃物開発センター Endoscope treatment tool
US5752965A (en) 1996-10-21 1998-05-19 Bio-Vascular, Inc. Apparatus and method for producing a reinforced surgical fastener suture line
US5769892A (en) 1996-10-22 1998-06-23 Mitroflow International Inc. Surgical stapler sleeve for reinforcing staple lines
US6043626A (en) 1996-10-29 2000-03-28 Ericsson Inc. Auxiliary battery holder with multicharger functionality
US6162537A (en) 1996-11-12 2000-12-19 Solutia Inc. Implantable fibers and medical articles
US6033105A (en) 1996-11-15 2000-03-07 Barker; Donald Integrated bone cement mixing and dispensing system
WO1998022028A1 (en) 1996-11-15 1998-05-28 Michael Stuart Gardner Ear tag applicator
BR9714740A (en) 1996-11-18 2002-01-02 Univ Massachusetts Systems, methods and instruments for minimized penetration surgery
US6165184A (en) 1996-11-18 2000-12-26 Smith & Nephew, Inc. Systems methods and instruments for minimally invasive surgery
US5993466A (en) 1997-06-17 1999-11-30 Yoon; Inbae Suturing instrument with multiple rotatably mounted spreadable needle holders
US6159224A (en) 1996-11-27 2000-12-12 Yoon; Inbae Multiple needle suturing instrument and method
FR2756574B1 (en) 1996-11-29 1999-01-08 Staubli Lyon SELECTION DEVICE, THREE POSITION WEAPON MECHANICS AND WEAVING MACHINE EQUIPPED WITH SUCH WEAPON MECHANICS
US6102926A (en) 1996-12-02 2000-08-15 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use
US5899915A (en) 1996-12-02 1999-05-04 Angiotrax, Inc. Apparatus and method for intraoperatively performing surgery
US6165188A (en) 1996-12-02 2000-12-26 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use
US5766186A (en) 1996-12-03 1998-06-16 Simon Fraser University Suturing device
US6050990A (en) 1996-12-05 2000-04-18 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
CA2224366C (en) 1996-12-11 2006-10-31 Ethicon, Inc. Meniscal repair device
US8206406B2 (en) 1996-12-12 2012-06-26 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US7963913B2 (en) 1996-12-12 2011-06-21 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6019780A (en) 1996-12-17 2000-02-01 Tnco, Inc. Dual pin and groove pivot for micro-instrument
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
IL119883A0 (en) 1996-12-23 1997-03-18 Dev Of Advanced Medical Produc Connector of rod posts in surgical stapler apparatus
US6063098A (en) 1996-12-23 2000-05-16 Houser; Kevin Articulable ultrasonic surgical apparatus
US5966126A (en) 1996-12-23 1999-10-12 Szabo; Andrew J. Graphic user interface for database system
US5849023A (en) 1996-12-27 1998-12-15 Mericle; Robert William Disposable remote flexible drive cutting apparatus
US6007521A (en) 1997-01-07 1999-12-28 Bidwell; Robert E. Drainage catheter system
DE19700402C2 (en) 1997-01-08 1999-12-30 Ferdinand Peer Instrument to compensate for hand tremors when manipulating fine structures
US6074401A (en) 1997-01-09 2000-06-13 Coalescent Surgical, Inc. Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5931847A (en) 1997-01-09 1999-08-03 Ethicon Endo-Surgery, Inc. Surgical cutting instrument with improved cutting edge
US5769748A (en) 1997-01-16 1998-06-23 Hughes Electronics Corporation Gimbal employing differential combination of offset drives
JPH10200699A (en) 1997-01-16 1998-07-31 Ricoh Co Ltd Servo controller in scanner of image formation device
US6485667B1 (en) 1997-01-17 2002-11-26 Rayonier Products And Financial Services Company Process for making a soft, strong, absorbent material for use in absorbent articles
GB2323744B (en) 1997-01-17 1999-03-24 Connell Anne O Method of supporting unknown addresses in an interface for data transmission in an asynchronous transfer mode
US5784934A (en) 1997-01-30 1998-07-28 Shinano Pneumatic Industries, Inc. Ratchet wrench with pivotable head
US5908402A (en) 1997-02-03 1999-06-01 Valleylab Method and apparatus for detecting tube occlusion in argon electrosurgery system
US6376971B1 (en) 1997-02-07 2002-04-23 Sri International Electroactive polymer electrodes
US6545384B1 (en) 1997-02-07 2003-04-08 Sri International Electroactive polymer devices
US5899824A (en) 1997-02-12 1999-05-04 Accudart Corporation Snap-fit dart and adapter
US5797637A (en) 1997-02-21 1998-08-25 Ervin; Scott P. Roll mover and method of using
DE19707373C1 (en) 1997-02-25 1998-02-05 Storz Karl Gmbh & Co Releasable connection of two tube shaft instruments or instrument parts
US5907211A (en) 1997-02-28 1999-05-25 Massachusetts Institute Of Technology High-efficiency, large stroke electromechanical actuator
IT1291164B1 (en) 1997-03-04 1998-12-29 Coral Spa UNIVERSAL DUCT FOR THE CONVEYANCE OF HARMFUL SMOKES OR GAS FROM A WORKING PLACE.
AU6448798A (en) 1997-03-05 1998-09-22 Trustees Of Columbia University In The City Of New York, The Electrothermal device for sealing and joining or cutting tissue
US5810821A (en) 1997-03-28 1998-09-22 Biomet Inc. Bone fixation screw system
ES2296330T3 (en) 1997-03-31 2008-04-16 Kabushikikaisha Igaki Iryo Sekkei SUTURE HOLDING ELEMENT FOR USE IN MEDICAL TREATMENTS.
US6050172A (en) 1997-04-04 2000-04-18 Emhart Glass S.A. Pneumatically operated mechanism
US5846254A (en) 1997-04-08 1998-12-08 Ethicon Endo-Surgery, Inc. Surgical instrument for forming a knot
US5843169A (en) 1997-04-08 1998-12-01 Taheri; Syde A. Apparatus and method for stapling graft material to a blood vessel wall while preserving the patency of orifices
US6033399A (en) 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
US6270916B1 (en) 1997-04-10 2001-08-07 Alcatel Complete discharge device for lithium battery
RU2144791C1 (en) 1997-04-14 2000-01-27 Дубровский Аркадий Вениаминович Gently sloping turning device
USD462437S1 (en) 1997-04-14 2002-09-03 Baxter International Inc. Manually operable irrigation surgical instrument
TW473600B (en) 1997-04-15 2002-01-21 Swagelok Co Tube fitting, rear ferrule for a two ferrule tube fitting and ferrule for a tube fitting and a non-flared tube fitting
US5919198A (en) 1997-04-17 1999-07-06 Ethicon Endo-Surgery, Inc. Disposable cartridge with drivers
DE29720616U1 (en) 1997-04-18 1998-08-20 Kaltenbach & Voigt Gmbh & Co, 88400 Biberach Handpiece for medical purposes, in particular for a medical or dental treatment facility, preferably for machining a tooth root canal
US5893878A (en) 1997-04-24 1999-04-13 Pierce; Javin Micro traumatic tissue manipulator apparatus
GB9708268D0 (en) 1997-04-24 1997-06-18 Gyrus Medical Ltd An electrosurgical instrument
JPH10296660A (en) 1997-04-25 1998-11-10 Hitachi Koki Co Ltd Battery type portable tool
US6157169A (en) 1997-04-30 2000-12-05 Samsung Electronics Co., Ltd. Monitoring technique for accurately determining residual capacity of a battery
US5906577A (en) 1997-04-30 1999-05-25 University Of Massachusetts Device, surgical access port, and method of retracting an incision into an opening and providing a channel through the incision
US6017358A (en) 1997-05-01 2000-01-25 Inbae Yoon Surgical instrument with multiple rotatably mounted offset end effectors
US6037724A (en) 1997-05-01 2000-03-14 Osteomed Corporation Electronic controlled surgical power tool
US6867248B1 (en) 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
US7048716B1 (en) 1997-05-15 2006-05-23 Stanford University MR-compatible devices
US5817091A (en) 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
DE19721076A1 (en) 1997-05-20 1998-11-26 Trw Repa Gmbh Method for producing a rope section with a fastening element for a vehicle occupant restraint system, and rope section produced with this method
US5997952A (en) 1997-05-23 1999-12-07 The Dow Chemical Company Fast-setting latex coating and formulations
US5851212A (en) 1997-06-11 1998-12-22 Endius Incorporated Surgical instrument
US5899914A (en) 1997-06-11 1999-05-04 Endius Incorporated Surgical instrument
US6231565B1 (en) 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US5947996A (en) 1997-06-23 1999-09-07 Medicor Corporation Yoke for surgical instrument
US5849020A (en) 1997-06-30 1998-12-15 Ethicon Endo-Surgery, Inc. Inductively coupled electrosurgical instrument
US5951552A (en) 1997-06-30 1999-09-14 Ethicon Endo-Surgery, Inc. Capacitively coupled cordless electrosurgical instrument
US7021878B1 (en) 1997-07-03 2006-04-04 Trackers Company Categorizing fasteners and construction connectors using visual identifiers
US6049145A (en) 1997-07-07 2000-04-11 Motorola, Inc. Tamper proof safety circuit
FR2765794B1 (en) 1997-07-11 1999-09-03 Joel Bardeau DRAINAGE DEVICE, PARTICULARLY FOR COVERING
US6338737B1 (en) 1997-07-17 2002-01-15 Haviv Toledano Flexible annular stapler for closed surgery of hollow organs
US5937951A (en) 1997-07-18 1999-08-17 Ethicon Endo-Surgery, Inc. Skin stapler with rack and pinion staple feed mechanism
US6923803B2 (en) 1999-01-15 2005-08-02 Gyrus Medical Limited Electrosurgical system and method
DE19731021A1 (en) 1997-07-18 1999-01-21 Meyer Joerg In vivo degradable metallic implant
WO1999003409A1 (en) 1997-07-18 1999-01-28 Gyrus Medical Limited An electrosurgical instrument
EP0996376A1 (en) 1997-07-18 2000-05-03 Gyrus Medical Limited An electrosurgical instrument
GB9900964D0 (en) 1999-01-15 1999-03-10 Gyrus Medical Ltd An electrosurgical system
US7278994B2 (en) 1997-07-18 2007-10-09 Gyrus Medical Limited Electrosurgical instrument
JP2001510067A (en) 1997-07-18 2001-07-31 ガイラス・メディカル・リミテッド Electrosurgical instrument
GB2327352A (en) 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
CA2297122A1 (en) 1997-07-24 1999-02-04 James F. Mcguckin, Jr. Stationary central tunnel dialysis catheter with optional separable sheath
US6532958B1 (en) 1997-07-25 2003-03-18 Minnesota Innovative Technologies & Instruments Corporation Automated control and conservation of supplemental respiratory oxygen
US6371114B1 (en) 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
US5948030A (en) 1997-07-25 1999-09-07 General Motors Corporation Steering angle determaination method and apparatus
EP1579883A3 (en) 1997-07-25 2005-10-12 Minnesota Innovative Technologies &amp; Instruments Corporation (MITI) Control device for supplying supplemental respiratory oxygen
WO1999005167A1 (en) 1997-07-25 1999-02-04 University Of Massachusetts Designed protein pores as components for biosensors
DE69824545T2 (en) 1997-07-29 2005-06-16 Thomas & Betts International, Inc., Wilmington DEVICE FOR DISTRIBUTING CABLE TIES
JP3811291B2 (en) 1998-07-02 2006-08-16 オリンパス株式会社 Endoscope system
US5878938A (en) 1997-08-11 1999-03-09 Ethicon Endo-Surgery, Inc. Surgical stapler with improved locking mechanism
US5904702A (en) 1997-08-14 1999-05-18 University Of Massachusetts Instrument for thoracic surgical procedures
US6024750A (en) 1997-08-14 2000-02-15 United States Surgical Ultrasonic curved blade
US6024764A (en) 1997-08-19 2000-02-15 Intermedics, Inc. Apparatus for imparting physician-determined shapes to implantable tubular devices
US6211626B1 (en) 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6083223A (en) 1997-08-28 2000-07-04 Baker; James A. Methods and apparatus for welding blood vessels
AUPO889497A0 (en) 1997-09-01 1997-09-25 N.J. Phillips Pty. Limited An applicator
US6731976B2 (en) 1997-09-03 2004-05-04 Medtronic, Inc. Device and method to measure and communicate body parameters
US6267761B1 (en) 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
AU739648B2 (en) 1997-09-10 2001-10-18 Covidien Ag Bipolar instrument for vessel fusion
AU9478498A (en) 1997-09-11 1999-03-29 Genzyme Corporation Articulating endoscopic implant rotator surgical apparatus and method for using same
EP2362285B1 (en) 1997-09-19 2015-03-25 Massachusetts Institute of Technology Robotic apparatus
US6017356A (en) 1997-09-19 2000-01-25 Ethicon Endo-Surgery Inc. Method for using a trocar for penetration and skin incision
US6214001B1 (en) 1997-09-19 2001-04-10 Oratec Interventions, Inc. Electrocauterizing tool for orthopedic shave devices
US20040236352A1 (en) 1997-09-22 2004-11-25 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US5921956A (en) 1997-09-24 1999-07-13 Smith & Nephew, Inc. Surgical instrument
JP3748511B2 (en) 1997-09-29 2006-02-22 ボストン・サイエンティフィック・サイメド・インコーポレイテッド Image guide wire
US6173074B1 (en) 1997-09-30 2001-01-09 Lucent Technologies, Inc. Acoustic signature recognition and identification
US6174318B1 (en) 1998-04-23 2001-01-16 Scimed Life Systems, Inc. Basket with one or more moveable legs
EP1018949B1 (en) 1997-10-02 2005-08-24 Boston Scientific Limited Device for delivering fiber material into a body
GB2329840C (en) 1997-10-03 2007-10-05 Johnson & Johnson Medical Biopolymer sponge tubes
US5984949A (en) 1997-10-06 1999-11-16 Levin; John M. Tissue hooks and tools for applying same
US6231569B1 (en) 1997-10-06 2001-05-15 Somnus Medical Technologies, Inc. Dual processor architecture for electro generator
US5944172A (en) 1997-10-06 1999-08-31 Allen-Bradley Company, Llc Biasing assembly for a switching device
US7030904B2 (en) 1997-10-06 2006-04-18 Micro-Medical Devices, Inc. Reduced area imaging device incorporated within wireless endoscopic devices
EP1027000A4 (en) 1997-10-09 2001-09-12 Camran Nezhat Methods and systems for organ resection
US6206894B1 (en) 1997-10-09 2001-03-27 Ethicon Endo-Surgery, Inc. Electrically powered needle holder to assist in suturing
US5893835A (en) 1997-10-10 1999-04-13 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having dual rotational positioning
US6171316B1 (en) 1997-10-10 2001-01-09 Origin Medsystems, Inc. Endoscopic surgical instrument for rotational manipulation
US5947984A (en) 1997-10-10 1999-09-07 Ethicon Endo-Surger, Inc. Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism
US6241723B1 (en) 1997-10-15 2001-06-05 Team Medical Llc Electrosurgical system
US6117148A (en) 1997-10-17 2000-09-12 Ravo; Biagio Intraluminal anastomotic device
US6511468B1 (en) 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6224617B1 (en) 1997-10-17 2001-05-01 Angiotrax, Inc. Methods and apparatus for defibrillating a heart refractory to electrical stimuli
US6142149A (en) 1997-10-23 2000-11-07 Steen; Scot Kenneth Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation
US5903117A (en) 1997-10-28 1999-05-11 Xomed Surgical Products, Inc. Method and adaptor for connecting a powered surgical instrument to a medical console
JP4121615B2 (en) 1997-10-31 2008-07-23 オリンパス株式会社 Endoscope
US6086600A (en) 1997-11-03 2000-07-11 Symbiosis Corporation Flexible endoscopic surgical instrument for invagination and fundoplication
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6050996A (en) 1997-11-12 2000-04-18 Sherwood Services Ag Bipolar electrosurgical instrument with replaceable electrodes
US6187003B1 (en) 1997-11-12 2001-02-13 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US5946978A (en) 1997-11-13 1999-09-07 Shimano Inc. Cable adjustment device
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
FR2771145B1 (en) 1997-11-19 2000-02-25 Car X FLEXIBLE SHEATH WITH BELLOWS FOR ARTICULATED JOINT AND TOOLS FOR PLACING THIS SHEATH
US6010513A (en) 1997-11-26 2000-01-04 Bionx Implants Oy Device for installing a tissue fastener
US6273876B1 (en) 1997-12-05 2001-08-14 Intratherapeutics, Inc. Catheter segments having circumferential supports with axial projection
US6254642B1 (en) 1997-12-09 2001-07-03 Thomas V. Taylor Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6068627A (en) 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
US6171330B1 (en) 1997-12-15 2001-01-09 Sofradim Production Pneumatic surgical instrument for the distribution and placement of connecting or fastening means
US6472784B2 (en) 1997-12-16 2002-10-29 Fred N. Miekka Methods and apparatus for increasing power of permanent magnet motors
US6248116B1 (en) 1997-12-16 2001-06-19 B. Braun Celsa Medical treatment of a diseased anatomical duct
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
US6055062A (en) 1997-12-19 2000-04-25 Hewlett-Packard Company Electronic printer having wireless power and communications connections to accessory units
US6228089B1 (en) 1997-12-19 2001-05-08 Depuy International Limited Device for positioning and guiding a surgical instrument during orthopaedic interventions
JPH11178833A (en) 1997-12-24 1999-07-06 Olympus Optical Co Ltd Ultrasonic treatment implement
US6033427A (en) 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites
US6156056A (en) 1998-01-09 2000-12-05 Ethicon, Inc. Suture buttress
US6245081B1 (en) 1998-01-09 2001-06-12 Steven M. Bowman Suture buttress
US6620166B1 (en) 1998-01-09 2003-09-16 Ethicon, Inc. Suture buttress system
GB2336214A (en) 1998-01-16 1999-10-13 David William Taylor Preventionof multiple use of limited use devices
US6200311B1 (en) 1998-01-20 2001-03-13 Eclipse Surgical Technologies, Inc. Minimally invasive TMR device
US6072299A (en) 1998-01-26 2000-06-06 Medtronic Physio-Control Manufacturing Corp. Smart battery with maintenance and testing functions
US6096074A (en) 1998-01-27 2000-08-01 United States Surgical Stapling apparatus and method for heart valve replacement
US6228454B1 (en) 1998-02-02 2001-05-08 Fort James Corporation Sheet material having weakness zones and a system for dispensing the material
US6296640B1 (en) 1998-02-06 2001-10-02 Ethicon Endo-Surgery, Inc. RF bipolar end effector for use in electrosurgical instruments
US6165175A (en) 1999-02-02 2000-12-26 Ethicon Endo-Surgery, Inc. RF bipolar mesentery takedown device including improved bipolar end effector
US6457625B1 (en) 1998-02-17 2002-10-01 Bionx Implants, Oy Device for installing a tissue fastener
US7052499B2 (en) 1998-02-18 2006-05-30 Walter Lorenz Surgical, Inc. Method and apparatus for bone fracture fixation
US6645201B1 (en) 1998-02-19 2003-11-11 Curon Medical, Inc. Systems and methods for treating dysfunctions in the intestines and rectum
US7090683B2 (en) 1998-02-24 2006-08-15 Hansen Medical, Inc. Flexible instrument
US7371210B2 (en) 1998-02-24 2008-05-13 Hansen Medical, Inc. Flexible instrument
US7713190B2 (en) 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
US6843793B2 (en) 1998-02-24 2005-01-18 Endovia Medical, Inc. Surgical instrument
US6554844B2 (en) 1998-02-24 2003-04-29 Endovia Medical, Inc. Surgical instrument
US7775972B2 (en) 1998-02-24 2010-08-17 Hansen Medical, Inc. Flexible instrument
US20020087048A1 (en) 1998-02-24 2002-07-04 Brock David L. Flexible instrument
WO2002065933A2 (en) 2001-02-15 2002-08-29 Endovia Medical Inc. Surgical master/slave system
US20020095175A1 (en) 1998-02-24 2002-07-18 Brock David L. Flexible instrument
US7789875B2 (en) 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US8414598B2 (en) 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
US6183442B1 (en) 1998-03-02 2001-02-06 Board Of Regents Of The University Of Texas System Tissue penetrating device and methods for using same
US5909062A (en) 1998-03-10 1999-06-01 Krietzman; Mark Howard Secondary power supply for use with handheld illumination devices
RU2141279C1 (en) 1998-03-11 1999-11-20 Кондратюк Георгий Константинович Multipurpose attachment
US6099551A (en) 1998-03-12 2000-08-08 Shelhigh, Inc. Pericardial strip and stapler assembly for dividing and sealing visceral tissues and method of use thereof
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US6042601A (en) 1998-03-18 2000-03-28 United States Surgical Corporation Apparatus for vascular hole closure
US6592538B1 (en) 1998-03-20 2003-07-15 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Dynamic orthopedic braces
US20020025921A1 (en) 1999-07-26 2002-02-28 Petito George D. Composition and method for growing, protecting, and healing tissues and cells
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
WO1999048430A1 (en) 1998-03-26 1999-09-30 Gyrus Medical Limited An electrosurgical instrument
US6656215B1 (en) 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
GB2335858A (en) 1998-04-03 1999-10-06 Gyrus Medical Ltd Resectoscope having pivoting electrode assembly
US6347241B2 (en) 1999-02-02 2002-02-12 Senorx, Inc. Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6001112A (en) 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US6249076B1 (en) 1998-04-14 2001-06-19 Massachusetts Institute Of Technology Conducting polymer actuator
US6047861A (en) 1998-04-15 2000-04-11 Vir Engineering, Inc. Two component fluid dispenser
FR2777443B1 (en) 1998-04-21 2000-06-30 Tornier Sa ANCILLARY FOR THE PLACEMENT AND REMOVAL OF AN IMPLANT AND MORE PARTICULARLY A SUTURE ANCHOR
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6023641A (en) 1998-04-29 2000-02-08 Medtronic, Inc. Power consumption reduction in medical devices employing multiple digital signal processors
US6003517A (en) 1998-04-30 1999-12-21 Ethicon Endo-Surgery, Inc. Method for using an electrosurgical device on lung tissue
US6010520A (en) 1998-05-01 2000-01-04 Pattison; C. Phillip Double tapered esophageal dilator
US6030384A (en) 1998-05-01 2000-02-29 Nezhat; Camran Bipolar surgical instruments having focused electrical fields
US6514252B2 (en) 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US6558378B2 (en) 1998-05-05 2003-05-06 Cardiac Pacemakers, Inc. RF ablation system and method having automatic temperature control
US6171305B1 (en) 1998-05-05 2001-01-09 Cardiac Pacemakers, Inc. RF ablation apparatus and method having high output impedance drivers
US6517566B1 (en) 1998-05-11 2003-02-11 Surgical Connections, Inc. Devices and methods for treating e.g. urinary stress incontinence
US6062360A (en) 1998-05-13 2000-05-16 Brunswick Corporation Synchronizer for a gear shift mechanism for a marine propulsion system
US6039126A (en) 1998-05-15 2000-03-21 Hsieh; An-Fu Multi-usage electric tool with angle-changeable grip
US6165929A (en) 1998-05-18 2000-12-26 Phillips Petroleum Company Compositions that can produce polymers
US6261679B1 (en) 1998-05-22 2001-07-17 Kimberly-Clark Worldwide, Inc. Fibrous absorbent material and methods of making the same
EP1083835A4 (en) 1998-05-29 2004-06-02 By Pass Inc Methods and devices for vascular surgery
US20050283188A1 (en) 1998-05-29 2005-12-22 By-Pass, Inc. Vascular closure device
US6309403B1 (en) 1998-06-01 2001-10-30 Board Of Trustees Operating Michigan State University Dexterous articulated linkage for surgical applications
US6361559B1 (en) 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
JP2000002228A (en) 1998-06-12 2000-01-07 Chuo Spring Co Ltd Terminal end structure of pull cable
JP3331172B2 (en) 1998-06-12 2002-10-07 旭光学工業株式会社 Endoscope foreign matter collection tool
US6478210B2 (en) 2000-10-25 2002-11-12 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6629630B2 (en) 1998-06-19 2003-10-07 Scimed Life Systems, Inc. Non-circular resection device and endoscope
US6585144B2 (en) 1998-06-19 2003-07-01 Acimed Life Systems, Inc. Integrated surgical staple retainer for a full thickness resectioning device
US6126058A (en) 1998-06-19 2000-10-03 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6601749B2 (en) 1998-06-19 2003-08-05 Scimed Life Systems, Inc. Multi fire full thickness resectioning device
US6018227A (en) 1998-06-22 2000-01-25 Stryker Corporation Battery charger especially useful with sterilizable, rechargeable battery packs
US5941890A (en) 1998-06-26 1999-08-24 Ethicon Endo-Surgery, Inc. Implantable surgical marker
US6309400B2 (en) 1998-06-29 2001-10-30 Ethicon Endo-Surgery, Inc. Curved ultrasonic blade having a trapezoidal cross section
CA2276313C (en) 1998-06-29 2008-01-29 Ethicon Endo-Surgery, Inc. Balanced ultrasonic blade including a plurality of balance asymmetries
CA2276316C (en) 1998-06-29 2008-02-12 Ethicon Endo-Surgery, Inc. Method of balancing asymmetric ultrasonic surgical blades
US6066132A (en) 1998-06-30 2000-05-23 Ethicon, Inc. Articulating endometrial ablation device
US6228098B1 (en) 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6352503B1 (en) 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
JP3806518B2 (en) 1998-07-17 2006-08-09 オリンパス株式会社 Endoscopic treatment device
US5977746A (en) 1998-07-21 1999-11-02 Stryker Corporation Rechargeable battery pack and method for manufacturing same
JP2000055752A (en) 1998-08-03 2000-02-25 Kayaba Ind Co Ltd Torque detecting device
DE69940850D1 (en) 1998-08-04 2009-06-18 Intuitive Surgical Inc Articular device for positioning a manipulator for robotic surgery
MXPA01001460A (en) 1998-08-14 2005-06-06 Verigen Transplantation Serv Methods, instruments and materials for chondrocyte cell transplantation.
US6818018B1 (en) 1998-08-14 2004-11-16 Incept Llc In situ polymerizable hydrogels
DE19836950B4 (en) 1998-08-17 2004-09-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Surgical instrument in the form of a suturing device
DE19837258A1 (en) 1998-08-17 2000-03-02 Deutsch Zentr Luft & Raumfahrt Device for operating a surgical instrument for anastomosis of hollow organs
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6050989A (en) 1998-08-24 2000-04-18 Linvatec Corporation Angularly adjustable powered surgical handpiece
US6458147B1 (en) 1998-11-06 2002-10-01 Neomend, Inc. Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
USH2086H1 (en) 1998-08-31 2003-10-07 Kimberly-Clark Worldwide Fine particle liquid filtration media
US6726651B1 (en) 1999-08-04 2004-04-27 Cardeon Corporation Method and apparatus for differentially perfusing a patient during cardiopulmonary bypass
US6131790A (en) 1998-09-02 2000-10-17 Piraka; Hadi A. Surgical stapler and cartridge
DE19840163A1 (en) 1998-09-03 2000-03-16 Webasto Karosseriesysteme Drive device and method for adjusting a vehicle part
US6924781B1 (en) 1998-09-11 2005-08-02 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
BR9913759A (en) 1998-09-15 2001-06-12 Medtronic Inc System to temporarily immobilize an area of tissue, and system to stabilize tissue
FR2783429B1 (en) 1998-09-18 2002-04-12 Imedex Biomateriaux BICOMPOSITE COLLAGENIC MATERIAL, ITS OBTAINING PROCESS AND ITS THERAPEUTIC APPLICATIONS
US6402748B1 (en) 1998-09-23 2002-06-11 Sherwood Services Ag Electrosurgical device having a dielectrical seal
US6445530B1 (en) 1998-09-25 2002-09-03 Seagate Technology Llc Class AB H-bridge using current sensing MOSFETs
JP3766552B2 (en) 1998-10-01 2006-04-12 富士写真フイルム株式会社 Film unit with lens with data imprinting device
US6262216B1 (en) 1998-10-13 2001-07-17 Affymetrix, Inc. Functionalized silicon compounds and methods for their synthesis and use
US6245084B1 (en) 1998-10-20 2001-06-12 Promex, Inc. System for controlling a motor driven surgical cutting instrument
US5951574A (en) 1998-10-23 1999-09-14 Ethicon Endo-Surgery, Inc. Multiple clip applier having a split feeding mechanism
ES2251260T3 (en) 1998-10-23 2006-04-16 Sherwood Services Ag FORCEPS OF OBTURATION OF OPEN GLASSES WITH MEMBER OF BUMPER.
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
EP1123045B8 (en) 1998-10-23 2008-12-24 Boston Scientific Limited Improved system for intraluminal imaging
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
EP2072017B1 (en) 1998-10-23 2018-04-18 Covidien AG Endoscopic bipolar electrosurgical forceps
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
EP1123051A4 (en) 1998-10-23 2003-01-02 Applied Med Resources Surgical grasper with inserts and method of using same
US6270508B1 (en) 1998-10-26 2001-08-07 Charles H. Klieman End effector and instrument for endoscopic and general surgery needle control
JP2000210299A (en) 1999-01-20 2000-08-02 Olympus Optical Co Ltd Surgical operation instrument
DE19851291A1 (en) 1998-11-06 2000-01-05 Siemens Ag Data input unit suitable for use in operating theatre
JP3034508B1 (en) 1998-11-12 2000-04-17 本田技研工業株式会社 Motor drive
US6887710B2 (en) 1998-11-13 2005-05-03 Mesosystems Technology, Inc. Robust system for screening mail for biological agents
US6249105B1 (en) 1998-11-13 2001-06-19 Neal Andrews System and method for detecting performance components of a battery pack
US6398726B1 (en) 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
AU1825400A (en) 1998-11-23 2000-06-13 Microdexterity Systems, Inc. Surgical manipulator
US6102271A (en) 1998-11-23 2000-08-15 Ethicon Endo-Surgery, Inc. Circular stapler for hemorrhoidal surgery
US6142933A (en) 1998-11-23 2000-11-07 Ethicon Endo-Surgery, Inc. Anoscope for hemorrhoidal surgery
US6200330B1 (en) 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
US6167185A (en) 1998-11-24 2000-12-26 Jds Fitel Inc. Adjustable optical attenuator
US7537564B2 (en) 1998-12-01 2009-05-26 Atropos Limited Wound retractor device
JP2000171730A (en) 1998-12-08 2000-06-23 Olympus Optical Co Ltd Battery type portable endoscopic device
US7125403B2 (en) 1998-12-08 2006-10-24 Intuitive Surgical In vivo accessories for minimally invasive robotic surgery
US6309397B1 (en) 1999-12-02 2001-10-30 Sri International Accessories for minimally invasive robotic surgery and methods
JP4233656B2 (en) 1998-12-11 2009-03-04 ジョンソン・エンド・ジョンソン株式会社 Automatic anastomosis instrument and guide balloon attachable to the anastomosis instrument
US6828902B2 (en) 1998-12-14 2004-12-07 Soundcraft, Inc. Wireless data input to RFID reader
EP1142054A1 (en) 1998-12-15 2001-10-10 Electric Fuel Limited Battery pack design for metal-air battery cells
US6126670A (en) 1998-12-16 2000-10-03 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
US6887244B1 (en) 1998-12-16 2005-05-03 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
DE19858512C1 (en) 1998-12-18 2000-05-25 Storz Karl Gmbh & Co Kg Bipolar medical instrument for minimally invasive surgery for endoscopic operations; has mutually insulated leads passing through tubular shaft to conductor elements on linked jaw parts
DE19860444C2 (en) 1998-12-28 2001-03-29 Storz Karl Gmbh & Co Kg Handle for a medical tubular shaft instrument
DE19860611C1 (en) 1998-12-29 2000-03-23 Fraunhofer Ges Forschung Particulate polymer foam product molding process for impact resisting cushions, models, prototypes, involving shaping and microwave fusing of foam particles in evacuated bag
US6147135A (en) 1998-12-31 2000-11-14 Ethicon, Inc. Fabrication of biocompatible polymeric composites
US6806867B1 (en) 1998-12-31 2004-10-19 A.T.X. International, Inc. Palm pad system
US6113618A (en) 1999-01-13 2000-09-05 Stryker Corporation Surgical saw with spring-loaded, low-noise cutting blade
US20040030333A1 (en) 1999-01-15 2004-02-12 Gyrus Medical Ltd. Electrosurgical system and method
US7001380B2 (en) 1999-01-15 2006-02-21 Gyrus Medical Limited Electrosurgical system and method
US6554861B2 (en) 1999-01-19 2003-04-29 Gyrus Ent L.L.C. Otologic prosthesis
US6273252B1 (en) 1999-01-20 2001-08-14 Burke H. Mitchell Protective covering for a hand-held device
ES2153313B1 (en) 1999-01-21 2001-11-16 Biomed S A APPARATUS FOR THE GUIDED APPLICATION OF A RETRACTABLE CLAMP FOR THE PRECUTE CLOSURE OF ORIFICES, INCISIONS OR LACERATIONS IN VESSELS, DUCTS OR ANATOMICAL STRUCTURES, HUMAN RETRACTABLE AND PROCEDURE FOR APPLICATION.
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US8529588B2 (en) 1999-01-25 2013-09-10 Applied Medical Resources Corporation Multiple clip applier apparatus and method
DE19905085A1 (en) 1999-01-29 2000-08-03 Black & Decker Inc N D Ges D S Battery operated, hand-held power tool
US6387113B1 (en) 1999-02-02 2002-05-14 Biomet, Inc. Method and apparatus for repairing a torn meniscus
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
DE19906191A1 (en) 1999-02-15 2000-08-17 Ingo F Herrmann Mouldable endoscope for transmitting light and images with supplementary device has non-round cross section along longitudinal section for inserting in human or animal body opening
US6295888B1 (en) 1999-02-16 2001-10-02 Shimano Inc. Gear indicator for a bicycle
US6083242A (en) 1999-02-17 2000-07-04 Holobeam, Inc. Surgical staples with deformation zones of non-uniform cross section
US6065919A (en) 1999-02-18 2000-05-23 Peck; Philip D. Self-tapping screw with an improved thread design
USD429252S (en) 1999-02-22 2000-08-08 3Com Corporation Computer icon for a display screen
US6806808B1 (en) 1999-02-26 2004-10-19 Sri International Wireless event-recording device with identification codes
US6582427B1 (en) 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
GB9905211D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system and instrument
US6666875B1 (en) 1999-03-05 2003-12-23 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
GB9905209D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
US20020022836A1 (en) 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
GB9905210D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgical system
US6190386B1 (en) 1999-03-09 2001-02-20 Everest Medical Corporation Electrosurgical forceps with needle electrodes
US6159146A (en) 1999-03-12 2000-12-12 El Gazayerli; Mohamed Mounir Method and apparatus for minimally-invasive fundoplication
US6179776B1 (en) 1999-03-12 2001-01-30 Scimed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
US6512360B1 (en) 1999-03-15 2003-01-28 Amiteq Co., Ltd Self-induction-type stroke sensor
DE19912038C1 (en) 1999-03-17 2001-01-25 Storz Karl Gmbh & Co Kg Handle for a medical instrument
JP2000271141A (en) 1999-03-23 2000-10-03 Olympus Optical Co Ltd Operation device
DK1163019T3 (en) 1999-03-25 2008-03-03 Metabolix Inc Medical devices and applications of polyhydroxyalkanoate polymers
US6186957B1 (en) 1999-03-30 2001-02-13 Michael W. Milam Stethoscope cover
US6120462A (en) 1999-03-31 2000-09-19 Ethicon Endo-Surgery, Inc. Control method for an automated surgical biopsy device
US6416486B1 (en) 1999-03-31 2002-07-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical device having an embedding surface and a coagulating surface
US6086544A (en) 1999-03-31 2000-07-11 Ethicon Endo-Surgery, Inc. Control apparatus for an automated surgical biopsy device
AU4187800A (en) 1999-03-31 2000-10-16 Peter L. Rosenblatt Systems and methods for soft tissue reconstruction
JP2000287987A (en) 1999-04-01 2000-10-17 Olympus Optical Co Ltd Chargeable battery type medical treatment apparatus
DE19915291A1 (en) 1999-04-03 2000-10-05 Gardena Kress & Kastner Gmbh Pipe connector comprises two connecting sections and locking sleeve which can be slid back to undo joint, sleeve and one part of the coupling having stops which fit into sockets on other part to lock connector together
US6228084B1 (en) 1999-04-06 2001-05-08 Kirwan Surgical Products, Inc. Electro-surgical forceps having recessed irrigation channel
US6565554B1 (en) 1999-04-07 2003-05-20 Intuitive Surgical, Inc. Friction compensation in a minimally invasive surgical apparatus
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
WO2000060995A2 (en) 1999-04-09 2000-10-19 Evalve, Inc. Methods and apparatus for cardiac valve repair
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US10327743B2 (en) 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US6182673B1 (en) 1999-04-12 2001-02-06 Mike Kindermann Marketing/Vertriebs Gmbh Dump facility for cassette sewage tanks
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6569173B1 (en) 1999-12-14 2003-05-27 Integrated Vascular Interventional Technologies, L.C. Compression plate anastomosis apparatus
US7160311B2 (en) 1999-04-16 2007-01-09 Integrated Vascular Interventional Technologies, L.C. (Ivit Lc) Locking compression plate anastomosis apparatus
US6248117B1 (en) 1999-04-16 2001-06-19 Vital Access Corp Anastomosis apparatus for use in intraluminally directed vascular anastomosis
US6689153B1 (en) 1999-04-16 2004-02-10 Orthopaedic Biosystems Ltd, Inc. Methods and apparatus for a coated anchoring device and/or suture
JP2000304153A (en) 1999-04-19 2000-11-02 Honda Motor Co Ltd Electromagnet actuator driving device
US6319510B1 (en) 1999-04-20 2001-11-20 Alayne Yates Gum pad for delivery of medication to mucosal tissues
US6325805B1 (en) 1999-04-23 2001-12-04 Sdgi Holdings, Inc. Shape memory alloy staple
US20050222665A1 (en) 1999-04-23 2005-10-06 Ernest Aranyi Endovascular fastener applicator
US6181105B1 (en) 1999-04-26 2001-01-30 Exonix Corporation Self contained transportable power source maintenance and charge
TNSN00086A1 (en) 1999-04-26 2002-05-30 Int Paper Co INDUCTION SEALING JAW
DE59900101D1 (en) 1999-04-29 2001-06-28 Storz Karl Gmbh & Co Kg Medical instrument for tissue preparation
US6383201B1 (en) 1999-05-14 2002-05-07 Tennison S. Dong Surgical prosthesis for repairing a hernia
JP4503725B2 (en) 1999-05-17 2010-07-14 オリンパス株式会社 Endoscopic treatment device
AU5150600A (en) 1999-05-18 2000-12-05 Vascular Innovations, Inc. Tissue punch
US6921412B1 (en) 1999-05-18 2005-07-26 Cryolife, Inc. Self-supporting, shaped, three-dimensional biopolymeric materials and methods
US6547786B1 (en) 1999-05-21 2003-04-15 Gyrus Medical Electrosurgery system and instrument
US6063020A (en) 1999-05-21 2000-05-16 Datex-Ohmeda, Inc. Heater door safety interlock for infant warming apparatus
US6762339B1 (en) 1999-05-21 2004-07-13 3M Innovative Properties Company Hydrophilic polypropylene fibers having antimicrobial activity
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
GB9911954D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and instrument
US6454781B1 (en) 1999-05-26 2002-09-24 Ethicon Endo-Surgery, Inc. Feedback control in an ultrasonic surgical instrument for improved tissue effects
DE19924311A1 (en) 1999-05-27 2000-11-30 Walter A Rau Clip cutting device to cut body tissue and place staple on at least one side of cut line; has clamp head with staples and pressure plate part, with collagen and fibrin fleece underlay covering staples
GB9912627D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical instrument
GB9912625D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical generator and system
US6409724B1 (en) 1999-05-28 2002-06-25 Gyrus Medical Limited Electrosurgical instrument
US6491201B1 (en) 2000-02-22 2002-12-10 Power Medical Interventions, Inc. Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
US8229549B2 (en) 2004-07-09 2012-07-24 Tyco Healthcare Group Lp Surgical imaging device
US6517565B1 (en) 1999-06-02 2003-02-11 Power Medical Interventions, Inc. Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft
US6443973B1 (en) 1999-06-02 2002-09-03 Power Medical Interventions, Inc. Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US7951071B2 (en) 1999-06-02 2011-05-31 Tyco Healthcare Group Lp Moisture-detecting shaft for use with an electro-mechanical surgical device
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
US6981941B2 (en) 1999-06-02 2006-01-03 Power Medical Interventions Electro-mechanical surgical device
US8292888B2 (en) 2001-04-20 2012-10-23 Tyco Healthcare Group Lp Bipolar or ultrasonic surgical device
US7695485B2 (en) 2001-11-30 2010-04-13 Power Medical Interventions, Llc Surgical device
US8241322B2 (en) 2005-07-27 2012-08-14 Tyco Healthcare Group Lp Surgical device
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6716233B1 (en) 1999-06-02 2004-04-06 Power Medical Interventions, Inc. Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US7032798B2 (en) 1999-06-02 2006-04-25 Power Medical Interventions, Inc. Electro-mechanical surgical device
US6315184B1 (en) 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6223833B1 (en) 1999-06-03 2001-05-01 One World Technologies, Inc. Spindle lock and chipping mechanism for hammer drill
EP1058177A1 (en) 1999-06-04 2000-12-06 Alps Electric Co., Ltd. Input device for game machine
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
US6273902B1 (en) 1999-06-18 2001-08-14 Novare Surgical Systems, Inc. Surgical clamp having replaceable pad
SE519023C2 (en) 1999-06-21 2002-12-23 Micromuscle Ab Catheter-borne microsurgical tool kit
US6494888B1 (en) 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
US7637905B2 (en) 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
FR2795301B1 (en) 1999-06-25 2001-08-31 Prec ENDOSCOPIC SURGERY INSTRUMENT
US6257351B1 (en) 1999-06-29 2001-07-10 Microaire Surgical Instruments, Inc. Powered surgical instrument having locking systems and a clutch mechanism
US6355699B1 (en) 1999-06-30 2002-03-12 Ethicon, Inc. Process for manufacturing biomedical foams
US6175290B1 (en) 1999-06-30 2001-01-16 Gt Development Corporation Contactless stalk mounted control switch
US6325810B1 (en) 1999-06-30 2001-12-04 Ethicon, Inc. Foam buttress for stapling apparatus
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6488196B1 (en) 1999-06-30 2002-12-03 Axya Medical, Inc. Surgical stapler and method of applying plastic staples to body tissue
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6104304A (en) 1999-07-06 2000-08-15 Conexant Systems, Inc. Self-test and status reporting system for microcontroller-controlled devices
JP3293802B2 (en) 1999-07-07 2002-06-17 エスエムシー株式会社 Chuck with position detection function
US6117158A (en) 1999-07-07 2000-09-12 Ethicon Endo-Surgery, Inc. Ratchet release mechanism for hand held instruments
US6168605B1 (en) 1999-07-08 2001-01-02 Ethicon Endo-Surgery, Inc. Curved laparoscopic scissor having arcs of curvature
JP2001035827A (en) 1999-07-16 2001-02-09 Memc Kk High concentration ozone water, preparation method thereof and cleaning method using the same
RU2161450C1 (en) 1999-07-22 2001-01-10 Каншин Николай Николаевич Surgical suturing device
US6402766B2 (en) 1999-07-23 2002-06-11 Ethicon, Inc. Graft fixation device combination
US6436110B2 (en) 1999-07-23 2002-08-20 Ethicon, Inc. Method of securing a graft using a graft fixation device
US7682368B1 (en) 1999-07-28 2010-03-23 Cardica, Inc. Anastomosis tool actuated with stored energy
US6391038B2 (en) 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
US7766924B1 (en) 1999-07-28 2010-08-03 Cardica, Inc. System for performing anastomosis
US7303570B2 (en) 1999-07-28 2007-12-04 Cardica, Inc. Anastomosis tool having a connector holder
US7285131B1 (en) 1999-07-28 2007-10-23 Cardica, Inc. System for performing anastomosis
US7063712B2 (en) 2001-04-27 2006-06-20 Cardica, Inc. Anastomosis method
DE19935725C2 (en) 1999-07-29 2003-11-13 Wolf Gmbh Richard Medical instrument, especially a rectoscope
US6927315B1 (en) 1999-07-30 2005-08-09 3M Innovative Properties Company Adhesive composite having distinct phases
DE19935904C1 (en) 1999-07-30 2001-07-12 Karlsruhe Forschzent Applicator tip of a surgical applicator for placing clips / clips for the connection of tissue
US20020116063A1 (en) 1999-08-02 2002-08-22 Bruno Giannetti Kit for chondrocyte cell transplantation
US6527785B2 (en) 1999-08-03 2003-03-04 Onux Medical, Inc. Surgical suturing instrument and method of use
AU6517900A (en) 1999-08-03 2001-02-19 Smith & Nephew, Inc. Controlled release implantable devices
US6767352B2 (en) 1999-08-03 2004-07-27 Onux Medical, Inc. Surgical suturing instrument and method of use
US6788018B1 (en) 1999-08-03 2004-09-07 Intuitive Surgical, Inc. Ceiling and floor mounted surgical robot set-up arms
IT1307263B1 (en) 1999-08-05 2001-10-30 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT WITH RESTENOSIS ANTAGONIST ACTION, RELATED KIT AND COMPONENTS.
AU6519100A (en) 1999-08-05 2001-03-05 Biocardia, Inc. A system and method for delivering thermally sensitive and reverse-thermal gelation matrials
JP4859317B2 (en) 1999-08-06 2012-01-25 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Drug release biodegradable fiber implant
US6358197B1 (en) 1999-08-13 2002-03-19 Enteric Medical Technologies, Inc. Apparatus for forming implants in gastrointestinal tract and kit for use therewith
US6666860B1 (en) 1999-08-24 2003-12-23 Olympus Optical Co., Ltd. Electric treatment system
JP2001069758A (en) 1999-08-26 2001-03-16 Asahi Optical Co Ltd Power supply unit for endoscope
DE19941859C2 (en) 1999-09-02 2002-06-13 Siemens Audiologische Technik Digital hearing aid
US6237604B1 (en) 1999-09-07 2001-05-29 Scimed Life Systems, Inc. Systems and methods for preventing automatic identification of re-used single use devices
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US6387092B1 (en) 1999-09-07 2002-05-14 Scimed Life Systems, Inc. Systems and methods to identify and disable re-used single use devices based on time elapsed from first therapeutic use
DE50014373D1 (en) 1999-09-09 2007-07-12 Tuebingen Scient Medical Gmbh SURGICAL INSTRUMENT FOR MINIMALLY INVASIVE INTERVENTIONS
US6077290A (en) 1999-09-10 2000-06-20 Tnco, Incorporated Endoscopic instrument with removable front end
US6104162A (en) 1999-09-11 2000-08-15 Sainsbury; Simon R. Method and apparatus for multi-power source for power tools
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
US7267679B2 (en) 1999-09-13 2007-09-11 Rex Medical, L.P Vascular hole closure device
US6317616B1 (en) 1999-09-15 2001-11-13 Neil David Glossop Method and system to facilitate image guided surgery
US6636412B2 (en) 1999-09-17 2003-10-21 Taser International, Inc. Hand-held stun gun for incapacitating a human target
US7075770B1 (en) 1999-09-17 2006-07-11 Taser International, Inc. Less lethal weapons and methods for halting locomotion
JP2001087272A (en) 1999-09-24 2001-04-03 Motoko Iwabuchi Automatic suturing unit for excising living body tissue
US6356072B1 (en) 1999-09-24 2002-03-12 Jacob Chass Hall effect sensor of displacement of magnetic core
US6358224B1 (en) 1999-09-24 2002-03-19 Tyco Healthcare Group Lp Irrigation system for endoscopic surgery
US6458142B1 (en) 1999-10-05 2002-10-01 Ethicon Endo-Surgery, Inc. Force limiting mechanism for an ultrasonic surgical instrument
US6325811B1 (en) 1999-10-05 2001-12-04 Ethicon Endo-Surgery, Inc. Blades with functional balance asymmetries for use with ultrasonic surgical instruments
CA2322061A1 (en) 1999-10-05 2001-04-05 Anil K. Nalagatla Stapling instrument having two staple forming surfaces
US6206903B1 (en) 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US6312435B1 (en) 1999-10-08 2001-11-06 Intuitive Surgical, Inc. Surgical instrument with extended reach for use in minimally invasive surgery
WO2001026559A1 (en) 1999-10-14 2001-04-19 Atropos Limited A retractor
EP1092487A3 (en) 1999-10-15 2004-08-25 Gustav Klauke GmbH Pressing tool with pressure jaws
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US6320123B1 (en) 1999-10-20 2001-11-20 Steven S. Reimers System and method for shielding electrical components from electromagnetic waves
US6780151B2 (en) 1999-10-26 2004-08-24 Acmi Corporation Flexible ureteropyeloscope
US6749560B1 (en) 1999-10-26 2004-06-15 Circon Corporation Endoscope shaft with slotted tube
US6471659B2 (en) 1999-12-27 2002-10-29 Neothermia Corporation Minimally invasive intact recovery of tissue
EP1095627A1 (en) 1999-10-27 2001-05-02 Everest Medical Corporation Electrosurgical probe for surface treatment
DE19951940C2 (en) 1999-10-28 2001-11-29 Karlsruhe Forschzent Clamping device that can be used endoscopically
US6716215B1 (en) 1999-10-29 2004-04-06 Image-Guided Neurologics Cranial drill with sterile barrier
SE515391C2 (en) 1999-11-08 2001-07-23 Tagmaster Ab Identification tag and reader with interference protection
DE19954497C1 (en) 1999-11-11 2001-04-19 Norbert Lemke Electrical apparatus operating device for use in sterile area uses magnetic field device within sterile device cooperating with magnetic field sensor outside sterile area
US6666846B1 (en) 1999-11-12 2003-12-23 Edwards Lifesciences Corporation Medical device introducer and obturator and methods of use
DE19955412A1 (en) 1999-11-18 2001-05-23 Hilti Ag Drilling and chiseling device
US6482063B1 (en) 1999-11-18 2002-11-19 Charles Raymond Frigard Articulating blocks toy
GB9927338D0 (en) 1999-11-18 2000-01-12 Gyrus Medical Ltd Electrosurgical system
US6592572B1 (en) 1999-11-22 2003-07-15 Olympus Optical Co., Ltd. Surgical operation apparatus
US6324339B1 (en) 1999-11-29 2001-11-27 Eveready Battery Company, Inc. Battery pack including input and output waveform modification capability
US6494896B1 (en) 1999-11-30 2002-12-17 Closure Medical Corporation Applicator for laparoscopic or endoscopic surgery
US20020022810A1 (en) 1999-12-07 2002-02-21 Alex Urich Non-linear flow restrictor for a medical aspiration system
US6184655B1 (en) 1999-12-10 2001-02-06 Stryker Corporation Battery charging system with internal power manager
US6352532B1 (en) 1999-12-14 2002-03-05 Ethicon Endo-Surgery, Inc. Active load control of ultrasonic surgical instruments
US6736825B2 (en) 1999-12-14 2004-05-18 Integrated Vascular Interventional Technologies, L C (Ivit Lc) Paired expandable anastomosis devices and related methods
US6432065B1 (en) 1999-12-17 2002-08-13 Ethicon Endo-Surgery, Inc. Method for using a surgical biopsy system with remote control for selecting and operational mode
US6428487B1 (en) 1999-12-17 2002-08-06 Ethicon Endo-Surgery, Inc. Surgical biopsy system with remote control for selecting an operational mode
TW429637B (en) 1999-12-17 2001-04-11 Synergy Scientech Corp Electrical energy storage device
USD535657S1 (en) 1999-12-20 2007-01-23 Apple Computer, Inc. User interface for computer display
US6254619B1 (en) 1999-12-28 2001-07-03 Antoine Garabet Microkeratome
US6197042B1 (en) 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
US6942674B2 (en) 2000-01-05 2005-09-13 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
US6364828B1 (en) 2000-01-06 2002-04-02 Hubert K. Yeung Elongated flexible inspection neck
RU2181566C2 (en) 2000-01-10 2002-04-27 Дубровский Аркадий Вениаминович Controllable pivoting mechanism
US6361546B1 (en) 2000-01-13 2002-03-26 Endotex Interventional Systems, Inc. Deployable recoverable vascular filter and methods for use
US6770078B2 (en) 2000-01-14 2004-08-03 Peter M. Bonutti Movable knee implant and methods therefor
US6699214B2 (en) 2000-01-19 2004-03-02 Scimed Life Systems, Inc. Shear-sensitive injectable delivery system
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US20030205029A1 (en) 2000-01-20 2003-11-06 Chapolini Robert J. Method and apparatus for introducing a non-sterile component into a sterile device
HU225908B1 (en) 2000-01-24 2007-12-28 Ethicon Endo Surgery Europe Surgical circular stapling head
US6193129B1 (en) 2000-01-24 2001-02-27 Ethicon Endo-Surgery, Inc. Cutting blade for a surgical anastomosis stapling instrument
DE10003020C2 (en) 2000-01-25 2001-12-06 Aesculap Ag & Co Kg Bipolar barrel instrument
US6377011B1 (en) 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
US20010034530A1 (en) 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
JP2001208655A (en) 2000-01-28 2001-08-03 Rion Co Ltd Failure diagnostic method and its apparatus
US6429611B1 (en) 2000-01-28 2002-08-06 Hui Li Rotary and linear motor
DE10004264C2 (en) 2000-02-01 2002-06-13 Storz Karl Gmbh & Co Kg Device for the intracorporeal, minimally invasive treatment of a patient
CN1302754C (en) 2000-02-04 2007-03-07 康曼德公司 Surgical clip applier
GB0223348D0 (en) 2002-10-08 2002-11-13 Gyrus Medical Ltd A surgical instrument
US6758846B2 (en) 2000-02-08 2004-07-06 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument
GB0002849D0 (en) 2000-02-08 2000-03-29 Gyrus Medical Ltd An electrosurgical instrument and an electosurgery system including such an instrument
US20040068307A1 (en) 2000-02-08 2004-04-08 Gyrus Medical Limited Surgical instrument
US20040181219A1 (en) 2000-02-08 2004-09-16 Gyrus Medical Limited Electrosurgical instrument and an electrosugery system including such an instrument
US6756705B2 (en) 2000-02-10 2004-06-29 Tri-Tech., Inc Linear stepper motor
US7963964B2 (en) 2000-02-10 2011-06-21 Santilli Albert N Surgical clamp assembly with electrodes
US6911033B2 (en) 2001-08-21 2005-06-28 Microline Pentax Inc. Medical clip applying device
US6306149B1 (en) 2000-02-15 2001-10-23 Microline, Inc. Medical clip device with cyclical pusher mechanism
US6569171B2 (en) 2001-02-28 2003-05-27 Microline, Inc. Safety locking mechanism for a medical clip device
US6589164B1 (en) 2000-02-15 2003-07-08 Transvascular, Inc. Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices
DE10007919C2 (en) 2000-02-21 2003-07-17 Wolf Gmbh Richard Forceps for free preparation of tissue in a body cavity
US6348061B1 (en) 2000-02-22 2002-02-19 Powermed, Inc. Vessel and lumen expander attachment for use with an electromechanical driver device
GB0004179D0 (en) 2000-02-22 2000-04-12 Gyrus Medical Ltd Tissue resurfacing
US6629974B2 (en) 2000-02-22 2003-10-07 Gyrus Medical Limited Tissue treatment method
US6533157B1 (en) 2000-02-22 2003-03-18 Power Medical Interventions, Inc. Tissue stapling attachment for use with an electromechanical driver device
US7770773B2 (en) 2005-07-27 2010-08-10 Power Medical Interventions, Llc Surgical device
EP1259173B1 (en) 2000-02-22 2011-08-31 Tyco Healthcare Group LP An electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US8016855B2 (en) 2002-01-08 2011-09-13 Tyco Healthcare Group Lp Surgical device
US6488197B1 (en) 2000-02-22 2002-12-03 Power Medical Interventions, Inc. Fluid delivery device for use with anastomosing resecting and stapling instruments
US6723091B2 (en) 2000-02-22 2004-04-20 Gyrus Medical Limited Tissue resurfacing
US7335199B2 (en) 2000-02-22 2008-02-26 Rhytec Limited Tissue resurfacing
US6603050B2 (en) 2000-02-23 2003-08-05 Uxb International, Inc. Destruction of energetic materials
US6582441B1 (en) 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
WO2001062173A2 (en) 2000-02-25 2001-08-30 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6273897B1 (en) 2000-02-29 2001-08-14 Ethicon, Inc. Surgical bettress and surgical stapling apparatus
US20030070683A1 (en) 2000-03-04 2003-04-17 Deem Mark E. Methods and devices for use in performing pulmonary procedures
EP1416861B1 (en) 2000-03-06 2008-12-03 Tyco Healthcare Group Lp Apparatus for performing a bypass procedure in a digestive system
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6763307B2 (en) 2000-03-06 2004-07-13 Bioseek, Inc. Patient classification
US6423079B1 (en) 2000-03-07 2002-07-23 Blake, Iii Joseph W Repeating multi-clip applier
USD455758S1 (en) 2000-03-08 2002-04-16 Ethicon Endo-Surgery, Inc. Operational mode icon for a display screen of a control unit for a surgical device
GB0005897D0 (en) 2000-03-10 2000-05-03 Black & Decker Inc Power tool
US6663623B1 (en) 2000-03-13 2003-12-16 Olympus Optical Co., Ltd. Electric surgical operation apparatus
US6525499B2 (en) 2000-03-15 2003-02-25 Keihin Corporation System for controlling vehicle power sliding door
MXPA02008996A (en) 2000-03-16 2004-10-15 Medigus Ltd Fundoplication apparatus and method.
US6510854B2 (en) 2000-03-16 2003-01-28 Gyrus Medical Limited Method of treatment of prostatic adenoma
US7819799B2 (en) 2000-03-16 2010-10-26 Immersion Medical, Inc. System and method for controlling force applied to and manipulation of medical instruments
IL138632A (en) 2000-09-21 2008-06-05 Minelu Zonnenschein Multiple view endoscopes
IL139788A (en) 2000-11-20 2006-10-05 Minelu Zonnenschein Stapler for endoscopes
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
US9314339B2 (en) 2000-03-27 2016-04-19 Formae, Inc. Implants for replacing cartilage, with negatively-charged hydrogel surfaces and flexible matrix reinforcement
DE10015398A1 (en) 2000-03-28 2001-10-11 Bosch Gmbh Robert Electrical device, especially hand-held tool, has connection point for transfer of information via information link for evaluation in power supply unit
JP2001276091A (en) 2000-03-29 2001-10-09 Toshiba Corp Medical manipulator
US6778846B1 (en) 2000-03-30 2004-08-17 Medtronic, Inc. Method of guiding a medical device and system regarding same
US6802822B1 (en) 2000-03-31 2004-10-12 3M Innovative Properties Company Dispenser for an adhesive tissue sealant having a flexible link
JP2001275941A (en) 2000-03-31 2001-10-09 Olympus Optical Co Ltd Motor-driven bending endoscopic apparatus
EP1272117A2 (en) 2000-03-31 2003-01-08 Rita Medical Systems, Inc. Tissue biopsy and treatment apparatus and method
US6984203B2 (en) 2000-04-03 2006-01-10 Neoguide Systems, Inc. Endoscope with adjacently positioned guiding apparatus
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US6837846B2 (en) 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
US6858005B2 (en) 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
WO2005018428A2 (en) 2000-04-03 2005-03-03 Neoguide Systems, Inc. Activated polymer articulated instruments and methods of insertion
IL135571A0 (en) 2000-04-10 2001-05-20 Doron Adler Minimal invasive surgery imaging system
US6517528B1 (en) 2000-04-13 2003-02-11 Scimed Life Systems, Inc. Magnetic catheter drive shaft clutch
JP4716594B2 (en) 2000-04-17 2011-07-06 オリンパス株式会社 Endoscope
USD445745S1 (en) 2000-04-18 2001-07-31 Honda Giken Kogyo Kabushiki Kaisha Indicator icon for a vehicle display screen
US6415542B1 (en) 2000-04-19 2002-07-09 International Business Machines Corporation Location-based firearm discharge prevention
US6905498B2 (en) 2000-04-27 2005-06-14 Atricure Inc. Transmural ablation device with EKG sensor and pacing electrode
AU2001253654A1 (en) 2000-04-27 2001-11-12 Medtronic, Inc. Vibration sensitive ablation apparatus and method
RU2187249C2 (en) 2000-04-27 2002-08-20 Общество с ограниченной ответственностью "ЭНДОМЕДИУМ+" Surgical instrument
US6412639B1 (en) 2000-04-28 2002-07-02 Closure Medical Corporation Medical procedure kit having medical adhesive
US6387114B2 (en) 2000-04-28 2002-05-14 Scimed Life Systems, Inc. Gastrointestinal compression clips
DE10058796A1 (en) 2000-05-09 2001-11-15 Heidelberger Druckmasch Ag Saddle stitcher with separate drives
FR2808674B1 (en) 2000-05-12 2002-08-02 Cie Euro Etude Rech Paroscopie GASTROPLASTY RING WITH GRIPPED LEGS
US6305891B1 (en) 2000-05-15 2001-10-23 Mark S. Burlingame Fastening device and a spacer, and a method of using the same
US6361542B1 (en) 2000-05-17 2002-03-26 Prism Enterprises, Inc. Obstetrical vacuum extractor cup with force measuring capabilities
US7510566B2 (en) 2000-05-19 2009-03-31 Coapt Systems, Inc. Multi-point tissue tension distribution device and method, a chin lift variation
US6485503B2 (en) 2000-05-19 2002-11-26 Coapt Systems, Inc. Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US7172615B2 (en) 2000-05-19 2007-02-06 Coapt Systems, Inc. Remotely anchored tissue fixation device
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6805273B2 (en) 2002-11-04 2004-10-19 Federico Bilotti Surgical stapling instrument
DE10026683C2 (en) 2000-05-30 2003-07-10 Ethicon Endo Surgery Europe Surgical stapling device
AU2001275112A1 (en) 2000-06-01 2001-12-11 Allegrix, Inc. Systems and methods for application service provision
US6602262B2 (en) 2000-06-02 2003-08-05 Scimed Life Systems, Inc. Medical device having linear to rotation control
US6306423B1 (en) 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
US6883199B1 (en) 2000-06-06 2005-04-26 Koninklijke Philips Electronics, N.V. Short-life power toothbrush for trial use
AU2001275511A1 (en) 2000-06-07 2001-12-17 Stereotaxis, Inc. Guide for medical devices
GB0014059D0 (en) 2000-06-09 2000-08-02 Chumas Paul D Method and apparatus
GB0014120D0 (en) 2000-06-10 2000-08-02 Sinton Richard T Hand instrument
US6492785B1 (en) 2000-06-27 2002-12-10 Deere & Company Variable current limit control for vehicle electric drive system
DE10031436A1 (en) 2000-06-28 2002-01-10 Alexander Von Fuchs Anti-slip protection for a housing head of medical instruments
US6863694B1 (en) 2000-07-03 2005-03-08 Osteotech, Inc. Osteogenic implants derived from bone
JP3789733B2 (en) 2000-07-06 2006-06-28 アルプス電気株式会社 Compound operation switch
DE10033344B4 (en) 2000-07-08 2011-04-07 Robert Bosch Gmbh Method and device for evaluating a sensor signal
US6660008B1 (en) 2001-06-07 2003-12-09 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
JP3897962B2 (en) 2000-07-19 2007-03-28 株式会社モリタ製作所 Identification-type instrument body, identification-type adapter, identification-type tube, and medical device using these
US20100241137A1 (en) 2000-07-20 2010-09-23 Mark Doyle Hand-actuated articulating surgical tool
DK1309277T3 (en) 2000-07-20 2008-10-06 Kinetic Surgical Llc Hand-activated articulated surgical tool
EP1303222A1 (en) 2000-07-21 2003-04-23 Atropos Limited A cannula
US6447799B1 (en) 2000-07-24 2002-09-10 Joseph M. Ullman Thromboplastic system
AU2001279026B2 (en) 2000-07-25 2005-12-22 Angiodynamics, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
US6494882B1 (en) 2000-07-25 2002-12-17 Verimetra, Inc. Cutting instrument having integrated sensors
US6392854B1 (en) 2000-07-27 2002-05-21 Motorola, Inc. Method and system for testing continuity of a motor and associated drive circuitry
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
US6902560B1 (en) 2000-07-27 2005-06-07 Intuitive Surgical, Inc. Roll-pitch-roll surgical tool
US6585664B2 (en) 2000-08-02 2003-07-01 Ethicon Endo-Surgery, Inc. Calibration method for an automated surgical biopsy device
US8366787B2 (en) 2000-08-04 2013-02-05 Depuy Products, Inc. Hybrid biologic-synthetic bioabsorbable scaffolds
JP5162782B2 (en) 2000-08-07 2013-03-13 株式会社小松製作所 Work machine display
JP2002054903A (en) 2000-08-10 2002-02-20 Nippon Densan Corp Displacement detecting device
JP2002051974A (en) 2000-08-14 2002-02-19 Fuji Photo Optical Co Ltd Endoscope manipulator
US6572629B2 (en) 2000-08-17 2003-06-03 Johns Hopkins University Gastric reduction endoscopy
GB0020461D0 (en) 2000-08-18 2000-10-11 Oliver Crispin Consulting Ltd Improvements in and relating to the robotic positioning of a work tool to a sensor
US6533723B1 (en) 2000-08-25 2003-03-18 Ge Marquette Medical Systems, Inc. Multiple-link cable management apparatus
US6876850B2 (en) 2000-08-30 2005-04-05 Sony Corporation Communication apparatus and communication method
US6830174B2 (en) 2000-08-30 2004-12-14 Cerebral Vascular Applications, Inc. Medical instrument
US20040093024A1 (en) 2000-09-01 2004-05-13 James Lousararian Advanced wound site management systems and methods
US6767356B2 (en) 2000-09-01 2004-07-27 Angiolink Corporation Advanced wound site management systems and methods
GB0021799D0 (en) 2000-09-05 2000-10-18 Gyrus Medical Ltd Electrosurgery system
US20020029032A1 (en) 2000-09-07 2002-03-07 Eva Arkin Fluorescent surgical hardware and surgical supplies for improved visualization
JP2002078674A (en) 2000-09-08 2002-03-19 Fuji Photo Optical Co Ltd Curved surface structure of endoscope
DE60144328D1 (en) 2000-09-08 2011-05-12 Abbott Vascular Inc Surgical clamp
US6712773B1 (en) 2000-09-11 2004-03-30 Tyco Healthcare Group Lp Biopsy system
JP4297603B2 (en) 2000-09-19 2009-07-15 株式会社トップ Surgical stapler
ATE369800T1 (en) 2000-09-24 2007-09-15 Medtronic Inc MOTOR CONTROL SYSTEM FOR A SURGICAL HANDPIECE
WO2002026143A1 (en) 2000-09-27 2002-04-04 Applied Medical Resources Surgical apparatus with detachable handle assembly
US6755843B2 (en) 2000-09-29 2004-06-29 Olympus Optical Co., Ltd. Endoscopic suturing device
JP4014792B2 (en) 2000-09-29 2007-11-28 株式会社東芝 manipulator
CA2424109C (en) 2000-10-04 2011-03-29 Synthes (U.S.A.) Device for supplying an electro-pen with electrical energy
US7007176B2 (en) 2000-10-10 2006-02-28 Primarion, Inc. System and method for highly phased power regulation using adaptive compensation control
US6817508B1 (en) 2000-10-13 2004-11-16 Tyco Healthcare Group, Lp Surgical stapling device
US7334717B2 (en) 2001-10-05 2008-02-26 Tyco Healthcare Group Lp Surgical fastener applying apparatus
DE60135920D1 (en) 2000-10-13 2008-11-06 Tyco Healthcare SURGICAL INSTRUMENT FOR PUTTING BRACES
WO2003079909A2 (en) 2002-03-19 2003-10-02 Tyco Healthcare Group, Lp Surgical fastener applying apparatus
US7407076B2 (en) 2000-10-13 2008-08-05 Tyco Healthcare Group Lp Surgical stapling device
US6551333B2 (en) 2000-10-19 2003-04-22 Ethicon Endo-Surgery, Inc. Method for attaching hernia mesh
WO2002034108A2 (en) 2000-10-19 2002-05-02 Applied Medical Resources Corporation Surgical access apparatus and method
US7485124B2 (en) 2000-10-19 2009-02-03 Ethicon Endo-Surgery, Inc. Surgical instrument having a fastener delivery mechanism
US6773438B1 (en) 2000-10-19 2004-08-10 Ethicon Endo-Surgery Surgical instrument having a rotary lockout mechanism
US20040267310A1 (en) * 2000-10-20 2004-12-30 Racenet David C Directionally biased staple and anvil assembly for forming the staple
US7273483B2 (en) 2000-10-20 2007-09-25 Ethicon Endo-Surgery, Inc. Apparatus and method for alerting generator functions in an ultrasonic surgical system
US6945981B2 (en) 2000-10-20 2005-09-20 Ethicon-Endo Surgery, Inc. Finger operated switch for controlling a surgical handpiece
US6908472B2 (en) 2000-10-20 2005-06-21 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
US6656177B2 (en) 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6913608B2 (en) 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US7665995B2 (en) 2000-10-23 2010-02-23 Toly Christopher C Medical training simulator including contact-less sensors
US20020188287A1 (en) 2001-05-21 2002-12-12 Roni Zvuloni Apparatus and method for cryosurgery within a body cavity
US6605090B1 (en) 2000-10-25 2003-08-12 Sdgi Holdings, Inc. Non-metallic implant devices and intra-operative methods for assembly and fixation
US6793661B2 (en) 2000-10-30 2004-09-21 Vision Sciences, Inc. Endoscopic sheath assemblies having longitudinal expansion inhibiting mechanisms
GB0026586D0 (en) 2000-10-31 2000-12-13 Gyrus Medical Ltd An electrosurgical system
US6893435B2 (en) 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
US20030139741A1 (en) 2000-10-31 2003-07-24 Gyrus Medical Limited Surgical instrument
FR2815842B1 (en) 2000-10-31 2003-05-09 Assist Publ Hopitaux De Paris MECHANICAL STAPLER FOR RECTUM SURGERY
JP2002149860A (en) 2000-11-07 2002-05-24 Japan Institute Of Plant Maintenance Maintenance and management method for facility in manufacturing business and maintenance and management support system
JP2002143078A (en) 2000-11-08 2002-05-21 Olympus Optical Co Ltd Outside tube for endoscope
US6506197B1 (en) 2000-11-15 2003-01-14 Ethicon, Inc. Surgical method for affixing a valve to a heart using a looped suture combination
US6749600B1 (en) 2000-11-15 2004-06-15 Impulse Dynamics N.V. Braided splittable catheter sheath
JP3822433B2 (en) 2000-11-16 2006-09-20 オリンパス株式会社 TREATMENT TOOL, TREATMENT TOOL CONTROL DEVICE AND MEDICAL TREATMENT SYSTEM
US6498480B1 (en) 2000-11-22 2002-12-24 Wabash Technologies, Inc. Magnetic non-contacting rotary transducer
US6520971B1 (en) 2000-11-27 2003-02-18 Scimed Life Systems, Inc. Full thickness resection device control handle
US8286845B2 (en) 2000-11-27 2012-10-16 Boston Scientific Scimed, Inc. Full thickness resection device control handle
US6821282B2 (en) 2000-11-27 2004-11-23 Scimed Life Systems, Inc. Full thickness resection device control handle
JP2002159500A (en) 2000-11-28 2002-06-04 Koseki Ika Kk Ligament fixing system
US6899915B2 (en) 2000-11-29 2005-05-31 President And Fellows Of Harvard College Methods and compositions for culturing a biological tooth
US7081114B2 (en) 2000-11-29 2006-07-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
JP2002170622A (en) 2000-11-30 2002-06-14 Sumitomo Wiring Syst Ltd Connector
US6398795B1 (en) 2000-11-30 2002-06-04 Scimed Life Systems, Inc. Stapling and cutting in resectioning for full thickness resection devices
US6439446B1 (en) 2000-12-01 2002-08-27 Stephen J. Perry Safety lockout for actuator shaft
US6569085B2 (en) 2001-08-16 2003-05-27 Syntheon, Llc Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
US20020138086A1 (en) 2000-12-06 2002-09-26 Robert Sixto Surgical clips particularly useful in the endoluminal treatment of gastroesophageal reflux disease (GERD)
US6588931B2 (en) 2000-12-07 2003-07-08 Delphi Technologies, Inc. Temperature sensor with flexible circuit substrate
EP1341484B1 (en) 2000-12-08 2009-05-06 Osteotech, Inc. Implant for orthopedic applications
US6852330B2 (en) 2000-12-21 2005-02-08 Depuy Mitek, Inc. Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
US20020127265A1 (en) 2000-12-21 2002-09-12 Bowman Steven M. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
CA2365376C (en) 2000-12-21 2006-03-28 Ethicon, Inc. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US6406440B1 (en) 2000-12-21 2002-06-18 Ethicon Endo-Surgery, Inc. Specimen retrieval bag
US20020185514A1 (en) 2000-12-22 2002-12-12 Shane Adams Control module for flywheel operated hand tool
KR100498302B1 (en) 2000-12-27 2005-07-01 엘지전자 주식회사 Copacity variable motor for linear compressor
US6503259B2 (en) 2000-12-27 2003-01-07 Ethicon, Inc. Expandable anastomotic device
US7041868B2 (en) 2000-12-29 2006-05-09 Kimberly-Clark Worldwide, Inc. Bioabsorbable wound dressing
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US6667825B2 (en) 2001-01-03 2003-12-23 Santa Fe Science And Technology, Inc. Stable conjugated polymer electrochromic devices incorporating ionic liquids
US6482200B2 (en) 2001-01-03 2002-11-19 Ronald D. Shippert Cautery apparatus and method
AU2002251732A1 (en) 2001-01-04 2002-08-28 Becomm Corporation Universal media bar for controlling different types of media
EP1349492A2 (en) 2001-01-04 2003-10-08 Medtronic, Inc. Implantable medical device with sensor
US7037314B2 (en) 2001-01-09 2006-05-02 Armstrong David N Multiple band ligator and anoscope system and method for using same
US20020133131A1 (en) 2001-01-09 2002-09-19 Krishnakumar Rangachari Absorbent material incorporating synthetic fibers and process for making the material
IL156876A0 (en) 2001-01-11 2004-02-08 Given Imaging Ltd Device and system for in-vivo procedures
US6439439B1 (en) 2001-01-12 2002-08-27 Telios Orthopedic Systems, Inc. Bone cement delivery apparatus and hand-held fluent material dispensing apparatus
US6494885B1 (en) 2001-01-17 2002-12-17 Avtar S. Dhindsa Endoscopic stone extraction device with rotatable basket
US6695774B2 (en) 2001-01-19 2004-02-24 Endactive, Inc. Apparatus and method for controlling endoscopic instruments
JP4121730B2 (en) 2001-01-19 2008-07-23 富士通コンポーネント株式会社 Pointing device and portable information device
EP1357844B1 (en) 2001-01-24 2008-06-25 Tyco Healthcare Group Lp Anastomosis instrument and method for performing same
US6620161B2 (en) 2001-01-24 2003-09-16 Ethicon, Inc. Electrosurgical instrument with an operational sequencing element
US6626834B2 (en) 2001-01-25 2003-09-30 Shane Dunne Spiral scanner with electronic control
US20020111624A1 (en) 2001-01-26 2002-08-15 Witt David A. Coagulating electrosurgical instrument with tissue dam
ES2304430T3 (en) 2001-01-29 2008-10-16 The Acrobot Company Limited ROBOTS WITH ACTIVE LIMITATION.
US20020134811A1 (en) 2001-01-29 2002-09-26 Senco Products, Inc. Multi-mode power tool utilizing attachment
US20020103494A1 (en) 2001-01-31 2002-08-01 Pacey John Allen Percutaneous cannula delvery system for hernia patch
JP4202138B2 (en) 2001-01-31 2008-12-24 レックス メディカル インコーポレイテッド Apparatus and method for stapling and ablating gastroesophageal tissue
US6997931B2 (en) 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
US8313496B2 (en) 2001-02-02 2012-11-20 Lsi Solutions, Inc. System for endoscopic suturing
US9050192B2 (en) 2001-02-05 2015-06-09 Formae, Inc. Cartilage repair implant with soft bearing surface and flexible anchoring device
JP3939158B2 (en) 2001-02-06 2007-07-04 オリンパス株式会社 Endoscope device
US6723109B2 (en) 2001-02-07 2004-04-20 Karl Storz Endoscopy-America, Inc. Deployable surgical clamp with delivery/retrieval device and actuator
US6302743B1 (en) 2001-02-09 2001-10-16 Pen-Li Chiu Electric outlet assembly with rotary receptacles
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US7008433B2 (en) 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
US20030135204A1 (en) 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
EP1303228B1 (en) 2001-02-15 2012-09-26 Hansen Medical, Inc. Flexible surgical instrument
US7766894B2 (en) 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
DE10108732A1 (en) 2001-02-23 2002-09-05 Philips Corp Intellectual Pty Device with a magnetic position sensor
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
DE60115192T2 (en) 2001-02-26 2006-08-10 Ethicon, Inc. Biocompatible composite foam
US6775575B2 (en) 2001-02-26 2004-08-10 D. Bommi Bommannan System and method for reducing post-surgical complications
CA2766682A1 (en) 2001-02-27 2002-09-06 Tyco Healthcare Group Lp External mixer assembly
USD454951S1 (en) 2001-02-27 2002-03-26 Visionary Biomedical, Inc. Steerable catheter
US7139016B2 (en) 2001-02-28 2006-11-21 Eastman Kodak Company Intra-oral camera system with chair-mounted display
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
US6582387B2 (en) 2001-03-20 2003-06-24 Therox, Inc. System for enriching a bodily fluid with a gas
US20020135474A1 (en) 2001-03-21 2002-09-26 Sylliassen Douglas G. Method and device for sensor-based power management of a consumer electronic device
US6802844B2 (en) 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
US7605826B2 (en) 2001-03-27 2009-10-20 Siemens Corporate Research, Inc. Augmented reality guided instrument positioning with depth determining graphics
JP2002282269A (en) 2001-03-28 2002-10-02 Gc Corp Pin for fixing dental tissue regenerated membrane
US7097644B2 (en) 2001-03-30 2006-08-29 Ethicon Endo-Surgery, Inc. Medical device with improved wall construction
US6861954B2 (en) 2001-03-30 2005-03-01 Bruce H. Levin Tracking medical products with integrated circuits
US20030181900A1 (en) 2002-03-25 2003-09-25 Long Gary L. Endoscopic ablation system with a plurality of electrodes
US6769590B2 (en) 2001-04-02 2004-08-03 Susan E. Vresh Luminal anastomotic device and method
JP4388745B2 (en) 2001-04-03 2009-12-24 タイコ ヘルスケア グループ リミテッド パートナーシップ Surgical stapling device for performing annular anastomosis
US6605669B2 (en) 2001-04-03 2003-08-12 E. I. Du Pont De Nemours And Company Radiation-curable coating compounds
EP1385441A2 (en) 2001-04-05 2004-02-04 John Martin Heasley General field isolation rubber dam
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
WO2002080796A1 (en) 2001-04-06 2002-10-17 Sherwood Services Ag Vessel sealer and divider with non-conductive stop members
US7101372B2 (en) 2001-04-06 2006-09-05 Sherwood Sevices Ag Vessel sealer and divider
US7090673B2 (en) 2001-04-06 2006-08-15 Sherwood Services Ag Vessel sealer and divider
DE10117597C1 (en) 2001-04-07 2002-11-28 Itt Mfg Enterprises Inc Switch
US6638285B2 (en) 2001-04-16 2003-10-28 Shlomo Gabbay Biological tissue strip and system and method to seal tissue
JP2002314298A (en) 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Device for packaging electronic component
US6994708B2 (en) 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US7824401B2 (en) 2004-10-08 2010-11-02 Intuitive Surgical Operations, Inc. Robotic tool with wristed monopolar electrosurgical end effectors
US7367973B2 (en) 2003-06-30 2008-05-06 Intuitive Surgical, Inc. Electro-surgical instrument with replaceable end-effectors and inhibited surface conduction
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US7351258B2 (en) 2001-04-20 2008-04-01 The Research Foundation Of State University Of New York At Stony Brook Apparatus and method for fixation of vascular grafts
US6620111B2 (en) 2001-04-20 2003-09-16 Ethicon Endo-Surgery, Inc. Surgical biopsy device having automatic rotation of the probe for taking multiple samples
EP1381302B1 (en) 2001-04-20 2008-06-18 Power Medical Interventions, Inc. Imaging device
US20040110439A1 (en) 2001-04-20 2004-06-10 Chaikof Elliot L Native protein mimetic fibers, fiber networks and fabrics for medical use
US7578825B2 (en) 2004-04-19 2009-08-25 Acumed Llc Placement of fasteners into bone
BR0209198A (en) 2001-04-26 2004-06-08 Control Delivery Sys Inc Synthesis methods of phenol-containing compounds
US20020188170A1 (en) 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US20020158593A1 (en) 2001-04-27 2002-10-31 Henderson Jeffery L. Circuit for controlling dynamic braking of a motor shaft in a power tool
US7225959B2 (en) 2001-04-30 2007-06-05 Black & Decker, Inc. Portable, battery-powered air compressor for a pneumatic tool system
NZ511444A (en) 2001-05-01 2004-01-30 Deep Video Imaging Ltd Information display
US6586898B2 (en) 2001-05-01 2003-07-01 Magnon Engineering, Inc. Systems and methods of electric motor control
US6535764B2 (en) 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
DE10121305A1 (en) 2001-05-02 2002-12-12 Ethicon Endo Surgery Europe Surgical instrument
US6349868B1 (en) 2001-05-03 2002-02-26 Chris A. Mattingly Multipurpose stapler
EP1389958B1 (en) 2001-05-06 2008-10-29 Stereotaxis, Inc. System for advancing a catheter
US6592597B2 (en) 2001-05-07 2003-07-15 Ethicon Endo-Surgery, Inc. Adhesive for attaching buttress material to a surgical fastening device
US6503257B2 (en) 2001-05-07 2003-01-07 Ethicon Endo-Surgery, Inc. Method for releasing buttress material attached to a surgical fastening device
US6827725B2 (en) 2001-05-10 2004-12-07 Gyrus Medical Limited Surgical instrument
EP1385439A1 (en) 2001-05-10 2004-02-04 Rita Medical Systems, Inc. Rf tissue ablation apparatus and method
US6630047B2 (en) 2001-05-21 2003-10-07 3M Innovative Properties Company Fluoropolymer bonding composition and method
US6588277B2 (en) 2001-05-21 2003-07-08 Ethicon Endo-Surgery Method for detecting transverse mode vibrations in an ultrasonic hand piece/blade
US20020177848A1 (en) 2001-05-24 2002-11-28 Csaba Truckai Electrosurgical working end for sealing tissue
US20050010158A1 (en) 2001-05-24 2005-01-13 Brugger James M. Drop-in blood treatment cartridge with filter
US6766957B2 (en) 2001-05-25 2004-07-27 Sony Corporation Optical device for bar-code reading, method for manufacturing an optical device, and light projection/receiving package
US6558400B2 (en) 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
IES20010547A2 (en) 2001-06-07 2002-12-11 Christy Cummins Surgical Staple
EP2067451B1 (en) 2001-06-07 2013-11-20 Kaltenbach & Voigt GmbH Medical or dental instrument and/or care device and/or system for the medical or dental instrument
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
WO2002102226A2 (en) 2001-06-14 2002-12-27 Suturtek Incorporated Apparatus and method for surgical suturing with thread management
US7371403B2 (en) 2002-06-14 2008-05-13 Providence Health System-Oregon Wound dressing and method for controlling severe, life-threatening bleeding
DE20121753U1 (en) 2001-06-15 2003-04-17 BEMA GmbH + Co. KG Endochirurgische Instrumente, 78576 Emmingen-Liptingen Handle for a surgical instrument comprises a locking device having a sliding element attached to one handle part and axially moving in a clamping housing attached to the other handle part
US20030040670A1 (en) 2001-06-15 2003-02-27 Assaf Govari Method for measuring temperature and of adjusting for temperature sensitivity with a medical device having a position sensor
USD465226S1 (en) 2001-06-18 2002-11-05 Bellsouth Intellecutal Property Corporation Display screen with a user interface icon
US20030009154A1 (en) 2001-06-20 2003-01-09 Whitman Michael P. Method and system for integrated medical tracking
CA2814279C (en) 2001-06-22 2015-12-29 Tyco Healthcare Group Lp Electro-mechanical surgical device with data memory unit
US7000911B2 (en) 2001-06-22 2006-02-21 Delaware Capital Formation, Inc. Motor pack for automated machinery
US6726706B2 (en) 2001-06-26 2004-04-27 Steven Dominguez Suture tape and method for use
US20060178556A1 (en) 2001-06-29 2006-08-10 Intuitive Surgical, Inc. Articulate and swapable endoscope for a surgical robot
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US20050182298A1 (en) 2002-12-06 2005-08-18 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
CA2451824C (en) 2001-06-29 2015-02-24 Intuitive Surgical, Inc. Platform link wrist mechanism
US20060199999A1 (en) 2001-06-29 2006-09-07 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
US20040243147A1 (en) 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
US7607189B2 (en) 2004-07-14 2009-10-27 Colgate-Palmolive Oral care implement
JP3646162B2 (en) 2001-07-04 2005-05-11 独立行政法人産業技術総合研究所 Transplant for cartilage tissue regeneration
CN2488482Y (en) 2001-07-05 2002-05-01 天津市华志计算机应用有限公司 Joint locking mechanism for mechanical arm
US6696814B2 (en) 2001-07-09 2004-02-24 Tyco Electronics Corporation Microprocessor for controlling the speed and frequency of a motor shaft in a power tool
JP2004534591A (en) 2001-07-09 2004-11-18 タイコ ヘルスケア グループ エルピー Right angle clip applier device and method
WO2003007805A2 (en) 2001-07-16 2003-01-30 Depuy Products, Inc. Cartilage repair apparatus and method
US8025896B2 (en) 2001-07-16 2011-09-27 Depuy Products, Inc. Porous extracellular matrix scaffold and method
US20050027307A1 (en) 2001-07-16 2005-02-03 Schwartz Herbert Eugene Unitary surgical device and method
US7056123B2 (en) 2001-07-16 2006-06-06 Immersion Corporation Interface apparatus with cable-driven force feedback and grounded actuators
IL144446A0 (en) 2001-07-19 2002-05-23 Prochon Biotech Ltd Plasma protein matrices and methods for their preparation
EP1277548B1 (en) 2001-07-19 2006-05-17 HILTI Aktiengesellschaft Bolt driving tool with setting depth control
US7510534B2 (en) 2001-07-20 2009-03-31 Ethicon Endo-Surgery, Inc. Method for operating biopsy device
JP3646163B2 (en) 2001-07-31 2005-05-11 国立大学法人 東京大学 Active forceps
US6755854B2 (en) 2001-07-31 2004-06-29 Advanced Cardiovascular Systems, Inc. Control device and mechanism for deploying a self-expanding medical device
DE20112837U1 (en) 2001-08-02 2001-10-04 Aesculap AG & Co. KG, 78532 Tuttlingen Forceps or tweezers shaped surgical instrument
US7208005B2 (en) 2001-08-06 2007-04-24 The Penn State Research Foundation Multifunctional tool and method for minimally invasive surgery
JP4235105B2 (en) 2001-08-07 2009-03-11 並木精密宝石株式会社 Magnetic microencoder and micromotor
EP1285633B1 (en) 2001-08-07 2006-12-13 Universitair Medisch Centrum Utrecht Device for connecting a surgical instrument to a stable basis
EP2314233B1 (en) 2001-08-08 2013-06-12 Stryker Corporation A surgical tool system with an intermediate attachment located between the handpiece and an accessory or an implant, the attachment able to transmit energy from the handpiece to the accessory or the implant and the transmission of data signals from the accessory or implant to the handpiece
US6592608B2 (en) 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
DE10139153A1 (en) 2001-08-09 2003-02-27 Ingo F Herrmann Disposable endoscope sheath
IES20010748A2 (en) 2001-08-09 2003-02-19 Christy Cummins Surgical Stapling Device and Method
JP3926119B2 (en) 2001-08-10 2007-06-06 株式会社東芝 Medical manipulator
DE50207516D1 (en) 2001-08-10 2006-08-24 Roche Diagnostics Gmbh PROCESS FOR PRODUCING PROTEIN-LOADED MICROPARTICLES
US6705503B1 (en) 2001-08-20 2004-03-16 Tricord Solutions, Inc. Electrical motor driven nail gun
US6692507B2 (en) 2001-08-23 2004-02-17 Scimed Life Systems, Inc. Impermanent biocompatible fastener
US7563862B2 (en) 2001-08-24 2009-07-21 Neuren Pharmaceuticals Limited Neural regeneration peptides and methods for their use in treatment of brain damage
DE60239778D1 (en) 2001-08-27 2011-06-01 Gyrus Medical Ltd Electrosurgical device
GB0425051D0 (en) 2004-11-12 2004-12-15 Gyrus Medical Ltd Electrosurgical generator and system
US6929641B2 (en) 2001-08-27 2005-08-16 Gyrus Medical Limited Electrosurgical system
US7282048B2 (en) 2001-08-27 2007-10-16 Gyrus Medical Limited Electrosurgical generator and system
US6966907B2 (en) 2001-08-27 2005-11-22 Gyrus Medical Limited Electrosurgical generator and system
WO2004078051A2 (en) 2001-08-27 2004-09-16 Gyrus Medial Limited Electrosurgical system
US6808525B2 (en) 2001-08-27 2004-10-26 Gyrus Medical, Inc. Bipolar electrosurgical hook probe for cutting and coagulating tissue
US7344532B2 (en) 2001-08-27 2008-03-18 Gyrus Medical Limited Electrosurgical generator and system
US6629988B2 (en) 2001-08-28 2003-10-07 Ethicon, Inc. Composite staple for completing an anastomosis
US6755338B2 (en) 2001-08-29 2004-06-29 Cerebral Vascular Applications, Inc. Medical instrument
US20030045835A1 (en) 2001-08-30 2003-03-06 Vascular Solutions, Inc. Method and apparatus for coagulation and closure of pseudoaneurysms
NL1018874C2 (en) 2001-09-03 2003-03-05 Michel Petronella Hub Vleugels Surgical instrument.
US6747121B2 (en) 2001-09-05 2004-06-08 Synthes (Usa) Poly(L-lactide-co-glycolide) copolymers, methods for making and using same, and devices containing same
JP2003070804A (en) 2001-09-05 2003-03-11 Olympus Optical Co Ltd Remote medical support system
JP4857504B2 (en) 2001-09-10 2012-01-18 マックス株式会社 Electric stapler staple detection mechanism
KR100431690B1 (en) 2001-09-12 2004-05-17 김중한 Apparatus for binding wire
US6799669B2 (en) 2001-09-13 2004-10-05 Siemens Vdo Automotive Corporation Dynamic clutch control
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6773409B2 (en) 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
GB2379878B (en) 2001-09-21 2004-11-10 Gyrus Medical Ltd Electrosurgical system and method
US6955864B1 (en) 2001-09-21 2005-10-18 Defibtech, Llc Medical device battery pack with active status indication
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
DE10147145C2 (en) 2001-09-25 2003-12-18 Kunz Reiner Multi-function instrument for micro-invasive surgery
JP3557186B2 (en) 2001-09-26 2004-08-25 三洋電機株式会社 DC-DC converter
US6578751B2 (en) 2001-09-26 2003-06-17 Scimed Life Systems, Inc. Method of sequentially firing staples using springs and a rotary or linear shutter
JP4450622B2 (en) 2001-09-28 2010-04-14 アンジオ ダイナミクス インコーポレイテッド Impedance-controlled tissue peeling device and method
US7108701B2 (en) 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
SE523684C2 (en) 2001-10-04 2004-05-11 Isaberg Rapid Ab Control device for a drive motor in a stapler
US6835173B2 (en) 2001-10-05 2004-12-28 Scimed Life Systems, Inc. Robotic endoscope
ES2529325T3 (en) 2001-10-05 2015-02-19 Covidien Lp Adjustment method of surgical stapling device
ES2763929T3 (en) 2001-10-05 2020-06-01 Covidien Lp Surgical stapling device
CA2457564C (en) 2001-10-05 2009-04-07 Surmodics, Inc. Particle immobilized coatings and uses thereof
US6770027B2 (en) 2001-10-05 2004-08-03 Scimed Life Systems, Inc. Robotic endoscope with wireless interface
US6957758B2 (en) 2001-10-05 2005-10-25 Tyco Healthcare Group, Lp Tilt top anvil for a surgical fastener device
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US10285694B2 (en) 2001-10-20 2019-05-14 Covidien Lp Surgical stapler with timer and feedback display
US7052454B2 (en) 2001-10-20 2006-05-30 Applied Medical Resources Corporation Sealed surgical access device
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US20030216732A1 (en) 2002-05-20 2003-11-20 Csaba Truckai Medical instrument with thermochromic or piezochromic surface indicators
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
US20060020336A1 (en) 2001-10-23 2006-01-26 Liddicoat John R Automated annular plication for mitral valve repair
US6677687B2 (en) 2001-10-23 2004-01-13 Sun Microsystems, Inc. System for distributing power in CPCI computer architecture
WO2003054849A1 (en) 2001-10-23 2003-07-03 Immersion Corporation Method of using tactile feedback to deliver silent status information to a user of an electronic device
FR2831417B1 (en) 2001-10-30 2004-08-06 Eurosurgical SURGICAL INSTRUMENT
JP2003135473A (en) 2001-11-01 2003-05-13 Mizuho Co Ltd Active forceps for endoscopic surgery
AUPR865901A0 (en) 2001-11-02 2002-01-24 Poly Systems Pty Ltd Projectile firing device
US6716223B2 (en) 2001-11-09 2004-04-06 Micrus Corporation Reloadable sheath for catheter system for deploying vasoocclusive devices
FR2832262A1 (en) 2001-11-09 2003-05-16 France Telecom METHOD AND DEVICE FOR SUPPLYING ELECTRICAL ENERGY TO AN APPARATUS
US8089509B2 (en) 2001-11-09 2012-01-03 Karl Storz Imaging, Inc. Programmable camera control unit with updatable program
US6471106B1 (en) 2001-11-15 2002-10-29 Intellectual Property Llc Apparatus and method for restricting the discharge of fasteners from a tool
US6997935B2 (en) 2001-11-20 2006-02-14 Advanced Medical Optics, Inc. Resonant converter tuning for maintaining substantially constant phaco handpiece power under increased load
GB2382226A (en) 2001-11-20 2003-05-21 Black & Decker Inc Switch mechanism for a power tool
US6993200B2 (en) 2001-11-20 2006-01-31 Sony Corporation System and method for effectively rendering high dynamic range images
JP2003164066A (en) 2001-11-21 2003-06-06 Hitachi Koki Co Ltd Battery pack
US6605078B2 (en) 2001-11-26 2003-08-12 Scimed Life Systems, Inc. Full thickness resection device
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
DE10158246C1 (en) 2001-11-28 2003-08-21 Ethicon Endo Surgery Europe Surgical stapling instrument
US9320503B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US6671185B2 (en) 2001-11-28 2003-12-30 Landon Duval Intelligent fasteners
AU2002349652A1 (en) 2001-11-29 2003-06-10 Max Co., Ltd. Electric stapler
US7591818B2 (en) 2001-12-04 2009-09-22 Endoscopic Technologies, Inc. Cardiac ablation devices and methods
CA2466812C (en) 2001-12-04 2012-04-03 Michael P. Whitman System and method for calibrating a surgical instrument
US7542807B2 (en) 2001-12-04 2009-06-02 Endoscopic Technologies, Inc. Conduction block verification probe and method of use
US10098640B2 (en) 2001-12-04 2018-10-16 Atricure, Inc. Left atrial appendage devices and methods
US7331968B2 (en) 2004-06-14 2008-02-19 Ethicon Endo-Surgery, Inc. Endoscopic clip applier with threaded clip
US7918867B2 (en) 2001-12-07 2011-04-05 Abbott Laboratories Suture trimmer
US20030121586A1 (en) 2001-12-11 2003-07-03 3M Innovative Properties Company Tack-on-pressure films for temporary surface protection and surface modification
GB2383006A (en) 2001-12-13 2003-06-18 Black & Decker Inc Mechanism for use in a power tool and a power tool including such a mechanism
US20030114851A1 (en) 2001-12-13 2003-06-19 Csaba Truckai Electrosurgical jaws for controlled application of clamping pressure
US6723087B2 (en) 2001-12-14 2004-04-20 Medtronic, Inc. Apparatus and method for performing surgery on a patient
US7122028B2 (en) 2001-12-19 2006-10-17 Allegiance Corporation Reconfiguration surgical apparatus
US6974462B2 (en) 2001-12-19 2005-12-13 Boston Scientific Scimed, Inc. Surgical anchor implantation device
US6939358B2 (en) 2001-12-20 2005-09-06 Gore Enterprise Holdings, Inc. Apparatus and method for applying reinforcement material to a surgical stapler
WO2003053289A1 (en) 2001-12-21 2003-07-03 Simcha Milo Implantation system for annuloplasty rings
US7729742B2 (en) 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
DE10163106A1 (en) 2001-12-24 2003-07-10 Univ Hannover Medical implants, prostheses, prosthesis parts, medical instruments, devices and aids made of a halide-modified magnesium material
RU2225170C2 (en) 2001-12-25 2004-03-10 Дубровский Аркадий Вениаминович Instrument having rotation device
US20060264929A1 (en) 2001-12-27 2006-11-23 Gyrus Group Plc Surgical system
GB0130975D0 (en) 2001-12-27 2002-02-13 Gyrus Group Plc A surgical instrument
US6942662B2 (en) 2001-12-27 2005-09-13 Gyrus Group Plc Surgical Instrument
GB0425842D0 (en) 2004-11-24 2004-12-29 Gyrus Group Plc An electrosurgical instrument
AU2002358220B2 (en) 2001-12-27 2008-09-25 Gyrus Medical Limited A surgical instrument
US6729119B2 (en) 2001-12-28 2004-05-04 The Schnipke Family Limited Liability Company Robotic loader for surgical stapling cartridge
US6913594B2 (en) 2001-12-31 2005-07-05 Biosense Webster, Inc. Dual-function catheter handle
US6602252B2 (en) 2002-01-03 2003-08-05 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
US6740030B2 (en) 2002-01-04 2004-05-25 Vision Sciences, Inc. Endoscope assemblies having working channels with reduced bending and stretching resistance
AU2002359847A1 (en) 2002-01-09 2003-07-30 Neoguide Systems, Inc Apparatus and method for endoscopic colectomy
DE60335080D1 (en) 2002-01-16 2011-01-05 Toyota Motor Co Ltd TESTING PROCEDURE, STORAGE MEDIUM, PROGRAM, DRIVE
EP1471844A2 (en) 2002-01-16 2004-11-03 Eva Corporation Catheter hand-piece apparatus and method of using the same
US6869435B2 (en) 2002-01-17 2005-03-22 Blake, Iii John W Repeating multi-clip applier
US6999821B2 (en) 2002-01-18 2006-02-14 Pacesetter, Inc. Body implantable lead including one or more conductive polymer electrodes and methods for fabricating same
US7091412B2 (en) 2002-03-04 2006-08-15 Nanoset, Llc Magnetically shielded assembly
US6676660B2 (en) 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
DE10203282A1 (en) 2002-01-29 2003-08-21 Behrens Ag Friedrich Joh Fasteners and process for its manufacture
US7530985B2 (en) 2002-01-30 2009-05-12 Olympus Corporation Endoscopic suturing system
ATE500777T1 (en) 2002-01-30 2011-03-15 Tyco Healthcare SURGICAL IMAGING DEVICE
US20030149406A1 (en) 2002-02-07 2003-08-07 Lucie Martineau Multi-layer dressing as medical drug delivery system
US7501198B2 (en) 2002-02-07 2009-03-10 Linvatec Corporation Sterile transfer battery container
EP1474045B1 (en) 2002-02-13 2016-12-07 Applied Medical Resources Corporation Tissue fusion/welder apparatus
EP1336392A1 (en) 2002-02-14 2003-08-20 John S. Geis Body vessel support and catheter system
US7494499B2 (en) 2002-02-15 2009-02-24 Olympus Corporation Surgical therapeutic instrument
US6524180B1 (en) 2002-02-19 2003-02-25 Maury Simms Adjustable duct assembly for fume and dust removal
AU2003211376A1 (en) 2002-02-20 2003-09-09 New X-National Technology K.K. Drug administration method
US7400752B2 (en) 2002-02-21 2008-07-15 Alcon Manufacturing, Ltd. Video overlay system for surgical apparatus
US6646307B1 (en) 2002-02-21 2003-11-11 Advanced Micro Devices, Inc. MOSFET having a double gate
US7197965B1 (en) 2002-02-25 2007-04-03 Anderson Steven P Hinged socket wrench speed handle
US6847190B2 (en) 2002-02-26 2005-01-25 Linvatec Corporation Method and apparatus for charging sterilizable rechargeable batteries
US6747300B2 (en) 2002-03-04 2004-06-08 Ternational Rectifier Corporation H-bridge drive utilizing a pair of high and low side MOSFETs in a common insulation housing
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7831292B2 (en) 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
US7206626B2 (en) 2002-03-06 2007-04-17 Z-Kat, Inc. System and method for haptic sculpting of physical objects
USD473239S1 (en) 2002-03-08 2003-04-15 Dca Design International Limited Portion of a display panel with a computer icon image
US7289139B2 (en) 2002-03-12 2007-10-30 Karl Storz Imaging, Inc. Endoscope reader
GB0206208D0 (en) 2002-03-15 2002-05-01 Gyrus Medical Ltd A surgical instrument
US7660988B2 (en) 2002-03-18 2010-02-09 Cognomina, Inc. Electronic notary
EP2322077A1 (en) 2002-03-18 2011-05-18 Optim, Inc. Identifying the status of a reusable instrument
US9155544B2 (en) 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
US7247161B2 (en) 2002-03-22 2007-07-24 Gyrus Ent L.L.C. Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
USD478986S1 (en) 2002-03-22 2003-08-26 Gyrus Ent L.L.C. Surgical tool
USD484596S1 (en) 2002-03-22 2003-12-30 Gyrus Ent L.L.C. Surgical tool blade holder
USD484243S1 (en) 2002-03-22 2003-12-23 Gyrus Ent L.L.C. Surgical tool blade holder
USD478665S1 (en) 2002-03-22 2003-08-19 Gyrus Ent L.L.C. Disposable trigger
USD484977S1 (en) 2002-03-22 2004-01-06 Gyrus Ent L.L.C. Surgical tool blade holder
USD484595S1 (en) 2002-03-22 2003-12-30 Gyrus Ent L.L.C. Surgical tool blade holder
JP4071642B2 (en) 2002-03-25 2008-04-02 株式会社リコー Paper processing apparatus and image forming system
US7137981B2 (en) 2002-03-25 2006-11-21 Ethicon Endo-Surgery, Inc. Endoscopic ablation system with a distally mounted image sensor
US6991146B2 (en) 2002-03-25 2006-01-31 Design Circle, Inc. Stapler having detached base
US7128748B2 (en) 2002-03-26 2006-10-31 Synovis Life Technologies, Inc. Circular stapler buttress combination
WO2003086507A1 (en) 2002-04-09 2003-10-23 Yushin Medical Co., Ltd Indwelling fecal diverting device
JP2003300416A (en) 2002-04-10 2003-10-21 Kyowa Sangyo Kk Vehicle sunvisor
WO2003086206A1 (en) 2002-04-11 2003-10-23 Tyco Healthcare Group, Lp Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
US7377928B2 (en) 2002-04-15 2008-05-27 Cook Biotech Incorporated Apparatus and method for producing a reinforced surgical staple line
EP1494601B1 (en) 2002-04-15 2012-01-11 Tyco Healthcare Group LP Instrument introducer
US7517356B2 (en) 2002-04-16 2009-04-14 Tyco Healthcare Group Lp Surgical stapler and method
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US6846811B2 (en) 2002-04-22 2005-01-25 Wisconsin Alumni Research Foundation (20S) 1α-hydroxy-2α-methyl and 2β-methyl-19-nor-vitamin D3 and their uses
CN105326478A (en) 2002-04-22 2016-02-17 马尔西奥·马克·阿布雷乌 Apparatus and method for measuring biologic parameters
US8241308B2 (en) 2002-04-24 2012-08-14 Boston Scientific Scimed, Inc. Tissue fastening devices and processes that promote tissue adhesion
WO2003090631A1 (en) 2002-04-24 2003-11-06 Surgical Connections, Inc. Resection and anastomosis devices and methods
JP4431404B2 (en) 2002-04-25 2010-03-17 タイコ ヘルスケア グループ エルピー Surgical instruments including microelectromechanical systems (MEMS)
US7161580B2 (en) 2002-04-25 2007-01-09 Immersion Corporation Haptic feedback using rotary harmonic moving mass
WO2003090628A1 (en) 2002-04-25 2003-11-06 Terumo Kabushiki Kaisha Organism tissue suturing apparatus
US6692692B2 (en) 2002-04-29 2004-02-17 Eric J. Stetzel Dental drill sterilization through application of high amperage current
US6969385B2 (en) 2002-05-01 2005-11-29 Manuel Ricardo Moreyra Wrist with decoupled motion transmission
AU2003228858A1 (en) 2002-05-02 2003-11-17 Scimed Life Systems, Inc. Energetically-controlled delivery of biologically active material from an implanted medical device
US7674270B2 (en) 2002-05-02 2010-03-09 Laparocision, Inc Apparatus for positioning a medical instrument
WO2003094740A1 (en) 2002-05-08 2003-11-20 Radi Medical Systems Ab Dissolvable medical sealing device
CN1457139A (en) 2002-05-08 2003-11-19 精工爱普生株式会社 Stabilized voltage swtich supply with overpressure output protective circuit and electronic device
CN1625457A (en) 2002-05-09 2005-06-08 龟山俊之 Cartridge for stapler and stapler
US7207471B2 (en) 2002-05-10 2007-04-24 Tyco Healthcare Group Lp Electrosurgical stapling apparatus
EP1503671B1 (en) 2002-05-10 2006-10-11 Tyco Healthcare Group Lp Wound closure material applicator and stapler
US6736854B2 (en) 2002-05-10 2004-05-18 C. R. Bard, Inc. Prosthetic repair fabric with erosion resistant edge
ES2540098T3 (en) 2002-05-10 2015-07-08 Covidien Lp Surgical stapling device that has a material applicator set for wound closure
WO2003094747A1 (en) 2002-05-13 2003-11-20 Tyco Healthcare Group, Lp Surgical stapler and disposable loading unit having different size staples
TWI237916B (en) 2002-05-13 2005-08-11 Sun Bridge Corp Cordless device system
US20040158261A1 (en) 2002-05-15 2004-08-12 Vu Dinh Q. Endoscopic device for spill-proof laparoscopic ovarian cystectomy
US20040254455A1 (en) 2002-05-15 2004-12-16 Iddan Gavriel J. Magneic switch for use in a system that includes an in-vivo device, and method of use thereof
JP2005525873A (en) 2002-05-16 2005-09-02 スコット・ラボラトリーズ・インコーポレイテッド System and method enabling aseptic operation of a sedation and analgesia system
US7968569B2 (en) 2002-05-17 2011-06-28 Celgene Corporation Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione
US7967839B2 (en) 2002-05-20 2011-06-28 Rocky Mountain Biosystems, Inc. Electromagnetic treatment of tissues and cells
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US7075412B1 (en) 2002-05-30 2006-07-11 Thingmagic L.L.C. Methods and apparatus for operating a radio device
US6638297B1 (en) 2002-05-30 2003-10-28 Ethicon Endo-Surgery, Inc. Surgical staple
US6543456B1 (en) 2002-05-31 2003-04-08 Ethicon Endo-Surgery, Inc. Method for minimally invasive surgery in the digestive system
US6989034B2 (en) 2002-05-31 2006-01-24 Ethicon, Inc. Attachment of absorbable tissue scaffolds to fixation devices
US7004174B2 (en) 2002-05-31 2006-02-28 Neothermia Corporation Electrosurgery with infiltration anesthesia
US6769594B2 (en) 2002-05-31 2004-08-03 Tyco Healthcare Group, Lp End-to-end anastomosis instrument and method for performing same
US7056330B2 (en) 2002-05-31 2006-06-06 Ethicon Endo-Surgery, Inc. Method for applying tissue fastener
US20030225439A1 (en) 2002-05-31 2003-12-04 Cook Alonzo D. Implantable product with improved aqueous interface characteristics and method for making and using same
US6861142B1 (en) 2002-06-06 2005-03-01 Hills, Inc. Controlling the dissolution of dissolvable polymer components in plural component fibers
EP1369208B1 (en) 2002-06-07 2008-04-23 Black & Decker Inc. A power tool provided with a locking mechanism
US7166133B2 (en) 2002-06-13 2007-01-23 Kensey Nash Corporation Devices and methods for treating defects in the tissue of a living being
US20050137454A1 (en) 2002-06-13 2005-06-23 Usgi Medical Corp. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US6783491B2 (en) 2002-06-13 2004-08-31 Vahid Saadat Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
ES2278167T3 (en) 2002-06-14 2007-08-01 Power Medical Interventions, Inc. DEVICE FOR CLAMPING, CUTTING AND STAPLING FABRIC.
US7717873B2 (en) 2002-06-14 2010-05-18 Mcneil-Ppc, Inc. Applicator device for suppositories and the like
EP1719461B1 (en) 2002-06-17 2009-06-03 Tyco Healthcare Group Lp Annular support structures
ES2268384T3 (en) 2002-06-17 2007-03-16 Tyco Healthcare Group Lp ANNULAR SUPPORT STRUCTURES.
US20030234194A1 (en) 2002-06-21 2003-12-25 Clark Dan Warren Protective shield for a patient control unit
US7063671B2 (en) 2002-06-21 2006-06-20 Boston Scientific Scimed, Inc. Electronically activated capture device
US6635838B1 (en) 2002-06-24 2003-10-21 Brent A. Kornelson Switch actuating device and method of mounting same
RU2284160C2 (en) 2002-06-24 2006-09-27 Аркадий Вениаминович Дубровский Device for rotating remote control instrument
US7112214B2 (en) 2002-06-25 2006-09-26 Incisive Surgical, Inc. Dynamic bioabsorbable fastener for use in wound closure
US6726705B2 (en) 2002-06-25 2004-04-27 Incisive Surgical, Inc. Mechanical method and apparatus for bilateral tissue fastening
US7220260B2 (en) 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
US7699856B2 (en) 2002-06-27 2010-04-20 Van Wyk Robert A Method, apparatus, and kit for thermal suture cutting
GB2390024B (en) 2002-06-27 2005-09-21 Gyrus Medical Ltd Electrosurgical system
US9126317B2 (en) 2002-06-27 2015-09-08 Snap-On Incorporated Tool apparatus system and method of use
AUPS322702A0 (en) 2002-06-28 2002-07-18 Cochlear Limited Cochlear implant electrode array
US8287561B2 (en) 2002-06-28 2012-10-16 Boston Scientific Scimed, Inc. Balloon-type actuator for surgical applications
US20040006340A1 (en) 2002-07-02 2004-01-08 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting, desiccating and sealing tissue
US7033356B2 (en) 2002-07-02 2006-04-25 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
US6932218B2 (en) 2002-07-03 2005-08-23 Monica Rich Kosann Photography Llc Folding photo case
JP4405401B2 (en) 2002-07-03 2010-01-27 アボット ヴァスキュラー デヴァイシス Surgical stapling apparatus
US20040006335A1 (en) 2002-07-08 2004-01-08 Garrison Lawrence L. Cauterizing surgical saw
US7029439B2 (en) 2002-07-09 2006-04-18 Welch Allyn, Inc. Medical diagnostic instrument
US7035762B2 (en) 2002-07-11 2006-04-25 Alcatel Canada Inc. System and method for tracking utilization data for an electronic device
US20060089535A1 (en) 2002-07-11 2006-04-27 Dan Raz Piston-actuated endoscopic steering system
US20040006860A1 (en) 2002-07-15 2004-01-15 Haytayan Harry M. Method and apparatus for attaching structural components with fasteners
US20040166169A1 (en) 2002-07-15 2004-08-26 Prasanna Malaviya Porous extracellular matrix scaffold and method
US7769427B2 (en) 2002-07-16 2010-08-03 Magnetics, Inc. Apparatus and method for catheter guidance control and imaging
US7054696B2 (en) 2002-07-18 2006-05-30 Black & Decker Inc. System and method for data retrieval in AC power tools via an AC line cord
KR20050037557A (en) 2002-07-22 2005-04-22 아스펜 에어로겔, 인코퍼레이티드 Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same
IL150853A0 (en) 2002-07-22 2003-02-12 Niti Medical Technologies Ltd Imppoved intussusception and anastomosis apparatus
JP4046569B2 (en) 2002-07-30 2008-02-13 オリンパス株式会社 Surgical instrument
JP4063166B2 (en) 2002-07-31 2008-03-19 日産自動車株式会社 Electric motor control device
AU2003269931A1 (en) 2002-07-31 2004-02-16 Tyco Heathcare Group, Lp Tool member cover and cover deployment device
US8016881B2 (en) 2002-07-31 2011-09-13 Icon Interventional Systems, Inc. Sutures and surgical staples for anastamoses, wound closures, and surgical closures
US7179223B2 (en) 2002-08-06 2007-02-20 Olympus Optical Co., Ltd. Endoscope apparatus having an internal channel
US6969395B2 (en) 2002-08-07 2005-11-29 Boston Scientific Scimed, Inc. Electroactive polymer actuated medical devices
JP4142369B2 (en) 2002-08-07 2008-09-03 オリンパス株式会社 Endoscopic treatment system
US6720734B2 (en) 2002-08-08 2004-04-13 Datex-Ohmeda, Inc. Oximeter with nulled op-amp current feedback
US9271753B2 (en) 2002-08-08 2016-03-01 Atropos Limited Surgical device
US7155316B2 (en) 2002-08-13 2006-12-26 Microbotics Corporation Microsurgical robot system
US6863668B2 (en) 2002-08-16 2005-03-08 Edwards Lifesciences Corporation Articulation mechanism for medical devices
US20040044295A1 (en) 2002-08-19 2004-03-04 Orthosoft Inc. Graphical user interface for computer-assisted surgery
EP1558161A1 (en) 2002-08-21 2005-08-03 Neothermia Corporation Device and method for minimally invasive and intact recovery of tissue
US7494460B2 (en) 2002-08-21 2009-02-24 Medtronic, Inc. Methods and apparatus providing suction-assisted tissue engagement through a minimally invasive incision
WO2004019803A1 (en) 2002-08-28 2004-03-11 Heribert Schmid Dental treatment system
US6784775B2 (en) 2002-08-29 2004-08-31 Ljm Associates, Inc. Proximity safety switch suitable for use in a hair dryer for disabling operation
US20040044364A1 (en) 2002-08-29 2004-03-04 Devries Robert Tissue fasteners and related deployment systems and methods
US6981978B2 (en) 2002-08-30 2006-01-03 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US7174636B2 (en) 2002-09-04 2007-02-13 Scimed Life Systems, Inc. Method of making an embolic filter
DE10240719B4 (en) 2002-09-04 2006-01-19 Hilti Ag Electric hand tool with soft start
US20040049121A1 (en) 2002-09-06 2004-03-11 Uri Yaron Positioning system for neurological procedures in the brain
WO2004021868A2 (en) 2002-09-06 2004-03-18 C.R. Bard, Inc. External endoscopic accessory control system
AU2003270549A1 (en) 2002-09-09 2004-03-29 Brian Kelleher Device and method for endoluminal therapy
US6925849B2 (en) 2002-09-10 2005-08-09 Acco Brands, Inc. Stapler anvil
US6895176B2 (en) 2002-09-12 2005-05-17 General Electric Company Method and apparatus for controlling electronically commutated motor operating characteristics
US8298161B2 (en) 2002-09-12 2012-10-30 Intuitive Surgical Operations, Inc. Shape-transferring cannula system and method of use
US7096972B2 (en) 2002-09-17 2006-08-29 Orozco Jr Efrem Hammer drill attachment
KR100450086B1 (en) 2002-09-18 2004-09-30 삼성테크윈 주식회사 Means for containing batteries
JP3680050B2 (en) 2002-09-18 2005-08-10 株式会社東芝 Medical manipulator and control method thereof
GB0221707D0 (en) 2002-09-18 2002-10-30 Gyrus Medical Ltd Electrical system
US8454628B2 (en) 2002-09-20 2013-06-04 Syntheon, Llc Surgical fastener aligning instrument particularly for transoral treatment of gastroesophageal reflux disease
US7001408B2 (en) 2002-09-20 2006-02-21 Ethicon Endo-Surgery,Inc. Surgical device with expandable member
US7033378B2 (en) 2002-09-20 2006-04-25 Id, Llc Surgical fastener, particularly for the endoluminal treatment of gastroesophageal reflux disease (GERD)
US6814154B2 (en) 2002-09-23 2004-11-09 Wen San Chou Power tool having automatically selective driving direction
US7256695B2 (en) 2002-09-23 2007-08-14 Microstrain, Inc. Remotely powered and remotely interrogated wireless digital sensor telemetry system
AU2003272658A1 (en) 2002-09-26 2004-04-19 Bioaccess, Inc. Orthopedic medical device with unitary components
US7837687B2 (en) 2002-09-27 2010-11-23 Surgitech, Llc Surgical assembly for tissue removal
AU2002368279A1 (en) 2002-09-27 2004-05-04 Aesculap Ag And Co. Kg Set of instruments for performing a surgical operation
MXPA05003010A (en) 2002-09-30 2005-06-22 Sightline Techn Ltd Piston-actuated endoscopic tool.
US7326203B2 (en) 2002-09-30 2008-02-05 Depuy Acromed, Inc. Device for advancing a functional element through tissue
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
JP4049217B2 (en) 2002-10-02 2008-02-20 イーメックス株式会社 Conductive polymer molded article and apparatus using laminate
US20040068161A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Thrombolysis catheter
US20040068224A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Electroactive polymer actuated medication infusion pumps
US6836611B2 (en) 2002-10-03 2004-12-28 J. W. Speaker Corporation Light guide and lateral illuminator
AU2012268848B2 (en) 2002-10-04 2016-01-28 Covidien Lp Surgical stapler with universal articulation and tissue pre-clamp
WO2004032760A2 (en) 2002-10-04 2004-04-22 Tyco Healthcare Group, Lp Pneumatic powered surgical stapling device
WO2004032766A2 (en) 2002-10-04 2004-04-22 Tyco Healthcare Group Lp Surgical stapling device
US7083626B2 (en) 2002-10-04 2006-08-01 Applied Medical Resources Corporation Surgical access device with pendent valve
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
EP1759641B1 (en) 2002-10-04 2011-04-13 Tyco Healthcare Group LP Surgical stapler with universal articulation and tissue pre-clamp
CA2500796C (en) 2002-10-04 2011-03-15 Tyco Healthcare Group, Lp Tool assembly for surgical stapling device
AU2003279854B2 (en) 2002-10-04 2008-12-18 Covidien Lp Tool assembly for a surgical stapling device
US7135027B2 (en) 2002-10-04 2006-11-14 Baxter International, Inc. Devices and methods for mixing and extruding medically useful compositions
US7041088B2 (en) 2002-10-11 2006-05-09 Ethicon, Inc. Medical devices having durable and lubricious polymeric coating
US20040070369A1 (en) 2002-10-11 2004-04-15 Makita Corporation Adapters for battery chargers
US6958035B2 (en) 2002-10-15 2005-10-25 Dusa Pharmaceuticals, Inc Medical device sheath apparatus and method of making and using same
US7023159B2 (en) 2002-10-18 2006-04-04 Black & Decker Inc. Method and device for braking a motor
US8100872B2 (en) 2002-10-23 2012-01-24 Tyco Healthcare Group Lp Medical dressing containing antimicrobial agent
US20040092992A1 (en) 2002-10-23 2004-05-13 Kenneth Adams Disposable battery powered rotary tissue cutting instruments and methods therefor
JP2006512427A (en) 2002-10-28 2006-04-13 タイコ ヘルスケア グループ エルピー Fast-curing composition
JP4086621B2 (en) 2002-10-28 2008-05-14 株式会社トップ Surgical instrument handle structure
US6923093B2 (en) 2002-10-29 2005-08-02 Rizwan Ullah Tool drive system
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US20040085180A1 (en) 2002-10-30 2004-05-06 Cyntec Co., Ltd. Current sensor, its production substrate, and its production process
US8070743B2 (en) 2002-11-01 2011-12-06 Valentx, Inc. Devices and methods for attaching an endolumenal gastrointestinal implant
US7037344B2 (en) 2002-11-01 2006-05-02 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US20090149871A9 (en) 2002-11-01 2009-06-11 Jonathan Kagan Devices and methods for treating morbid obesity
US8142515B2 (en) 2002-11-04 2012-03-27 Sofradim Production Prosthesis for reinforcement of tissue structures
US20040218451A1 (en) 2002-11-05 2004-11-04 Said Joe P. Accessible user interface and navigation system and method
US6884392B2 (en) 2002-11-12 2005-04-26 Minntech Corporation Apparatus and method for steam reprocessing flexible endoscopes
US6951562B2 (en) 2002-11-13 2005-10-04 Ralph Fritz Zwirnmann Adjustable length tap and method for drilling and tapping a bore in bone
AU2003302020B2 (en) 2002-11-14 2008-01-31 Ethicon Endo-Surgery, Inc. Methods and devices for detecting tissue cells
DE10253572A1 (en) 2002-11-15 2004-07-29 Vega Grieshaber Kg Wireless communication
US20050256452A1 (en) 2002-11-15 2005-11-17 Demarchi Thomas Steerable vascular sheath
US7211092B2 (en) 2002-11-19 2007-05-01 Pilling Weck Incorporated Automated-feed surgical clip applier and related methods
CN1486667A (en) 2002-11-22 2004-04-07 Endoscope system with disposable sheath
DE60331463D1 (en) 2002-11-22 2010-04-08 Tyco Healthcare Medical system with pods
US20040101822A1 (en) 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles
DE10257760A1 (en) 2002-11-26 2004-06-17 Stefan Koscher Surgical instrument
US20040102783A1 (en) 2002-11-27 2004-05-27 Sutterlin Chester E. Powered Kerrison-like Rongeur system
US6801009B2 (en) 2002-11-27 2004-10-05 Siemens Vdo Automotive Inc. Current limitation process of brush and brushless DC motors during severe voltage changes
EP1590517A4 (en) 2002-11-29 2010-03-10 John R Liddicoat Apparatus and method for manipulating tissue
JP2006508773A (en) 2002-12-05 2006-03-16 株式会社カルディオ Biocompatible tissue piece and use thereof
KR100486596B1 (en) 2002-12-06 2005-05-03 엘지전자 주식회사 Apparatus and control method for driving of reciprocating compressor
US7386365B2 (en) 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
JP3686947B2 (en) 2002-12-09 2005-08-24 国立大学法人 東京大学 High-rigid forceps tip structure for active forceps and active forceps including the same
AU2003289246B2 (en) 2002-12-16 2007-10-04 Gunze Limited Medical film
JP2006510457A (en) 2002-12-17 2006-03-30 アプライド メディカル リソーシーズ コーポレイション Surgical staples / clips and appliers
AU2003302983A1 (en) 2002-12-18 2004-07-09 Koninklijke Philips Electronics N.V. Magnetic position sensor
US20040122419A1 (en) 2002-12-18 2004-06-24 Ceramoptec Industries, Inc. Medical device recognition system with write-back feature
US20040147909A1 (en) 2002-12-20 2004-07-29 Gyrus Ent L.L.C. Surgical instrument
US7682686B2 (en) 2002-12-20 2010-03-23 The Procter & Gamble Company Tufted fibrous web
US7348763B1 (en) 2002-12-20 2008-03-25 Linvatec Corporation Method for utilizing temperature to determine a battery state
US7343920B2 (en) 2002-12-20 2008-03-18 Toby E Bruce Connective tissue repair system
US7249267B2 (en) 2002-12-21 2007-07-24 Power-One, Inc. Method and system for communicating filter compensation coefficients for a digital power control system
US6863924B2 (en) 2002-12-23 2005-03-08 Kimberly-Clark Worldwide, Inc. Method of making an absorbent composite
US6931830B2 (en) 2002-12-23 2005-08-23 Chase Liao Method of forming a wire package
US20040119185A1 (en) 2002-12-23 2004-06-24 Chen Ching Hsi Method for manufacturing opened-cell plastic foams
GB0230055D0 (en) 2002-12-23 2003-01-29 Gyrus Medical Ltd Electrosurgical method and apparatus
US7131445B2 (en) 2002-12-23 2006-11-07 Gyrus Medical Limited Electrosurgical method and apparatus
US20040186349A1 (en) 2002-12-24 2004-09-23 Usgi Medical Corp. Apparatus and methods for achieving endoluminal access
JP2004208922A (en) 2002-12-27 2004-07-29 Olympus Corp Medical apparatus, medical manipulator and control process for medical apparatus
JP4160381B2 (en) 2002-12-27 2008-10-01 ローム株式会社 Electronic device having audio output device
US7455687B2 (en) 2002-12-30 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer link hybrid stent
US7914561B2 (en) 2002-12-31 2011-03-29 Depuy Spine, Inc. Resilient bone plate and screw system allowing bi-directional assembly
JP2004209042A (en) 2003-01-06 2004-07-29 Olympus Corp Ultrasonic treatment apparatus
EP1782741A3 (en) 2003-01-09 2008-11-05 Gyrus Medical Limited An electrosurgical generator
US7195627B2 (en) 2003-01-09 2007-03-27 Gyrus Medical Limited Electrosurgical generator
GB0426648D0 (en) 2004-12-03 2005-01-05 Gyrus Medical Ltd An electrosurgical generator
US7287682B1 (en) 2003-01-20 2007-10-30 Hazem Ezzat Surgical device and method
US20040143297A1 (en) 2003-01-21 2004-07-22 Maynard Ramsey Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment
US7028570B2 (en) 2003-01-21 2006-04-18 Honda Motor Co., Ltd. Transmission
US6821284B2 (en) 2003-01-22 2004-11-23 Novare Surgical Systems, Inc. Surgical clamp inserts with micro-tractive surfaces
US6960220B2 (en) 2003-01-22 2005-11-01 Cardia, Inc. Hoop design for occlusion device
US6852122B2 (en) 2003-01-23 2005-02-08 Cordis Corporation Coated endovascular AAA device
US20040225186A1 (en) 2003-01-29 2004-11-11 Horne Guy E. Composite flexible endoscope insertion shaft with tubular substructure
US7341591B2 (en) 2003-01-30 2008-03-11 Depuy Spine, Inc. Anterior buttress staple
EP1442720A1 (en) 2003-01-31 2004-08-04 Tre Esse Progettazione Biomedica S.r.l Apparatus for the maneuvering of flexible catheters in the human cardiovascular system
JP2004229976A (en) 2003-01-31 2004-08-19 Nippon Zeon Co Ltd Forceps type electrical operative instrument
EP2263833B1 (en) 2003-02-05 2012-01-18 Makita Corporation Power tool with a torque limiter using only rotational angle detecting means
US20090318557A1 (en) 2003-12-22 2009-12-24 Stockel Richard F Dermatological compositions
US7354502B2 (en) 2003-02-06 2008-04-08 The Procter & Gamble Company Method for making a fibrous structure comprising cellulosic and synthetic fibers
US7067038B2 (en) 2003-02-06 2006-06-27 The Procter & Gamble Company Process for making unitary fibrous structure comprising randomly distributed cellulosic fibers and non-randomly distributed synthetic fibers
DE602004030998D1 (en) 2003-02-07 2011-02-24 Max Co Ltd CLAMP FILLING DEVICE, STAPLER AND CASSETTE
DE602004015729D1 (en) 2003-02-11 2008-09-25 Olympus Corp ABOUT TUBE
CN100442622C (en) 2003-02-18 2008-12-10 美商波特-凯博公司 Over current protective amperage control for battery of electric tool
US20040167572A1 (en) 2003-02-20 2004-08-26 Roth Noah M. Coated medical devices
JP4469843B2 (en) 2003-02-20 2010-06-02 コヴィディエン アクチェンゲゼルシャフト Motion detector for controlling electrosurgical output
US7083615B2 (en) 2003-02-24 2006-08-01 Intuitive Surgical Inc Surgical tool having electrocautery energy supply conductor with inhibited current leakage
CN100453052C (en) 2003-02-25 2009-01-21 伊西康内外科公司 Biopsy device with variable speed cutter advance
JP4231707B2 (en) 2003-02-25 2009-03-04 オリンパス株式会社 Capsule medical device
EP2604215B1 (en) 2003-02-25 2017-10-11 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus and method
US7025732B2 (en) 2003-02-25 2006-04-11 Ethicon Endo-Surgery, Inc. Biopsy device with variable speed cutter advance
WO2004075721A2 (en) 2003-02-25 2004-09-10 Spectragenics, Inc. Self-contained, diode-laser-based dermatologic treatment apparatus and metod
US7476237B2 (en) 2003-02-27 2009-01-13 Olympus Corporation Surgical instrument
US7331340B2 (en) 2003-03-04 2008-02-19 Ivax Corporation Medicament dispensing device with a display indicative of the state of an internal medicament reservoir
AU2003219969A1 (en) 2003-03-04 2004-11-01 Steven P. Anderson Hinged socket wrench speed handle
DE602004009293T2 (en) 2003-03-05 2008-07-10 Gyrus Medical Ltd., St. Mellons ELECTRO-SURGICAL GENERATOR AND SYSTEM
US8197837B2 (en) 2003-03-07 2012-06-12 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US7368124B2 (en) 2003-03-07 2008-05-06 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
IL154814A0 (en) 2003-03-09 2003-10-31 Edward G Shifrin Sternal closure system, method and apparatus therefor
FR2852226B1 (en) 2003-03-10 2005-07-15 Univ Grenoble 1 LOCALIZED MEDICAL INSTRUMENT WITH ORIENTABLE SCREEN
US7126879B2 (en) 2003-03-10 2006-10-24 Healthtrac Systems, Inc. Medication package and method
US20060064086A1 (en) 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
US6971988B2 (en) 2003-03-17 2005-12-06 Tyco Healthcare Group, Lp Endoscopic tissue removal apparatus and method
CA2433205A1 (en) 2003-03-18 2004-09-18 James Alexander Keenan Drug delivery, bodily fluid drainage, and biopsy device with enhanced ultrasonic visibility
US6928902B1 (en) 2003-03-20 2005-08-16 Luis P. Eyssallenne Air powered wrench device with pivotable head and method of using
US20060041188A1 (en) 2003-03-25 2006-02-23 Dirusso Carlo A Flexible endoscope
US20040193189A1 (en) 2003-03-25 2004-09-30 Kortenbach Juergen A. Passive surgical clip
EP1605840B1 (en) 2003-03-26 2011-01-05 Tyco Healthcare Group LP Energy stored in spring with controlled release
US7572298B2 (en) 2003-03-28 2009-08-11 Ethicon, Inc. Implantable medical devices and methods for making same
DE10314072B4 (en) 2003-03-28 2009-01-15 Aesculap Ag Surgical instrument
US7014640B2 (en) 2003-03-28 2006-03-21 Depuy Products, Inc. Bone graft delivery device and method of use
US7295893B2 (en) 2003-03-31 2007-11-13 Kabushiki Kaisha Toshiba Manipulator and its control apparatus and method
US7527632B2 (en) 2003-03-31 2009-05-05 Cordis Corporation Modified delivery device for coated medical devices
JP3752494B2 (en) 2003-03-31 2006-03-08 株式会社東芝 Master-slave manipulator, control device and control method thereof
JP3944108B2 (en) 2003-03-31 2007-07-11 株式会社東芝 Power transmission mechanism and manipulator for medical manipulator
DE10324844A1 (en) 2003-04-01 2004-12-23 Tuebingen Scientific Surgical Products Gmbh Surgical instrument with instrument handle and zero point adjustment
DE10314827B3 (en) 2003-04-01 2004-04-22 Tuebingen Scientific Surgical Products Gmbh Surgical instrument used in minimal invasive surgery comprises an effector-operating gear train having a push bar displaceably arranged in a tubular shaft and lying in contact with a push bolt interacting with an engaging element
DE10330604A1 (en) 2003-04-01 2004-10-28 Tuebingen Scientific Surgical Products Gmbh Surgical instrument
US7591783B2 (en) 2003-04-01 2009-09-22 Boston Scientific Scimed, Inc. Articulation joint for video endoscope
US20040199181A1 (en) 2003-04-02 2004-10-07 Knodel Bryan D. Surgical device for anastomosis
US20040243163A1 (en) 2003-04-02 2004-12-02 Gyrus Ent L.L.C Surgical instrument
US20040197375A1 (en) 2003-04-02 2004-10-07 Alireza Rezania Composite scaffolds seeded with mammalian cells
US20070010702A1 (en) 2003-04-08 2007-01-11 Xingwu Wang Medical device with low magnetic susceptibility
US20040204735A1 (en) 2003-04-11 2004-10-14 Shiroff Jason Alan Subcutaneous dissection tool incorporating pharmacological agent delivery
US6754959B1 (en) 2003-04-15 2004-06-29 Guiette, Iii William E. Hand-held, cartridge-actuated cutter
US20050116673A1 (en) 2003-04-18 2005-06-02 Rensselaer Polytechnic Institute Methods and systems for controlling the operation of a tool
PT1616549E (en) 2003-04-23 2012-11-12 Otsuka Pharma Co Ltd Drug solution filling plastic ampoule and process for producing the same
CN100515381C (en) 2003-04-23 2009-07-22 株式会社大塚制药工厂 Drug solution filling plastic ampoule and production method therefor
EP1619996B1 (en) 2003-04-25 2012-12-05 Applied Medical Resources Corporation Steerable kink-resistant sheath
US8714429B2 (en) 2003-04-29 2014-05-06 Covidien Lp Dissecting tip for surgical stapler
US20040243151A1 (en) 2003-04-29 2004-12-02 Demmy Todd L. Surgical stapling device with dissecting tip
TWI231076B (en) 2003-04-29 2005-04-11 Univ Nat Chiao Tung Evanescent-field optical amplifiers and lasers
US9597078B2 (en) 2003-04-29 2017-03-21 Covidien Lp Surgical stapling device with dissecting tip
RU32984U1 (en) 2003-04-30 2003-10-10 Институт экспериментальной ветеринарии Сибири и Дальнего Востока СО РАСХН CUTIMETER
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
CA2522372C (en) 2003-05-06 2012-08-07 Enpath Medical, Inc. Rotatable lead introducer
JP4391762B2 (en) 2003-05-08 2009-12-24 オリンパス株式会社 Surgical instrument
US6722550B1 (en) 2003-05-09 2004-04-20 Illinois Tool Works Inc. Fuel level indicator for combustion tools
DE60312050T2 (en) 2003-05-09 2007-10-25 Tyco Healthcare Group Lp, Norwalk ANASTOMOSIS CLAMP WITH FLUID DISPENSER CAPILLARY
US7404449B2 (en) 2003-05-12 2008-07-29 Bermingham Construction Limited Pile driving control apparatus and pile driving system
US7025775B2 (en) 2003-05-15 2006-04-11 Applied Medical Resources Corporation Surgical instrument with removable shaft apparatus and method
US7615005B2 (en) 2003-05-16 2009-11-10 Ethicon Endo-Surgery, Inc. Medical apparatus for use with an endoscope
US7615003B2 (en) 2005-05-13 2009-11-10 Ethicon Endo-Surgery, Inc. Track for medical devices
US7815565B2 (en) 2003-05-16 2010-10-19 Ethicon Endo-Surgery, Inc. Endcap for use with an endoscope
WO2004102824A1 (en) 2003-05-19 2004-11-25 Telefonaktiebolaget L M Ericsson (Publ) Determination of a channel estimate of a transmission channel
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US6988649B2 (en) 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7140528B2 (en) 2003-05-20 2006-11-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US7286850B2 (en) 2003-05-20 2007-10-23 Agere Systems Inc. Wireless communication module system and method for performing a wireless communication
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7044352B2 (en) 2003-05-20 2006-05-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7000818B2 (en) 2003-05-20 2006-02-21 Ethicon, Endo-Surger, Inc. Surgical stapling instrument having separate distinct closing and firing systems
US20070010838A1 (en) 2003-05-20 2007-01-11 Shelton Frederick E Iv Surgical stapling instrument having a firing lockout for an unclosed anvil
USD502994S1 (en) 2003-05-21 2005-03-15 Blake, Iii Joseph W Repeating multi-clip applier
US7410483B2 (en) 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
US7090637B2 (en) 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US8100824B2 (en) 2003-05-23 2012-01-24 Intuitive Surgical Operations, Inc. Tool with articulation lock
NL1023532C2 (en) 2003-05-26 2004-11-29 Innosource B V Speed control for a brushless DC motor.
US6921397B2 (en) 2003-05-27 2005-07-26 Cardia, Inc. Flexible delivery device
US7413563B2 (en) 2003-05-27 2008-08-19 Cardia, Inc. Flexible medical device
US7583063B2 (en) 2003-05-27 2009-09-01 Pratt & Whitney Canada Corp. Architecture for electric machine
US6965183B2 (en) 2003-05-27 2005-11-15 Pratt & Whitney Canada Corp. Architecture for electric machine
EP1633245B1 (en) 2003-05-28 2007-06-06 Koninklijke Philips Electronics N.V. Device including moveable support for examining persons
DE10325393B3 (en) 2003-05-28 2005-01-05 Karl Storz Gmbh & Co. Kg retractor
JP3521910B1 (en) 2003-05-29 2004-04-26 清輝 司馬 External forceps channel device for endoscope
US6796921B1 (en) 2003-05-30 2004-09-28 One World Technologies Limited Three speed rotary power tool
US7346344B2 (en) 2003-05-30 2008-03-18 Aol Llc, A Delaware Limited Liability Company Identity-based wireless device configuration
US20040247415A1 (en) 2003-06-04 2004-12-09 Mangone Peter G. Slotted fastener and fastening method
US8007511B2 (en) 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
WO2004110553A1 (en) 2003-06-09 2004-12-23 The University Of Cincinnati Actuation mechanisms for a heart actuation device
US7043852B2 (en) 2003-06-09 2006-05-16 Mitutoyo Corporation Measuring instrument
WO2005006939A2 (en) 2003-06-11 2005-01-27 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7597693B2 (en) 2003-06-13 2009-10-06 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
DE10326677A1 (en) 2003-06-13 2005-01-20 Zf Friedrichshafen Ag planetary gear
US7862546B2 (en) 2003-06-16 2011-01-04 Ethicon Endo-Surgery, Inc. Subcutaneous self attaching injection port with integral moveable retention members
US20040254590A1 (en) 2003-06-16 2004-12-16 Hoffman Gary H. Method and instrument for the performance of stapled anastamoses
US7905902B2 (en) 2003-06-16 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical implant with preferential corrosion zone
US20060052825A1 (en) 2003-06-16 2006-03-09 Ransick Mark H Surgical implant alloy
US20060052824A1 (en) 2003-06-16 2006-03-09 Ransick Mark H Surgical implant
US7159750B2 (en) 2003-06-17 2007-01-09 Tyco Healtcare Group Lp Surgical stapling device
US20040260315A1 (en) 2003-06-17 2004-12-23 Dell Jeffrey R. Expandable tissue support member and method of forming the support member
US7494039B2 (en) 2003-06-17 2009-02-24 Tyco Healthcare Group Lp Surgical stapling device
AU2012200594B2 (en) 2003-06-17 2014-03-27 Covidien Lp Surgical stapling device
US7038421B2 (en) 2003-06-17 2006-05-02 International Business Machines Corporation Method and system for multiple servo motor control
WO2004112652A2 (en) 2003-06-20 2004-12-29 Medtronic Vascular, Inc. Device, system, and method for contracting tissue in a mammalian body
JP4665432B2 (en) 2003-06-20 2011-04-06 日立工機株式会社 Combustion power tool
US7168604B2 (en) 2003-06-20 2007-01-30 Tyco Healthcare Group Lp Surgical stapling device
US20060154546A1 (en) 2003-06-25 2006-07-13 Andover Coated Products, Inc. Air permeable pressure-sensitive adhesive tapes
SE526852C2 (en) 2003-06-26 2005-11-08 Kongsberg Automotive Ab Method and arrangement for controlling DC motor
GB0314863D0 (en) 2003-06-26 2003-07-30 Univ Dundee Medical apparatus and method
JP2005013573A (en) 2003-06-27 2005-01-20 Olympus Corp Electronic endoscope system
DE10328934B4 (en) 2003-06-27 2005-06-02 Christoph Zepf Motor drive for surgical instruments
US6998816B2 (en) 2003-06-30 2006-02-14 Sony Electronics Inc. System and method for reducing external battery capacity requirement for a wireless card
DE102004063606B4 (en) 2004-02-20 2015-10-22 Carl Zeiss Meditec Ag Holding device, in particular for a medical-optical instrument, with a device for active vibration damping
US8226715B2 (en) 2003-06-30 2012-07-24 Depuy Mitek, Inc. Scaffold for connective tissue repair
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US20050010213A1 (en) 2003-07-08 2005-01-13 Depuy Spine, Inc. Attachment mechanism for surgical instrument
US7147648B2 (en) 2003-07-08 2006-12-12 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Device for cutting and holding a cornea during a transplant procedure
US7126303B2 (en) 2003-07-08 2006-10-24 Board Of Regents Of The University Of Nebraska Robot for surgical applications
US7042184B2 (en) 2003-07-08 2006-05-09 Board Of Regents Of The University Of Nebraska Microrobot for surgical applications
US7213736B2 (en) 2003-07-09 2007-05-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint
US6786382B1 (en) 2003-07-09 2004-09-07 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an articulation joint for a firing bar track
US7111769B2 (en) 2003-07-09 2006-09-26 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
US6964363B2 (en) 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US7055731B2 (en) 2003-07-09 2006-06-06 Ethicon Endo-Surgery Inc. Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
EP1498077B8 (en) 2003-07-15 2005-12-28 University Of Dundee Medical gripping and/or cutting instrument
US7931695B2 (en) 2003-07-15 2011-04-26 Kensey Nash Corporation Compliant osteosynthesis fixation plate
US7066879B2 (en) 2003-07-15 2006-06-27 The Trustees Of Columbia University In The City Of New York Insertable device and system for minimal access procedure
KR100582697B1 (en) 2003-07-16 2006-05-23 동경 엘렉트론 주식회사 Transportation apparatus and drive mechanism
AU2004259237B2 (en) 2003-07-16 2009-10-22 Covidien Lp Surgical stapling device with tissue tensioner
US7183737B2 (en) 2003-07-17 2007-02-27 Asmo Co., Ltd. Motor control device and motor control method
WO2005007208A1 (en) 2003-07-17 2005-01-27 Gunze Limited Suture prosthetic material for automatic sewing device
DE102004034444A1 (en) 2003-07-18 2005-02-03 Pentax Corp. Endoscope capsule for digestive tract investigations has power coupling coils at different angles to provide stable output and orientation information
JP4124041B2 (en) 2003-07-18 2008-07-23 日立工機株式会社 DC power supply with charging function
US7712182B2 (en) 2003-07-25 2010-05-11 Milwaukee Electric Tool Corporation Air flow-producing device, such as a vacuum cleaner or a blower
US6949196B2 (en) 2003-07-28 2005-09-27 Fkos, Llc Methods and systems for improved dosing of a chemical treatment, such as chlorine dioxide, into a fluid stream, such as a wastewater stream
US7121773B2 (en) 2003-08-01 2006-10-17 Nitto Kohki Co., Ltd. Electric drill apparatus
US20050032511A1 (en) 2003-08-07 2005-02-10 Cardiac Pacemakers, Inc. Wireless firmware download to an external device
JP4472395B2 (en) 2003-08-07 2010-06-02 オリンパス株式会社 Ultrasonic surgery system
FI120333B (en) 2003-08-20 2009-09-30 Bioretec Oy A porous medical device and a method of making it
JP3853807B2 (en) 2003-08-28 2006-12-06 本田技研工業株式会社 Sound vibration analysis apparatus, sound vibration analysis method, computer-readable recording medium recording sound vibration analysis program, and program for sound vibration analysis
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7686201B2 (en) 2003-09-01 2010-03-30 Tyco Healthcare Group Lp Circular stapler for hemorrhoid operations
CA2439536A1 (en) 2003-09-04 2005-03-04 Jacek Krzyzanowski Variations of biopsy jaw and clevis and method of manufacture
JP4190983B2 (en) 2003-09-04 2008-12-03 ジョンソン・エンド・ジョンソン株式会社 Staple device
US7205959B2 (en) 2003-09-09 2007-04-17 Sony Ericsson Mobile Communications Ab Multi-layered displays providing different focal lengths with optically shiftable viewing formats and terminals incorporating the same
JP4722849B2 (en) 2003-09-12 2011-07-13 マイルストーン サイアンティフィック インク Drug injection device that identifies tissue using pressure sensing
US20050058890A1 (en) 2003-09-15 2005-03-17 Kenneth Brazell Removable battery pack for a portable electric power tool
EP2311520B1 (en) 2003-09-15 2014-12-03 Apollo Endosurgery, Inc. Implantable device fastening system
US20050059997A1 (en) 2003-09-17 2005-03-17 Bauman Ann M. Circular stapler buttress
US7547312B2 (en) 2003-09-17 2009-06-16 Gore Enterprise Holdings, Inc. Circular stapler buttress
US20090325859A1 (en) 2003-09-19 2009-12-31 Northwestern University Citric acid polymers
JP4533695B2 (en) 2003-09-23 2010-09-01 オリンパス株式会社 Treatment endoscope
US6905057B2 (en) 2003-09-29 2005-06-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
US7434715B2 (en) 2003-09-29 2008-10-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing with opening lockout
DE20321117U1 (en) 2003-09-29 2005-12-22 Robert Bosch Gmbh Cordless drill/driver, comprising spring supported switch extending across full front of handle
US7000819B2 (en) 2003-09-29 2006-02-21 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing incorporating a traction-biased ratcheting mechanism
US6959852B2 (en) 2003-09-29 2005-11-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism
US7094202B2 (en) 2003-09-29 2006-08-22 Ethicon Endo-Surgery, Inc. Method of operating an endoscopic device with one hand
US7083075B2 (en) 2003-09-29 2006-08-01 Ethicon Endo-Surgery, Inc. Multi-stroke mechanism with automatic end of stroke retraction
US7364061B2 (en) 2003-09-29 2008-04-29 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
US7303108B2 (en) 2003-09-29 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
US20050070929A1 (en) 2003-09-30 2005-03-31 Dalessandro David A. Apparatus and method for attaching a surgical buttress to a stapling apparatus
JP4296894B2 (en) 2003-09-30 2009-07-15 東海ゴム工業株式会社 Fluid transfer tube bracket
US20050075561A1 (en) 2003-10-01 2005-04-07 Lucent Medical Systems, Inc. Method and apparatus for indicating an encountered obstacle during insertion of a medical device
US7202576B1 (en) 2003-10-03 2007-04-10 American Power Conversion Corporation Uninterruptible power supply systems and enclosures
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7097650B2 (en) 2003-10-14 2006-08-29 Satiety, Inc. System for tissue approximation and fixation
US7914543B2 (en) 2003-10-14 2011-03-29 Satiety, Inc. Single fold device for tissue fixation
US7533906B2 (en) 2003-10-14 2009-05-19 Water Pik, Inc. Rotatable and pivotable connector
US20060161050A1 (en) 2003-10-15 2006-07-20 John Butler A surgical sealing device
US7029435B2 (en) 2003-10-16 2006-04-18 Granit Medical Innovation, Llc Endoscope having multiple working segments
US20090090763A1 (en) 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US10022123B2 (en) 2012-07-09 2018-07-17 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
CA2542532C (en) 2003-10-17 2012-08-14 Tyco Healthcare Group, Lp Surgical stapling device with independent tip rotation
US8968276B2 (en) 2007-09-21 2015-03-03 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US8806973B2 (en) 2009-12-02 2014-08-19 Covidien Lp Adapters for use between surgical handle assembly and surgical end effector
US10041822B2 (en) 2007-10-05 2018-08-07 Covidien Lp Methods to shorten calibration times for powered devices
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7296722B2 (en) 2003-10-17 2007-11-20 Tyco Healthcare Group Lp Surgical fastener applying apparatus with controlled beam deflection
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
US10588629B2 (en) 2009-11-20 2020-03-17 Covidien Lp Surgical console and hand-held surgical device
US9113880B2 (en) 2007-10-05 2015-08-25 Covidien Lp Internal backbone structural chassis for a surgical device
ES2387016T3 (en) 2003-10-17 2012-09-11 Tyco Healthcare Group Lp Surgical stapling device
USD509589S1 (en) 2003-10-17 2005-09-13 Tyco Healthcare Group, Lp Handle for surgical instrument
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US20050090817A1 (en) 2003-10-22 2005-04-28 Scimed Life Systems, Inc. Bendable endoscopic bipolar device
AU2003284929B2 (en) 2003-10-23 2010-07-22 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US20050112139A1 (en) 2003-10-23 2005-05-26 Nmk Research, Llc Immunogenic composition and method of developing a vaccine based on factor H binding sites
US7190147B2 (en) 2003-10-24 2007-03-13 Eagle-Picher Technologies, Llc Battery with complete discharge device
US20070018958A1 (en) 2003-10-24 2007-01-25 Tavakoli Seyed M Force reflective robotic control system and minimally invasive surgical device
AU2004284018C1 (en) 2003-10-28 2010-10-07 Ibex Industries Limited Powered hand tool
US7338513B2 (en) 2003-10-30 2008-03-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7686826B2 (en) 2003-10-30 2010-03-30 Cambridge Endoscopic Devices, Inc. Surgical instrument
BRPI0416114A (en) 2003-10-30 2007-01-02 Mcneil Ppc Inc composite materials comprising metal charged nanoparticles
US7842028B2 (en) 2005-04-14 2010-11-30 Cambridge Endoscopic Devices, Inc. Surgical instrument guide device
US7147650B2 (en) 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
JP2005131173A (en) 2003-10-31 2005-05-26 Olympus Corp Externally mounted channel for endoscope
JP2005131211A (en) 2003-10-31 2005-05-26 Olympus Corp Externally mounted channel for endoscope
JP2005131163A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope
JP2005131164A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope
JP2005131212A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope and endoscope device
US20050096683A1 (en) 2003-11-01 2005-05-05 Medtronic, Inc. Using thinner laminations to reduce operating temperature in a high speed hand-held surgical power tool
JP2005137423A (en) 2003-11-04 2005-06-02 Olympus Corp External channel for endoscope and branch member for external channel
US7397364B2 (en) 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
AU2004289336B2 (en) 2003-11-12 2010-07-29 Applied Medical Resources Corporation Surgical instrument having jaw spines
DE10353846A1 (en) 2003-11-18 2005-06-16 Maquet Gmbh & Co. Kg Method of preparation of equipment intended for the performance of medical or surgical procedures
WO2005050378A2 (en) 2003-11-18 2005-06-02 Burke Robert M Ii System for regulating access to and distributing content in a network
US6899593B1 (en) 2003-11-18 2005-05-31 Dieter Moeller Grinding apparatus for blending defects on turbine blades and associated method of use
JP4594612B2 (en) 2003-11-27 2010-12-08 オリンパス株式会社 Insertion aid
GB0327904D0 (en) 2003-12-02 2004-01-07 Qinetiq Ltd Gear change mechanism
US8133500B2 (en) 2003-12-04 2012-03-13 Kensey Nash Bvf Technology, Llc Compressed high density fibrous polymers suitable for implant
US8389588B2 (en) 2003-12-04 2013-03-05 Kensey Nash Corporation Bi-phasic compressed porous reinforcement materials suitable for implant
US8257393B2 (en) 2003-12-04 2012-09-04 Ethicon, Inc. Active suture for the delivery of therapeutic fluids
GB2408936B (en) 2003-12-09 2007-07-18 Gyrus Group Plc A surgical instrument
US7439354B2 (en) 2003-12-11 2008-10-21 E.I. Du Pont De Nemours And Company Process for preparing amide acetals
US7375493B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductive battery charger
US7378817B2 (en) 2003-12-12 2008-05-27 Microsoft Corporation Inductive power adapter
WO2005058731A2 (en) 2003-12-12 2005-06-30 Automated Merchandising Systems Inc. Adjustable storage rack for a vending machine
JP4460890B2 (en) 2003-12-15 2010-05-12 衛 光石 Multi-DOF manipulator
US20050131457A1 (en) 2003-12-15 2005-06-16 Ethicon, Inc. Variable stiffness shaft
US7604118B2 (en) 2003-12-15 2009-10-20 Panasonic Corporation Puncture needle cartridge and lancet for blood collection
US7091191B2 (en) 2003-12-19 2006-08-15 Ethicon, Inc. Modified hyaluronic acid for use in musculoskeletal tissue repair
EP1701672A4 (en) 2003-12-19 2011-04-27 Osteotech Inc Tissue-derived mesh for orthopedic regeneration
US8221424B2 (en) 2004-12-20 2012-07-17 Spinascope, Inc. Surgical instrument for orthopedic surgery
JP4552435B2 (en) 2003-12-22 2010-09-29 住友化学株式会社 Oxime production method
US7742036B2 (en) 2003-12-22 2010-06-22 Immersion Corporation System and method for controlling haptic devices having multiple operational modes
US8590764B2 (en) 2003-12-24 2013-11-26 Boston Scientific Scimed, Inc. Circumferential full thickness resectioning device
JP4398716B2 (en) 2003-12-24 2010-01-13 呉羽テック株式会社 Highly stretchable nonwoven fabric provided with a clear embossed pattern and method for producing the same
DE10361942A1 (en) 2003-12-24 2005-07-21 Restate Patent Ag Radioopaque marker for medical implants
CN1634601A (en) 2003-12-26 2005-07-06 吉林省中立实业有限公司 Method for sterilizing medical appliance
US7618427B2 (en) 2003-12-29 2009-11-17 Ethicon Endo-Surgery, Inc. Device and method for intralumenal anastomosis
US20050143759A1 (en) 2003-12-30 2005-06-30 Kelly William D. Curved cutter stapler shaped for male pelvis
US7549563B2 (en) 2003-12-30 2009-06-23 Ethicon Endo-Surgery, Inc. Rotating curved cutter stapler
US7204404B2 (en) 2003-12-30 2007-04-17 Ethicon Endo-Surgery, Inc. Slotted pins guiding knife in a curved cutter stapler
US7207472B2 (en) 2003-12-30 2007-04-24 Ethicon Endo-Surgery, Inc. Cartridge with locking knife for a curved cutter stapler
US6988650B2 (en) 2003-12-30 2006-01-24 Ethicon Endo-Surgery, Inc. Retaining pin lever advancement mechanism for a curved cutter stapler
US7766207B2 (en) 2003-12-30 2010-08-03 Ethicon Endo-Surgery, Inc. Articulating curved cutter stapler
US20050145672A1 (en) 2003-12-30 2005-07-07 Schwemberger Richard F. Curved cutter stapler with aligned tissue retention feature
US20050139636A1 (en) 2003-12-30 2005-06-30 Schwemberger Richard F. Replaceable cartridge module for a surgical stapling and cutting instrument
US7147139B2 (en) 2003-12-30 2006-12-12 Ethicon Endo-Surgery, Inc Closure plate lockout for a curved cutter stapler
US7134587B2 (en) 2003-12-30 2006-11-14 Ethicon Endo-Surgery, Inc. Knife retraction arm for a curved cutter stapler
US7147140B2 (en) 2003-12-30 2006-12-12 Ethicon Endo - Surgery, Inc. Cartridge retainer for a curved cutter stapler
US20050191936A1 (en) 2004-01-07 2005-09-01 Marine Jon C. Doll
US6995729B2 (en) 2004-01-09 2006-02-07 Biosense Webster, Inc. Transponder with overlapping coil antennas on a common core
TWI228850B (en) 2004-01-14 2005-03-01 Asia Optical Co Inc Laser driver circuit for burst mode and making method thereof
WO2005076640A1 (en) 2004-01-16 2005-08-18 U.S. Thermoelectric Consortium Wireless communications apparatus and method
GB2410161B (en) 2004-01-16 2008-09-03 Btg Int Ltd Method and system for calculating and verifying the integrity of data in data transmission system
US7219980B2 (en) 2004-01-21 2007-05-22 Silverbrook Research Pty Ltd Printhead assembly with removable cover
ATE489897T1 (en) 2004-01-23 2010-12-15 Allergan Inc FASTENING SYSTEM FOR AN IMPLANTABLE DEVICE AND METHOD OF USE
US20050171522A1 (en) 2004-01-30 2005-08-04 Christopherson Mark A. Transurethral needle ablation system with needle position indicator
JP2005211455A (en) 2004-01-30 2005-08-11 Olympus Corp Surgical excision apparatus
US7204835B2 (en) 2004-02-02 2007-04-17 Gyrus Medical, Inc. Surgical instrument
DE102004005709A1 (en) 2004-02-05 2005-08-25 Polydiagnost Gmbh Endoscope with a flexible probe
US20050177176A1 (en) 2004-02-05 2005-08-11 Craig Gerbi Single-fold system for tissue approximation and fixation
DE102004029611A1 (en) 2004-02-06 2005-08-25 Restate Patent Ag Implant for e.g. releasing active substances into a vessel through which body fluids flow, comprises a base consisting of a biodegradable material as the carrier of the active substances
JP4845382B2 (en) 2004-02-06 2011-12-28 キヤノン株式会社 Image processing apparatus, control method therefor, computer program, and computer-readable storage medium
KR100855957B1 (en) 2004-02-09 2008-09-02 삼성전자주식회사 Solid state image sensing device compensating brightness of the side display area and driving method thereof
US11395865B2 (en) 2004-02-09 2022-07-26 DePuy Synthes Products, Inc. Scaffolds with viable tissue
JP4680939B2 (en) 2004-02-10 2011-05-11 シネコー・エルエルシー Therapeutic intravascular delivery system
GB0403020D0 (en) 2004-02-11 2004-03-17 Pa Consulting Services Portable charging device
US7979137B2 (en) 2004-02-11 2011-07-12 Ethicon, Inc. System and method for nerve stimulation
WO2005079295A2 (en) 2004-02-12 2005-09-01 Ndi Medical, Llc Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation
US7886952B2 (en) 2004-02-17 2011-02-15 Tyco Healthcare Group Lp Surgical stapling apparatus with locking mechanism
EP1563793B1 (en) 2004-02-17 2007-06-13 Tyco Healthcare Group Lp Surgical stapling apparatus
ES2377496T3 (en) 2004-02-17 2012-03-28 Tyco Healthcare Group Lp Surgical stapling device with a locking mechanism
ES2285587T3 (en) 2004-02-17 2007-11-16 Tyco Healthcare Group Lp SURGICAL ENGRAVING DEVICE WITH LOCKING MECHANISM.
DE602005000938T2 (en) 2004-02-17 2008-01-17 Tyco Healthcare Group Lp, Norwalk Surgical stapler with locking mechanism
US20100191292A1 (en) 2004-02-17 2010-07-29 Demeo Joseph Oriented polymer implantable device and process for making same
GB2451776B (en) 2004-02-17 2009-04-08 Cook Biotech Inc Medical devices and methods useful for applying bolster material
US6953138B1 (en) * 2004-02-18 2005-10-11 Frank W. Dworak Surgical stapler anvil with nested staple forming pockets
US20050182443A1 (en) 2004-02-18 2005-08-18 Closure Medical Corporation Adhesive-containing wound closure device and method
US7086267B2 (en) 2004-02-18 2006-08-08 Frank W. Dworak Metal-forming die and method for manufacturing same
US20050187545A1 (en) 2004-02-20 2005-08-25 Hooven Michael D. Magnetic catheter ablation device and method
US20050186240A1 (en) 2004-02-23 2005-08-25 Ringeisen Timothy A. Gel suitable for implantation and delivery system
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
GB2411527B (en) 2004-02-26 2006-06-28 Itt Mfg Enterprises Inc Electrical connector
JP2005279253A (en) 2004-03-02 2005-10-13 Olympus Corp Endoscope
US20050209614A1 (en) 2004-03-04 2005-09-22 Fenter Felix W Anastomosis apparatus and methods with computer-aided, automated features
EP1720480A1 (en) 2004-03-05 2006-11-15 Hansen Medical, Inc. Robotic catheter system
US20060100610A1 (en) 2004-03-05 2006-05-11 Wallace Daniel T Methods using a robotic catheter system
US8052636B2 (en) 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
US9028511B2 (en) 2004-03-09 2015-05-12 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US8252009B2 (en) 2004-03-09 2012-08-28 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US8449560B2 (en) 2004-03-09 2013-05-28 Satiety, Inc. Devices and methods for placement of partitions within a hollow body organ
WO2005084556A1 (en) 2004-03-10 2005-09-15 Olympus Corporation Treatment tool for surgery
WO2005087125A2 (en) 2004-03-10 2005-09-22 Depuy International Ltd Orthopaedic operating systems, methods, implants and instruments
JP4610934B2 (en) 2004-06-03 2011-01-12 オリンパス株式会社 Surgical instrument
US20050203550A1 (en) 2004-03-11 2005-09-15 Laufer Michael D. Surgical fastener
GB2412232A (en) 2004-03-15 2005-09-21 Ims Nanofabrication Gmbh Particle-optical projection system
US7118528B1 (en) 2004-03-16 2006-10-10 Gregory Piskun Hemorrhoids treatment method and associated instrument assembly including anoscope and cofunctioning tissue occlusion device
FI20040415A (en) 2004-03-18 2005-09-19 Stora Enso Oyj Prepared food packaging and process for its preparation
CA2796946C (en) 2004-03-18 2015-06-02 Contipi Ltd. Apparatus for the prevention of urinary incontinence in females
US7093492B2 (en) 2004-03-19 2006-08-22 Mechworks Systems Inc. Configurable vibration sensor
CA2560070C (en) 2004-03-19 2012-10-23 Tyco Healthcare Group Lp Anvil assembly with improved cut ring
US8181840B2 (en) 2004-03-19 2012-05-22 Tyco Healthcare Group Lp Tissue tensioner assembly and approximation mechanism for surgical stapling device
US7625388B2 (en) 2004-03-22 2009-12-01 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
EP1734858B1 (en) 2004-03-22 2014-07-09 BodyMedia, Inc. Non-invasive temperature monitoring device
JP4727158B2 (en) 2004-03-23 2011-07-20 オリンパス株式会社 Endoscope system
DE102004014011A1 (en) 2004-03-23 2005-10-20 Airtec Pneumatic Gmbh Multifunctional therapy device for shock wave or massage therapy comprises a module with a housing containing a rear and a front cylinder head and a cylinder tube, a piston, a control unit, a piston rod, and an adaptable treatment head
TWI234339B (en) 2004-03-25 2005-06-11 Richtek Techohnology Corp High-efficiency voltage transformer
EP1584300A3 (en) 2004-03-30 2006-07-05 Kabushiki Kaisha Toshiba Manipulator apparatus
DE102004015667B3 (en) 2004-03-31 2006-01-19 Sutter Medizintechnik Gmbh Bipolar double jointed instrument
US7331403B2 (en) 2004-04-02 2008-02-19 Black & Decker Inc. Lock-out for activation arm mechanism in a power tool
EP1591208A1 (en) 2004-04-02 2005-11-02 BLACK &amp; DECKER INC. Electronic fastening tool
US7036680B1 (en) 2004-04-07 2006-05-02 Avery Dennison Corporation Device for dispensing plastic fasteners
JP2005296412A (en) 2004-04-13 2005-10-27 Olympus Corp Endoscopic treatment apparatus
US7566300B2 (en) 2004-04-15 2009-07-28 Wilson-Cook Medical, Inc. Endoscopic surgical access devices and methods of articulating an external accessory channel
US6960107B1 (en) 2004-04-16 2005-11-01 Brunswick Corporation Marine transmission with a cone clutch used for direct transfer of torque
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US7758612B2 (en) 2004-04-27 2010-07-20 Tyco Healthcare Group Lp Surgery delivery device and mesh anchor
US7377918B2 (en) 2004-04-28 2008-05-27 Gyrus Medical Limited Electrosurgical method and apparatus
US7336183B2 (en) 2004-04-30 2008-02-26 Kimberly-Clark Worldwide, Inc. Decommissioning an electronic data tag
US7098794B2 (en) 2004-04-30 2006-08-29 Kimberly-Clark Worldwide, Inc. Deactivating a data tag for user privacy or tamper-evident packaging
US7151455B2 (en) 2004-04-30 2006-12-19 Kimberly-Clark Worldwide, Inc. Activating a data tag by load or orientation or user control
US7948381B2 (en) 2004-04-30 2011-05-24 Binforma Group Limited Liability Company Reversibly deactivating a radio frequency identification data tag
CA2562096A1 (en) 2004-05-03 2005-11-24 Ams Research Corporation Surgical implants and related methods
US7348875B2 (en) 2004-05-04 2008-03-25 Battelle Memorial Institute Semi-passive radio frequency identification (RFID) tag with active beacon
CA2828619C (en) 2004-05-05 2018-09-25 Direct Flow Medical, Inc. Prosthetic valve with an elastic stent and a sealing structure
US7736374B2 (en) 2004-05-07 2010-06-15 Usgi Medical, Inc. Tissue manipulation and securement system
US20050251063A1 (en) 2004-05-07 2005-11-10 Raghuveer Basude Safety device for sampling tissue
US8333764B2 (en) 2004-05-12 2012-12-18 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US8251891B2 (en) 2004-05-14 2012-08-28 Nathan Moskowitz Totally wireless electronically embedded action-ended endoscope utilizing differential directional illumination with digitally controlled mirrors and/or prisms
JP2005328882A (en) 2004-05-18 2005-12-02 Olympus Corp Treatment instrument for endoscope, and endoscopic system
US7158032B2 (en) 2004-05-20 2007-01-02 Xerox Corporation Diagnosis of programmable modules
US7260431B2 (en) 2004-05-20 2007-08-21 Cardiac Pacemakers, Inc. Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device
GB2414185A (en) 2004-05-20 2005-11-23 Gyrus Medical Ltd Morcellating device using cutting electrodes on end-face of tube
JP2005335432A (en) 2004-05-24 2005-12-08 Nissan Motor Co Ltd Rear wheel steering control device
IES20040368A2 (en) 2004-05-25 2005-11-30 James E Coleman Surgical stapler
IL162187A (en) 2004-05-27 2010-05-31 Elazar Sonnenschein Stapling device
US7450991B2 (en) 2004-05-28 2008-11-11 Advanced Neuromodulation Systems, Inc. Systems and methods used to reserve a constant battery capacity
US7828808B2 (en) 2004-06-07 2010-11-09 Novare Surgical Systems, Inc. Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
DE102004027850A1 (en) 2004-06-08 2006-01-05 Henke-Sass Wolf Gmbh Bendable section of an introducer tube of an endoscope and method for its manufacture
US7695493B2 (en) 2004-06-09 2010-04-13 Usgi Medical, Inc. System for optimizing anchoring force
US7446131B1 (en) 2004-06-10 2008-11-04 The United States Of America As Represented By The Secretary Of Agriculture Porous polymeric matrices made of natural polymers and synthetic polymers and optionally at least one cation and methods of making
US8663245B2 (en) 2004-06-18 2014-03-04 Medtronic, Inc. Device for occlusion of a left atrial appendage
GB2415140A (en) 2004-06-18 2005-12-21 Gyrus Medical Ltd A surgical instrument
US20050283226A1 (en) 2004-06-18 2005-12-22 Scimed Life Systems, Inc. Medical devices
US7331406B2 (en) 2004-06-21 2008-02-19 Duraspin Products Llc Apparatus for controlling a fastener driving tool, with user-adjustable torque limiting control
USD530339S1 (en) 2004-06-23 2006-10-17 Cellco Partnership Animated icon for a cellularly communicative electronic device
USD511525S1 (en) 2004-06-24 2005-11-15 Verizon Wireless Icon for the display screen of a cellulary communicative electronic device
US7229408B2 (en) 2004-06-30 2007-06-12 Ethicon, Inc. Low profile surgical retractor
US7367485B2 (en) 2004-06-30 2008-05-06 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary transmission
US7059508B2 (en) 2004-06-30 2006-06-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission
US20060020167A1 (en) 2004-06-30 2006-01-26 James Sitzmann Medical devices for minimally invasive surgeries and other internal procedures
EP3278763B1 (en) 2004-07-02 2020-08-05 Discus Dental, LLC Illumination system for dentistry applications
US7443547B2 (en) 2004-07-03 2008-10-28 Science Forge, Inc. Portable electronic faxing, scanning, copying, and printing device
US7966236B2 (en) 2004-07-07 2011-06-21 Ubs Financial Services Inc. Method and system for real time margin calculation
US7485133B2 (en) 2004-07-14 2009-02-03 Warsaw Orthopedic, Inc. Force diffusion spinal hook
JP4257270B2 (en) 2004-07-14 2009-04-22 オリンパス株式会社 Biological tissue suturing method and biological tissue suturing device
US20060020258A1 (en) 2004-07-20 2006-01-26 Medtronic, Inc. Surgical apparatus with a manually actuatable assembly and a method of operating same
JP4596844B2 (en) 2004-07-23 2010-12-15 テルモ株式会社 Medical article and ordering system for medical article
US20090078736A1 (en) 2004-07-26 2009-03-26 Van Lue Stephen J Surgical stapler with magnetically secured components
RU42750U1 (en) 2004-07-26 2004-12-20 Альбертин Сергей Викторович DEVICE FOR DOSED SUBMISSION OF SUBSTANCES
US8075476B2 (en) 2004-07-27 2011-12-13 Intuitive Surgical Operations, Inc. Cannula system and method of use
US7513408B2 (en) 2004-07-28 2009-04-07 Ethicon Endo-Surgery, Inc. Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism
US7914551B2 (en) 2004-07-28 2011-03-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US7410086B2 (en) 2004-07-28 2008-08-12 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for circular stapler
US7487899B2 (en) 2004-07-28 2009-02-10 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP complete firing system lockout mechanism
US7857183B2 (en) 2004-07-28 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US7407077B2 (en) 2004-07-28 2008-08-05 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US20060025812A1 (en) 2004-07-28 2006-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated pivoting articulation mechanism
US7506790B2 (en) 2004-07-28 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US7143926B2 (en) 2005-02-07 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system
US7354447B2 (en) 2005-11-10 2008-04-08 Ethicon Endo-Surgery, Inc. Disposable loading unit and surgical instruments including same
US7143925B2 (en) 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
CA2512948C (en) 2004-07-28 2013-10-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US7879070B2 (en) 2004-07-28 2011-02-01 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for grasper
US7147138B2 (en) 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US8057508B2 (en) 2004-07-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation locking mechanism
DE202004012389U1 (en) 2004-07-30 2004-09-30 Aesculap Ag & Co. Kg Surgical machine has brushless electric motor with space vector pulse width modulation control using rotor position sensing by reverse EMF during coil disconnection
DE102004038415A1 (en) 2004-07-30 2006-03-23 Aesculap Ag & Co. Kg Surgical machine and method for controlling and / or regulating a surgical machine
US7210609B2 (en) 2004-07-30 2007-05-01 Tools For Surgery, Llc Stapling apparatus having a curved anvil and driver
DE102004038414A1 (en) 2004-07-30 2006-03-23 Aesculap Ag & Co. Kg Surgical machine and method for operating a surgical machine
EP2292794A3 (en) 2004-08-06 2011-07-06 Genentech, Inc. Death receptor (DR) antibody for pharmaceutical use and assays employing biomarkers for predicting sensitivity of cells to said antibody
CN2716900Y (en) 2004-08-09 2005-08-10 陈永 Novel feeling mouse
US7779737B2 (en) 2004-08-12 2010-08-24 The Chisel Works, LLC. Multi-axis panel saw
CA2576441A1 (en) 2004-08-17 2006-03-02 Tyco Healthcare Group Lp Stapling support structures
ES2378996T3 (en) 2004-08-19 2012-04-19 Tyco Healthcare Group Lp Water swellable copolymers and articles and coating made therefrom
DE102004041871B4 (en) 2004-08-27 2014-01-30 W.O.M. World Of Medicine Ag Method for producing an autoclavable remote control and autoclavable remote control
US7182239B1 (en) 2004-08-27 2007-02-27 Myers Stephan R Segmented introducer device for a circular surgical stapler
JP4976296B2 (en) 2004-08-31 2012-07-18 サージカル ソリューションズ リミテッド ライアビリティ カンパニー Medical device having a bent shaft
US8157839B2 (en) 2004-08-31 2012-04-17 Wadsworth Medical Technologies, Inc. Systems and methods for closing a tissue opening
US8657808B2 (en) 2004-08-31 2014-02-25 Medtronic, Inc. Surgical apparatus including a hand-activated, cable assembly and method of using same
DE102004042886A1 (en) 2004-09-04 2006-03-30 Roche Diagnostics Gmbh Lancet device for creating a puncture wound
WO2006029092A1 (en) 2004-09-05 2006-03-16 Gateway Plastics, Inc. Closure for a container
US7128254B2 (en) 2004-09-07 2006-10-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary slip-clutch transmission
MX2007002841A (en) 2004-09-10 2007-04-30 Ethicon Endo Surgery Inc Surgical stapling instrument.
KR100646762B1 (en) 2004-09-10 2006-11-23 인하대학교 산학협력단 A staple for operation and a stapler for operation provided with the same
US7162758B2 (en) 2004-09-14 2007-01-16 Skinner Lyle J Multipurpose gripping tool
US7391164B2 (en) 2004-09-15 2008-06-24 Research In Motion Limited Visual notification methods for candy-bar type cellphones
JP2006081687A (en) 2004-09-15 2006-03-30 Max Co Ltd Medical stapler
CA2581009C (en) 2004-09-15 2011-10-04 Synthes (U.S.A.) Calibrating device
US8123764B2 (en) 2004-09-20 2012-02-28 Endoevolution, Llc Apparatus and method for minimally invasive suturing
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
GB0519252D0 (en) 2005-09-21 2005-10-26 Dezac Ltd Laser hair removal device
US20070055305A1 (en) 2004-09-23 2007-03-08 Guido Schnyder Biodegradable and/or bioabsorbable member for vascular sealing
US7336184B2 (en) 2004-09-24 2008-02-26 Intel Corporation Inertially controlled switch and RFID tag
AU2005289311B2 (en) 2004-09-30 2011-03-03 Covalon Technologies Inc. Non-adhesive elastic gelatin matrices
US10646292B2 (en) 2004-09-30 2020-05-12 Intuitive Surgical Operations, Inc. Electro-mechanical strap stack in robotic arms
US9261172B2 (en) 2004-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Multi-ply strap drive trains for surgical robotic arms
EP1793742B1 (en) 2004-09-30 2008-03-19 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US20070187857A1 (en) 2004-09-30 2007-08-16 Riley Susan L Methods for making and using composites, polymer scaffolds, and composite scaffolds
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
US20120046547A1 (en) 2004-10-06 2012-02-23 Guided Therapy Systems, Llc System and method for cosmetic treatment
FR2876020B1 (en) 2004-10-06 2007-03-09 Sofradim Production Sa APPARATUS FOR STORAGE, DISTRIBUTION AND INSTALLATION OF SURGICAL ATTACHES
US7819886B2 (en) 2004-10-08 2010-10-26 Tyco Healthcare Group Lp Endoscopic surgical clip applier
ES2547214T3 (en) 2004-10-08 2015-10-02 Covidien Lp An endoscopic clip or surgical clip applicator
US8409222B2 (en) 2004-10-08 2013-04-02 Covidien Lp Endoscopic surgical clip applier
EP2875786B1 (en) 2004-10-08 2017-02-01 Covidien LP Apparatus for applying surgical clips
US9763668B2 (en) 2004-10-08 2017-09-19 Covidien Lp Endoscopic surgical clip applier
US7846155B2 (en) 2004-10-08 2010-12-07 Ethicon Endo-Surgery, Inc. Handle assembly having hand activation for use with an ultrasonic surgical instrument
WO2006044581A2 (en) 2004-10-13 2006-04-27 Medtronic, Inc. Single-use transurethral needle ablation device
US8372094B2 (en) 2004-10-15 2013-02-12 Covidien Lp Seal element for anastomosis
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US7455682B2 (en) 2004-10-18 2008-11-25 Tyco Healthcare Group Lp Structure containing wound treatment material
AU2005295477B2 (en) 2004-10-18 2011-11-24 Covidien Lp Structure for applying sprayable wound treatment material
US8097017B2 (en) 2004-10-18 2012-01-17 Tyco Healthcare Group Lp Surgical fasteners coated with wound treatment materials
AU2005295807B2 (en) 2004-10-18 2011-09-01 Covidien Lp Annular adhesive structure
CN201515238U (en) 2004-10-18 2010-06-23 布莱克和戴克公司 Cordless electric tool system and battery pack used in same
US8016849B2 (en) 2004-10-18 2011-09-13 Tyco Healthcare Group Lp Apparatus for applying wound treatment material using tissue-penetrating needles
US7938307B2 (en) 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
JP5043670B2 (en) 2004-10-18 2012-10-10 タイコ ヘルスケア グループ リミテッド パートナーシップ Extraluminal sealant applicator
US7717313B2 (en) 2004-10-18 2010-05-18 Tyco Healthcare Group Lp Surgical apparatus and structure for applying sprayable wound treatment material
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
US9070068B2 (en) 2004-10-19 2015-06-30 Michael E. Coveley Passive tamper-resistant seal and applications therefor
DE102004052204A1 (en) 2004-10-19 2006-05-04 Karl Storz Gmbh & Co. Kg Deflectible endoscopic instrument
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
EP1809194B1 (en) 2004-10-20 2012-04-25 AtriCure Inc. Surgical clamp
EP2345430B1 (en) 2004-10-20 2015-11-25 Ethicon, Inc. A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture
US20060087746A1 (en) 2004-10-22 2006-04-27 Kenneth Lipow Remote augmented motor-sensory interface for surgery
US9463012B2 (en) 2004-10-26 2016-10-11 P Tech, Llc Apparatus for guiding and positioning an implant
US20060086032A1 (en) 2004-10-27 2006-04-27 Joseph Valencic Weapon and input device to record information
DE602005022927D1 (en) 2004-11-02 2010-09-23 Medtronic Inc DATA-TRANSMISSION TECHNIQUES IN AN IMPLANTABLE MEDICAL DEVICE
US20060097699A1 (en) 2004-11-05 2006-05-11 Mathews Associates, Inc. State of charge indicator for battery
US20060106369A1 (en) 2004-11-12 2006-05-18 Desai Jaydev P Haptic interface for force reflection in manipulation tasks
KR20060046933A (en) 2004-11-12 2006-05-18 노틸러스효성 주식회사 Multi-protecting device of personal identification number-pad module
US20060226957A1 (en) 2004-11-15 2006-10-12 Miller Ronald H Health care operating system with radio frequency information transfer
CN2738962Y (en) 2004-11-15 2005-11-09 胡建坤 Electric shaver and electric shaver with charger
US7641671B2 (en) 2004-11-22 2010-01-05 Design Standards Corporation Closing assemblies for clamping device
US7492261B2 (en) 2004-11-22 2009-02-17 Warsaw Orthopedic, Inc. Control system for an RFID-based system for assembling and verifying outbound surgical equipment corresponding to a particular surgery
US9700334B2 (en) 2004-11-23 2017-07-11 Intuitive Surgical Operations, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
WO2006073581A2 (en) 2004-11-23 2006-07-13 Novare Surgical Systems, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
US7182763B2 (en) 2004-11-23 2007-02-27 Instrasurgical, Llc Wound closure device
GB0425843D0 (en) 2004-11-24 2004-12-29 Gyrus Group Plc An electrosurgical instrument
CA2526541C (en) 2004-12-01 2013-09-03 Tyco Healthcare Group Lp Novel biomaterial drug delivery and surface modification compositions
US7255012B2 (en) 2004-12-01 2007-08-14 Rosemount Inc. Process fluid flow device with variable orifice
JP2006158525A (en) 2004-12-03 2006-06-22 Olympus Medical Systems Corp Ultrasonic surgical apparatus, and method of driving ultrasonic treatment instrument
US7121446B2 (en) 2004-12-13 2006-10-17 Niti Medical Technologies Ltd. Palm-size surgical stapler for single hand operation
US7328829B2 (en) 2004-12-13 2008-02-12 Niti Medical Technologies Ltd. Palm size surgical stapler for single hand operation
US7568619B2 (en) 2004-12-15 2009-08-04 Alcon, Inc. System and method for identifying and controlling ophthalmic surgical devices and components
US7384403B2 (en) 2004-12-17 2008-06-10 Depuy Products, Inc. Wireless communication system for transmitting information from a medical device
US7678121B1 (en) 2004-12-23 2010-03-16 Cardica, Inc. Surgical stapling tool
US7611474B2 (en) 2004-12-29 2009-11-03 Ethicon Endo-Surgery, Inc. Core sampling biopsy device with short coupled MRI-compatible driver
US7896869B2 (en) 2004-12-29 2011-03-01 Depuy Products, Inc. System and method for ensuring proper medical instrument use in an operating room
US20060142772A1 (en) 2004-12-29 2006-06-29 Ralph James D Surgical fasteners and related implant devices having bioabsorbable components
US8182422B2 (en) 2005-12-13 2012-05-22 Avantis Medical Systems, Inc. Endoscope having detachable imaging device and method of using
US7419321B2 (en) 2005-01-05 2008-09-02 Misha Tereschouk Hand applicator of encapsulated liquids
US7118020B2 (en) 2005-01-05 2006-10-10 Chung-Heng Lee Stapler
US7713542B2 (en) 2005-01-14 2010-05-11 Ada Foundation Three dimensional cell protector/pore architecture formation for bone and tissue constructs
US20060161185A1 (en) 2005-01-14 2006-07-20 Usgi Medical Inc. Methods and apparatus for transmitting force to an end effector over an elongate member
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
JP4681961B2 (en) 2005-01-14 2011-05-11 オリンパスメディカルシステムズ株式会社 Surgical instrument
EP1847225B1 (en) 2005-01-26 2011-12-21 Suzhou Touchstone International Medical Science Co., Ltd. Surgical stapler having a stapling head with a rotatable cutter
WO2006081491A2 (en) 2005-01-27 2006-08-03 Vector Surgical Surgical marker
US20060173470A1 (en) 2005-01-31 2006-08-03 Oray B N Surgical fastener buttress material
US20060176031A1 (en) 2005-02-04 2006-08-10 Ess Technology, Inc. Dual output switching regulator and method of operation
US20060176242A1 (en) 2005-02-08 2006-08-10 Blue Belt Technologies, Inc. Augmented reality device and method
US8007440B2 (en) 2005-02-08 2011-08-30 Volcano Corporation Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions
WO2006085389A1 (en) 2005-02-09 2006-08-17 Johnson & Johnson Kabushiki Kaisha Stapling instrument
EP1690638A1 (en) 2005-02-09 2006-08-16 BLACK &amp; DECKER INC. Power tool gear-train and torque overload clutch therefor
JP2006218129A (en) 2005-02-10 2006-08-24 Olympus Corp Surgery supporting system
US7706853B2 (en) 2005-02-10 2010-04-27 Terumo Cardiovascular Systems Corporation Near infrared spectroscopy device with reusable portion
JP2008530915A (en) 2005-02-11 2008-08-07 ラダテック インコーポレイテッド Microstrip patch antenna suitable for high temperature environment
GB2423199B (en) 2005-02-11 2009-05-13 Pa Consulting Services Power supply systems for electrical devices
JP2006218228A (en) 2005-02-14 2006-08-24 Olympus Corp Battery unit, battery device having the same, medical instrument and endoscope
US20060180633A1 (en) 2005-02-17 2006-08-17 Tyco Healthcare Group, Lp Surgical staple
US7654431B2 (en) 2005-02-18 2010-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
US7780054B2 (en) 2005-02-18 2010-08-24 Ethicon Endo-Surgery, Inc. Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
US7784662B2 (en) 2005-02-18 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
US7572285B2 (en) 2005-02-18 2009-08-11 Smiths Medical Asd, Inc. System for providing actuated optimal inflation to multiple temperature regulated blankets and method therefor
US20060289602A1 (en) 2005-06-23 2006-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with double pivot closure and single pivot frame ground
US7559450B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
US7559452B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
US7878981B2 (en) 2005-03-01 2011-02-01 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation
GB2423931B (en) 2005-03-03 2009-08-26 Michael John Radley Young Ultrasonic cutting tool
US7674263B2 (en) 2005-03-04 2010-03-09 Gyrus Ent, L.L.C. Surgical instrument and method
US7699846B2 (en) 2005-03-04 2010-04-20 Gyrus Ent L.L.C. Surgical instrument and method
EP1858565B1 (en) 2005-03-04 2021-08-11 C.R. Bard, Inc. Access port identification systems and methods
US20060206100A1 (en) 2005-03-09 2006-09-14 Brasseler Usa Medical Llc Surgical apparatus and power module for same, and a method of preparing a surgical apparatus
US20060217729A1 (en) 2005-03-09 2006-09-28 Brasseler Usa Medical Llc Surgical apparatus and tools for same
US20060201989A1 (en) 2005-03-11 2006-09-14 Ojeda Herminio F Surgical anvil and system for deploying the same
US7064509B1 (en) 2005-03-14 2006-06-20 Visteon Global Technologies, Inc. Apparatus for DC motor position detection with capacitive ripple current extraction
AU2012200178B2 (en) 2005-03-15 2013-07-11 Covidien Lp Anastomosis composite gasket
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
US7942890B2 (en) 2005-03-15 2011-05-17 Tyco Healthcare Group Lp Anastomosis composite gasket
US20070203510A1 (en) 2006-02-28 2007-08-30 Bettuchi Michael J Annular disk for reduction of anastomotic tension and methods of using the same
CN2785249Y (en) 2005-03-16 2006-05-31 刘文辉 H bridge power module bypassing circuit in H bridge series connection voltage type inverter
US7431230B2 (en) 2005-03-16 2008-10-07 Medtronic Ps Medical, Inc. Apparatus and method for bone morselization for surgical grafting
EP1885258A2 (en) 2005-03-17 2008-02-13 Stryker Corporation Surgical tool arrangement
US7784663B2 (en) 2005-03-17 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having load sensing control circuitry
JP4887838B2 (en) 2005-03-18 2012-02-29 株式会社ジェイ・エム・エス Method for producing porous body and porous body using the same
US7116100B1 (en) 2005-03-21 2006-10-03 Hr Textron, Inc. Position sensing for moveable mechanical systems and associated methods and apparatus
CN2796654Y (en) 2005-03-21 2006-07-19 强生(上海)医疗器材有限公司 Linear cutting and suturing instrument
WO2006100658A2 (en) 2005-03-22 2006-09-28 Atropos Limited A surgical instrument
US20060252993A1 (en) 2005-03-23 2006-11-09 Freed David I Medical devices and systems
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US7670337B2 (en) 2005-03-25 2010-03-02 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
JP2006271697A (en) 2005-03-29 2006-10-12 Fujinon Corp Electronic endoscope
EP1707153B1 (en) 2005-03-29 2012-02-01 Kabushiki Kaisha Toshiba Manipulator
US9138226B2 (en) 2005-03-30 2015-09-22 Covidien Lp Cartridge assembly for a surgical stapling device
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
JP4857585B2 (en) 2005-04-04 2012-01-18 日立工機株式会社 Cordless power tool
US7780055B2 (en) 2005-04-06 2010-08-24 Tyco Healthcare Group Lp Loading unit having drive assembly locking mechanism
US7408310B2 (en) 2005-04-08 2008-08-05 Lg Electronics Inc. Apparatus for controlling driving of reciprocating compressor and method thereof
US7211979B2 (en) 2005-04-13 2007-05-01 The Broad Of Trustees Of The Leland Stanford Junior University Torque-position transformer for task control of position controlled robots
US7297149B2 (en) 2005-04-14 2007-11-20 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
US8523882B2 (en) 2005-04-14 2013-09-03 Ethicon Endo-Surgery, Inc. Clip advancer mechanism with alignment features
US7731724B2 (en) 2005-04-14 2010-06-08 Ethicon Endo-Surgery, Inc. Surgical clip advancement and alignment mechanism
US8038686B2 (en) 2005-04-14 2011-10-18 Ethicon Endo-Surgery, Inc. Clip applier configured to prevent clip fallout
US7699860B2 (en) 2005-04-14 2010-04-20 Ethicon Endo-Surgery, Inc. Surgical clip
WO2006113394A2 (en) 2005-04-15 2006-10-26 Surgisense Corporation Surgical instruments with sensors for detecting tissue properties, and systems using such instruments
JP4892546B2 (en) 2005-04-16 2012-03-07 アエスキュラップ アーゲー Surgical machine and method for controlling and / or adjusting surgical machine
JP4958896B2 (en) 2005-04-21 2012-06-20 アスマティックス,インコーポレイテッド Control method and apparatus for energy delivery
CA2603773A1 (en) 2005-04-26 2006-11-02 Rimon Therapeutics Ltd. Pro-angiogenic polymer scaffolds
WO2006116392A2 (en) 2005-04-27 2006-11-02 The Regents Of The University Of Michigan Particle-containing complex porous materials
US7837694B2 (en) 2005-04-28 2010-11-23 Warsaw Orthopedic, Inc. Method and apparatus for surgical instrument identification
US20060244460A1 (en) 2005-04-29 2006-11-02 Weaver Jeffrey S System and method for battery management
US8084001B2 (en) 2005-05-02 2011-12-27 Cornell Research Foundation, Inc. Photoluminescent silica-based sensors and methods of use
DE102005020377B4 (en) 2005-05-02 2021-08-12 Robert Bosch Gmbh Method for operating an electric machine tool
US20090177226A1 (en) 2005-05-05 2009-07-09 Jon Reinprecht Bioabsorbable Surgical Compositions
US20100100124A1 (en) 2005-05-05 2010-04-22 Tyco Healthcare Group Lp Bioabsorbable surgical composition
US20100016888A1 (en) 2005-05-05 2010-01-21 Allison Calabrese Surgical Gasket
US20100012703A1 (en) 2005-05-05 2010-01-21 Allison Calabrese Surgical Gasket
US7418078B2 (en) 2005-05-06 2008-08-26 Siemens Medical Solutions Usa, Inc. Spot-size effect reduction
US20060252990A1 (en) 2005-05-06 2006-11-09 Melissa Kubach Systems and methods for endoscope integrity testing
US7806871B2 (en) 2005-05-09 2010-10-05 Boston Scientific Scimed, Inc. Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent
JP5113742B2 (en) 2005-05-10 2013-01-09 ケアフュージョン 303、インコーポレイテッド Medication safety system with multiplexed RFID interrogator panel
JP4339275B2 (en) 2005-05-12 2009-10-07 株式会社エスティック Method and apparatus for controlling impact type screw fastening device
US20060258904A1 (en) 2005-05-13 2006-11-16 David Stefanchik Feeding tube and track
US7648457B2 (en) 2005-05-13 2010-01-19 Ethicon Endo-Surgery, Inc. Method of positioning a device on an endoscope
US8108072B2 (en) 2007-09-30 2012-01-31 Intuitive Surgical Operations, Inc. Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
US7557534B2 (en) 2005-05-17 2009-07-07 Milwaukee Electric Tool Corporation Power tool, battery, charger and method of operating the same
CA2547095C (en) 2005-05-17 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapler having a plastic closure plate
US7415827B2 (en) 2005-05-18 2008-08-26 United Technologies Corporation Arrangement for controlling fluid jets injected into a fluid stream
DE102005000062A1 (en) 2005-05-18 2006-11-23 Hilti Ag Electrically operated tacker
US8840876B2 (en) 2005-05-19 2014-09-23 Ethicon, Inc. Antimicrobial polymer compositions and the use thereof
US7682561B2 (en) 2005-05-19 2010-03-23 Sage Products, Inc. Needleless hub disinfection device and method
US20060263444A1 (en) 2005-05-19 2006-11-23 Xintian Ming Antimicrobial composition
US7758594B2 (en) 2005-05-20 2010-07-20 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US20060264832A1 (en) 2005-05-20 2006-11-23 Medtronic, Inc. User interface for a portable therapy delivery device
US8157815B2 (en) 2005-05-20 2012-04-17 Neotract, Inc. Integrated handle assembly for anchor delivery system
US20060261763A1 (en) 2005-05-23 2006-11-23 Masco Corporation Brushed motor position control based upon back current detection
DE602006010849D1 (en) 2005-05-25 2010-01-14 Gyrus Medical Inc OPERATION INSTRUMENT
US20060271042A1 (en) 2005-05-26 2006-11-30 Gyrus Medical, Inc. Cutting and coagulating electrosurgical forceps having cam controlled jaw closure
DE202005009061U1 (en) 2005-05-31 2006-10-12 Karl Storz Gmbh & Co. Kg Clip and clip setter for closing blood vessels
JP2006334029A (en) 2005-05-31 2006-12-14 Olympus Medical Systems Corp Surgical operation apparatus
US7722610B2 (en) 2005-06-02 2010-05-25 Tyco Healthcare Group Lp Multiple coil staple and staple applier
US20060291981A1 (en) 2005-06-02 2006-12-28 Viola Frank J Expandable backspan staple
US7909191B2 (en) 2005-06-03 2011-03-22 Greatbatch Ltd. Connectable instrument trays for creating a modular case
US20060276726A1 (en) 2005-06-03 2006-12-07 Holsten Henry E Tissue tension detection system
AU2006255303B2 (en) 2005-06-03 2011-12-15 Covidien Lp Battery powered surgical instrument
US11291443B2 (en) 2005-06-03 2022-04-05 Covidien Lp Surgical stapler with timer and feedback display
US7717312B2 (en) 2005-06-03 2010-05-18 Tyco Healthcare Group Lp Surgical instruments employing sensors
AU2012203035B2 (en) 2005-06-03 2014-10-23 Covidien Lp Surgical stapler with timer and feedback display
WO2006133154A1 (en) 2005-06-06 2006-12-14 Lutron Electronics Co., Inc. Method and apparatus for quiet variable motor speed control
US7824579B2 (en) 2005-06-07 2010-11-02 E. I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
TW200642841A (en) 2005-06-08 2006-12-16 Nanoforce Technologies Corp After glow lighting film having UV filtering and explosion-proof
US7265374B2 (en) 2005-06-10 2007-09-04 Arima Computer Corporation Light emitting semiconductor device
US7295907B2 (en) 2005-06-14 2007-11-13 Trw Automotive U.S. Llc Recovery of calibrated center steering position after loss of battery power
EP1736112B1 (en) 2005-06-20 2011-08-17 Heribert Schmid Medical device
US7655003B2 (en) 2005-06-22 2010-02-02 Smith & Nephew, Inc. Electrosurgical power control
EP2241270B1 (en) 2005-06-28 2012-10-10 Stryker Corporation Control assembly for a motorized surgical tool that contains a sensor that monitors the state of the motor rotor
US7898198B2 (en) 2005-06-29 2011-03-01 Drs Test & Energy Management, Llc Torque controller in an electric motor
KR100846472B1 (en) 2005-06-29 2008-07-17 엘지전자 주식회사 Linear Motor
WO2007005555A2 (en) 2005-06-30 2007-01-11 Intuitive Surgical Indicator for tool state communication in multi-arm telesurgery
US20070005002A1 (en) 2005-06-30 2007-01-04 Intuitive Surgical Inc. Robotic surgical instruments for irrigation, aspiration, and blowing
US9597063B2 (en) 2006-06-28 2017-03-21 Abbott Laboratories Expandable introducer sheath to preserve guidewire access
US20080312686A1 (en) 2005-07-01 2008-12-18 Abbott Laboratories Antimicrobial closure element and closure element applier
USD605201S1 (en) 2005-07-01 2009-12-01 Roche Diagnostics Operations, Inc. Image for a risk evaluation system for a portion of a computer screen
US7709136B2 (en) 2005-07-01 2010-05-04 Perimeter Technologies Incorporated Battery pack assembly
KR100751733B1 (en) 2005-07-07 2007-08-24 한국과학기술연구원 Method of preparing porous polymer scaffold for tissue engineering using gel spinning technique
JP4879645B2 (en) 2005-07-12 2012-02-22 ローム株式会社 Motor drive device and electric apparatus using the same
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US8409175B2 (en) 2005-07-20 2013-04-02 Woojin Lee Surgical instrument guide device
US20070055228A1 (en) 2005-07-22 2007-03-08 Berg Howard K Ultrasonic scalpel device
JP4756943B2 (en) 2005-07-22 2011-08-24 オリンパス株式会社 Endoscopic suturing device
US7597699B2 (en) 2005-07-25 2009-10-06 Rogers William G Motorized surgical handpiece
US7554343B2 (en) 2005-07-25 2009-06-30 Piezoinnovations Ultrasonic transducer control method and system
US8679154B2 (en) 2007-01-12 2014-03-25 Ethicon Endo-Surgery, Inc. Adjustable compression staple and method for stapling with adjustable compression
JP4336386B2 (en) 2005-07-26 2009-09-30 エシコン エンド−サージェリー,インク. Surgical stapling and cutting device and method of using the device
US8627993B2 (en) 2007-02-12 2014-01-14 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8038046B2 (en) 2006-05-19 2011-10-18 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US7959050B2 (en) 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
US7479608B2 (en) 2006-05-19 2009-01-20 Ethicon Endo-Surgery, Inc. Force switch
US8123523B2 (en) 2005-07-26 2012-02-28 Angstrom Manufacturing, Inc. Prophy angle and adapter
US9554803B2 (en) 2005-07-26 2017-01-31 Ethicon Endo-Surgery, Llc Electrically self-powered surgical instrument with manual release
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
CN101522359B (en) 2005-07-27 2013-03-13 Tyco医疗健康集团 System and method for forming staple pockets of a surgical stapler
CN101262984B (en) 2005-07-27 2012-06-06 Tyco医疗健康集团 Staple pocket arrangement for surgical stapler
CA2617122C (en) 2005-07-27 2013-12-10 Power Medical Interventions, Inc. Shaft, e.g., for an electro-mechanical surgical device
US20070155010A1 (en) 2005-07-29 2007-07-05 Farnsworth Ted R Highly porous self-cohered fibrous tissue engineering scaffold
US20070027551A1 (en) 2005-07-29 2007-02-01 Farnsworth Ted R Composite self-cohered web materials
AU2006276044B2 (en) 2005-07-29 2010-02-11 W. L. Gore & Associates, Inc. Highly porous self-cohered web materials having haemostatic properties
US20070026040A1 (en) 2005-07-29 2007-02-01 Crawley Jerald M Composite self-cohered web materials
US7655584B2 (en) 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US20070026039A1 (en) 2005-07-29 2007-02-01 Drumheller Paul D Composite self-cohered web materials
US7655288B2 (en) 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US7604668B2 (en) 2005-07-29 2009-10-20 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US8048503B2 (en) 2005-07-29 2011-11-01 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US20070027468A1 (en) 2005-08-01 2007-02-01 Wales Kenneth S Surgical instrument with an articulating shaft locking mechanism
AU2005335074A1 (en) 2005-08-01 2007-02-08 Laboratorios Miret, S.A. Preservative systems comprising cationic surfactants
JP4675709B2 (en) 2005-08-03 2011-04-27 株式会社リコー Optical scanning apparatus and image forming apparatus
US7641092B2 (en) 2005-08-05 2010-01-05 Ethicon Endo - Surgery, Inc. Swing gate for device lockout in a curved cutter stapler
US7559937B2 (en) 2005-08-09 2009-07-14 Towertech Research Group Surgical fastener apparatus and reinforcing material
US7101187B1 (en) 2005-08-11 2006-09-05 Protex International Corp. Rotatable electrical connector
US7401721B2 (en) 2005-08-15 2008-07-22 Tyco Healthcare Group Lp Surgical stapling instruments including a cartridge having multiple staple sizes
US8579178B2 (en) 2005-08-15 2013-11-12 Covidien Lp Surgical stapling instruments including a cartridge having multiple staples sizes
US7407075B2 (en) 2005-08-15 2008-08-05 Tyco Healthcare Group Lp Staple cartridge having multiple staple sizes for a surgical stapling instrument
US7398908B2 (en) 2005-08-15 2008-07-15 Tyco Healthcare Group Lp Surgical stapling instruments including a cartridge having multiple staple sizes
US7388484B2 (en) 2005-08-16 2008-06-17 Honeywell International Inc. Conductive tamper switch for security devices
DE102005038919A1 (en) 2005-08-17 2007-03-15 BSH Bosch und Siemens Hausgeräte GmbH Electric motor kitchen appliance with electrical or electronic interlock
JP4402629B2 (en) 2005-08-19 2010-01-20 オリンパスメディカルシステムズ株式会社 Ultrasonic coagulation and incision device
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
EP1924197B1 (en) 2005-08-24 2017-10-11 Philips Electronics LTD System for navigated flexible endoscopy
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US20070191868A1 (en) 2005-08-25 2007-08-16 Microline Pentax Inc. Indicating system for clip applying device
US20080177392A1 (en) 2005-08-30 2008-07-24 Williams Michael S Closed system artificial intervertebral disc
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7500979B2 (en) 2005-08-31 2009-03-10 Ethicon Endo-Surgery, Inc. Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
CN2815700Y (en) 2005-09-01 2006-09-13 煜日升电子(深圳)有限公司 Electric book binding machine
US20070051375A1 (en) 2005-09-06 2007-03-08 Milliman Keith L Instrument introducer
US7778004B2 (en) 2005-09-13 2010-08-17 Taser International, Inc. Systems and methods for modular electronic weaponry
WO2007033379A2 (en) 2005-09-14 2007-03-22 Neoguide Systems, Inc. Methods and apparatus for performing transluminal and other procedures
CA2520413C (en) 2005-09-21 2016-10-11 Sherwood Services Ag Bipolar forceps with multiple electrode array end effector assembly
US7472815B2 (en) 2005-09-21 2009-01-06 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with collapsible features for controlling staple height
WO2007033414A1 (en) 2005-09-21 2007-03-29 Bhc Pharmaceuticals Pty Ltd Cutting instrument
US7407078B2 (en) 2005-09-21 2008-08-05 Ehthicon Endo-Surgery, Inc. Surgical stapling instrument having force controlled spacing end effector
EP1767163A1 (en) 2005-09-22 2007-03-28 Sherwood Services AG Bipolar forceps with multiple electrode array end effector assembly
US7772725B2 (en) 2005-09-22 2010-08-10 Eastman Kodak Company Apparatus and method for current control in H-Bridge load drivers
US7691106B2 (en) 2005-09-23 2010-04-06 Synvasive Technology, Inc. Transverse acting surgical saw blade
JP4190530B2 (en) 2005-09-26 2008-12-03 オリンパスメディカルシステムズ株式会社 Ultrasonic diagnostic equipment
US7451904B2 (en) 2005-09-26 2008-11-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having end effector gripping surfaces
JP2007097252A (en) 2005-09-27 2007-04-12 Nayuta:Kk Power unit and its bidirectional step-up/step-down converter
JP4927371B2 (en) 2005-09-28 2012-05-09 興和株式会社 Intraocular lens
US8079950B2 (en) 2005-09-29 2011-12-20 Intuitive Surgical Operations, Inc. Autofocus and/or autoscaling in telesurgery
US7357287B2 (en) 2005-09-29 2008-04-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having preloaded firing assistance mechanism
EP1769765B1 (en) 2005-09-30 2012-03-21 Covidien AG Insulating boot for electrosurgical forceps
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
CA2561473C (en) 2005-09-30 2014-07-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
DE102005047320A1 (en) 2005-09-30 2007-04-05 Biotronik Crm Patent Ag Detector for atrial flicker and flutter
US20070078484A1 (en) 2005-10-03 2007-04-05 Joseph Talarico Gentle touch surgical instrument and method of using same
US9055942B2 (en) 2005-10-03 2015-06-16 Boston Scienctific Scimed, Inc. Endoscopic plication devices and methods
US20080190989A1 (en) 2005-10-03 2008-08-14 Crews Samuel T Endoscopic plication device and method
US7635074B2 (en) 2005-10-04 2009-12-22 Tyco Healthcare Group Lp Staple drive assembly
US7641091B2 (en) 2005-10-04 2010-01-05 Tyco Healthcare Group Lp Staple drive assembly
US8096459B2 (en) 2005-10-11 2012-01-17 Ethicon Endo-Surgery, Inc. Surgical stapler with an end effector support
CA2625734C (en) 2005-10-14 2013-02-19 Applied Medical Resources Corporation Method of making a hand access laparoscopic device
CA2563147C (en) 2005-10-14 2014-09-23 Tyco Healthcare Group Lp Surgical stapling device
AU2006228045B2 (en) 2005-10-14 2011-11-24 Covidien Lp Apparatus for laparoscopic or endoscopic procedures
US20080086034A1 (en) 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US8266232B2 (en) 2005-10-15 2012-09-11 International Business Machines Corporation Hardware processing of commands within virtual client computing environment
US20070173870A2 (en) 2005-10-18 2007-07-26 Jaime Zacharias Precision Surgical System
US7966269B2 (en) 2005-10-20 2011-06-21 Bauer James D Intelligent human-machine interface
DE602006018510D1 (en) 2005-10-21 2011-01-05 Stryker Corp SYSTEM AND METHOD FOR RECHARGING A HARSH ENVIRONMENT EXPOSED BATTERY
US20070244471A1 (en) 2005-10-21 2007-10-18 Don Malackowski System and method for managing the operation of a battery powered surgical tool and the battery used to power the tool
US20070103437A1 (en) 2005-10-26 2007-05-10 Outland Research, Llc Haptic metering for minimally invasive medical procedures
US8080004B2 (en) 2005-10-26 2011-12-20 Earl Downey Laparoscopic surgical instrument
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
EP1780867B1 (en) 2005-10-28 2016-11-30 Black & Decker Inc. Battery pack for cordless power tools
EP1780825B1 (en) 2005-10-31 2018-08-29 Black & Decker, Inc. Battery pack and internal component arrangement within the battery pack for cordless power tool system
US7656131B2 (en) 2005-10-31 2010-02-02 Black & Decker Inc. Methods of charging battery packs for cordless power tool systems
CN101030709A (en) 2005-11-01 2007-09-05 布莱克和戴克公司 Recharging battery group and operation system
US20070102472A1 (en) 2005-11-04 2007-05-10 Ethicon Endo-Surgery, Inc. Electrosurgical stapling instrument with disposable severing / stapling unit
US8182444B2 (en) 2005-11-04 2012-05-22 Medrad, Inc. Delivery of agents such as cells to tissue
US7673783B2 (en) 2005-11-04 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US7607557B2 (en) 2005-11-04 2009-10-27 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for pump-assisted delivery of medical agents
US7328828B2 (en) 2005-11-04 2008-02-12 Ethicon Endo-Surgery, Inc, Lockout mechanisms and surgical instruments including same
US20070106113A1 (en) 2005-11-07 2007-05-10 Biagio Ravo Combination endoscopic operative delivery system
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US7673780B2 (en) 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
CN2868212Y (en) 2005-11-11 2007-02-14 钟李宽 Random-replaceable laparoscope surgical forceps
EP1973595B1 (en) 2005-11-15 2018-10-31 The Johns Hopkins University An active cannula for bio-sensing and surgical intervention
ATE538366T1 (en) 2005-11-15 2012-01-15 Mettler Toledo Ag METHOD FOR MONITORING AND/OR DETERMINING THE STATE OF A FORCE MEASURING DEVICE AND FORCE MEASUREMENT DEVICE
US7272002B2 (en) 2005-11-16 2007-09-18 Adc Dsl Systems, Inc. Auxiliary cooling methods and systems for electrical device housings
US20090216113A1 (en) 2005-11-17 2009-08-27 Eric Meier Apparatus and Methods for Using an Electromagnetic Transponder in Orthopedic Procedures
US20070118115A1 (en) 2005-11-22 2007-05-24 Sherwood Services Ag Bipolar electrosurgical sealing instrument having an improved tissue gripping device
US7651017B2 (en) 2005-11-23 2010-01-26 Ethicon Endo-Surgery, Inc. Surgical stapler with a bendable end effector
US7896895B2 (en) 2005-11-23 2011-03-01 Ethicon Endo-Surgery, Inc. Surgical clip and applier device and method of use
US7246734B2 (en) 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
DE102005058107A1 (en) 2005-12-05 2007-07-26 Müller, Erich Johann, Dr. med. Surgical processing tool
US9446226B2 (en) 2005-12-07 2016-09-20 Ramot At Tel-Aviv University Ltd. Drug-delivering composite structures
US8498691B2 (en) 2005-12-09 2013-07-30 Hansen Medical, Inc. Robotic catheter system and methods
US8190238B2 (en) 2005-12-09 2012-05-29 Hansen Medical, Inc. Robotic catheter system and methods
US20070135686A1 (en) 2005-12-14 2007-06-14 Pruitt John C Jr Tools and methods for epicardial access
CN2868208Y (en) 2005-12-14 2007-02-14 苏州天臣国际医疗科技有限公司 Tubular binding instrument having automatic safety unit
US8672922B2 (en) 2005-12-20 2014-03-18 Intuitive Surgical Operations, Inc. Wireless communication in a robotic surgical system
WO2007075844A1 (en) 2005-12-20 2007-07-05 Intuitive Surgical, Inc. Telescoping insertion axis of a robotic surgical system
US7464845B2 (en) 2005-12-22 2008-12-16 Welcome Co., Ltd. Hand-held staple gun having a safety device
RU61114U1 (en) 2005-12-23 2007-02-27 Мирзакарим Санакулович Норбеков DEVICE FOR THE DEVELOPMENT OF BRAIN ACTIVITY
US7936142B2 (en) 2005-12-26 2011-05-03 Nitto Kohki Co., Ltd. Portable drilling device
US20100145146A1 (en) 2005-12-28 2010-06-10 Envisionier Medical Technologies, Inc. Endoscopic digital recording system with removable screen and storage device
WO2007074430A1 (en) 2005-12-28 2007-07-05 Given Imaging Ltd. Device, system and method for activation of an in vivo device
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US7481824B2 (en) 2005-12-30 2009-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument with bending articulation controlled articulation pivot joint
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
TWI288526B (en) 2005-12-30 2007-10-11 Yen Sun Technology Corp Speed transmission control circuit of a brushless DC motor
US7553173B2 (en) 2005-12-30 2009-06-30 Click, Inc. Vehicle connector lockout apparatus and method of using same
USD552623S1 (en) 2006-01-04 2007-10-09 Microsoft Corporation User interface for a portion of a display screen
US7835823B2 (en) 2006-01-05 2010-11-16 Intuitive Surgical Operations, Inc. Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system
JP4597871B2 (en) 2006-01-05 2010-12-15 富士フイルム株式会社 Digital camera
US7955257B2 (en) 2006-01-05 2011-06-07 Depuy Spine, Inc. Non-rigid surgical retractor
US8202535B2 (en) 2006-01-06 2012-06-19 Acelrx Pharmaceuticals, Inc. Small-volume oral transmucosal dosage forms
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
KR100752548B1 (en) 2006-01-10 2007-08-29 (주)이앤아이 Hybrid motor and controlling apparatus and method controlling thereof
DE102006001677B3 (en) 2006-01-12 2007-05-03 Gebr. Brasseler Gmbh & Co. Kg Surgical connection device e.g. for removable connection of hand piece to surgical instrument, has recess in which coupling part of instrument can be inserted and at wall on inside of recess resting recess is provided
WO2007080783A1 (en) 2006-01-13 2007-07-19 Olympus Medical Systems Corp. Rotary self-running endoscope system, program, and method of driving rotary self-running endoscope system
US20120064483A1 (en) 2010-09-13 2012-03-15 Kevin Lint Hard-wired and wireless system with footswitch for operating a dental or medical treatment apparatus
US20070173872A1 (en) 2006-01-23 2007-07-26 Ethicon Endo-Surgery, Inc. Surgical instrument for cutting and coagulating patient tissue
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US20070173813A1 (en) 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
US7705559B2 (en) 2006-01-27 2010-04-27 Stryker Corporation Aseptic battery with a removal cell cluster, the cell cluster configured for charging in a socket that receives a sterilizable battery
US20070198039A1 (en) 2006-01-27 2007-08-23 Wilson-Cook Medical, Inc. Intragastric device for treating obesity
EP1981406B1 (en) 2006-01-27 2016-04-13 Suturtek Incorporated Apparatus for tissue closure
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US20070175950A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
GB2435214B (en) 2006-01-31 2010-01-20 Michael John Radley Young Ultrasonic Cutting Tool
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US7416101B2 (en) 2006-01-31 2008-08-26 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with loading force feedback
US7891531B1 (en) 2006-01-31 2011-02-22 Ward Gary L Sub-miniature surgical staple cartridge
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7464846B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a removable battery
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US20070175951A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Gearing selector for a powered surgical cutting and fastening instrument
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US7464849B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US7575144B2 (en) 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US7595642B2 (en) 2006-02-01 2009-09-29 Qualcomm Incorporated Battery management system for determining battery charge sufficiency for a task
US7422138B2 (en) 2006-02-01 2008-09-09 Ethicon Endo-Surgery, Inc. Elliptical intraluminal surgical stapler for anastomosis
US9629626B2 (en) 2006-02-02 2017-04-25 Covidien Lp Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
US8062236B2 (en) 2006-02-02 2011-11-22 Tyco Healthcare Group, Lp Method and system to determine an optimal tissue compression time to implant a surgical element
EP1815950A1 (en) 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Robotic surgical system for performing minimally invasive medical procedures
EP1837041A1 (en) 2006-03-20 2007-09-26 Tissuemed Limited Tissue-adhesive materials
GB0602192D0 (en) 2006-02-03 2006-03-15 Tissuemed Ltd Tissue-adhesive materials
WO2007092852A2 (en) 2006-02-06 2007-08-16 Mynosys Cellular Devices, Inc. Microsurgical cutting instruments
US20070185545A1 (en) 2006-02-06 2007-08-09 Medtronic Emergency Response Systems, Inc. Post-download patient data protection in a medical device
DE102006005998B4 (en) 2006-02-08 2008-05-08 Schnier, Dietmar, Dr. Nut with at least two parts
US20070190110A1 (en) 2006-02-10 2007-08-16 Pameijer Cornelis H Agents and devices for providing blood clotting functions to wounds
US7854735B2 (en) 2006-02-16 2010-12-21 Ethicon Endo-Surgery, Inc. Energy-based medical treatment system and method
WO2007098220A2 (en) 2006-02-20 2007-08-30 Black & Decker Inc. Dc motor with dual commutator bar set and selectable series and parallel connected coils
US20070208375A1 (en) 2006-02-23 2007-09-06 Kouji Nishizawa Surgical device
JP4910423B2 (en) 2006-02-27 2012-04-04 ソニー株式会社 Battery pack, electronic device, and battery remaining amount detection method
US8500628B2 (en) 2006-02-28 2013-08-06 Olympus Endo Technology America, Inc. Rotate-to-advance catheterization system
US20070208359A1 (en) 2006-03-01 2007-09-06 Hoffman Douglas B Method for stapling tissue
US20070207010A1 (en) 2006-03-03 2007-09-06 Roni Caspi Split nut with magnetic coupling
US8706316B1 (en) 2006-03-14 2014-04-22 Snap-On Incorporated Method and system for enhanced scanner user interface
US7955380B2 (en) 2006-03-17 2011-06-07 Medtronic Vascular, Inc. Prosthesis fixation apparatus and methods
US7771396B2 (en) 2006-03-22 2010-08-10 Ethicon Endo-Surgery, Inc. Intubation device for enteral feeding
US8348959B2 (en) 2006-03-23 2013-01-08 Symmetry Medical Manufacturing, Inc. Angled surgical driver
US20110163146A1 (en) 2006-03-23 2011-07-07 Ortiz Mark S Surgical Stapling And Cuttting Device
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8721630B2 (en) 2006-03-23 2014-05-13 Ethicon Endo-Surgery, Inc. Methods and devices for controlling articulation
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
JP4689511B2 (en) 2006-03-24 2011-05-25 株式会社エヌ・ティ・ティ・ドコモ Portable base station equipment
US9675375B2 (en) 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
US20070270660A1 (en) 2006-03-29 2007-11-22 Caylor Edward J Iii System and method for determining a location of an orthopaedic medical device
US7836400B2 (en) 2006-03-31 2010-11-16 Research In Motion Limited Snooze support for event reminders
WO2007123770A2 (en) 2006-03-31 2007-11-01 Automated Medical Instruments, Inc. System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or therapeutic device
US20090020958A1 (en) 2006-03-31 2009-01-22 Soul David F Methods and apparatus for operating an internal combustion engine
US7635922B2 (en) 2006-04-03 2009-12-22 C.E. Niehoff & Co. Power control system and method
JP4102409B2 (en) 2006-04-03 2008-06-18 オリンパス株式会社 Suture and ligature applier
US8915842B2 (en) 2008-07-14 2014-12-23 Ethicon Endo-Surgery, Inc. Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures
US8926506B2 (en) 2009-03-06 2015-01-06 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US20100081883A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastroplasties using a multiple port access device
US8485970B2 (en) 2008-09-30 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical access device
CA2648283A1 (en) 2006-04-07 2007-10-18 Societe De Commercialisation Des Produits De La Recherche Appliquee Socp Ra Sciences Et Genie S.E.C. Integrated cement delivery system for bone augmentation procedures and methods
ES2394111T3 (en) 2006-04-11 2013-01-21 Tyco Healthcare Group Lp Wound dressings with antimicrobial and zinc-containing agents
KR101019341B1 (en) 2006-04-11 2011-03-07 닛본 세이고 가부시끼가이샤 Electric power steering device and method of assembling the same
US7741273B2 (en) 2006-04-13 2010-06-22 Warsaw Orthopedic, Inc. Drug depot implant designs
KR100739165B1 (en) 2006-04-13 2007-07-13 엘지전자 주식회사 Driving control apparatus and method for linear compressor
US20070243227A1 (en) 2006-04-14 2007-10-18 Michael Gertner Coatings for surgical staplers
US7450010B1 (en) 2006-04-17 2008-11-11 Tc License Ltd. RFID mutual authentication verification session
US8267849B2 (en) 2006-04-18 2012-09-18 Wazer David E Radioactive therapeutic fastening instrument
WO2007133329A2 (en) 2006-04-20 2007-11-22 Illinois Tool Works Inc. Fastener-driving tool having trigger control mechanism for alternatively permitting bump firing and sequential firing modes of operation
US20070246505A1 (en) 2006-04-24 2007-10-25 Medical Ventures Inc. Surgical buttress assemblies and methods of uses thereof
US8518024B2 (en) 2006-04-24 2013-08-27 Transenterix, Inc. System and method for multi-instrument surgical access using a single access port
US7650185B2 (en) 2006-04-25 2010-01-19 Cardiac Pacemakers, Inc. System and method for walking an implantable medical device from a sleep state
US7278563B1 (en) 2006-04-25 2007-10-09 Green David T Surgical instrument for progressively stapling and incising tissue
JP4566943B2 (en) 2006-04-26 2010-10-20 株式会社マキタ Charger
US20090081313A1 (en) 2006-04-28 2009-03-26 Biomagnesium Systems Ltd. Biodegradable Magnesium Alloys and Uses Thereof
EP2012697A4 (en) 2006-04-29 2010-07-21 Univ Texas Devices for use in transluminal and endoluminal surgery
JP5148598B2 (en) 2006-05-03 2013-02-20 ラプトール リッジ, エルエルシー Tissue closure system and method
US20070260132A1 (en) 2006-05-04 2007-11-08 Sterling Bernhard B Method and apparatus for processing signals reflecting physiological characteristics from multiple sensors
WO2007129121A1 (en) 2006-05-08 2007-11-15 Tayside Health Board Device and method for improved surgical suturing
US20070262592A1 (en) 2006-05-08 2007-11-15 Shih-Ming Hwang Mounting plate for lock and lock therewith
JP2007306710A (en) 2006-05-11 2007-11-22 Mitsubishi Electric Corp Motor-driven power steering system
JP4829005B2 (en) 2006-05-12 2011-11-30 テルモ株式会社 manipulator
JP4584186B2 (en) 2006-05-15 2010-11-17 トヨタ自動車株式会社 Failure diagnosis method and failure diagnosis apparatus
JP2007312515A (en) 2006-05-18 2007-11-29 Sony Corp Switching power supply device, electronic apparatus, and method for controlling switching power circuit
CA2975797C (en) 2006-05-19 2020-06-30 Ethicon Endo-Surgery, Inc. Electrical surgical instrument
US10028789B2 (en) 2006-05-19 2018-07-24 Mako Surgical Corp. Method and apparatus for controlling a haptic device
WO2007137304A2 (en) 2006-05-19 2007-11-29 Ethicon Endo-Surgery, Inc. Electrical surgical instrument
WO2007137243A2 (en) 2006-05-19 2007-11-29 Applied Medical Resources Corporation Surgical stapler
EP2842500B1 (en) 2006-05-19 2020-09-09 Ethicon Endo-Surgery, Inc. Surgical device
US8105350B2 (en) 2006-05-23 2012-01-31 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7586289B2 (en) 2006-05-23 2009-09-08 Ultralife Corporation Complete discharge device
US20070275035A1 (en) 2006-05-24 2007-11-29 Microchips, Inc. Minimally Invasive Medical Implant Devices for Controlled Drug Delivery
US20070276409A1 (en) 2006-05-25 2007-11-29 Ethicon Endo-Surgery, Inc. Endoscopic gastric restriction methods and devices
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
WO2007138571A2 (en) 2006-06-01 2007-12-06 Mor Research Applications Ltd. Membrane augmentation, such as of for treatment of cardiac valves, and fastening devices for membrane augmentation
CA2608791C (en) 2006-06-02 2013-11-12 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US7530984B2 (en) 2006-06-05 2009-05-12 Medigus Ltd. Transgastric method for carrying out a partial fundoplication
IL176133A0 (en) 2006-06-05 2006-10-05 Medigus Ltd Stapler
US7615067B2 (en) 2006-06-05 2009-11-10 Cambridge Endoscopic Devices, Inc. Surgical instrument
US9561045B2 (en) 2006-06-13 2017-02-07 Intuitive Surgical Operations, Inc. Tool with rotation lock
DE202007003114U1 (en) 2006-06-13 2007-06-21 Olympus Winter & Ibe Gmbh Medical forceps has a removable tool that fits into a retaining sleeve that has a snap action element that prevents rotation
US8419717B2 (en) 2006-06-13 2013-04-16 Intuitive Surgical Operations, Inc. Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system
US20070286892A1 (en) 2006-06-13 2007-12-13 Uri Herzberg Compositions and methods for preventing or reducing postoperative ileus and gastric stasis in mammals
US8551076B2 (en) 2006-06-13 2013-10-08 Intuitive Surgical Operations, Inc. Retrograde instrument
KR101477125B1 (en) 2006-06-13 2014-12-29 인튜어티브 서지컬 인코포레이티드 Minimally invasive surgical system
EP2029213A2 (en) 2006-06-14 2009-03-04 Cornova, Inc. Method and apparatus for identifying and treating myocardial infarction
US8491603B2 (en) 2006-06-14 2013-07-23 MacDonald Dettwiller and Associates Inc. Surgical manipulator
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
WO2007149841A2 (en) 2006-06-20 2007-12-27 Aortx, Inc. Torque shaft and torque drive
DE502006006482C5 (en) 2006-06-21 2017-08-17 Steffpa Gmbh DEVICE FOR INTRODUCING AND POSITIONING SURGICAL INSTRUMENTS
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8974542B2 (en) 2006-06-27 2015-03-10 University of Pittsburgh—of the Commonwealth System of Higher Education Biodegradable elastomeric patch for treating cardiac or cardiovascular conditions
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
DE602006009914D1 (en) 2006-06-29 2009-12-03 Univ Dundee Medical instrument for gripping an object, in particular a needle holder
US7391173B2 (en) 2006-06-30 2008-06-24 Intuitive Surgical, Inc Mechanically decoupled capstan drive
US20080200835A1 (en) 2006-06-30 2008-08-21 Monson Gavin M Energy Biopsy Device for Tissue Penetration and Hemostasis
US20080003196A1 (en) 2006-06-30 2008-01-03 Jonn Jerry Y Absorbable cyanoacrylate compositions
US9492192B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
WO2008003560A1 (en) 2006-07-03 2008-01-10 Novo Nordisk A/S Coupling for injection devices
JP4157574B2 (en) 2006-07-04 2008-10-01 オリンパスメディカルシステムズ株式会社 Surgical instrument
EP2423298A1 (en) 2006-07-06 2012-02-29 Nippon Oil Corporation Compressor oil composition
EP1875868B1 (en) 2006-07-07 2010-11-03 Ethicon Endo-Surgery, Inc. A surgical stapling instrument and a staple cartridge and staple for such an instrument
EP1875870B1 (en) 2006-07-07 2009-12-02 Ethicon Endo-Surgery, Inc. A surgical stapling instrument.
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7993360B2 (en) 2006-07-11 2011-08-09 Arthrex, Inc. Rotary shaver with improved connection between flexible and rigid rotatable tubes
DE102006031971A1 (en) 2006-07-11 2008-01-17 Karl Storz Gmbh & Co. Kg Medical instrument
CA2592221C (en) 2006-07-11 2014-10-07 Tyco Healthcare Group Lp Skin staples with thermal properties
FR2903696B1 (en) 2006-07-12 2011-02-11 Provence Technologies PROCESS FOR PURIFYING DIAMINOPHENOTHIAZIUM COMPOUNDS
RU61122U1 (en) 2006-07-14 2007-02-27 Нина Васильевна Гайгерова SURGICAL STAPER
IL176889A0 (en) 2006-07-16 2006-10-31 Medigus Ltd Devices and methods for treating morbid obesity
WO2008011351A2 (en) 2006-07-19 2008-01-24 Boston Scientific Scimed, Inc. Apparatus for tissue resection
DE102007020583B4 (en) 2006-07-19 2012-10-11 Erbe Elektromedizin Gmbh Electrode device with an impedance measuring device and method for producing such an electrode device
US7748632B2 (en) 2006-07-25 2010-07-06 Hand Held Products, Inc. Portable data terminal and battery therefor
WO2008013863A2 (en) 2006-07-26 2008-01-31 Cytori Therapeutics, Inc. Generation of adipose tissue and adipocytes
US7441684B2 (en) 2006-08-02 2008-10-28 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with audible and visual feedback features
US20080029574A1 (en) 2006-08-02 2008-02-07 Shelton Frederick E Pneumatically powered surgical cutting and fastening instrument with actuator at distal end
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US20080030170A1 (en) 2006-08-03 2008-02-07 Bruno Dacquay Safety charging system for surgical hand piece
JP4755047B2 (en) 2006-08-08 2011-08-24 テルモ株式会社 Working mechanism and manipulator
CA2659365A1 (en) 2006-08-09 2008-02-21 Coherex Medical, Inc. Methods, systems and devices for reducing the size of an internal tissue opening
US7708758B2 (en) 2006-08-16 2010-05-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US20080042861A1 (en) 2006-08-16 2008-02-21 Bruno Dacquay Safety battery meter system for surgical hand piece
DE102006038515A1 (en) 2006-08-17 2008-02-21 Karl Storz Gmbh & Co. Kg Medical tubular shaft instrument
CN200942099Y (en) 2006-08-17 2007-09-05 苏州天臣国际医疗科技有限公司 Insurance mechanism for binding instrument
US7674253B2 (en) 2006-08-18 2010-03-09 Kensey Nash Corporation Catheter for conducting a procedure within a lumen, duct or organ of a living being
US20080051833A1 (en) 2006-08-25 2008-02-28 Vincent Gramuglia Suture passer and method of passing suture material
US20080196253A1 (en) 2006-08-28 2008-08-21 Richard Simon Ezra Precision knife and blade dispenser for the same
US20080125749A1 (en) 2006-08-29 2008-05-29 Boston Scientific Scimed, Inc. Self-powered medical devices
DE102006041951B4 (en) 2006-08-30 2022-05-05 Deltatech Controls Usa, Llc Switch
KR20090045142A (en) 2006-08-30 2009-05-07 로무 가부시키가이샤 Motor drive circuit, drive method, and motor unit and electronic device using the motor unit
US8323789B2 (en) 2006-08-31 2012-12-04 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
US20080071328A1 (en) 2006-09-06 2008-03-20 Medtronic, Inc. Initiating medical system communications
US8982195B2 (en) 2006-09-07 2015-03-17 Abbott Medical Optics Inc. Digital video capture system and method with customizable graphical overlay
US20080065153A1 (en) 2006-09-08 2008-03-13 Warsaw Orthopedic, Inc. Surgical staple
US8136711B2 (en) 2006-09-08 2012-03-20 Tyco Healthcare Group Lp Dissection tip and introducer for surgical instrument
US20080064920A1 (en) 2006-09-08 2008-03-13 Ethicon Endo-Surgery, Inc. Medical drive system for providing motion to at least a portion of a medical apparatus
ATE440549T1 (en) 2006-09-08 2009-09-15 Ethicon Endo Surgery Inc SURGICAL INSTRUMENT AND ACTUATING DEVICE FOR TRANSMITTING MOTION THEREFOR
US8403196B2 (en) 2006-09-08 2013-03-26 Covidien Lp Dissection tip and introducer for surgical instrument
US8794496B2 (en) 2006-09-11 2014-08-05 Covidien Lp Rotating knob locking mechanism for surgical stapling device
JP5148092B2 (en) 2006-09-11 2013-02-20 オリンパスメディカルシステムズ株式会社 Energy surgical device
CN100464715C (en) 2006-09-11 2009-03-04 苏州天臣国际医疗科技有限公司 Surgical binding instrument binding mechanism
US8944069B2 (en) 2006-09-12 2015-02-03 Vidacare Corporation Assemblies for coupling intraosseous (IO) devices to powered drivers
EP2068743B1 (en) 2006-09-12 2017-03-15 Vidacare LLC Medical procedures trays, kits and related methods
US7648519B2 (en) 2006-09-13 2010-01-19 Cambridge Endoscopic Devices, Inc. Surgical instrument
EP1900336B1 (en) 2006-09-15 2010-06-09 BrainLAB AG Device and method for measuring geometric properties of medical tools, in particular for automated verification, calibration and gauging of tools for computer assisted surgery
US7887755B2 (en) 2006-09-20 2011-02-15 Binforma Group Limited Liability Company Packaging closures integrated with disposable RFID devices
US7780663B2 (en) 2006-09-22 2010-08-24 Ethicon Endo-Surgery, Inc. End effector coatings for electrosurgical instruments
US20200038018A1 (en) 2006-09-29 2020-02-06 Ethicon Llc End effector for use with a surgical fastening instrument
US20190269402A1 (en) 2006-09-29 2019-09-05 Ethicon Llc Surgical staple having a deformable member with a non-circular cross-sectional geometry
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US20100133317A1 (en) 2006-09-29 2010-06-03 Shelton Iv Frederick E Motor-Driven Surgical Cutting And Fastening Instrument with Tactile Position Feedback
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US20080082114A1 (en) 2006-09-29 2008-04-03 Mckenna Robert H Adhesive Mechanical Fastener for Lumen Creation Utilizing Tissue Necrosing Means
US20080081948A1 (en) 2006-10-03 2008-04-03 Ethicon Endo-Surgery, Inc. Apparatus for cleaning a distal scope end of a medical viewing scope
US7952464B2 (en) 2006-10-05 2011-05-31 Intermec Ip Corp. Configurable RFID tag with protocol and band selection
WO2008045376A2 (en) 2006-10-05 2008-04-17 Tyco Healthcare Group Lp Axial stitching device
US8708210B2 (en) 2006-10-05 2014-04-29 Covidien Lp Method and force-limiting handle mechanism for a surgical instrument
DE102006047204B4 (en) 2006-10-05 2015-04-23 Erbe Elektromedizin Gmbh Tubular shaft instrument
US8246637B2 (en) 2006-10-05 2012-08-21 Tyco Healthcare Group Lp Flexible endoscopic stitching devices
CN101273908A (en) 2006-10-06 2008-10-01 伊西康内外科公司 Devices for reduction of post operative ileus
US20080085296A1 (en) 2006-10-06 2008-04-10 Powell Darrel M Methods for reduction of post operative ileus.
US8733614B2 (en) 2006-10-06 2014-05-27 Covidien Lp End effector identification by mechanical features
US7866525B2 (en) 2006-10-06 2011-01-11 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US7967178B2 (en) 2006-10-06 2011-06-28 Tyco Healthcare Group Lp Grasping jaw mechanism
US8721640B2 (en) 2006-10-06 2014-05-13 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US7481348B2 (en) 2006-10-06 2009-01-27 Tyco Healthcare Group Lp Surgical instrument with articulating tool assembly
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US8807414B2 (en) 2006-10-06 2014-08-19 Covidien Lp System and method for non-contact electronic articulation sensing
US20080086078A1 (en) 2006-10-06 2008-04-10 Powell Darrel M Devices for reduction of post operative ileus
US7845535B2 (en) 2006-10-06 2010-12-07 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
ATE435613T1 (en) 2006-10-06 2009-07-15 Ethicon Endo Surgery Inc IMPROVEMENTS TO AN APPLICATOR FOR APPLYING ANASTOMOTIC RINGS
DE102006047882B3 (en) 2006-10-10 2007-08-02 Rasmussen Gmbh Pluggable connection arrangement for hose and pipe or tube, uses leaf-spring ring for latching into annular groove
US7736254B2 (en) 2006-10-12 2010-06-15 Intuitive Surgical Operations, Inc. Compact cable tension tender device
US20080091072A1 (en) 2006-10-13 2008-04-17 Terumo Kabushiki Kaisha Manipulator
EP1913881B1 (en) 2006-10-17 2014-06-11 Covidien LP Apparatus for applying surgical clips
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
US8226635B2 (en) 2006-10-23 2012-07-24 Boston Scientific Scimed, Inc. Device for circulating heated fluid
JP5085996B2 (en) 2006-10-25 2012-11-28 テルモ株式会社 Manipulator system
JP5198014B2 (en) 2006-10-25 2013-05-15 テルモ株式会社 Medical manipulator
EP1915963A1 (en) 2006-10-25 2008-04-30 The European Atomic Energy Community (EURATOM), represented by the European Commission Force estimation for a minimally invasive robotic surgery system
US8157793B2 (en) 2006-10-25 2012-04-17 Terumo Kabushiki Kaisha Manipulator for medical use
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
US8028883B2 (en) 2006-10-26 2011-10-04 Tyco Healthcare Group Lp Methods of using shape memory alloys for buttress attachment
US7828854B2 (en) 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
US8368327B2 (en) 2006-11-03 2013-02-05 Koninklijke Philips Electronics N.V. System and method for maintaining performance of battery-operated toothbrushes
US8822934B2 (en) 2006-11-03 2014-09-02 Accuray Incorporated Collimator changer
US20080129253A1 (en) 2006-11-03 2008-06-05 Advanced Desalination Inc. Battery energy reclamation apparatus and method thereby
JP2008114339A (en) 2006-11-06 2008-05-22 Terumo Corp Manipulator
SE530262C2 (en) 2006-11-08 2008-04-15 Atlas Copco Tools Ab Power tool with interchangeable gear unit
US7946453B2 (en) 2006-11-09 2011-05-24 Ethicon Endo-Surgery, Inc. Surgical band fluid media dispenser
US7708180B2 (en) 2006-11-09 2010-05-04 Ethicon Endo-Surgery, Inc. Surgical fastening device with initiator impregnation of a matrix or buttress to improve adhesive application
US7780685B2 (en) 2006-11-09 2010-08-24 Ethicon Endo-Surgery, Inc. Adhesive and mechanical fastener
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
US20080114250A1 (en) 2006-11-10 2008-05-15 Penrith Corporation Transducer array imaging system
US8834498B2 (en) 2006-11-10 2014-09-16 Ethicon Endo-Surgery, Inc. Method and device for effecting anastomosis of hollow organ structures using adhesive and fasteners
US7935130B2 (en) 2006-11-16 2011-05-03 Intuitive Surgical Operations, Inc. Two-piece end-effectors for robotic surgical tools
US9011439B2 (en) 2006-11-20 2015-04-21 Poly-Med, Inc. Selectively absorbable/biodegradable, fibrous composite constructs and applications thereof
WO2008061566A1 (en) 2006-11-23 2008-05-29 Tte Germany Gmbh Power failure detection circuit
CN200984209Y (en) 2006-11-24 2007-12-05 苏州天臣国际医疗科技有限公司 Nail anvil molding groove of the chirurgery binding instrument
US8114100B2 (en) 2006-12-06 2012-02-14 Ethicon Endo-Surgery, Inc. Safety fastener for tissue apposition
US20080140159A1 (en) 2006-12-06 2008-06-12 Transoma Medical, Inc. Implantable device for monitoring biological signals
US20080154299A1 (en) 2006-12-08 2008-06-26 Steve Livneh Forceps for performing endoscopic surgery
US7871440B2 (en) 2006-12-11 2011-01-18 Depuy Products, Inc. Unitary surgical device and method
US20080308504A1 (en) 2006-12-12 2008-12-18 Hallan Matthew J Element loading mechanism and method
US8062306B2 (en) 2006-12-14 2011-11-22 Ethicon Endo-Surgery, Inc. Manually articulating devices
CN200991269Y (en) 2006-12-20 2007-12-19 张红 Reload-unit structure of alimentary tract stapler
EP2094173B1 (en) 2006-12-21 2016-03-30 Doheny Eye Institute Disposable vitrectomy handpiece
US7434716B2 (en) 2006-12-21 2008-10-14 Tyco Healthcare Group Lp Staple driver for articulating surgical stapler
WO2008078879A1 (en) 2006-12-22 2008-07-03 Hyun Duk Uhm Structure of staple magazine having permanent magnet
US8292801B2 (en) 2006-12-22 2012-10-23 Olympus Medical Systems Corp. Surgical treatment apparatus
JP2008154804A (en) 2006-12-25 2008-07-10 Cyber Firm Inc Device for discriminating living body condition, and laser blood flowmeter
CN201001747Y (en) 2006-12-25 2008-01-09 苏州天臣国际医疗科技有限公司 Illuminable round tubular surgical operation binding instrument
ES1070456Y (en) 2007-01-02 2009-11-25 La Torre Martinez Ruben De CLAMP CLAMP WITH SECURITY AND IDENTIFICATION SYSTEM
CN201029899Y (en) 2007-01-05 2008-03-05 苏州天臣国际医疗科技有限公司 Micro-wound surgery side stitching apparatus
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US20110174861A1 (en) 2007-01-10 2011-07-21 Shelton Iv Frederick E Surgical Instrument With Wireless Communication Between Control Unit and Remote Sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US7738971B2 (en) 2007-01-10 2010-06-15 Ethicon Endo-Surgery, Inc. Post-sterilization programming of surgical instruments
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
US7721936B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US20080169328A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Buttress material for use with a surgical stapler
US20220061862A1 (en) 2007-01-11 2022-03-03 Cilag Gmbh International Surgical stapling device with a curved end effector
AU2011218702B2 (en) 2007-01-12 2013-06-06 Ethicon Endo-Surgery, Inc Adjustable compression staple and method for stapling with adjustable compression
WO2008089404A2 (en) 2007-01-19 2008-07-24 Synovis Life Technologies, Inc. Circular stapler anvil introducer
CN101611524B (en) 2007-01-25 2013-12-11 永备电池有限公司 Portable power supply
US7950562B2 (en) 2007-01-31 2011-05-31 Tyco Healthcare Group Lp Surgical instrument with replaceable loading unit
US7753246B2 (en) 2007-01-31 2010-07-13 Tyco Healthcare Group Lp Surgical instrument with replaceable loading unit
US20110125149A1 (en) 2007-02-06 2011-05-26 Rizk El-Galley Universal surgical function control system
US7789883B2 (en) 2007-02-14 2010-09-07 Olympus Medical Systems Corp. Curative treatment system, curative treatment device, and treatment method for living tissue using energy
WO2008101228A2 (en) 2007-02-15 2008-08-21 Hansen Medical, Inc. Robotic medical instrument system
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US20080200911A1 (en) 2007-02-15 2008-08-21 Long Gary L Electrical ablation apparatus, system, and method
US20080200933A1 (en) 2007-02-15 2008-08-21 Bakos Gregory J Surgical devices and methods for forming an anastomosis between organs by gaining access thereto through a natural orifice in the body
US20080200934A1 (en) 2007-02-15 2008-08-21 Fox William D Surgical devices and methods using magnetic force to form an anastomosis
US20080200755A1 (en) 2007-02-15 2008-08-21 Bakos Gregory J Method and device for retrieving suture tags
US7430675B2 (en) 2007-02-16 2008-09-30 Apple Inc. Anticipatory power management for battery-powered electronic device
CA2621045A1 (en) 2007-02-16 2008-08-16 Serge Dube Build-up monitoring system for refrigerated enclosures
US20080200762A1 (en) 2007-02-16 2008-08-21 Stokes Michael J Flexible endoscope shapelock
EP1961433A1 (en) 2007-02-20 2008-08-27 National University of Ireland Galway Porous substrates for implantation
US7681725B2 (en) 2007-02-23 2010-03-23 The Procter And Gamble Company Container with ability to transfer a material to container content
US9265559B2 (en) 2007-02-25 2016-02-23 Avent, Inc. Electrosurgical method
US7682367B2 (en) 2007-02-28 2010-03-23 Tyco Healthcare Group Lp Surgical stapling apparatus
JP5096020B2 (en) 2007-03-02 2012-12-12 オリエンタルモーター株式会社 Inductance load control device
EP1983312B1 (en) 2007-03-05 2018-02-28 LG Electronics Inc. Automatic Liquid Dispenser And Refrigerator With The Same
EP2131750B1 (en) 2007-03-06 2016-05-04 Covidien LP Wound closure material
US9888924B2 (en) 2007-03-06 2018-02-13 Covidien Lp Wound closure material
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US20100076489A1 (en) 2007-03-06 2010-03-25 Joshua Stopek Wound closure material
US8011555B2 (en) 2007-03-06 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
CA2680148C (en) 2007-03-06 2015-09-01 Tyco Healthcare Group Lp Surgical stapling apparatus
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
US7533790B1 (en) 2007-03-08 2009-05-19 Cardica, Inc. Surgical stapler
US20080216704A1 (en) 2007-03-09 2008-09-11 Fisher Controls International Llc Conformal Coating
US20110016960A1 (en) 2007-03-13 2011-01-27 Franck Debrailly Device For Detecting Angular Position, Electric Motor, Steering Column And Reduction Gear
US20150127021A1 (en) 2007-03-13 2015-05-07 Longevity Surgical, Inc. Devices for reconfiguring a portion of the gastrointestinal tract
EP2131879B1 (en) 2007-03-13 2019-10-09 Smith & Nephew, Inc. Internal fixation devices
EP2338325B1 (en) 2007-03-14 2018-05-16 Robert Bosch GmbH Cutting tools
US7431188B1 (en) 2007-03-15 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus with powered articulation
US7422136B1 (en) 2007-03-15 2008-09-09 Tyco Healthcare Group Lp Powered surgical stapling device
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US20110052660A1 (en) 2007-03-16 2011-03-03 Board Of Regents Of The University Of Texas System Ceramic scaffolds for bone repair
US7776065B2 (en) 2007-03-20 2010-08-17 Symmetry Medical New Bedford Inc End effector mechanism for a surgical instrument
JP4916011B2 (en) 2007-03-20 2012-04-11 株式会社日立製作所 Master / slave manipulator system
US8308725B2 (en) 2007-03-20 2012-11-13 Minos Medical Reverse sealing and dissection instrument
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8205780B2 (en) 2007-03-22 2012-06-26 Tyco Healthcare Group Lp Apparatus for forming variable height surgical fasteners
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
AU2008230841B2 (en) 2007-03-26 2013-09-12 Covidien Lp Endoscopic surgical clip applier
US8142200B2 (en) 2007-03-26 2012-03-27 Liposonix, Inc. Slip ring spacer and method for its use
US8608745B2 (en) 2007-03-26 2013-12-17 DePuy Synthes Products, LLC System, apparatus, and method for cutting bone during an orthopaedic surgical procedure
US20080243088A1 (en) 2007-03-28 2008-10-02 Docusys, Inc. Radio frequency identification drug delivery device and monitoring system
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US7490749B2 (en) 2007-03-28 2009-02-17 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with manually retractable firing member
US8056787B2 (en) 2007-03-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with travel-indicating retraction member
US8496153B2 (en) 2007-03-29 2013-07-30 Covidien Lp Anvil-mounted dissecting tip for surgical stapling device
AU2008233166B2 (en) 2007-03-30 2013-05-16 Covidien Lp Laparoscopic port assembly
US7630841B2 (en) 2007-03-30 2009-12-08 Texas Instruments Incorporated Supervising and sequencing commonly driven power supplies with digital information
US8377044B2 (en) 2007-03-30 2013-02-19 Ethicon Endo-Surgery, Inc. Detachable end effectors
US7923144B2 (en) 2007-03-31 2011-04-12 Tesla Motors, Inc. Tunable frangible battery pack system
USD570868S1 (en) 2007-04-02 2008-06-10 Tokyo Electron Limited Computer generated image for a display panel or screen
US20080242939A1 (en) 2007-04-02 2008-10-02 William Johnston Retractor system for internal in-situ assembly during laparoscopic surgery
JP5090045B2 (en) 2007-04-03 2012-12-05 テルモ株式会社 Manipulator and control method thereof
JP5006093B2 (en) 2007-04-03 2012-08-22 テルモ株式会社 Manipulator system and control device
US20080249608A1 (en) 2007-04-04 2008-10-09 Vipul Dave Bioabsorbable Polymer, Bioabsorbable Composite Stents
JP4728996B2 (en) 2007-04-04 2011-07-20 三菱電機株式会社 Particle beam therapy apparatus and particle beam irradiation dose calculation method
FR2914554B1 (en) 2007-04-05 2009-07-17 Germitec Soc Par Actions Simpl METHOD OF MONITORING THE USE OF A MEDICAL DEVICE.
US20090270895A1 (en) 2007-04-06 2009-10-29 Interlace Medical, Inc. Low advance ratio, high reciprocation rate tissue removal device
EP2144660A4 (en) 2007-04-09 2016-05-04 Creative Surgical Llc Frame device
US8006885B2 (en) 2007-04-09 2011-08-30 Tyco Healthcare Group Lp Surgical stapling apparatus with powered retraction
US20080255420A1 (en) 2007-04-10 2008-10-16 Cambridge Endoscopic Devices, Inc. Surgical instrument
WO2008127968A2 (en) 2007-04-11 2008-10-23 Tyco Healthcare Group Lp Surgical clip applier
US8800837B2 (en) 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
USD582934S1 (en) 2007-04-13 2008-12-16 Samsung Electronics Co., Ltd. Transitional video image display for portable phone
US20080255663A1 (en) 2007-04-13 2008-10-16 Akpek Esen K Artificial Cornea and Method of Making Same
US20080255413A1 (en) 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
US7950560B2 (en) 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
EP2508141A1 (en) 2007-04-16 2012-10-10 Smith & Nephew, Inc. Powered surgical system
US7839109B2 (en) 2007-04-17 2010-11-23 Lutron Electronics Co., Inc. Method of controlling a motorized window treatment
US7708182B2 (en) 2007-04-17 2010-05-04 Tyco Healthcare Group Lp Flexible endoluminal surgical instrument
WO2008131357A1 (en) 2007-04-20 2008-10-30 Doheny Eye Institute Independent surgical center
US8323271B2 (en) 2007-04-20 2012-12-04 Doheny Eye Institute Sterile surgical tray
DE102007019409B3 (en) 2007-04-23 2008-11-13 Lösomat Schraubtechnik Neef Gmbh power wrench
JP4668946B2 (en) 2007-04-25 2011-04-13 株式会社デンソー On-vehicle air conditioner operation unit and on-vehicle air conditioner control apparatus using the same
EP1986123A1 (en) 2007-04-27 2008-10-29 Italdata Ingegneria Dell'Idea S.p.A. Data survey device, integrated with an anti-tamper system
US7823760B2 (en) 2007-05-01 2010-11-02 Tyco Healthcare Group Lp Powered surgical stapling device platform
US8028882B2 (en) 2007-05-01 2011-10-04 Tyco Healthcare Group Anvil position detector for a surgical stapler
US8486047B2 (en) 2007-05-03 2013-07-16 Covidien Lp Packaged medical device
CA2891011A1 (en) 2007-05-07 2008-11-13 Tyco Healthcare Group Lp Variable size-uniform compression staple assembly
US20080281332A1 (en) 2007-05-07 2008-11-13 Warsaw Orthopedic, Inc. Surgical screwdriver
JP2007289715A (en) 2007-05-07 2007-11-08 Olympus Corp Ultrasonic diagnostic and therapeutic system
US20080281171A1 (en) 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
JP4348714B2 (en) 2007-05-10 2009-10-21 シャープ株式会社 Data transmission system and data transmission method
US7931660B2 (en) 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
US20080294179A1 (en) 2007-05-12 2008-11-27 Balbierz Daniel J Devices and methods for stomach partitioning
US7823761B2 (en) 2007-05-16 2010-11-02 The Invention Science Fund I, Llc Maneuverable surgical stapler
US7832611B2 (en) 2007-05-16 2010-11-16 The Invention Science Fund I, Llc Steerable surgical stapler
US7810691B2 (en) 2007-05-16 2010-10-12 The Invention Science Fund I, Llc Gentle touch surgical stapler
DE102007023585B4 (en) 2007-05-16 2009-08-20 Esab Cutting Systems Gmbh Device and method for calibrating swivel units, in particular on cutting machines
US8910846B2 (en) 2007-05-17 2014-12-16 Covidien Lp Gear driven knife drive mechanism
US9545258B2 (en) 2007-05-17 2017-01-17 Boston Scientific Scimed, Inc. Tissue aperture securing and sealing apparatuses and related methods of use
US7981102B2 (en) 2007-05-21 2011-07-19 Asante Solutions, Inc. Removable controller for an infusion pump
US20080293910A1 (en) 2007-05-24 2008-11-27 Tyco Healthcare Group Lp Adhesive formulatiions
US8038045B2 (en) 2007-05-25 2011-10-18 Tyco Healthcare Group Lp Staple buttress retention system
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US7549564B2 (en) 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US7810693B2 (en) 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US8943780B1 (en) 2007-05-30 2015-02-03 Walgreen Co. Method and system for verification of product transfer from an intermediate loading cartridge to a multi-container blister pack
US20080297287A1 (en) 2007-05-30 2008-12-04 Magnetecs, Inc. Magnetic linear actuator for deployable catheter tools
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US20080296346A1 (en) 2007-05-31 2008-12-04 Shelton Iv Frederick E Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms
US7939152B2 (en) 2007-06-01 2011-05-10 M-Tech Corporation Heat-shrinkable anti-fomitic device
US20080298784A1 (en) 2007-06-04 2008-12-04 Mark Allen Kastner Method of Sensing Speed of Electric Motors and Generators
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
KR101349639B1 (en) 2007-06-04 2014-01-09 타이코 일렉트로닉스 저팬 지.케이. A memory card and a SIM card mounting socket having a sensing switch
US7819299B2 (en) 2007-06-04 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
US7780309B2 (en) 2007-06-05 2010-08-24 Eveready Battery Company, Inc. Preparedness flashlight
US8016841B2 (en) 2007-06-11 2011-09-13 Novus Scientific Pte. Ltd. Mesh implant with an interlocking knitted structure
CA2633869A1 (en) 2007-06-12 2008-12-12 Tyco Healthcare Group Lp Surgical fastener
US8899460B2 (en) 2007-06-12 2014-12-02 Black & Decker Inc. Magazine assembly for nailer
US8852208B2 (en) 2010-05-14 2014-10-07 Intuitive Surgical Operations, Inc. Surgical system instrument mounting
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
JP5331389B2 (en) 2007-06-15 2013-10-30 株式会社半導体エネルギー研究所 Method for manufacturing display device
US7588175B2 (en) * 2007-06-18 2009-09-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with improved firing system
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
US7950561B2 (en) 2007-06-18 2011-05-31 Tyco Healthcare Group Lp Structure for attachment of buttress material to anvils and cartridges of surgical staplers
USD578644S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
US7604150B2 (en) 2007-06-22 2009-10-20 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an anti-back up mechanism
US7597229B2 (en) 2007-06-22 2009-10-06 Ethicon Endo-Surgery, Inc. End effector closure system for a surgical stapling instrument
US7658311B2 (en) 2007-06-22 2010-02-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US7441685B1 (en) 2007-06-22 2008-10-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a return mechanism
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
WO2009002828A2 (en) 2007-06-22 2008-12-31 Medical Components, Inc. Tearaway sheath assembly with hemostasis valve
US20090004455A1 (en) 2007-06-27 2009-01-01 Philippe Gravagna Reinforced composite implant
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8093572B2 (en) 2007-06-29 2012-01-10 Accuray Incorporated Integrated variable-aperture collimator and fixed-aperture collimator
US10219832B2 (en) 2007-06-29 2019-03-05 Actuated Medical, Inc. Device and method for less forceful tissue puncture
CA2698728C (en) 2007-06-29 2016-08-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
CN101873834B (en) 2007-06-29 2012-12-05 伊西康内外科公司 Washer for use with a surgical stapling instrument
DE102007031008A1 (en) 2007-07-04 2009-01-08 Braun Gmbh Device with electrical device and charging station
US7600663B2 (en) 2007-07-05 2009-10-13 Green David T Apparatus for stapling and incising tissue
US8758366B2 (en) 2007-07-09 2014-06-24 Neotract, Inc. Multi-actuating trigger anchor delivery system
WO2009009684A1 (en) 2007-07-10 2009-01-15 Osteotech, Inc. Delivery system
US8348972B2 (en) 2007-07-11 2013-01-08 Covidien Lp Surgical staple with augmented compression area
US7967791B2 (en) 2007-07-23 2011-06-28 Ethicon Endo-Surgery, Inc. Surgical access device
JP2009028157A (en) 2007-07-25 2009-02-12 Terumo Corp Medical manipulator system
US9539061B2 (en) 2007-07-25 2017-01-10 Karl Storz Gmbh & Co. Kg Medical manipulator and welding method
KR101540920B1 (en) 2007-07-26 2015-08-03 사노피 파스퇴르 리미티드 Antigen-adjuvant compositions and methods
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
JP5042738B2 (en) 2007-07-30 2012-10-03 テルモ株式会社 Working mechanism and cleaning method of medical manipulator
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
WO2009019837A1 (en) 2007-08-07 2009-02-12 Panasonic Corporation Silicon carbide semiconductor device and method for producing the same
US7747146B2 (en) 2007-08-08 2010-06-29 Allegro Microsystems, Inc. Motor controller having a multifunction port
US7787256B2 (en) 2007-08-10 2010-08-31 Gore Enterprise Holdings, Inc. Tamper respondent system
EP2626006B1 (en) 2007-08-14 2019-10-09 Koninklijke Philips N.V. Robotic instrument systems utilizing optical fiber sensors
US8202549B2 (en) 2007-08-14 2012-06-19 The Regents Of The University Of California Mesocellular oxide foams as hemostatic compositions and methods of use
US20090048589A1 (en) 2007-08-14 2009-02-19 Tomoyuki Takashino Treatment device and treatment method for living tissue
US7556185B2 (en) 2007-08-15 2009-07-07 Tyco Healthcare Group Lp Surgical instrument with flexible drive mechanism
JP5475662B2 (en) 2007-08-15 2014-04-16 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Modular and segmented medical devices and related systems
US7714334B2 (en) 2007-08-16 2010-05-11 Lin Peter P W Polarless surface mounting light emitting diode
US8165663B2 (en) 2007-10-03 2012-04-24 The Invention Science Fund I, Llc Vasculature and lymphatic system imaging and ablation
US9005238B2 (en) 2007-08-23 2015-04-14 Covidien Lp Endoscopic surgical devices
JP2009050288A (en) 2007-08-23 2009-03-12 Terumo Corp Work mechanism of medical manipulator
US7967181B2 (en) 2007-08-29 2011-06-28 Tyco Healthcare Group Lp Rotary knife cutting systems
US8465515B2 (en) 2007-08-29 2013-06-18 Ethicon Endo-Surgery, Inc. Tissue retractors
KR101387404B1 (en) 2007-08-30 2014-04-21 삼성전자주식회사 Apparatus of controlling digital image processing apparatus and method thereof
JP2009056164A (en) 2007-08-31 2009-03-19 Terumo Corp Medical manipulator system
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8061576B2 (en) 2007-08-31 2011-11-22 Tyco Healthcare Group Lp Surgical instrument
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US7624902B2 (en) 2007-08-31 2009-12-01 Tyco Healthcare Group Lp Surgical stapling apparatus
US9168039B1 (en) 2007-09-06 2015-10-27 Cardica, Inc. Surgical stapler with staples of different sizes
FR2920683B1 (en) 2007-09-06 2010-02-12 Pellenc Sa MULTIPURPOSE ELECTROPORTATIVE DEVICES.
US7988026B2 (en) 2007-09-06 2011-08-02 Cardica, Inc. Endocutter with staple feed
US8556151B2 (en) 2007-09-11 2013-10-15 Covidien Lp Articulating joint for surgical instruments
GB2452720A (en) 2007-09-11 2009-03-18 Ethicon Inc Wound dressing with an antimicrobial absorbent layer and an apertured cover sheet
US8257386B2 (en) 2007-09-11 2012-09-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US8317790B2 (en) 2007-09-14 2012-11-27 W. L. Gore & Associates, Inc. Surgical staple line reinforcements
US20090076506A1 (en) 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method
JP2009084281A (en) 2007-09-18 2009-04-23 Ethicon Endo Surgery Inc Method for reduction of post-operative ileus
US7513407B1 (en) 2007-09-20 2009-04-07 Acuman Power Tools Corp. Counterforce-counteracting device for a nailer
AU2008302043B2 (en) 2007-09-21 2013-06-27 Covidien Lp Surgical device
EP2233081B2 (en) 2007-09-21 2018-03-28 Covidien LP Surgical device
US9023014B2 (en) 2007-09-21 2015-05-05 Covidien Lp Quick connect assembly for use between surgical handle assembly and surgical accessories
US8678263B2 (en) 2007-09-24 2014-03-25 Covidien Lp Materials delivery system for stapling device
US9597080B2 (en) 2007-09-24 2017-03-21 Covidien Lp Insertion shroud for surgical instrument
US8721666B2 (en) 2007-09-26 2014-05-13 Ethicon, Inc. Method of facial reconstructive surgery using a self-anchoring tissue lifting device
US20090088659A1 (en) 2007-09-27 2009-04-02 Immersion Corporation Biological Sensing With Haptic Feedback
US7703653B2 (en) 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US20090132400A1 (en) 2007-09-28 2009-05-21 Verizon Services Organization Inc. Data metering
US9050120B2 (en) 2007-09-30 2015-06-09 Intuitive Surgical Operations, Inc. Apparatus and method of user interface with alternate tool mode for robotic surgical tools
US8084969B2 (en) 2007-10-01 2011-12-27 Allegro Microsystems, Inc. Hall-effect based linear motor controller
US9707003B2 (en) 2007-10-02 2017-07-18 Covidien Lp Articulating surgical instrument
US7945798B2 (en) 2007-10-03 2011-05-17 Lenovo (Singapore) Pte. Ltd. Battery pack for portable computer
US8285367B2 (en) 2007-10-05 2012-10-09 The Invention Science Fund I, Llc Vasculature and lymphatic system imaging and ablation associated with a reservoir
US10498269B2 (en) 2007-10-05 2019-12-03 Covidien Lp Powered surgical stapling device
US10271844B2 (en) 2009-04-27 2019-04-30 Covidien Lp Surgical stapling apparatus employing a predictive stapling algorithm
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US20130214025A1 (en) 2007-10-05 2013-08-22 Covidien Lp Powered surgical stapling device
US8012170B2 (en) 2009-04-27 2011-09-06 Tyco Healthcare Group Lp Device and method for controlling compression of tissue
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
JP5403783B2 (en) 2007-10-05 2014-01-29 コヴィディエン リミテッド パートナーシップ Surgical stapler with articulation mechanism
US10779818B2 (en) 2007-10-05 2020-09-22 Covidien Lp Powered surgical stapling device
US10500309B2 (en) 2007-10-05 2019-12-10 Cook Biotech Incorporated Absorbable adhesives and their formulation for use in medical applications
US20110022032A1 (en) 2007-10-05 2011-01-27 Tyco Healthcare Group Lp Battery ejection design for a surgical device
ES2426767T3 (en) 2007-10-08 2013-10-25 Gore Enterprise Holdings, Inc. Apparatus for supplying a reinforcement of surgical staple lines
US20120289979A1 (en) 2007-10-08 2012-11-15 Sherif Eskaros Apparatus for Supplying Surgical Staple Line Reinforcement
US8044536B2 (en) 2007-10-10 2011-10-25 Ams Research Corporation Powering devices having low and high voltage circuits
US8992409B2 (en) 2007-10-11 2015-03-31 Peter Forsell Method for controlling flow in a bodily organ
US20090099579A1 (en) 2007-10-16 2009-04-16 Tyco Healthcare Group Lp Self-adherent implants and methods of preparation
US7945792B2 (en) 2007-10-17 2011-05-17 Spansion Llc Tamper reactive memory device to secure data from tamper attacks
EP3225209B1 (en) 2007-10-17 2023-05-24 Davol, Inc. Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries
CN101188900B (en) 2007-10-17 2011-07-20 廖云峰 Medical diagnosis X ray high-frequency and high-voltage generator based on dual-bed and dual-tube
EP2052678A1 (en) 2007-10-24 2009-04-29 F. Hoffmann-Roche AG Medical system with monitoring of consumables
CN101203085B (en) 2007-10-30 2011-08-10 杨扬 X ray high frequency high voltage generator for medical use diagnose
US8142425B2 (en) 2007-10-30 2012-03-27 Hemostatix Medical Techs, LLC Hemostatic surgical blade, system and method of blade manufacture
JP5011067B2 (en) 2007-10-31 2012-08-29 株式会社東芝 Manipulator system
US7922063B2 (en) 2007-10-31 2011-04-12 Tyco Healthcare Group, Lp Powered surgical instrument
JP5364255B2 (en) 2007-10-31 2013-12-11 テルモ株式会社 Medical manipulator
US20090112234A1 (en) 2007-10-31 2009-04-30 Lawrence Crainich Reloadable laparoscopic fastener deploying device for use in a gastric volume reduction procedure
US20090118762A1 (en) 2007-10-31 2009-05-07 Lawrence Crainch Disposable cartridge for use in a gastric volume reduction procedure
CA2703953C (en) 2007-10-31 2015-04-28 Cordis Corporation Vascular closure device
KR100877721B1 (en) 2007-11-05 2009-01-07 (주)건양트루넷 Apparatus for rivetting
US7954687B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Coated surgical staples and an illuminated staple cartridge for a surgical stapling instrument
US7954685B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Articulation and firing force mechanisms
JP2009115640A (en) 2007-11-07 2009-05-28 Honda Motor Co Ltd Navigation apparatus
CA2704380A1 (en) 2007-11-08 2009-05-14 Ceapro Inc. Avenanthramide-containing compositions
US8425600B2 (en) 2007-11-14 2013-04-23 G. Patrick Maxwell Interfaced medical implant assembly
US8125168B2 (en) 2007-11-19 2012-02-28 Honeywell International Inc. Motor having controllable torque
US20090131819A1 (en) 2007-11-20 2009-05-21 Ritchie Paul G User Interface On Biopsy Device
GB0722820D0 (en) 2007-11-21 2008-01-02 Smith & Nephew Vacuum assisted wound dressing
HUE049431T2 (en) 2007-11-21 2020-09-28 Smith & Nephew Wound dressing
CA2705896C (en) 2007-11-21 2019-01-08 Smith & Nephew Plc Wound dressing
WO2009067649A2 (en) 2007-11-21 2009-05-28 Ethicon Endo-Surgery, Inc. Bipolar forceps having a cutting element
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
US7791009B2 (en) 2007-11-27 2010-09-07 University Of Washington Eliminating illumination crosstalk while using multiple imaging devices with plural scanning devices, each coupled to an optical fiber
DE102007057033A1 (en) 2007-11-27 2009-05-28 Robert Bosch Gmbh Electrically drivable hand tool machine
US8377059B2 (en) 2007-11-28 2013-02-19 Covidien Ag Cordless medical cauterization and cutting device
US9050098B2 (en) 2007-11-28 2015-06-09 Covidien Ag Cordless medical cauterization and cutting device
US20090143855A1 (en) 2007-11-29 2009-06-04 Boston Scientific Scimed, Inc. Medical Device Including Drug-Loaded Fibers
EP2214575A2 (en) 2007-11-29 2010-08-11 SurgiQuest, Incorporated Surgical instruments with improved dexterity for use in minimally invasive surgical procedures
JP5283209B2 (en) 2007-11-29 2013-09-04 マニー株式会社 Medical staples
JP5377944B2 (en) 2007-11-30 2013-12-25 住友ベークライト株式会社 Gastrostomy sheath, sheathed dilator, gastrostomy sheath with insertion aid, gastrostomy catheter kit
US8435257B2 (en) 2007-12-03 2013-05-07 Covidien Ag Cordless hand-held ultrasonic cautery cutting device and method
US8419758B2 (en) 2007-12-03 2013-04-16 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8663262B2 (en) 2007-12-03 2014-03-04 Covidien Ag Battery assembly for battery-powered surgical instruments
US9107690B2 (en) 2007-12-03 2015-08-18 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US9017355B2 (en) 2007-12-03 2015-04-28 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US7772720B2 (en) 2007-12-03 2010-08-10 Spx Corporation Supercapacitor and charger for secondary power
US8338726B2 (en) 2009-08-26 2012-12-25 Covidien Ag Two-stage switch for cordless hand-held ultrasonic cautery cutting device
US8061014B2 (en) 2007-12-03 2011-11-22 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US9314261B2 (en) 2007-12-03 2016-04-19 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
JP5235394B2 (en) 2007-12-06 2013-07-10 株式会社ハーモニック・エイディ Switchable rotary drive
US8319002B2 (en) 2007-12-06 2012-11-27 Nanosys, Inc. Nanostructure-enhanced platelet binding and hemostatic structures
WO2009073815A1 (en) 2007-12-06 2009-06-11 Cpair, Inc. Cpr system with feed back instruction
US8180458B2 (en) 2007-12-17 2012-05-15 Thermage, Inc. Method and apparatus for digital signal processing for radio frequency surgery measurements
EP2234547B1 (en) 2007-12-21 2017-10-18 Smith & Nephew, Inc. Surgical drilling aimer
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
JP5071103B2 (en) 2007-12-29 2012-11-14 ブラザー工業株式会社 Display body and display body structure
US20090171147A1 (en) 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
TWI348086B (en) 2008-01-02 2011-09-01 Mstar Semiconductor Inc Dc power converter and mode-switching method
US8727199B2 (en) 2008-01-03 2014-05-20 Covidien Lp Surgical stapler
US9192376B2 (en) 2008-01-04 2015-11-24 Luis Jose Almodovar Rotational driver
JP5116490B2 (en) 2008-01-08 2013-01-09 株式会社マキタ Motor control device and electric tool using the same
JP5535084B2 (en) 2008-01-10 2014-07-02 コヴィディエン リミテッド パートナーシップ Imaging system for a surgical device
US8647258B2 (en) 2008-01-10 2014-02-11 Covidien Lp Apparatus for endoscopic procedures
US8031069B2 (en) 2008-01-14 2011-10-04 Oded Yair Cohn Electronic security seal and system
US20090181290A1 (en) 2008-01-14 2009-07-16 Travis Baldwin System and Method for an Automated Battery Arrangement
US8490851B2 (en) 2008-01-15 2013-07-23 Covidien Lp Surgical stapling apparatus
WO2009091497A2 (en) 2008-01-16 2009-07-23 John Hyoung Kim Minimally invasive surgical instrument
JP5583601B2 (en) 2008-01-25 2014-09-03 スミス アンド ネフュー ピーエルシー Multi-layer scaffold
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US20090192534A1 (en) 2008-01-29 2009-07-30 Ethicon Endo-Surgery, Inc. Sensor trigger
JP2011510750A (en) 2008-01-29 2011-04-07 クライマン、ギルバート・エイチ Drug delivery device, kit and methods thereof
US9060771B2 (en) 2008-01-29 2015-06-23 Peter Forsell Method and instrument for treating obesity
US8006365B2 (en) 2008-01-30 2011-08-30 Easylap Ltd. Device and method for applying rotary tacks
JP4672031B2 (en) 2008-01-31 2011-04-20 オリンパスメディカルシステムズ株式会社 Medical instruments
CN101219648B (en) 2008-01-31 2010-12-08 北京经纬恒润科技有限公司 Car lamp steering driving mechanism
US20100249947A1 (en) 2009-03-27 2010-09-30 Evera Medical, Inc. Porous implant with effective extensibility and methods of forming an implant
US8870867B2 (en) 2008-02-06 2014-10-28 Aesculap Ag Articulable electrosurgical instrument with a stabilizable articulation actuator
US20090198272A1 (en) 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8348129B2 (en) 2009-10-09 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapler having a closure mechanism
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7861906B2 (en) 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US7810692B2 (en) 2008-02-14 2010-10-12 Ethicon Endo-Surgery, Inc. Disposable loading unit with firing indicator
US7819296B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with retractable firing systems
US7857185B2 (en) 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
JP5496520B2 (en) 2008-02-14 2014-05-21 エシコン・エンド−サージェリィ・インコーポレイテッド Motorized cutting and fastening device with control circuit to optimize battery use
US7819297B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with reprocessible handle assembly
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US20090206133A1 (en) 2008-02-14 2009-08-20 Ethicon Endo-Surgery, Inc. Articulatable loading units for surgical stapling and cutting instruments
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7913891B2 (en) 2008-02-14 2011-03-29 Ethicon Endo-Surgery, Inc. Disposable loading unit with user feedback features and surgical instrument for use therewith
US20090206137A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Disposable loading units for a surgical cutting and stapling instrument
US8398673B2 (en) 2008-02-15 2013-03-19 Surgical Innovations V.O.F. Surgical instrument for grasping and cutting tissue
US20090206125A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Packaging for attaching buttress material to a surgical stapling instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US20220175372A1 (en) 2008-02-15 2022-06-09 Cilag Gmbh International Releasable layer of material and surgical end effector having the same
US7959051B2 (en) 2008-02-15 2011-06-14 Ethicon Endo-Surgery, Inc. Closure systems for a surgical cutting and stapling instrument
US8047100B2 (en) 2008-02-15 2011-11-01 Black & Decker Inc. Tool assembly having telescoping fastener support
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
RU2488359C2 (en) 2008-02-15 2013-07-27 Этикон Эндо-Серджери, Инк. Supporting material with activated binding substance
JP5529047B2 (en) 2008-02-18 2014-06-25 テキサス スコティッシュ ライト ホスピタル フォー チルドレン Tool and method for external fixed support adjustment
JP5377991B2 (en) 2008-02-26 2013-12-25 テルモ株式会社 manipulator
JP2009207260A (en) 2008-02-27 2009-09-10 Denso Corp Motor controller
US8733611B2 (en) 2008-03-12 2014-05-27 Covidien Lp Ratcheting mechanism for surgical stapling device
US8118206B2 (en) 2008-03-15 2012-02-21 Surgisense Corporation Sensing adjunct for surgical staplers
US20090234273A1 (en) 2008-03-17 2009-09-17 Alfred Intoccia Surgical trocar with feedback
US8020741B2 (en) 2008-03-18 2011-09-20 Barosense, Inc. Endoscopic stapling devices and methods
US8328802B2 (en) 2008-03-19 2012-12-11 Covidien Ag Cordless medical cauterization and cutting device
US8491581B2 (en) 2008-03-19 2013-07-23 Covidien Ag Method for powering a surgical instrument
US8197501B2 (en) 2008-03-20 2012-06-12 Medtronic Xomed, Inc. Control for a powered surgical instrument
JP2009226028A (en) 2008-03-24 2009-10-08 Terumo Corp Manipulator
EP2272235B1 (en) 2008-03-25 2018-05-30 Alcatel Lucent Methods and entities using ipsec esp to support security functionality for udp-based oma enablers
US8136713B2 (en) 2008-03-25 2012-03-20 Tyco Healthcare Group Lp Surgical stapling instrument having transducer effecting vibrations
US20090247901A1 (en) 2008-03-25 2009-10-01 Brian Zimmer Latching side removal spacer
US20090242610A1 (en) 2008-03-26 2009-10-01 Shelton Iv Frederick E Disposable loading unit and surgical instruments including same
US8317744B2 (en) 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
US8684962B2 (en) 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
US8808164B2 (en) 2008-03-28 2014-08-19 Intuitive Surgical Operations, Inc. Controlling a robotic surgical tool with a display monitor
US20090248100A1 (en) 2008-03-28 2009-10-01 Defibtech, Llc System and Method for Conditioning a Lithium Battery in an Automatic External Defibrillator
JP2009240605A (en) 2008-03-31 2009-10-22 Gc Corp Cell engineering support and its manufacturing method
US20090247368A1 (en) 2008-03-31 2009-10-01 Boson Technology Co., Ltd. Sports health care apparatus with physiological monitoring function
US7843158B2 (en) 2008-03-31 2010-11-30 Intuitive Surgical Operations, Inc. Medical robotic system adapted to inhibit motions resulting in excessive end effector forces
ES2651687T3 (en) 2008-03-31 2018-01-29 Applied Medical Resources Corporation Electrosurgical system with a memory module
US10368838B2 (en) 2008-03-31 2019-08-06 Intuitive Surgical Operations, Inc. Surgical tools for laser marking and laser cutting
US7886743B2 (en) 2008-03-31 2011-02-15 Intuitive Surgical Operations, Inc. Sterile drape interface for robotic surgical instrument
US9895813B2 (en) 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
EP2268218B1 (en) 2008-04-01 2016-02-10 CardioMems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
FR2929544B1 (en) 2008-04-02 2010-09-03 Facom AUTONOMOUS PORTABLE ELECTRICAL APPARATUS WITH ELECTRIC POWER SUPPLY BLOCK LOCKING.
US8534527B2 (en) 2008-04-03 2013-09-17 Black & Decker Inc. Cordless framing nailer
JP5301867B2 (en) 2008-04-07 2013-09-25 オリンパスメディカルシステムズ株式会社 Medical manipulator system
JP5145103B2 (en) 2008-04-08 2013-02-13 ローム株式会社 Inverter, control circuit thereof, control method, and liquid crystal display device using the same
DE102008018158A1 (en) 2008-04-10 2009-10-15 Aesculap Ag Ligature clip magazine and bearing body for use in this
US8100310B2 (en) 2008-04-14 2012-01-24 Tyco Healthcare Group Lp Variable compression surgical fastener apparatus
US8231040B2 (en) 2008-04-14 2012-07-31 Tyco Healthcare Group Lp Variable compression surgical fastener cartridge
US7926691B2 (en) 2008-04-14 2011-04-19 Tyco Healthcare Group, L.P. Variable compression surgical fastener cartridge
US20090255974A1 (en) 2008-04-14 2009-10-15 Tyco Healthcare Group Lp Single loop surgical fastener apparatus for applying variable compression
US8170241B2 (en) 2008-04-17 2012-05-01 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US20090261141A1 (en) 2008-04-18 2009-10-22 Stratton Lawrence D Ergonomic stapler and method for setting staples
US8021375B2 (en) 2008-04-21 2011-09-20 Conmed Corporation Surgical clip applicator
US20090262078A1 (en) 2008-04-21 2009-10-22 David Pizzi Cellular phone with special sensor functions
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US8028884B2 (en) 2008-04-22 2011-10-04 Tyco Healthcare Group Lp Cartridge for applying varying amounts of tissue compression
WO2009133875A1 (en) 2008-04-30 2009-11-05 学校法人自治医科大学 Surgical system and surgical method for natural orifice transluminal endoscopic surgery (notes)
EP2271275B1 (en) 2008-05-05 2012-06-27 Stryker Corporation Powered surgical tool with a memory, conductors over which power and memory interrogation signals are applied to the tool and an isolation circuit that prevents the power signals from adversely affecting the memory
CA2665017A1 (en) 2008-05-05 2009-11-05 Tyco Healthcare Group Lp Surgical instrument with sequential clamping and cutting
US7997468B2 (en) 2008-05-05 2011-08-16 Tyco Healthcare Group Lp Surgical instrument with clamp
EP2821094B1 (en) 2008-05-06 2018-07-04 Corindus Inc. Catheter system
DE102008001664B4 (en) 2008-05-08 2015-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Medical robot and method for meeting the performance requirement of a medical robot
US8795308B2 (en) 2008-05-09 2014-08-05 Elmer Valin Laparoscopic gastric and intestinal trocar
US8091756B2 (en) 2008-05-09 2012-01-10 Tyco Healthcare Group Lp Varying tissue compression using take-up component
JP5145113B2 (en) 2008-05-09 2013-02-13 Hoya株式会社 Endoscope operation part
EP2116272B1 (en) 2008-05-09 2013-04-03 Greatbatch Ltd. Bi-directional sheath deflection mechanism
US8464922B2 (en) 2008-05-09 2013-06-18 Covidien Lp Variable compression surgical fastener cartridge
US9016541B2 (en) 2008-05-09 2015-04-28 Covidien Lp Varying tissue compression with an anvil configuration
US8967446B2 (en) 2008-05-09 2015-03-03 Covidien Lp Variable compression surgical fastener cartridge
US8186556B2 (en) 2008-05-09 2012-05-29 Tyco Healthcare Group Lp Variable compression surgical fastener apparatus
US8006577B2 (en) 2008-05-09 2011-08-30 The Schnipke Family, LLC Method and apparatus for testing for the presence of excess drivers in a surgical cartridge
DE102008024438A1 (en) 2008-05-14 2009-11-19 Aesculap Ag Surgical drive unit, surgical instrument and surgical drive system
US8409079B2 (en) 2008-05-14 2013-04-02 Olympus Medical Systems Corp. Electric bending operation device and medical treatment system including electric bending operation device
US7430849B1 (en) 2008-05-16 2008-10-07 Practical Inventions, Llc Conveyor chain pin remover
US8273404B2 (en) 2008-05-19 2012-09-25 Cordis Corporation Extraction of solvents from drug containing polymer reservoirs
US20090290016A1 (en) 2008-05-20 2009-11-26 Hoya Corporation Endoscope system
US7922061B2 (en) 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
DE112009001239T5 (en) 2008-05-21 2011-04-07 Cook Biotech, Inc., West Lafayette Apparatus and methods for attaching reinforcing materials to surgical fasteners
US8179705B2 (en) 2008-05-27 2012-05-15 Power-One, Inc. Apparatus and method of optimizing power system efficiency using a power loss model
WO2009154976A2 (en) 2008-05-27 2009-12-23 Maquet Cardiovascular Llc Surgical instrument and method
RU2498998C2 (en) 2008-05-30 2013-11-20 ИксБиотеч, Инк. ANTIBODIES TO INTERLEUKIN-1α, AND ITS APPLICATION METHODS
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8016176B2 (en) 2008-06-04 2011-09-13 Tyco Healthcare Group, Lp Surgical stapling instrument with independent sequential firing
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US7942303B2 (en) 2008-06-06 2011-05-17 Tyco Healthcare Group Lp Knife lockout mechanisms for surgical instrument
US7789283B2 (en) 2008-06-06 2010-09-07 Tyco Healthcare Group Lp Knife/firing rod connection for surgical instrument
US20090306639A1 (en) 2008-06-06 2009-12-10 Galil Medical Ltd. Cryoprobe incorporating electronic module, and system utilizing same
US8701959B2 (en) 2008-06-06 2014-04-22 Covidien Lp Mechanically pivoting cartridge channel for surgical instrument
WO2009151064A1 (en) 2008-06-10 2009-12-17 株式会社マキタ Circular saw
US20110091515A1 (en) 2008-06-12 2011-04-21 Ramot At Tel-Aviv University Ltd. Drug-eluting medical devices
US8267951B2 (en) 2008-06-12 2012-09-18 Ncontact Surgical, Inc. Dissecting cannula and methods of use thereof
JP5512663B2 (en) 2008-06-12 2014-06-04 エシコン・エンド−サージェリィ・インコーポレイテッド Partially reusable surgical stapler
US8007513B2 (en) 2008-06-12 2011-08-30 Ethicon Endo-Surgery, Inc. Partially reusable surgical stapler
US8628545B2 (en) 2008-06-13 2014-01-14 Covidien Lp Endoscopic stitching devices
US9396669B2 (en) 2008-06-16 2016-07-19 Microsoft Technology Licensing, Llc Surgical procedure capture, modelling, and editing interactive playback
US9486126B2 (en) 2008-06-17 2016-11-08 Apollo Endosurgery, Inc. Endoscopic helix tissue grasping device
US20140100558A1 (en) 2012-10-05 2014-04-10 Gregory P. Schmitz Micro-articulated surgical instruments using micro gear actuation
US7543730B1 (en) 2008-06-24 2009-06-09 Tyco Healthcare Group Lp Segmented drive member for surgical instruments
DE102008002641A1 (en) 2008-06-25 2009-12-31 Biotronik Vi Patent Ag Fiber strand and implantable support body with a fiber strand
US8414469B2 (en) 2008-06-27 2013-04-09 Intuitive Surgical Operations, Inc. Medical robotic system having entry guide controller with instrument tip velocity limiting
US9179832B2 (en) 2008-06-27 2015-11-10 Intuitive Surgical Operations, Inc. Medical robotic system with image referenced camera control using partitionable orientational and translational modes
US8011551B2 (en) 2008-07-01 2011-09-06 Tyco Healthcare Group Lp Retraction mechanism with clutch-less drive for use with a surgical apparatus
DE102008040061A1 (en) 2008-07-02 2010-01-07 Robert Bosch Gmbh Power tool
US20100005035A1 (en) 2008-07-02 2010-01-07 Cake Financial Corporation Systems and Methods for a Cross-Linked Investment Trading Platform
US8206482B2 (en) 2008-07-04 2012-06-26 Emerson Electric Co. Vacuum appliance filter assemblies and associated vacuum systems
AU2009268582B2 (en) 2008-07-08 2014-08-07 Covidien Lp Surgical attachment for use with a robotic surgical system
DE102008040341A1 (en) 2008-07-11 2010-01-14 Robert Bosch Gmbh Accumulator with several accumulator cells
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8834465B2 (en) 2008-07-15 2014-09-16 Immersion Corporation Modular tool with signal feedback
US8487487B2 (en) 2008-07-15 2013-07-16 Ethicon Endo-Surgery, Inc. Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator
US9186221B2 (en) 2008-07-16 2015-11-17 Intuitive Surgical Operations Inc. Backend mechanism for four-cable wrist
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
US8771270B2 (en) 2008-07-16 2014-07-08 Intuitive Surgical Operations, Inc. Bipolar cautery instrument
US8074858B2 (en) 2008-07-17 2011-12-13 Tyco Healthcare Group Lp Surgical retraction mechanism
WO2010009536A1 (en) 2008-07-21 2010-01-28 Kirk Schroeder Portable power supply device
WO2010011661A1 (en) 2008-07-21 2010-01-28 Atricure, Inc. Apparatus and methods for occluding an anatomical structure
US20100022824A1 (en) 2008-07-22 2010-01-28 Cybulski James S Tissue modification devices and methods of using the same
US20110088921A1 (en) 2008-07-25 2011-04-21 Sylvain Forgues Pneumatic hand tool rotational speed control method and portable apparatus
US20100023024A1 (en) 2008-07-25 2010-01-28 Zeiner Mark S Reloadable laparoscopic fastener deploying device with disposable cartridge for use in a gastric volume reduction procedure
US9061392B2 (en) 2008-07-25 2015-06-23 Sylvain Forgues Controlled electro-pneumatic power tools and interactive consumable
US8317437B2 (en) 2008-08-01 2012-11-27 The Boeing Company Adaptive positive feed drilling system
US8968355B2 (en) 2008-08-04 2015-03-03 Covidien Lp Articulating surgical device
US8801752B2 (en) 2008-08-04 2014-08-12 Covidien Lp Articulating surgical device
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US20100036370A1 (en) 2008-08-07 2010-02-11 Al Mirel Electrosurgical instrument jaw structure with cutting tip
US8109426B2 (en) 2008-08-12 2012-02-07 Tyco Healthcare Group Lp Surgical tilt anvil assembly
US8413661B2 (en) 2008-08-14 2013-04-09 Ethicon, Inc. Methods and devices for treatment of obstructive sleep apnea
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8465475B2 (en) 2008-08-18 2013-06-18 Intuitive Surgical Operations, Inc. Instrument with multiple articulation locks
WO2010022329A1 (en) 2008-08-22 2010-02-25 Zevex, Inc. Removable adapter for phacoemulsification handpiece having irrigation and aspiration fluid paths
US8532747B2 (en) 2008-08-22 2013-09-10 Devicor Medical Products, Inc. Biopsy marker delivery device
US7954688B2 (en) 2008-08-22 2011-06-07 Medtronic, Inc. Endovascular stapling apparatus and methods of use
US8465502B2 (en) 2008-08-25 2013-06-18 Covidien Lp Surgical clip applier and method of assembly
JP2010054718A (en) 2008-08-27 2010-03-11 Sony Corp Display device
US9358015B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US8409223B2 (en) 2008-08-29 2013-04-02 Covidien Lp Endoscopic surgical clip applier with clip retention
US8834353B2 (en) 2008-09-02 2014-09-16 Olympus Medical Systems Corp. Medical manipulator, treatment system, and treatment method
US8113405B2 (en) 2008-09-03 2012-02-14 Tyco Healthcare Group, Lp Surgical instrument with indicator
US20100057118A1 (en) 2008-09-03 2010-03-04 Dietz Timothy G Ultrasonic surgical blade
US20100051668A1 (en) 2008-09-03 2010-03-04 Milliman Keith L Surgical instrument with indicator
US20120125792A1 (en) 2008-09-08 2012-05-24 Mayo Foundation For Medical Education And Research Devices, kits and methods for surgical fastening
US8808294B2 (en) 2008-09-09 2014-08-19 William Casey Fox Method and apparatus for a multiple transition temperature implant
WO2010028701A1 (en) 2008-09-09 2010-03-18 , Olympus Winter & Ibe Gmbh Laparoscope having adjustable shaft
JP5089537B2 (en) 2008-09-10 2012-12-05 三菱電機株式会社 Failure diagnosis device for electric blower and electric device equipped with the same
CN101669833A (en) 2008-09-11 2010-03-17 苏州天臣国际医疗科技有限公司 Automatic purse-string device
EP2361042B1 (en) 2008-09-12 2016-11-30 Ethicon Endo-Surgery, Inc. Ultrasonic device for fingertip control
US8047236B2 (en) 2008-09-12 2011-11-01 Boston Scientific Scimed, Inc. Flexible conduit with locking element
US9107688B2 (en) 2008-09-12 2015-08-18 Ethicon Endo-Surgery, Inc. Activation feature for surgical instrument with pencil grip
EP2163209A1 (en) 2008-09-15 2010-03-17 Zhiqiang Weng Lockout mechanism for a surgical stapler
US20100069942A1 (en) 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
US8290883B2 (en) 2008-09-18 2012-10-16 Honda Motor Co., Ltd. Learning system and learning method comprising an event list database
US7837080B2 (en) 2008-09-18 2010-11-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with device for indicating when the instrument has cut through tissue
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
BRPI0904975B1 (en) 2008-09-19 2019-09-10 Ethicon Endo Surgery Inc surgical stapler
BRPI0903919B8 (en) 2008-09-19 2021-06-22 Ethicon Endo Surgery Inc staple cartridge and surgical stapler
US8360298B2 (en) 2008-09-23 2013-01-29 Covidien Lp Surgical instrument and loading unit for use therewith
US8215532B2 (en) 2008-09-23 2012-07-10 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8628544B2 (en) 2008-09-23 2014-01-14 Covidien Lp Knife bar for surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
US7896214B2 (en) 2008-09-23 2011-03-01 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US7988028B2 (en) 2008-09-23 2011-08-02 Tyco Healthcare Group Lp Surgical instrument having an asymmetric dynamic clamping member
JP2010075242A (en) 2008-09-24 2010-04-08 Terumo Corp Medical manipulator
US9259274B2 (en) 2008-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Passive preload and capstan drive for surgical instruments
US9339342B2 (en) 2008-09-30 2016-05-17 Intuitive Surgical Operations, Inc. Instrument interface
JP5475262B2 (en) 2008-10-01 2014-04-16 テルモ株式会社 Medical manipulator
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8808308B2 (en) 2008-10-13 2014-08-19 Alcon Research, Ltd. Automated intraocular lens injector device
US8287487B2 (en) 2008-10-15 2012-10-16 Asante Solutions, Inc. Infusion pump system and methods
US20100094340A1 (en) 2008-10-15 2010-04-15 Tyco Healthcare Group Lp Coating compositions
US8020743B2 (en) 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
JP2010098844A (en) 2008-10-16 2010-04-30 Toyota Motor Corp Power supply system of vehicle
US7918377B2 (en) 2008-10-16 2011-04-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with apparatus for providing anvil position feedback
US9889230B2 (en) 2008-10-17 2018-02-13 Covidien Lp Hemostatic implant
US20100100123A1 (en) 2008-10-17 2010-04-22 Confluent Surgical, Inc. Hemostatic implant
US8063619B2 (en) 2008-10-20 2011-11-22 Dell Products L.P. System and method for powering an information handling system in multiple power states
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US9370341B2 (en) 2008-10-23 2016-06-21 Covidien Lp Surgical retrieval apparatus
CN101721236A (en) 2008-10-29 2010-06-09 苏州天臣国际医疗科技有限公司 Surgical cutting and binding apparatus
US8561617B2 (en) 2008-10-30 2013-10-22 Ethicon, Inc. Implant systems and methods for treating obstructive sleep apnea
KR101075363B1 (en) 2008-10-31 2011-10-19 정창욱 Surgical Robot System Having Tool for Minimally Invasive Surgery
WO2010049540A1 (en) 2008-10-31 2010-05-06 Dsm Ip Assets B.V. Improved composition for making a dairy product
US8231042B2 (en) 2008-11-06 2012-07-31 Tyco Healthcare Group Lp Surgical stapler
EP2346541A2 (en) 2008-11-07 2011-07-27 Sofradim Production Medical implant including a 3d mesh of oxidized cellulose and a collagen sponge
US7934631B2 (en) 2008-11-10 2011-05-03 Barosense, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US20110009694A1 (en) 2009-07-10 2011-01-13 Schultz Eric E Hand-held minimally dimensioned diagnostic device having integrated distal end visualization
US9782217B2 (en) 2008-11-13 2017-10-10 Covidien Ag Radio frequency generator and method for a cordless medical cauterization and cutting device
WO2010057018A2 (en) 2008-11-14 2010-05-20 Cole Isolation Technique, Llc Follicular dissection device and method
US8657821B2 (en) 2008-11-14 2014-02-25 Revascular Therapeutics Inc. Method and system for reversibly controlled drilling of luminal occlusions
TWI414713B (en) 2008-11-24 2013-11-11 Everlight Electronics Co Ltd Led lamp device manufacturing method
US7886951B2 (en) 2008-11-24 2011-02-15 Tyco Healthcare Group Lp Pouch used to deliver medication when ruptured
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
CN101756727A (en) 2008-11-27 2010-06-30 苏州天臣国际医疗科技有限公司 Nail barn of linear type cutting closer
US8539866B2 (en) 2008-12-01 2013-09-24 Castrax, L.L.C. Method and apparatus to remove cast from an individual
USD600712S1 (en) 2008-12-02 2009-09-22 Microsoft Corporation Icon for a display screen
GB0822110D0 (en) 2008-12-03 2009-01-07 Angiomed Ag Catheter sheath for implant delivery
GB2466180B (en) 2008-12-05 2013-07-10 Surgical Innovations Ltd Surgical instrument, handle for a surgical instrument and surgical instrument system
US8348837B2 (en) 2008-12-09 2013-01-08 Covidien Lp Anoscope
US8034363B2 (en) 2008-12-11 2011-10-11 Advanced Technologies And Regenerative Medicine, Llc. Sustained release systems of ascorbic acid phosphate
US20100331856A1 (en) 2008-12-12 2010-12-30 Hansen Medical Inc. Multiple flexible and steerable elongate instruments for minimally invasive operations
USD607010S1 (en) 2008-12-12 2009-12-29 Microsoft Corporation Icon for a portion of a display screen
US8060250B2 (en) 2008-12-15 2011-11-15 GM Global Technology Operations LLC Joint-space impedance control for tendon-driven manipulators
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
US8770460B2 (en) 2008-12-23 2014-07-08 George E. Belzer Shield for surgical stapler and method of use
US8245594B2 (en) 2008-12-23 2012-08-21 Intuitive Surgical Operations, Inc. Roll joint and method for a surgical apparatus
US20100168741A1 (en) 2008-12-29 2010-07-01 Hideo Sanai Surgical operation apparatus
US8374723B2 (en) 2008-12-31 2013-02-12 Intuitive Surgical Operations, Inc. Obtaining force information in a minimally invasive surgical procedure
US8632539B2 (en) 2009-01-14 2014-01-21 Covidien Lp Vessel sealer and divider
US8281974B2 (en) 2009-01-14 2012-10-09 Tyco Healthcare, Group LP Surgical stapler with suture locator
US20130268062A1 (en) 2012-04-05 2013-10-10 Zeus Industrial Products, Inc. Composite prosthetic devices
WO2010083110A1 (en) 2009-01-16 2010-07-22 Rhaphis Medical, Inc. Surgical suturing latch
US20100180711A1 (en) 2009-01-19 2010-07-22 Comau, Inc. Robotic end effector system and method
US20120330329A1 (en) 2011-06-21 2012-12-27 Harris Jason L Methods of forming a laparoscopic greater curvature plication using a surgical stapler
US20100191262A1 (en) 2009-01-26 2010-07-29 Harris Jason L Surgical stapler for applying a large staple through small delivery port and a method of using the stapler to secure a tissue fold
US9713468B2 (en) 2009-01-26 2017-07-25 Ethicon Endo-Surgery, Inc. Surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold
US8833219B2 (en) 2009-01-26 2014-09-16 Illinois Tool Works Inc. Wire saw
US20110278343A1 (en) 2009-01-29 2011-11-17 Cardica, Inc. Clamping of Hybrid Surgical Instrument
US8228048B2 (en) 2009-01-30 2012-07-24 Hewlett-Packard Development Company, L.P. Method and system of regulating voltages
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US8523900B2 (en) 2009-02-03 2013-09-03 Terumo Kabushiki Kaisha Medical manipulator
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US20100193566A1 (en) 2009-02-05 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US20110024478A1 (en) 2009-02-06 2011-02-03 Shelton Iv Frederick E Driven Surgical Stapler Improvements
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US20120007442A1 (en) 2009-02-06 2012-01-12 Mark Rhodes Rotary data and power transfer system
US8245899B2 (en) 2009-02-06 2012-08-21 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
USD622286S1 (en) 2009-02-11 2010-08-24 Ricoh Company, Ltd. Portion of liquid crystal panel with icon image
CN102316823B (en) 2009-02-11 2016-06-08 新加坡南洋理工大学 Multi-layered surgical prosthesis
WO2010093955A1 (en) 2009-02-12 2010-08-19 Osteotech,Inc. Segmented delivery system
US8708211B2 (en) 2009-02-12 2014-04-29 Covidien Lp Powered surgical instrument with secondary circuit board
US20100204717A1 (en) 2009-02-12 2010-08-12 Cardica, Inc. Surgical Device for Multiple Clip Application
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US8349987B2 (en) 2009-02-19 2013-01-08 Covidien Lp Adhesive formulations
US20100298636A1 (en) 2009-02-19 2010-11-25 Salvatore Castro Flexible rigidizing instruments
JP2010193994A (en) 2009-02-24 2010-09-09 Fujifilm Corp Clip package, multiple clip system, and mechanism for preventing mismatch of the multiple clip system
US8393516B2 (en) 2009-02-26 2013-03-12 Covidien Lp Surgical stapling apparatus with curved cartridge and anvil assemblies
WO2010098871A2 (en) 2009-02-26 2010-09-02 Amir Belson Improved apparatus and methods for hybrid endoscopic and laparoscopic surgery
DE102009012175A1 (en) 2009-02-27 2010-09-02 Andreas Stihl Ag & Co. Kg Electrical appliance with a battery pack
US9030169B2 (en) 2009-03-03 2015-05-12 Robert Bosch Gmbh Battery system and method for system state of charge determination
JP5431749B2 (en) 2009-03-04 2014-03-05 テルモ株式会社 Medical manipulator
US20100228250A1 (en) 2009-03-05 2010-09-09 Intuitive Surgical Operations, Inc. Cut and seal instrument
US8858547B2 (en) 2009-03-05 2014-10-14 Intuitive Surgical Operations, Inc. Cut and seal instrument
US8397973B1 (en) 2009-03-09 2013-03-19 Cardica, Inc. Wide handle for true multi-fire surgical stapler
US7918376B1 (en) 2009-03-09 2011-04-05 Cardica, Inc. Articulated surgical instrument
US8423182B2 (en) 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8356740B1 (en) 2009-03-09 2013-01-22 Cardica, Inc. Controlling compression applied to tissue by surgical tool
US8317071B1 (en) 2009-03-09 2012-11-27 Cardica, Inc. Endocutter with auto-feed buttress
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
US8007370B2 (en) 2009-03-10 2011-08-30 Cobra Golf, Inc. Metal injection molded putter
JP5177683B2 (en) 2009-03-12 2013-04-03 株式会社リコー Image reading apparatus and copying machine
JP4875117B2 (en) 2009-03-13 2012-02-15 株式会社東芝 Image processing device
DE102009013034B4 (en) 2009-03-16 2015-11-19 Olympus Winter & Ibe Gmbh Autoclavable charging device for an energy store of a surgical instrument and method for charging a rechargeable energy store in an autoclaved surgical instrument or for an autoclaved surgical instrument
US8366719B2 (en) 2009-03-18 2013-02-05 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
ES2762203T3 (en) 2009-03-27 2020-05-22 New View Surgical Inc Cannula with lighting and integrated camera
JP5292155B2 (en) 2009-03-27 2013-09-18 Tdkラムダ株式会社 Power supply control device, power supply device, and power supply control method
US20100249497A1 (en) 2009-03-30 2010-09-30 Peine William J Surgical instrument
US8092443B2 (en) 2009-03-30 2012-01-10 Medtronic, Inc. Element for implantation with medical device
US8110208B1 (en) 2009-03-30 2012-02-07 Biolife, L.L.C. Hemostatic compositions for arresting blood flow from an open wound or surgical site
US7988027B2 (en) 2009-03-31 2011-08-02 Tyco Healthcare Group Lp Crimp and release of suture holding buttress material
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
JP2010239817A (en) 2009-03-31 2010-10-21 Brother Ind Ltd Information display device
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US8226553B2 (en) 2009-03-31 2012-07-24 Ethicon Endo-Surgery, Inc. Access device with insert
US8945163B2 (en) 2009-04-01 2015-02-03 Ethicon Endo-Surgery, Inc. Methods and devices for cutting and fastening tissue
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
KR101132659B1 (en) 2009-04-02 2012-04-02 한국과학기술원 A Laparoscopic Surgical Instrument with 4 Degree of Freedom
US9050176B2 (en) 2009-04-03 2015-06-09 Biomerix Corporation At least partially resorbable reticulated elastomeric matrix elements and methods of making same
WO2010114633A1 (en) 2009-04-03 2010-10-07 Biomerix Corporation At least partially resorbable reticulated elastomeric matrix elements and methods of making same
FR2943906B1 (en) 2009-04-03 2013-03-22 Univ Pierre Et Marie Curie Paris 6 SURGICAL INSTRUMENT.
WO2010114635A2 (en) 2009-04-03 2010-10-07 Romans Matthew L Absorbable surgical staple
BRPI1013655A8 (en) 2009-04-03 2018-10-09 Univ Leland Stanford Junior device and surgical method
US8419635B2 (en) 2009-04-08 2013-04-16 Ethicon Endo-Surgery, Inc. Surgical access device having removable and replaceable components
US8257251B2 (en) 2009-04-08 2012-09-04 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8444549B2 (en) 2009-04-16 2013-05-21 Covidien Lp Self-steering endoscopic device
US8377052B2 (en) 2009-04-17 2013-02-19 Domain Surgical, Inc. Surgical tool with inductively heated regions
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US20100274160A1 (en) 2009-04-22 2010-10-28 Chie Yachi Switching structure and surgical equipment
US8922163B2 (en) 2009-04-24 2014-12-30 Murray MacDonald Automated battery and data delivery system
AU2010241740B9 (en) 2009-04-27 2015-10-01 Intersect Ent, Inc. Devices and methods for treating pain associated with tonsillectomies
WO2010124785A1 (en) 2009-04-29 2010-11-04 Erbe Elektromedizin Gmbh Hf surgery generator and method for operating an hf surgery generator
WO2010126129A1 (en) 2009-04-30 2010-11-04 テルモ株式会社 Medical manipulator
US9192430B2 (en) 2009-05-01 2015-11-24 Covidien Lp Electrosurgical instrument with time limit circuit
US8631992B1 (en) 2009-05-03 2014-01-21 Cardica, Inc. Feeder belt with padded staples for true multi-fire surgical stapler
US9038881B1 (en) 2009-05-05 2015-05-26 Cardica, Inc. Feeder belt actuation mechanism for true multi-fire surgical stapler
US8365975B1 (en) 2009-05-05 2013-02-05 Cardica, Inc. Cam-controlled knife for surgical instrument
US8167898B1 (en) 2009-05-05 2012-05-01 Cardica, Inc. Flexible cutter for surgical stapler
US8328064B2 (en) 2009-05-06 2012-12-11 Covidien Lp Pin locking mechanism for a surgical instrument
US8523881B2 (en) 2010-07-26 2013-09-03 Valtech Cardio, Ltd. Multiple anchor delivery tool
US8127976B2 (en) 2009-05-08 2012-03-06 Tyco Healthcare Group Lp Stapler cartridge and channel interlock
US8324585B2 (en) 2009-05-11 2012-12-04 General Electric Company Digital image detector
US8728099B2 (en) 2009-05-12 2014-05-20 Ethicon, Inc. Surgical fasteners, applicator instruments, and methods for deploying surgical fasteners
US20100292540A1 (en) 2009-05-12 2010-11-18 Hess Christopher J Surgical retractor and method
JP5428515B2 (en) 2009-05-15 2014-02-26 マックス株式会社 Electric stapler and motor driving method of electric stapler
US9023069B2 (en) 2009-05-18 2015-05-05 Covidien Lp Attachable clamp for use with surgical instruments
US8308043B2 (en) 2009-05-19 2012-11-13 Covidien Lp Recognition of interchangeable component of a device
WO2010134913A1 (en) 2009-05-20 2010-11-25 California Institute Of Technology Endoscope and system and method of operation thereof
WO2010138538A1 (en) 2009-05-26 2010-12-02 Zimmer, Inc. Handheld tool for driving a bone pin into a fractured bone
US9004339B1 (en) 2009-05-26 2015-04-14 Cardica, Inc. Cartridgizable feeder belt for surgical stapler
DE202009012796U1 (en) 2009-05-29 2009-11-26 Aesculap Ag Surgical instrument
US8070034B1 (en) 2009-05-29 2011-12-06 Cardica, Inc. Surgical stapler with angled staple bays
JP5827219B2 (en) 2009-05-29 2015-12-02 ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University Robot system for flexible endoscopy
US8418909B2 (en) 2009-06-02 2013-04-16 Covidien Lp Surgical instrument and method for performing a resection
US9383881B2 (en) 2009-06-03 2016-07-05 Synaptics Incorporated Input device and method with pressure-sensitive layer
US8056789B1 (en) 2009-06-03 2011-11-15 Cardica, Inc. Staple and feeder belt configurations for surgical stapler
US8132706B2 (en) 2009-06-05 2012-03-13 Tyco Healthcare Group Lp Surgical stapling apparatus having articulation mechanism
US20100310623A1 (en) 2009-06-05 2010-12-09 Laurencin Cato T Synergetic functionalized spiral-in-tubular bone scaffolds
US9086875B2 (en) 2009-06-05 2015-07-21 Qualcomm Incorporated Controlling power consumption of a mobile device based on gesture recognition
US8821514B2 (en) 2009-06-08 2014-09-02 Covidien Lp Powered tack applier
CH701320B1 (en) 2009-06-16 2013-10-15 Frii S A A device for resection treatments / endoscopic tissue removal.
US8827134B2 (en) 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US8087562B1 (en) 2009-06-22 2012-01-03 Cardica, Inc. Anvil for surgical instrument
US8701960B1 (en) 2009-06-22 2014-04-22 Cardica, Inc. Surgical stapler with reduced clamp gap for insertion
USD604325S1 (en) 2009-06-26 2009-11-17 Microsoft Corporation Animated image for a portion of a display screen
US9463260B2 (en) 2009-06-29 2016-10-11 Covidien Lp Self-sealing compositions
US8784404B2 (en) 2009-06-29 2014-07-22 Carefusion 2200, Inc. Flexible wrist-type element and methods of manufacture and use thereof
KR101180665B1 (en) 2009-07-03 2012-09-07 주식회사 이턴 Hybrid surgical robot system and control method thereof
EP2275902A3 (en) 2009-07-03 2014-07-09 Nikon Corporation Electronic device and method controlling electronic power supply
CN101940844A (en) 2009-07-03 2011-01-12 林翠琼 Analog dog tail oscillator
EP2451367B1 (en) 2009-07-08 2020-01-22 Edge Systems Corporation Devices for treating the skin using time-release substances
US8146790B2 (en) 2009-07-11 2012-04-03 Tyco Healthcare Group Lp Surgical instrument with safety mechanism
US8276802B2 (en) 2009-07-11 2012-10-02 Tyco Healthcare Group Lp Surgical instrument with double cartridge and anvil assemblies
IN2012DN00339A (en) 2009-07-15 2015-08-21 Ethicon Endo Surgery Inc
US8343150B2 (en) 2009-07-15 2013-01-01 Covidien Lp Mechanical cycling of seal pressure coupled with energy for tissue fusion
US20110011916A1 (en) 2009-07-16 2011-01-20 New York University Anastomosis device
USD606992S1 (en) 2009-07-21 2009-12-29 Micro-Star Int'l Co., Ltd. Laptop computer
US8328062B2 (en) 2009-07-21 2012-12-11 Covidien Lp Surgical instrument with curvilinear tissue-contacting surfaces
US8143520B2 (en) 2009-07-22 2012-03-27 Paul Cutler Universal wall plate thermometer
US8205779B2 (en) 2009-07-23 2012-06-26 Tyco Healthcare Group Lp Surgical stapler with tactile feedback system
US20110021871A1 (en) 2009-07-27 2011-01-27 Gerry Berkelaar Laparoscopic surgical instrument
CA2755763A1 (en) 2009-07-29 2011-02-03 Hitachi Koki Co., Ltd. Impact tool
US20110025311A1 (en) 2009-07-29 2011-02-03 Logitech Europe S.A. Magnetic rotary system for input devices
JP5440766B2 (en) 2009-07-29 2014-03-12 日立工機株式会社 Impact tools
FR2948594B1 (en) 2009-07-31 2012-07-20 Dexterite Surgical ERGONOMIC AND SEMI-AUTOMATIC MANIPULATOR AND INSTRUMENT APPLICATIONS FOR MINI-INVASIVE SURGERY
EP2281506B1 (en) 2009-08-03 2013-01-16 Fico Mirrors, S.A. Method and system for determining an individual's state of attention
US8968358B2 (en) 2009-08-05 2015-03-03 Covidien Lp Blunt tissue dissection surgical instrument jaw designs
US8172004B2 (en) 2009-08-05 2012-05-08 Techtronic Power Tools Technology Limited Automatic transmission for a power tool
US10383629B2 (en) 2009-08-10 2019-08-20 Covidien Lp System and method for preventing reprocessing of a powered surgical instrument
US8276801B2 (en) 2011-02-01 2012-10-02 Tyco Healthcare Group Lp Surgical stapling apparatus
US8955732B2 (en) 2009-08-11 2015-02-17 Covidien Lp Surgical stapling apparatus
DE202009011312U1 (en) 2009-08-11 2010-12-23 C. & E. Fein Gmbh Hand tool with an oscillation drive
US8360299B2 (en) 2009-08-11 2013-01-29 Covidien Lp Surgical stapling apparatus
US20110036891A1 (en) 2009-08-11 2011-02-17 Tyco Healthcare Group Lp Surgical stapler with visual positional indicator
CA2770743C (en) 2009-08-14 2018-05-01 Ethicon Endo-Surgery, Inc. Ultrasonic surgical apparatus and silicon waveguide and methods for use thereof
US8459524B2 (en) 2009-08-14 2013-06-11 Covidien Lp Tissue fastening system for a medical device
US8342378B2 (en) 2009-08-17 2013-01-01 Covidien Lp One handed stapler
US8733612B2 (en) 2009-08-17 2014-05-27 Covidien Lp Safety method for powered surgical instruments
US20110046667A1 (en) 2009-08-17 2011-02-24 Patrick John Culligan Apparatus for housing a plurality of needles and method of use therefor
US9271718B2 (en) 2009-08-18 2016-03-01 Karl Storz Gmbh & Co. Kg Suturing and ligating method
US9265500B2 (en) 2009-08-19 2016-02-23 Covidien Lp Surgical staple
US8387848B2 (en) 2009-08-20 2013-03-05 Covidien Lp Surgical staple
US8162965B2 (en) 2009-09-09 2012-04-24 Tyco Healthcare Group Lp Low profile cutting assembly with a return spring
JP2011079510A (en) 2009-09-10 2011-04-21 Makita Corp Electric vehicle
US8258745B2 (en) 2009-09-10 2012-09-04 Syntheon, Llc Surgical sterilizer with integrated battery charging device
TWI394362B (en) 2009-09-11 2013-04-21 Anpec Electronics Corp Method of driving dc motor and related circuit for avoiding reverse current
US8974932B2 (en) 2009-09-14 2015-03-10 Warsaw Orthopedic, Inc. Battery powered surgical tool with guide wire
US9168144B2 (en) 2009-09-14 2015-10-27 Evgeny Rivin Prosthesis for replacement of cartilage
US20110066156A1 (en) 2009-09-14 2011-03-17 Warsaw Orthopedic, Inc. Surgical Tool
DE102009041329A1 (en) 2009-09-15 2011-03-24 Celon Ag Medical Instruments Combined Ultrasonic and HF Surgical System
DE102009042411A1 (en) 2009-09-21 2011-03-31 Richard Wolf Gmbh Medical instrument
CN102549473B (en) 2009-09-29 2015-04-22 奥林巴斯株式会社 Endoscope system
WO2011041488A2 (en) 2009-09-30 2011-04-07 Mayo Foundation For Medical Education And Research Tissue capture and occlusion systems and methods
JP2011072574A (en) 2009-09-30 2011-04-14 Terumo Corp Medical manipulator
WO2011041571A2 (en) 2009-10-01 2011-04-07 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US8470355B2 (en) 2009-10-01 2013-06-25 Covidien Lp Mesh implant
US8970507B2 (en) 2009-10-02 2015-03-03 Blackberry Limited Method of waking up and a portable electronic device configured to perform the same
US8236011B2 (en) 2009-10-06 2012-08-07 Ethicon Endo-Surgery, Inc. Method for deploying fasteners for use in a gastric volume reduction procedure
US8430892B2 (en) 2009-10-06 2013-04-30 Covidien Lp Surgical clip applier having a wireless clip counter
US8257634B2 (en) 2009-10-06 2012-09-04 Tyco Healthcare Group Lp Actuation sled having a curved guide member and method
US10194904B2 (en) 2009-10-08 2019-02-05 Covidien Lp Surgical staple and method of use
US9474540B2 (en) 2009-10-08 2016-10-25 Ethicon-Endo-Surgery, Inc. Laparoscopic device with compound angulation
US8496154B2 (en) * 2009-10-08 2013-07-30 Covidien Lp Pair of double staple pusher in triple row stapler
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9060776B2 (en) 2009-10-09 2015-06-23 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
EP2679175A1 (en) 2009-10-09 2014-01-01 Ethicon Endo-Surgery, Inc. Surgical instrument
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8152041B2 (en) 2009-10-14 2012-04-10 Tyco Healthcare Group Lp Varying tissue compression aided by elastic members
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US20150231409A1 (en) 2009-10-15 2015-08-20 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US9693772B2 (en) 2009-10-15 2017-07-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US9610080B2 (en) 2009-10-15 2017-04-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US8523042B2 (en) 2009-10-21 2013-09-03 The General Hospital Corporation Apparatus and method for preserving a tissue margin
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
US20110095064A1 (en) 2009-10-22 2011-04-28 Taylor Walter J Fuel level monitoring system for combustion-powered tools
EP2394593B1 (en) 2009-10-28 2014-02-12 Olympus Medical Systems Corp. High-frequency surgery device
US8430292B2 (en) 2009-10-28 2013-04-30 Covidien Lp Surgical fastening apparatus
US8413872B2 (en) 2009-10-28 2013-04-09 Covidien Lp Surgical fastening apparatus
US8322590B2 (en) 2009-10-28 2012-12-04 Covidien Lp Surgical stapling instrument
JPWO2011052391A1 (en) 2009-10-28 2013-03-21 オリンパスメディカルシステムズ株式会社 Medical device
US8657175B2 (en) 2009-10-29 2014-02-25 Medigus Ltd. Medical device comprising alignment systems for bringing two portions into alignment
KR20120101021A (en) 2009-10-29 2012-09-12 프로시다이안 인코포레이티드 Bone graft material
US8357161B2 (en) 2009-10-30 2013-01-22 Covidien Lp Coaxial drive
US8225979B2 (en) 2009-10-30 2012-07-24 Tyco Healthcare Group Lp Locking shipping wedge
US8398633B2 (en) 2009-10-30 2013-03-19 Covidien Lp Jaw roll joint
US20120220990A1 (en) 2009-11-04 2012-08-30 Koninklijke Philips Electronics N.V. Disposable tip with sheath
US8418907B2 (en) 2009-11-05 2013-04-16 Covidien Lp Surgical stapler having cartridge with adjustable cam mechanism
US20110112530A1 (en) 2009-11-06 2011-05-12 Keller Craig A Battery Powered Electrosurgery
US20110112517A1 (en) 2009-11-06 2011-05-12 Peine Willliam J Surgical instrument
US8162138B2 (en) 2009-11-09 2012-04-24 Containmed, Inc. Universal surgical fastener sterilization caddy
US8186558B2 (en) 2009-11-10 2012-05-29 Tyco Healthcare Group Lp Locking mechanism for use with loading units
US9259275B2 (en) 2009-11-13 2016-02-16 Intuitive Surgical Operations, Inc. Wrist articulation by linked tension members
EP3381397B1 (en) 2009-11-13 2020-01-08 Intuitive Surgical Operations Inc. Motor interface for parallel drive shafts within an independently rotating member
BR112012011424B1 (en) 2009-11-13 2020-10-20 Intuitive Surgical Operations, Inc surgical instrument
EP4059460A1 (en) 2009-11-13 2022-09-21 Intuitive Surgical Operations, Inc. Surgical tool with a compact wrist
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8235272B2 (en) 2009-11-20 2012-08-07 Tyco Healthcare Group Lp Surgical stapling device with captive anvil
JP5211022B2 (en) 2009-11-30 2013-06-12 株式会社日立製作所 Lithium ion secondary battery
JP5073733B2 (en) 2009-11-30 2012-11-14 シャープ株式会社 Storage battery forced discharge mechanism and safety switch device
US8167622B2 (en) 2009-12-02 2012-05-01 Mig Technology Inc. Power plug with a freely rotatable delivery point
DE102009060987A1 (en) 2009-12-07 2011-06-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Surgical manipulation instrument
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
FR2953752B1 (en) 2009-12-11 2012-01-20 Prospection & Inventions INTERNAL COMBUSTION ENGINE FIXING TOOL WITH SINGLE CHAMBER OPENING AND CLOSING
CN101716090A (en) 2009-12-15 2010-06-02 李东瑞 Nut cap of tubular anastomat
DE102009059196A1 (en) 2009-12-17 2011-06-22 Aesculap AG, 78532 Surgical system for connecting body tissue
GB2476461A (en) 2009-12-22 2011-06-29 Neosurgical Ltd Laparoscopic surgical device with jaws biased closed
DE102009060495A1 (en) 2009-12-23 2011-06-30 Karl Storz GmbH & Co. KG, 78532 Holding device for medical instruments
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8714430B2 (en) 2009-12-31 2014-05-06 Covidien Lp Indicator for surgical stapler
US8561871B2 (en) 2009-12-31 2013-10-22 Covidien Lp Indicators for surgical staplers
US8261958B1 (en) 2010-01-06 2012-09-11 Cardica, Inc. Stapler cartridge with staples frangibly affixed thereto
GB2490447A (en) 2010-01-07 2012-10-31 Black & Decker Inc Power screwdriver having rotary input control
US9475180B2 (en) 2010-01-07 2016-10-25 Black & Decker Inc. Power tool having rotary input control
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8313509B2 (en) 2010-01-19 2012-11-20 Covidien Lp Suture and retainer assembly and SULU
EP2525740A4 (en) 2010-01-21 2016-01-20 Orthalign Inc Systems and methods for joint replacement
US8469254B2 (en) 2010-01-22 2013-06-25 Covidien Lp Surgical instrument having a drive assembly
EP2526883A4 (en) 2010-01-22 2017-07-12 Olympus Corporation Treatment tool, treatment device, and treatment method
US10911515B2 (en) 2012-05-24 2021-02-02 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
ES2662543T3 (en) 2010-01-26 2018-04-06 Artack Medical (2013) Ltd. Articulated medical instrument
US8322901B2 (en) 2010-01-28 2012-12-04 Michelotti William M Illuminated vehicle wheel with bearing seal slip ring assembly
US8328061B2 (en) 2010-02-02 2012-12-11 Covidien Lp Surgical instrument for joining tissue
US9510925B2 (en) 2010-02-02 2016-12-06 Covidien Lp Surgical meshes
US8911426B2 (en) 2010-02-08 2014-12-16 On Demand Therapeutics, Inc. Low-permeability, laser-activated drug delivery device
JP5432761B2 (en) 2010-02-12 2014-03-05 株式会社マキタ Electric tool powered by multiple battery packs
JP5461221B2 (en) 2010-02-12 2014-04-02 株式会社マキタ Electric tool powered by multiple battery packs
US20110199225A1 (en) 2010-02-15 2011-08-18 Honeywell International Inc. Use of token switch to indicate unauthorized manipulation of a protected device
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
US8672209B2 (en) 2010-02-25 2014-03-18 Design Standards Corporation Laproscopic stapler
CN101779977B (en) 2010-02-25 2011-12-14 上海创亿医疗器械技术有限公司 Nail bin for surgical linear cut stapler
US8403832B2 (en) 2010-02-26 2013-03-26 Covidien Lp Drive mechanism for articulation of a surgical instrument
EP2538841A2 (en) 2010-02-26 2013-01-02 Myskin, Inc. Analytic methods of tissue evaluation
US9610412B2 (en) 2010-03-02 2017-04-04 Covidien Lp Internally pressurized medical devices
EP2542181A1 (en) 2010-03-03 2013-01-09 Allurion Technologies, Inc. Gastric volume filling construct
US20110218400A1 (en) 2010-03-05 2011-09-08 Tyco Healthcare Group Lp Surgical instrument with integrated wireless camera
US20110218550A1 (en) 2010-03-08 2011-09-08 Tyco Healthcare Group Lp System and method for determining and adjusting positioning and orientation of a surgical device
DE102010002702A1 (en) 2010-03-09 2011-09-15 Robert Bosch Gmbh Electrical appliance, in particular electric hand tool
US8864761B2 (en) 2010-03-10 2014-10-21 Covidien Lp System and method for determining proximity relative to a critical structure
US8623004B2 (en) 2010-03-10 2014-01-07 Covidien Lp Method for determining proximity relative to a critical structure
AU2011200961B2 (en) 2010-03-12 2014-05-29 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
EP2548529B1 (en) 2010-03-15 2018-10-24 Karl Storz SE & Co. KG Medical manipulator
US8575880B2 (en) 2010-03-17 2013-11-05 Alan Lyndon Grantz Direct current motor with independently driven and switchable stators
US8288984B2 (en) 2010-03-17 2012-10-16 Tai-Her Yang DC brushless motor drive circuit with speed variable-voltage
US8696665B2 (en) 2010-03-26 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with reduced firing force
DE102010003339B4 (en) 2010-03-26 2012-02-02 Leica Microsystems (Schweiz) Ag Sterile control unit with touch screen
US20110172495A1 (en) 2010-03-26 2011-07-14 Armstrong David N Surgical retractor
DE102010013150A1 (en) 2010-03-27 2011-09-29 Volkswagen Ag Device for thermal insulation of e.g. lead acid battery utilized in engine component of hybrid car, has battery arranged at distance from inner surfaces of base part, side panel and upper part of housing
WO2011122516A1 (en) 2010-03-30 2011-10-06 テルモ株式会社 Medical manipulator system
US20110241597A1 (en) 2010-03-30 2011-10-06 Lin Engineering H-bridge drive circuit for step motor control
US8074859B2 (en) 2010-03-31 2011-12-13 Tyco Healthcare Group Lp Surgical instrument
US8894654B2 (en) 2010-03-31 2014-11-25 Smart Medical Devices, Inc. Depth controllable and measurable medical driver devices and methods of use
CN201719298U (en) 2010-04-01 2011-01-26 江苏瑞安贝医疗器械有限公司 Free handle anti-dropping mechanism for straight line cutting anastomat
USD667018S1 (en) 2010-04-02 2012-09-11 Kewaunee Scientific Corporation Display screen of a biological safety cabinet with graphical user interface
US20120265220A1 (en) 2010-04-06 2012-10-18 Pavel Menn Articulating Steerable Clip Applier for Laparoscopic Procedures
US9722334B2 (en) 2010-04-07 2017-08-01 Black & Decker Inc. Power tool with light unit
US8348127B2 (en) 2010-04-07 2013-01-08 Covidien Lp Surgical fastener applying apparatus
US8662370B2 (en) 2010-04-08 2014-03-04 Hidehisa Thomas Takei Introducer system and assembly for surgical staplers
US8961504B2 (en) 2010-04-09 2015-02-24 Covidien Lp Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8597295B2 (en) 2010-04-12 2013-12-03 Covidien Lp Surgical instrument with non-contact electrical coupling
EP2377477B1 (en) 2010-04-14 2012-05-30 Tuebingen Scientific Medical GmbH Surgical instrument with elastically moveable instrument head
US8734831B2 (en) 2010-04-16 2014-05-27 Snu R&Db Foundation Method for manufacturing a porous ceramic scaffold having an organic/inorganic hybrid coating layer containing a bioactive factor
IT1399603B1 (en) 2010-04-26 2013-04-26 Scuola Superiore Di Studi Universitari E Di Perfez ROBOTIC SYSTEM FOR MINIMUM INVASIVE SURGERY INTERVENTIONS
US9451938B2 (en) 2010-04-27 2016-09-27 DePuy Synthes Products, Inc. Insertion instrument for anchor assembly
WO2011139916A2 (en) 2010-04-29 2011-11-10 Angiotech Pharmaceuticals, Inc. High-density self-retaining sutures, manufacturing equipment and methods
US20110271186A1 (en) 2010-04-30 2011-11-03 John Colin Owens Visual audio mixing system and method thereof
US20110276083A1 (en) 2010-05-07 2011-11-10 Ethicon Endo-Surgery, Inc. Bendable shaft for handle positioning
US9226760B2 (en) 2010-05-07 2016-01-05 Ethicon Endo-Surgery, Inc. Laparoscopic devices with flexible actuation mechanisms
US20110275901A1 (en) 2010-05-07 2011-11-10 Ethicon Endo-Surgery, Inc. Laparoscopic devices with articulating end effectors
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
US8464925B2 (en) 2010-05-11 2013-06-18 Ethicon Endo-Surgery, Inc. Methods and apparatus for delivering tissue treatment compositions to stapled tissue
US8646674B2 (en) 2010-05-11 2014-02-11 Ethicon Endo-Surgery, Inc. Methods and apparatus for delivering tissue treatment compositions to stapled tissue
CN101828940A (en) 2010-05-12 2010-09-15 苏州天臣国际医疗科技有限公司 Flexural linear closed cutter
US8603077B2 (en) 2010-05-14 2013-12-10 Intuitive Surgical Operations, Inc. Force transmission for robotic surgical instrument
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
US8958860B2 (en) 2010-05-17 2015-02-17 Covidien Lp Optical sensors for intraoperative procedures
JP5085684B2 (en) 2010-05-19 2012-11-28 オリンパスメディカルシステムズ株式会社 Treatment instrument system and manipulator system
DE102010029100A1 (en) 2010-05-19 2011-11-24 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement for operating at least one discharge lamp and at least one LED
JP5534327B2 (en) 2010-05-19 2014-06-25 日立工機株式会社 Electric tool
US20110285507A1 (en) 2010-05-21 2011-11-24 Nelson Erik T Tamper Detection RFID Tape
US20110293690A1 (en) 2010-05-27 2011-12-01 Tyco Healthcare Group Lp Biodegradable Polymer Encapsulated Microsphere Particulate Film and Method of Making Thereof
US20110292258A1 (en) 2010-05-28 2011-12-01 C2Cure, Inc. Two sensor imaging systems
US9091588B2 (en) 2010-05-28 2015-07-28 Prognost Systems Gmbh System and method of mechanical fault detection based on signature detection
USD666209S1 (en) 2010-06-05 2012-08-28 Apple Inc. Display screen or portion thereof with graphical user interface
KR101095099B1 (en) 2010-06-07 2011-12-16 삼성전기주식회사 Flat type vibration motor
US9144455B2 (en) 2010-06-07 2015-09-29 Just Right Surgical, Llc Low power tissue sealing device and method
CN101856250B (en) 2010-06-07 2011-08-31 常州威克医疗器械有限公司 Disposable automatic safety circular anastomat
US8795276B2 (en) 2010-06-09 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a plurality of electrodes
FR2961087B1 (en) 2010-06-09 2013-06-28 Allflex Europ TOOL FOR SAMPLING AN ANIMAL TISSUE SAMPLE.
WO2011156776A2 (en) 2010-06-10 2011-12-15 The Regents Of The University Of California Smart electric vehicle (ev) charging and grid integration apparatus and methods
US8825164B2 (en) 2010-06-11 2014-09-02 Enteromedics Inc. Neural modulation devices and methods
US20120130217A1 (en) 2010-11-23 2012-05-24 Kauphusman James V Medical devices having electrodes mounted thereon and methods of manufacturing therefor
US20110313894A1 (en) 2010-06-18 2011-12-22 Dye Alan W System and Method for Surgical Pack Manufacture, Monitoring, and Tracking
US8596515B2 (en) 2010-06-18 2013-12-03 Covidien Lp Staple position sensor system
US8302323B2 (en) 2010-06-21 2012-11-06 Confluent Surgical, Inc. Hemostatic patch
EP2397309A1 (en) 2010-06-21 2011-12-21 Envision Energy (Denmark) ApS A Wind Turbine and a Shaft for a Wind Turbine
US9028495B2 (en) 2010-06-23 2015-05-12 Covidien Lp Surgical instrument with a separable coaxial joint
WO2011162753A1 (en) 2010-06-23 2011-12-29 Mako Sugical Corp. Inertially tracked objects
US8366559B2 (en) 2010-06-23 2013-02-05 Lenkbar, Llc Cannulated flexible drive shaft
US20110315413A1 (en) 2010-06-25 2011-12-29 Mako Surgical Corp. Kit-Of Parts for Multi-Functional Tool, Drive Unit, and Operating Members
USD650789S1 (en) 2010-06-25 2011-12-20 Microsoft Corporation Display screen with in-process indicator
KR101143469B1 (en) 2010-07-02 2012-05-08 에스케이하이닉스 주식회사 Output enable signal generation circuit of semiconductor memory
US20120004636A1 (en) 2010-07-02 2012-01-05 Denny Lo Hemostatic fibrous material
US20120008880A1 (en) 2010-07-06 2012-01-12 Landy Toth Isolation system for a mobile computing device
EP2405439B1 (en) 2010-07-07 2013-01-23 Crocus Technology S.A. Magnetic device with optimized heat confinement
US9149324B2 (en) 2010-07-08 2015-10-06 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
WO2012006306A2 (en) 2010-07-08 2012-01-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
WO2012149480A2 (en) 2011-04-29 2012-11-01 University Of Southern California Systems and methods for in vitro and in vivo imaging of cells on a substrate
JP2012023847A (en) 2010-07-14 2012-02-02 Panasonic Electric Works Co Ltd Rechargeable electrical apparatus
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US20120016413A1 (en) 2010-07-14 2012-01-19 Ethicon Endo-Surgery, Inc. Surgical fastening devices comprising rivets
US8439246B1 (en) 2010-07-20 2013-05-14 Cardica, Inc. Surgical stapler with cartridge-adjustable clamp gap
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8663270B2 (en) 2010-07-23 2014-03-04 Conmed Corporation Jaw movement mechanism and method for a surgical tool
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
US9011437B2 (en) 2010-07-23 2015-04-21 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
WO2012013577A1 (en) 2010-07-26 2012-02-02 Laboratorios Miret, S.A. Composition for coating medical devices containing lae and a polycationic amphoteric polymer
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
US8403946B2 (en) 2010-07-28 2013-03-26 Covidien Lp Articulating clip applier cartridge
US8801734B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Circular stapling instruments with secondary cutting arrangements and methods of using same
JP5686236B2 (en) 2010-07-30 2015-03-18 日立工機株式会社 Electric tools and electric tools for screw tightening
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8900267B2 (en) 2010-08-05 2014-12-02 Microline Surgical, Inc. Articulable surgical instrument
CN103140226B (en) 2010-08-06 2015-07-08 大日本住友制药株式会社 Preparation for treatment of spinal cord injury
US8852199B2 (en) 2010-08-06 2014-10-07 Abyrx, Inc. Method and device for handling bone adhesives
CN102378503A (en) 2010-08-06 2012-03-14 鸿富锦精密工业(深圳)有限公司 Electronic device combination
US8675820B2 (en) 2010-08-10 2014-03-18 Varian Medical Systems, Inc. Electronic conical collimator verification
EP2417925B1 (en) 2010-08-12 2016-12-07 Immersion Corporation Electrosurgical tool having tactile feedback
CN101912284B (en) 2010-08-13 2012-07-18 李东瑞 Arc-shaped cutting anastomat
US8298233B2 (en) 2010-08-20 2012-10-30 Tyco Healthcare Group Lp Surgical instrument configured for use with interchangeable hand grips
CA2945596C (en) 2010-08-25 2018-12-04 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
WO2012033860A1 (en) 2010-09-07 2012-03-15 Boston Scientific Scimed, Inc. Self-powered ablation catheter for renal denervation
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
WO2012036296A1 (en) 2010-09-17 2012-03-22 ユニバーサル・バイオ・リサーチ株式会社 Cartridge and automatic analysis device
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9402682B2 (en) 2010-09-24 2016-08-02 Ethicon Endo-Surgery, Llc Articulation joint features for articulating surgical device
US9545253B2 (en) 2010-09-24 2017-01-17 Ethicon Endo-Surgery, Llc Surgical instrument with contained dual helix actuator assembly
US20130131651A1 (en) 2010-09-24 2013-05-23 Ethicon Endo-Surgery, Inc. Features providing linear actuation through articulation joint in surgical instrument
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
WO2012050926A2 (en) 2010-09-29 2012-04-19 Dexcom, Inc. Advanced continuous analyte monitoring system
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
BR112013007717B1 (en) 2010-09-30 2020-09-24 Ethicon Endo-Surgery, Inc. SURGICAL CLAMPING SYSTEM
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US20220175370A1 (en) 2010-09-30 2022-06-09 Cilag Gmbh International Tissue thickness compensator comprising at least one medicament
RU2599210C2 (en) 2010-09-30 2016-10-10 Этикон Эндо-Серджери, Инк. Surgical cutting and suturing tools with separate and independent systems of application of fasteners and dissection of tissue
BR112013007744A2 (en) 2010-09-30 2016-06-07 Ethicon Endo Surgery Inc compact joint control disposable surgical stapling instrument
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
CN102440813B (en) 2010-09-30 2013-05-08 上海创亿医疗器械技术有限公司 Endoscopic surgical cutting anastomat with chain joints
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
AU2011307293B2 (en) 2010-09-30 2014-02-06 Ethicon Endo-Surgery, Inc. Compressible fastener cartridge
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US20120248169A1 (en) 2010-09-30 2012-10-04 Ethicon Endo-Surgery, Inc. Methods for forming tissue thickness compensator arrangements for surgical staplers
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
CN103384500B (en) 2010-09-30 2016-05-18 伊西康内外科公司 There is the surgery suturing appliance of interchangeable nail bin structure
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
CN103356253B (en) 2010-09-30 2015-09-16 伊西康内外科公司 There is the implantable fastener cartridge of uneven arrangement
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8899461B2 (en) 2010-10-01 2014-12-02 Covidien Lp Tissue stop for surgical instrument
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9750502B2 (en) 2010-10-01 2017-09-05 Covidien Lp Surgical stapling device for performing circular anastomosis and surgical staples for use therewith
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8998061B2 (en) 2010-10-01 2015-04-07 Covidien Lp Surgical fastener applying apparatus
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
EP2621390A2 (en) 2010-10-01 2013-08-07 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
JP5636247B2 (en) 2010-10-06 2014-12-03 Hoya株式会社 Electronic endoscope processor and electronic endoscope apparatus
WO2012050564A1 (en) 2010-10-12 2012-04-19 Hewlett-Packard Development Company, L.P. Supplying power to an electronic device using multiple power sources
US8828046B2 (en) 2010-10-14 2014-09-09 Ethicon Endo-Surgery, Inc. Laparoscopic device with distal handle
US20110225105A1 (en) 2010-10-21 2011-09-15 Ford Global Technologies, Llc Method and system for monitoring an energy storage system for a vehicle for trip planning
US9039694B2 (en) 2010-10-22 2015-05-26 Just Right Surgical, Llc RF generator system for surgical vessel sealing
US20120109186A1 (en) 2010-10-29 2012-05-03 Parrott David A Articulating laparoscopic surgical instruments
US8568425B2 (en) 2010-11-01 2013-10-29 Covidien Lp Wire spool for passing of wire through a rotational coupling
US8292150B2 (en) 2010-11-02 2012-10-23 Tyco Healthcare Group Lp Adapter for powered surgical devices
US9526921B2 (en) 2010-11-05 2016-12-27 Ethicon Endo-Surgery, Llc User feedback through end effector of surgical instrument
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
US9421062B2 (en) 2010-11-05 2016-08-23 Ethicon Endo-Surgery, Llc Surgical instrument shaft with resiliently biased coupling to handpiece
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9089338B2 (en) 2010-11-05 2015-07-28 Ethicon Endo-Surgery, Inc. Medical device packaging with window for insertion of reusable component
US9161803B2 (en) 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US9017849B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Power source management for medical device
US9375255B2 (en) 2010-11-05 2016-06-28 Ethicon Endo-Surgery, Llc Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US9000720B2 (en) 2010-11-05 2015-04-07 Ethicon Endo-Surgery, Inc. Medical device packaging with charging interface
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US9017851B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Sterile housing for non-sterile medical device component
US20120116381A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging station and wireless communication
US20120116261A1 (en) 2010-11-05 2012-05-10 Mumaw Daniel J Surgical instrument with slip ring assembly to power ultrasonic transducer
US9039720B2 (en) 2010-11-05 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical instrument with ratcheting rotatable shaft
US8308041B2 (en) 2010-11-10 2012-11-13 Tyco Healthcare Group Lp Staple formed over the wire wound closure procedure
US20120123463A1 (en) 2010-11-11 2012-05-17 Moises Jacobs Mechanically-guided transoral bougie
JP6063387B2 (en) 2010-11-15 2017-01-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Separation of instrument shaft roll and end effector actuation in surgical instruments
US8480703B2 (en) 2010-11-19 2013-07-09 Covidien Lp Surgical device
US20120175398A1 (en) 2010-11-22 2012-07-12 Mayo Foundation For Medical Education And Research Stapling apparatus and methods of assembling or operating the same
US8679093B2 (en) 2010-11-23 2014-03-25 Microchips, Inc. Multi-dose drug delivery device and method
KR20120059105A (en) 2010-11-30 2012-06-08 현대자동차주식회사 Water drain apparatus of mounting high voltage battery pack in vehicle
WO2012072133A1 (en) 2010-12-01 2012-06-07 Ethicon Endo-Surgery, Inc. A surgical stapling device and a method for anchoring a liner to a hollow organ
JP5530911B2 (en) 2010-12-02 2014-06-25 Hoya株式会社 Zoom electronic endoscope
US9731410B2 (en) 2010-12-02 2017-08-15 Makita Corporation Power tool
US8801710B2 (en) 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
CN102038532A (en) 2010-12-07 2011-05-04 苏州天臣国际医疗科技有限公司 Nail bin assembly
DE102010053811A1 (en) 2010-12-08 2012-06-14 Moog Gmbh Fault-proof actuation system
US20120239068A1 (en) 2010-12-10 2012-09-20 Morris James R Surgical instrument
US8714352B2 (en) 2010-12-10 2014-05-06 Covidien Lp Cartridge shipping aid
CN201949071U (en) 2010-12-10 2011-08-31 苏州天臣国际医疗科技有限公司 Linear type cutting suturing device
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
CN101991452B (en) 2010-12-10 2012-07-04 苏州天臣国际医疗科技有限公司 Linear type surgical stapling apparatus
CN101991453B (en) 2010-12-10 2012-07-18 苏州天臣国际医疗科技有限公司 Linear type cutting seaming device
FR2968564B1 (en) 2010-12-13 2013-06-21 Perouse Medical MEDICAL DEVICE FOR INPUT IN CONTACT WITH TISSUE OF A PATIENT AND ASSOCIATED MANUFACTURING METHOD.
US8736212B2 (en) 2010-12-16 2014-05-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method of automatic detection and prevention of motor runaway
US8540735B2 (en) 2010-12-16 2013-09-24 Apollo Endosurgery, Inc. Endoscopic suture cinch system
CN102068290B (en) 2010-12-16 2013-06-05 苏州天臣国际医疗科技有限公司 Linear cutting stapler
CN201879759U (en) 2010-12-21 2011-06-29 南京迈迪欣医疗器械有限公司 Cartridge device of disposable rotary cutting anastomat capable of controlling tissue thickness
EP2654579B1 (en) 2010-12-21 2018-01-24 Stryker Corporation Powered surgical tool with a control module in a sealed housing , the housing having active seals for protecting internal components from the effects of sterilization
JP5770306B2 (en) 2010-12-24 2015-08-26 アーオー テクノロジー アクチエンゲゼルシャフト Surgical instruments
CN102228387B (en) 2010-12-29 2012-11-07 北京中法派尔特医疗设备有限公司 Numerically controlled surgical stapling apparatus
US9124097B2 (en) 2010-12-29 2015-09-01 International Safety And Development, Inc. Polarity correcting device
US8936614B2 (en) 2010-12-30 2015-01-20 Covidien Lp Combined unilateral/bilateral jaws on a surgical instrument
DE102011002404A1 (en) 2011-01-03 2012-07-05 Robert Bosch Gmbh Hand machine tool power supply unit
JP2012143283A (en) 2011-01-07 2012-08-02 Tomato Inc:Kk Optical beauty instrument and handpiece used for it
DE102012100086A1 (en) 2011-01-07 2012-08-02 Z-Medical Gmbh & Co. Kg Surgical instrument
SG193008A1 (en) 2011-01-14 2013-10-30 New Hope Ventures Surgical stapling device and method
US8603089B2 (en) 2011-01-19 2013-12-10 Covidien Lp Surgical instrument including inductively coupled accessory
KR20120114308A (en) 2011-01-25 2012-10-16 파나소닉 주식회사 Battery module and battery assembly for use therein
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
US20120197239A1 (en) 2011-01-31 2012-08-02 Paul Smith Endoscopic medical device with articulating joints
EP3964146B1 (en) 2011-01-31 2023-10-18 Boston Scientific Scimed Inc. Medical devices having releasable coupling
US9730717B2 (en) 2011-02-03 2017-08-15 Karl Storz Gmbh & Co. Kg Medical manipulator system
US8336754B2 (en) 2011-02-04 2012-12-25 Covidien Lp Locking articulation mechanism for surgical stapler
US8348124B2 (en) 2011-02-08 2013-01-08 Covidien Lp Knife bar with geared overdrive
KR102182874B1 (en) 2011-02-15 2020-11-25 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems for indicating a clamping prediction
EP2675387B1 (en) 2011-02-15 2018-04-25 Intuitive Surgical Operations, Inc. Seals and sealing methods for a surgical instrument having an articulated end effector actuated by a drive shaft
WO2012112249A1 (en) 2011-02-15 2012-08-23 Intuitive Surgical Operations, Inc. Systems for detecting clamping or firing failure
US9393017B2 (en) 2011-02-15 2016-07-19 Intuitive Surgical Operations, Inc. Methods and systems for detecting staple cartridge misfire or failure
EP2675369B1 (en) 2011-02-15 2015-07-15 Zimmer Surgical SA Battery housing for powered surgical tool
EP3278744B1 (en) 2011-02-15 2021-10-20 Intuitive Surgical Operations, Inc. Indicator for knife location in a stapling or vessel sealing instrument
DE102011011497A1 (en) 2011-02-17 2012-08-23 Kuka Roboter Gmbh Surgical instrument
KR101964579B1 (en) 2011-02-18 2019-04-03 디퍼이 신테스 프로덕츠, 인코포레이티드 Tool with integrated navigation and guidance system and related apparatus and methods
EP3300678A1 (en) 2011-02-18 2018-04-04 Intuitive Surgical Operations Inc. Fusing and cutting surgical instrument and related methods
US8968340B2 (en) 2011-02-23 2015-03-03 Covidien Lp Single actuating jaw flexible endolumenal stitching device
US20120211542A1 (en) 2011-02-23 2012-08-23 Tyco Healthcare Group I.P Controlled tissue compression systems and methods
US9585672B2 (en) 2011-02-25 2017-03-07 Thd S.P.A. Device for implanting a prosthesis in a tissue
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
US8985240B2 (en) 2011-03-11 2015-03-24 Stanley D. Winnard Handheld drive device
US9113884B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Modular surgical tool systems
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8556935B1 (en) 2011-03-15 2013-10-15 Cardica, Inc. Method of manufacturing surgical staples
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US20120234895A1 (en) 2011-03-15 2012-09-20 Ethicon Endo-Surgery, Inc. Surgical staple cartridges and end effectors with vessel measurement arrangements
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US8397972B2 (en) 2011-03-18 2013-03-19 Covidien Lp Shipping wedge with lockout
WO2012127462A1 (en) 2011-03-22 2012-09-27 Human Extensions Ltd. Motorized surgical instruments
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US8575895B2 (en) 2011-03-29 2013-11-05 Rally Manufacturing, Inc. Method and device for voltage detection and charging of electric battery
US10729458B2 (en) 2011-03-30 2020-08-04 Covidien Lp Ultrasonic surgical instruments
WO2012135721A1 (en) 2011-03-30 2012-10-04 Tyco Healthcare Group Lp Ultrasonic surgical instruments
US20120253328A1 (en) 2011-03-30 2012-10-04 Tyco Healthcare Group Lp Combined presentation unit for reposable battery operated surgical system
US20140330579A1 (en) 2011-03-31 2014-11-06 Healthspot, Inc. Medical Kiosk and Method of Use
US20120251861A1 (en) 2011-03-31 2012-10-04 De Poan Pneumatic Corp. Shock proof structure of battery pack for receiving battery cell
US9370362B2 (en) 2011-04-07 2016-06-21 Wake Forest University Health Sciences Surgical staplers with tissue protection and related methods
JP5395277B2 (en) 2011-04-08 2014-01-22 オリンパスメディカルシステムズ株式会社 Mounting unit and endoscope
WO2012141679A1 (en) 2011-04-11 2012-10-18 Hassan Chandra Surgical technique(s) and/or device(s)
DE102011007121A1 (en) 2011-04-11 2012-10-11 Karl Storz Gmbh & Co. Kg Handling device for a micro-invasive-surgical instrument
US9131950B2 (en) 2011-04-15 2015-09-15 Endoplus, Inc. Laparoscopic instrument
CA3022254C (en) 2011-04-15 2020-04-28 Covidien Ag Battery powered hand-held ultrasonic surgical cautery cutting device
EP2600440B1 (en) 2011-04-18 2016-06-08 Huawei Device Co., Ltd. Battery, battery component and subscriber equipment
US8540646B2 (en) 2011-04-18 2013-09-24 Jose Arturo Mendez-Coll Biopsy and sutureless device
US9021684B2 (en) 2011-04-19 2015-05-05 Tyco Electronics Corporation Method of fabricating a slip ring component
US9655615B2 (en) 2011-04-19 2017-05-23 Dextera Surgical Inc. Active wedge and I-beam for surgical stapler
CN102743201B (en) 2011-04-20 2014-03-12 苏州天臣国际医疗科技有限公司 Linear cutting suturing device
WO2012143913A2 (en) 2011-04-21 2012-10-26 Novogate Medical Ltd Tissue closure device and method of delivery and uses thereof
JP5839828B2 (en) 2011-04-25 2016-01-06 キヤノン株式会社 Image forming apparatus, image forming apparatus control method, and program
US8631990B1 (en) 2011-04-25 2014-01-21 Cardica, Inc. Staple trap for surgical stapler
US8789737B2 (en) 2011-04-27 2014-07-29 Covidien Lp Circular stapler and staple line reinforcement material
US10603044B2 (en) 2011-04-27 2020-03-31 Covidien Lp Surgical instruments for use with diagnostic scanning devices
EP3561995A1 (en) 2011-04-28 2019-10-30 ZOLL Circulation, Inc. System and method for tracking and archiving battery performance data
EP2702666A4 (en) 2011-04-28 2014-10-29 Zoll Circulation Inc Viral distribution of battery management parameters
EP3537565A1 (en) 2011-04-28 2019-09-11 ZOLL Circulation, Inc. Battery management system for control of lithium cells
CN102125450B (en) 2011-04-29 2012-07-25 常州市康迪医用吻合器有限公司 Cutter stapler for surgery
CN102247182A (en) 2011-04-29 2011-11-23 常州市康迪医用吻合器有限公司 Electric anastomat for surgical department
US9901412B2 (en) 2011-04-29 2018-02-27 Vanderbilt University Dexterous surgical manipulator and method of use
AU2012250138B2 (en) 2011-04-29 2016-10-20 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
MX2013012593A (en) 2011-04-29 2014-08-21 Selecta Biosciences Inc Tolerogenic synthetic nanocarriers to reduce antibody responses.
CN103648410B (en) 2011-04-29 2016-10-26 伊西康内外科公司 Compressible nail bin groupware
AU2012201645B2 (en) 2011-04-29 2015-04-16 Covidien Lp Surgical stapling apparatus
CA2834503C (en) 2011-04-29 2019-06-11 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
JP6180405B2 (en) 2011-05-03 2017-08-16 エンドーシー コーポレイションEndosee Corporation Methods and apparatus for hysteroscopy and endometrial biopsy
US9820741B2 (en) 2011-05-12 2017-11-21 Covidien Lp Replaceable staple cartridge
JP5816457B2 (en) 2011-05-12 2015-11-18 オリンパス株式会社 Surgical device
US20120289811A1 (en) 2011-05-13 2012-11-15 Tyco Healthcare Group Lp Mask on monitor hernia locator
US8746532B2 (en) 2011-05-19 2014-06-10 Ethicon Endo-Surgery, Inc. Anvil and cartridge alignment configuration for a circular stapler
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
FR2975534B1 (en) 2011-05-19 2013-06-28 Electricite De France METAL-AIR ACCUMULATOR WITH PROTECTION DEVICE FOR THE AIR ELECTRODE
JP5159918B2 (en) 2011-05-20 2013-03-13 浩平 窪田 Medical implantable staples
US20120296342A1 (en) 2011-05-22 2012-11-22 Kathleen Haglund Wendelschafer Electric hand-held grooming tool
US9161807B2 (en) 2011-05-23 2015-10-20 Covidien Lp Apparatus for performing an electrosurgical procedure
US9295784B2 (en) 2011-05-25 2016-03-29 Sanofi-Aventis Deutschland Gmbh Medicament delivery device with cap
US10542978B2 (en) 2011-05-27 2020-01-28 Covidien Lp Method of internally potting or sealing a handheld medical device
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9050089B2 (en) 2011-05-31 2015-06-09 Covidien Lp Electrosurgical apparatus with tissue site sensing and feedback control
US9358065B2 (en) 2011-06-23 2016-06-07 Covidien Lp Shaped electrode bipolar resection apparatus, system and methods of use
US8870912B2 (en) 2011-05-31 2014-10-28 Intuitive Surgical Operations, Inc. Surgical instrument with single drive input for two end effector mechanisms
JP6038901B2 (en) 2011-05-31 2016-12-07 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical instrument having control for detected fault condition
CN103561667B (en) 2011-05-31 2016-08-17 直观外科手术操作公司 Grasping force control in robotic surgery apparatus
KR102109615B1 (en) 2011-05-31 2020-05-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Positive control of robotic surgical instrument end effector
US8523787B2 (en) 2011-06-03 2013-09-03 Biosense Webster (Israel), Ltd. Detection of tenting
CN102217963A (en) 2011-06-08 2011-10-19 刘忠臣 Sandwiched stapler type alimentary tract anastomosis dissecting sealer
US9289209B2 (en) 2011-06-09 2016-03-22 Covidien Lp Surgical fastener applying apparatus
US9561030B2 (en) 2011-06-14 2017-02-07 Changzhou Kangdi Medical Stapler Co., Ltd. Surgical staple and staple pocket for forming kidney-shaped staple
US8715302B2 (en) 2011-06-17 2014-05-06 Estech, Inc. (Endoscopic Technologies, Inc.) Left atrial appendage treatment systems and methods
CN102835977A (en) 2011-06-21 2012-12-26 达华国际股份有限公司 Minimal invasion medical device
WO2012178075A2 (en) 2011-06-24 2012-12-27 Abbott Laboratories Tamper-evident packaging
CN106913366B (en) 2011-06-27 2021-02-26 内布拉斯加大学评议会 On-tool tracking system and computer-assisted surgery method
CN102243850B (en) 2011-06-27 2013-03-06 青岛海信电器股份有限公司 Backlight source driving circuit, driving method thereof as well as liquid crystal television
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US8763876B2 (en) 2011-06-30 2014-07-01 Covidien Lp Surgical instrument and cartridge for use therewith
WO2013002063A1 (en) 2011-06-30 2013-01-03 テルモ株式会社 Medical manipulator
US20130012983A1 (en) 2011-07-08 2013-01-10 Tyco Healthcare Group Lp Surgical Instrument with Flexible Shaft
EP2734121A2 (en) 2011-07-11 2014-05-28 Agile Endosurgery, Inc. Articulated surgical tool
CN103648414A (en) 2011-07-11 2014-03-19 意昂外科手术有限公司 Laparoscopic graspers
EP2731517A2 (en) 2011-07-11 2014-05-21 Medical Vision Research & Development AB Status control for electrically powered surgical tool systems
US9521996B2 (en) 2011-07-13 2016-12-20 Cook Medical Technologies Llc Surgical retractor device
WO2013009795A1 (en) 2011-07-13 2013-01-17 Cook Medical Technologies Llc Foldable surgical retractor
US8960521B2 (en) 2011-07-15 2015-02-24 Covidien Lp Loose staples removal system
US9421682B2 (en) 2011-07-18 2016-08-23 Black & Decker Inc. Multi-head power tool with reverse lock-out capability
US8574263B2 (en) 2011-07-20 2013-11-05 Covidien Lp Coaxial coil lock
US8603135B2 (en) 2011-07-20 2013-12-10 Covidien Lp Articulating surgical apparatus
CA2841961C (en) 2011-07-20 2021-01-26 International Paper Company Substrate for wallboard joint tape and process for making same
US20130023910A1 (en) 2011-07-21 2013-01-24 Solomon Clifford T Tissue-identifying surgical instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
EP2737593B1 (en) 2011-07-26 2023-11-22 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
WO2013016554A2 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US10512459B2 (en) 2011-07-27 2019-12-24 William Casey Fox Bone staple, instrument and method of use and manufacturing
US8998059B2 (en) 2011-08-01 2015-04-07 Ethicon Endo-Surgery, Inc. Adjunct therapy device having driver with cavity for hemostatic agent
JP5841451B2 (en) 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instrument and control method thereof
US8931692B2 (en) 2011-08-05 2015-01-13 Murat Sancak Multi-communication featured, touch-operated or keyboard cash register with contact and non-contact credit card reader
US9724095B2 (en) 2011-08-08 2017-08-08 Covidien Lp Surgical fastener applying apparatus
US20130041292A1 (en) 2011-08-09 2013-02-14 Tyco Healthcare Group Lp Customizable Haptic Assisted Robot Procedure System with Catalog of Specialized Diagnostic Tips
US9492170B2 (en) 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
KR20130017624A (en) 2011-08-11 2013-02-20 주식회사 모바수 Apparatus for holding articulative structure
WO2013027200A2 (en) 2011-08-21 2013-02-28 M.S.T. Medical Surgery Technologies Ltd. Device and method for asissting laparoscopic surgery - rule based approach
US9375206B2 (en) 2011-08-25 2016-06-28 Endocontrol Surgical instrument with disengageable handle
US9004799B1 (en) 2011-08-31 2015-04-14 Skylar Tibbits Transformable linked self-assembly system
US8956342B1 (en) 2011-09-01 2015-02-17 Microaire Surgical Instruments Llc Method and device for ergonomically and ambidextrously operable surgical device
AU2012301718B2 (en) 2011-09-02 2017-06-15 Stryker Corporation Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing
US9198661B2 (en) 2011-09-06 2015-12-01 Ethicon Endo-Surgery, Inc. Stapling instrument comprising a plurality of staple cartridges stored therein
JP5330627B2 (en) 2011-09-08 2013-10-30 オリンパスメディカルシステムズ株式会社 Multi-DOF forceps
US9099863B2 (en) 2011-09-09 2015-08-04 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
USD677273S1 (en) 2011-09-12 2013-03-05 Microsoft Corporation Display screen with icon
WO2013040079A1 (en) 2011-09-13 2013-03-21 Dose Medical Corporation Intraocular physiological sensor
US8679098B2 (en) 2011-09-13 2014-03-25 Covidien Lp Rotation knobs for surgical instruments
US9101359B2 (en) 2011-09-13 2015-08-11 Ethicon Endo-Surgery, Inc. Surgical staple cartridge with self-dispensing staple buttress
US8998060B2 (en) 2011-09-13 2015-04-07 Ethicon Endo-Surgery, Inc. Resistive heated surgical staple cartridge with phase change sealant
DE102011113127B4 (en) 2011-09-14 2015-05-13 Olaf Storz Medical handset and power unit
DE102011113126B4 (en) 2011-09-14 2015-05-13 Olaf Storz Power unit and medical hand-held device
US9999408B2 (en) 2011-09-14 2018-06-19 Ethicon Endo-Surgery, Inc. Surgical instrument with fluid fillable buttress
US8814025B2 (en) 2011-09-15 2014-08-26 Ethicon Endo-Surgery, Inc. Fibrin pad matrix with suspended heat activated beads of adhesive
US20130068816A1 (en) 2011-09-15 2013-03-21 Venkataramanan Mandakolathur Vasudevan Surgical instrument and buttress material
EP2759000A1 (en) 2011-09-20 2014-07-30 The Regents of The University of California Light emitting diode with conformal surface electrical contacts with glass encapsulation
US20140249573A1 (en) 2011-09-20 2014-09-04 A.A. Cash Technology Ltd. Methods and devices for occluding blood flow to an organ
US9393018B2 (en) 2011-09-22 2016-07-19 Ethicon Endo-Surgery, Inc. Surgical staple assembly with hemostatic feature
US20130075447A1 (en) 2011-09-22 2013-03-28 II William B. Weisenburgh Adjunct therapy device for applying hemostatic agent
US9198644B2 (en) 2011-09-22 2015-12-01 Ethicon Endo-Surgery, Inc. Anvil cartridge for surgical fastening device
US8985429B2 (en) 2011-09-23 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with adjunct material application feature
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
USD680646S1 (en) 2011-09-23 2013-04-23 Ethicon Endo-Surgery, Inc. Circular stapler
US8911448B2 (en) 2011-09-23 2014-12-16 Orthosensor, Inc Device and method for enabling an orthopedic tool for parameter measurement
JP5776780B2 (en) 2011-09-30 2015-09-09 日立化成株式会社 RFID tag
CA2849477A1 (en) 2011-09-30 2013-04-04 Covidien Lp Implantable devices having swellable grip members
IN2014DN03441A (en) 2011-09-30 2015-06-05 Life Technologies Corp
US8899464B2 (en) 2011-10-03 2014-12-02 Ethicon Endo-Surgery, Inc. Attachment of surgical staple buttress to cartridge
US9089326B2 (en) 2011-10-07 2015-07-28 Ethicon Endo-Surgery, Inc. Dual staple cartridge for surgical stapler
US9629652B2 (en) 2011-10-10 2017-04-25 Ethicon Endo-Surgery, Llc Surgical instrument with clutching slip ring assembly to power ultrasonic transducer
US8585721B2 (en) 2011-10-12 2013-11-19 Covidien Lp Mesh fixation system
US9153994B2 (en) 2011-10-14 2015-10-06 Welch Allyn, Inc. Motion sensitive and capacitor powered handheld device
DE102011084499A1 (en) 2011-10-14 2013-04-18 Robert Bosch Gmbh tool attachment
US8931679B2 (en) 2011-10-17 2015-01-13 Covidien Lp Surgical stapling apparatus
US8708212B2 (en) 2011-10-18 2014-04-29 Covidien Lp Tilt top anvil with torsion spring
US20130096568A1 (en) 2011-10-18 2013-04-18 Warsaw Orthopedic, Inc. Modular tool apparatus and method
US9060794B2 (en) 2011-10-18 2015-06-23 Mako Surgical Corp. System and method for robotic surgery
US9370400B2 (en) 2011-10-19 2016-06-21 Ethicon Endo-Surgery, Inc. Clip applier adapted for use with a surgical robot
US8968308B2 (en) 2011-10-20 2015-03-03 Covidien Lp Multi-circuit seal plates
JP6234932B2 (en) 2011-10-24 2017-11-22 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Medical instruments
US9161855B2 (en) 2011-10-24 2015-10-20 Ethicon, Inc. Tissue supporting device and method
US8672206B2 (en) 2011-10-25 2014-03-18 Covidien Lp Apparatus for endoscopic procedures
US9016539B2 (en) 2011-10-25 2015-04-28 Covidien Lp Multi-use loading unit
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US20130098970A1 (en) 2011-10-25 2013-04-25 David Racenet Surgical Apparatus and Method for Endoluminal Surgery
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
CN104039251B (en) 2011-10-26 2017-09-08 直观外科手术操作公司 Surgical operating instrument with overall scalpel blade
WO2013063522A2 (en) 2011-10-26 2013-05-02 Reid Robert Cyrus Surgical instrument motor pack latch
US9675351B2 (en) 2011-10-26 2017-06-13 Covidien Lp Buttress release from surgical stapler by knife pushing
US8418908B1 (en) 2011-10-26 2013-04-16 Covidien Lp Staple feeding and forming apparatus
EP3165176B1 (en) 2011-10-26 2018-12-26 Intuitive Surgical Operations, Inc. Cartridge status and presence detection
US9364231B2 (en) 2011-10-27 2016-06-14 Covidien Lp System and method of using simulation reload to optimize staple formation
JP2013099120A (en) 2011-10-31 2013-05-20 Sanyo Electric Co Ltd Charger, battery pack attachment unit, and battery pack unit
JP5855423B2 (en) 2011-11-01 2016-02-09 オリンパス株式会社 Surgery support device
US9393354B2 (en) 2011-11-01 2016-07-19 J&M Shuler Medical, Inc. Mechanical wound therapy for sub-atmospheric wound care system
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
WO2013063674A1 (en) 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
CN202313537U (en) 2011-11-07 2012-07-11 苏州天臣国际医疗科技有限公司 Staple cartridge component for linear stapling and cutting device
CN103083053A (en) 2011-11-07 2013-05-08 苏州天臣国际医疗科技有限公司 Nail head assembly of stitching device and sewing cutting device
US20130123816A1 (en) 2011-11-10 2013-05-16 Gerald Hodgkinson Hydrophilic medical devices
US8992042B2 (en) 2011-11-14 2015-03-31 Halma Holdings, Inc. Illumination devices using natural light LEDs
US9486213B2 (en) 2011-11-14 2016-11-08 Thd Lap Ltd. Drive mechanism for articulating tacker
US20130131477A1 (en) 2011-11-15 2013-05-23 Oneeros, Inc. Pulse oximetry system
EP2779921B1 (en) 2011-11-15 2019-03-27 Intuitive Surgical Operations, Inc. Surgical instrument with stowing knife blade
JP5420802B2 (en) 2011-11-16 2014-02-19 オリンパスメディカルシステムズ株式会社 Medical equipment
US8968312B2 (en) 2011-11-16 2015-03-03 Covidien Lp Surgical device with powered articulation wrist rotation
DE102011086826A1 (en) 2011-11-22 2013-05-23 Robert Bosch Gmbh System with a hand tool battery and at least one hand tool battery charger
JP5591213B2 (en) 2011-11-25 2014-09-17 三菱電機株式会社 Inverter device and air conditioner equipped with the same
WO2013137942A1 (en) 2012-03-13 2013-09-19 Eca Medical Instruments Bidirectional ramped disposable torque limiting device
US9486186B2 (en) 2011-12-05 2016-11-08 Devicor Medical Products, Inc. Biopsy device with slide-in probe
US9125651B2 (en) 2011-12-07 2015-09-08 Ethicon Endo-Surgery, Inc. Reusable linear stapler cartridge device for tissue thickness measurement
WO2013087092A1 (en) 2011-12-13 2013-06-20 Ethicon Endo-Surgery, Inc. An applier and a method for anchoring a lining to a hollow organ
US8967448B2 (en) 2011-12-14 2015-03-03 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9351732B2 (en) 2011-12-14 2016-05-31 Covidien Lp Buttress attachment to degradable polymer zones
US9113885B2 (en) 2011-12-14 2015-08-25 Covidien Lp Buttress assembly for use with surgical stapling device
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9119615B2 (en) 2011-12-15 2015-09-01 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9113879B2 (en) 2011-12-15 2015-08-25 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9603599B2 (en) 2011-12-16 2017-03-28 Ethicon Endo-Surgery, Llc Feature to reengage safety switch of tissue stapler
CN103169493A (en) 2011-12-20 2013-06-26 通用电气公司 Device and method for guiding ultraphonic probe and ultraphonic system
CN202568350U (en) 2011-12-21 2012-12-05 常州市康迪医用吻合器有限公司 Clamping thickness adjustment mechanism for surgical linear cut stapler
US8920368B2 (en) 2011-12-22 2014-12-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Multi-user touch-based control of a remote catheter guidance system (RCGS)
CN202426586U (en) 2011-12-22 2012-09-12 苏州天臣国际医疗科技有限公司 Nail cabinet for surgical suture cutter
CA2796525A1 (en) 2011-12-23 2013-06-23 Covidien Lp Apparatus for endoscopic procedures
USD701238S1 (en) 2011-12-23 2014-03-18 Citrix Systems, Inc. Display screen with animated graphical user interface
JP5361983B2 (en) 2011-12-27 2013-12-04 株式会社東芝 Information processing apparatus and control method
US9220502B2 (en) 2011-12-28 2015-12-29 Covidien Lp Staple formation recognition for a surgical device
WO2013101485A1 (en) 2011-12-29 2013-07-04 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9402555B2 (en) 2011-12-29 2016-08-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Drive assembly for use in a robotic control and guidance system
CN202397539U (en) 2011-12-29 2012-08-29 瑞奇外科器械(中国)有限公司 Surgical suturing machine and suturing nail drive thereof
CN202489990U (en) 2011-12-30 2012-10-17 苏州天臣国际医疗科技有限公司 Linear sewing and cutting device for surgery
US9186148B2 (en) 2012-01-05 2015-11-17 Ethicon Endo-Surgery, Inc. Tissue stapler anvil feature to prevent premature jaw opening
US9168042B2 (en) 2012-01-12 2015-10-27 Covidien Lp Circular stapling instruments
USD736792S1 (en) 2012-01-13 2015-08-18 Htc Corporation Display screen with graphical user interface
US8894647B2 (en) 2012-01-13 2014-11-25 Covidien Lp System and method for performing surgical procedures with a reusable instrument module
US9636091B2 (en) 2012-01-13 2017-05-02 Covidien Lp Hand-held electromechanical surgical system
CA2861710A1 (en) 2012-01-18 2013-07-25 Covidien Lp Surgical fastener applying apparatus
US8864010B2 (en) 2012-01-20 2014-10-21 Covidien Lp Curved guide member for articulating instruments
US9326812B2 (en) 2012-01-25 2016-05-03 Covidien Lp Portable surgical instrument
US20130211244A1 (en) 2012-01-25 2013-08-15 Surgix Ltd. Methods, Devices, Systems, Circuits and Associated Computer Executable Code for Detecting and Predicting the Position, Orientation and Trajectory of Surgical Tools
US9098153B2 (en) 2012-02-01 2015-08-04 Qualcomm Technologies, Inc. Touch panel excitation using a drive signal having time-varying characteristics
WO2013116869A1 (en) 2012-02-02 2013-08-08 Transenterix, Inc. Mechanized multi-instrument surgical system
US9265510B2 (en) 2012-02-06 2016-02-23 Zimmer, Inc. Cone lock quick connect mechanism
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9931116B2 (en) 2012-02-10 2018-04-03 Covidien Lp Buttress composition
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
JP5620932B2 (en) 2012-02-14 2014-11-05 富士フイルム株式会社 Endoscope system, processor device for endoscope system, and method for operating endoscope system
USD686244S1 (en) 2012-02-23 2013-07-16 JVC Kenwood Corporation Display screen with an animated dial for a wireless communication device
US8820606B2 (en) 2012-02-24 2014-09-02 Covidien Lp Buttress retention system for linear endostaplers
USD725674S1 (en) 2012-02-24 2015-03-31 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
US20130231661A1 (en) 2012-03-01 2013-09-05 Hasan M. Sh. Sh. Alshemari Electrosurgical midline clamping scissors
KR101965892B1 (en) 2012-03-05 2019-04-08 삼성디스플레이 주식회사 DC-DC Converter and Organic Light Emitting Display Device Using the same
ES2422332B1 (en) 2012-03-05 2014-07-01 Iv�n Jes�s ARTEAGA GONZ�LEZ Surgical device
WO2013134411A1 (en) 2012-03-06 2013-09-12 Briteseed, Llc Surgical tool with integrated sensor
US8752264B2 (en) 2012-03-06 2014-06-17 Covidien Lp Surgical tissue sealer
JP2013188812A (en) 2012-03-13 2013-09-26 Hitachi Koki Co Ltd Impact tool
WO2013138481A1 (en) 2012-03-13 2013-09-19 Medtronic Xomed, Inc. Surgical system including powered rotary-type handpiece
US9113881B2 (en) 2012-03-16 2015-08-25 Covidien Lp Travel clip for surgical staple cartridge
US20130253480A1 (en) 2012-03-22 2013-09-26 Cory G. Kimball Surgical instrument usage data management
EP2827914B1 (en) 2012-03-22 2019-05-08 TRB Chemedica International S.A. Method for repair of ligament or tendon
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9561072B2 (en) 2012-03-27 2017-02-07 Lutronic Corporation Electrode for high-frequency surgery and high-frequency surgery device
CN104363838B (en) 2012-03-28 2017-11-21 伊西康内外科公司 The tissue thickness compensation part being made up of multiple material
EP3275378B1 (en) 2012-03-28 2019-07-17 Ethicon LLC Tissue thickness compensator comprising a plurality of capsules
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
RU2635007C2 (en) 2012-03-28 2017-11-08 Этикон Эндо-Серджери, Инк. Tissue thickness compensator containing structure for elastic load application
US20130256373A1 (en) 2012-03-28 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
BR112014024103B1 (en) 2012-03-28 2022-02-08 Ethicon Endo-Surgery, Inc STAPLER SET FOR USE WITH A STAPLER
RU2637167C2 (en) 2012-03-28 2017-11-30 Этикон Эндо-Серджери, Инк. Tissue thickness compensator containing controlled release and expansion
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
JP2015513978A (en) 2012-04-04 2015-05-18 カーディカ インコーポレイテッド Surgical staple cartridge having a bendable tip
US9526563B2 (en) 2012-04-06 2016-12-27 Covidien Lp Spindle assembly with mechanical fuse for surgical instruments
WO2013155052A1 (en) 2012-04-09 2013-10-17 Facet Technologies, Llc Push-to-charge lancing device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9144456B2 (en) 2012-04-09 2015-09-29 Intuitive Surgical Operations, Inc. Surgical instrument control
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
AU2013201737B2 (en) 2012-04-09 2014-07-10 Covidien Lp Surgical fastener applying apparatus
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
WO2013152452A1 (en) 2012-04-09 2013-10-17 Intel Corporation Parallel processing image data having top-left dependent pixels
US9113887B2 (en) 2012-04-10 2015-08-25 Covidien Lp Electrosurgical generator
US9044238B2 (en) 2012-04-10 2015-06-02 Covidien Lp Electrosurgical monopolar apparatus with arc energy vascular coagulation control
EP3066991B1 (en) 2012-04-11 2018-09-19 Covidien LP Apparatus for endoscopic procedures
JP5883343B2 (en) 2012-04-12 2016-03-15 株式会社スズキプレシオン Medical manipulator
US9788851B2 (en) 2012-04-18 2017-10-17 Ethicon Llc Surgical instrument with tissue density sensing
EP2838439A4 (en) 2012-04-18 2015-11-25 Cardica Inc Safety lockout for surgical stapler
US9539726B2 (en) 2012-04-20 2017-01-10 Vanderbilt University Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots
US9507399B2 (en) 2012-04-24 2016-11-29 Analog Devices, Inc. Accelerometer-controlled master power switch for electronic devices
US8818523B2 (en) 2012-04-25 2014-08-26 Medtronic, Inc. Recharge of an implantable device in the presence of other conductive objects
US20130284792A1 (en) 2012-04-26 2013-10-31 Covidien Lp Surgical Stapling Device Including A Camera
KR101800189B1 (en) 2012-04-30 2017-11-23 삼성전자주식회사 Apparatus and method for controlling power of surgical robot
US9331721B2 (en) 2012-04-30 2016-05-03 The Trustees Of Columbia University In The City Of New York Systems, devices, and methods for continuous time signal processing
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
US9204920B2 (en) 2012-05-02 2015-12-08 Covidien Lp External reader for device management
WO2013169873A1 (en) 2012-05-09 2013-11-14 Boston Scientific Scimed, Inc. Bushing arm deformation mechanism
DE102012207707A1 (en) 2012-05-09 2013-11-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Minimally invasive instrument for robotic surgery
US9180223B2 (en) 2012-05-10 2015-11-10 The Trustees Of The Stevens Institute Of Technology Biphasic osteochondral scaffold for reconstruction of articular cartilage
US10575716B2 (en) 2012-05-11 2020-03-03 Ethicon Llc Applicator instruments with imaging systems for dispensing surgical fasteners during open repair procedures
US9364228B2 (en) 2012-05-11 2016-06-14 Ethicon, Llc Applicator instruments having distal end caps for facilitating the accurate placement of surgical fasteners during open repair procedures
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
JP6224089B2 (en) 2012-05-23 2017-11-01 ストライカー・コーポレイション Surgical power instrument assembly having an instrument unit and a separate battery and control module for energizing and controlling the instrument unit
US8973805B2 (en) 2012-05-25 2015-03-10 Covidien Lp Surgical fastener applying apparatus including a knife guard
US9681884B2 (en) 2012-05-31 2017-06-20 Ethicon Endo-Surgery, Llc Surgical instrument with stress sensor
AU2013203675B2 (en) 2012-05-31 2014-11-27 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9572592B2 (en) 2012-05-31 2017-02-21 Ethicon Endo-Surgery, Llc Surgical instrument with orientation sensing
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US20130327552A1 (en) 2012-06-08 2013-12-12 Black & Decker Inc. Power tool having multiple operating modes
US10039440B2 (en) 2012-06-11 2018-08-07 Intuitive Surgical Operations, Inc. Systems and methods for cleaning a minimally invasive instrument
US20130334280A1 (en) 2012-06-14 2013-12-19 Covidien Lp Sliding Anvil/Retracting Cartridge Reload
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
USD692916S1 (en) 2012-06-22 2013-11-05 Mako Surgical Corp. Display device or portion thereof with graphical user interface
US20140107697A1 (en) 2012-06-25 2014-04-17 Castle Surgical, Inc. Clamping Forceps and Associated Methods
US9641122B2 (en) 2012-06-26 2017-05-02 Johnson Controls Technology Company HVAC actuator with automatic end stop recalibration
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
CN104487005B (en) 2012-06-28 2017-09-08 伊西康内外科公司 Empty squeeze latching member
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
JP6633391B2 (en) 2012-06-28 2020-01-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Fiber optic sensor guided navigation for blood vessel visualization and monitoring
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9220570B2 (en) 2012-06-29 2015-12-29 Children's National Medical Center Automated surgical and interventional procedures
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
CN103747745B (en) 2012-06-29 2016-02-24 捷锐士阿希迈公司 For the blade-retaining mechanisms of operating theater instruments
AU2013286733B2 (en) 2012-07-02 2017-09-14 Boston Scientific Scimed, Inc. Stapler for forming multiple tissue plications
KR101721742B1 (en) 2012-07-03 2017-03-30 쿠카 레보라토리즈 게엠베하 Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument
DE102012211886A1 (en) 2012-07-06 2014-01-09 Technische Universität Berlin Medical instrument and method for pivoting such a medical instrument
US10492814B2 (en) 2012-07-09 2019-12-03 Covidien Lp Apparatus for endoscopic procedures
US9955965B2 (en) 2012-07-09 2018-05-01 Covidien Lp Switch block control assembly of a medical device
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9408605B1 (en) 2012-07-12 2016-08-09 Cardica, Inc. Single-trigger clamping and firing of surgical stapler
US9110587B2 (en) 2012-07-13 2015-08-18 Samsung Electronics Co., Ltd. Method for transmitting and receiving data between memo layer and application and electronic device using the same
KR20150036650A (en) 2012-07-16 2015-04-07 미라빌리스 메디카 인코포레이티드 Human interface and device for ultrasound guided treatment
US8939975B2 (en) 2012-07-17 2015-01-27 Covidien Lp Gap control via overmold teeth and hard stops
US9554796B2 (en) 2012-07-18 2017-01-31 Covidien Lp Multi-fire surgical stapling apparatus including safety lockout and visual indicator
US10194907B2 (en) 2012-07-18 2019-02-05 Covidien Lp Multi-fire stapler with electronic counter, lockout, and visual indicator
US9572576B2 (en) 2012-07-18 2017-02-21 Covidien Lp Surgical apparatus including surgical buttress
AU2013206807A1 (en) 2012-07-18 2014-02-06 Covidien Lp Apparatus for endoscopic procedures
US9402604B2 (en) 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
US20140022283A1 (en) 2012-07-20 2014-01-23 University Health Network Augmented reality apparatus
EP2877105A1 (en) 2012-07-26 2015-06-03 Smith&Nephew, Inc. Knotless anchor for instability repair
US9629632B2 (en) 2012-07-30 2017-04-25 Conextions, Inc. Soft tissue repair devices, systems, and methods
DE102012213322A1 (en) 2012-07-30 2014-01-30 Siemens Aktiengesellschaft Medical apparatus e.g. C-arm X-ray machine has control panel with holding device for releasable attachment of sterile cover, such that cover is clamped on and locked against displacement relative to display
US9161769B2 (en) 2012-07-30 2015-10-20 Covidien Lp Endoscopic instrument
US9468447B2 (en) 2012-08-14 2016-10-18 Insurgical, LLC Limited-use tool system and method of reprocessing
KR101359053B1 (en) 2012-08-14 2014-02-06 정창욱 Apparatus for holding articulative structure
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
AU2013206804B2 (en) 2012-08-15 2017-12-07 Covidien Lp Buttress attachment to degradable polymer zones
CN104717936B (en) 2012-08-15 2018-01-26 直观外科手术操作公司 The breakaway-element clutch for the operation mounting platform that user starts
US8690893B2 (en) 2012-08-16 2014-04-08 Coloplast A/S Vaginal manipulator head with tissue index and head extender
CN102783741B (en) 2012-08-16 2014-10-15 东华大学 Multistage-spreading heat-dissipation fire-proof heat-insulation composite fabric, preparation method and application
US20140048580A1 (en) 2012-08-20 2014-02-20 Covidien Lp Buttress attachment features for surgical stapling apparatus
US9610068B2 (en) 2012-08-29 2017-04-04 Boston Scientific Scimed, Inc. Articulation joint with bending member
US9131957B2 (en) 2012-09-12 2015-09-15 Gyrus Acmi, Inc. Automatic tool marking
US9353917B2 (en) 2012-09-14 2016-05-31 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
CN109846553B (en) 2012-09-17 2022-03-08 直观外科手术操作公司 Method and system for assigning input devices for teleoperated surgical instrument functions
US9713474B2 (en) 2012-09-17 2017-07-25 The Cleveland Clinic Foundation Endoscopic stapler
CN102885641B (en) 2012-09-18 2015-04-01 上海逸思医疗科技有限公司 Improved performer for surgical instruments
SG11201502034WA (en) 2012-09-19 2015-05-28 Univ Nanyang Tech Flexible master - slave robotic endoscopy system
JP6082553B2 (en) 2012-09-26 2017-02-15 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Brake release mechanism and medical manipulator having the same
JP2014069252A (en) 2012-09-28 2014-04-21 Hitachi Koki Co Ltd Power tool
US20140094681A1 (en) 2012-10-02 2014-04-03 Covidien Lp System for navigating surgical instruments adjacent tissue of interest
US9526564B2 (en) 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
US10842357B2 (en) 2012-10-10 2020-11-24 Moskowitz Family Llc Endoscopic surgical system
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9364217B2 (en) 2012-10-16 2016-06-14 Covidien Lp In-situ loaded stapler
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US10478182B2 (en) 2012-10-18 2019-11-19 Covidien Lp Surgical device identification
US20140115229A1 (en) 2012-10-19 2014-04-24 Lsi Corporation Method and system to reduce system boot loader download time for spi based flash memories
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9265585B2 (en) 2012-10-23 2016-02-23 Covidien Lp Surgical instrument with rapid post event detection
USD686240S1 (en) 2012-10-25 2013-07-16 Advanced Mediwatch Co., Ltd. Display screen with graphical user interface for a sports device
WO2014065066A1 (en) 2012-10-26 2014-05-01 Totsu Katsuyuki Automatic screw tightening control method and device
US9368991B2 (en) 2012-10-30 2016-06-14 The Board Of Trustees Of The University Of Alabama Distributed battery power electronics architecture and control
JP5154710B1 (en) 2012-11-01 2013-02-27 株式会社テクノプロジェクト Medical image exchange system, image relay server, medical image transmission system, and medical image reception system
JP6364013B2 (en) 2012-11-02 2018-07-25 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Self-conflict drive for medical devices
US9192384B2 (en) 2012-11-09 2015-11-24 Covidien Lp Recessed groove for better suture retention
US20140131418A1 (en) 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
EP2923656A4 (en) 2012-11-20 2016-07-13 Olympus Corp Tissue ablation apparatus
WO2014081411A1 (en) 2012-11-20 2014-05-30 West Pharmaceuticals Services, Inc. System and method to distribute power to both an inertial device and a voltage sensitive device from a single current limited power source
USD748668S1 (en) 2012-11-23 2016-02-02 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
CN103829981A (en) 2012-11-26 2014-06-04 天津瑞贝精密机械技术研发有限公司 Electric endoscope anastomat
CN103841802B (en) 2012-11-27 2017-04-05 华硕电脑股份有限公司 Electronic installation
US9289207B2 (en) 2012-11-29 2016-03-22 Ethicon Endo-Surgery, Llc Surgical staple with integral pledget for tip deflection
US9295466B2 (en) 2012-11-30 2016-03-29 Covidien Lp Surgical apparatus including surgical buttress
US9681936B2 (en) 2012-11-30 2017-06-20 Covidien Lp Multi-layer porous film material
USD729274S1 (en) 2012-11-30 2015-05-12 Google Inc. Portion of a display screen with icon
US9566062B2 (en) 2012-12-03 2017-02-14 Ethicon Endo-Surgery, Llc Surgical instrument with secondary jaw closure feature
KR102076233B1 (en) 2012-12-05 2020-02-11 가부시키가이샤 아이피솔루션즈 Facility-management-system control interface
US20140158747A1 (en) 2012-12-06 2014-06-12 Ethicon Endo-Surgery, Inc. Surgical stapler with varying staple widths along different circumferences
US9050100B2 (en) 2012-12-10 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical instrument with feedback at end effector
US9445808B2 (en) 2012-12-11 2016-09-20 Ethicon Endo-Surgery, Llc Electrosurgical end effector with tissue tacking features
US8815594B2 (en) 2012-12-12 2014-08-26 Southwest Research Institute Hybrid tissue scaffold for tissue engineering
US9402627B2 (en) 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
US9173655B2 (en) 2012-12-13 2015-11-03 Ethicon Endo-Surgery, Inc. Needle driver and pawl mechanism for circular needle applier
CN102973300B (en) 2012-12-13 2014-10-15 常州市新能源吻合器总厂有限公司 Tissue clamping member of linear cutting anastomat and nail granary of tissue clamping member
KR101484208B1 (en) 2012-12-14 2015-01-21 현대자동차 주식회사 The motor velocity compensating device of the fuel cell vehicle and sensor, the motor velocity compensating method thereof
WO2014096989A1 (en) 2012-12-17 2014-06-26 Koninklijke Philips N.V. A device and method for preparing extrudable food products
US10029108B2 (en) 2012-12-17 2018-07-24 Koninklijke Philips N.V. Adaptive self-testing and stress analysis of medical devices
US9445816B2 (en) 2012-12-17 2016-09-20 Ethicon Endo-Surgery, Llc Circular stapler with selectable motorized and manual control
USD741895S1 (en) 2012-12-18 2015-10-27 2236008 Ontario Inc. Display screen or portion thereof with graphical user interface
CN103860225B (en) 2012-12-18 2016-03-09 苏州天臣国际医疗科技有限公司 Linear seam cutting device
CN103860221B (en) 2012-12-18 2016-08-17 苏州天臣国际医疗科技有限公司 Linear stapling cutter nail-head component
AU2013266989A1 (en) 2012-12-19 2014-07-03 Covidien Lp Buttress attachment to the cartridge surface
US9470297B2 (en) 2012-12-19 2016-10-18 Covidien Lp Lower anterior resection 90 degree instrument
US9566065B2 (en) 2012-12-21 2017-02-14 Cardica, Inc. Apparatus and methods for surgical stapler clamping and deployment
US9099922B2 (en) 2012-12-21 2015-08-04 Silicon Laboratories Inc. System and method for adaptive current limit of a switching regulator
JP6024446B2 (en) 2012-12-22 2016-11-16 日立工機株式会社 Impact tools
DE102012025393A1 (en) 2012-12-24 2014-06-26 Festool Group Gmbh & Co. Kg Electric device in the form of a hand-held machine tool or a suction device
US20140181710A1 (en) 2012-12-26 2014-06-26 Harman International Industries, Incorporated Proximity location system
US9614258B2 (en) 2012-12-28 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
CN103908313A (en) 2012-12-29 2014-07-09 苏州天臣国际医疗科技有限公司 Surgical operating instrument
US9498215B2 (en) 2012-12-31 2016-11-22 Intuitive Surgical Operations, Inc. Surgical staple cartridge with enhanced knife clearance
GB2509523A (en) 2013-01-07 2014-07-09 Anish Kumar Mampetta Surgical instrument with flexible members and a motor
USD750129S1 (en) 2013-01-09 2016-02-23 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US9204881B2 (en) 2013-01-11 2015-12-08 Covidien Lp Buttress retainer for EEA anvil
US9522003B2 (en) 2013-01-14 2016-12-20 Intuitive Surgical Operations, Inc. Clamping instrument
US9675354B2 (en) 2013-01-14 2017-06-13 Intuitive Surgical Operations, Inc. Torque compensation
US10265090B2 (en) 2013-01-16 2019-04-23 Covidien Lp Hand held electromechanical surgical system including battery compartment diagnostic display
MX364730B (en) 2013-01-18 2019-05-06 Ethicon Endo Surgery Inc Motorized surgical instrument.
US9345480B2 (en) 2013-01-18 2016-05-24 Covidien Lp Surgical instrument and cartridge members for use therewith
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
US20140207124A1 (en) 2013-01-23 2014-07-24 Ethicon Endo-Surgery, Inc. Surgical instrument with selectable integral or external power source
US9433420B2 (en) 2013-01-23 2016-09-06 Covidien Lp Surgical apparatus including surgical buttress
CN104936746B (en) 2013-01-24 2017-06-09 日立工机株式会社 Electric tool
US10918364B2 (en) 2013-01-24 2021-02-16 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
US9241758B2 (en) 2013-01-25 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with blade compliant along vertical cutting edge plane
US9149325B2 (en) 2013-01-25 2015-10-06 Ethicon Endo-Surgery, Inc. End effector with compliant clamping jaw
US20140209658A1 (en) 2013-01-25 2014-07-31 Covidien Lp Foam application to stapling device
US9610114B2 (en) 2013-01-29 2017-04-04 Ethicon Endo-Surgery, Llc Bipolar electrosurgical hand shears
JP6033698B2 (en) 2013-02-01 2016-11-30 株式会社マキタ Electric tool
US9028510B2 (en) 2013-02-01 2015-05-12 Olympus Medical Systems Corp. Tissue excision method
DE102013101158A1 (en) 2013-02-06 2014-08-07 Karl Storz Gmbh & Co. Kg Medical device e.g. endoscope, for forming medical system to perform diagnostic or therapeutic surgeries for patient, has signaling device producing viewable, audible or instruction signal to medical elements with coupling mode
US20140224857A1 (en) 2013-02-08 2014-08-14 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a compressible portion
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
RU2663489C2 (en) 2013-02-08 2018-08-06 Этикон Эндо-Серджери, Инк. Staple cartridge comprising a releasable cover
JP6293793B2 (en) 2013-02-08 2018-03-14 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical end effector having a removable material layer and the same material layer
CA2900330C (en) 2013-02-08 2020-12-22 Ethicon Endo-Surgery, Inc. Multiple thickness implantable layers for surgical stapling devices
JP5733332B2 (en) 2013-02-13 2015-06-10 株式会社豊田自動織機 Battery module
USD759063S1 (en) 2013-02-14 2016-06-14 Healthmate International, LLC Display screen with graphical user interface for an electrotherapy device
US10231728B2 (en) 2013-02-15 2019-03-19 Surgimatix, Inc. Medical fastening device
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US20140239047A1 (en) 2013-02-28 2014-08-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US9186142B2 (en) 2013-02-28 2015-11-17 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US9795379B2 (en) 2013-02-28 2017-10-24 Ethicon Llc Surgical instrument with multi-diameter shaft
US9867615B2 (en) 2013-02-28 2018-01-16 Ethicon Llc Surgical instrument with articulation lock having a detenting binary spring
US9808248B2 (en) 2013-02-28 2017-11-07 Ethicon Llc Installation features for surgical instrument end effector cartridge
US9517065B2 (en) 2013-02-28 2016-12-13 Ethicon Endo-Surgery, Llc Integrated tissue positioning and jaw alignment features for surgical stapler
US9717497B2 (en) 2013-02-28 2017-08-01 Ethicon Llc Lockout feature for movable cutting member of surgical instrument
US9839421B2 (en) 2013-02-28 2017-12-12 Ethicon Llc Jaw closure feature for end effector of surgical instrument
US10092292B2 (en) * 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US9622746B2 (en) 2013-02-28 2017-04-18 Ethicon Endo-Surgery, Llc Distal tip features for end effector of surgical instrument
MX368026B (en) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Articulatable surgical instruments with conductive pathways for signal communication.
JP2014194211A (en) 2013-03-01 2014-10-09 Aisan Ind Co Ltd Electric vacuum pump
BR112015021082B1 (en) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc surgical instrument
RU2663713C2 (en) 2013-03-01 2018-08-08 Этикон Эндо-Серджери, Инк. Rotary powered surgical instruments with multiple degrees of freedom
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9483095B2 (en) 2013-03-04 2016-11-01 Abbott Medical Optics Inc. Apparatus and method for providing a modular power supply with multiple adjustable output voltages
US10561432B2 (en) 2013-03-05 2020-02-18 Covidien Lp Pivoting screw for use with a pair of jaw members of a surgical instrument
AU2014200501B2 (en) 2013-03-07 2017-08-24 Covidien Lp Powered surgical stapling device
US9839481B2 (en) 2013-03-07 2017-12-12 Intuitive Surgical Operations, Inc. Hybrid manual and robotic interventional instruments and methods of use
US9706993B2 (en) 2013-03-08 2017-07-18 Covidien Lp Staple cartridge with shipping wedge
RU2675082C2 (en) 2013-03-12 2018-12-14 Этикон Эндо-Серджери, Инк. Powered surgical instruments with firing system lockout arrangements
USD711905S1 (en) 2013-03-12 2014-08-26 Arthrocare Corporation Display screen for electrosurgical controller with graphical user interface
US9936951B2 (en) 2013-03-12 2018-04-10 Covidien Lp Interchangeable tip reload
US9566064B2 (en) 2013-03-13 2017-02-14 Covidien Lp Surgical stapling apparatus
US9814463B2 (en) 2013-03-13 2017-11-14 Covidien Lp Surgical stapling apparatus
US9629628B2 (en) 2013-03-13 2017-04-25 Covidien Lp Surgical stapling apparatus
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
EP3135225B1 (en) 2013-03-13 2019-08-14 Covidien LP Surgical stapling apparatus
US9254170B2 (en) 2013-03-13 2016-02-09 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having modular subassembly
US9717498B2 (en) 2013-03-13 2017-08-01 Covidien Lp Surgical stapling apparatus
US9352071B2 (en) 2013-03-14 2016-05-31 Ethicon, Inc. Method of forming an implantable device
US9592056B2 (en) 2013-03-14 2017-03-14 Covidien Lp Powered stapling apparatus
EP2967564B1 (en) 2013-03-14 2018-09-12 Applied Medical Resources Corporation Surgical stapler with partial pockets
US9655613B2 (en) 2013-03-14 2017-05-23 Dextera Surgical Inc. Beltless staple chain for cartridge and cartridgeless surgical staplers
US20140276730A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Surgical instrument with reinforced articulation section
JP6114583B2 (en) 2013-03-14 2017-04-12 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Medical manipulator
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9867620B2 (en) 2013-03-14 2018-01-16 Covidien Lp Articulation joint for apparatus for endoscopic procedures
US10314559B2 (en) 2013-03-14 2019-06-11 Inneroptic Technology, Inc. Medical device guidance
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9722236B2 (en) 2013-03-15 2017-08-01 General Atomics Apparatus and method for use in storing energy
CN105358085A (en) 2013-03-15 2016-02-24 特拉科手术公司 On-board tool tracking system and methods of computer assisted surgery
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
ES2728023T3 (en) 2013-03-15 2019-10-21 Applied Med Resources Surgical stapler with rotating shaft drive mechanism
US10303851B2 (en) 2013-03-15 2019-05-28 Md24 Patent Technology, Llc Physician-centric health care delivery platform
US20140263558A1 (en) 2013-03-15 2014-09-18 Cardica, Inc. Extended curved tip for surgical apparatus
KR102257034B1 (en) 2013-03-15 2021-05-28 에스알아이 인터내셔널 Hyperdexterous surgical system
WO2014151852A1 (en) 2013-03-15 2014-09-25 Somark Innovations, Inc. Microelectronic animal identification
US9615816B2 (en) 2013-03-15 2017-04-11 Vidacare LLC Drivers and drive systems
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
US8961191B2 (en) 2013-03-15 2015-02-24 Garmin Switzerland Gmbh Electrical connector for pedal spindle
EP2976033A4 (en) 2013-03-19 2016-12-14 Surgisense Corp Apparatus, systems and methods for determining tissue oxygenation
US9306263B2 (en) 2013-03-19 2016-04-05 Texas Instruments Incorporated Interface between an integrated circuit and a dielectric waveguide using a dipole antenna and a reflector
FR3003660B1 (en) 2013-03-22 2016-06-24 Schneider Electric Ind Sas MAN-MACHINE DIALOGUE SYSTEM
US9510827B2 (en) 2013-03-25 2016-12-06 Covidien Lp Micro surgical instrument and loading unit for use therewith
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US20140291379A1 (en) 2013-03-27 2014-10-02 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a cutting member path
US20140303660A1 (en) 2013-04-04 2014-10-09 Elwha Llc Active tremor control in surgical instruments
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US10258322B2 (en) 2013-04-17 2019-04-16 Maruho Medical, Inc. Method and apparatus for passing suture
ITMI20130666A1 (en) 2013-04-23 2014-10-24 Valuebiotech S R L ROBOT STRUCTURE, PARTICULARLY FOR MINI-INVASIVE SURGERY THROUGH SINGLE PARIETAL ENGRAVING OR NATURAL ORIFICE.
WO2014175894A1 (en) 2013-04-25 2014-10-30 Cardica, Inc. Active wedge and i-beam for surgical stapler
JP2016516534A (en) 2013-04-25 2016-06-09 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical instrument control input visualization field
KR20140129702A (en) 2013-04-30 2014-11-07 삼성전자주식회사 Surgical robot system and method for controlling the same
USD741882S1 (en) 2013-05-01 2015-10-27 Viber Media S.A.R.L. Display screen or a portion thereof with graphical user interface
US20140330298A1 (en) 2013-05-03 2014-11-06 Ethicon Endo-Surgery, Inc. Clamp arm features for ultrasonic surgical instrument
US9956677B2 (en) 2013-05-08 2018-05-01 Black & Decker Inc. Power tool with interchangeable power heads
US9687233B2 (en) 2013-05-09 2017-06-27 Dextera Surgical Inc. Surgical stapling and cutting apparatus—deployment mechanisms, systems and methods
US9237900B2 (en) 2013-05-10 2016-01-19 Ethicon Endo-Surgery, Inc. Surgical instrument with split jaw
NZ714965A (en) 2013-05-10 2019-01-25 Juicero Inc Juicing systems and methods
WO2014186632A1 (en) 2013-05-15 2014-11-20 Cardica, Inc. Surgical stapling and cutting apparatus, clamp mechanisms, systems and methods
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9240740B2 (en) 2013-05-30 2016-01-19 The Boeing Company Active voltage controller for an electric motor
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
US10722292B2 (en) 2013-05-31 2020-07-28 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US9504520B2 (en) 2013-06-06 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instrument with modular motor
USD742893S1 (en) 2013-06-09 2015-11-10 Apple Inc. Display screen or portion thereof with graphical user interface
USD742894S1 (en) 2013-06-10 2015-11-10 Apple Inc. Display screen or portion thereof with graphical user interface
USD740851S1 (en) 2013-06-10 2015-10-13 Apple Inc. Display screen or portion thereof with icon
DE102013106277A1 (en) 2013-06-17 2014-12-18 Aesculap Ag Surgical clip applicator
US20140367445A1 (en) 2013-06-18 2014-12-18 Covidien Lp Emergency retraction for electro-mechanical surgical devices and systems
US10117654B2 (en) 2013-06-18 2018-11-06 Covidien Lp Method of emergency retraction for electro-mechanical surgical devices and systems
TWM473838U (en) 2013-06-19 2014-03-11 Mouldex Co Ltd Rotary medical connector
CN203328751U (en) 2013-06-20 2013-12-11 瑞奇外科器械(中国)有限公司 Surgical operating instrument and driving device thereof
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9668730B2 (en) 2013-06-28 2017-06-06 Covidien Lp Articulating apparatus for endoscopic procedures with timing system
US9351728B2 (en) 2013-06-28 2016-05-31 Covidien Lp Articulating apparatus for endoscopic procedures
US9358004B2 (en) 2013-06-28 2016-06-07 Covidien Lp Articulating apparatus for endoscopic procedures
US10085746B2 (en) 2013-06-28 2018-10-02 Covidien Lp Surgical instrument including rotating end effector and rotation-limiting structure
WO2015002850A1 (en) 2013-07-05 2015-01-08 Rubin Jacob A Whole-body human-computer interface
US9757129B2 (en) 2013-07-08 2017-09-12 Covidien Lp Coupling member configured for use with surgical devices
KR101550600B1 (en) 2013-07-10 2015-09-07 현대자동차 주식회사 Hydraulic circuit for automatic transmission
US9750503B2 (en) 2013-07-11 2017-09-05 Covidien Lp Methods and devices for performing a surgical anastomosis
JP6157258B2 (en) 2013-07-26 2017-07-05 オリンパス株式会社 Manipulator and manipulator system
USD757028S1 (en) 2013-08-01 2016-05-24 Palantir Technologies Inc. Display screen or portion thereof with graphical user interface
US10828089B2 (en) 2013-08-02 2020-11-10 Biosense Webster (Israel) Ltd. Catheter with improved irrigated tip electrode having two-piece construction, and method of manufacturing therefor
USD749623S1 (en) 2013-08-07 2016-02-16 Robert Bosch Gmbh Display screen with an animated graphical user interface
CN104337556B (en) 2013-08-09 2016-07-13 瑞奇外科器械(中国)有限公司 Curved rotation control apparatus and surgical operating instrument
CN103391037B (en) 2013-08-13 2016-01-20 山东大学 Based on the chaos mixing control system that ARM single-chip microcomputer chaotic maps controls
US9597074B2 (en) 2013-08-15 2017-03-21 Ethicon Endo-Surgery, Llc Endoluminal stapler with rotating wheel cam for multi-staple firing
US9561029B2 (en) 2013-08-15 2017-02-07 Ethicon Endo-Surgery, Llc Surgical stapler with rolling anvil
US9636112B2 (en) 2013-08-16 2017-05-02 Covidien Lp Chip assembly for reusable surgical instruments
JP6090576B2 (en) 2013-08-19 2017-03-08 日立工機株式会社 Electric tool
CN106028966B (en) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 For the firing member restoring device of powered surgical instrument
US20150053737A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. End effector detection systems for surgical instruments
CN105658154B (en) 2013-08-23 2019-04-26 伊西康内外科有限责任公司 Boosting battery for powered surgical instrument constructs
WO2015025493A1 (en) 2013-08-23 2015-02-26 日本電産コパル電子株式会社 Damping mechanism
US9662108B2 (en) 2013-08-30 2017-05-30 Covidien Lp Surgical stapling apparatus
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
USD740414S1 (en) 2013-08-30 2015-10-06 Karl Storz Gmbh & Co. Kg Operation handle for medical manipulator system
WO2015032797A1 (en) 2013-09-03 2015-03-12 Frank Wenger Intraluminal stapler
US9220508B2 (en) 2013-09-06 2015-12-29 Ethicon Endo-Surgery, Inc. Surgical clip applier with articulation section
WO2015035178A2 (en) 2013-09-06 2015-03-12 Brigham And Women's Hospital, Inc. System and method for a tissue resection margin measurement device
CN104422849A (en) 2013-09-09 2015-03-18 南京南瑞继保电气有限公司 Short circuit simulation test circuit and test method thereof
USD751082S1 (en) 2013-09-13 2016-03-08 Airwatch Llc Display screen with a graphical user interface for an email application
US20140018832A1 (en) 2013-09-13 2014-01-16 Ethicon Endo-Surgery, Inc. Method For Applying A Surgical Clip Having A Compliant Portion
US20140014707A1 (en) 2013-09-16 2014-01-16 Ethicon Endo-Surgery, Inc. Surgical Stapling Instrument Having An Improved Coating
US20140014704A1 (en) 2013-09-16 2014-01-16 Ethicon Endo-Surgery, Inc. Medical Device Having An Improved Coating
US9955966B2 (en) 2013-09-17 2018-05-01 Covidien Lp Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US10172636B2 (en) 2013-09-17 2019-01-08 Ethicon Llc Articulation features for ultrasonic surgical instrument
US20150076211A1 (en) 2013-09-17 2015-03-19 Covidien Lp Surgical instrument controls with illuminated feedback
CN103505264B (en) 2013-09-18 2015-06-24 大连理工大学 Minimally invasive surgical instrument for treating thoracolumbar spine burst fracture through vertebral pedicle tunnel
US10271840B2 (en) 2013-09-18 2019-04-30 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US9642642B2 (en) 2013-09-20 2017-05-09 Kok Hoo LIM Guide tip introducer and method to create thereof
USD768152S1 (en) 2013-09-20 2016-10-04 ACCO Brands Corporation Display screen including a graphical user interface
US20150088547A1 (en) 2013-09-22 2015-03-26 Ricoh Company, Ltd. Mobile Information Gateway for Home Healthcare
US9907552B2 (en) 2013-09-23 2018-03-06 Ethicon Llc Control features for motorized surgical stapling instrument
US10478189B2 (en) 2015-06-26 2019-11-19 Ethicon Llc Method of applying an annular array of staples to tissue
US9936949B2 (en) 2013-09-23 2018-04-10 Ethicon Llc Surgical stapling instrument with drive assembly having toggle features
US20180132849A1 (en) 2016-11-14 2018-05-17 Ethicon Endo-Surgery, Llc Staple forming pocket configurations for circular surgical stapler anvil
CN203564285U (en) 2013-09-23 2014-04-30 瑞奇外科器械(中国)有限公司 End effector, surgical operating instrument and purse-string clamp
CN203564287U (en) 2013-09-23 2014-04-30 瑞奇外科器械(中国)有限公司 End effector, surgical operating instrument and purse-string forceps
US20150082624A1 (en) 2013-09-24 2015-03-26 Covidien Lp Aseptic bag to encapsulate an energy source of a surgical instrument
US9392885B2 (en) 2013-09-24 2016-07-19 Marketing Impact Limited Modular manual lift dispenser security systems and methods for assembling, manufacturing and/or utilizing said security systems
US20150088127A1 (en) 2013-09-24 2015-03-26 Covidien Lp Aseptic bag to encapsulate an energy source of a surgical instrument
US20150087952A1 (en) 2013-09-24 2015-03-26 Alivecor, Inc. Smartphone and ecg device microbial shield
WO2015047573A1 (en) 2013-09-25 2015-04-02 Covidien Lp Surgical instrument with magnetic sensor
WO2015046349A1 (en) 2013-09-27 2015-04-02 オリンパスメディカルシステムズ株式会社 Treatment tool and treatment system
US20140175150A1 (en) 2013-10-01 2014-06-26 Ethicon Endo-Surgery, Inc. Providing Near Real Time Feedback To A User of A Surgical Instrument
USD749128S1 (en) 2013-10-04 2016-02-09 Microsoft Corporation Display screen with icon
CN104580654B (en) 2013-10-09 2019-05-10 中兴通讯股份有限公司 A kind of method of terminal and electronics waterproof
JP2016530968A (en) 2013-10-10 2016-10-06 ジャイラス エーシーエムアイ インク Laparoscopic forceps assembly
US9295565B2 (en) 2013-10-18 2016-03-29 Spine Wave, Inc. Method of expanding an intradiscal space and providing an osteoconductive path during expansion
CN203597997U (en) 2013-10-31 2014-05-21 山东威瑞外科医用制品有限公司 Nail bin of anastomat and anastomat
US11504346B2 (en) 2013-11-03 2022-11-22 Arizona Board Of Regents On Behalf Of The University Of Arizona Redox-activated pro-chelators
DE102013018499B3 (en) 2013-11-04 2014-12-24 Wagner GmbH Fabrik für medizinische Geräte Ventilation valve arrangement for a vacuum sterilizing container
US9936950B2 (en) 2013-11-08 2018-04-10 Ethicon Llc Hybrid adjunct materials for use in surgical stapling
US20150134077A1 (en) 2013-11-08 2015-05-14 Ethicon Endo-Surgery, Inc. Sealing materials for use in surgical stapling
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
USD746459S1 (en) 2013-11-14 2015-12-29 Karl Storz Gmbh & Co. Kg Laparoscopic vacuum grasper
US9907600B2 (en) 2013-11-15 2018-03-06 Ethicon Llc Ultrasonic anastomosis instrument with piezoelectric sealing head
WO2015076780A1 (en) 2013-11-19 2015-05-28 Perfecseal, Inc A vented rigid gas sterilization packaging tray
US10368892B2 (en) 2013-11-22 2019-08-06 Ethicon Llc Features for coupling surgical instrument shaft assembly with instrument body
CN104682792B (en) 2013-11-27 2020-01-31 德昌电机(深圳)有限公司 Direct current motor control circuit
EP2878274A1 (en) 2013-12-02 2015-06-03 Ethicon Endo-Surgery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US10264995B2 (en) 2013-12-04 2019-04-23 Obalon Therapeutics, Inc. Systems and methods for locating and/or characterizing intragastric devices
USD750122S1 (en) 2013-12-04 2016-02-23 Medtronic, Inc. Display screen or portion thereof with graphical user interface
USD746854S1 (en) 2013-12-04 2016-01-05 Medtronic, Inc. Display screen or portion thereof with graphical user interface
ES2755485T3 (en) 2013-12-09 2020-04-22 Covidien Lp Adapter assembly for the interconnection of electromechanical surgical devices and surgical load units, and surgical systems thereof
CN105813582B (en) 2013-12-11 2019-05-28 柯惠Lp公司 Wrist units and clamp assemblies for robotic surgical system
US9782193B2 (en) 2013-12-11 2017-10-10 Medos International Sàrl Tissue shaving device having a fluid removal path
CN105813580B (en) 2013-12-12 2019-10-15 柯惠Lp公司 Gear train for robotic surgical system
WO2015095333A1 (en) 2013-12-17 2015-06-25 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
USD744528S1 (en) 2013-12-18 2015-12-01 Aliphcom Display screen or portion thereof with animated graphical user interface
USD769930S1 (en) 2013-12-18 2016-10-25 Aliphcom Display screen or portion thereof with animated graphical user interface
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9687232B2 (en) 2013-12-23 2017-06-27 Ethicon Llc Surgical staples
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US20150173789A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable shaft arrangements
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
USD775336S1 (en) 2013-12-23 2016-12-27 Ethicon Endo-Surgery, Llc Surgical fastener
WO2015099067A1 (en) 2013-12-27 2015-07-02 オリンパス株式会社 Treatment tool handle and treatment tool
CN203736251U (en) 2013-12-30 2014-07-30 瑞奇外科器械(中国)有限公司 Support of flexible driving element, end effector and surgical operating instrument
CN103750872B (en) 2013-12-31 2016-05-11 苏州天臣国际医疗科技有限公司 Straight line stitching instrument cutter sweep
CN103690212B (en) 2013-12-31 2015-08-12 上海创亿医疗器械技术有限公司 There is the surgical linear anastomat from changing cutter function
US20150201918A1 (en) 2014-01-02 2015-07-23 Osseodyne Surgical Solutions, Llc Surgical Handpiece
CN203693685U (en) 2014-01-09 2014-07-09 杨宗德 High-speed automatic stop vertebral plate drill
US9655616B2 (en) 2014-01-22 2017-05-23 Covidien Lp Apparatus for endoscopic procedures
US9629627B2 (en) 2014-01-28 2017-04-25 Coviden Lp Surgical apparatus
US9700312B2 (en) 2014-01-28 2017-07-11 Covidien Lp Surgical apparatus
US9802033B2 (en) 2014-01-28 2017-10-31 Ethicon Llc Surgical devices having controlled tissue cutting and sealing
CN203815517U (en) 2014-01-29 2014-09-10 上海创亿医疗器械技术有限公司 Surgical anastomotic nail forming groove with nail bending groove
US9936952B2 (en) 2014-02-03 2018-04-10 Covidien Lp Introducer assembly for a surgical fastener applying apparatus
US10213266B2 (en) 2014-02-07 2019-02-26 Covidien Lp Robotic surgical assemblies and adapter assemblies thereof
USD787548S1 (en) 2014-02-10 2017-05-23 What Watch Ag Display screen or portion thereof with animated graphical user interface
USD758433S1 (en) 2014-02-11 2016-06-07 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US11090109B2 (en) 2014-02-11 2021-08-17 Covidien Lp Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US10420607B2 (en) 2014-02-14 2019-09-24 Arthrocare Corporation Methods and systems related to an electrosurgical controller
US9974541B2 (en) 2014-02-14 2018-05-22 Covidien Lp End stop detection
US9707005B2 (en) 2014-02-14 2017-07-18 Ethicon Llc Lockout mechanisms for surgical devices
WO2015123699A1 (en) 2014-02-17 2015-08-20 Children's National Medical Center Method and system for providing recommendation for optimal execution of surgical procedures
JP6218634B2 (en) 2014-02-20 2017-10-25 オリンパス株式会社 ENDOSCOPE SYSTEM AND ENDOSCOPE OPERATING METHOD
CN106028930B (en) 2014-02-21 2021-10-22 3D集成公司 Kit comprising a surgical instrument
USD756373S1 (en) 2014-02-21 2016-05-17 Aliphcom Display screen or portion thereof with graphical user interface
US9301691B2 (en) 2014-02-21 2016-04-05 Covidien Lp Instrument for optically detecting tissue attributes
CN111481245A (en) 2014-02-21 2020-08-04 直观外科手术操作公司 Articulatable members with constrained motion and related apparatus and methods
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
USD755196S1 (en) 2014-02-24 2016-05-03 Kennedy-Wilson, Inc. Display screen or portion thereof with graphical user interface
BR112016019398B1 (en) 2014-02-24 2022-11-29 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE AND FASTENER CARTRIDGE
US20150238118A1 (en) 2014-02-27 2015-08-27 Biorasis, Inc. Detection of the spatial location of an implantable biosensing platform and method thereof
CN103829983A (en) 2014-03-07 2014-06-04 常州威克医疗器械有限公司 Anti-skid cartridge with different staple heights
WO2015134755A2 (en) 2014-03-07 2015-09-11 Ubiquiti Networks, Inc. Devices and methods for networked living and work spaces
WO2015138708A1 (en) 2014-03-12 2015-09-17 Proximed, Llc Surgical guidance systems, devices, and methods
US9861261B2 (en) 2014-03-14 2018-01-09 Hrayr Karnig Shahinian Endoscope system and method of operation thereof
WO2015137040A1 (en) 2014-03-14 2015-09-17 ソニー株式会社 Robot arm device, robot arm control method and program
JP6623167B2 (en) 2014-03-17 2019-12-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for verifying disk engagement
KR102456408B1 (en) 2014-03-17 2022-10-20 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Surgical cannula mounts and related systems and methods
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
AU2015232988A1 (en) 2014-03-20 2016-11-10 Stepwise Ltd Convertible surgical tissue staplers and applications using thereof
JP6204858B2 (en) 2014-03-25 2017-09-27 富士フイルム株式会社 Touch panel module and electronic device
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112016021800B1 (en) 2014-03-26 2022-07-26 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT SET
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US20180132850A1 (en) 2014-03-26 2018-05-17 Ethicon Llc Surgical instrument comprising a sensor system
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US10130382B2 (en) 2014-03-27 2018-11-20 Medtronic Xomed, Inc. Powered surgical handpiece having a surgical tool with an RFID tag
CN111184577A (en) 2014-03-28 2020-05-22 直观外科手术操作公司 Quantitative three-dimensional visualization of an instrument in a field of view
US9724096B2 (en) 2014-03-29 2017-08-08 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
AU2015241267A1 (en) 2014-03-29 2016-10-20 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US9549750B2 (en) 2014-03-31 2017-01-24 Ethicon Endo-Surgery, Llc Surgical devices with articulating end effectors and methods of using surgical devices with articulating end effectors
US9757126B2 (en) 2014-03-31 2017-09-12 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US10610313B2 (en) 2014-03-31 2020-04-07 Intuitive Surgical Operations, Inc. Surgical instrument with shiftable transmission
US10420577B2 (en) 2014-03-31 2019-09-24 Covidien Lp Apparatus and method for tissue thickness sensing
WO2015151098A2 (en) 2014-04-02 2015-10-08 M.S.T. Medical Surgery Technologies Ltd. An articulated structured light based-laparoscope
US9675405B2 (en) 2014-04-08 2017-06-13 Ethicon Llc Methods and devices for controlling motorized surgical devices
JP6654623B2 (en) 2014-04-08 2020-02-26 アキュイティバイオ コーポレーション Delivery system for placing and gluing a surgical mesh or surgical buttress over a resection edge
US9980769B2 (en) 2014-04-08 2018-05-29 Ethicon Llc Methods and devices for controlling motorized surgical devices
US9918730B2 (en) 2014-04-08 2018-03-20 Ethicon Llc Methods and devices for controlling motorized surgical devices
WO2015154188A1 (en) 2014-04-09 2015-10-15 The University Of British Columbia Drill cover and chuck mechanism
US10105126B2 (en) 2014-04-09 2018-10-23 Lsi Solutions, Inc. Self-articulating joint for a minimally invasive surgical apparatus
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US11055980B2 (en) 2014-04-16 2021-07-06 Murata Vios, Inc. Patient care and health information management systems and methods
CN106456159B (en) 2014-04-16 2019-03-08 伊西康内外科有限责任公司 Fastener cartridge assembly and nail retainer lid arragement construction
BR112016023698B1 (en) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
DE102015201574A1 (en) 2014-04-17 2015-10-22 Robert Bosch Gmbh battery device
USD756377S1 (en) 2014-04-17 2016-05-17 Google Inc. Portion of a display panel with an animated computer icon
US20150297200A1 (en) 2014-04-17 2015-10-22 Covidien Lp End of life transmission system for surgical instruments
US10164466B2 (en) 2014-04-17 2018-12-25 Covidien Lp Non-contact surgical adapter electrical interface
US10080552B2 (en) 2014-04-21 2018-09-25 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9668733B2 (en) 2014-04-21 2017-06-06 Covidien Lp Stapling device with features to prevent inadvertent firing of staples
US10258363B2 (en) 2014-04-22 2019-04-16 Ethicon Llc Method of operating an articulating ultrasonic surgical instrument
WO2015161677A1 (en) 2014-04-22 2015-10-29 Bio-Medical Engineering (HK) Limited Single access surgical robotic devices and systems, and methods of configuring single access surgical robotic devices and systems
US9855108B2 (en) 2014-04-22 2018-01-02 Bio-Medical Engineering (HK) Limited Robotic devices and systems for performing single incision procedures and natural orifice translumenal endoscopic surgical procedures, and methods of configuring robotic devices and systems
US10133248B2 (en) 2014-04-28 2018-11-20 Covidien Lp Systems and methods for determining an end of life state for surgical devices
CN106456202A (en) 2014-04-30 2017-02-22 范德比尔特大学 Surgical grasper
USD786280S1 (en) 2014-05-01 2017-05-09 Beijing Qihoo Technology Company Limited Display screen with a graphical user interface
US10175127B2 (en) 2014-05-05 2019-01-08 Covidien Lp End-effector force measurement drive circuit
US9872722B2 (en) 2014-05-05 2018-01-23 Covidien Lp Wake-up system and method for powered surgical instruments
US9861366B2 (en) 2014-05-06 2018-01-09 Covidien Lp Ejecting assembly for a surgical stapler
US20150324317A1 (en) 2014-05-07 2015-11-12 Covidien Lp Authentication and information system for reusable surgical instruments
US9675368B2 (en) 2014-05-07 2017-06-13 Stmicroelectronics Asia Pacific Pte Ltd. Touch panel scanning method, circuit and system
USD754679S1 (en) 2014-05-08 2016-04-26 Express Scripts, Inc. Display screen with a graphical user interface
CN103981635B (en) 2014-05-09 2017-01-11 浙江省纺织测试研究院 Preparation method of porous fiber non-woven fabric
CN106687052B (en) 2014-05-15 2019-12-10 柯惠Lp公司 Surgical fastener applying apparatus
JP2015217112A (en) 2014-05-16 2015-12-07 キヤノン株式会社 Movable type radiographic device and movable type radiation generation device
US9668734B2 (en) 2014-05-16 2017-06-06 Covidien Lp In-situ loaded stapler
US9901341B2 (en) 2014-05-16 2018-02-27 Covidien Lp Surgical instrument
JP1517663S (en) 2014-05-30 2015-02-16
USD771112S1 (en) 2014-06-01 2016-11-08 Apple Inc. Display screen or portion thereof with graphical user interface
WO2015187107A1 (en) 2014-06-05 2015-12-10 Eae Elektri̇k Asansör Endüstri̇si̇ İnşaat Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Rotary connection mechanism carrying cable in the wind turbines
CN104027145B (en) 2014-06-06 2016-07-06 山东威瑞外科医用制品有限公司 Anti-misoperation type Endo-GIA
US10251725B2 (en) 2014-06-09 2019-04-09 Covidien Lp Authentication and information system for reusable surgical instruments
US10172611B2 (en) 2014-06-10 2019-01-08 Ethicon Llc Adjunct materials and methods of using same in surgical methods for tissue sealing
US9924946B2 (en) 2014-06-10 2018-03-27 Ethicon Llc Devices and methods for sealing staples in tissue
US9848871B2 (en) 2014-06-10 2017-12-26 Ethicon Llc Woven and fibrous materials for reinforcing a staple line
ES2861258T3 (en) 2014-06-11 2021-10-06 Applied Med Resources Circumferential Shot Surgical Stapler
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9918714B2 (en) 2014-06-13 2018-03-20 Cook Medical Technologies Llc Stapling device and method
US9987099B2 (en) 2014-06-18 2018-06-05 Covidien Lp Disposable housings for encasing handle assemblies
US20150366585A1 (en) 2014-06-18 2015-12-24 Matthieu Olivier Lemay Tension-limiting temporary epicardial pacing wire extraction device
US9471969B2 (en) 2014-06-23 2016-10-18 Exxonmobil Upstream Research Company Methods for differential image quality enhancement for a multiple detector system, systems and use thereof
US9999423B2 (en) 2014-06-25 2018-06-19 Ethicon Llc Translatable articulation joint unlocking feature for surgical stapler
JP2016007800A (en) 2014-06-25 2016-01-18 株式会社リコー Abnormality detection system, electronic apparatus, abnormality detection method, and program
US10292701B2 (en) 2014-06-25 2019-05-21 Ethicon Llc Articulation drive features for surgical stapler
US10064620B2 (en) 2014-06-25 2018-09-04 Ethicon Llc Method of unlocking articulation joint in surgical stapler
US9693774B2 (en) 2014-06-25 2017-07-04 Ethicon Llc Pivotable articulation joint unlocking feature for surgical stapler
US10456132B2 (en) 2014-06-25 2019-10-29 Ethicon Llc Jaw opening feature for surgical stapler
US10335147B2 (en) 2014-06-25 2019-07-02 Ethicon Llc Method of using lockout features for surgical stapler cartridge
US10163589B2 (en) 2014-06-26 2018-12-25 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US20150374372A1 (en) 2014-06-26 2015-12-31 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10561418B2 (en) 2014-06-26 2020-02-18 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
USD753167S1 (en) 2014-06-27 2016-04-05 Opower, Inc. Display screen of a communications terminal with graphical user interface
US9629631B2 (en) 2014-07-01 2017-04-25 Covidien Lp Composite drive beam for surgical stapling
DE102014009893B4 (en) 2014-07-04 2016-04-28 gomtec GmbH End effector for an instrument
US10064649B2 (en) 2014-07-07 2018-09-04 Covidien Lp Pleated seal for surgical hand or instrument access
WO2016014384A2 (en) 2014-07-25 2016-01-28 Covidien Lp Augmented surgical reality environment
JP6265859B2 (en) 2014-07-28 2018-01-24 オリンパス株式会社 Treatment instrument drive
US10717179B2 (en) 2014-07-28 2020-07-21 Black & Decker Inc. Sound damping for power tools
US10542976B2 (en) 2014-07-31 2020-01-28 Covidien Lp Powered surgical instrument with pressure sensitive motor speed control
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10058395B2 (en) 2014-08-01 2018-08-28 Intuitive Surgical Operations, Inc. Active and semi-active damping in a telesurgical system
WO2016021268A1 (en) 2014-08-04 2016-02-11 オリンパス株式会社 Surgical instrument
CA2958570C (en) 2014-08-20 2017-11-28 Synaptive Medical (Barbados) Inc. Intra-operative determination of dimensions for fabrication of artificial bone flap
US20160051316A1 (en) 2014-08-25 2016-02-25 Ethicon Endo-Surgery, Inc. Electrosurgical electrode mechanism
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
BR112017002848A2 (en) 2014-08-28 2018-01-30 Unitract Syringe Pty Ltd ? temperature control and identification systems and automatic injector device?
US10004500B2 (en) 2014-09-02 2018-06-26 Ethicon Llc Devices and methods for manually retracting a drive shaft, drive beam, and associated components of a surgical fastening device
USD762659S1 (en) 2014-09-02 2016-08-02 Apple Inc. Display screen or portion thereof with graphical user interface
US9788835B2 (en) 2014-09-02 2017-10-17 Ethicon Llc Devices and methods for facilitating ejection of surgical fasteners from cartridges
US9848877B2 (en) 2014-09-02 2017-12-26 Ethicon Llc Methods and devices for adjusting a tissue gap of an end effector of a surgical device
US9795380B2 (en) 2014-09-02 2017-10-24 Ethicon Llc Devices and methods for facilitating closing and clamping of an end effector of a surgical device
US9877722B2 (en) 2014-09-02 2018-01-30 Ethicon Llc Devices and methods for guiding surgical fasteners
US9700320B2 (en) 2014-09-02 2017-07-11 Ethicon Llc Devices and methods for removably coupling a cartridge to an end effector of a surgical device
US9943312B2 (en) 2014-09-02 2018-04-17 Ethicon Llc Methods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device
US9413128B2 (en) 2014-09-04 2016-08-09 Htc Corporation Connector module having a rotating element disposed within and rotatable relative to a case
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
CN204092074U (en) 2014-09-05 2015-01-14 瑞奇外科器械(中国)有限公司 The driving device of surgical operating instrument and surgical operating instrument
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US20160069449A1 (en) 2014-09-08 2016-03-10 Nidec Copal Electronics Corporation Thin-type gear motor and muscle force assisting device using thin-type gear motor
WO2016037529A1 (en) 2014-09-12 2016-03-17 瑞奇外科器械(中国)有限公司 End effector and staple magazine assembly thereof, and surgical operation instrument
KR20240042093A (en) 2014-09-15 2024-04-01 어플라이드 메디컬 리소시스 코포레이션 Surgical stapler with self-adjusting staple height
US10820939B2 (en) 2014-09-15 2020-11-03 Covidien Lp Vessel-sealing device including force-balance interface and electrosurgical system including same
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN204158440U (en) 2014-09-26 2015-02-18 重庆康美唯外科器械有限公司 Linear anastomat suturing nail chamber structure
CN204158441U (en) 2014-09-26 2015-02-18 重庆康美唯外科器械有限公司 Pin chamber of straight anastomat structure
US9953193B2 (en) 2014-09-30 2018-04-24 Tego, Inc. Operating systems for an RFID tag
US9924943B2 (en) 2014-10-01 2018-03-27 Covidien Lp Method of manufacturing jaw members for surgical stapling instrument
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
US10603128B2 (en) 2014-10-07 2020-03-31 Covidien Lp Handheld electromechanical surgical system
USD766261S1 (en) 2014-10-10 2016-09-13 Salesforce.Com, Inc. Display screen or portion thereof with animated graphical user interface
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9974539B2 (en) 2014-10-15 2018-05-22 Ethicon Llc Surgical instrument battery pack with voltage polling
GB2531994B (en) 2014-10-15 2020-06-24 Cmr Surgical Ltd Surgical articulation
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
USD780803S1 (en) 2014-10-16 2017-03-07 Orange Research, Inc. Display panel portion with icon
USD761309S1 (en) 2014-10-17 2016-07-12 Samsung Electronics Co., Ltd. Display screen or portion thereof with animated graphical user interface
EP3103381A4 (en) 2014-10-20 2017-11-15 Olympus Corporation Solid-state imaging device and electronic endoscope provided with solid-state imaging device
US10729443B2 (en) 2014-10-21 2020-08-04 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10085750B2 (en) 2014-10-22 2018-10-02 Covidien Lp Adapter with fire rod J-hook lockout
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
AU2015342808A1 (en) 2014-11-07 2017-05-25 Corium, Inc. Medical device packaging
JP6010269B1 (en) 2014-11-11 2016-10-19 オリンパス株式会社 Treatment tool and treatment system
USD772905S1 (en) 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with graphical user interface
WO2016079141A1 (en) 2014-11-17 2016-05-26 Lina Medical Aps A device for use in hysteroscopy
US9651032B2 (en) 2014-12-09 2017-05-16 General Electric Company Submersible power generators and method of operating thereof
CN112263293B (en) 2014-12-10 2024-08-02 爱德华兹生命科学股份公司 Multiple-firing fixture and methods of use and manufacture thereof
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
USD777773S1 (en) 2014-12-11 2017-01-31 Lenovo (Beijing) Co., Ltd. Display screen or portion thereof with graphical user interface
JP6518766B2 (en) 2014-12-17 2019-05-22 コヴィディエン リミテッド パートナーシップ Surgical stapling device with firing indicator
WO2016100682A1 (en) 2014-12-17 2016-06-23 Maquet Cardiovascular Llc Surgical device
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9993284B2 (en) 2014-12-19 2018-06-12 Ethicon Llc Electrosurgical instrument with jaw cleaning mode
USD785794S1 (en) 2014-12-23 2017-05-02 Gyrus Acmi, Inc. Adapter for a surgical device
ES2971142T3 (en) 2014-12-30 2024-06-03 Touchstone Int Medical Science Co Ltd Stapling head and suturing and cutting apparatus set for endoscopic surgery
CN104434250B (en) 2014-12-30 2017-01-18 苏州天臣国际医疗科技有限公司 Reload unit and medical stapler using same
CN104490440B (en) 2014-12-30 2016-09-14 苏州天臣国际医疗科技有限公司 Surgical operating instrument
WO2016107585A1 (en) 2014-12-30 2016-07-07 苏州天臣国际医疗科技有限公司 Nail head assembly and suturing and cutting apparatus for endoscopic surgery
WO2016107450A1 (en) 2014-12-31 2016-07-07 苏州天臣国际医疗科技有限公司 Staple cartridge assembly and medical anastomat using same
US9775611B2 (en) 2015-01-06 2017-10-03 Covidien Lp Clam shell surgical stapling loading unit
US20170106302A1 (en) 2015-01-16 2017-04-20 Kma Concepts Limited Toy Figure with Articulating Limbs and Body
AU2016200084B2 (en) 2015-01-16 2020-01-16 Covidien Lp Powered surgical stapling device
CN104586463A (en) 2015-01-19 2015-05-06 鲁仁义 Medical disposable electric motor saw
EP3865081A1 (en) 2015-01-20 2021-08-18 Talon Medical, LLC Tissue engagement devices and systems
US11026750B2 (en) 2015-01-23 2021-06-08 Queen's University At Kingston Real-time surgical navigation
USD798319S1 (en) 2015-02-02 2017-09-26 Scanmaskin Sverige Ab Portion of an electronic display panel with changeable computer-generated screens and icons
US9396369B1 (en) 2015-02-03 2016-07-19 Apple Inc. Electronic tag transmissions corresponding to physical disturbance of tag
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
US10111658B2 (en) 2015-02-12 2018-10-30 Covidien Lp Display screens for medical devices
CN204520822U (en) 2015-02-15 2015-08-05 王超航 A kind of interchangeable cartridge device for surgical stapling device
US10034668B2 (en) 2015-02-19 2018-07-31 Covidien Lp Circular knife blade for linear staplers
US10111665B2 (en) 2015-02-19 2018-10-30 Covidien Lp Electromechanical surgical systems
USD791784S1 (en) 2015-02-20 2017-07-11 Google Inc. Portion of a display panel with a graphical user interface with icons
US10039545B2 (en) 2015-02-23 2018-08-07 Covidien Lp Double fire stapling
US10130367B2 (en) 2015-02-26 2018-11-20 Covidien Lp Surgical apparatus
US10085749B2 (en) 2015-02-26 2018-10-02 Covidien Lp Surgical apparatus with conductor strain relief
USD767624S1 (en) 2015-02-26 2016-09-27 Samsung Electronics Co., Ltd. Display screen or portion thereof with animated graphical user interface
EP3261702A2 (en) 2015-02-26 2018-01-03 Stryker Corporation Surgical instrument with articulation region
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
BR112017018222A2 (en) 2015-02-27 2018-04-17 Ethicon Llc surgical instrument system comprising an inspection station
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
USD770515S1 (en) 2015-02-27 2016-11-01 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9855040B2 (en) 2015-03-04 2018-01-02 Covidien Lp Surgical stapling loading unit having articulating jaws
US20160256221A1 (en) 2015-03-05 2016-09-08 Donald L. Smith Anesthesia cover system
US20160256159A1 (en) 2015-03-05 2016-09-08 Covidien Lp Jaw members and methods of manufacture
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10190888B2 (en) 2015-03-11 2019-01-29 Covidien Lp Surgical stapling instruments with linear position assembly
CN204636451U (en) 2015-03-12 2015-09-16 葛益飞 Arteriovenous is cut and stapling apparatus
US10159506B2 (en) 2015-03-16 2018-12-25 Ethicon Llc Methods and devices for actuating surgical instruments
US10092290B2 (en) 2015-03-17 2018-10-09 Covidien Lp Surgical instrument, loading unit for use therewith and related methods
US9918717B2 (en) 2015-03-18 2018-03-20 Covidien Lp Pivot mechanism for surgical device
US9883843B2 (en) 2015-03-19 2018-02-06 Medtronic Navigation, Inc. Apparatus and method of counterbalancing axes and maintaining a user selected position of a X-Ray scanner gantry
US10004552B1 (en) 2015-03-19 2018-06-26 Expandoheat, L.L.C. End effector structure for stapling apparatus
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10568621B2 (en) 2015-03-25 2020-02-25 Ethicon Llc Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US10349939B2 (en) 2015-03-25 2019-07-16 Ethicon Llc Method of applying a buttress to a surgical stapler
US10136891B2 (en) 2015-03-25 2018-11-27 Ethicon Llc Naturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler
US10478187B2 (en) 2015-03-25 2019-11-19 Ethicon Llc Biologically derived extracellular matrix with infused viscous absorbable copolymer for releasably attaching a staple buttress to a surgical stapler
US10172618B2 (en) 2015-03-25 2019-01-08 Ethicon Llc Low glass transition temperature bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10863984B2 (en) 2015-03-25 2020-12-15 Ethicon Llc Low inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10548593B2 (en) 2015-03-25 2020-02-04 Ethicon Llc Flowable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10172617B2 (en) 2015-03-25 2019-01-08 Ethicon Llc Malleable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
USD832301S1 (en) 2015-03-30 2018-10-30 Creed Smith Display screen or portion thereof with animated graphical user interface
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
CN107405141A (en) 2015-04-01 2017-11-28 阿泰克医疗(2013)有限公司 Radial type medical treatment device
AU2016243992B2 (en) 2015-04-03 2019-02-21 Conmed Corporation Autoclave tolerant battery powered motorized surgical hand piece tool and motor control method
US10016656B2 (en) 2015-04-07 2018-07-10 Ohio State Innovation Foundation Automatically adjustable treadmill control system
USD768167S1 (en) 2015-04-08 2016-10-04 Anthony M Jones Display screen with icon
US10226239B2 (en) 2015-04-10 2019-03-12 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10226274B2 (en) 2015-04-16 2019-03-12 Ethicon Llc Ultrasonic surgical instrument with articulation joint having plurality of locking positions
US10111698B2 (en) 2015-04-16 2018-10-30 Ethicon Llc Surgical instrument with rotatable shaft having plurality of locking positions
US10342567B2 (en) 2015-04-16 2019-07-09 Ethicon Llc Ultrasonic surgical instrument with opposing thread drive for end effector articulation
US10029125B2 (en) 2015-04-16 2018-07-24 Ethicon Llc Ultrasonic surgical instrument with articulation joint having integral stiffening members
WO2016171395A1 (en) 2015-04-20 2016-10-27 주식회사 메디튤립 Surgical linear stapler
WO2016171947A1 (en) 2015-04-22 2016-10-27 Covidien Lp Handheld electromechanical surgical system
US20160314717A1 (en) 2015-04-27 2016-10-27 KindHeart, Inc. Telerobotic surgery system for remote surgeon training using robotic surgery station coupled to remote surgeon trainee and instructor stations and associated methods
US20160314712A1 (en) 2015-04-27 2016-10-27 KindHeart, Inc. Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and associated methods
US10117650B2 (en) 2015-05-05 2018-11-06 Covidien Lp Adapter assembly and loading units for surgical stapling devices
US10299789B2 (en) 2015-05-05 2019-05-28 Covidie LP Adapter assembly for surgical stapling devices
US10039532B2 (en) 2015-05-06 2018-08-07 Covidien Lp Surgical instrument with articulation assembly
EP4245227A3 (en) * 2015-05-08 2024-01-17 Bolder Surgical, LLC Surgical stapler
CA2930309C (en) 2015-05-22 2019-02-26 Covidien Lp Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures
EP3302302A4 (en) 2015-05-25 2019-02-20 Covidien LP Small diameter surgical stapling device
US10022120B2 (en) 2015-05-26 2018-07-17 Ethicon Llc Surgical needle with recessed features
US10349941B2 (en) 2015-05-27 2019-07-16 Covidien Lp Multi-fire lead screw stapling device
US10172615B2 (en) 2015-05-27 2019-01-08 Covidien Lp Multi-fire push rod stapling device
US10722293B2 (en) 2015-05-29 2020-07-28 Covidien Lp Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
USD772269S1 (en) 2015-06-05 2016-11-22 Apple Inc. Display screen or portion thereof with graphical user interface
USD764498S1 (en) 2015-06-07 2016-08-23 Apple Inc. Display screen or portion thereof with graphical user interface
US10201381B2 (en) 2015-06-11 2019-02-12 Conmed Corporation Hand instruments with shaped shafts for use in laparoscopic surgery
US9888914B2 (en) 2015-06-16 2018-02-13 Ethicon Endo-Surgery, Llc Suturing instrument with motorized needle drive
KR101719208B1 (en) 2015-06-17 2017-03-23 주식회사 하이딥 Touch pressure detectable touch input device including display module
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US10194911B2 (en) 2015-06-26 2019-02-05 Ethicon Llc Surgical stapler with ready state indicator
US10226276B2 (en) 2015-06-26 2019-03-12 Covidien Lp Tissue-removing catheter including operational control mechanism
US10905415B2 (en) 2015-06-26 2021-02-02 Ethicon Llc Surgical stapler with electromechanical lockout
US10271841B2 (en) 2015-06-26 2019-04-30 Ethicon Llc Bailout assembly for surgical stapler
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
USD769315S1 (en) 2015-07-09 2016-10-18 Monthly Gift Inc. Display screen or portion thereof with graphical user interface
EP3145419B1 (en) 2015-07-21 2019-11-27 3dintegrated ApS Cannula assembly kit, trocar assembly kit and minimally invasive surgery system
GB2540757B (en) 2015-07-22 2021-03-31 Cmr Surgical Ltd Torque sensors
GB201512964D0 (en) 2015-07-22 2015-09-02 Cambridge Medical Robotics Ltd Communication paths for robot arms
US10314580B2 (en) 2015-07-28 2019-06-11 Ethicon Llc Surgical staple cartridge with compression feature at knife slot
US10194912B2 (en) 2015-07-28 2019-02-05 Ethicon Llc Surgical staple cartridge with outer edge compression features
US10201348B2 (en) 2015-07-28 2019-02-12 Ethicon Llc Surgical stapler cartridge with compression features at staple driver edges
US10064622B2 (en) 2015-07-29 2018-09-04 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10045782B2 (en) 2015-07-30 2018-08-14 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10194913B2 (en) 2015-07-30 2019-02-05 Ethicon Llc Surgical instrument comprising systems for assuring the proper sequential operation of the surgical instrument
US11154300B2 (en) 2015-07-30 2021-10-26 Cilag Gmbh International Surgical instrument comprising separate tissue securing and tissue cutting systems
USD768709S1 (en) 2015-07-31 2016-10-11 Gen-Probe Incorporated Display screen or portion thereof with animated graphical user interface
USD763277S1 (en) 2015-08-06 2016-08-09 Fore Support Services, Llc Display screen with an insurance authorization/preauthorization dashboard graphical user interface
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10166023B2 (en) 2015-08-24 2019-01-01 Ethicon Llc Method of applying a buttress to a surgical stapler end effector
USD803234S1 (en) 2015-08-26 2017-11-21 General Electric Company Display screen or portion thereof with graphical user interface
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
USD770476S1 (en) 2015-08-27 2016-11-01 Google Inc. Display screen with animated graphical user interface
US10130738B2 (en) 2015-08-31 2018-11-20 Ethicon Llc Adjunct material to promote tissue growth
US10245034B2 (en) 2015-08-31 2019-04-02 Ethicon Llc Inducing tissue adhesions using surgical adjuncts and medicants
US9829698B2 (en) 2015-08-31 2017-11-28 Panasonic Corporation Endoscope
US10188389B2 (en) 2015-08-31 2019-01-29 Ethicon Llc Adjunct material for delivery to colon tissue
US10569071B2 (en) 2015-08-31 2020-02-25 Ethicon Llc Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
EP3344165B1 (en) 2015-09-03 2020-12-30 Stryker Corporation Powered surgical drill with integral depth gauge that includes a probe that slides over the drill bit
US20170066054A1 (en) 2015-09-08 2017-03-09 Caterpillar Inc. Powdered metal compacting
CA2998456A1 (en) 2015-09-15 2017-03-23 Alfacyte Ltd Compositions and methods relating to the treatment of diseases
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US20170079642A1 (en) 2015-09-23 2017-03-23 Ethicon Endo-Surgery, Llc Surgical stapler having magnetic field-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10642633B1 (en) 2015-09-29 2020-05-05 EMC IP Holding Company LLC Intelligent backups with dynamic proxy in virtualized environment
US10182813B2 (en) 2015-09-29 2019-01-22 Ethicon Llc Surgical stapling instrument with shaft release, powered firing, and powered articulation
US10314578B2 (en) 2015-09-29 2019-06-11 Ethicon Llc Battery drain circuit for surgical instrument
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10085810B2 (en) 2015-10-02 2018-10-02 Ethicon Llc User input device for robotic surgical system
US10213204B2 (en) 2015-10-02 2019-02-26 Covidien Lp Micro surgical instrument and loading unit for use therewith
WO2017059228A1 (en) 2015-10-02 2017-04-06 Elucent Medical, Inc. Signal tag detection components, devices, and systems
JP6886459B2 (en) 2015-10-05 2021-06-16 フレックスデックス, インク.Flexdex, Inc. End effector jaw closure transmission system for remote access tools
US10404136B2 (en) 2015-10-14 2019-09-03 Black & Decker Inc. Power tool with separate motor case compartment
US10265073B2 (en) 2015-10-15 2019-04-23 Ethicon Llc Surgical stapler with terminal staple orientation crossing center line
US10226251B2 (en) 2015-10-15 2019-03-12 Ethicon Llc Surgical staple actuating sled with actuation stroke having minimized distance relative to distal staple
US10499917B2 (en) 2015-10-15 2019-12-10 Ethicon Llc Surgical stapler end effector with knife position indicators
US10342535B2 (en) 2015-10-15 2019-07-09 Ethicon Llc Method of applying staples to liver and other organs
US20170105727A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc Surgical stapler with progressively driven asymmetric alternating staple drivers
US11141159B2 (en) 2015-10-15 2021-10-12 Cilag Gmbh International Surgical stapler end effector with multi-staple driver crossing center line
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
USD788140S1 (en) 2015-10-16 2017-05-30 Nasdaq, Inc. Display screen or portion thereof with animated graphical user interface
USD788123S1 (en) 2015-10-20 2017-05-30 23Andme, Inc. Display screen or portion thereof with a graphical user interface for conveying genetic information
USD788792S1 (en) 2015-10-28 2017-06-06 Technogym S.P.A. Portion of a display screen with a graphical user interface
US10772632B2 (en) 2015-10-28 2020-09-15 Covidien Lp Surgical stapling device with triple leg staples
US10314588B2 (en) 2015-10-29 2019-06-11 Ethicon Llc Fluid penetrable buttress assembly for a surgical stapler
US10517592B2 (en) 2015-10-29 2019-12-31 Ethicon Llc Surgical stapler buttress assembly with adhesion to wet end effector
US10251649B2 (en) 2015-10-29 2019-04-09 Ethicon Llc Surgical stapler buttress applicator with data communication
US10499918B2 (en) 2015-10-29 2019-12-10 Ethicon Llc Surgical stapler buttress assembly with features to interact with movable end effector components
US10441286B2 (en) 2015-10-29 2019-10-15 Ethicon Llc Multi-layer surgical stapler buttress assembly
US10433839B2 (en) 2015-10-29 2019-10-08 Ethicon Llc Surgical stapler buttress assembly with gel adhesive retainer
US10357248B2 (en) 2015-10-29 2019-07-23 Ethicon Llc Extensible buttress assembly for surgical stapler
WO2017079044A1 (en) 2015-11-06 2017-05-11 Intuitive Surgical Operations, Inc. Knife with mechanical fuse
DE102015221998B4 (en) 2015-11-09 2019-01-17 Siemens Healthcare Gmbh A method of assisting a finder in locating a target structure in a breast, apparatus and computer program
CN108135665B (en) 2015-11-11 2021-02-05 直观外科手术操作公司 Reconfigurable end effector architecture
WO2017083129A1 (en) 2015-11-13 2017-05-18 Intuitive Surgical Operations, Inc. Stapler anvil with compliant tip
US10307204B2 (en) 2015-11-13 2019-06-04 Ethicon Llc Integrated bailout for motorized RF device
US10143514B2 (en) 2015-11-13 2018-12-04 Ethicon Llc Electronic bailout for motorized RF device
WO2017083125A1 (en) 2015-11-13 2017-05-18 Intuitive Surgical Operations, Inc. Stapler with composite cardan and screw drive
US10709495B2 (en) 2015-11-13 2020-07-14 Ethicon Llc Dual step bailout for motorized RF device
US10772630B2 (en) 2015-11-13 2020-09-15 Intuitive Surgical Operations, Inc. Staple pusher with lost motion between ramps
WO2017083989A1 (en) 2015-11-16 2017-05-26 Ao Technology Ag Surgical power drill including a measuring unit suitable for bone screw length determination
US10617411B2 (en) 2015-12-01 2020-04-14 Covidien Lp Adapter assembly for surgical device
US10111660B2 (en) 2015-12-03 2018-10-30 Covidien Lp Surgical stapler flexible distal tip
CN108289686B (en) 2015-12-03 2021-03-16 波士顿科学国际有限公司 Electric knife hemostatic clamp
USD803235S1 (en) 2015-12-04 2017-11-21 Capital One Services, Llc Display screen with a graphical user interface
JP6318312B2 (en) 2015-12-07 2018-04-25 オリンパス株式会社 Treatment tool
USD789384S1 (en) 2015-12-09 2017-06-13 Facebook, Inc. Display screen with animated graphical user interface
GB201521809D0 (en) 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Symmetrically arranged surgical instrument articulation
US10952726B2 (en) 2015-12-10 2021-03-23 Covidien Lp Handheld electromechanical surgical instruments
USD800766S1 (en) 2015-12-11 2017-10-24 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
USD795919S1 (en) 2015-12-17 2017-08-29 The Procter & Gamble Company Display screen with icon
AU2016262637B2 (en) 2015-12-17 2020-12-10 Covidien Lp Multi-fire stapler with electronic counter, lockout, and visual indicator
US10624616B2 (en) 2015-12-18 2020-04-21 Covidien Lp Surgical instruments including sensors
USD864388S1 (en) 2015-12-21 2019-10-22 avateramedical GmBH Instrument unit
US10420554B2 (en) 2015-12-22 2019-09-24 Covidien Lp Personalization of powered surgical devices
JP6180692B1 (en) 2015-12-28 2017-08-16 オリンパス株式会社 Medical manipulator system
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10561474B2 (en) 2015-12-31 2020-02-18 Ethicon Llc Surgical stapler with end of stroke indicator
US10966717B2 (en) 2016-01-07 2021-04-06 Covidien Lp Surgical fastener apparatus
US10786248B2 (en) 2016-01-11 2020-09-29 Ethicon. Inc. Intra dermal tissue fixation device
WO2017123584A1 (en) 2016-01-11 2017-07-20 GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) Forceps with tissue stops
GB201600546D0 (en) 2016-01-12 2016-02-24 Gyrus Medical Ltd Electrosurgical device
EP3192491B1 (en) 2016-01-15 2020-01-08 Evonik Operations GmbH Composition comprising polyglycerol esters and hydroxy-alkyl modified guar
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10508720B2 (en) 2016-01-21 2019-12-17 Covidien Lp Adapter assembly with planetary gear drive for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10695123B2 (en) 2016-01-29 2020-06-30 Covidien Lp Surgical instrument with sensor
KR20180100702A (en) 2016-01-29 2018-09-11 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and Methods for Variable Speed Surgical Instruments
USD782530S1 (en) 2016-02-01 2017-03-28 Microsoft Corporation Display screen with animated graphical user interface
JP6619103B2 (en) 2016-02-04 2019-12-11 コヴィディエン リミテッド パートナーシップ Circular stapler with visual indicator mechanism
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10349937B2 (en) 2016-02-10 2019-07-16 Covidien Lp Surgical stapler with articulation locking mechanism
US10420559B2 (en) 2016-02-11 2019-09-24 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231628A1 (en) 2016-02-12 2017-08-17 Ethicon Endo-Surgery, Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170242455A1 (en) 2016-02-24 2017-08-24 Shavena Dickens Sterile Screen Protector
US9824251B2 (en) 2016-03-04 2017-11-21 Motorola Mobility Llc Automating device testing using RFID
US10315566B2 (en) 2016-03-07 2019-06-11 Lg Electronics Inc. Vehicle control device mounted on vehicle and method for controlling the vehicle
US10625062B2 (en) 2016-03-08 2020-04-21 Acclarent, Inc. Dilation catheter assembly with rapid change components
USD800904S1 (en) 2016-03-09 2017-10-24 Ethicon Endo-Surgery, Llc Surgical stapling instrument
US20170262110A1 (en) 2016-03-10 2017-09-14 Synaptics Incorporated Hybrid force sensor
CN111329553B (en) 2016-03-12 2021-05-04 P·K·朗 Devices and methods for surgery
US10631858B2 (en) 2016-03-17 2020-04-28 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and distal pulley
US10350016B2 (en) 2016-03-17 2019-07-16 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and dual distal pulleys
US10278703B2 (en) 2016-03-21 2019-05-07 Ethicon, Inc. Temporary fixation tools for use with circular anastomotic staplers
USD800742S1 (en) 2016-03-25 2017-10-24 Illumina, Inc. Display screen or portion thereof with graphical user interface
US20190110779A1 (en) 2016-03-31 2019-04-18 Snpshot Trustee Limited Biological sampler, collector and storage container
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10507034B2 (en) 2016-04-04 2019-12-17 Ethicon Llc Surgical instrument with motorized articulation drive in shaft rotation knob
US10743850B2 (en) 2016-04-04 2020-08-18 Ethicon Llc Surgical instrument with locking articulation drive wheel
US10722233B2 (en) 2016-04-07 2020-07-28 Intuitive Surgical Operations, Inc. Stapling cartridge
ES2882141T3 (en) 2016-04-12 2021-12-01 Applied Med Resources Refill Stem Assembly for Surgical Stapler
AU2017250206B2 (en) 2016-04-12 2022-03-24 Applied Medical Resources Corporation Surgical stapler having a powered handle
WO2017180314A1 (en) 2016-04-14 2017-10-19 Desktop Metal, Inc. Additive fabrication with support structures
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
EP4104775A1 (en) 2016-04-18 2022-12-21 Ethicon LLC Surgical instrument comprising a lockout
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10285700B2 (en) 2016-04-20 2019-05-14 Ethicon Llc Surgical staple cartridge with hydraulic staple deployment
USD786896S1 (en) 2016-04-29 2017-05-16 Salesforce.Com, Inc. Display screen or portion thereof with animated graphical user interface
US10561419B2 (en) 2016-05-04 2020-02-18 Covidien Lp Powered end effector assembly with pivotable channel
CN109475711B (en) 2016-05-19 2022-04-15 曼金德公司 Device, system and method for detecting and monitoring inhalation
US11076908B2 (en) 2016-06-02 2021-08-03 Gyrus Acmi, Inc. Two-stage electrosurgical device for vessel sealing
US20170348010A1 (en) 2016-06-03 2017-12-07 Orion Biotech Inc. Surgical drill and method of controlling the automatic stop thereof
USD790575S1 (en) 2016-06-12 2017-06-27 Apple Inc. Display screen or portion thereof with graphical user interface
US10349963B2 (en) 2016-06-14 2019-07-16 Gyrus Acmi, Inc. Surgical apparatus with jaw force limiter
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
US20170360441A1 (en) 2016-06-15 2017-12-21 Covidien Lp Tool assembly for leak resistant tissue dissection
EP3293617B1 (en) 2016-06-16 2020-01-29 Shenzhen Goodix Technology Co., Ltd. Touch sensor, touch detection apparatus and detection method, and touch control device
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
USD819682S1 (en) 2016-06-29 2018-06-05 Rockwell Collins, Inc. Ground system display screen portion with transitional graphical user interface
CN105919642A (en) 2016-06-30 2016-09-07 江苏风和医疗器材有限公司 Nail cabin for surgical instrument and surgical instrument
CN105997173A (en) 2016-06-30 2016-10-12 江苏风和医疗器材有限公司 Nail cartridge for surgical instrument and surgical instrument
CN109475266B (en) 2016-07-11 2021-08-10 奥林巴斯株式会社 Endoscope device
USD813899S1 (en) 2016-07-20 2018-03-27 Facebook, Inc. Display screen with animated graphical user interface
USD844666S1 (en) 2016-08-02 2019-04-02 Smule, Inc. Display screen or portion thereof with graphical user interface
USD845342S1 (en) 2016-08-02 2019-04-09 Smule, Inc. Display screen or portion thereof with graphical user interface
USD844667S1 (en) 2016-08-02 2019-04-02 Smule, Inc. Display screen or portion thereof with graphical user interface
US10849698B2 (en) 2016-08-16 2020-12-01 Ethicon Llc Robotics tool bailouts
US9943377B2 (en) 2016-08-16 2018-04-17 Ethicon Endo-Surgery, Llc Methods, systems, and devices for causing end effector motion with a robotic surgical system
US10500000B2 (en) 2016-08-16 2019-12-10 Ethicon Llc Surgical tool with manual control of end effector jaws
US10687904B2 (en) 2016-08-16 2020-06-23 Ethicon Llc Robotics tool exchange
US10993760B2 (en) 2016-08-16 2021-05-04 Ethicon, Llc Modular surgical robotic tool
US10413373B2 (en) 2016-08-16 2019-09-17 Ethicon, Llc Robotic visualization and collision avoidance
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10682137B2 (en) 2016-08-29 2020-06-16 Ethicon Llc Surgical stapler
WO2018044997A1 (en) 2016-09-02 2018-03-08 Saudi Arabian Oil Company Controlling hydrocarbon production
US11364029B2 (en) 2016-09-09 2022-06-21 Intuitive Surgical Operations, Inc. Stapler reload detection and identification
US11234700B2 (en) 2016-09-09 2022-02-01 Intuitive Surgical Operations, Inc. Wrist architecture
CN106344091B (en) 2016-09-23 2018-09-14 普瑞斯星(常州)医疗器械有限公司 The nail bin groupware of disposable intracavitary cutting incisxal edge stapler
CN109996490B (en) 2016-09-28 2023-01-10 项目莫里股份有限公司 Base station, charging station and/or server for robotic catheter systems and other uses, and improved articulation apparatus and systems
WO2018064646A2 (en) 2016-09-30 2018-04-05 Kerr Corporation Electronic tool recognition system for dental devices
US10482292B2 (en) 2016-10-03 2019-11-19 Gary L. Sharpe RFID scanning device
USD806108S1 (en) 2016-10-07 2017-12-26 General Electric Company Display screen portion with graphical user interface for a healthcare command center computing system
CN109843189B (en) 2016-10-11 2022-01-14 直观外科手术操作公司 Stapler cartridge with integral knife
CN107967874B (en) 2016-10-19 2020-04-28 元太科技工业股份有限公司 Pixel structure
JP7300795B2 (en) 2016-10-26 2023-06-30 メッドレスポンド インコーポレイテッド Systems and methods for synthetic interaction with users and devices
US10610236B2 (en) 2016-11-01 2020-04-07 Covidien Lp Endoscopic reposable surgical clip applier
USD819684S1 (en) 2016-11-04 2018-06-05 Microsoft Corporation Display screen with graphical user interface
US11642126B2 (en) 2016-11-04 2023-05-09 Covidien Lp Surgical stapling apparatus with tissue pockets
US10631857B2 (en) 2016-11-04 2020-04-28 Covidien Lp Loading unit for surgical instruments with low profile pushers
US11116594B2 (en) 2016-11-08 2021-09-14 Covidien Lp Surgical systems including adapter assemblies for interconnecting electromechanical surgical devices and end effectors
EP3530197B1 (en) 2016-11-10 2024-04-03 Reach Surgical, Inc. Surgical instrument with interlocking function
USD833608S1 (en) 2016-11-14 2018-11-13 Ethicon Llc Stapling head feature for surgical stapler
KR20180053811A (en) 2016-11-14 2018-05-24 재단법인 오송첨단의료산업진흥재단 Distance detecting system for real-time detection of tumor location and method for detecting tumor location using the same
USD830550S1 (en) 2016-11-14 2018-10-09 Ethicon Llc Surgical stapler
US10603041B2 (en) 2016-11-14 2020-03-31 Ethicon Llc Circular surgical stapler with angularly asymmetric deck features
USD820307S1 (en) 2016-11-16 2018-06-12 Airbnb, Inc. Display screen with graphical user interface for a video pagination indicator
US10736648B2 (en) 2016-11-16 2020-08-11 Ethicon Llc Surgical instrument with removable portion to facilitate cleaning
US11382649B2 (en) 2016-11-17 2022-07-12 Covidien Lp Rotation control systems for surgical instruments
USD810099S1 (en) 2016-11-17 2018-02-13 Nasdaq, Inc. Display screen or portion thereof with graphical user interface
US10337148B2 (en) 2016-11-23 2019-07-02 Kimberly-Clark Worldwide, Inc. Hesperaloe tissue having improved cross-machine direction properties
US10463371B2 (en) 2016-11-29 2019-11-05 Covidien Lp Reload assembly with spent reload indicator
US10251716B2 (en) 2016-12-19 2019-04-09 Ethicon Llc Robotic surgical system with selective motion control decoupling
USD841667S1 (en) 2016-12-19 2019-02-26 Coren Intellect LLC Display screen with employee survey graphical user interface
US10881446B2 (en) 2016-12-19 2021-01-05 Ethicon Llc Visual displays of electrical pathways
USD831676S1 (en) 2016-12-20 2018-10-23 Hancom, Inc. Display screen or portion thereof with icon
USD808989S1 (en) 2016-12-20 2018-01-30 Abbott Laboratories Display screen with graphical user interface
US10398460B2 (en) 2016-12-20 2019-09-03 Ethicon Llc Robotic endocutter drivetrain with bailout and manual opening
US10405932B2 (en) 2016-12-20 2019-09-10 Ethicon Llc Robotic endocutter drivetrain with bailout and manual opening
US10471282B2 (en) 2016-12-21 2019-11-12 Ethicon Llc Ultrasonic robotic tool actuation
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
JP7010957B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー Shaft assembly with lockout
USD820867S1 (en) 2016-12-30 2018-06-19 Facebook, Inc. Display screen with animated graphical user interface
US10952767B2 (en) 2017-02-06 2021-03-23 Covidien Lp Connector clip for securing an introducer to a surgical fastener applying apparatus
US10575787B2 (en) 2017-02-13 2020-03-03 Wright State University Hydration sensor
US10806451B2 (en) 2017-02-17 2020-10-20 Ethicon Llc Surgical stapler with cooperating distal tip features on anvil and staple cartridge
US10828031B2 (en) 2017-02-17 2020-11-10 Ethicon Llc Surgical stapler with elastically deformable tip
US10729434B2 (en) 2017-02-17 2020-08-04 Ethicon Llc Surgical stapler with insertable distal anvil tip
US11564687B2 (en) 2017-02-17 2023-01-31 Cilag Gmbh International Method of surgical stapling with end effector component having a curved tip
US10758231B2 (en) 2017-02-17 2020-09-01 Ethicon Llc Surgical stapler with bent anvil tip, angled staple cartridge tip, and tissue gripping features
US10869663B2 (en) 2017-02-17 2020-12-22 Ethicon Llc End effector configured to mate with adjunct materials
US10716564B2 (en) 2017-02-17 2020-07-21 Ethicon Llc Stapling adjunct attachment
US10849621B2 (en) 2017-02-23 2020-12-01 Covidien Lp Surgical stapler with small diameter endoscopic portion
DE112018001058B4 (en) 2017-02-28 2020-12-03 Sony Corporation MEDICAL ARM SYSTEM AND CONTROL DEVICE
US20180242970A1 (en) 2017-02-28 2018-08-30 Covidien Lp Reusable powered surgical devices having improved durability
US10813710B2 (en) 2017-03-02 2020-10-27 KindHeart, Inc. Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
USD854032S1 (en) 2017-03-03 2019-07-16 Deere & Company Display screen with a graphical user interface
US11078945B2 (en) 2017-03-26 2021-08-03 Verb Surgical Inc. Coupler to attach robotic arm to surgical table
USD837245S1 (en) 2017-03-27 2019-01-01 Vudu, Inc. Display screen or portion thereof with graphical user interface
USD837244S1 (en) 2017-03-27 2019-01-01 Vudu, Inc. Display screen or portion thereof with interactive graphical user interface
USD819072S1 (en) 2017-03-30 2018-05-29 Facebook, Inc. Display panel of a programmed computer system with a graphical user interface
JP6557274B2 (en) 2017-03-31 2019-08-07 ファナック株式会社 Component mounting position guidance device, component mounting position guidance system, and component mounting position guidance method
US10433842B2 (en) 2017-04-07 2019-10-08 Lexington Medical, Inc. Surgical handle assembly
US10765442B2 (en) 2017-04-14 2020-09-08 Ethicon Llc Surgical devices and methods for biasing an end effector to a closed configuration
US10524784B2 (en) 2017-05-05 2020-01-07 Covidien Lp Surgical staples with expandable backspan
US10667408B2 (en) 2017-05-18 2020-05-26 Covidien Lp Fully encapsulated electronics and printed circuit boards
US10588231B2 (en) 2017-05-18 2020-03-10 Covidien Lp Hermetically sealed printed circuit boards
US10420551B2 (en) 2017-05-30 2019-09-24 Covidien Lp Authentication and information system for reusable surgical instruments
JP1603246S (en) 2017-05-31 2018-05-07
AU2018202705B2 (en) 2017-06-02 2023-11-16 Covidien Lp Handheld electromechanical surgical system
US10478185B2 (en) 2017-06-02 2019-11-19 Covidien Lp Tool assembly with minimal dead space
JP1601498S (en) 2017-06-05 2018-04-09
US10932784B2 (en) 2017-06-09 2021-03-02 Covidien Lp Handheld electromechanical surgical system
EA039089B1 (en) 2017-06-09 2021-12-02 Страйкер Корпорейшн Surgical systems with twist-lock battery connection
US11596400B2 (en) 2017-06-09 2023-03-07 Covidien Lp Handheld electromechanical surgical system
US10425894B2 (en) 2017-06-16 2019-09-24 Stryker Corporation System and method for providing power from a battery to a medical device
USD836124S1 (en) 2017-06-19 2018-12-18 Abishkking Ltd. Display screen or portion thereof with a graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US20180360456A1 (en) 2017-06-20 2018-12-20 Ethicon Llc Surgical instrument having controllable articulation velocity
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10677853B2 (en) 2017-06-22 2020-06-09 Stryker Corporation System and method for determining an amount of degradation of a medical device battery
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
USD835785S1 (en) 2017-06-27 2018-12-11 Ethicon Llc Handle for surgical stapler
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10639018B2 (en) 2017-06-27 2020-05-05 Ethicon Llc Battery pack with integrated circuit providing sleep mode to battery pack and associated surgical instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10828029B2 (en) 2017-06-27 2020-11-10 Ethicon Llc Surgical stapler with independently actuated drivers to provide varying staple heights
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
USD865174S1 (en) 2017-06-27 2019-10-29 Ethicon Llc Shaft assembly for surgical stapler
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
BR112019027065B1 (en) 2017-06-28 2023-12-26 Ethicon Llc SURGICAL INSTRUMENT AND SURGICAL SYSTEM
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
USD893717S1 (en) 2017-06-28 2020-08-18 Ethicon Llc Staple cartridge for surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11129666B2 (en) 2017-06-28 2021-09-28 Cilag Gmbh International Shaft module circuitry arrangements
US11013552B2 (en) 2017-06-28 2021-05-25 Cilag Gmbh International Electrosurgical cartridge for use in thin profile surgical cutting and stapling instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10888369B2 (en) 2017-06-28 2021-01-12 Ethicon Llc Systems and methods for controlling control circuits for independent energy delivery over segmented sections
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10888325B2 (en) 2017-06-28 2021-01-12 Ethicon Llc Cartridge arrangements for surgical cutting and fastening instruments with lockout disablement features
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10265120B2 (en) 2017-06-28 2019-04-23 Ethicon Llc Systems and methods for controlling control circuits for an independent energy delivery over segmented sections
USD865175S1 (en) 2017-06-28 2019-10-29 Ethicon Llc Staple cartridge for surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11298128B2 (en) 2017-06-28 2022-04-12 Cilag Gmbh International Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD908216S1 (en) 2017-06-28 2021-01-19 Ethicon Llc Surgical instrument
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11065048B2 (en) 2017-06-28 2021-07-20 Cilag Gmbh International Flexible circuit arrangement for surgical fastening instruments
US10813640B2 (en) 2017-06-28 2020-10-27 Ethicon Llc Method of coating slip rings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
USD865796S1 (en) 2017-07-19 2019-11-05 Lenovo (Beijing) Co., Ltd. Smart glasses with graphical user interface
US11172580B2 (en) 2017-07-24 2021-11-09 Rosemount Aerospace Inc. BGA component masking dam and a method of manufacturing with the BGA component masking dam
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
USD858767S1 (en) 2017-08-10 2019-09-03 Ethicon Llc Surgical clip applier device
US10912562B2 (en) 2017-08-14 2021-02-09 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10163065B1 (en) 2017-08-16 2018-12-25 Nmetric, Llc Systems and methods of ensuring and maintaining equipment viability for a task
USD855634S1 (en) 2017-08-17 2019-08-06 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
US20190059986A1 (en) 2017-08-29 2019-02-28 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US10966720B2 (en) 2017-09-01 2021-04-06 RevMedica, Inc. Surgical stapler with removable power pack
USD831209S1 (en) 2017-09-14 2018-10-16 Ethicon Llc Surgical stapler cartridge
AU2018342093B2 (en) 2017-09-26 2023-09-07 Stryker Corporation System and method for wirelessly charging a medical device battery
USD863343S1 (en) 2017-09-27 2019-10-15 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
NL2019672B1 (en) 2017-10-05 2019-04-15 N V Nederlandsche Apparatenfabriek Nedap System of RFID reader units transmitting synchronized modulation using asynchronous carrier waves
USD847199S1 (en) 2017-10-16 2019-04-30 Caterpillar Inc. Display screen with animated graphical user interface
US10624709B2 (en) 2017-10-26 2020-04-21 Ethicon Llc Robotic surgical tool with manual release lever
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11116485B2 (en) 2017-10-30 2021-09-14 Cilag Gmbh International Surgical instrument with modular power sources
US10987104B2 (en) 2017-10-30 2021-04-27 Covidien Lp Apparatus for endoscopic procedures
US10932804B2 (en) 2017-10-30 2021-03-02 Ethicon Llc Surgical instrument with sensor and/or control systems
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
EP3476316B1 (en) 2017-10-30 2023-05-17 Ethicon LLC Surgical clip applier comprising adaptive firing control
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11129634B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instrument with rotary drive selectively actuating multiple end effector functions
US11406390B2 (en) 2017-10-30 2022-08-09 Cilag Gmbh International Clip applier comprising interchangeable clip reloads
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11793537B2 (en) 2017-10-30 2023-10-24 Cilag Gmbh International Surgical instrument comprising an adaptive electrical system
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
USD848473S1 (en) 2017-11-01 2019-05-14 General Electric Company Display screen with transitional graphical user interface
USD839900S1 (en) 2017-11-06 2019-02-05 Shenzhen Valuelink E-Commerce Co., Ltd. Display screen with graphical user interface
JP1630005S (en) 2017-11-21 2019-04-22
AU201812807S (en) 2017-11-24 2018-06-14 Dyson Technology Ltd Display screen with graphical user interface
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US20190183502A1 (en) 2017-12-15 2019-06-20 Ethicon Llc Systems and methods of controlling a clamping member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US20190192147A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Surgical instrument comprising an articulatable distal head
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US20190201045A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method for smoke evacuation for surgical hub
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US20190206555A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Cloud-based medical analytics for customization and recommendations to a user
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11213359B2 (en) 2017-12-28 2022-01-04 Cilag Gmbh International Controllers for robot-assisted surgical platforms
US20190201112A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Computer implemented interactive surgical systems
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US20190206569A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of cloud based data analytics for use with the hub
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US20190201027A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical instrument with acoustic-based motor control
US12096916B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US20190201115A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Aggregation and reporting of surgical hub data
US20190201034A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US20190205567A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Data pairing to interconnect a device measured parameter with an outcome
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US20190206561A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Data handling and prioritization in a cloud analytics network
US20190206564A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method for facility data collection and interpretation
US20190201140A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical hub situational awareness
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US20190200906A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Dual cmos array imaging
CN208625784U (en) 2017-12-28 2019-03-22 重庆西山科技股份有限公司 The sealing structure of stapler power handle
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
CN111556734A (en) 2018-01-04 2020-08-18 柯惠Lp公司 Robotic surgical instrument including high articulation wrist assembly with torque transfer and mechanical manipulation
USD870742S1 (en) 2018-01-26 2019-12-24 Facebook, Inc. Display screen or portion thereof with animated user interface
US10687819B2 (en) 2018-02-06 2020-06-23 Ethicon Llc Clamping mechanism for linear surgical stapler
US10667818B2 (en) 2018-02-06 2020-06-02 Ethicon Llc Lockout assembly for linear surgical stapler
US10210244B1 (en) 2018-02-12 2019-02-19 Asapp, Inc. Updating natural language interfaces by processing usage data
US11134946B2 (en) 2018-02-27 2021-10-05 Bolder Surgical, Llc Staple cartridge and methods for surgical staplers
AU2019228507A1 (en) 2018-02-27 2020-08-13 Applied Medical Resources Corporation Surgical stapler having a powered handle
US20190261982A1 (en) 2018-02-27 2019-08-29 Covidien Lp Powered stapler having varying staple heights and sizes
USD861035S1 (en) 2018-03-01 2019-09-24 Google Llc Display screen with animated icon
US11160601B2 (en) 2018-03-13 2021-11-02 Cilag Gmbh International Supplying electrical energy to electrosurgical instruments
US10631860B2 (en) 2018-03-23 2020-04-28 Ethicon Llc Surgical instrument with electrical contact under membrane
US11213294B2 (en) 2018-03-28 2022-01-04 Cilag Gmbh International Surgical instrument comprising co-operating lockout features
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US20190298353A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US10912578B2 (en) 2018-04-24 2021-02-09 Covidien Lp Clamping device with parallel jaw closure
US11896230B2 (en) 2018-05-07 2024-02-13 Covidien Lp Handheld electromechanical surgical device including load sensor having spherical ball pivots
USD856359S1 (en) 2018-05-30 2019-08-13 Mindtronic Ai Co., Ltd. Vehicle display screen or portion thereof with an animated graphical user interface
US20210204941A1 (en) 2018-06-01 2021-07-08 Steerable Instruments nv Controllable steerable fusing device
US10973515B2 (en) 2018-07-16 2021-04-13 Ethicon Llc Permanent attachment means for curved tip of component of surgical stapling instrument
US11457843B2 (en) 2018-08-03 2022-10-04 Dexcom, Inc. Systems and methods for communication with analyte sensor electronics
USD904613S1 (en) 2018-08-13 2020-12-08 Ethicon Llc Cartridge for linear surgical stapler
USD904612S1 (en) 2018-08-13 2020-12-08 Ethicon Llc Cartridge for linear surgical stapler
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US20200054321A1 (en) 2018-08-20 2020-02-20 Ethicon Llc Surgical instruments with progressive jaw closure arrangements
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
WO2020041203A1 (en) 2018-08-20 2020-02-27 Briteseed, Llc A system and method with applied stimulation used to detect or differentiate tissue or artifact
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11304704B2 (en) 2018-08-22 2022-04-19 Covidien Lp Surgical clip applier and ligation clips
US20210290322A1 (en) 2018-09-17 2021-09-23 Covidien Lp Highly articulated laparoscopic joint including electrical signal transmission therethrough
CN111134754A (en) 2018-11-02 2020-05-12 逸思(苏州)医疗科技有限公司 Push rod self-adaptation structure
CN111134849B (en) 2018-11-02 2024-05-31 威博外科公司 Surgical robot system
EP3897405A4 (en) 2018-12-21 2022-09-14 Intuitive Surgical Operations, Inc. Actuation mechanisms for surgical instruments
US11701109B2 (en) 2018-12-28 2023-07-18 Cilag Gmbh International Surgical stapler with sloped staple deck for varying tissue compression
US11202628B2 (en) 2018-12-28 2021-12-21 Cilag Gmbh International Surgical stapler with tissue engagement features around tissue containment pin
US11369373B2 (en) 2019-01-23 2022-06-28 Lexington Medical, Inc. Surgical stapler
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11331100B2 (en) 2019-02-19 2022-05-17 Cilag Gmbh International Staple cartridge retainer system with authentication keys
US11376000B2 (en) 2019-03-13 2022-07-05 Covidien Lp Surgical stapler anvil with directionally biased staple pockets
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
WO2020205643A1 (en) 2019-03-29 2020-10-08 Applied Medical Resources Corporation Reload cover for surgical stapling system
US11076933B2 (en) 2019-04-19 2021-08-03 Elt Sight, Inc. Authentication systems and methods for an excimer laser system
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US20200345357A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Intelligent firing associated with a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US20200345359A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Tissue stop for a surgical instrument
US20200345356A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Intelligent firing associated with a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11207146B2 (en) 2019-06-27 2021-12-28 Cilag Gmbh International Surgical instrument drive systems with cable-tightening system
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US20200405307A1 (en) 2019-06-28 2020-12-31 Ethicon Llc Control circuit comprising a coating
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US20200405292A1 (en) 2019-06-28 2020-12-31 Ethicon Llc Surgical instrument including a battery unit
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US20200405308A1 (en) 2019-06-28 2020-12-31 Ethicon Llc Surgical instrument including a firing lockout
US11361176B2 (en) 2019-06-28 2022-06-14 Cilag Gmbh International Surgical RFID assemblies for compatibility detection
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11853835B2 (en) 2019-06-28 2023-12-26 Cilag Gmbh International RFID identification systems for surgical instruments
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US20200405306A1 (en) 2019-06-28 2020-12-31 Ethicon Llc Surgical instrument including a firing system bailout
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11471158B2 (en) 2019-09-16 2022-10-18 Cilag Gmbh International Compressible non-fibrous adjuncts
US11395653B2 (en) 2019-11-26 2022-07-26 Covidien Lp Surgical stapling device with impedance sensor
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US20210212776A1 (en) 2019-12-20 2021-07-15 Auris Health, Inc. Functional indicators for robotic medical systems
US11219454B2 (en) 2020-05-29 2022-01-11 Cilag Gmbh International Pin trap mechanism for surgical linear cutter
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11564683B2 (en) 2020-09-16 2023-01-31 Cilag Gmbh International Apparatus and method to apply buttress to end effector of surgical stapler via driven member
US11576674B2 (en) 2020-10-06 2023-02-14 Covidien Lp Surgical stapling device with articulation lock assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US20220133303A1 (en) 2020-10-29 2022-05-05 Ethicon Llc Surgical instrument comprising sealable interface
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US20220167973A1 (en) 2020-12-02 2022-06-02 Ethicon Llc Surgical systems with detachable shaft reload detection
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US20220167982A1 (en) 2020-12-02 2022-06-02 Ethicon Llc Surgical instruments with electrical connectors for power transmission across sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US20220168038A1 (en) 2020-12-02 2022-06-02 Cilag Gmbh International Method for tissue treatment by surgical instrument
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130334284A1 (en) * 2005-08-31 2013-12-19 Ethicon Endo-Surgery, Inc. Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20090206140A1 (en) * 2008-02-15 2009-08-20 Ethicon Endo-Surgery,Inc. End effectors for a surgical cutting and stapling instrument
US20130075449A1 (en) * 2011-09-23 2013-03-28 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US20150173748A1 (en) * 2013-12-19 2015-06-25 Covidien Lp Surgical staples and end effectors for deploying the same
US20150216525A1 (en) * 2014-02-04 2015-08-06 Covidien Lp Authentication system for reusable surgical instruments

Cited By (1384)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US10716563B2 (en) 2004-07-28 2020-07-21 Ethicon Llc Stapling system comprising an instrument assembly including a lockout
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US12011165B2 (en) 2004-07-28 2024-06-18 Cilag Gmbh International Surgical stapling instrument comprising replaceable staple cartridge
US11684365B2 (en) 2004-07-28 2023-06-27 Cilag Gmbh International Replaceable staple cartridges for surgical instruments
US10687817B2 (en) 2004-07-28 2020-06-23 Ethicon Llc Stapling device comprising a firing member lockout
US11963679B2 (en) 2004-07-28 2024-04-23 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11083456B2 (en) 2004-07-28 2021-08-10 Cilag Gmbh International Articulating surgical instrument incorporating a two-piece firing mechanism
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10292707B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Articulating surgical stapling instrument incorporating a firing mechanism
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US12029423B2 (en) 2004-07-28 2024-07-09 Cilag Gmbh International Surgical stapling instrument comprising a staple cartridge
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US10799240B2 (en) 2004-07-28 2020-10-13 Ethicon Llc Surgical instrument comprising a staple firing lockout
US10568629B2 (en) 2004-07-28 2020-02-25 Ethicon Llc Articulating surgical stapling instrument
US11116502B2 (en) 2004-07-28 2021-09-14 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece firing mechanism
US11812960B2 (en) 2004-07-28 2023-11-14 Cilag Gmbh International Method of segmenting the operation of a surgical stapling instrument
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US11576673B2 (en) 2005-08-31 2023-02-14 Cilag Gmbh International Stapling assembly for forming staples to different heights
US10420553B2 (en) 2005-08-31 2019-09-24 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US11179153B2 (en) 2005-08-31 2021-11-23 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11134947B2 (en) 2005-08-31 2021-10-05 Cilag Gmbh International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10729436B2 (en) 2005-08-31 2020-08-04 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11399828B2 (en) 2005-08-31 2022-08-02 Cilag Gmbh International Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11272928B2 (en) 2005-08-31 2022-03-15 Cilag GmbH Intemational Staple cartridges for forming staples having differing formed staple heights
US11730474B2 (en) 2005-08-31 2023-08-22 Cilag Gmbh International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10869664B2 (en) 2005-08-31 2020-12-22 Ethicon Llc End effector for use with a surgical stapling instrument
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US11172927B2 (en) 2005-08-31 2021-11-16 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10463369B2 (en) 2005-08-31 2019-11-05 Ethicon Llc Disposable end effector for use with a surgical instrument
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US11793511B2 (en) 2005-11-09 2023-10-24 Cilag Gmbh International Surgical instruments
US10993713B2 (en) 2005-11-09 2021-05-04 Ethicon Llc Surgical instruments
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US11103269B2 (en) 2006-01-31 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US10653417B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Surgical instrument
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US10463383B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling instrument including a sensing system
US10806479B2 (en) 2006-01-31 2020-10-20 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11612393B2 (en) 2006-01-31 2023-03-28 Cilag Gmbh International Robotically-controlled end effector
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11166717B2 (en) 2006-01-31 2021-11-09 Cilag Gmbh International Surgical instrument with firing lockout
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US11000275B2 (en) 2006-01-31 2021-05-11 Ethicon Llc Surgical instrument
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US10952728B2 (en) 2006-01-31 2021-03-23 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US10653435B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US11801051B2 (en) 2006-01-31 2023-10-31 Cilag Gmbh International Accessing data stored in a memory of a surgical instrument
US11648024B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with position feedback
US10959722B2 (en) 2006-01-31 2021-03-30 Ethicon Llc Surgical instrument for deploying fasteners by way of rotational motion
US11350916B2 (en) 2006-01-31 2022-06-07 Cilag Gmbh International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11364046B2 (en) 2006-01-31 2022-06-21 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11648008B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10709468B2 (en) 2006-01-31 2020-07-14 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US11660110B2 (en) 2006-01-31 2023-05-30 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US11020113B2 (en) 2006-01-31 2021-06-01 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US11944299B2 (en) 2006-01-31 2024-04-02 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US11246616B2 (en) 2006-01-31 2022-02-15 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US11224454B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US10420560B2 (en) 2006-06-27 2019-09-24 Ethicon Llc Manually driven surgical cutting and fastening instrument
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US11622785B2 (en) 2006-09-29 2023-04-11 Cilag Gmbh International Surgical staples having attached drivers and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11382626B2 (en) 2006-10-03 2022-07-12 Cilag Gmbh International Surgical system including a knife bar supported for rotational and axial travel
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US10751138B2 (en) 2007-01-10 2020-08-25 Ethicon Llc Surgical instrument for use with a robotic system
US11931032B2 (en) 2007-01-10 2024-03-19 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US11166720B2 (en) 2007-01-10 2021-11-09 Cilag Gmbh International Surgical instrument including a control module for assessing an end effector
US11350929B2 (en) 2007-01-10 2022-06-07 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US12082806B2 (en) 2007-01-10 2024-09-10 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US11918211B2 (en) 2007-01-10 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US11937814B2 (en) 2007-01-10 2024-03-26 Cilag Gmbh International Surgical instrument for use with a robotic system
US11134943B2 (en) 2007-01-10 2021-10-05 Cilag Gmbh International Powered surgical instrument including a control unit and sensor
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US11666332B2 (en) 2007-01-10 2023-06-06 Cilag Gmbh International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US10433918B2 (en) 2007-01-10 2019-10-08 Ethicon Llc Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US10952727B2 (en) 2007-01-10 2021-03-23 Ethicon Llc Surgical instrument for assessing the state of a staple cartridge
US11771426B2 (en) 2007-01-10 2023-10-03 Cilag Gmbh International Surgical instrument with wireless communication
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US10945729B2 (en) 2007-01-10 2021-03-16 Ethicon Llc Interlock and surgical instrument including same
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US12004743B2 (en) 2007-01-10 2024-06-11 Cilag Gmbh International Staple cartridge comprising a sloped wall
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US11337693B2 (en) 2007-03-15 2022-05-24 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US11648006B2 (en) 2007-06-04 2023-05-16 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11134938B2 (en) 2007-06-04 2021-10-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US12023024B2 (en) 2007-06-04 2024-07-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US11154298B2 (en) 2007-06-04 2021-10-26 Cilag Gmbh International Stapling system for use with a robotic surgical system
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US12035906B2 (en) 2007-06-04 2024-07-16 Cilag Gmbh International Surgical instrument including a handle system for advancing a cutting member
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US11559302B2 (en) 2007-06-04 2023-01-24 Cilag Gmbh International Surgical instrument including a firing member movable at different speeds
US11147549B2 (en) 2007-06-04 2021-10-19 Cilag Gmbh International Stapling instrument including a firing system and a closure system
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US11992208B2 (en) 2007-06-04 2024-05-28 Cilag Gmbh International Rotary drive systems for surgical instruments
US11998200B2 (en) 2007-06-22 2024-06-04 Cilag Gmbh International Surgical stapling instrument with an articulatable end effector
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11925346B2 (en) 2007-06-29 2024-03-12 Cilag Gmbh International Surgical staple cartridge including tissue supporting surfaces
US12023025B2 (en) 2007-06-29 2024-07-02 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US11464514B2 (en) 2008-02-14 2022-10-11 Cilag Gmbh International Motorized surgical stapling system including a sensing array
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10639036B2 (en) 2008-02-14 2020-05-05 Ethicon Llc Robotically-controlled motorized surgical cutting and fastening instrument
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US11638583B2 (en) 2008-02-14 2023-05-02 Cilag Gmbh International Motorized surgical system having a plurality of power sources
US11717285B2 (en) 2008-02-14 2023-08-08 Cilag Gmbh International Surgical cutting and fastening instrument having RF electrodes
US11571212B2 (en) 2008-02-14 2023-02-07 Cilag Gmbh International Surgical stapling system including an impedance sensor
US10888330B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Surgical system
US10765432B2 (en) 2008-02-14 2020-09-08 Ethicon Llc Surgical device including a control system
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US11446034B2 (en) 2008-02-14 2022-09-20 Cilag Gmbh International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
US10888329B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Detachable motor powered surgical instrument
US11484307B2 (en) 2008-02-14 2022-11-01 Cilag Gmbh International Loading unit coupleable to a surgical stapling system
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US10874396B2 (en) 2008-02-14 2020-12-29 Ethicon Llc Stapling instrument for use with a surgical robot
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US10898195B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10898194B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10905427B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Surgical System
US11612395B2 (en) 2008-02-14 2023-03-28 Cilag Gmbh International Surgical system including a control system having an RFID tag reader
US10905426B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Detachable motor powered surgical instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US11998206B2 (en) 2008-02-14 2024-06-04 Cilag Gmbh International Detachable motor powered surgical instrument
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10470763B2 (en) 2008-02-14 2019-11-12 Ethicon Llc Surgical cutting and fastening instrument including a sensing system
US10806450B2 (en) 2008-02-14 2020-10-20 Ethicon Llc Surgical cutting and fastening instrument having a control system
US10716568B2 (en) 2008-02-14 2020-07-21 Ethicon Llc Surgical stapling apparatus with control features operable with one hand
US10925605B2 (en) 2008-02-14 2021-02-23 Ethicon Llc Surgical stapling system
US10722232B2 (en) 2008-02-14 2020-07-28 Ethicon Llc Surgical instrument for use with different cartridges
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US11154297B2 (en) 2008-02-15 2021-10-26 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11058418B2 (en) 2008-02-15 2021-07-13 Cilag Gmbh International Surgical end effector having buttress retention features
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US11998194B2 (en) 2008-02-15 2024-06-04 Cilag Gmbh International Surgical stapling assembly comprising an adjunct applicator
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US11517304B2 (en) 2008-09-23 2022-12-06 Cilag Gmbh International Motor-driven surgical cutting instrument
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US11684361B2 (en) 2008-09-23 2023-06-27 Cilag Gmbh International Motor-driven surgical cutting instrument
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US12029415B2 (en) 2008-09-23 2024-07-09 Cilag Gmbh International Motor-driven surgical cutting instrument
US11045189B2 (en) 2008-09-23 2021-06-29 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US11103241B2 (en) 2008-09-23 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting instrument
US10456133B2 (en) 2008-09-23 2019-10-29 Ethicon Llc Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US11617576B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10980535B2 (en) 2008-09-23 2021-04-20 Ethicon Llc Motorized surgical instrument with an end effector
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US11793521B2 (en) 2008-10-10 2023-10-24 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11583279B2 (en) 2008-10-10 2023-02-21 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US11540824B2 (en) 2010-09-30 2023-01-03 Cilag Gmbh International Tissue thickness compensator
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US10898193B2 (en) 2010-09-30 2021-01-26 Ethicon Llc End effector for use with a surgical instrument
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US10258330B2 (en) 2010-09-30 2019-04-16 Ethicon Llc End effector including an implantable arrangement
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US11583277B2 (en) 2010-09-30 2023-02-21 Cilag Gmbh International Layer of material for a surgical end effector
US11602340B2 (en) 2010-09-30 2023-03-14 Cilag Gmbh International Adhesive film laminate
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US10888328B2 (en) 2010-09-30 2021-01-12 Ethicon Llc Surgical end effector
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11559496B2 (en) 2010-09-30 2023-01-24 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10869669B2 (en) 2010-09-30 2020-12-22 Ethicon Llc Surgical instrument assembly
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US11672536B2 (en) 2010-09-30 2023-06-13 Cilag Gmbh International Layer of material for a surgical end effector
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US11684360B2 (en) 2010-09-30 2023-06-27 Cilag Gmbh International Staple cartridge comprising a variable thickness compressible portion
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US11395651B2 (en) 2010-09-30 2022-07-26 Cilag Gmbh International Adhesive film laminate
US11957795B2 (en) 2010-09-30 2024-04-16 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US10835251B2 (en) 2010-09-30 2020-11-17 Ethicon Llc Surgical instrument assembly including an end effector configurable in different positions
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US10398436B2 (en) 2010-09-30 2019-09-03 Ethicon Llc Staple cartridge comprising staples positioned within a compressible portion thereof
US11944292B2 (en) 2010-09-30 2024-04-02 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US11406377B2 (en) 2010-09-30 2022-08-09 Cilag Gmbh International Adhesive film laminate
US11529142B2 (en) 2010-10-01 2022-12-20 Cilag Gmbh International Surgical instrument having a power control circuit
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10736634B2 (en) 2011-05-27 2020-08-11 Ethicon Llc Robotically-driven surgical instrument including a drive system
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11974747B2 (en) 2011-05-27 2024-05-07 Cilag Gmbh International Surgical stapling instruments with rotatable staple deployment arrangements
US10813641B2 (en) 2011-05-27 2020-10-27 Ethicon Llc Robotically-driven surgical instrument
US10980534B2 (en) 2011-05-27 2021-04-20 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11612394B2 (en) 2011-05-27 2023-03-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US11129616B2 (en) 2011-05-27 2021-09-28 Cilag Gmbh International Surgical stapling system
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US11583278B2 (en) 2011-05-27 2023-02-21 Cilag Gmbh International Surgical stapling system having multi-direction articulation
US11266410B2 (en) 2011-05-27 2022-03-08 Cilag Gmbh International Surgical device for use with a robotic system
US12059154B2 (en) 2011-05-27 2024-08-13 Cilag Gmbh International Surgical instrument with detachable motor control unit
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US11918220B2 (en) 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US11406378B2 (en) 2012-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a compressible tissue thickness compensator
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11707273B2 (en) 2012-06-15 2023-07-25 Cilag Gmbh International Articulatable surgical instrument comprising a firing drive
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11083457B2 (en) 2012-06-28 2021-08-10 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US11857189B2 (en) 2012-06-28 2024-01-02 Cilag Gmbh International Surgical instrument including first and second articulation joints
US11154299B2 (en) 2012-06-28 2021-10-26 Cilag Gmbh International Stapling assembly comprising a firing lockout
US10932775B2 (en) 2012-06-28 2021-03-02 Ethicon Llc Firing system lockout arrangements for surgical instruments
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11109860B2 (en) 2012-06-28 2021-09-07 Cilag Gmbh International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11510671B2 (en) 2012-06-28 2022-11-29 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11039837B2 (en) 2012-06-28 2021-06-22 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US11602346B2 (en) 2012-06-28 2023-03-14 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11918213B2 (en) 2012-06-28 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US11540829B2 (en) 2012-06-28 2023-01-03 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11141156B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Surgical stapling assembly comprising flexible output shaft
US11534162B2 (en) 2012-06-28 2022-12-27 Cilag GmbH Inlernational Robotically powered surgical device with manually-actuatable reversing system
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US11141155B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Drive system for surgical tool
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US11373755B2 (en) 2012-08-23 2022-06-28 Cilag Gmbh International Surgical device drive system including a ratchet mechanism
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US11957345B2 (en) 2013-03-01 2024-04-16 Cilag Gmbh International Articulatable surgical instruments with conductive pathways for signal communication
US11246618B2 (en) 2013-03-01 2022-02-15 Cilag Gmbh International Surgical instrument soft stop
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US11266406B2 (en) 2013-03-14 2022-03-08 Cilag Gmbh International Control systems for surgical instruments
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US11992214B2 (en) 2013-03-14 2024-05-28 Cilag Gmbh International Control systems for surgical instruments
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US11564679B2 (en) 2013-04-16 2023-01-31 Cilag Gmbh International Powered surgical stapler
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US11406381B2 (en) 2013-04-16 2022-08-09 Cilag Gmbh International Powered surgical stapler
US11638581B2 (en) 2013-04-16 2023-05-02 Cilag Gmbh International Powered surgical stapler
US11633183B2 (en) 2013-04-16 2023-04-25 Cilag International GmbH Stapling assembly comprising a retraction drive
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US10888318B2 (en) 2013-04-16 2021-01-12 Ethicon Llc Powered surgical stapler
US11395652B2 (en) 2013-04-16 2022-07-26 Cilag Gmbh International Powered surgical stapler
US11690615B2 (en) 2013-04-16 2023-07-04 Cilag Gmbh International Surgical system including an electric motor and a surgical instrument
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US11000274B2 (en) 2013-08-23 2021-05-11 Ethicon Llc Powered surgical instrument
US11109858B2 (en) 2013-08-23 2021-09-07 Cilag Gmbh International Surgical instrument including a display which displays the position of a firing element
US10898190B2 (en) 2013-08-23 2021-01-26 Ethicon Llc Secondary battery arrangements for powered surgical instruments
US11504119B2 (en) 2013-08-23 2022-11-22 Cilag Gmbh International Surgical instrument including an electronic firing lockout
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US12053176B2 (en) 2013-08-23 2024-08-06 Cilag Gmbh International End effector detention systems for surgical instruments
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US11134940B2 (en) 2013-08-23 2021-10-05 Cilag Gmbh International Surgical instrument including a variable speed firing member
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US10869665B2 (en) 2013-08-23 2020-12-22 Ethicon Llc Surgical instrument system including a control system
US11701110B2 (en) 2013-08-23 2023-07-18 Cilag Gmbh International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
US11389160B2 (en) 2013-08-23 2022-07-19 Cilag Gmbh International Surgical system comprising a display
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US11376001B2 (en) 2013-08-23 2022-07-05 Cilag Gmbh International Surgical stapling device with rotary multi-turn retraction mechanism
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US11026680B2 (en) 2013-08-23 2021-06-08 Cilag Gmbh International Surgical instrument configured to operate in different states
US11779327B2 (en) 2013-12-23 2023-10-10 Cilag Gmbh International Surgical stapling system including a push bar
US10925599B2 (en) 2013-12-23 2021-02-23 Ethicon Llc Modular surgical instruments
US11246587B2 (en) 2013-12-23 2022-02-15 Cilag Gmbh International Surgical cutting and stapling instruments
US11364028B2 (en) 2013-12-23 2022-06-21 Cilag Gmbh International Modular surgical system
US11026677B2 (en) 2013-12-23 2021-06-08 Cilag Gmbh International Surgical stapling assembly
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11583273B2 (en) 2013-12-23 2023-02-21 Cilag Gmbh International Surgical stapling system including a firing beam extending through an articulation region
US11896223B2 (en) 2013-12-23 2024-02-13 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11123065B2 (en) 2013-12-23 2021-09-21 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11759201B2 (en) 2013-12-23 2023-09-19 Cilag Gmbh International Surgical stapling system comprising an end effector including an anvil with an anvil cap
US10588624B2 (en) 2013-12-23 2020-03-17 Ethicon Llc Surgical staples, staple cartridges and surgical end effectors
US11950776B2 (en) 2013-12-23 2024-04-09 Cilag Gmbh International Modular surgical instruments
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US12023023B2 (en) 2014-03-26 2024-07-02 Cilag Gmbh International Interface systems for use with surgical instruments
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US12023022B2 (en) 2014-03-26 2024-07-02 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10898185B2 (en) 2014-03-26 2021-01-26 Ethicon Llc Surgical instrument power management through sleep and wake up control
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10863981B2 (en) 2014-03-26 2020-12-15 Ethicon Llc Interface systems for use with surgical instruments
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
US10327776B2 (en) 2014-04-16 2019-06-25 Ethicon Llc Surgical stapling buttresses and adjunct materials
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US11298134B2 (en) 2014-04-16 2022-04-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11382625B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11974746B2 (en) 2014-04-16 2024-05-07 Cilag Gmbh International Anvil for use with a surgical stapling assembly
US11944307B2 (en) 2014-04-16 2024-04-02 Cilag Gmbh International Surgical stapling system including jaw windows
US12089849B2 (en) 2014-04-16 2024-09-17 Cilag Gmbh International Staple cartridges including a projection
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11596406B2 (en) 2014-04-16 2023-03-07 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11925353B2 (en) 2014-04-16 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11963678B2 (en) 2014-04-16 2024-04-23 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11406386B2 (en) 2014-09-05 2022-08-09 Cilag Gmbh International End effector including magnetic and impedance sensors
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US11389162B2 (en) 2014-09-05 2022-07-19 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US12042147B2 (en) 2014-09-05 2024-07-23 Cllag GmbH International Smart cartridge wake up operation and data retention
US11653918B2 (en) 2014-09-05 2023-05-23 Cilag Gmbh International Local display of tissue parameter stabilization
US11076854B2 (en) 2014-09-05 2021-08-03 Cilag Gmbh International Smart cartridge wake up operation and data retention
US12076017B2 (en) 2014-09-18 2024-09-03 Cilag Gmbh International Surgical instrument including a deployable knife
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US12016564B2 (en) 2014-09-26 2024-06-25 Cilag Gmbh International Circular fastener cartridges for applying radially expandable fastener lines
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US11931031B2 (en) 2014-10-16 2024-03-19 Cilag Gmbh International Staple cartridge comprising a deck including an upper surface and a lower surface
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11185325B2 (en) 2014-10-16 2021-11-30 Cilag Gmbh International End effector including different tissue gaps
US11701114B2 (en) 2014-10-16 2023-07-18 Cilag Gmbh International Staple cartridge
US12004741B2 (en) 2014-10-16 2024-06-11 Cilag Gmbh International Staple cartridge comprising a tissue thickness compensator
US11931038B2 (en) 2014-10-29 2024-03-19 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11864760B2 (en) 2014-10-29 2024-01-09 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11241229B2 (en) 2014-10-29 2022-02-08 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11337698B2 (en) 2014-11-06 2022-05-24 Cilag Gmbh International Staple cartridge comprising a releasable adjunct material
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US11382628B2 (en) 2014-12-10 2022-07-12 Cilag Gmbh International Articulatable surgical instrument system
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US12114859B2 (en) 2014-12-10 2024-10-15 Cilag Gmbh International Articulatable surgical instrument system
US11547403B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument having a laminate firing actuator and lateral buckling supports
US11399831B2 (en) 2014-12-18 2022-08-02 Cilag Gmbh International Drive arrangements for articulatable surgical instruments
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11812958B2 (en) 2014-12-18 2023-11-14 Cilag Gmbh International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US12029419B2 (en) 2014-12-18 2024-07-09 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US11517311B2 (en) 2014-12-18 2022-12-06 Cilag Gmbh International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US12108950B2 (en) 2014-12-18 2024-10-08 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11553911B2 (en) 2014-12-18 2023-01-17 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11571207B2 (en) 2014-12-18 2023-02-07 Cilag Gmbh International Surgical system including lateral supports for a flexible drive member
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US11547404B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US12076018B2 (en) 2015-02-27 2024-09-03 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11324506B2 (en) 2015-02-27 2022-05-10 Cilag Gmbh International Modular stapling assembly
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US10729432B2 (en) 2015-03-06 2020-08-04 Ethicon Llc Methods for operating a powered surgical instrument
US11350843B2 (en) 2015-03-06 2022-06-07 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10966627B2 (en) 2015-03-06 2021-04-06 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US11426160B2 (en) 2015-03-06 2022-08-30 Cilag Gmbh International Smart sensors with local signal processing
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US11510675B2 (en) 2015-08-26 2022-11-29 Cilag Gmbh International Surgical end effector assembly including a connector strip interconnecting a plurality of staples
US11963682B2 (en) 2015-08-26 2024-04-23 Cilag Gmbh International Surgical staples comprising hardness variations for improved fastening of tissue
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11051817B2 (en) 2015-08-26 2021-07-06 Cilag Gmbh International Method for forming a staple against an anvil of a surgical stapling instrument
US10966724B2 (en) 2015-08-26 2021-04-06 Ethicon Llc Surgical staples comprising a guide
US12035915B2 (en) 2015-08-26 2024-07-16 Cilag Gmbh International Surgical staples comprising hardness variations for improved fastening of tissue
US10980538B2 (en) 2015-08-26 2021-04-20 Ethicon Llc Surgical stapling configurations for curved and circular stapling instruments
US11058426B2 (en) 2015-08-26 2021-07-13 Cilag Gmbh International Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
US11103248B2 (en) 2015-08-26 2021-08-31 Cilag Gmbh International Surgical staples for minimizing staple roll
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11589868B2 (en) 2015-09-02 2023-02-28 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11382624B2 (en) 2015-09-02 2022-07-12 Cilag Gmbh International Surgical staple cartridge with improved staple driver configurations
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11490889B2 (en) 2015-09-23 2022-11-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11344299B2 (en) 2015-09-23 2022-05-31 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US11553916B2 (en) 2015-09-30 2023-01-17 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11712244B2 (en) 2015-09-30 2023-08-01 Cilag Gmbh International Implantable layer with spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10932779B2 (en) 2015-09-30 2021-03-02 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US11944308B2 (en) 2015-09-30 2024-04-02 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US11484309B2 (en) 2015-12-30 2022-11-01 Cilag Gmbh International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11974772B2 (en) 2016-01-15 2024-05-07 Cilag GmbH Intemational Modular battery powered handheld surgical instrument with variable motor control limits
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10470764B2 (en) 2016-02-09 2019-11-12 Ethicon Llc Surgical instruments with closure stroke reduction arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11826045B2 (en) 2016-02-12 2023-11-28 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US11026684B2 (en) 2016-04-15 2021-06-08 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11317910B2 (en) 2016-04-15 2022-05-03 Cilag Gmbh International Surgical instrument with detection sensors
US11284891B2 (en) 2016-04-15 2022-03-29 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11350932B2 (en) 2016-04-15 2022-06-07 Cilag Gmbh International Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11771454B2 (en) 2016-04-15 2023-10-03 Cilag Gmbh International Stapling assembly including a controller for monitoring a clamping laod
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11517306B2 (en) 2016-04-15 2022-12-06 Cilag Gmbh International Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US11147554B2 (en) 2016-04-18 2021-10-19 Cilag Gmbh International Surgical instrument system comprising a magnetic lockout
US11559303B2 (en) 2016-04-18 2023-01-24 Cilag Gmbh International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
USD896379S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US11786246B2 (en) 2016-06-24 2023-10-17 Cilag Gmbh International Stapling system for use with wire staples and stamped staples
USD948043S1 (en) 2016-06-24 2022-04-05 Cilag Gmbh International Surgical fastener
USD896380S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
US10893863B2 (en) 2016-06-24 2021-01-19 Ethicon Llc Staple cartridge comprising offset longitudinal staple rows
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
US12114914B2 (en) 2016-08-05 2024-10-15 Cilag Gmbh International Methods and systems for advanced harmonic energy
US11998230B2 (en) 2016-11-29 2024-06-04 Cilag Gmbh International End effector control and calibration
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US11369376B2 (en) 2016-12-21 2022-06-28 Cilag Gmbh International Surgical stapling systems
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US11497499B2 (en) 2016-12-21 2022-11-15 Cilag Gmbh International Articulatable surgical stapling instruments
US11992213B2 (en) 2016-12-21 2024-05-28 Cilag Gmbh International Surgical stapling instruments with replaceable staple cartridges
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US11096689B2 (en) 2016-12-21 2021-08-24 Cilag Gmbh International Shaft assembly comprising a lockout
US11350935B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Surgical tool assemblies with closure stroke reduction features
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US11350934B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Staple forming pocket arrangement to accommodate different types of staples
US11564688B2 (en) 2016-12-21 2023-01-31 Cilag Gmbh International Robotic surgical tool having a retraction mechanism
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US12004745B2 (en) 2016-12-21 2024-06-11 Cilag Gmbh International Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US12011166B2 (en) 2016-12-21 2024-06-18 Cilag Gmbh International Articulatable surgical stapling instruments
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10905422B2 (en) 2016-12-21 2021-02-02 Ethicon Llc Surgical instrument for use with a robotic surgical system
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11000276B2 (en) 2016-12-21 2021-05-11 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US11179155B2 (en) 2016-12-21 2021-11-23 Cilag Gmbh International Anvil arrangements for surgical staplers
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US11701115B2 (en) 2016-12-21 2023-07-18 Cilag Gmbh International Methods of stapling tissue
US11957344B2 (en) 2016-12-21 2024-04-16 Cilag Gmbh International Surgical stapler having rows of obliquely oriented staples
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11849948B2 (en) 2016-12-21 2023-12-26 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US11191543B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Assembly comprising a lock
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11160553B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Surgical stapling systems
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US11653917B2 (en) 2016-12-21 2023-05-23 Cilag Gmbh International Surgical stapling systems
US10687809B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
USD1039559S1 (en) 2017-06-20 2024-08-20 Cilag Gmbh International Display panel with changeable graphical user interface
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11672532B2 (en) 2017-06-20 2023-06-13 Cilag Gmbh International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11213302B2 (en) 2017-06-20 2022-01-04 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11766258B2 (en) 2017-06-27 2023-09-26 Cilag Gmbh International Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US11642128B2 (en) 2017-06-28 2023-05-09 Cilag Gmbh International Method for articulating a surgical instrument
US12023029B2 (en) 2017-06-28 2024-07-02 Cilag Gmbh International Flexible circuit for surgical instruments
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11529140B2 (en) 2017-06-28 2022-12-20 Cilag Gmbh International Surgical instrument lockout arrangement
US10758232B2 (en) 2017-06-28 2020-09-01 Ethicon Llc Surgical instrument with positive jaw opening features
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11696759B2 (en) 2017-06-28 2023-07-11 Cilag Gmbh International Surgical stapling instruments comprising shortened staple cartridge noses
US11000279B2 (en) 2017-06-28 2021-05-11 Ethicon Llc Surgical instrument comprising an articulation system ratio
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11896221B2 (en) 2017-06-28 2024-02-13 Cilag GmbH Intemational Surgical cartridge system with impedance sensors
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11998199B2 (en) 2017-09-29 2024-06-04 Cllag GmbH International System and methods for controlling a display of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10772651B2 (en) 2017-10-30 2020-09-15 Ethicon Llc Surgical instruments comprising a system for articulation and rotation compensation
US11103268B2 (en) 2017-10-30 2021-08-31 Cilag Gmbh International Surgical clip applier comprising adaptive firing control
US10932806B2 (en) 2017-10-30 2021-03-02 Ethicon Llc Reactive algorithm for surgical system
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11207090B2 (en) 2017-10-30 2021-12-28 Cilag Gmbh International Surgical instruments comprising a biased shifting mechanism
US11759224B2 (en) 2017-10-30 2023-09-19 Cilag Gmbh International Surgical instrument systems comprising handle arrangements
US11648022B2 (en) 2017-10-30 2023-05-16 Cilag Gmbh International Surgical instrument systems comprising battery arrangements
US12035983B2 (en) 2017-10-30 2024-07-16 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11141160B2 (en) 2017-10-30 2021-10-12 Cilag Gmbh International Clip applier comprising a motor controller
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11051836B2 (en) 2017-10-30 2021-07-06 Cilag Gmbh International Surgical clip applier comprising an empty clip cartridge lockout
US11071560B2 (en) 2017-10-30 2021-07-27 Cilag Gmbh International Surgical clip applier comprising adaptive control in response to a strain gauge circuit
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11602366B2 (en) 2017-10-30 2023-03-14 Cilag Gmbh International Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power
US11696778B2 (en) 2017-10-30 2023-07-11 Cilag Gmbh International Surgical dissectors configured to apply mechanical and electrical energy
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11291465B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Surgical instruments comprising a lockable end effector socket
US11129636B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instruments comprising an articulation drive that provides for high articulation angles
US11793537B2 (en) 2017-10-30 2023-10-24 Cilag Gmbh International Surgical instrument comprising an adaptive electrical system
US11123070B2 (en) 2017-10-30 2021-09-21 Cilag Gmbh International Clip applier comprising a rotatable clip magazine
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11109878B2 (en) 2017-10-30 2021-09-07 Cilag Gmbh International Surgical clip applier comprising an automatic clip feeding system
US11026712B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Surgical instruments comprising a shifting mechanism
US10980560B2 (en) 2017-10-30 2021-04-20 Ethicon Llc Surgical instrument systems comprising feedback mechanisms
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11564703B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Surgical suturing instrument comprising a capture width which is larger than trocar diameter
US11925373B2 (en) 2017-10-30 2024-03-12 Cilag Gmbh International Surgical suturing instrument comprising a non-circular needle
US12059218B2 (en) 2017-10-30 2024-08-13 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11045197B2 (en) 2017-10-30 2021-06-29 Cilag Gmbh International Clip applier comprising a movable clip magazine
US12076011B2 (en) 2017-10-30 2024-09-03 Cilag Gmbh International Surgical stapler knife motion controls
US11026687B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Clip applier comprising clip advancing systems
US11406390B2 (en) 2017-10-30 2022-08-09 Cilag Gmbh International Clip applier comprising interchangeable clip reloads
US11413042B2 (en) 2017-10-30 2022-08-16 Cilag Gmbh International Clip applier comprising a reciprocating clip advancing member
US11819231B2 (en) 2017-10-30 2023-11-21 Cilag Gmbh International Adaptive control programs for a surgical system comprising more than one type of cartridge
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10959744B2 (en) 2017-10-30 2021-03-30 Ethicon Llc Surgical dissectors and manufacturing techniques
US11026713B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Surgical clip applier configured to store clips in a stored state
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11478244B2 (en) 2017-10-31 2022-10-25 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US11963680B2 (en) 2017-10-31 2024-04-23 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11284953B2 (en) 2017-12-19 2022-03-29 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US12076096B2 (en) 2017-12-19 2024-09-03 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US11712303B2 (en) 2017-12-28 2023-08-01 Cilag Gmbh International Surgical instrument comprising a control circuit
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US12096916B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US12096985B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11737668B2 (en) 2017-12-28 2023-08-29 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US12076010B2 (en) 2017-12-28 2024-09-03 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11751958B2 (en) 2017-12-28 2023-09-12 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11382697B2 (en) 2017-12-28 2022-07-12 Cilag Gmbh International Surgical instruments comprising button circuits
US12059124B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US12062442B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Method for operating surgical instrument systems
US12059169B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US12053159B2 (en) 2017-12-28 2024-08-06 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US12048496B2 (en) 2017-12-28 2024-07-30 Cilag Gmbh International Adaptive control program updates for surgical hubs
US12042207B2 (en) 2017-12-28 2024-07-23 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US12035890B2 (en) 2017-12-28 2024-07-16 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US12029506B2 (en) 2017-12-28 2024-07-09 Cilag Gmbh International Method of cloud based data analytics for use with the hub
US12009095B2 (en) 2017-12-28 2024-06-11 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11931110B2 (en) 2017-12-28 2024-03-19 Cilag Gmbh International Surgical instrument comprising a control system that uses input from a strain gage circuit
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11918302B2 (en) 2017-12-28 2024-03-05 Cilag Gmbh International Sterile field interactive control displays
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11045591B2 (en) 2017-12-28 2021-06-29 Cilag Gmbh International Dual in-series large and small droplet filters
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11903587B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Adjustment to the surgical stapling control based on situational awareness
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11589932B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11596291B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws
US11775682B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11890065B2 (en) 2017-12-28 2024-02-06 Cilag Gmbh International Surgical system to limit displacement
US11601371B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11701185B2 (en) 2017-12-28 2023-07-18 Cilag Gmbh International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11114195B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Surgical instrument with a tissue marking assembly
US11779337B2 (en) 2017-12-28 2023-10-10 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11612408B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Determining tissue composition via an ultrasonic system
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11179204B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11864845B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Sterile field interactive control displays
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11213359B2 (en) 2017-12-28 2022-01-04 Cilag Gmbh International Controllers for robot-assisted surgical platforms
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11839396B2 (en) 2018-03-08 2023-12-12 Cilag Gmbh International Fine dissection mode for tissue classification
US11844545B2 (en) 2018-03-08 2023-12-19 Cilag Gmbh International Calcified vessel identification
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11617597B2 (en) 2018-03-08 2023-04-04 Cilag Gmbh International Application of smart ultrasonic blade technology
US11298148B2 (en) 2018-03-08 2022-04-12 Cilag Gmbh International Live time tissue classification using electrical parameters
US11589915B2 (en) 2018-03-08 2023-02-28 Cilag Gmbh International In-the-jaw classifier based on a model
US11457944B2 (en) 2018-03-08 2022-10-04 Cilag Gmbh International Adaptive advanced tissue treatment pad saver mode
US11464532B2 (en) 2018-03-08 2022-10-11 Cilag Gmbh International Methods for estimating and controlling state of ultrasonic end effector
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11701139B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11701162B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Smart blade application for reusable and disposable devices
US11707293B2 (en) 2018-03-08 2023-07-25 Cilag Gmbh International Ultrasonic sealing algorithm with temperature control
US11344326B2 (en) 2018-03-08 2022-05-31 Cilag Gmbh International Smart blade technology to control blade instability
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11389188B2 (en) 2018-03-08 2022-07-19 Cilag Gmbh International Start temperature of blade
US11534196B2 (en) 2018-03-08 2022-12-27 Cilag Gmbh International Using spectroscopy to determine device use state in combo instrument
US11678901B2 (en) 2018-03-08 2023-06-20 Cilag Gmbh International Vessel sensing for adaptive advanced hemostasis
US11986233B2 (en) 2018-03-08 2024-05-21 Cilag Gmbh International Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device
US11678927B2 (en) 2018-03-08 2023-06-20 Cilag Gmbh International Detection of large vessels during parenchymal dissection using a smart blade
US11399858B2 (en) 2018-03-08 2022-08-02 Cilag Gmbh International Application of smart blade technology
US11931027B2 (en) 2018-03-28 2024-03-19 Cilag Gmbh Interntional Surgical instrument comprising an adaptive control system
WO2019186438A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11406382B2 (en) 2018-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a lockout key configured to lift a firing member
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11937817B2 (en) 2018-03-28 2024-03-26 Cilag Gmbh International Surgical instruments with asymmetric jaw arrangements and separate closure and firing systems
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11986185B2 (en) 2018-03-28 2024-05-21 Cilag Gmbh International Methods for controlling a surgical stapler
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11129611B2 (en) 2018-03-28 2021-09-28 Cilag Gmbh International Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
EP3895627A1 (en) 2018-03-28 2021-10-20 Ethicon LLC Surgical stapler cartridge comprising a lockout key
US11166716B2 (en) 2018-03-28 2021-11-09 Cilag Gmbh International Stapling instrument comprising a deactivatable lockout
WO2019186436A2 (en) 2018-03-28 2019-10-03 Ethicon Llc Stapling instrument comprising a deactivatable lockout
WO2019186467A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with improved rotary driven closure systems
EP3912565A1 (en) 2018-03-28 2021-11-24 Ethicon LLC Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
WO2019186432A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
WO2019186431A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Staple cartridge comprising a lockout key configured to lift a firing member
US11197668B2 (en) 2018-03-28 2021-12-14 Cilag Gmbh International Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
WO2019186433A2 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical instrument comprising co-operating lockout features
WO2019186472A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Rotary driven firing members with different anvil and channel engagement features
WO2019186474A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
WO2019186470A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
WO2019186437A2 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical instrument comprising a jaw closure lockout
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
WO2019186466A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11213294B2 (en) 2018-03-28 2022-01-04 Cilag Gmbh International Surgical instrument comprising co-operating lockout features
WO2019186434A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
EP3613355A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
EP3613360A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
EP3613356A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
EP3613368A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Switching arrangements for motor powered articulatable surgical instruments
EP3613361A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical instruments with progressive jaw closure arrangements
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
EP3613362A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Reinforced deformable anvil tip for surgical stapler anvil
EP3613357A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
WO2020039309A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Surgical stapling devices with improved closure members
WO2020039310A1 (en) 2018-08-20 2020-02-27 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
WO2020039315A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
EP3613359A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapler anvils with staple directing protrusions and tissue stability features
EP3613358A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Fabricating techniques for surgical stapler anvils
EP3613354A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapling devices with improved closure members
WO2020039314A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
WO2020039305A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11957339B2 (en) 2018-08-20 2024-04-16 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
WO2020039308A1 (en) 2018-08-20 2020-02-27 Ethicon Llc Fabricating techniques for surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
WO2020039317A1 (en) 2018-08-20 2020-02-27 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
WO2020039316A1 (en) 2018-08-20 2020-02-27 Ethicon Llc Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
WO2020039306A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Surgical stapler anvils with staple directing protrusions and tissue stability features
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US12076008B2 (en) 2018-08-20 2024-09-03 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
WO2020039313A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Surgical instruments with progressive jaw closure arrangements
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US12121255B2 (en) 2018-08-24 2024-10-22 Cilag Gmbh International Electrical power output control based on mechanical forces
US11517309B2 (en) 2019-02-19 2022-12-06 Cilag Gmbh International Staple cartridge retainer with retractable authentication key
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11291445B2 (en) 2019-02-19 2022-04-05 Cilag Gmbh International Surgical staple cartridges with integral authentication keys
US11331100B2 (en) 2019-02-19 2022-05-17 Cilag Gmbh International Staple cartridge retainer system with authentication keys
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11291444B2 (en) 2019-02-19 2022-04-05 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11298130B2 (en) 2019-02-19 2022-04-12 Cilag Gmbh International Staple cartridge retainer with frangible authentication key
US11925350B2 (en) 2019-02-19 2024-03-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US11331101B2 (en) 2019-02-19 2022-05-17 Cilag Gmbh International Deactivator element for defeating surgical stapling device lockouts
US11272931B2 (en) 2019-02-19 2022-03-15 Cilag Gmbh International Dual cam cartridge based feature for unlocking a surgical stapler lockout
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11298129B2 (en) 2019-02-19 2022-04-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
WO2020194084A1 (en) 2019-03-25 2020-10-01 Ethicon Llc Fire drive arrangements for surgical systems
EP3714804A2 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
WO2020194085A1 (en) 2019-03-25 2020-10-01 Ethicon Llc Firing drive arrangements for surgical systems
EP3714805A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
EP3714806A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
WO2020194082A1 (en) 2019-03-25 2020-10-01 Ethicon Llc Articulation drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
EP3714803A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Articulation drive arrangements for surgical systems
WO2020194083A2 (en) 2019-03-25 2020-10-01 Ethicon Llc Firing drive arrangements for surgical systems
EP3733083A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Rotatable jaw tip for a surgical instrument
WO2020222075A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Articulation directional lights on a surgical instrument
EP3733079A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation control mapping for a surgical instrument
WO2020222078A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Articulation control mapping for a surgical instrument
EP3738522A1 (en) 2019-04-30 2020-11-18 Ethicon LLC Tissue stop for a surgical instrument
WO2020222080A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Intelligent firing associated with a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
EP3733113A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Intelligent firing associated with a surgical instrument
WO2020222074A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Articulation actuators for a surgical instrument
EP3733097A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Surgical instrument comprising an articulation pin having a retention head
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
EP3733084A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation directional lights on a surgical instrument
EP3733082A2 (en) 2019-04-30 2020-11-04 Ethicon LLC Intelligent firing associated with a surgical instrument
EP3733080A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Shaft rotation actuator on a surgical instrument
WO2020222076A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
WO2020222079A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Intelligent firing associated with a surgical instrument
WO2020222081A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
WO2020222082A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Tissue stop for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
WO2020222083A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Surgical instrument comprising an articulation pin having a retention head
EP3733081A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation actuators for a surgical instrument
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11684369B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11553919B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11559304B2 (en) * 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11986234B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Surgical system communication pathways
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11826013B2 (en) 2020-07-28 2023-11-28 Cilag Gmbh International Surgical instruments with firing member closure features
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
US11864756B2 (en) 2020-07-28 2024-01-09 Cilag Gmbh International Surgical instruments with flexible ball chain drive arrangements
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US12064107B2 (en) 2020-07-28 2024-08-20 Cilag Gmbh International Articulatable surgical instruments with articulation joints comprising flexible exoskeleton arrangements
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11974741B2 (en) 2020-07-28 2024-05-07 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
WO2022090930A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
WO2022090913A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
WO2022090922A2 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising sealable interface
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
WO2022090925A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
WO2022090929A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US12029421B2 (en) 2020-10-29 2024-07-09 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
WO2022090924A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD980425S1 (en) * 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
WO2022090928A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
WO2022090911A2 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an articulation indicator
WO2022090919A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
WO2022090926A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US12076194B2 (en) 2020-10-29 2024-09-03 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US12016559B2 (en) 2020-12-02 2024-06-25 Cllag GmbH International Powered surgical instruments with communication interfaces through sterile barrier
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
WO2022180543A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US12035910B2 (en) 2021-02-26 2024-07-16 Cllag GmbH International Monitoring of internal systems to detect and track cartridge motion status
US12035912B2 (en) 2021-02-26 2024-07-16 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
WO2022180520A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
WO2022180528A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a power management circuit
WO2022180537A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US12035911B2 (en) 2021-02-26 2024-07-16 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
WO2022180538A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Adjustment to transfer parameters to improve available power
WO2022180541A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising an information access control system
WO2022180540A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
WO2022180539A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Distal communication array to tune frequency of rf systems
WO2022180519A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
WO2022180525A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
WO2022180533A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
WO2022180530A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a sensor array
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
WO2022180529A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
WO2022200951A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising an implantable layer
US12042146B2 (en) 2021-03-22 2024-07-23 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
WO2022200958A2 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Stapling instrument comprising tissue compression systems
WO2022200953A2 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
WO2022200956A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
WO2022200954A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
WO2022200955A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US12023026B2 (en) 2021-03-22 2024-07-02 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
WO2022200952A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US20220304682A1 (en) * 2021-03-24 2022-09-29 Ethicon Llc Fastener cartridge with non-repeating fastener rows
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11918275B2 (en) 2021-04-30 2024-03-05 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
WO2022229862A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Electrosurgical techniques for sealing, short circuit detection, and system determination of power level
WO2022229860A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical systems configured to cooperatively control end effector function and application of therapeutic energy
WO2022229870A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
WO2022229866A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Shaft system for surgical instrument
WO2022229865A2 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Staple cartridge comprising staple drivers and stability supports
WO2022229872A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
US11944295B2 (en) 2021-04-30 2024-04-02 Cilag Gmbh International Surgical instrument comprising end effector with longitudinal sealing step
WO2022229864A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Interchangeable end effector reloads
WO2022229868A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical staple for use with combination electrosurgical instruments
US11857184B2 (en) 2021-04-30 2024-01-02 Cilag Gmbh International Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
US11931035B2 (en) 2021-04-30 2024-03-19 Cilag Gmbh International Articulation system for surgical instrument
WO2022229857A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising end effector with energy sensitive resistance elements
WO2022229858A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising independently activatable segmented electrodes
WO2022229867A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Staple cartridge comprising formation support features
US11826043B2 (en) 2021-04-30 2023-11-28 Cilag Gmbh International Staple cartridge comprising formation support features
WO2022229871A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a closure bar and a firing bar
WO2022229869A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Articulation system for surgical instrument
WO2022229855A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical systems configured to control therapeutic energy application to tissue based on cartridge and tissue parameters
WO2022229861A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising end effector with longitudinal sealing step
WO2022238843A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable staple comprising strain limiting features
US11890004B2 (en) 2021-05-10 2024-02-06 Cilag Gmbh International Staple cartridge comprising lubricated staples
WO2022238848A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Staple cartridge comprising lubricated staples
WO2022238844A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable surgical staple comprising a coating
WO2022238850A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Method for selecting a staple cartridge paired to the in situ environment
US11998192B2 (en) 2021-05-10 2024-06-04 Cilag Gmbh International Adaptive control of surgical stapling instrument based on staple cartridge type
WO2022238841A2 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Packaging assemblies for surgical staple cartridges containing bioabsorbable staples
WO2022238849A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Cartridge assemblies with absorbable metal staples and absorbable implantable adjuncts
WO2022238845A2 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Dissimilar staple cartridges with different bioabsorbable components
WO2022238842A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable surgical staples comprising sufficient structural properties during a tissue healing window
WO2022238836A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Bioabsorbable staple comprising mechanisms for slowing the absorption of the staple
WO2022238847A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Adaptive control of surgical stapling instrument based on staple cartridge type
WO2022238846A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Bioabsorbable staple comprising mechanism for delaying the absorption of the staple
WO2022238840A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International System of surgical staple cartridges comprising absorbable staples
WO2022249088A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
WO2022249092A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
WO2022249094A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a control system that controls a firiing stroke length
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
WO2022249086A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising jaw mounts
WO2022249099A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
US11998201B2 (en) 2021-05-28 2024-06-04 Cilag CmbH International Stapling instrument comprising a firing lockout
WO2022249091A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
WO2023067459A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Anvil comprising an arrangement of forming pockets proximal to tissue stop
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
WO2023067464A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Cable-driven actuation system for robotic surgical tool attachment
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
WO2023067463A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
WO2023067458A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
WO2023067461A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Row-to-row staple array variations
WO2023073546A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Surgical device with internal communication that combines multiple signals per wire
WO2023073545A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Alternate means to establish resistive load force
WO2023073549A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
WO2023073540A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Method and device for transmitting uart communications over a security short range wireless communication
WO2023073537A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Staple cartridge identification systems
WO2023073543A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Surgical instrument cartridge with unique resistor for surgical instrument identification
US12121256B2 (en) 2023-04-06 2024-10-22 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US12121234B2 (en) 2023-09-14 2024-10-22 Cilag Gmbh International Staple cartridge assembly comprising a compensator

Also Published As

Publication number Publication date
WO2018118636A1 (en) 2018-06-28
MX2019007427A (en) 2019-11-18
BR112019012220A2 (en) 2019-11-12
US11766259B2 (en) 2023-09-26
US20240016494A1 (en) 2024-01-18
JP2020501782A (en) 2020-01-23
US20210393262A1 (en) 2021-12-23
CN110099639A (en) 2019-08-06
EP3338657A1 (en) 2018-06-27
JP2022153543A (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US11766259B2 (en) Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11931034B2 (en) Surgical stapling instruments with smart staple cartridges
US10426471B2 (en) Surgical instrument with multiple failure response modes
US10499914B2 (en) Staple forming pocket arrangements
CN110099637B (en) Surgical stapling instrument with smart staple cartridge
US11179155B2 (en) Anvil arrangements for surgical staplers
US10856868B2 (en) Firing member pin configurations
CN110167459B (en) Surgical instrument with primary and safety processors
BR112019012220B1 (en) SURGICAL INSTRUMENT

Legal Events

Date Code Title Description
AS Assignment

Owner name: ETHICON ENDO-SURGERY, LLC, PUERTO RICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHELTON, FREDERICK E., IV;HARRIS, JASON L.;BAKOS, GREGORY J.;SIGNING DATES FROM 20170111 TO 20170119;REEL/FRAME:043227/0380

AS Assignment

Owner name: ETHICON LLC, PUERTO RICO

Free format text: CHANGE OF NAME;ASSIGNOR:ETHICON ENDO-SURGERY, LLC;REEL/FRAME:045603/0712

Effective date: 20161230

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: CILAG GMBH INTERNATIONAL, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON LLC;REEL/FRAME:056983/0569

Effective date: 20210405

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION