US20140263552A1 - Staple cartridge tissue thickness sensor system - Google Patents

Staple cartridge tissue thickness sensor system Download PDF

Info

Publication number
US20140263552A1
US20140263552A1 US13/800,067 US201313800067A US2014263552A1 US 20140263552 A1 US20140263552 A1 US 20140263552A1 US 201313800067 A US201313800067 A US 201313800067A US 2014263552 A1 US2014263552 A1 US 2014263552A1
Authority
US
United States
Prior art keywords
state
tissue thickness
terminal
controller
sensing module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/800,067
Inventor
Steven G. Hall
Brett E. Swensgard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon LLC
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Priority to US13/800,067 priority Critical patent/US20140263552A1/en
Priority to US13/800,025 priority patent/US9345481B2/en
Assigned to ETHICON ENDO-SURGERY, INC. reassignment ETHICON ENDO-SURGERY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SWENSGARD, BRETT E., HALL, STEVEN G.
Priority claimed from JP2016500455A external-priority patent/JP6325073B2/en
Publication of US20140263552A1 publication Critical patent/US20140263552A1/en
Assigned to ETHICON ENDO-SURGERY, LLC reassignment ETHICON ENDO-SURGERY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON ENDO-SURGERY, INC.
Assigned to ETHICON LLC reassignment ETHICON LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON ENDO-SURGERY, LLC
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/0682Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil
    • A61B17/0686Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil having a forming anvil staying below the tissue during stapling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • A61B19/44
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00039Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00221Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00415Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like having power generation near the working tip of the tool
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • A61B2017/00482Coupling with a code
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07271Stapler heads characterised by its cartridge
    • A61B2019/461
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags

Abstract

In various embodiments, a staple cartridge for use in a surgical stapler is disclosed. The staple cartridge comprises a staple body comprising a proximal end and a distal end. A tissue thickness sensing module is positioned adjacent to the distal end of the staple body. The tissue thickness sensing module comprises a controller and a sensor. A power key is located removably adjacent to the staple body. The controller is configured to detect the power key and to maintain the tissue thickness sensing module in a low-power state while the power key is present. When the power key is removed, the controller transitions the tissue thickness sensing module to an active state.

Description

    BACKGROUND
  • The present disclosure relates generally to surgical instruments for endoscopic, laparoscopic, or robotic surgery. Specifically, the present disclosure relates to surgical instruments comprising an end effector configured to staple tissue.
  • Surgical staplers are used to simultaneously make a longitudinal incision in tissue and apply lines of staples on opposing sides of the incision. Such instruments commonly include an end effector having a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. In one embodiment, one of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples—one on each side of a knife channel defined therein. The other jaw member can define an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument can also include a plurality of cam, or lift, surfaces that, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil. Simultaneously, a cutting instrument (or knife) is moved distally along the jaw member so that the clamped tissue is cut and fastened (e.g., stapled) at the same time.
  • An example of a surgical stapler suitable for endoscopic applications is described in U.S. Pat. No. 7,000,818, entitled “Surgical Stapling Instrument Having Separate Distinct Closing and Firing Systems,” the disclosure of which is herein incorporated by reference in its entirety. In use, a clinician is able to close the jaw members of the stapler upon tissue to position the tissue prior to firing. Once the clinician has determined that the jaw members are properly gripping tissue, the clinician can then fire the surgical stapler, thereby severing and stapling the tissue. The simultaneous severing and stapling actions avoid complications that may arise when performing such actions sequentially with different surgical tools that respectively only sever or staple.
  • Surgical staplers are configured to be used in an optimal tissue thickness range. Presently, clinicians must use video feeds and intuition to determine if the thickness of tissue clamped in the end effector is within the optimal tissue thickness range. Developing a proper feel for the required thickness for a given cartridge type may take years of practice or may never occur for some clinicians. What is needed is a simple and reliable system for determining when the tissue clamped in an end effector is within the optimal tissue thickness range for a given staple cartridge.
  • SUMMARY
  • In various embodiments, a device comprising a Hall Effect sensor, a reed switch, a power source, and a controller in signal communication with the power source is disclosed. The controller is configured to detect the state of the reed switch. A magnet is removably positioned adjacent to the device. The magnet is configured to generate a magnetic field sufficient to maintain the reed switch in a saturation state. The controller detects the saturation state and maintains the device in a low-power state while the reed switch is in the saturation state. When the magnet is removed from the device, the reed switch enters a non-saturated state. The controller detects the non-saturated state of the reed switch and transitions the device from the low-power state to an active power state.
  • In various embodiments, a surgical end effector is disclosed. The surgical end effector comprises a staple cartridge comprising a proximal end and a distal end. The staple cartridge is configured to be used to staple tissue within an optimal tissue thickness range. An anvil is movably coupled relative to the proximal end of the staple cartridge. A tissue thickness sensing module is located adjacent to the distal end of the staple cartridge. The tissue thickness sensing module comprises a sensor and a controller. The sensor is configured to generate a tissue thickness signal indicative of a thickness of the tissue located between the anvil and the staple cartridge. The controller is in signal communication with the sensor. The controller comprises means for identifying the staple cartridge type of the staple cartridge. The staple cartridge type and the thickness of the tissue are used to determine if the thickness of the tissue located between the anvil and the staple cartridge is within the optimal tissue thickness range of the staple cartridge.
  • In various embodiments, a staple cartridge for use in a surgical stapler is disclosed. The staple cartridge comprises a staple body comprising a proximal end and a distal end. A tissue thickness sensing module is positioned adjacent to the distal end of the staple body. The tissue thickness sensing module comprises a controller and a sensor. A power key is located removably adjacent to the staple body. The controller is configured to detect the power key and to maintain the tissue thickness sensing module in a low-power state while the power key is present. When the power key is removed, the controller transitions the tissue thickness sensing module to an active state.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:
  • FIGS. 1 and 2 illustrate views of an articulating surgical instrument.
  • FIGS. 3-6 illustrate exploded views of the end effector and shaft of the surgical instrument shown in FIGS. 1 and 2.
  • FIG. 7 illustrates a perspective view of an end effector comprising a tissue thickness sensing module.
  • FIG. 8 illustrates one embodiment of a tissue thickness sensing module.
  • FIGS. 9A and 9B illustrate internal views of the tissue thickness sensing module shown in FIG. 8.
  • FIG. 10 illustrates a block diagram of one embodiment of a tissue thickness sensing module.
  • FIG. 11 illustrates one embodiment of a tissue thickness sensing module configured to transmit a tissue thickness signal to a remote device.
  • FIG. 12 illustrates one embodiment of a tissue thickness sensing module configured to receive a power key comprising a magnet.
  • FIG. 13 illustrates one embodiment of Hall Effect sensor.
  • FIG. 14 illustrates one embodiment of a tissue thickness sensing module configured to receive a power key comprising terminal connectors.
  • FIG. 15 is a flow chart illustrating one embodiment of a method for maintaining a tissue thickness sensing module in a low-power state.
  • DETAILED DESCRIPTION
  • Applicant of the present application owns U.S. patent application entitled “Staple Cartridge Tissue Thickness Sensor System”, Attorney Docket No. END7198USNP/120306, which was filed on even date herewith and which is herein incorporated by reference in its entirety.
  • Reference will now be made in detail to several embodiments, including embodiments showing exemplary implementations of surgical instruments comprising a tissue thickness sensing module. Wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict exemplary embodiments of the disclosed surgical instruments and/or methods of use for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative example embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.
  • It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping the handle of an instrument. Thus, the end effector is distal with respect to the more proximal handle. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
  • The instrument may be a motor-driven instrument, a hand-powered instrument, or a robotically controlled surgical instrument according to various embodiments. U.S. patent application Ser. No. 13/782,295, entitled “Articulatable Surgical Instruments With Conductive Pathways For Signal Communication”; U.S. patent application Ser. No. 13/782,323, entitled “Rotary Powered Articulation Joints For Surgical Instruments; U.S. patent application Ser. No. 13/782,338, entitled “Thumbwheel Switch Arrangements For Surgical Instruments”; U.S. patent application Ser. No. 13/782,499, entitled “Electromechanical Surgical Device with Signal Relay Arrangement”; U.S. patent application Ser. No. 13/782,460, entitled “Multiple Processor Motor Control for Modular Surgical Instruments”; U.S. patent application Ser. No. 13/782,358, entitled “Joystick Switch Assemblies For Surgical Instruments”; U.S. patent application Ser. No. 13/782,481, entitled “Sensor Straightened End Effector During Removal Through Trocar”; U.S. patent application Ser. No. 13/782,518, entitled “Control Methods for Surgical Instruments with Removable Implement Portions”; U.S. patent application Ser. No. 13/782,375, entitled “Rotary Powered Surgical Instruments With Multiple Degrees of Freedom”; and U.S. patent application Ser. No. 13/782,536, entitled “Surgical Instrument Soft Stop”, which were filed on Mar. 1, 2013, are hereby incorporated by reference in their entireties.
  • FIGS. 1 and 2 depict a motor-driven surgical cutting and fastening instrument 10 according to various embodiments of the present disclosure. The illustrated embodiment is a linear endoscopic instrument and, in general, the embodiments of the instrument 10 described herein are linear endoscopic surgical cutting and fastening instruments. It should be noted, however, that the invention is not so limited and that according to other embodiments of the present invention, the instrument may be another type of endoscopic instrument, such as a circular or curved endocutter. U.S. Patent Application Publication No. 2008/0169332, published on Jul. 17, 2008, entitled “Surgical Stapling Device with a Curved Cutting Member”, is herein incorporated by reference in its entirety. In addition, the instrument may be a non-endoscopic surgical cutting and fastening instrument, such as a laparoscopic instrument, an open surgery instrument, or a robotic surgical instrument. In some embodiments, the surgical instrument 10 may comprise recording capabilities. U.S. Pat. No. 7,845,537, which issued on Dec. 7, 2010, entitled “Surgical Instrument Having Recording Capabilities”, is herein incorporated by reference in its entirety.
  • The surgical instrument 10 depicted in FIGS. 1 and 2 comprises a handle 6, a shaft 8, and an end effector 12 connected to the shaft 8. In various embodiments, the end effector 12 can be articulated about an articulation pivot 14. An articulation control 16 may be provided adjacent to the handle 6 to effect rotation of the end effector 12 about the articulation pivot 14. In the illustrated embodiment, the end effector 12 is configured to act as an endocutter for clamping, severing and stapling tissue, although, in other embodiments, different types of end effectors may be used, such as end effectors for other types of surgical devices, such as graspers, cutters, staplers, clip appliers, access devices, drug/gene therapy devices, ultrasound, RF or laser devices, etc.
  • The handle 6 of the instrument 10 may include a closure trigger 18 and a firing trigger 20 for actuating the end effector 12. It will be appreciated that instruments having end effectors directed to different surgical tasks may have different numbers or types of triggers or other suitable controls for operating the end effector 12. The end effector 12 is shown separated from the handle 6 by the elongate shaft 8. In one embodiment, a clinician or operator of the instrument 10 may articulate the end effector 12 relative to the shaft 8 by utilizing the articulation control 16. U.S. Pat. No. 7,670,334, entitled “Surgical Instrument Having an Articulating End Effector,” is incorporated herein by reference in its entirety.
  • The end effector 12 may include, among other things, a staple channel 22 and a pivotally translatable clamping member, such as an anvil 24, which are maintained at a spacing that assures, when the anvil 24 is in its clamped position, effective stapling and severing of tissue clamped in the end effector 12. The handle 6 includes a downwardly extending pistol grip 26, towards which a closure trigger 18 is pivotally drawn by the clinician to cause clamping or closing of the anvil 24 toward the staple channel 22 of the end effector 12 to thereby clamp tissue positioned between the anvil 24 and channel 22. The firing trigger 20 is farther outboard of the closure trigger 18. Once the closure trigger 18 is locked in the closure position, the firing trigger 20 may rotate slightly toward the pistol grip 26 so that it can be reached by the operator using one hand. Then the operator may pivotally draw the firing trigger 20 toward the pistol grip 12 to cause the stapling and severing of clamped tissue in the end effector 12. In other embodiments, different types of clamping members besides the anvil 24 could be used. The handle 6 may also include an upper portion 28 that may sit on top of the user's hand when the user grips the pistol grip portion 26 with his/her hand. The anvil 24 may include a magnet 78 located on the distal end of the anvil 24.
  • In operational use, the closure trigger 18 may be actuated first. Once the clinician is satisfied with the positioning of the end effector 12, the clinician may draw back the closure trigger 18 to its fully closed, locked position proximate to the pistol grip 26. Drawing back of the closure trigger 18 causes the anvil 24 to rotate downwardly, clamping the tissue between the anvil 24 and a staple cartridge 34 positioned within the channel 22. The firing trigger 20 may then be actuated. Actuation of the firing trigger 20 causes the cutting instrument in the end effector 12 to sever the clamped tissue, and causes the fasteners in the staple cartridge 34 to fasten the severed tissue. The firing trigger 20 returns to the open position (shown in FIGS. 1 and 2) when the clinician removes pressure. A release button 19 on the handle 6, when depressed, may release the locked closure trigger 18. The release button 19 may be implemented in various forms such as, for example, as disclosed in U.S. Patent App. Pub. No. 2007/0175955. U.S. Patent App. Pub. No. 2007/0175955, entitled “Surgical cutting and fastening instrument with closure trigger locking mechanism,” is incorporated herein by reference in its entirety.
  • The end effector 12 may include a cutting instrument, such as a knife, for example, for cutting tissue clamped in the end effector 12 when the firing trigger 20 is retracted by a user. The end effector 12 may also comprise means for fastening the tissue severed by the cutting instrument, such as staples, RF electrodes, adhesives, etc. The instrument 10 may also comprise a closure system for closing (or clamping) the end effector upon closure (or retraction) of the closure trigger 18.
  • A longitudinally movable or rotatable drive shaft located within the shaft 8 of the instrument 10 may drive or actuate the cutting instrument and the fastening means in the end effector 12. An electric motor, located in the pistol grip portion 26 of the handle 6 of the instrument 10, may be used to drive, directly or indirectly (via a gear drive train), the drive shaft. In various embodiments, the motor may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other embodiments, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. U.S. Patent Application Publication No. 2010/0089970, published on Apr. 15, 2010, entitled “Powered Surgical Cutting and Stapling Apparatus with Manually Retractable Firing System” and U.S. Pat. No. 8,210,411, issued on Jul. 3, 2012, entitled “Motor-Driven Surgical Cutting Instruments”, are herein incorporated by reference in their entireties. A battery (or “power source” or “power pack”), such as a Lithium-ion battery, for example, may be provided in the pistol grip portion 26 of the handle 6 adjacent to the motor. The battery may supply electric power to the motor via a motor control circuit. According to various embodiments, a number of battery cells connected in series may be used as the power source to power the motor. In addition, the power source may be replaceable and/or rechargeable.
  • FIG. 3 is a diagram of the end effector 12 according to various embodiments of the present invention. As shown in the illustrated embodiment, the end effector 12 may include, in addition to the previously mentioned channel 22 and anvil 24, a cutting instrument 32, a sled 33, a staple cartridge 34 that is removably seated in the channel 22, and a helical screw shaft 36. The cutting instrument 32 may be, for example, a knife. The anvil 24 may be pivotably opened and closed at pivot pins 25 connected to the proximate end of the channel 22. The anvil 24 may also include a tab 27 at its proximate end that is inserted into a component of the mechanical closure system to open and close the anvil 24. When the closure trigger 18 is actuated, that is, drawn in by a user of the instrument 10, the anvil 24 may pivot about the pivot pins 25 into the clamped or closed position, thereby clamping tissue between the channel 22 and the anvil 24. If clamping of the end effector 12 is satisfactory, the operator may actuate the firing trigger 20, which causes the knife 32 and sled 33 to travel longitudinally along the channel 22, thereby cutting the tissue clamped within the end effector 12. The movement of the sled 33 along the channel 22 causes the staples (not shown) of the staple cartridge 34 to be driven through the severed tissue and against the closed anvil 24, which turns the staples to fasten the severed tissue. In various embodiments, the sled 33 may be an integral component of the cartridge 34. The sled 33 may be part of the cartridge 34, such that when the knife 32 retracts following the cutting operation, the sled 33 does not retract with the knife 32 and remains with the at least partially fired staple cartridge 34.
  • FIGS. 4-5 are exploded views and FIG. 6 is a side view of the end effector 12 and shaft 8 according to various, non-limiting embodiments. As shown in the illustrated embodiment, the shaft 8 may include a proximate closure tube 40 and a distal closure tube 42 pivotably linked by pivot links 44. The distal closure tube 42 includes an opening 45 into which the tab 27 on the anvil 24 is inserted in order to open and close the anvil 24, as further described below. Disposed inside the closure tubes 40, 42 may be a proximate spine tube 46. Disposed inside the proximate spine tube 46 may be a main rotational (or proximate) drive shaft 48 that communicates with a secondary (or distal) drive shaft 50 via a bevel gear assembly 52. The secondary drive shaft 50 is connected to a drive gear 54 that engages a proximate drive gear 56 of the helical screw shaft 36. The vertical bevel gear 52 b may sit and pivot in an opening 57 in the distal end of the proximate spine tube 46. A distal spine tube 58 may be used to enclose the secondary drive shaft 50 and the drive gears 54, 56. Collectively, the main drive shaft 48, the secondary drive shaft 50, and the articulation assembly (e.g., the bevel gear assembly 52 a-c) are sometimes referred to herein as the “main drive shaft assembly.”
  • A bearing 38, positioned at a distal end of the staple channel 22, receives the helical drive screw 36, allowing the helical drive screw 36 to freely rotate with respect to the channel 22. The helical screw shaft 36 may interface a threaded opening (not shown) of the knife 32 such that rotation of the shaft 36 causes the knife 32 to translate distally or proximately (depending on the direction of the rotation) through the staple channel 22. Accordingly, when the main drive shaft 48 is caused to rotate by actuation of the firing trigger 20, the bevel gear assembly 52 a-c causes the secondary drive shaft 50 to rotate, which in turn, because of the engagement of the drive gears 54, 56, causes the helical screw shaft 36 to rotate, which causes the knife driving member 32 to travel longitudinally along the channel 22 to cut any tissue clamped within the end effector 12. The sled 33 may be made of, for example, plastic, and may have a sloped distal surface. As the sled 33 traverses the channel 22, the sloped forward surface may push up or drive the staples in the staple cartridge 34 through the clamped tissue and against the anvil 24. The anvil 24 turns or deforms the staples, thereby stapling the severed tissue. When the knife 32 is retracted, the knife 32 and sled 33 may become disengaged, thereby leaving the sled 33 at the distal end of the channel 22.
  • In the illustrated embodiment, the end effector 12 uses a rotatable, helical screw shaft 36 to drive the cutting instrument 32. Such a helical screw shaft 36 may be used in embodiments where a rotating drive member is used. In other embodiments, a longitudinally reciprocating drive member may be used to power the cutting instrument, such as, for example, the longitudinally reciprocating drive member. The end effector 12 may be modified accordingly to suit such a longitudinally reciprocating drive member.
  • According to various embodiments, the staple cartridge 34 may comprise a tissue thickness sensing module 102 that senses the thickness of tissue clamped in the end effector 12 between the staple channel 22 (including the staple cartridge 34) and the anvil 24. According to various, non-limiting embodiments, as shown in FIG. 7, the tissue thickness sensing module 102 may be located adjacent to a distal end 62 of the staple cartridge 34, such that it is positioned distally, for example, with respect to the staples of the staple cartridge 34 when the staples are fired. FIGS. 8-9B show one embodiment of a tissue thickness sensing module 102. As shown in FIG. 8, the tissue thickness sensing module 102 may comprise an enclosure 103 to protect the elements of the tissue thickness sensing module 102 during use. FIGS. 9A and 9B illustrate one view of the tissue thickness sensing module 102 with the enclosure 103 removed. As can be seen in FIGS. 9A and 9B, the tissue thickness sensing module 102 may comprise a tissue thickness sensor 104, a controller 106, a radio module 108, a power source 110, and an antenna 112.
  • In some embodiments, the tissue thickness sensor 104 may be configured to generate a tissue thickness signal indicative of a thickness of tissue clamped between the staple channel 22 and the anvil 24. The tissue thickness sensor 104 may be any suitable sensor for detecting the thickness of the tissue clamped in the end effector 12. For example, the tissue thickness sensor 104 may comprise a magnetic sensor, magneto-inductive sensor, a magnetoresistive sensor (AMR, GMR), an ultrasonic sensor, a radio frequency sensor, and/or any other suitable sensor. In some embodiments, the tissue thickness sensor 104 may be configured to detect a magnetic field generated by the magnet 78 located on the distal end 80 of the anvil 24. When the clinician closes the anvil 24 by retracting the closure trigger 18, the magnet 78 rotates downwardly closer to the tissue thickness sensor 104, thereby varying the magnetic field detected by the tissue thickness sensor 104 as the anvil 24 rotates into the closed (or clamped position). The strength of the magnetic field from the magnet 78 and sensed by the tissue thickness sensor 104 is indicative of the distance between the staple cartridge 34 and the anvil 24, which is indicative of the thickness of the tissue clamped between the staple cartridge 34 and the anvil 24 when the end effector 12 is in the closed (or clamped) position. For instance, a larger distance between the staple cartridge 34 and the anvil 24, and therefore a weaker magnetic field detected by the tissue thickness sensor 104, may indicate that thick tissue is present between the staple cartridge 34 and the anvil 24, while a shorter distance between the staple cartridge 34 and the anvil 24, and therefore a stronger magnetic field detected by the tissue thickness sensor 104, may indicate that thin tissue is present between the staple cartridge 34 and the anvil 24. In some embodiments, the tissue thickness sensor 104 may comprise a Hall Effect sensor.
  • A controller 106 may be configured to control one or more operations of the tissue thickness sensing module 102. The controller 106 may be in signal communication with the tissue thickness sensor 104. Signal communication may comprise wired and/or wireless communication. The controller 106 may be configured to control operation of the tissue thickness sensor 104, the transmitter 108, and/or the power source 110. In some embodiments, the controller 106 may be configured to execute one or more processes to control the tissue thickness sensing module 102 and/or the end effector 12.
  • In some embodiments, the controller 106 may comprise identifying means for identifying the type of staple cartridge positioned within the staple channel 22. The staple cartridge 34 may be configured for use within an optimal tissue thickness range and the controller 106 may be configured to determine whether or not a particular staple cartridge is suitable and/or preferred in a given set of circumstances. For example, in some embodiments, a staple cartridge 34 may comprise a plurality of long staples configured for use in thick tissue. In some embodiments, a staple cartridge 34 may comprise a plurality of short staples configured for use in thin tissue. When the optimal tissue thickness range for the staple cartridge 34 mandates or prefers the use of longer staples, an attempt to use a staple cartridge configured for use in thin tissue may cause the surgical instrument 2 to warn the clinician, for example, or in some instances, prevent the surgical instrument 2 from being used. The identifying means may be configured to identify the type of the staple cartridge positioned within the staple channel 22 to ensure the proper type of staple cartridge 34 is installed for the tissue being treated.
  • In some embodiments, the tissue thickness sensing module 102 may comprise a radio module 108. The radio module 108 may be a low-power, 2-way radio module that communicates wirelessly, using a wireless data communication protocol, with a remote device, such as, for example, a receiver located in the handle 6 of the instrument 10. According to various embodiments, the radio module 108 may communicate with the remote device using a communication frequency that is suitable for transmission through human tissue. The communications between the radio module 108 and remote device may use the MICS (Medial Implant Communication Service) frequency band (502-405 MHz), a suitable industrial, scientific and medical (ISM) radio band (such as 433 MHz center frequency or 915 MHz center frequency), a Bluetooth communication band (2.4 GHz), or any other suitable, human-tissue-permeable frequency band. In some embodiments, an antenna 112 may be in signal communication with the radio module 108. In some embodiments, the antenna 112 may be formed integrally with the radio module 108.
  • The tissue thickness sensing module 102 may comprise one or more power sources 110 for providing independent power to the controller 106 or the radio module 108. The power source 110 may comprise a suitable battery cell for powering the components of the tissue thickness sensing module 102, such as a Lithium-ion battery or some other suitable battery cell, for example. In some embodiments, multiple battery cells may be provided to power the components of the tissue thickness sensing module 102.
  • In some embodiments, the staple cartridge type signal generated by the identifying means and the tissue thickness signal generated by the tissue thickness sensor 104 may be used to determine if the tissue clamped between the staple channel 22 and the anvil 24 is within the optimal tissue thickness range for the staple cartridge 34. In some embodiments controller 106 may be configured to determine if the tissue clamped between the staple channel 22 and the anvil 24 is within the optimal tissue thickness range. In some embodiments, a remote system, such as a remote device located in the handle 6 of the surgical instrument 10, may be configured to perform the determination or at least part of such determination.
  • FIG. 10 shows a block diagram of one embodiment of a tissue thickness sensing module 202. In the illustrated embodiment, the tissue thickness sensing module 202 comprises a tissue thickness sensor 204, a controller 206, a radio module 208, and a power source 210, and a reed switch 211. As shown in FIG. 10, the tissue thickness sensor 204 may be in signal communication with the controller 206. The tissue thickness sensor 204 may be any suitable sensor for determining the thickness of tissue clamped between the staple channel 22 and the anvil 24 of the surgical instrument 10. In some embodiments, the tissue thickness sensor 204 may be configured to detect a magnetic field generated by a magnet 78 located on the distal end 80 of the anvil 24. The strength of the magnetic field may be indicative of the thickness of tissue clamped in the end effector 12. In some embodiments, the tissue thickness sensor 204 may comprise a Hall Effect sensor.
  • The controller 206 illustrated in FIG. 10 may comprise an identifier means 214 for identifying the staple cartridge type of the staple cartridge 34. The identifier means 214 may be any suitable means useable by the controller 206 to identify the staple cartridge type. For example, in some embodiments, the identifying means 214 may comprise a memory unit. The memory unit of the controller 206 may comprise one or more solid state read only memory (ROM) and/or random access memory (RAM) units. In various embodiments, the controller 206 and the memory units may be integrated into a single integrated circuit (IC), or multiple ICs. The ROM memory units may comprise flash memory. The memory unit may store data indicative of the cartridge type of the staple cartridge 34. That is, for example, memory unit may store data indicating the type of staple cartridge 34. In some embodiments, the memory unit may store data indicative of the optimal tissue thickness range of the type of the staple cartridge 34.
  • In some embodiments, the identifying means 214 may comprise a first plurality of terminals formed on the proximal end of the tissue thickness sensing module 102. A second plurality of terminals may be formed on the distal end of the staple cartridge 34. A subset of the first plurality of terminals may be in signal communication with the second plurality of terminals. The type of the staple cartridge 34 may be indicated by the subset of the first plurality of terminals that are in signal communication with the second plurality of terminals. One or more circuits may be configured to identify the subset of the first plurality of terminals in signal communication and provide a staple cartridge type signal to the controller 106 based on the identified subset.
  • In various embodiments, the tissue thickness signal generated by the tissue thickness sensor 204 and the staple cartridge type signal generated by the identifying means 214 may be used to determine if the thickness of the tissue clamped in the end effector 12, as indicated by the tissue thickness signal, is within the optimal tissue thickness range of the staple cartridge 34, as indicated by the staple cartridge type signal. For example, the thickness of the tissue as indicated by the tissue thickness signal may be compared to an optimal tissue thickness range for the staple cartridge 34. In some embodiments, the controller 206 may be configured to determine if the measured thickness is within the optimal tissue thickness range. For example, the controller 206 may comprise a memory unit configured to store staple cartridge types and their associated optimal tissue thickness ranges. When the tissue thickness sensing module 202 enters an active state, the identifying means 214 may provide a staple cartridge type signal to the controller 206. When tissue is clamped in the end effector 12, the controller 206 may receive a tissue thickness signal from the tissue thickness sensor 204 indicating the thickness of the tissue clamped in the end effector 12. The controller 206 may access the memory unit and compare the staple cartridge type signal generated by the identifying means 214 with the stored staple cartridge types. If the staple cartridge type of the staple cartridge 34 matches a staple cartridge type stored in the memory unit, the controller 206 may access the stored optimal tissue thickness range for the staple cartridge 34. The controller 206 may compare the stored optimal tissue thickness range for the staple cartridge 34 with the tissue thickness indicated by the tissue thickness sensor 204 and may generate a status signal indicating whether the measured tissue thickness is within the optimal tissue thickness range of the staple cartridge 34. The controller 206 may provide the status signal to the radio module 208 for transmission. In some embodiments, the radio module 208 may transmit the status signal to a receiver located in the handle 6 of the surgical instrument 10. In some embodiments, the radio module 208 may transmit the status signal to a receiver coupled to a remote device, such as, for example, an operating room video display 80 comprising a receiver 82 or a remote computer system 84 comprising a receiver 86 (see FIG. 11).
  • The staple cartridge 34 may comprise a staple cartridge type not recognized by the identifying means 214. In some embodiments, if the identifying means 214 is unable to identify the staple cartridge 34 inserted into the staple channel 22, the controller 206 may provide a warning to the clinician indicating that the staple cartridge is unrecognized. The warning may be any suitable warning, such as, for example, an audible warning, a visual warning, and/or a tactile warning. The warning may indicate to the clinician that the staple cartridge 34 is not recognized and that the clinician must use their discretion in the use and deployment of the inserted staple cartridge 34.
  • The optimal tissue thickness range for a specific staple cartridge may comprise an open-ended range. For example, in some embodiments, an optimal tissue thickness range for a specific staple cartridge may comprise any tissue thickness that is less than a maximum tissue thickness. In other embodiments, the optimal tissue thickness range for a specific staple cartridge may comprise any tissue thickness that is greater than a minimum tissue thickness. For example, a staple cartridge may comprise long staples suitable for stapling thick tissue or thin tissue. The optimal tissue thickness range for this staple cartridge may be any tissue thickness that is less than the maximum tissue thickness for the staple cartridge.
  • In some embodiments, the staple cartridge 34 may comprise a universal staple cartridge suitable for use in any thickness of tissue. If the identifying means 214 identifies a universal staple cartridge, the controller 206 may provide a signal to the clinician indicating that the staple cartridge 34 is a universal cartridge and therefore the thickness of tissue located between the anvil 24 and the staple cartridge 34 should not affect the operation of the surgical instrument 2.
  • As an example, a staple cartridge 34 may be located adjacent to a tissue thickness sensing module 202. The staple cartridge 34 and the tissue thickness sensing module may be inserted into the staple channel 22. The identifying means may identify the staple cartridge 34 as a cartridge having an optimal tissue thickness range between a first value, x1, and a second value x2. Tissue may be clamped by a clinician between the anvil 24 and the staple cartridge 34. The tissue thickness sensor 204 may generate a tissue thickness signal indicating that the thickness of the tissue clamped between the anvil 24 and the staple cartridge 34 is x. In some embodiments, the tissue thickness x may fall within the optimal tissue thickness range x1-x2 and the tissue thickness sensing module 202 may provide an indication to the clinician that the tissue thickness x is within the optimal tissue thickness range.
  • In some embodiments, the tissue thickness x may fall outside the optimal tissue thickness range for the staple cartridge 34. For example, the tissue thickness x may be thinner than the lower value x1 of the optimal tissue thickness range. The surgical instrument 2 may provide a warning signal to the clinician that the tissue thickness x is lower than the optimal tissue thickness range. The surgical instrument 2 may still allow stapling if the measured tissue thickness x is thinner than the optimal tissue thickness range. As another example, the tissue thickness x may be thicker than the upper value x2 of the optimal tissue thickness range. The surgical instrument 2 may provide a warning to the clinician that the tissue thickness x is thicker than the optimal tissue thickness range. In some embodiments, the surgical instrument 2 may prevent firing the staple cartridge 34 if the measured tissue thickness x is thicker than the optimal tissue thickness range. In some embodiments, the surgical instrument may instruct the clinician to replace the staple cartridge 34 with a different cartridge type having a different optimal tissue thickness range.
  • In some embodiments, the controller 206 may be configured to provide the tissue thickness signal and the staple cartridge type signal to the radio module 208 for transmission to a remote device. The radio module 208 may transmit the tissue thickness signal and the staple cartridge type signal to a remote device located away from the end effector 12, such as, for example, a control circuit in the handle 6 of the surgical instrument 10 or a remote computer system 84. The remote device may be configured to perform a comparison between the received tissue thickness signal, the received staple cartridge type signal, and known optimal tissue thickness ranges. For example, the remote device may be configured to store known staple cartridges and optimal tissue thickness ranges for the known staple cartridges. The received staple cartridge type signal may be compared to the known staple cartridges. If a match is identified, the received tissue thickness signal may be compared to the optimal tissue thickness range for the staple cartridge 34. The remote device may generate a status signal indicating whether the measured tissue thickness, as indicated by the tissue thickness signal, is within the optimal tissue thickness range for the staple cartridge 34. The remote device may be updated, such as, for example, through a connection to a wired and/or wireless network. The remote device may be updated to add new staple cartridge types and optimal tissue thickness ranges or may be updated to adjust the optimal tissue thickness range of existing staple cartridge types. By updating the remote device, staple cartridge types can be added or updated without the need to update the tissue thickness sensing module 202. In some embodiments, the remote device may receive updates periodically or may be updated whenever a new or modified cartridge is available.
  • In some embodiments, after the status signal has been generated by either the controller 206 or the remote device, the status signal may be used to control operation of the surgical instrument 10. For example, the status signal may be provided to a motor control circuit in the handle 6 of the surgical instrument 10. The motor control circuit may be configured to control a cutting and sealing operation of the surgical instrument 10. If the status signal indicates that the measured tissue thickness is within the optimal tissue thickness range for the staple cartridge 34, the motor control circuit may allow the cutting and sealing operation to occur. If the status signal indicates that the measured tissue thickness is not within the optimal tissue thickness range for the staple cartridge 34, the motor control circuit may prevent operation of the cutting and sealing operation and may provide a warning to the clinician indicating that the tissue thickness is not within the optimal tissue thickness range.
  • In some embodiments, the status signal may be displayed to a clinician through a feedback device. The feedback device may be located on the surgical instrument 10 or may be a remote device, such as an operating room video display 80. For example, in some embodiments, the surgical instrument 10 may be equipped with a light-emitting diode (LED). The LED may be activated when the status signal indicates that the tissue clamped in the end effector 12 has a thickness within the optimal tissue thickness range of the staple cartridge 34. As another example, the operating room video display 80 may be configured to display a graphical representation of the status signal, such as, for example, displaying an indicator when the measured tissue thickness is within the optimal tissue thickness range. Those skilled in the art will recognize that any suitable feedback device may be used to provide the status signal to a clinician. In some embodiments, the surgical instrument 2 may comprise a display window on the surgical instrument 2. The display window may be configured to display a representation of the status signal or the tissue thickness signal to a clinician. The display window may provide an indication of the measured tissue thickness and the optimal tissue thickness range of the staple cartridge 34.
  • In some embodiments, the tissue thickness sensing module 102 may be configured to receive a power key. The power key may be configured to control operation of the tissue thickness sensing module 102 prior to installation of the staple cartridge 34 into the staple channel 22. For example, in some embodiments the tissue thickness sensing module 102 may comprise a power source 110. The power source 110 may be in signal communication with the controller 106. The controller 106 may detect the presence of the power key and may maintain the power source 110 and the tissue thickness sensing module 102 in a low-power state to conserve the available energy from the power source 110.
  • FIG. 12 illustrates one embodiment of a thickness sensing module 302 configured to receive a power key 320. The power key 320 may comprise a magnet 378 configured to maintain the tissue thickness sensor 104 in a saturation state when the power key 320 is located adjacent to and/or connected with the tissue thickness sensing module 302. The controller 106 may detect the saturation state of the tissue thickness sensor 104 and may maintain the tissue thickness sensing module 302 in a low-power state while the tissue thickness sensor 104 is in the saturation state. The low-power state may comprise a state in which various modules of the tissue thickness sensing module 302 do not receive power or in which various operations of the tissue thickness sensing module 302 are not performed. For example, the low-power state may disconnect the controller 106, the radio module 108, and/or the tissue thickness sensor 104 from the power source 110. When the power key 320 is detached or moved away from the tissue thickness sensing module 302, the tissue thickness sensor 104 may enter a non-saturated state. When the controller 106 detects the non-saturated state, the controller 106 may transition the tissue thickness sensing module 302 into an active state for use in the surgical instrument 10. The active state may comprise a state in which all modules and functions of the tissue thickness sensing module 302 are provided with power and are operational.
  • In some embodiments, a device may comprise a reed switch, a power source, and a controller in signal communication with the power source. The controller may be configured to detect the state of the reed switch. A magnet may be removably located adjacent to the device. The magnet may be configured to generate a magnetic field sufficient to maintain the reed switch in a saturation state. The controller may detect the saturation state and may maintain the device in a low-power state while the reed switch is in the saturation state. When the magnet is removed from the device, the reed switch may enter a non-saturated state. The controller may detect the non-saturated state of the reed switch and transition the device from the low-power state to an active power state.
  • FIG. 13 illustrates one embodiment of a Hall Effect sensor 402. The Hall Effect sensor 402 comprises a Hall Element 404, an amplifier 406, and a power source 408. The Hall Element comprises a first input terminal 410 and a second input terminal 412. The first and second input terminals 410, 412 are configured to receive a constant input current from the power source 408. When no magnetic field is present, the input current enters the first input terminal 410 and exits the second input terminal 412 with no loss of voltage potential to either side of the Hall Element 404. As a magnetic field is applied to the Hall Element 404, such as, for example, by magnet 478, a voltage potential is formed at the sides of the Hall Element 404 due to the deflection of electrons flowing through the Hall Element 404. A first output terminal 414 and a second output terminal 416 are located at opposite sides of the Hall Element 404. The first and second output terminals 414, 416 provide the voltage potential caused by the magnetic field to the amplifier 406. The amplifier 406 amplifies the voltage potential experienced by the Hall Element 404 and outputs the amplified voltage to an output terminal 418. The output of the amplifier 406 may not exceed the limits imposed by the power source 408. The upper limit of the amplifier 406 is the saturation point for the Hall Effect sensor 402. The saturation point may be selected based on the power source 408 connected to the amplifier 406. Because the saturation takes place at the amplifier 406, and not at the Hall Element 404, exposure to large magnetic filed will not damage the Hall Effect sensor 402, but instead places the Hall Effect sensor 402 into a saturation state. In some embodiments, an open emitter, an open collector, or a push-pull transistor may be added to the output of the amplifier 406.
  • FIG. 14 illustrates one embodiment of tissue thickness sensing module 502 configured to receive a power key 520. The tissue thickness sensing module 502 may comprise a first terminal 516 and a second terminal 518 configured to receive the power key 520. The first terminal 516 and the second terminal 518 may be in signal communication with the controller 106. The power key 520 may be configured to create a first electrical circuit state between the first terminal 516 and the second terminal 518. The first electrical circuit state may be any suitable state between the first terminal 516 and the second terminal 518, such as, for example, an open circuit, a short circuit, a specific resistance, capacitance, inductance, or any other suitable circuit state. In some embodiments, the controller 106 may detect the first electrical circuit state between the first terminal 516 and the second terminal 518 and maintain the tissue thickness sensing module 502 in a low-power state. In some embodiments, the first electrical circuit state may prevent the power source 110 from providing power to the elements of the tissue thickness sensing module 502, such as through an open circuit, and prevent operation of the controller 106, radio module 108, or other powered elements while the power key 520 is present.
  • In some embodiments, the removal of the power key 520 from the first terminal 516 and the second terminal 518 may create a second electrical circuit state between the first terminal 516 and the second terminal 518. The second electrical circuit state may be any suitable circuit state between the first terminal 516 and the second terminal 518, such as, for example, an open circuit or a short circuit. The controller 106 may detect the second electrical circuit state and may transition the tissue thickness sensing module 502 into an active power state for operation with the surgical instrument 10.
  • For example, in some embodiments the power key 520 may be configured to create a short circuit between the first terminal 516 and the second terminal 518. The controller 106 may detect the short circuit between the first terminal 516 and the second terminal 518. The controller 106 may maintain the tissue thickness sensing module 502 in a low-power state to conserve the power source 110 while a short circuit exists between the first terminal 516 and the second terminal 518. Prior to installation of the staple cartridge 34 into the staple channel 22, the power key 520 may be removed from the tissue thickness sensing module 502. When the power key 520 is removed from the tissue thickness sensing module 502, the circuit between the first terminal 516 and the second terminal 518 may be opened. The controller 106 may detect the open circuit between the first terminal 516 and the second terminal 518 and may transition the tissue thickness sensing module 502 into an active state.
  • As another example, in some embodiments, the power key 520 may be configured to maintain an open circuit between the first terminal 516 and the second terminal 518. The power source 110 may be disconnected from the controller 106 and the radio module 108 when the first terminal 516 and the second terminal 518 are in an open circuit state. The staple cartridge 34 may be inserted into the staple channel 22. Once installed, a clinician may remove the power key 520 from the tissue thickness sensing module 502. When the power key 520 is removed, the circuit between the first terminal 516 and the second terminal 518 may be completed by a direct connection between the first terminal 516 and the second terminal 518 or through an indirect connection, such as through the staple cartridge 34, the staple channel 22, or any other suitable portion of the end effector 12. For example, the first terminal 516 and the second terminal 518 may comprise a short circuit when the staple cartridge 34 is installed in the staple channel 22 and the power key 520 is removed from the tissue thickness sensing module 502. The short circuit between the first terminal 516 and the second terminal 518 may connect the power source 110 to the controller 106 and the radio module 108, causing the tissue thickness sensing module 502 to transition to an active state for use with the surgical instrument 10.
  • FIG. 15 illustrates a flow chart showing one embodiment of a method for maintaining the tissue thickness sensing module 102 in a low-power state. As shown in FIG. 15, at step 602 a controller 106 may detect a staple cartridge power key 320, 520 removably adjacent to a tissue thickness sensing module 102. The controller 106 may detect the staple cartridge power key, such as power key 320, 520 for example, through any suitable method, such as, for example, a circuit state or a sensor state. At step 604, the controller 106 maintains the tissue thickness sensing module 102 in a low-power state while the staple cartridge power key is located adjacent to, or attached to, the tissue thickness sensing module 102. At 606, the staple cartridge power key is removed from the tissue thickness sensing module 102. The controller 106 detects the removal of the staple cartridge power key and transitions the tissue thickness sensing module 102 from a low-power state to an active state at step 608.
  • In some embodiments, a tissue thickness sensing module 302 may comprise a tissue thickness sensor 104 configured to detect a magnetic field, such as a Hall Effect sensor, for example. The staple cartridge power key 320 may be located adjacent to the tissue thickness sensing module 302 and may comprise a magnet 378 configured to place the tissue thickness sensor 104 into a saturation state. In some embodiments, at step 604, the controller 106 in the tissue thickness sensing module 302 may detect the saturation state of the tissue thickness sensor 104. The controller 106 may maintain the tissue thickness sensing module 302 in the low-power state while the tissue thickness sensor 104 is in the saturation state. The staple cartridge power key 320 may be removed from the tissue thickness sensing module 302. The tissue thickness sensor 104 may transition from the saturation state to a non-saturated state. The controller 106 may detect the non-saturated state of the tissue thickness sensor 104 and may transition the tissue thickness sensing module 302 from the low-power state to an active state.
  • In some embodiments, the tissue thickness sensing module 502 may comprise a first terminal 516 and a second terminal 518 formed on the enclosure of the tissue thickness sensing module 502. The first terminal 516 and the second terminal 518 may be configured to receive the power key 520. The power key 520 may create a first electrical circuit state between the first terminal 516 and the second terminal 518. For example, the first electrical circuit state may comprise an open circuit or a short circuit. At step 604, the controller 106 may be configured to detect the presence of the power key 520 based on the first electrical circuit state. The controller 106 may maintain the tissue thickness sensing module 502 in a low-power state while the first terminal 516 and the second terminal 518 are in the first electrical circuit state. The power key 520 may be removed from the tissue thickness sensing module 502 to allow the staple cartridge 34 to be installed into the staple channel 22. In some embodiments, removing the power key 520 may cause the first terminal 516 and the second terminal 518 to transition to a second electrical circuit state, such as, a short circuit or an open circuit. The controller 106 may detect the second electrical circuit state and transition the tissue thickness sensing module 502 from the low-power state to an active state.
  • While various embodiments of a tissue thickness sensing module disclosed herein comprise a wireless transmitter and a power source, other embodiments are envisioned. For instance, in one embodiment, at least one conductor, such as a wire, for example, may extend through the shaft of the surgical instrument and may provide signal communication and/or power communication from the handle to the tissue thickness sensing module. In some embodiments, the controller and/or the power source may be located in the handle and may be connected to the tissue thickness sensing module through a wired connection to the controller, the power source, and/or any other components located in the handle.
  • While various embodiments of a tissue thickness sensing module disclosed herein are positioned distally with respect to a staple cartridge, various other embodiments are envisioned in which the tissue thickness sensing module can be positioned laterally, proximally, and/or distally with respect to a staple cartridge. In certain embodiments, a plurality of tissue thickness sensing modules can be utilized. In such embodiments, a microcontroller can be configured to interpret a plurality of tissue thickness signals from a plurality of tissue thickness sensing modules to derive the thickness of the tissue.
  • Various embodiments described herein are described in the context of staples removably stored within staple cartridges for use with surgical stapling instruments. In some circumstances, staples can include wires which are deformed when they contact an anvil of the surgical stapler. Such wires can be comprised of metal, such as stainless steel, for example, and/or any other suitable material. Such embodiments, and the teachings thereof, can be applied to embodiments which include fasteners removably stored with fastener cartridges for use with any suitable fastening instrument.
  • Various embodiments described herein are described in the context of linear end effectors and/or linear fastener cartridges. Such embodiments, and the teachings thereof, can be applied to non-linear end effectors and/or non-linear fastener cartridges, such as, for example, circular and/or contoured end effectors. For example, various end effectors, including non-linear end effectors, are disclosed in U.S. patent application Ser. No. 13/036,647, filed Feb. 28, 2011, entitled SURGICAL STAPLING INSTRUMENT, now U.S. Patent Application Publication No. 2011/0226837, which is hereby incorporated by reference in its entirety. Additionally, U.S. patent application Ser. No. 12/893,461, filed Sep. 29, 2012, entitled STAPLE CARTRIDGE, now U.S. Patent Application Publication No. 2012/0074198, is hereby incorporated by reference in its entirety. U.S. patent application Ser. No. 12/031,873, filed Feb. 15, 2008, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, now U.S. Pat. No. 7,980,443, is also hereby incorporated by reference in its entirety. U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013, is also hereby incorporated by reference in its entirety.
  • EXAMPLES
  • In various embodiments, a surgical end effector for treating tissue is disclosed. The surgical end effector comprises a staple cartridge. The staple cartridge comprises a proximal end and a distal end. The staple cartridge is configured to be used to staple tissue within an optimal tissue thickness range. An anvil is movably coupled relative to the proximal end of the staple cartridge. A tissue thickness sensing module is adjacent to the distal end of the staple cartridge. The tissue thickness sensing module comprises a sensor and a controller. The sensor is configured to generate a tissue thickness signal indicative of a thickness of the tissue located between the anvil and the staple cartridge. The controller is in signal communication with the sensor. The controller comprises identifying means for identifying a staple cartridge type. The staple cartridge type and the tissue thickness signal are used to determine if the thickness is within the optimal tissue thickness range.
  • In some embodiments, the anvil comprises a magnet. The sensor may be configured to detect a magnetic field generated by the magnet. The sensor may comprise a Hall Effect sensor. In some embodiments, the thickness sensing module comprises a transmitter in signal communication with the controller. The transmitter may be configured to transmit the staple cartridge type and the tissue thickness signal to a receiver. The staple cartridge type and the tissue thickness signal may be received by a receiver in a surgical instrument. The receiver determines if the thickness measurement is within the optimal tissue thickness range.
  • In some embodiments, the controller may be configured to generate a signal indicative of whether the thickness measurement is within the optimal tissue thickness range. The transmitter may be configured to transmit the signal. In some embodiments, the thickness sensing module may comprise at least one power source configured to supply power to the controller.
  • In some embodiments, the identifying means may comprise a memory unit coupled to the controller. The memory unit may be configured to store the staple cartridge type. In some embodiments, the identifier means may comprise a first plurality of terminals located on the tissue thickness sensing module and a second plurality of terminals located on the distal end of the staple cartridge. A subset of the first plurality of terminals is in signal communication with the second plurality of terminals. The staple cartridge type is determined by the subset of the first plurality of terminals in signal communication with the second plurality of terminals. In some embodiments, the tissue thickness sensing module may be configured to receive a power key. The tissue thickness sensing module may comprise a first terminal and a second terminal. The first terminal and the second terminal may be configured to receive a power key configured to maintain the tissue thickness sensing module in a low-power state.
  • In various embodiments, a staple cartridge for use in a surgical stapler is disclosed. The staple cartridge comprises a staple body comprising a proximal end and a distal end. A plurality of staples is removably stored within the staple body. The plurality of staples is configured to be used to staple tissue within an optimal tissue thickness range. A tissue thickness module is adjacent to the distal end of the staple channel. The tissue thickness module comprises a sensor and a controller. The sensor is configured to generate a tissue thickness signal indicative of a thickness of the tissue located between the anvil and the staple cartridge. The controller is in signal communication with the sensor. The controller comprises identifying means for identifying a staple cartridge type. The staple cartridge type and the tissue thickness signal are used to determine if the thickness of the tissue is within the optimal tissue thickness range.
  • In some embodiments the thickness sensing module comprises a transmitter in signal communication with the controller and at least one power source configured to supply power to the controller and the transmitter. The transmitter may be configured to transmit the staple cartridge type and the tissue thickness signal. The staple cartridge type and the tissue thickness signal may be received by a receiver in a surgical instrument. The receiver determines if the thickness of the tissue is within the optimal tissue thickness range. In some embodiments, the controller is configured to generate a signal indicative of whether the thickness of the tissue is within the optimal tissue thickness range. The transmitter may be configured to transmit the signal.
  • In some embodiments, the identifier means may comprise a memory unit in signal communication with the controller. The memory unit is configured to store the staple cartridge type. In some embodiments, the identifier means may comprises a first plurality of terminals located on the tissue thickness sensing module and a second plurality of terminals located on the distal end of the staple cartridge. A subset of the first plurality of terminals may be in signal communication with the second plurality of terminals. The staple cartridge type is determined by the subset of the first plurality of terminals in signal communication with the second plurality of terminals.
  • In some embodiments, the sensor may comprise a Hall Effect sensor. In some embodiments, the tissue thickness sensing module may be configured to receive a removable power key. The power key may be configured to maintain the tissue thickness sensing module in a low-power state. The removable power key may comprise a magnet configured to maintain the sensor in a saturation state. The low-power state may be maintained while the sensor is in the saturation state.
  • In various embodiments, a tissue thickness sensing module for attachment to a surgical staple cartridge configured for treatment of tissue is disclosed. The tissue thickness sensing module comprises a sensor and a controller. The sensor is configured to detect a magnetic field indicative of a thickness of the tissue clamped against the surgical staple cartridge. The control is in signal communication with the sensor. The controller comprises an identifier means for identifying a staple cartridge type. The staple cartridge type and the thickness of the tissue are used to determine if the thickness is within an optimal tissue thickness range for the surgical staple cartridge. A transmitter is in signal communication with the controller. At least one power source is configured to supply power to the controller and the transmitter.
  • In various embodiments, a staple cartridge for use in a surgical stapler is disclosed. The staple cartridge comprises a staple body comprising a proximal end and a distal end. A tissue thickness sensing module is coupled to the distal end of the staple body. The tissue thickness sensing module comprises a controller and a sensor. A power key is removably positioned relative to the tissue thickness sensing module. The controller is configured to detect the power key. When the controller detects the power key, the controller maintains the tissue thickness sensing module in a low-power state. When the power key is removed, the controller transitions the tissue thickness sensing module to an active state.
  • In some embodiments, the sensor comprises a Hall Effect sensor and the power key comprises a magnet. The magnet is configured to maintain the Hall Effect sensor in a saturation state when the power key is positioned relative to the tissue thickness sensing module. The controller detects the saturation state of the Hall Effect sensor and maintains the low-power state while the Hall Effect sensor is in the saturation state. When the power key is removed from the tissue thickness sensing module, the Hall Effect sensor transitions to a non-saturated state. The controller detects the non-saturated state of the Hall Effect sensor and transitions the tissue thickness sensing module to the active state.
  • In some embodiments, the staple cartridge comprises a first terminal and a second terminal. The power key creates a first electrical circuit state between the first terminal and the second terminal. The controller detects the first electrical circuit state and maintains the tissue thickness sensing module in the low-power state while the first terminal and the second terminal are in the first electrical circuit state. When the power key is removed from the tissue thickness sensing module, the first terminal and the second terminal transition to a second electrical circuit state. The controller detects the second electrical circuit state and transitions the tissue thickness sensing module to the active state.
  • In some embodiments, the first electrical circuit state comprises a short circuit between the first terminal and the second terminal and the second electrical circuit state comprises an open circuit between the first terminal and the second terminal. In some embodiments, the first electrical circuit state comprises an open circuit between the first terminal and the second terminal and the second electrical circuit state comprises a short circuit between the first terminal and the second terminal. The short circuit between the first terminal and the second terminal may be established by a connection between the staple cartridge and a surgical stapler when the staple cartridge is inserted into the surgical stapler.
  • In various embodiments, a device comprising a Hall Effect sensor, a power source, and a controller is disclosed. The controller is configured to receive power from the power source. The controller is configured to maintain the device in a low-power state when the reed switch is in a saturation state. The controller is configured to transition the device to an active state when the Hall Effect sensor is in a non-saturation state.
  • In various embodiments, a method for power management of a staple cartridge assembly having a tissue thickness sensing module is disclosed. The method comprises detecting, by a controller, a power key removably positioned adjacent to the tissue thickness sensing module. The method further comprises maintaining, by the controller, a tissue thickness sensing module in a low-power state when the power key is detected. The controller transitions to an active state when the power key is removed from the tissue thickness sensing module.
  • In some embodiments, sensing the power key may comprise detecting, by the controller, a state of a sensor. The state of the sensor indicates whether the power key is positioned relative to said tissue thickness sensing module. The sensor may comprise a Hall Effect sensor. The state of the sensor may comprise a saturation state. In some embodiments, sensing of the power key may comprise detecting, by the controller, a first electrical circuit state between a first terminal and a second terminal. The first electrical circuit state indicates that the power key is positioned relative to the tissue thickness sensing module. The controller may be configured to detect a second electrical circuit state between the first terminal and the second terminal. The second electrical circuit state indicates that the power key is not positioned relative to the tissue thickness sensing module.
  • In some embodiments, the first electrical circuit state may comprise a short circuit across the first terminal and the second terminal and the second electrical circuit state may comprise an open circuit between the first terminal and the second terminal. In some embodiments, the first electrical circuit state may comprise an open circuit between the first terminal and the second terminal and the second electrical circuit state may comprise a short circuit across the first terminal and the second terminal.
  • In some embodiments, the method may further comprise inserting the staple cartridge into a surgical stapler. The power key may be removed from the tissue thickness sensing module. The surgical stapler may complete a circuit connection between the first terminal and the second terminal.
  • In various embodiments, a method for controlling a device comprising a controller, a power source, and a reed switch is disclosed. The method comprises detecting, by the controller, a saturation state of the reed switch. The reed switch is maintained in the saturation state by a power key positioned relative to the reed switch. The power key comprises a magnet configured to generate a magnetic field sufficient to place the reed switch in the saturation state. The method further comprises maintaining, by the controller, the device in a locked state while the reed switch is in the saturation state. The locked state comprises a low-power state of the device. The method further comprises transitioning, by the controller, the device to an unlocked state, wherein the transition occurs when the power key is removed from the reed switch and the reed switch transitions to a non-saturated state. The unlocked state comprises an active state of the device.
  • Various embodiments of surgical instruments and robotic surgical systems are described herein. It will be understood by those skilled in the art that the various embodiments described herein may be used with the described surgical instruments and robotic surgical systems. The descriptions are provided for example only, and those skilled in the art will understand that the disclosed embodiments are not limited to only the devices disclosed herein, but may be used with any compatible surgical instrument or robotic surgical system.
  • Reference throughout the specification to “various embodiments,” “some embodiments,” “one example embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one example embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one example embodiment,” or “in an embodiment” in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics illustrated or described in connection with one example embodiment may be combined, in whole or in part, with features, structures, or characteristics of one or more other embodiments without limitation.
  • While various embodiments herein have been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. For example, each of the disclosed embodiments may be employed in endoscopic procedures, laparoscopic procedures, as well as open procedures, without limitations to its intended use.
  • It is to be understood that at least some of the figures and descriptions herein have been simplified to illustrate elements that are relevant for a clear understanding of the disclosure, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable.
  • While several embodiments have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the disclosure. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosure as defined by the appended claims.
  • Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims (18)

What is claimed is:
1. A staple cartridge for use in a surgical stapler, the staple cartridge comprising:
a staple body comprising a proximal end and a distal end;
a tissue thickness sensing module coupled to said distal end of said staple body, wherein said tissue thickness sensing module comprises:
a controller; and
a sensor; and
a power key removably positioned relative to said tissue thickness sensing module, wherein said controller is configured to detect said power key, wherein, when said controller detects said power key, said controller maintains said tissue thickness sensing module in a low-power state, and wherein, when said power key is removed, said controller transitions said tissue thickness sensing module to an active state.
2. The staple cartridge of claim 1, wherein:
said sensor comprises a Hall Effect sensor; and
wherein said power key comprises a magnet, wherein said magnet is configured to maintain said Hall Effect sensor in a saturation state when said power key is positioned relative to said tissue thickness sensing module, and wherein said controller detects said saturation state of said Hall Effect sensor and maintains said low-power state while said Hall Effect sensor is in said saturation state.
3. The staple cartridge of claim 2, wherein, when said power key is removed from said tissue thickness sensing module, said Hall Effect sensor transitions to a non-saturated state, and wherein said controller detects said non-saturated state of said Hall Effect sensor and transitions said tissue thickness sensing module to said active state.
4. The staple cartridge of claim 1, comprising:
a first terminal and a second terminal;
wherein said power key creates a first electrical circuit state between said first terminal and said second terminal, wherein said controller detects said first electrical circuit state and maintains said low-power state while said first terminal and said second terminal are in said first electrical circuit state.
5. The staple cartridge of claim 4, wherein, when said power key is removed from said tissue thickness sensing module, said first terminal and said second terminal transition to a second electrical circuit state, and wherein said controller detects said second electrical circuit state and transitions said tissue thickness sensing module to said active state.
6. The staple cartridge of claim 5, wherein said first electrical circuit state comprises a short circuit between said first terminal and said second terminal, and wherein said second electrical circuit state comprises an open circuit between said first terminal and said second terminal.
7. The staple cartridge of claim 5, wherein said first electrical circuit state comprises an open circuit between said first terminal and said second terminal, and wherein said second electrical circuit state comprises a short between said first terminal and said second terminal.
8. The staple cartridge of claim 7, wherein said short between said first terminal and said second terminal is established by a connection between said staple cartridge and a surgical stapler when said staple cartridge is inserted into said surgical stapler.
9. A device comprising:
a reed switch;
a power source; and
a controller configured to receive power from said power source, wherein said controller is configured to maintain said device in a low-power state when said reed switch is in a saturation state, and wherein said controller is configured to transition said device to an active state when said reed switch is in a non-saturation state.
10. A method for power management of a staple cartridge assembly having a tissue thickness sensing module, the method comprising:
detecting, by a controller, a power key removably positioned adjacent to said tissue thickness sensing module;
maintaining, by said controller, a tissue thickness sensing module in a low-power state when said power key is detected; and
transitioning, by said controller, said tissue thickness sensing module to an active state when said power key is removed from said tissue thickness sensing module.
11. The method of claim 10, wherein said sensing of said power key comprises:
detecting, by said controller, a state of a sensor, wherein said state of said sensor indicates said power key is positioned relative to said tissue thickness sensing module.
12. The method of claim 11, wherein said sensor comprises a reed switch and said state comprises a saturation state.
13. The method of claim 10, wherein said sensing of said power key comprises:
detecting, by said controller, a first electrical circuit state between a first terminal and a second terminal, wherein said first electrical circuit state indicates that said power key is positioned relative to said tissue thickness sensing module.
14. The method of claim 13, comprising:
detecting, by said controller, a second electrical circuit state between said first terminal and said second terminal, wherein said second electrical circuit state indicates that said power key is not positioned relative to said tissue thickness sensing module.
15. The method of claim 14, wherein said first electrical circuit state comprises a short circuit across said first terminal and said second terminal, and wherein said second electrical circuit state comprises an open circuit between said first terminal and said second terminal.
16. The method of claim 14, wherein said first electrical circuit state comprises an open circuit between said first terminal and said second terminal, and wherein said second electrical circuit state comprises a short circuit across said first terminal and said second terminal.
17. The method of claim 16, comprising:
inserting said staple cartridge into a surgical stapler;
removing said power key from said tissue thickness sensing module; and
completing, by said surgical stapler, a circuit connection between said first terminal and said second terminal.
18. A method for controlling a device comprising a controller, a power source, and a reed switch sensor, the method comprising:
detecting, by said controller, a saturation state of said reed witch, wherein said reed switch is maintained in said saturation state by a power key positioned relative to said reed switch, and wherein said power key comprises a magnet configured to generate a magnetic field sufficient to place said reed switch in said saturation state;
maintaining, by said controller, said device in a locked state while said reed switch is in said saturation state, wherein said locked state comprises a low-power state of said device; and
transitioning, by said controller, said device to an unlocked state, wherein said transition occurs when said power key is removed from said reed switch and said reed switch is in a non-saturated state, and wherein said unlocked state comprises an active state of said device.
US13/800,067 2013-03-13 2013-03-13 Staple cartridge tissue thickness sensor system Abandoned US20140263552A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/800,067 US20140263552A1 (en) 2013-03-13 2013-03-13 Staple cartridge tissue thickness sensor system
US13/800,025 US9345481B2 (en) 2013-03-13 2013-03-13 Staple cartridge tissue thickness sensor system

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US13/800,067 US20140263552A1 (en) 2013-03-13 2013-03-13 Staple cartridge tissue thickness sensor system
US13/800,025 US9345481B2 (en) 2013-03-13 2013-03-13 Staple cartridge tissue thickness sensor system
JP2016500455A JP6325073B2 (en) 2013-03-13 2014-02-27 Tissue thickness sensor system of the staple cartridge
BR112015021977A BR112015021977A2 (en) 2013-03-13 2014-02-27 thickness sensor system staple cartridge fabric
PCT/US2014/018926 WO2014158631A1 (en) 2013-03-13 2014-02-27 Staple cartridge tissue thickness sensor system
AU2014242018A AU2014242018B2 (en) 2013-03-13 2014-02-27 Staple cartridge tissue thickness sensor system
RU2015143470A RU2661732C2 (en) 2013-03-13 2014-02-27 Staple cartridge tissue thickness analysis system
CA2904588A CA2904588A1 (en) 2013-03-13 2014-02-27 Staple cartridge tissue thickness sensor system
MX2015011865A MX2015011865A (en) 2013-03-13 2014-02-27 Staple cartridge tissue thickness sensor system.
PCT/US2014/018932 WO2014163925A1 (en) 2013-03-13 2014-02-27 Staple cartridge tissue thickness sensor system
CN201480015436.6A CN105188567B (en) 2013-03-13 2014-02-27 Tissue thickness cartridge sensor system
CN201480015316.6A CN105050509B (en) 2013-03-13 2014-02-27 Tissue thickness cartridge sensor system
CA2904578A CA2904578A1 (en) 2013-03-13 2014-02-27 Staple cartridge tissue thickness sensor system
AU2014249891A AU2014249891B2 (en) 2013-03-13 2014-02-27 Staple cartridge tissue thickness sensor system
EP14159105.7A EP2777534A1 (en) 2013-03-13 2014-03-12 Staple cartridge tissue thickness sensor system
PL14159078T PL2777531T3 (en) 2013-03-13 2014-03-12 Staple cartridge tissue thickness sensor system
EP14159078.6A EP2777531B1 (en) 2013-03-13 2014-03-12 Staple cartridge tissue thickness sensor system

Publications (1)

Publication Number Publication Date
US20140263552A1 true US20140263552A1 (en) 2014-09-18

Family

ID=55177650

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/800,067 Abandoned US20140263552A1 (en) 2013-03-13 2013-03-13 Staple cartridge tissue thickness sensor system
US13/800,025 Active 2034-10-10 US9345481B2 (en) 2013-03-13 2013-03-13 Staple cartridge tissue thickness sensor system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/800,025 Active 2034-10-10 US9345481B2 (en) 2013-03-13 2013-03-13 Staple cartridge tissue thickness sensor system

Country Status (6)

Country Link
US (2) US20140263552A1 (en)
EP (2) EP2777531B1 (en)
CN (2) CN105050509B (en)
AU (2) AU2014249891B2 (en)
CA (2) CA2904578A1 (en)
WO (2) WO2014158631A1 (en)

Cited By (418)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8973804B2 (en) 2006-09-29 2015-03-10 Ethicon Endo-Surgery, Inc. Cartridge assembly having a buttressing member
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US8991677B2 (en) 2008-02-14 2015-03-31 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US20150272583A1 (en) * 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument system
US20150313745A1 (en) * 2014-04-28 2015-11-05 Ellipse Technologies, Inc. System for informational magnetic feedback in adjustable implants
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9232945B2 (en) 2010-09-09 2016-01-12 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9289206B2 (en) 2007-06-29 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
EP3009081A1 (en) 2014-10-15 2016-04-20 Ethicon Endo-Surgery, Inc. Surgical instrument battery pack with power profile emulation
EP3009082A1 (en) 2014-10-16 2016-04-20 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjunct material
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
EP3015079A2 (en) 2014-10-29 2016-05-04 Ethicon Endo-Surgery, Inc. Cartridge assemblies for surgical staplers
EP3015080A2 (en) 2014-10-29 2016-05-04 Ethicon Endo-Surgery, Inc. Staple cartridges comprising driver arrangements
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
EP3017772A2 (en) 2014-11-06 2016-05-11 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable adjunct material
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
EP3031405A1 (en) 2014-12-10 2016-06-15 Ethicon Endo-Surgery, LLC Articulatable surgical instrument system
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
EP3034009A2 (en) 2014-12-18 2016-06-22 Ethicon Endo-Surgery, LLC Surgical instrument assembly comprising a lockable articulation system
EP3034013A1 (en) 2014-12-18 2016-06-22 Ethicon Endo-Surgery, LLC Drive arrangements for articulatable surgical instruments
EP3034016A2 (en) 2014-12-18 2016-06-22 Ethicon Endo-Surgery, LLC Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
EP3034014A2 (en) 2014-12-18 2016-06-22 Ethicon Endo-Surgery, LLC Surgical instrument assembly comprising a flexible articulation system
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
EP3042617A2 (en) 2014-12-18 2016-07-13 Ethicon Endo-Surgery, LLC Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
WO2016137810A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Adaptable surgical instrument handle
WO2016144685A1 (en) 2015-03-06 2016-09-15 Ethicon Endo-Surgery, Llc Powered surgical instrument
WO2016144687A2 (en) 2015-03-06 2016-09-15 Ethicon Endo-Surgery, Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
WO2016144682A1 (en) 2015-03-06 2016-09-15 Ethicon Endo-Surgery, Llc Multiple level thresholds to modify operation of powered surgical instruments
WO2016144681A2 (en) 2015-03-06 2016-09-15 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
WO2016144604A1 (en) 2015-03-06 2016-09-15 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
WO2016144600A1 (en) 2015-03-06 2016-09-15 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
WO2016153873A1 (en) 2015-03-24 2016-09-29 Ethicon Endo-Surgery, Llc Surgical instruments with firing system overload protection mechanisms
WO2016160367A2 (en) 2015-03-31 2016-10-06 Ethicon Endo-Surgery, Llc Surgical instrument with selectively disengageable threaded drive systems
WO2016160366A1 (en) 2015-03-31 2016-10-06 Ethicon Endo-Surgery, Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
EP3106101A1 (en) 2015-06-18 2016-12-21 Ethicon Endo-Surgery, LLC Surgical stapling instruments with lockout arrangements for preventing firing system actuation when a cartridge is spent or missing
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
EP3123956A2 (en) 2015-07-30 2017-02-01 Ethicon Endo-Surgery, LLC Surgical instrument comprising separate tissue securing and tissue cutting systems
EP3123954A2 (en) 2015-07-30 2017-02-01 Ethicon Endo-Surgery, LLC Surgical instrument comprising systems for assuring the proper sequential operation of the surgical instrument
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
EP3135208A2 (en) 2015-08-26 2017-03-01 Ethicon Endo-Surgery, LLC Staples configured to support an implantable adjunct
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
EP3138515A1 (en) 2015-09-02 2017-03-08 Ethicon Endo-Surgery, LLC Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9603991B2 (en) 2004-07-28 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling instrument having a medical substance dispenser
WO2017053257A1 (en) 2015-09-23 2017-03-30 Ethicon Endo-Surgery, Llc Surgical stapler having current mirror-based motor control
WO2017058603A2 (en) 2015-09-30 2017-04-06 Ethicon Endo-Surgery, Llc Compressible adjunct with attachment regions
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
EP3154187A1 (en) 2015-09-23 2017-04-12 Ethicon Endo-Surgery, LLC Surgical stapler having downstream current-based motor control
EP3154186A1 (en) 2015-09-23 2017-04-12 Ethicon Endo-Surgery, LLC Surgical stapler having motor control based on a drive system component
EP3153108A1 (en) 2015-09-23 2017-04-12 Ethicon Endo-Surgery, LLC Surgical stapler having motor control based on an electrical parameter related to a motor current
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
WO2017116784A1 (en) 2015-12-31 2017-07-06 Ethicon Endo-Surgery, Llc Surgical stapler with variable height drivers for uniform staple formation
WO2017116730A1 (en) 2015-12-31 2017-07-06 Ethicon Endo-Surgery, Llc Surgical stapler with fixed jaw support pin
WO2017116782A1 (en) 2015-12-31 2017-07-06 Ethicon Endo-Surgery, Llc Surgical stapler with end of stroke indicator
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
EP3205276A1 (en) 2016-02-09 2017-08-16 Ethicon LLC Surgical instrument articulation mechanism with slotted secondary constraint
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
EP3225186A1 (en) 2016-04-01 2017-10-04 Ethicon LLC Surgical instrument comprising a shifting mechanism
EP3225195A1 (en) 2016-04-01 2017-10-04 Ethicon LLC Surgical stapling system comprising an unclamping lockout
EP3225189A1 (en) 2016-04-01 2017-10-04 Ethicon LLC Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
EP3225185A2 (en) 2016-04-01 2017-10-04 Ethicon LLC Surgical stapling system comprising a shiftable transmission
EP3225192A1 (en) 2016-04-01 2017-10-04 Ethicon LLC Circular stapling system comprising an incisable tissue support
WO2017172744A1 (en) 2016-04-01 2017-10-05 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
WO2017172900A1 (en) 2016-04-01 2017-10-05 Ethicon Llc Surgical stapling system configured to provide selective cutting of tissue
EP3231378A1 (en) 2016-04-15 2017-10-18 Ethicon LLC Systems and methods for controlling a surgical stapling and cutting instrument
EP3231376A1 (en) 2016-04-15 2017-10-18 Ethicon LLC Modular surgical instrument with configurable operating mode
EP3231374A1 (en) 2016-04-15 2017-10-18 Ethicon LLC Surgical instrument with adjustable stop/start control during a firing motion
EP3231379A2 (en) 2016-04-15 2017-10-18 Ethicon LLC Staple formation detection mechanisms
EP3231372A2 (en) 2016-04-15 2017-10-18 Ethicon LLC Surgical instrument with multiple program responses during a firing motion
EP3231371A1 (en) 2016-04-15 2017-10-18 Ethicon LLC Systems and methods for controlling a surgical stapling and cutting instrument
EP3231375A1 (en) 2016-04-15 2017-10-18 Ethicon LLC Surgical instrument with improved stop/start control during a firing motion
EP3231373A2 (en) 2016-04-15 2017-10-18 Ethicon LLC Surgical instrument with multiple program responses during a firing motion
EP3231377A2 (en) 2016-04-15 2017-10-18 Ethicon LLC Surgical instrument with detection sensors
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
EP3235445A1 (en) 2016-04-18 2017-10-25 Ethicon LLC Surgical instrument comprising a lockout
EP3235446A2 (en) 2016-04-18 2017-10-25 Ethicon LLC Method for operating a surgical instrument
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9848954B2 (en) 2013-12-20 2017-12-26 Corbin E. Barnett Surgical system and related methods
EP3260056A1 (en) 2016-06-24 2017-12-27 Ethicon LLC Stamped staples and staple cartridges using the same
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9918704B2 (en) 2011-03-14 2018-03-20 Ethicon Llc Surgical instrument
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
EP3338673A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Anvil having a knife slot width
EP3338681A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Staple cartridges and arrangements of staples and staple cavities therein
EP3338690A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Surgical stapling systems
EP3338698A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Surgical instrument with multiple failure response modes
EP3338676A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Shaft assembly comprising a lockout
EP3338714A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Surgical instrument shaft with a resettable fuse
EP3338715A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Lockout arrangements for surgical end effectors and replaceable tool assemblies
EP3338679A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Staple firing member comprising a missing cartridge and/or spent cartridge lockout
EP3338666A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
EP3338703A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Staple cartridge with deformable driver retention features
EP3338700A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Surgical instrument comprising a cutting member
EP3338654A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Durability features for end effectors and firing assemblies of surgical stapling instruments
EP3338677A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Surgical tool assemblies with closure stroke reduction features
EP3338657A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
EP3338653A1 (en) 2016-12-21 2018-06-27 Ethicon LLC Surgical stapling instruments having end effectors with positive opening features
EP3338661A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Staple forming pocket arrangements
EP3338696A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Stepped staple cartridge with tissue retention and gap setting features
EP3338658A2 (en) 2016-12-21 2018-06-27 Ethicon LLC Surgical stapling instruments and staple-forming anvils
WO2018115996A2 (en) 2016-12-21 2018-06-28 Ethicon Llc Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
WO2018118405A1 (en) 2016-12-21 2018-06-28 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
WO2018116007A2 (en) 2016-12-21 2018-06-28 Ethicon Llc Surgical stapling instruments with smart staple cartridges
WO2018118500A2 (en) 2016-12-21 2018-06-28 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
EP3348209A2 (en) 2016-12-21 2018-07-18 Ethicon LLC Methods of stapling tissue
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US10039545B2 (en) 2015-02-23 2018-08-07 Covidien Lp Double fire stapling
US10045782B2 (en) 2015-07-30 2018-08-14 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10045780B2 (en) 2015-12-31 2018-08-14 Ethicon Llc Method of applying staples in lower anterior bowel resection
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10064622B2 (en) 2015-07-29 2018-09-04 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
USD829903S1 (en) 2015-02-26 2018-10-02 Covidien Lp Shipping wedge
US10085749B2 (en) 2015-02-26 2018-10-02 Covidien Lp Surgical apparatus with conductor strain relief
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10111660B2 (en) 2015-12-03 2018-10-30 Covidien Lp Surgical stapler flexible distal tip
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10130363B2 (en) 2010-09-29 2018-11-20 Ethicon Llc Staple cartridge
EP3417804A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Techniques for closed loop control of motor velocity of a surgical stapling and cutting instrument
EP3417799A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
EP3417796A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
EP3417794A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
EP3417803A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
EP3417810A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Systems and methods for controlling displacement member velocity for a surgical instrument
EP3417801A2 (en) 2017-06-20 2018-12-26 Ethicon LLC Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
EP3417802A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
EP3417809A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
EP3417800A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Surgical instrument having controllable articulation velocity
EP3417808A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
EP3417806A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
EP3417798A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
EP3417807A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Surgical instrument with variable duration trigger arrangement
EP3417797A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
EP3417793A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Systems and methods for controlling motor speed according to user input for a surgical instrument
EP3417805A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Systems and methods for controlling displaying motor velocity for a surgical instrument
EP3417795A1 (en) 2017-06-20 2018-12-26 Ethicon LLC Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
EP3420959A2 (en) 2017-06-27 2019-01-02 Ethicon LLC Surgical anvil manufacturing methods
EP3420963A1 (en) 2017-06-27 2019-01-02 Ethicon LLC Surgical anvil arrangements
EP3420946A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Cartridge arrangements for surgical cutting and fastening instruments with lockout disablement features
EP3420961A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical instrument comprising an articulation system ratio
EP3420938A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
EP3420993A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical end effector for applying electrosurgical energy to different electrodes on different time periods
EP3420994A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Systems for controlling control circuits for independent energy delivery over segmented sections
EP3420997A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical cutting and fastening instruments with dual power sources
EP3420934A1 (en) 2017-06-27 2019-01-02 Ethicon LLC Staple forming pocket arrangements
EP3420949A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Method for articulating a surgical instrument
EP3420992A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Systems and methods of displaying surgical instrument status
EP3420996A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Electrosurgical cartridge for use in thin profile surgical cutting and stapling instrument
EP3420951A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical instrument comprising a shaft including a housing arrangement
EP3420953A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical instrument comprising an articulation system lockable to a frame
EP3420995A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical end effector to adjust jaw compression
EP3420998A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Shaft module circuitry arrangements
EP3420926A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Flexible circuit arrangement for surgical fastening instruments
EP3420932A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
EP3420980A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Systems for controlling control circuits for an independent energy delivery over segmented sections
EP3420939A1 (en) 2017-06-28 2019-01-02 Ethicon LLC Surgical system coupleable with staple cartridge and radio frequency cartridge, and having a plurality of radio-frequency energy return paths
EP3420960A1 (en) 2017-06-27 2019-01-02 Ethicon LLC Surgical anvil arrangements
WO2019003031A1 (en) 2017-06-27 2019-01-03 Ethicon Llc Surgical anvil arrangements
US10172615B2 (en) 2015-05-27 2019-01-08 Covidien Lp Multi-fire push rod stapling device
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10213204B2 (en) 2015-10-02 2019-02-26 Covidien Lp Micro surgical instrument and loading unit for use therewith
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
EP3461447A1 (en) 2017-09-29 2019-04-03 Ethicon LLC Systems and methods of initiating a power shutdown mode for a surgical instrument
EP3461426A1 (en) 2017-09-29 2019-04-03 Ethicon LLC Systems and methods for providing alerts according to the operational state of a surgical instrument
EP3461427A1 (en) 2017-09-29 2019-04-03 Ethicon LLC Systems and methods of displaying a knife position for a surgical instrument
EP3462458A1 (en) 2017-09-29 2019-04-03 Ethicon LLC Systems and methods for language selection of a surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
EP3476315A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical clip applier comprising adaptive control in response to a strain gauge circuit
EP3476302A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical suturing instrument comprising a non-circular needle
EP3476309A1 (en) 2017-10-31 2019-05-01 Ethicon LLC Surgical instrument comprising a sensor system
EP3476332A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical dissectors and manufacturing techniques
EP3476303A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Reactive algorithm for surgical system
EP3476316A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical clip applier comprising adaptive firing control
EP3476306A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instrument systems comprising handle arrangements
EP3476301A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical suturing instrument
EP3476328A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instruments comprising an articulation drive that provides for high articulation angles
EP3476318A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical clip applier comprising an automatic clip feeding system
EP3476324A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instrument with sensor and/or control systems
EP3476305A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Adaptive control programs for a surgical system comprising more than one type of cartridge
EP3476348A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical dissectors configured to apply mechanical and electrical energy
EP3476331A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instrument comprising an adaptive electrical system
EP3476333A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instrument systems comprising battery arrangements
EP3476325A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power
EP3476330A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instrument systems comprising feedback mechanisms
EP3476323A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instrument with rotary drive selectively actuating multiple end effector functions
EP3476334A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical clip applier configured to store clips in a stored state
EP3476326A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Control system arrangements for a modular surgical instrument
EP3477654A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Electrical power output control based on mechanical forces
EP3476307A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instruments comprising a biased shifting mechanism
EP3476327A1 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instruments comprising a shifting mechanism
EP3476329A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical instruments comprising a system for articulation and rotation compensation
EP3476339A2 (en) 2017-10-30 2019-05-01 Ethicon LLC Surgical clip applier comprising an empty clip cartridge lockout
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
WO2019089425A1 (en) 2017-10-30 2019-05-09 Ethicon Llc Clip applier comprising clip advancing systems
WO2019089314A2 (en) 2017-10-30 2019-05-09 Ethicon Llc Reactive algorithm for surgical system
WO2019089433A2 (en) 2017-10-30 2019-05-09 Ethicon Llc Clip applier comprising a motor controller
WO2019089427A1 (en) 2017-10-30 2019-05-09 Ethicon Llc Clip applier comprising a reciprocating clip advancing member
WO2019089296A1 (en) 2017-10-30 2019-05-09 Ethicon Llc Surgical instrument systems comprising feedback mechanisms
US10285693B2 (en) 2015-12-31 2019-05-14 Ethicon Llc Surgical stapler with locking translatable pin
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
EP3488801A1 (en) 2017-10-30 2019-05-29 Ethicon LLC Surgical instruments comprising a lockable end effector socket
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
EP3501416A1 (en) 2017-12-21 2019-06-26 Ethicon LLC Systems and methods of displaying a knife position during transection for a surgical instrument
EP3505132A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical evacuation flow paths
EP3506310A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
EP3505106A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Estimating state of ultrasonic end effector and control system therefor
EP3505126A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
EP3505097A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Determining tissue composition via an ultrasonic system
EP3505090A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Stapling device with both compulsory and discretionary lockouts based on sensed parameters
EP3505117A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Computer implemented interactive surgical systems
EP3505084A2 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument cartridge sensor assemblies
EP3506293A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Cloud-based medical analytics for security and authentication trends and reactive measures
EP3505098A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Activation of energy devices
EP3505101A2 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument with a sensing array
EP3505103A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
EP3505042A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
EP3505075A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instruments comprising button circuits
EP3505078A2 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument with a hardware-only control circuit
EP3505085A2 (en) 2017-12-28 2019-07-03 Ethicon LLC Controlling a surgical instrument according to sensed closure parameters
EP3505100A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Determining the state of an ultrasonic end effector
EP3506301A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical system distributed processing
EP3505102A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Temperature control of ultrasonic end effector and control system therefor
EP3505119A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Interruption of energy due to inadvertent capacitive coupling
EP3505130A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument with a tissue marking assembly
EP3505083A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical evacuation sensor arrangements
EP3505081A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument comprising a plurality of drive systems
EP3506280A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
EP3506300A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Self describing data packets generated at an issuing instrument
EP3506295A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Safety systems for smart powered surgical stapling
EP3506287A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Adaptive control program updates for surgical devices
EP3506285A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Aggregation and reporting of surgical hub data
EP3505076A2 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument comprising a control system that uses input from a strain gage circuit
EP3506286A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Adaptive control program updates for surgical hubs
EP3505094A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Use of laser light and red-green-blue coloration to determine properties of back scattered light
EP3506291A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical hub control arrangements
EP3506296A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Safety systems for smart powered surgical stapling
EP3505123A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical evacuation sensing and generator control
EP3506313A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical hub situational awareness
EP3505086A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Systems for detecting proximity of surgical end effector to cancerous tissue
EP3505099A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Determining the state of an ultrasonic electromechanical system according to frequency shift
EP3505125A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument having a flexible electrode
EP3506294A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical systems with prioritized data transmission capabilities
EP3506273A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Systems for adjusting end effector parameters based on perioperative information
EP3506509A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument with environment sensing
EP3506299A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Data stripping method to interrogate patient records and create anonymized record
EP3506288A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical hub spatial awareness to determine devices in operating theater
EP3506298A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical hub coordination of control and communication of operating room devices
EP3506281A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Sterile field interactive control displays
EP3505198A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Dual in-series large and small droplet filters
EP3506278A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Display of alignment of staple cartridge to prior linear staple line
EP3506304A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument having a flexible circuit
EP3506297A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Characterization of tissue irregularities through the use of mono-chromatic light refractivity
EP3505041A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Dual cmos array imaging
EP3505080A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument with acoustic-based motor control
EP3505114A2 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical evacuation sensing and display
EP3506289A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Data pairing to interconnect a device measured parameter with an outcome
EP3506292A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Spatial awareness of surgical hubs in operating rooms
EP3505053A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Capacitive coupled return path pad with separable array elements
EP3506317A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Interactive surgical systems with condition handling of devices and data capabilities
EP3506303A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical evacuation sensing and motor control
EP3506312A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Interactive surgical systems with encrypted communication capabilities
EP3505109A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Situational awareness of electrosurgical systems
EP3505118A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Increasing radio frequency to create pad-less monopolar loop
EP3505104A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Detection of end effector emersion in liquid
EP3505095A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
EP3505116A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Smoke evacuation system including a segmented control circuit for interactive surgical platform
EP3506272A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Cloud-based medical analytics for medical facility segmented individualization of instrument function
EP3505124A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Bipolar combination device that automatically adjusts pressure based on energy modality
EP3505088A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
EP3506284A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Cloud-based medical analytics for customization and recommendations to a user
EP3505089A2 (en) 2017-12-28 2019-07-03 Ethicon LLC Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping
EP3505108A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Controlling an ultrasonic surgical instrument according to tissue location
EP3506283A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
EP3505107A2 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical instrument comprising a control circuit
EP3506274A1 (en) 2017-12-28 2019-07-03 Ethicon LLC Surgical systems for detecting end effector tissue distribution irregularities
WO2019130124A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Smoke evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
WO2019130108A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
WO2019130101A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Display arrangements for robot-assisted surgical platforms
WO2019130105A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Determining tissue composition via an ultrasonic system
WO2019130113A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical instrument having a flexible electrode
WO2019130119A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical evacuation flow paths
WO2019130114A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical instrument having a flexible circuit
WO2019130095A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
WO2019130087A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical systems for detecting end effector tissue distribution irregularities
WO2019130106A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Determining the state of an ultrasonic electromechanical system according to frequency shift
WO2019130086A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
WO2019130120A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical evacuation sensing and generator control
WO2019130107A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Determining the state of an ultrasonic end effector
WO2019130088A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Systems for detecting proximity of surgical end effector to cancerous tissue
WO2019130092A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Sensing arrangements for robot-assisted surgical platforms
WO2019130111A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Interruption of energy due to inadvertent capacitive coupling
WO2019130083A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
WO2019130117A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical evacuation sensing and motor control
WO2019130104A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
WO2019130115A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical instrument with a tissue marking assembly
WO2019130121A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical evacuation sensing and display
WO2019130091A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Capacitive coupled return path pad with separable array elements
WO2019130110A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Detection of end effector emersion in liquid
WO2019130090A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Variable output cartridge sensor assembly
WO2019130103A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Controlling an ultrasonic surgical instrument according to tissue location
WO2019130084A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Systems for adjusting end effector parameters based on perioperative information
WO2019130093A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Data handling and prioritization in a cloud analytics network
WO2019130112A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Increasing radio frequency to create pad-less monopolar loop
WO2019130118A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical evacuation sensor arrangements
WO2019130123A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Smoke evacuation system including a segmented control circuit for interactive surgical platform
WO2019130085A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
WO2019130125A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Dual in-series large and small droplet filters
WO2019130116A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical systems with prioritized data transmission capabilities
WO2019130089A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical instrument cartridge sensor assemblies
WO2019130094A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Cloud interface for coupled surgical devices
WO2019130122A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
EP3508140A1 (en) 2017-12-28 2019-07-10 Ethicon LLC Variable output cartridge sensor assembly
US10349941B2 (en) 2015-05-27 2019-07-16 Covidien Lp Multi-fire lead screw stapling device
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10349937B2 (en) 2016-02-10 2019-07-16 Covidien Lp Surgical stapler with articulation locking mechanism
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150272571A1 (en) * 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
CN107231792A (en) * 2015-04-20 2017-10-03 美迪涂丽普有限公司 Surgical linear stapler
KR101577625B1 (en) * 2015-04-20 2015-12-16 충남대학교산학협력단 Surgical linear stapler capable of acquiring tissue for pathological examination
US9987013B2 (en) * 2015-09-24 2018-06-05 Ethicon Llc Surgical staple buttress with magnetic elements
WO2018058149A1 (en) * 2016-09-26 2018-03-29 Secqure Surgical Pte. Ltd. Indicating system and method for electrosurgical instrument

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133095A1 (en) * 2002-11-14 2004-07-08 Dunki-Jacobs Robert J. Methods and devices for detecting abnormal tissue cells
US20040254455A1 (en) * 2002-05-15 2004-12-16 Iddan Gavriel J. Magneic switch for use in a system that includes an in-vivo device, and method of use thereof
US20050272973A1 (en) * 2003-02-25 2005-12-08 Olympus Corporation Capsule medical apparatus
US20070250126A1 (en) * 2006-04-25 2007-10-25 Cardiac Pacemakers, Inc. System and method for waking an implantable medical device from a sleep state
US20080071328A1 (en) * 2006-09-06 2008-03-20 Medtronic, Inc. Initiating medical system communications
US20080281171A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US7717312B2 (en) * 2005-06-03 2010-05-18 Tyco Healthcare Group Lp Surgical instruments employing sensors
US20110155781A1 (en) * 2009-12-24 2011-06-30 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US20120016413A1 (en) * 2010-07-14 2012-01-19 Ethicon Endo-Surgery, Inc. Surgical fastening devices comprising rivets
US20130090534A1 (en) * 2011-09-13 2013-04-11 Thomas W. Burns Intraocular physiological sensor
US20140263551A1 (en) * 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US20150083781A1 (en) * 2007-01-10 2015-03-26 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor

Family Cites Families (2584)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1314601A (en) 1919-09-02 Flexible shaft
DE273689C (en) 1913-08-07 1914-05-08
US1306107A (en) 1919-06-10 Assigotob to amebxcak
US66052A (en) 1867-06-25 smith
US662587A (en) 1900-05-18 1900-11-27 Charles Chandler Blake Insulated support for electric conductors.
US670748A (en) 1900-10-25 1901-03-26 Paul Weddeler Flexible shafting.
US951393A (en) 1909-04-06 1910-03-08 John N Hahn Staple.
FR459743A (en) 1912-09-14 1913-11-12 Bariquant Et Marre Des Atel flexible transmission
US1677337A (en) 1924-09-27 1928-07-17 Thomas E Grove Antrum drill
US1794907A (en) 1929-07-19 1931-03-03 Joseph N Kelly Worm and gear
US2037727A (en) 1934-12-27 1936-04-21 United Shoe Machinery Corp Fastening
US2132295A (en) 1937-05-05 1938-10-04 Hawkins Earl Stapling device
US2211117A (en) 1937-09-06 1940-08-13 Rieter Joh Jacob & Cie Ag Device for drawing rovings in speeders and spinning machines
US2161632A (en) 1937-12-20 1939-06-06 Martin L Nattenheimer Fastening device
US2214870A (en) 1938-08-10 1940-09-17 William J West Siding cutter
US2318379A (en) 1941-04-17 1943-05-04 Walter S Davis Suture package
US2441096A (en) 1944-09-04 1948-05-04 Singer Mfg Co Control means for portable electric tools
US2578686A (en) 1945-04-27 1951-12-18 Tubing Appliance Co Inc Open-sided-socket ratchet wrench
US2526902A (en) 1947-07-31 1950-10-24 Norman C Rublee Insulating staple
FR999646A (en) 1949-11-16 1952-02-04 Device cleat
US2674149A (en) 1952-03-01 1954-04-06 Jerry S Benson Multiple pronged fastener device with spreading means
US2711461A (en) 1953-12-24 1955-06-21 Singer Mfg Co Portable electric tool handle assemblies
US2804848A (en) 1954-09-30 1957-09-03 Chicago Pneumatic Tool Co Drilling apparatus
FR1112936A (en) 1954-10-20 1956-03-20 electric motor and control three-speed enclosed in a sheath
US2808482A (en) 1956-04-12 1957-10-01 Miniature Switch Corp Toggle switch construction
US2853074A (en) 1956-06-15 1958-09-23 Edward A Olson Stapling instrument for surgical purposes
US2959974A (en) 1958-05-28 1960-11-15 Melvin H Emrick Forward and reverse friction drive tapping attachment
DE1775926U (en) 1958-06-11 1958-10-16 Rudolf W Dipl Ing Ihmig Pen refill.
US3032769A (en) 1959-08-18 1962-05-08 John R Palmer Method of making a bracket
US3078465A (en) 1959-09-09 1963-02-26 Bobrov Boris Sergueevitch Instrument for stitching gastric stump
GB939929A (en) 1959-10-30 1963-10-16 Vasilii Fedotovich Goodov Instrument for stitching blood vessels, intestines, bronchi and other soft tissues
US3079606A (en) 1960-01-04 1963-03-05 Bobrov Boris Sergeevich Instrument for placing lateral gastrointestinal anastomoses
US3075062A (en) 1960-02-02 1963-01-22 J B T Instr Inc Toggle switch
US3204731A (en) 1961-05-26 1965-09-07 Gardner Denver Co Positive engaging jaw clutch or brake
US3196869A (en) 1962-06-13 1965-07-27 William M Scholl Buttress pad and method of making the same
US3166072A (en) 1962-10-22 1965-01-19 Jr John T Sullivan Barbed clips
US3266494A (en) 1963-08-26 1966-08-16 Possis Machine Corp Powered forceps
US3317105A (en) 1964-03-25 1967-05-02 Niiex Khirurgicheskoi Apparatu Instrument for placing lateral intestinal anastomoses
US3269630A (en) 1964-04-30 1966-08-30 Fleischer Harry Stapling instrument
US3317103A (en) 1965-05-03 1967-05-02 Cullen Apparatus for handling hose or similar elongate members
US3275211A (en) 1965-05-10 1966-09-27 United States Surgical Corp Surgical stapler with replaceable cartridge
US3357296A (en) 1965-05-14 1967-12-12 Keuneth W Lefever Staple fastener
GB1210522A (en) 1966-10-10 1970-10-28 United States Surgical Corp Instrument for placing lateral gastro-intestinal anastomoses
US3494533A (en) 1966-10-10 1970-02-10 United States Surgical Corp Surgical stapler for stitching body organs
US3490675A (en) 1966-10-10 1970-01-20 United States Surgical Corp Instrument for placing lateral gastrointestinal anastomoses
US3499591B1 (en) 1967-06-23 1988-09-20
US3503396A (en) 1967-09-21 1970-03-31 American Hospital Supply Corp Atraumatic surgical clamp
GB1217159A (en) 1967-12-05 1970-12-31 Coventry Gauge & Tool Co Ltd Torque limiting device
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3551987A (en) 1968-09-12 1971-01-05 Jack E Wilkinson Stapling clamp for gastrointestinal surgery
US3640317A (en) 1969-03-21 1972-02-08 Jack Panfili Clip for closing fragile stuffed casings
US3572159A (en) 1969-06-12 1971-03-23 Teleflex Inc Motion transmitting remote control assembly
US3643851A (en) 1969-08-25 1972-02-22 United States Surgical Corp Skin stapler
US3709221A (en) 1969-11-21 1973-01-09 Pall Corp Microporous nonadherent surgical dressing
US3598943A (en) 1969-12-01 1971-08-10 Illinois Tool Works Actuator assembly for toggle switch
US3744495A (en) 1970-01-02 1973-07-10 M Johnson Method of securing prolapsed vagina in cattle
US3608549A (en) 1970-01-15 1971-09-28 Merrill Edward Wilson Method of administering drugs and capsule therefor
US3662939A (en) 1970-02-26 1972-05-16 United States Surgical Corp Surgical stapler for skin and fascia
FR2084475A5 (en) 1970-03-16 1971-12-17 Brumlik George
US3695646A (en) 1970-06-18 1972-10-03 Metal Matic Inc Ball and socket pipe joint with clip spring
US3661666A (en) 1970-08-06 1972-05-09 Philip Morris Inc Method for making swab applicators
CA960189A (en) 1971-07-12 1974-12-31 Hilti Aktiengesellschaft Nail holder assembly
US3740994A (en) 1970-10-13 1973-06-26 Surgical Corp Three stage medical instrument
US3717294A (en) 1970-12-14 1973-02-20 Surgical Corp Cartridge and powering instrument for stapling skin and fascia
US3746002A (en) 1971-04-29 1973-07-17 J Haller Atraumatic surgical clamp
US3851196A (en) 1971-09-08 1974-11-26 Xynetics Inc Plural axis linear motor structure
US3734207A (en) 1971-12-27 1973-05-22 M Fishbein Battery powered orthopedic cutting tool
US3940844A (en) 1972-02-22 1976-03-02 Pci Group, Inc. Method of installing an insulating sleeve on a staple
US3751902A (en) 1972-02-22 1973-08-14 Emhart Corp Apparatus for installing insulation on a staple
US4198734A (en) 1972-04-04 1980-04-22 Brumlik George C Self-gripping devices with flexible self-gripping means and method
GB1339394A (en) 1972-04-06 1973-12-05 Vnii Khirurgicheskoi Apparatur Dies for surgical stapling instruments
US3819100A (en) 1972-09-29 1974-06-25 United States Surgical Corp Surgical stapling instrument
USRE28932E (en) 1972-09-29 1976-08-17 United States Surgical Corporation Surgical stapling instrument
US3892228A (en) 1972-10-06 1975-07-01 Olympus Optical Co Apparatus for adjusting the flexing of the bending section of an endoscope
US3821919A (en) 1972-11-10 1974-07-02 Illinois Tool Works Staple
JPS5033988U (en) 1973-07-21 1975-04-11
US3885491A (en) 1973-12-21 1975-05-27 Illinois Tool Works Locking staple
JPS543B2 (en) 1974-02-28 1979-01-05
US4169990A (en) 1974-06-24 1979-10-02 General Electric Company Electronically commutated motor
US3894174A (en) 1974-07-03 1975-07-08 Emhart Corp Insulated staple and method of making the same
US3955581A (en) 1974-10-18 1976-05-11 United States Surgical Corporation Three-stage surgical instrument
US4129059A (en) 1974-11-07 1978-12-12 Eck William F Van Staple-type fastener
SU566574A1 (en) 1975-05-04 1977-07-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for applying linear agraffe suture on organs and tissue
US4060089A (en) 1975-09-03 1977-11-29 United States Surgical Corporation Surgical fastening method and device therefor
US4054108A (en) 1976-08-02 1977-10-18 General Motors Corporation Internal combustion engine
SU674747A1 (en) 1976-11-24 1979-07-25 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for mechanical suturing of tissues
FR2446509B1 (en) 1977-04-29 1981-07-03 Garret Roger
US4304236A (en) 1977-05-26 1981-12-08 United States Surgical Corporation Stapling instrument having an anvil-carrying part of particular geometric shape
US4573468A (en) 1977-05-26 1986-03-04 United States Surgical Corporation Hollow body organ stapling instrument and disposable cartridge employing relief vents
CA1124605A (en) 1977-08-05 1982-06-01 Charles H. Klieman Surgical stapler
US4226242A (en) 1977-09-13 1980-10-07 United States Surgical Corporation Repeating hemostatic clip applying instruments and multi-clip cartridges therefor
US4900303A (en) 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4207898A (en) 1978-03-27 1980-06-17 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4321002A (en) 1978-03-27 1982-03-23 Minnesota Mining And Manufacturing Company Medical stapling device
US4274304A (en) 1978-03-29 1981-06-23 Cooper Industries, Inc. In-line reversing mechanism
SU1036324A1 (en) 1978-03-31 1983-08-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing device
US4198982A (en) 1978-03-31 1980-04-22 Memorial Hospital For Cancer And Allied Diseases Surgical stapling instrument and method
GB2024012B (en) 1978-04-10 1982-07-28 Johnson & Johnson Oxygen-generating surgical dressing
US4180285A (en) 1978-05-11 1979-12-25 Reneau Bobby J Articulated ball connector for use with pipeline
DE2839990C2 (en) 1978-09-14 1980-05-14 Audi Nsu Auto Union Ag, 7107 Neckarsulm
SE419421B (en) 1979-03-16 1981-08-03 Ove Larson Flexible arm in particular robot arm
US4340331A (en) 1979-03-26 1982-07-20 Savino Dominick J Staple and anviless stapling apparatus therefor
SU886900A1 (en) 1979-03-26 1981-12-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for applying line sutures
US4261244A (en) 1979-05-14 1981-04-14 Senco Products, Inc. Surgical staple
US4272662A (en) 1979-05-21 1981-06-09 C & K Components, Inc. Toggle switch with shaped wire spring contact
US4275813A (en) 1979-06-04 1981-06-30 United States Surgical Corporation Coherent surgical staple array
US4272002A (en) 1979-07-23 1981-06-09 Lawrence M. Smith Internal surgical stapler
US4296654A (en) 1979-08-20 1981-10-27 Mercer Albert E Adjustable angled socket wrench extension
US4250436A (en) 1979-09-24 1981-02-10 The Singer Company Motor braking arrangement and method
SU1022703A1 (en) 1979-12-20 1983-06-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Device for correcting and fixing vertebral column of patients ill with scoliosis surgical apparatus for applying compression sutures
AU534210B2 (en) 1980-02-05 1984-01-12 United States Surgical Corporation Surgical staples
US4429695A (en) 1980-02-05 1984-02-07 United States Surgical Corporation Surgical instruments
US4396139A (en) 1980-02-15 1983-08-02 Technalytics, Inc. Surgical stapling system, apparatus and staple
US4317451A (en) 1980-02-19 1982-03-02 Ethicon, Inc. Plastic surgical staple
US4289133A (en) 1980-02-28 1981-09-15 Senco Products, Inc. Cut-through backup washer for the scalpel of an intraluminal surgical stapling instrument
US4428376A (en) 1980-05-02 1984-01-31 Ethicon Inc. Plastic surgical staple
US4331277A (en) 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US4380312A (en) 1980-07-17 1983-04-19 Minnesota Mining And Manufacturing Company Stapling tool
US4606343A (en) 1980-08-18 1986-08-19 United States Surgical Corporation Self-powered surgical fastening instrument
US4328839A (en) 1980-09-19 1982-05-11 Drilling Development, Inc. Flexible drill pipe
US4353371A (en) 1980-09-24 1982-10-12 Cosman Eric R Longitudinally, side-biting, bipolar coagulating, surgical instrument
DE3036217C2 (en) 1980-09-25 1986-12-18 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4349028A (en) 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
AU542936B2 (en) 1980-10-17 1985-03-28 United States Surgical Corporation Self centering staple
US4500024A (en) 1980-11-19 1985-02-19 Ethicon, Inc. Multiple clip applier
US4347450A (en) 1980-12-10 1982-08-31 Colligan Wallace M Portable power tool
US4451743A (en) 1980-12-29 1984-05-29 Citizen Watch Company Limited DC-to-DC Voltage converter
US4409057A (en) 1981-01-19 1983-10-11 Minnesota Mining & Manufacturing Company Staple supporting and removing strip
US4382326A (en) 1981-01-19 1983-05-10 Minnesota Mining & Manufacturing Company Staple supporting and staple removing strip
US4379457A (en) 1981-02-17 1983-04-12 United States Surgical Corporation Indicator for surgical stapler
SU1009439A1 (en) 1981-03-24 1983-04-07 Предприятие П/Я Р-6094 Surgical suturing device for application of anastomosis on digestive tract
US4526174A (en) 1981-03-27 1985-07-02 Minnesota Mining And Manufacturing Company Staple and cartridge for use in a tissue stapling device and a tissue closing method
SU982676A1 (en) 1981-04-07 1982-12-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical cramp
DE3115192C2 (en) 1981-04-15 1983-05-19 Christian Prof. Dr.Med. 2400 Luebeck De Krueger
US4383634A (en) 1981-05-26 1983-05-17 United States Surgical Corporation Surgical stapler apparatus with pivotally mounted actuator assemblies
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4486928A (en) 1981-07-09 1984-12-11 Magnavox Government And Industrial Electronics Company Apparatus for tool storage and selection
FR2509490B1 (en) 1981-07-09 1985-02-22 Tractel Sa
US4475679A (en) 1981-08-07 1984-10-09 Fleury Jr George J Multi-staple cartridge for surgical staplers
US4632290A (en) 1981-08-17 1986-12-30 United States Surgical Corporation Surgical stapler apparatus
US4576167A (en) 1981-09-03 1986-03-18 United States Surgical Corporation Surgical stapler apparatus with curved shaft
JPS5844033A (en) 1981-09-11 1983-03-14 Fuji Photo Optical Co Ltd Adaptor type treating tool introducing apparatus for endoscope
JPS6116456B2 (en) 1981-10-08 1986-04-30 Kenichi Mabuchi
AU548370B2 (en) 1981-10-08 1985-12-05 United States Surgical Corporation Surgical fastener
DE3277287D1 (en) 1981-10-15 1987-10-22 Olympus Optical Co Endoscope system with an electric bending mechanism
US4809695A (en) 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4416276A (en) 1981-10-26 1983-11-22 Valleylab, Inc. Adaptive, return electrode monitoring system
US4415112A (en) 1981-10-27 1983-11-15 United States Surgical Corporation Surgical stapling assembly having resiliently mounted anvil
US4442964A (en) 1981-12-07 1984-04-17 Senco Products, Inc. Pressure sensitive and working-gap controlled surgical stapling instrument
US4448194A (en) 1982-02-03 1984-05-15 Ethicon, Inc. Full stroke compelling mechanism for surgical instrument with drum drive
DE3204532C2 (en) 1982-02-10 1983-12-08 B. Braun Melsungen Ag, 3508 Melsungen, De
SU1114405A1 (en) 1982-02-23 1984-09-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus for placing compression anastomoses on the organs of digestive tract
DE3210466A1 (en) 1982-03-22 1983-09-29 Peter Dipl Kfm Dr Gschaider Method and device for carrying out handling processes
US4408692A (en) 1982-04-12 1983-10-11 The Kendall Company Sterile cover for instrument
US4664305A (en) 1982-05-04 1987-05-12 Blake Joseph W Iii Surgical stapler
US4473077A (en) 1982-05-28 1984-09-25 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4467805A (en) 1982-08-25 1984-08-28 Mamoru Fukuda Skin closure stapling device for surgical procedures
US4488523A (en) 1982-09-24 1984-12-18 United States Surgical Corporation Flexible, hydraulically actuated device for applying surgical fasteners
US4604786A (en) 1982-11-05 1986-08-12 The Grigoleit Company Method of making a composite article including a body having a decorative metal plate attached thereto
US4790225A (en) 1982-11-24 1988-12-13 Panduit Corp. Dispenser of discrete cable ties provided on a continuous ribbon of cable ties
US4676245A (en) 1983-02-09 1987-06-30 Mamoru Fukuda Interlocking surgical staple assembly
JPS59163608A (en) 1983-03-08 1984-09-14 Hitachi Koki Co Ltd Jigsaw
JPS59168848A (en) 1983-03-11 1984-09-22 Ethicon Inc Antiseptic surgical apparatus made of nonmetal having affinity to organism
US4652820A (en) 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
US4506671A (en) 1983-03-30 1985-03-26 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
GB2138298B (en) 1983-04-21 1986-11-05 Hundon Forge Ltd Pellet implanter
US4522327A (en) 1983-05-18 1985-06-11 United States Surgical Corporation Surgical fastener applying apparatus
US4527724A (en) 1983-06-10 1985-07-09 Senmed, Inc. Disposable linear surgical stapling instrument
US4531522A (en) 1983-06-20 1985-07-30 Ethicon, Inc. Two-piece tissue fastener with locking top and method for applying same
US4693248A (en) 1983-06-20 1987-09-15 Ethicon, Inc. Two-piece tissue fastener with deformable retaining receiver
US4573469A (en) 1983-06-20 1986-03-04 Ethicon, Inc. Two-piece tissue fastener with coinable leg staple and retaining receiver and method and instrument for applying same
US4532927A (en) 1983-06-20 1985-08-06 Ethicon, Inc. Two-piece tissue fastener with non-reentry bent leg staple and retaining receiver
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
GR81919B (en) 1983-06-20 1984-12-12 Ethicon Inc
SU1175891A1 (en) 1983-08-16 1985-08-30 Предприятие П/Я А-7840 Device for moulding articles
US4669647A (en) 1983-08-26 1987-06-02 Technalytics, Inc. Surgical stapler
US4667674A (en) 1983-10-04 1987-05-26 United States Surgical Corporation Surgical fastener exhibiting improved hemostasis
US4530453A (en) 1983-10-04 1985-07-23 United States Surgical Corporation Surgical fastener applying apparatus
US4589416A (en) 1983-10-04 1986-05-20 United States Surgical Corporation Surgical fastener retainer member assembly
US4505414A (en) 1983-10-12 1985-03-19 Filipi Charles J Expandable anvil surgical stapler
US4610383A (en) 1983-10-14 1986-09-09 Senmed, Inc. Disposable linear surgical stapler
US4571213A (en) 1983-11-17 1986-02-18 Nikko Co., Ltd. Direction-converting device for a toy car
US4565109A (en) 1983-12-27 1986-01-21 Tsay Chi Chour Instantaneous direction changing rotation mechanism
JPS60137406U (en) 1984-02-24 1985-09-11
US4600037A (en) 1984-03-19 1986-07-15 Texas Eastern Drilling Systems, Inc. Flexible drill pipe
US4612933A (en) 1984-03-30 1986-09-23 Senmed, Inc. Multiple-load cartridge assembly for a linear surgical stapling instrument
US4619391A (en) 1984-04-18 1986-10-28 Acme United Corporation Surgical stapling instrument
US4607638A (en) 1984-04-20 1986-08-26 Design Standards Corporation Surgical staples
US5002553A (en) 1984-05-14 1991-03-26 Surgical Systems & Instruments, Inc. Atherectomy system with a clutch
US5464013A (en) 1984-05-25 1995-11-07 Lemelson; Jerome H. Medical scanning and treatment system and method
GB8417562D0 (en) 1984-07-10 1984-08-15 Surgical Design Services Fasteners
US4741336A (en) 1984-07-16 1988-05-03 Ethicon, Inc. Shaped staples and slotted receivers (case VII)
US4585153A (en) 1984-07-16 1986-04-29 Ethicon, Inc. Surgical instrument for applying two-piece fasteners comprising frictionally held U-shaped staples and receivers (Case III)
IN165375B (en) 1984-07-16 1989-10-07 Ethicon Inc A surgical instrument for joining tissue by means of two-piece
US4605004A (en) 1984-07-16 1986-08-12 Ethicon, Inc. Surgical instrument for applying fasteners said instrument including force supporting means (case IV)
US4591085A (en) 1984-07-16 1986-05-27 Ethicon, Inc. Surgical instrument for applying fasteners, said instrument having an improved trigger interlocking mechanism (Case VI)
US4655222A (en) 1984-07-30 1987-04-07 Ethicon, Inc. Coated surgical staple
US4671445A (en) 1984-08-09 1987-06-09 Baxter Travenol Laboratories, Inc. Flexible surgical stapler assembly
US4754909A (en) 1984-08-09 1988-07-05 Barker John M Flexible stapler
IL73079A (en) 1984-09-26 1989-01-31 Porat Michael Gripper means for medical instruments
US4573622A (en) 1984-10-19 1986-03-04 United States Surgical Corporation Surgical fastener applying apparatus with variable fastener arrays
US4566620A (en) 1984-10-19 1986-01-28 United States Surgical Corporation Articulated surgical fastener applying apparatus
US4608981A (en) 1984-10-19 1986-09-02 Senmed, Inc. Surgical stapling instrument with staple height adjusting mechanism
US4633874A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4605001A (en) 1984-10-19 1986-08-12 Senmed, Inc. Surgical stapling instrument with dual staple height mechanism
US4580712A (en) 1984-10-19 1986-04-08 United States Surgical Corporation Surgical fastener applying apparatus with progressive application of fastener
US4767044A (en) 1984-10-19 1988-08-30 United States Surgical Corporation Surgical fastener applying apparatus
US4787387A (en) 1984-11-08 1988-11-29 American Cyanamid Company Surgical closure element
US4646722A (en) 1984-12-10 1987-03-03 Opielab, Inc. Protective endoscope sheath and method of installing same
US4641076A (en) 1985-01-23 1987-02-03 Hall Surgical-Division Of Zimmer, Inc. Method and apparatus for sterilizing and charging batteries
US4569469A (en) 1985-02-15 1986-02-11 Minnesota Mining And Manufacturing Company Bone stapler cartridge
JPS635697Y2 (en) 1985-04-04 1988-02-17
US4665916A (en) 1985-08-09 1987-05-19 United States Surgical Corporation Surgical stapler apparatus
US4643731A (en) 1985-08-16 1987-02-17 Alza Corporation Means for providing instant agent from agent dispensing system
US4750902A (en) 1985-08-28 1988-06-14 Sonomed Technology, Inc. Endoscopic ultrasonic aspirators
US4750488A (en) 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
US4728020A (en) 1985-08-30 1988-03-01 United States Surgical Corporation Articulated surgical fastener applying apparatus
SE457228B (en) 1985-09-10 1988-12-12 Vnii Ispytatel Med Tech Surgical instruments Foer application of staple sutures linjaera
SU1377053A1 (en) 1985-10-02 1988-02-28 В. Г. Сахаутдинов, Р. А. Талипов, Р. М. Халиков и 3. X. Гарифуллин Surgical suturing apparatus
US4610250A (en) 1985-10-08 1986-09-09 United States Surgical Corporation Two-part surgical fastener for fascia wound approximation
US4715520A (en) 1985-10-10 1987-12-29 United States Surgical Corporation Surgical fastener applying apparatus with tissue edge control
US4729260A (en) 1985-12-06 1988-03-08 Desoutter Limited Two speed gearbox
SU1333319A2 (en) 1985-12-10 1987-08-30 Петрозаводский государственный университет им.О.В.Куусинена Suture appliance for hollow organs
US4634419A (en) 1985-12-13 1987-01-06 Cooper Lasersonics, Inc. Angulated ultrasonic surgical handpieces and method for their production
US4728876A (en) 1986-02-19 1988-03-01 Minnesota Mining And Manufacturing Company Orthopedic drive assembly
US4662555A (en) 1986-03-11 1987-05-05 Edward Weck & Company, Inc. Surgical stapler
US4903697A (en) 1986-03-27 1990-02-27 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4700703A (en) 1986-03-27 1987-10-20 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4988334A (en) 1986-04-09 1991-01-29 Valleylab, Inc. Ultrasonic surgical system with aspiration tubulation connector
US4747820A (en) 1986-04-09 1988-05-31 Cooper Lasersonics, Inc. Irrigation/aspiration manifold and fittings for ultrasonic surgical aspiration system
JPS62170011U (en) 1986-04-16 1987-10-28
US4817847A (en) 1986-04-21 1989-04-04 Finanzaktiengesellschaft Globe Control Instrument and a procedure for performing an anastomosis
SU1561964A1 (en) 1986-04-24 1990-05-07 Благовещенский государственный медицинский институт Surgical suturing apparatus
FR2598905B1 (en) 1986-05-22 1993-08-13 Chevalier Jean Michel An interruption of the circulation of a fluid in a conduit has a flexible wall, in particular a hollow viscus and clamp assembly comprising the device
US4709120A (en) 1986-06-06 1987-11-24 Pearson Dean C Underground utility equipment vault
US5190544A (en) 1986-06-23 1993-03-02 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US4727308A (en) 1986-08-28 1988-02-23 International Business Machines Corporation FET power converter with reduced switching loss
US4743214A (en) 1986-09-03 1988-05-10 Tai Cheng Yang Steering control for toy electric vehicles
US4890613A (en) 1986-09-19 1990-01-02 Ethicon, Inc. Two piece internal organ fastener
US4752024A (en) 1986-10-17 1988-06-21 Green David T Surgical fastener and surgical stapling apparatus
US4893622A (en) 1986-10-17 1990-01-16 United States Surgical Corporation Method of stapling tubular body organs
JPH0755222B2 (en) 1986-12-12 1995-06-14 オリンパス光学工業株式会社 Treatment tool
US4865030A (en) 1987-01-21 1989-09-12 American Medical Systems, Inc. Apparatus for removal of objects from body passages
EP0302093A4 (en) 1987-02-10 1989-08-30 Vaso Products Australia Pty Lt Venous cuff applicator, cartridge and cuff.
US4873977A (en) 1987-02-11 1989-10-17 Odis L. Avant Stapling method and apparatus for vesicle-urethral re-anastomosis following retropubic prostatectomy and other tubular anastomosis
US4719917A (en) 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US5217478A (en) 1987-02-18 1993-06-08 Linvatec Corporation Arthroscopic surgical instrument drive system
DE3709067A1 (en) 1987-03-19 1988-09-29 Ewald Hensler Medical, especially surgical, instrument
US4730726A (en) 1987-04-21 1988-03-15 United States Surgical Corporation Sealed sterile package
US4777780A (en) 1987-04-21 1988-10-18 United States Surgical Corporation Method for forming a sealed sterile package
US4941623A (en) 1987-05-12 1990-07-17 United States Surgical Corporation Stapling process and device for use on the mesentery of the abdomen
US5027834A (en) 1987-06-11 1991-07-02 United States Surgical Corporation Stapling process for use on the mesenteries of the abdomen
US5542949A (en) 1987-05-14 1996-08-06 Yoon; Inbae Multifunctional clip applier instrument
US5285944A (en) 1987-05-26 1994-02-15 United States Surgical Corporation Surgical stapler apparatus
US4844068A (en) 1987-06-05 1989-07-04 Ethicon, Inc. Bariatric surgical instrument
US4848637A (en) 1987-06-11 1989-07-18 Pruitt J Crayton Staple device for use on the mesenteries of the abdomen
US4930503A (en) 1987-06-11 1990-06-05 Pruitt J Crayton Stapling process and device for use on the mesenteries of the abdomen
US4773420A (en) 1987-06-22 1988-09-27 U.S. Surgical Corporation Purse string applicator
DE3723310C2 (en) 1987-07-15 1989-10-12 John Palo Alto Calif. Us Urquhart
US4821939A (en) 1987-09-02 1989-04-18 United States Surgical Corporation Staple cartridge and an anvilless surgical stapler
US5158567A (en) 1987-09-02 1992-10-27 United States Surgical Corporation One-piece surgical staple
SU1509051A1 (en) 1987-09-14 1989-09-23 Институт прикладной физики АН СССР Appliance for suturing organs
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4805617A (en) 1987-11-05 1989-02-21 Ethicon, Inc. Surgical fastening systems made from polymeric materials
US4830855A (en) 1987-11-13 1989-05-16 Landec Labs, Inc. Temperature-controlled active agent dispenser
US5106627A (en) 1987-11-17 1992-04-21 Brown University Research Foundation Neurological therapy devices
US5018515A (en) 1987-12-14 1991-05-28 The Kendall Company See through absorbent dressing
US4834720A (en) 1987-12-24 1989-05-30 Becton, Dickinson And Company Implantable port septum
US4951860A (en) 1987-12-28 1990-08-28 Edward Weck & Co. Method and apparatus for storing, dispensing and applying surgical staples
US4819853A (en) 1987-12-31 1989-04-11 United States Surgical Corporation Surgical fastener cartridge
GB8800909D0 (en) 1988-01-15 1988-02-17 Ethicon Inc Gas powered surgical stapler
JPH01182196A (en) 1988-01-18 1989-07-20 Sanshin Ind Co Ltd Auxiliary shift device
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US4944443A (en) 1988-04-22 1990-07-31 Innovative Surgical Devices, Inc. Surgical suturing instrument and method
US4880015A (en) 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US5444113A (en) 1988-08-08 1995-08-22 Ecopol, Llc End use applications of biodegradable polymers
US5024671A (en) 1988-09-19 1991-06-18 Baxter International Inc. Microporous vascular graft
US5071052A (en) 1988-09-22 1991-12-10 United States Surgical Corporation Surgical fastening apparatus with activation lockout
US4869415A (en) 1988-09-26 1989-09-26 Ethicon, Inc. Energy storage means for a surgical stapler
CA1308782C (en) 1988-10-13 1992-10-13 Gyrus Medical Limited Screening and monitoring instrument
US4892244B1 (en) 1988-11-07 1991-08-27 Ethicon Inc
AT129622T (en) 1988-11-11 1995-11-15 United States Surgical Corp A surgical instrument.
US5197648A (en) 1988-11-29 1993-03-30 Gingold Bruce S Surgical stapling apparatus
US4915100A (en) 1988-12-19 1990-04-10 United States Surgical Corporation Surgical stapler apparatus with tissue shield
US4986808A (en) 1988-12-20 1991-01-22 Valleylab, Inc. Magnetostrictive transducer
US4978333A (en) 1988-12-20 1990-12-18 Valleylab, Inc. Resonator for surgical handpiece
US5098360A (en) 1988-12-26 1992-03-24 Tochigifujisangyo Kabushiki Kaisha Differential gear with limited slip and locking mechanism
US5108368A (en) 1990-01-04 1992-04-28 Pilot Cardiovascular System, Inc. Steerable medical device
US5111987A (en) 1989-01-23 1992-05-12 Moeinzadeh Manssour H Semi-disposable surgical stapler
US5061269A (en) 1989-02-07 1991-10-29 Joseph J. Berke Surgical rongeur power grip structure and method
DE69019213T2 (en) 1989-02-22 1995-10-26 United States Surgical Corp Skin clip.
US4930674A (en) 1989-02-24 1990-06-05 Abiomed, Inc. Surgical stapler
US5186711A (en) 1989-03-07 1993-02-16 Albert Einstein College Of Medicine Of Yeshiva University Hemostasis apparatus and method
US5522817A (en) 1989-03-31 1996-06-04 United States Surgical Corporation Absorbable surgical fastener with bone penetrating elements
US5062563A (en) 1989-04-10 1991-11-05 United States Surgical Corporation Fascia stapler
US5104397A (en) 1989-04-14 1992-04-14 Codman & Shurtleff, Inc. Multi-position latching mechanism for forceps
US5009661A (en) 1989-04-24 1991-04-23 Michelson Gary K Protective mechanism for surgical rongeurs
SU1708312A1 (en) 1989-05-16 1992-01-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for suturing bone tissue
US5222976A (en) 1989-05-16 1993-06-29 Inbae Yoon Suture devices particularly useful in endoscopic surgery
US5031814A (en) 1989-05-26 1991-07-16 United States Surgical Corporation Locking mechanism for surgical fastening apparatus
US4955959A (en) 1989-05-26 1990-09-11 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5040715B1 (en) 1989-05-26 1994-04-05 United States Surgical Corp Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5106008A (en) 1989-05-26 1992-04-21 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5318221A (en) 1989-05-26 1994-06-07 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5413268A (en) 1989-05-26 1995-05-09 United States Surgical Corporation Apparatus and method for placing stables in laparoscopic or endoscopic procedures
US4978049A (en) 1989-05-26 1990-12-18 United States Surgical Corporation Three staple drive member
US5505363A (en) 1989-05-26 1996-04-09 United States Surgical Corporation Surgical staples with plated anvils
US5035040A (en) 1989-05-30 1991-07-30 Duo-Fast Corporation Hog ring fastener, tool and methods
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5383881A (en) 1989-07-18 1995-01-24 United States Surgical Corporation Safety device for use with endoscopic instrumentation
US5100420A (en) 1989-07-18 1992-03-31 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US4932960A (en) 1989-09-01 1990-06-12 United States Surgical Corporation Absorbable surgical fastener
US5155941A (en) 1989-09-18 1992-10-20 Olympus Optical Co., Ltd. Industrial endoscope system having a rotary treatment member
US4965709A (en) 1989-09-25 1990-10-23 General Electric Company Switching converter with pseudo-resonant DC link
CH677728A5 (en) 1989-10-17 1991-06-28 Bieffe Medital Sa
US5264218A (en) 1989-10-25 1993-11-23 C. R. Bard, Inc. Modifiable, semi-permeable, wound dressing
US5239981A (en) 1989-11-16 1993-08-31 Effner Biomet Gmbh Film covering to protect a surgical instrument and an endoscope to be used with the film covering
US5156609A (en) 1989-12-26 1992-10-20 Nakao Naomi L Endoscopic stapling device and method
US5195968A (en) 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
US6033378A (en) 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
AU7082091A (en) 1990-02-13 1991-08-15 Ethicon Inc. Rotating head skin stapler
US5100042A (en) 1990-03-05 1992-03-31 United States Surgical Corporation Surgical fastener apparatus
US5244462A (en) 1990-03-15 1993-09-14 Valleylab Inc. Electrosurgical apparatus
US5088997A (en) 1990-03-15 1992-02-18 Valleylab, Inc. Gas coagulation device
US5217457A (en) 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5014899A (en) 1990-03-30 1991-05-14 United States Surgical Corporation Surgical stapling apparatus
SU1722476A1 (en) 1990-04-02 1992-03-30 Свердловский Филиал Научно-Производственного Объединения "Фтизиопульмонология" Appliance for temporary occlusion of tubular organs
US5005754A (en) 1990-04-04 1991-04-09 Ethicon, Inc. Bladder and mandrel for use with surgical stapler
US5002543A (en) 1990-04-09 1991-03-26 Bradshaw Anthony J Steerable intramedullary fracture reduction device
US5290271A (en) 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5116349A (en) 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5074454A (en) 1990-06-04 1991-12-24 Peters Ronald L Surgical stapler
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
SU1752361A1 (en) 1990-07-10 1992-08-07 Производственное Объединение "Челябинский Тракторный Завод Им.В.И.Ленина" Surgical sutural material
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
RU2008830C1 (en) 1990-07-13 1994-03-15 Константин Алексеевич Додонов Electrosurgical apparatus
US5163598A (en) 1990-07-23 1992-11-17 Rudolph Peters Sternum stapling apparatus
US5234447A (en) 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5094247A (en) 1990-08-31 1992-03-10 Cordis Corporation Biopsy forceps with handle having a flexible coupling
US5389102A (en) 1990-09-13 1995-02-14 United States Surgical Corporation Apparatus and method for subcuticular stapling of body tissue
US5653373A (en) 1990-09-17 1997-08-05 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5156614A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5156315A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5253793A (en) 1990-09-17 1993-10-19 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5080556A (en) 1990-09-28 1992-01-14 General Electric Company Thermal seal for a gas turbine spacer disc
US5104025A (en) 1990-09-28 1992-04-14 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
DE69120208T3 (en) 1990-10-05 2001-02-15 United States Surgical Corp An apparatus for applying clips in laparoscopic or endoscopic procedures
US5088979A (en) 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
FR2668361B1 (en) 1990-10-30 1995-04-21 Christian Mai
US5658307A (en) 1990-11-07 1997-08-19 Exconde; Primo D. Method of using a surgical dissector instrument
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
US5470009A (en) 1990-12-06 1995-11-28 United States Surgical Corporation Surgical fastening apparatus with locking mechanism
CA2055943C (en) 1990-12-06 2003-09-23 Daniel P. Rodak Surgical fastening apparatus with locking mechanism
US5209747A (en) 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
USRE36720E (en) 1990-12-13 2000-05-30 United States Surgical Corporation Apparatus and method for applying latchless surgical clips
US5122156A (en) 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
US7384417B2 (en) 1990-12-14 2008-06-10 Cucin Robert L Air-powered tissue-aspiration instrument system employing curved bipolar-type electro-cauterizing dual cannula assembly
US5083695A (en) 1990-12-18 1992-01-28 Minnesota Mining And Manufacturing Company Stapler and firing device
US5141144A (en) 1990-12-18 1992-08-25 Minnesota Mining And Manufacturing Company Stapler and firing device
BR9107241A (en) 1990-12-18 1994-02-16 Minnesota Mining & Mfg clamps cartridge assembly adapted for use in a surgical stapler
CA2055985A1 (en) 1990-12-20 1992-06-21 Daniel Shichman Fascia clip
US5354303A (en) 1991-01-09 1994-10-11 Endomedix Corporation Devices for enclosing, manipulating, debulking and removing tissue through minimal incisions
US5222963A (en) 1991-01-17 1993-06-29 Ethicon, Inc. Pull-through circular anastomosic intraluminal stapler with absorbable fastener means
US5188111A (en) 1991-01-18 1993-02-23 Catheter Research, Inc. Device for seeking an area of interest within a body
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
DE4104755A1 (en) 1991-02-15 1992-08-20 Heidmueller Harald The surgical instrument
US5571285A (en) 1991-02-19 1996-11-05 Ethicon, Inc. Surgical staple for insertion into tissue
GR1002537B (en) 1992-03-30 1997-01-27 Ethicon Inc. Surgical staple for insertion into tissue.
CA2061319A1 (en) 1991-02-19 1992-08-20 Hector Chow Surgical staple for insertion into tissue
US5219111A (en) 1991-03-11 1993-06-15 Ethicon, Inc. Pneumatically actuated linear stapling device
US5445155A (en) 1991-03-13 1995-08-29 Scimed Life Systems Incorporated Intravascular imaging apparatus and methods for use and manufacture
CA2061885A1 (en) 1991-03-14 1992-09-15 David T. Green Approximating apparatus for surgical jaw structure
US5336232A (en) 1991-03-14 1994-08-09 United States Surgical Corporation Approximating apparatus for surgical jaw structure and method of using the same
US5217453A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5171253A (en) 1991-03-22 1992-12-15 Klieman Charles H Velcro-like closure system with absorbable suture materials for absorbable hemostatic clips and surgical strips
US5065929A (en) 1991-04-01 1991-11-19 Ethicon, Inc. Surgical stapler with locking means
US5470010A (en) 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
US5171247A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier with rotating shaft
US5454378A (en) 1993-02-11 1995-10-03 Symbiosis Corporation Biopsy forceps having a detachable proximal handle and distal jaws
JPH05208014A (en) 1991-04-10 1993-08-20 Olympus Optical Co Ltd Treating tool
US5297714A (en) 1991-04-17 1994-03-29 Ethicon, Inc. Surgical staple with modified "B" shaped configuration
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5257713A (en) 1991-05-07 1993-11-02 United States Surgical Corporation Surgical fastening device
US5413267A (en) 1991-05-14 1995-05-09 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5137198A (en) 1991-05-16 1992-08-11 Ethicon, Inc. Fast closure device for linear surgical stapling instrument
DE4116343A1 (en) 1991-05-18 1992-11-19 Bosch Gmbh Robert Hand-held power tool, in particular drill
FI93607C (en) 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5221036A (en) 1991-06-11 1993-06-22 Haruo Takase Surgical stapler
US5190560A (en) 1991-06-20 1993-03-02 Woods John B Instrument for ligation and castration
US5262678A (en) 1991-06-21 1993-11-16 Lutron Electronics Co., Inc. Wallbox-mountable switch and dimmer
US5268622A (en) 1991-06-27 1993-12-07 Stryker Corporation DC powered surgical handpiece having a motor control circuit
US5207697A (en) 1991-06-27 1993-05-04 Stryker Corporation Battery powered surgical handpiece
US5344454A (en) 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5391180A (en) 1991-08-05 1995-02-21 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5282829A (en) 1991-08-15 1994-02-01 United States Surgical Corporation Hollow body implants
GR920100358A (en) 1991-08-23 1993-06-07 Ethicon Inc Surgical anastomosis stapling instrument.
US5350104A (en) 1991-08-23 1994-09-27 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
US5333773A (en) 1991-08-23 1994-08-02 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
US5263973A (en) 1991-08-30 1993-11-23 Cook Melvin S Surgical stapling method
US5142932A (en) 1991-09-04 1992-09-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible robotic arm
US5200280A (en) 1991-09-05 1993-04-06 Black & Decker Inc. Terminal cover for a battery pack
US5246156A (en) 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
IT1251206B (en) 1991-09-18 1995-05-04 Magneti Marelli Spa Electrical system of a motor vehicle, comprising at least one supercapacitor.
US5476479A (en) 1991-09-26 1995-12-19 United States Surgical Corporation Handle for endoscopic surgical instruments and jaw structure
US5431654A (en) 1991-09-30 1995-07-11 Stryker Corporation Bone cement injector
US5275608A (en) 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
CA2075141C (en) 1991-10-17 1998-06-30 Donald A. Morin Anvil for surgical staplers
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5431322A (en) 1991-10-18 1995-07-11 United States Surgical Corporation Self contained gas powered surgical apparatus
US5397046A (en) 1991-10-18 1995-03-14 United States Surgical Corporation Lockout mechanism for surgical apparatus
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5395312A (en) 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
US5579978A (en) 1991-10-18 1996-12-03 United States Surgical Corporation Apparatus for applying surgical fasteners
US5307976A (en) 1991-10-18 1994-05-03 Ethicon, Inc. Linear stapling mechanism with cutting means
US5364001A (en) 1991-10-18 1994-11-15 United States Surgical Corporation Self contained gas powered surgical apparatus
US5711472A (en) 1991-10-18 1998-01-27 United States Surgical Corporation Self contained gas powered surgical apparatus
US5443198A (en) 1991-10-18 1995-08-22 United States Surgical Corporation Surgical fastener applying apparatus
US5326013A (en) 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
US6250532B1 (en) 1991-10-18 2001-06-26 United States Surgical Corporation Surgical stapling apparatus
CA2075227C (en) 1991-10-18 2004-02-10 Robert J. Geiste Surgical fastening apparatus with shipping interlock
CA2079756A1 (en) 1991-10-18 1993-04-19 David T. Green Apparatus for applying surgical fasteners
US5484095A (en) 1992-03-31 1996-01-16 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
AU660712B2 (en) 1991-10-18 1995-07-06 United States Surgical Corporation Apparatus for applying surgical fasteners
AU657364B2 (en) 1991-10-18 1995-03-09 United States Surgical Corporation Self contained gas powered surgical apparatus
US5497933A (en) 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
CA2078794C (en) 1991-10-18 1998-10-06 Frank J. Viola Locking device for an apparatus for applying surgical fasteners
US5485947A (en) 1992-07-20 1996-01-23 Ethicon, Inc. Linear stapling mechanism with cutting means
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5366134A (en) 1991-10-18 1994-11-22 United States Surgical Corporation Surgical fastening apparatus
US5197649A (en) 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
EP0540461A1 (en) 1991-10-29 1993-05-05 SULZER Medizinaltechnik AG Sterile puncturing apparatus for blood vessels with non-sterile ultrasound probe and device for preparing the apparatus
US5240163A (en) 1991-10-30 1993-08-31 American Cyanamid Company Linear surgical stapling instrument
US5350400A (en) 1991-10-30 1994-09-27 American Cyanamid Company Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple
JPH05123325A (en) 1991-11-01 1993-05-21 Olympus Optical Co Ltd Treating tool
US5665085A (en) 1991-11-01 1997-09-09 Medical Scientific, Inc. Electrosurgical cutting tool
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5395034A (en) 1991-11-07 1995-03-07 American Cyanamid Co. Linear surgical stapling instrument
ES2201051T3 (en) 1991-11-08 2004-03-16 Boston Scientific Limited Ablation electrode comprising temperature detectors isolated.
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
US5458579A (en) 1991-12-31 1995-10-17 Technalytics, Inc. Mechanical trocar insertion apparatus
US5697909A (en) 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
WO1993013704A1 (en) 1992-01-09 1993-07-22 Endomedix Corporation Bi-directional miniscope
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5383880A (en) * 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
WO1993013718A1 (en) 1992-01-21 1993-07-22 Valleylab, Inc. Electrosurgical control for a trocar
CA2128606C (en) 1992-01-21 2008-07-22 Philip S. Green Teleoperator system and method with telepresence
US6963792B1 (en) 1992-01-21 2005-11-08 Sri International Surgical method
US5284128A (en) 1992-01-24 1994-02-08 Applied Medical Resources Corporation Surgical manipulator
AU3610693A (en) 1992-02-07 1993-09-03 Nakao, Naomi Endoscope with disposable insertion member
US5271543A (en) 1992-02-07 1993-12-21 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
AU663543B2 (en) 1992-02-07 1995-10-12 Sherwood Services Ag Ultrasonic surgical apparatus
US5348259A (en) 1992-02-10 1994-09-20 Massachusetts Institute Of Technology Flexible, articulable column
US5383888A (en) 1992-02-12 1995-01-24 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5514157A (en) 1992-02-12 1996-05-07 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5626595A (en) 1992-02-14 1997-05-06 Automated Medical Instruments, Inc. Automated surgical instrument
CA2089999A1 (en) 1992-02-24 1993-08-25 H. Jonathan Tovey Resilient arm mesh deployer
US5658238A (en) 1992-02-25 1997-08-19 Olympus Optical Co., Ltd. Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned
US5352235A (en) 1992-03-16 1994-10-04 Tibor Koros Laparoscopic grasper and cutter
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5223675A (en) 1992-04-02 1993-06-29 Taft Anthony W Cable fastener
US5314424A (en) 1992-04-06 1994-05-24 United States Surgical Corporation Surgical instrument locking mechanism
US5314466A (en) 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
WO1993020886A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Articulated systems for cardiac ablation
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US5355897A (en) 1992-04-16 1994-10-18 Ethicon, Inc. Method of performing a pyloroplasty/pylorectomy using a stapler having a shield
US5417203A (en) 1992-04-23 1995-05-23 United States Surgical Corporation Articulating endoscopic surgical apparatus
AU662407B2 (en) 1992-05-06 1995-08-31 Ethicon Inc. Endoscopic ligation and division instrument
US5484451A (en) 1992-05-08 1996-01-16 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
US5211655A (en) 1992-05-08 1993-05-18 Hasson Harrith M Multiple use forceps for endoscopy
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5344059A (en) 1992-05-19 1994-09-06 United States Surgical Corporation Surgical apparatus and anvil delivery system therefor
US5197966A (en) 1992-05-22 1993-03-30 Sommerkamp T Greg Radiodorsal buttress blade plate implant for repairing distal radius fractures
US5192288A (en) 1992-05-26 1993-03-09 Origin Medsystems, Inc. Surgical clip applier
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
JPH0647050A (en) 1992-06-04 1994-02-22 Olympus Optical Co Ltd Tissue suture and ligature device
US5906625A (en) 1992-06-04 1999-05-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
US5279416A (en) 1992-06-05 1994-01-18 Edward Weck Incorporated Ligating device cartridge with separable retainer
US7928281B2 (en) 1992-06-19 2011-04-19 Arizant Technologies Llc Wound covering
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5258012A (en) 1992-06-30 1993-11-02 Ethicon, Inc. Surgical fasteners
US5258009A (en) 1992-06-30 1993-11-02 American Cyanamid Company Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple
US5221281A (en) 1992-06-30 1993-06-22 Valleylab Inc. Electrosurgical tubular trocar
US5368606A (en) 1992-07-02 1994-11-29 Marlow Surgical Technologies, Inc. Endoscopic instrument system
US5222975A (en) 1992-07-13 1993-06-29 Lawrence Crainich Surgical staples
US5360428A (en) 1992-07-22 1994-11-01 Hutchinson Jr William B Laparoscopic instrument with electrical cutting wires
US5511564A (en) 1992-07-29 1996-04-30 Valleylab Inc. Laparoscopic stretching instrument and associated method
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5282806A (en) 1992-08-21 1994-02-01 Habley Medical Technology Corporation Endoscopic surgical instrument having a removable, rotatable, end effector assembly
WO1994005200A1 (en) 1992-09-01 1994-03-17 Adair Edwin Lloyd Sterilizable endoscope with separable disposable tube assembly
US5630782A (en) 1992-09-01 1997-05-20 Adair; Edwin L. Sterilizable endoscope with separable auxiliary assembly
CA2104345A1 (en) 1992-09-02 1994-03-03 David T. Green Surgical clamp apparatus
US5368215A (en) 1992-09-08 1994-11-29 United States Surgical Corporation Surgical apparatus and detachable anvil rod therefor
US5485952A (en) 1992-09-23 1996-01-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5465819A (en) 1992-09-29 1995-11-14 Borg-Warner Automotive, Inc. Power transmitting assembly
US5423471A (en) 1992-10-02 1995-06-13 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5569161A (en) 1992-10-08 1996-10-29 Wendell V. Ebling Endoscope with sterile sleeve
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5662662A (en) 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
US5381943A (en) 1992-10-09 1995-01-17 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
US5431323A (en) 1992-10-09 1995-07-11 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
US5350391A (en) 1992-10-19 1994-09-27 Benedetto Iacovelli Laparoscopic instruments
US5718548A (en) 1992-10-20 1998-02-17 Clipmaster Corporation Pty Ltd Staple assembly
CA2108605A1 (en) 1992-10-21 1994-04-22 Nagabhushanam Totakura Bioabsorbable foam pledget
US5309927A (en) 1992-10-22 1994-05-10 Ethicon, Inc. Circular stapler tissue retention spring method
US5259366A (en) 1992-11-03 1993-11-09 Boris Reydel Method of using a catheter-sleeve assembly for an endoscope
US5409498A (en) 1992-11-05 1995-04-25 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
GB2272159A (en) 1992-11-10 1994-05-11 Andreas G Constantinides Surgical/diagnostic aid
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5389104A (en) 1992-11-18 1995-02-14 Symbiosis Corporation Arthroscopic surgical instruments
US5346504A (en) 1992-11-19 1994-09-13 Ethicon, Inc. Intraluminal manipulator with a head having articulating links
US5372602A (en) 1992-11-30 1994-12-13 Device For Vascular Intervention, Inc. Method of removing plaque using catheter cutter with torque control
DE9321021U1 (en) 1992-11-30 1995-09-07 Valleylab Inc An ultrasonic surgical handpiece and energy initiator to maintain the vibrations and the linear dynamics
US5333422A (en) 1992-12-02 1994-08-02 The United States Of America As Represented By The United States Department Of Energy Lightweight extendable and retractable pole
US5356006A (en) 1992-12-16 1994-10-18 Ethicon, Inc. Sterile package for surgical devices
US5330487A (en) 1992-12-17 1994-07-19 Tfi Acquistion Corp. Drive mechanism for surgical instruments
US5807393A (en) 1992-12-22 1998-09-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
FR2699806B1 (en) 1992-12-30 1995-03-24 Duthoit Francois Instrument, in particular for allowing the extraction of vein sections such as pathological varicose veins.
US5468253A (en) 1993-01-21 1995-11-21 Ethicon, Inc. Elastomeric medical device
US5358510A (en) 1993-01-26 1994-10-25 Ethicon, Inc. Two part surgical fastener
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5304204A (en) 1993-02-09 1994-04-19 Ethicon, Inc. Receiverless surgical fasteners
US5383895A (en) 1993-02-10 1995-01-24 Unisurge, Inc. Endoscopic surgical grasper and method
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
JPH06237937A (en) 1993-02-12 1994-08-30 Olympus Optical Co Ltd Suturing device for surgery
US5735290A (en) 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5618307A (en) 1995-04-03 1997-04-08 Heartport, Inc. Clamp assembly and method of use
JPH08502438A (en) 1993-02-22 1996-03-19 ヴァリーラブ・インコーポレーテッド Laparoscopic incision tensioning retractor device and method
US5342396A (en) 1993-03-02 1994-08-30 Cook Melvin S Staples
BR9405840A (en) 1993-03-02 2000-04-18 Holobeam stapling device, surgical clip, a process for inserting and clipping grmapo surgical tissue and to effect hemostasis in tissue.
DE4306786C1 (en) 1993-03-04 1994-02-10 Wolfgang Daum Hand-type surgical manipulator for areas hard to reach - has distal components actuated by fingers via Bowden cables
US5397324A (en) 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
US5360305A (en) 1993-03-19 1994-11-01 Duo-Fast Corporation Clinch staples and method of manufacturing and applying clinch staples
US5312329A (en) 1993-04-07 1994-05-17 Valleylab Inc. Piezo ultrasonic and electrosurgical handpiece
US5370645A (en) 1993-04-19 1994-12-06 Valleylab Inc. Electrosurgical processor and method of use
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
ES2109539T3 (en) 1993-04-20 1998-01-16 United States Surgical Corp Surgical stapler.
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
EP0622048B1 (en) 1993-04-27 1997-05-21 American Cyanamid Company Automatic laparoscopic ligation clip applicator
US5407293A (en) 1993-04-29 1995-04-18 Crainich; Lawrence Coupling apparatus for medical instrument
US5464300A (en) 1993-04-29 1995-11-07 Crainich; Lawrence Medical instrument and coupling apparatus for same
US5431668A (en) 1993-04-29 1995-07-11 Ethicon, Inc. Ligating clip applier
US6716232B1 (en) 1993-04-30 2004-04-06 United States Surgical Corporation Surgical instrument having an articulated jaw structure and a detachable knife
JP3559561B2 (en) 1993-04-30 2004-09-02 ユナイテッド・ステイツ・サージカル・コーポレイション Surgical instrument with a joint jaw structure and a removable knife
US5447265A (en) 1993-04-30 1995-09-05 Minnesota Mining And Manufacturing Company Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5364003A (en) 1993-05-05 1994-11-15 Ethicon Endo-Surgery Staple cartridge for a surgical stapler
US5449370A (en) 1993-05-12 1995-09-12 Ethicon, Inc. Blunt tipped ultrasonic trocar
US5352229A (en) 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
WO1994026167A1 (en) 1993-05-14 1994-11-24 Sri International Remote center positioner
US5549621A (en) 1993-05-14 1996-08-27 Byron C. Sutherland Apparatus and method for performing vertical banded gastroplasty
US6406472B1 (en) 1993-05-14 2002-06-18 Sri International, Inc. Remote center positioner
JPH06327684A (en) 1993-05-19 1994-11-29 Olympus Optical Co Ltd Surgical suture instrument
US6704210B1 (en) 1994-05-20 2004-03-09 Medtronic, Inc. Bioprothesis film strip for surgical stapler and method of attaching the same
CA2124109A1 (en) 1993-05-24 1994-11-25 Mark T. Byrne Endoscopic surgical instrument with electromagnetic sensor
US5381649A (en) 1993-06-04 1995-01-17 Webb; Stephen A. Medical staple forming die and punch
US5341724A (en) 1993-06-28 1994-08-30 Bronislav Vatel Pneumatic telescoping cylinder and method
GB9314391D0 (en) 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
US5478354A (en) 1993-07-14 1995-12-26 United States Surgical Corporation Wound closing apparatus and method
DE9310601U1 (en) 1993-07-15 1993-09-02 Siemens Ag Cassette for receiving medical, in particular dental instruments
US5501654A (en) 1993-07-15 1996-03-26 Ethicon, Inc. Endoscopic instrument having articulating element
US5582617A (en) 1993-07-21 1996-12-10 Charles H. Klieman Surgical instrument for endoscopic and general surgery
US5792165A (en) 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
JPH09501333A (en) 1993-07-21 1997-02-10 エイチ. クリーマン,チャールズ Surgical instruments of the endoscopic inspection and surgery
US5709680A (en) 1993-07-22 1998-01-20 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5693051A (en) 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
GR940100335A (en) 1993-07-22 1996-05-22 Ethicon Inc. Electrosurgical device for placing staples.
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5810811A (en) 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5372596A (en) 1993-07-27 1994-12-13 Valleylab Inc. Apparatus for leakage control and method for its use
US5441494A (en) 1993-07-29 1995-08-15 Ethicon, Inc. Manipulable hand for laparoscopy
US5503320A (en) 1993-08-19 1996-04-02 United States Surgical Corporation Surgical apparatus with indicator
US5447417A (en) 1993-08-31 1995-09-05 Valleylab Inc. Self-adjusting pump head and safety manifold cartridge for a peristaltic pump
US5441193A (en) 1993-09-23 1995-08-15 United States Surgical Corporation Surgical fastener applying apparatus with resilient film
US5405344A (en) 1993-09-30 1995-04-11 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
CA2133159A1 (en) 1993-09-30 1995-03-31 Eric J. Butterfield Surgical instrument having improved manipulating means
US5542594A (en) 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
US5439155A (en) 1993-10-07 1995-08-08 United States Surgical Corporation Cartridge for surgical fastener applying apparatus
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
CA2132917C (en) 1993-10-07 2004-12-14 John Charles Robertson Circular anastomosis device
US6210403B1 (en) 1993-10-07 2001-04-03 Sherwood Services Ag Automatic control for energy from an electrosurgical generator
US5560532A (en) 1993-10-08 1996-10-01 United States Surgical Corporation Apparatus and method for applying surgical staples to body tissue
US5725554A (en) 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
US5487499A (en) 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US5562682A (en) 1993-10-08 1996-10-08 Richard-Allan Medical Industries, Inc. Surgical Instrument with adjustable arms
RU2098025C1 (en) 1993-10-11 1997-12-10 Аркадий Вениаминович Дубровский Rotary device
US5556416A (en) 1993-10-12 1996-09-17 Valleylab, Inc. Endoscopic instrument
GB9322464D0 (en) 1993-11-01 1993-12-22 Gyrus Medical Ltd Electrosurgical apparatus
US5571100B1 (en) 1993-11-01 1998-01-06 Gyrus Medical Ltd Electrosurgical apparatus
JP3414455B2 (en) 1993-11-02 2003-06-09 オリンパス光学工業株式会社 Suturing device
US5376095A (en) 1993-11-04 1994-12-27 Ethicon Endo-Surgery Endoscopic multi-fire flat stapler with low profile
US5531305A (en) 1993-11-05 1996-07-02 Borg-Warner Automotive, Inc. Synchronizer clutch assembly for multiple ratio gearing
US5562690A (en) 1993-11-12 1996-10-08 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5503635A (en) 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5449355A (en) 1993-11-24 1995-09-12 Valleylab Inc. Retrograde tissue splitter and method
DE4340707C2 (en) 1993-11-30 1997-03-27 Wolf Gmbh Richard manipulator
US5514129A (en) 1993-12-03 1996-05-07 Valleylab Inc. Automatic bipolar control for an electrosurgical generator
US5405073A (en) 1993-12-06 1995-04-11 Ethicon, Inc. Flexible support shaft assembly
US5465894A (en) 1993-12-06 1995-11-14 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
US5743456A (en) 1993-12-16 1998-04-28 Stryker Corporation Hand actuable surgical handpiece
US5422567A (en) 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
EP0737045A1 (en) 1993-12-30 1996-10-16 Valleylab, Inc. Bipolar ultrasonic surgery
US5441191A (en) 1993-12-30 1995-08-15 Linden; Gerald E. Indicating "staples low" in a paper stapler
WO1995018572A1 (en) 1994-01-04 1995-07-13 Alpha Surgical Technologies, Inc. Stapling device
US5437681A (en) 1994-01-13 1995-08-01 Suturtek Inc. Suturing instrument with thread management
US5452837A (en) 1994-01-21 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
US5382247A (en) 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
AU1076195A (en) 1994-01-31 1995-08-15 Valleylab, Inc. Telescoping bipolar electrode for non-invasive medical procedures
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5487500A (en) 1994-02-03 1996-01-30 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5452836A (en) 1994-02-07 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism
US5527320A (en) 1994-02-10 1996-06-18 Pilling Weck Inc. Surgical clip applying instrument
US5503638A (en) 1994-02-10 1996-04-02 Bio-Vascular, Inc. Soft tissue stapling buttress
US5413107A (en) 1994-02-16 1995-05-09 Tetrad Corporation Ultrasonic probe having articulated structure and rotatable transducer head
US5507773A (en) 1994-02-18 1996-04-16 Ethicon Endo-Surgery Cable-actuated jaw assembly for surgical instruments
JPH0833642A (en) 1994-02-25 1996-02-06 Ethicon Endo Surgery Inc Improved anvil bearing opening for surgical stapler
WO1995023557A1 (en) 1994-03-01 1995-09-08 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
CA2144211C (en) 1994-03-16 2005-05-24 David T. Green Surgical instruments useful for endoscopic spinal procedures
DE9404459U1 (en) 1994-03-16 1994-07-14 Renz Chr Gmbh & Co Apparatus for packaging binding elements
JP3421117B2 (en) 1994-03-17 2003-06-30 テルモ株式会社 The surgical instrument
US5484398A (en) 1994-03-17 1996-01-16 Valleylab Inc. Methods of making and using ultrasonic handpiece
RU2052979C1 (en) 1994-03-22 1996-01-27 Товарищество с ограниченной ответственностью "Дипы" ЛТД Apparatus for application of clamping clips and magazine for suturing staples or clamping clips
US5472442A (en) 1994-03-23 1995-12-05 Valleylab Inc. Moveable switchable electrosurgical handpiece
US5860581A (en) 1994-03-24 1999-01-19 United States Surgical Corporation Anvil for circular stapler
US5541376A (en) 1994-03-28 1996-07-30 Valleylab Inc Switch and connector
CA2145723A1 (en) 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5715987A (en) 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
US5695524A (en) 1994-04-05 1997-12-09 Tracor Aerospace, Inc. Constant width, adjustable grip, staple apparatus and method
CA2144818C (en) 1994-04-07 2006-07-11 Henry Bolanos Graduated anvil for surgical stapling instruments
US5415335A (en) 1994-04-07 1995-05-16 Ethicon Endo-Surgery Surgical stapler cartridge containing lockout mechanism
US5653677A (en) 1994-04-12 1997-08-05 Fuji Photo Optical Co. Ltd Electronic endoscope apparatus with imaging unit separable therefrom
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5470007A (en) 1994-05-02 1995-11-28 Minnesota Mining And Manufacturing Company Laparoscopic stapler with overload sensor and interlock
US5489058A (en) 1994-05-02 1996-02-06 Minnesota Mining And Manufacturing Company Surgical stapler with mechanisms for reducing the firing force
CA2148667A1 (en) 1994-05-05 1995-11-06 Carlo A. Mililli Self-contained powered surgical apparatus
US5628446A (en) 1994-05-05 1997-05-13 United States Surgical Corporation Self-contained powered surgical apparatus
US5474566A (en) 1994-05-05 1995-12-12 United States Surgical Corporation Self-contained powered surgical apparatus
US5800379A (en) 1996-02-23 1998-09-01 Sommus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US5480409A (en) 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US5782749A (en) 1994-05-10 1998-07-21 Riza; Erol D. Laparoscopic surgical instrument with adjustable grip
USRE38335E1 (en) 1994-05-24 2003-11-25 Endius Incorporated Surgical instrument
US5454827A (en) 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
DE69511483D1 (en) 1994-05-30 1999-09-23 Canon Kk Rechargeable batteries
US5814057A (en) 1994-06-03 1998-09-29 Gunze Limited Supporting element for staple region
GB9411429D0 (en) 1994-06-08 1994-07-27 Seton Healthcare Group Plc Wound dressings
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
US5522831A (en) 1994-06-13 1996-06-04 Dennis R. Sleister Incising trocar and cannula assembly
US5473204A (en) 1994-06-16 1995-12-05 Temple; Thomas D. Time delay switch
US5732872A (en) 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5558665A (en) 1994-06-24 1996-09-24 Archimedes Surgical, Inc. Surgical instrument and method for intraluminal retraction of an anatomic structure
US6645201B1 (en) 1998-02-19 2003-11-11 Curon Medical, Inc. Systems and methods for treating dysfunctions in the intestines and rectum
US5800429A (en) 1994-06-24 1998-09-01 Somnus Medical Technologies, Inc. Noninvasive apparatus for ablating turbinates
US5807376A (en) 1994-06-24 1998-09-15 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
DE4422621C1 (en) 1994-06-28 1995-08-31 Aesculap Ag Surgical instrument for gripping, transporting or fixing objects
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
US5551622A (en) 1994-07-13 1996-09-03 Yoon; Inbae Surgical stapler
US5833695A (en) 1994-07-13 1998-11-10 Yoon; Inbae Surgical stapling system and method of applying staples from multiple staple cartridges
US5533521A (en) 1994-07-15 1996-07-09 United States Surgical Corporation Interchangeable tissue measuring device
US5629577A (en) 1994-07-15 1997-05-13 Micro Medical Devices Miniature linear motion actuator
DE9412228U1 (en) 1994-07-28 1994-09-22 Loctite Europa Eeig Peristaltic pump for accurate dosing of small amounts of liquid
AU694225B2 (en) 1994-08-02 1998-07-16 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5507426A (en) 1994-08-05 1996-04-16 United States Surgical Corporation Apparatus for applying surgical fasteners
US5779130A (en) 1994-08-05 1998-07-14 United States Surgical Corporation Self-contained powered surgical apparatus
US5509916A (en) 1994-08-12 1996-04-23 Valleylab Inc. Laser-assisted electrosurgery system
US5480089A (en) 1994-08-19 1996-01-02 United States Surgical Corporation Surgical stapler apparatus with improved staple pockets
CA2146508C (en) 1994-08-25 2006-11-14 Robert H. Schnut Anvil for circular stapler
US5931853A (en) 1995-08-25 1999-08-03 Mcewen; James A. Physiologic tourniquet with safety circuit
US6120433A (en) 1994-09-01 2000-09-19 Olympus Optical Co., Ltd. Surgical manipulator system
US5569284A (en) 1994-09-23 1996-10-29 United States Surgical Corporation Morcellator
US5609601A (en) 1994-09-23 1997-03-11 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
US5916225A (en) 1994-09-29 1999-06-29 Surgical Sense, Inc. Hernia mesh patch
DE4434864C2 (en) 1994-09-29 1997-06-19 United States Surgical Corp The surgical clip applier with replaceable staple cartridge
US5571116A (en) 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5685474A (en) 1994-10-04 1997-11-11 United States Surgical Corporation Tactile indicator for surgical instrument
US5797538A (en) 1994-10-05 1998-08-25 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5901895A (en) 1994-10-05 1999-05-11 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5540374A (en) 1994-10-06 1996-07-30 Minnesota Mining And Manufacturing Company Bone stapler cartridge
US5571090A (en) 1994-10-07 1996-11-05 United States Surgical Corporation Vascular suturing apparatus
US5575805A (en) 1994-10-07 1996-11-19 Li Medical Technologies, Inc. Variable tip-pressure surgical grasper
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
US5591170A (en) 1994-10-14 1997-01-07 Genesis Orthopedics Intramedullary bone cutting saw
US5599852A (en) 1994-10-18 1997-02-04 Ethicon, Inc. Injectable microdispersions for soft tissue repair and augmentation
US5549627A (en) 1994-10-21 1996-08-27 Kieturakis; Maciej J. Surgical instruments and method for applying progressive intracorporeal traction
US5575789A (en) 1994-10-27 1996-11-19 Valleylab Inc. Energizable surgical tool safety device and method
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
US5891558A (en) 1994-11-22 1999-04-06 Tissue Engineering, Inc. Biopolymer foams for use in tissue repair and reconstruction
US6206897B1 (en) 1994-12-02 2001-03-27 Ethicon, Inc. Enhanced visualization of the latching mechanism of latching surgical devices
US7235089B1 (en) 1994-12-07 2007-06-26 Boston Scientific Corporation Surgical apparatus and method
US5868760A (en) 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US5636779A (en) 1994-12-13 1997-06-10 United States Surgical Corporation Apparatus for applying surgical fasteners
US5988479A (en) 1994-12-13 1999-11-23 United States Surgical Corporation Apparatus for applying surgical fasteners
JPH08164141A (en) 1994-12-13 1996-06-25 Olympus Optical Co Ltd Treating tool
US5569270A (en) 1994-12-13 1996-10-29 Weng; Edward E. Laparoscopic surgical instrument
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5628743A (en) 1994-12-21 1997-05-13 Valleylab Inc. Dual mode ultrasonic surgical apparatus
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
US5613966A (en) 1994-12-21 1997-03-25 Valleylab Inc System and method for accessory rate control
US5620452A (en) 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
US5695494A (en) 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
AU701320B2 (en) 1994-12-22 1999-01-28 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5713895A (en) 1994-12-30 1998-02-03 Valleylab Inc Partially coated electrodes
US5466020A (en) 1994-12-30 1995-11-14 Valleylab Inc. Bayonet connector for surgical handpiece
DE69615343T2 (en) 1995-02-03 2002-05-16 Sherwood Serv Ag An electrosurgical suction apparatus in combination with a handpiece
US5669907A (en) 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6213999B1 (en) 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US5735445A (en) 1995-03-07 1998-04-07 United States Surgical Corporation Surgical stapler
US5669904A (en) 1995-03-07 1997-09-23 Valleylab Inc. Surgical gas plasma ignition apparatus and method
DE19509115C2 (en) 1995-03-16 1997-11-27 Deutsche Forsch Luft Raumfahrt A surgical device for preparing an anastomosis in minimally invasive surgical technique
DE19509116C2 (en) 1995-03-16 2000-01-05 Deutsch Zentr Luft & Raumfahrt flexible structure
US5575799A (en) 1995-03-30 1996-11-19 United States Surgical Corporation Articulating surgical apparatus
US5599350A (en) 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5619992A (en) 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
CA2186501C (en) 1995-04-21 2000-02-08 John R. Daugherty A surgical pledget dispensing system
US5553765A (en) 1995-04-28 1996-09-10 Ethicon Endo-Surgery, Inc. Surgical stapler with improved operating lever mounting arrangement
JP3526487B2 (en) 1995-05-08 2004-05-17 株式会社伊垣医療設計 Medical suture material
JP3795100B2 (en) 1995-05-08 2006-07-12 グンゼ株式会社 Medical suture material
WO1996035464A1 (en) 1995-05-12 1996-11-14 Perkins Rodney C Translumenal circumferential injector
US6123241A (en) 1995-05-23 2000-09-26 Applied Tool Development Corporation Internal combustion powered tool
US5678748A (en) 1995-05-24 1997-10-21 Vir Engineering Surgical stapler with improved safety mechanism
US5630540A (en) 1995-05-24 1997-05-20 United States Surgical Corporation Surgical staple and staple drive member
US5628745A (en) 1995-06-06 1997-05-13 Bek; Robin B. Exit spark control for an electrosurgical generator
WO1996039086A1 (en) 1995-06-06 1996-12-12 Valleylab Inc. Power control for an electrosurgical generator
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
WO1996039088A1 (en) 1995-06-06 1996-12-12 Valleylab Inc. Digital waveform generation for electrosurgical generators
US5599344A (en) 1995-06-06 1997-02-04 Valleylab Inc. Control apparatus for electrosurgical generator power output
US5814038A (en) 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
US5649956A (en) 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
US20040243147A1 (en) 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
FR2735350B1 (en) 1995-06-15 1997-12-26 Lanzoni Maurice An effort developer cutting pliers
US5849011A (en) 1995-06-19 1998-12-15 Vidamed, Inc. Medical device with trigger actuation assembly
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
GB9604770D0 (en) 1995-06-23 1996-05-08 Gyrus Medical Ltd An electrosurgical generator and system
CA2224975A1 (en) 1995-06-23 1997-01-09 Gyrus Medical Limited An electrosurgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
WO1997000647A1 (en) 1995-06-23 1997-01-09 Gyrus Medical Limited An electrosurgical instrument
WO1999048430A1 (en) 1998-03-26 1999-09-30 Gyrus Medical Limited An electrosurgical instrument
JPH11508791A (en) 1995-07-03 1999-08-03 フレーター・ダーク・エイ Apparatus for attaching a support member to a tissue stapler
USRE38708E1 (en) 1995-07-11 2005-03-01 United States Surgical Corporation Disposable loading unit for surgical stapler
US5752644A (en) 1995-07-11 1998-05-19 United States Surgical Corporation Disposable loading unit for surgical stapler
US5591187A (en) 1995-07-14 1997-01-07 Dekel; Moshe Laparoscopic tissue retrieval device and method
US5706998A (en) 1995-07-17 1998-01-13 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
AU6499596A (en) 1995-07-18 1997-02-18 Edwards, Garland U. Flexible shaft
US6447518B1 (en) 1995-07-18 2002-09-10 William R. Krause Flexible shaft components
US5810855A (en) 1995-07-21 1998-09-22 Gore Enterprise Holdings, Inc. Endoscopic device and method for reinforcing surgical staples
US5702409A (en) 1995-07-21 1997-12-30 W. L. Gore & Associates, Inc. Device and method for reinforcing surgical staples
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5810846A (en) 1995-08-03 1998-09-22 United States Surgical Corporation Vascular hole closure
US5611709A (en) 1995-08-10 1997-03-18 Valleylab Inc Method and assembly of member and terminal
US5715988A (en) 1995-08-14 1998-02-10 United States Surgical Corporation Surgical stapler with lockout mechanism
US5718359A (en) 1995-08-14 1998-02-17 United States Of America Surgical Corporation Surgical stapler with lockout mechanism
US5839639A (en) 1995-08-17 1998-11-24 Lasersurge, Inc. Collapsible anvil assembly and applicator instrument
US6032849A (en) 1995-08-28 2000-03-07 United States Surgical Surgical stapler
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US5762256A (en) 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US5574431A (en) 1995-08-29 1996-11-12 Checkpoint Systems, Inc. Deactivateable security tag
US5667526A (en) 1995-09-07 1997-09-16 Levin; John M. Tissue retaining clamp
DE19534112A1 (en) 1995-09-14 1997-03-20 Wolf Gmbh Richard Endoscopic instrument with steerable distal end
US5827271A (en) 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US5776130A (en) 1995-09-19 1998-07-07 Valleylab, Inc. Vascular tissue sealing pressure control
US5704087A (en) 1995-09-19 1998-01-06 Strub; Richard Dental care apparatus and technique
US5797959A (en) 1995-09-21 1998-08-25 United States Surgical Corporation Surgical apparatus with articulating jaw structure
US5772659A (en) 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5702387A (en) 1995-09-27 1997-12-30 Valleylab Inc Coated electrosurgical electrode
US5732821A (en) 1995-09-28 1998-03-31 Biomet, Inc. System for sterilizing medical devices
US5707392A (en) 1995-09-29 1998-01-13 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US5796188A (en) 1995-10-05 1998-08-18 Xomed Surgical Products, Inc. Battery-powered medical instrument with power booster
CN1163558A (en) 1995-10-11 1997-10-29 查尔斯·H·克利曼 Endoscopic instrument with detachable end effector
US5809441A (en) 1995-10-19 1998-09-15 Case Corporation Apparatus and method of neutral start control of a power transmission
US5697542A (en) 1995-10-19 1997-12-16 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
US5653721A (en) 1995-10-19 1997-08-05 Ethicon Endo-Surgery, Inc. Override mechanism for an actuator on a surgical instrument
US5997552A (en) 1995-10-20 1999-12-07 United States Surgical Corporation Meniscal fastener applying device
US5700270A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
GB9521772D0 (en) 1995-10-24 1996-01-03 Gyrus Medical Ltd An electrosurgical instrument
CA2188738A1 (en) 1995-10-27 1997-04-28 Lisa W. Heaton Surgical stapler having interchangeable loading units
US5941442A (en) 1995-10-27 1999-08-24 United States Surgical Surgical stapler
US5651491A (en) 1995-10-27 1997-07-29 United States Surgical Corporation Surgical stapler having interchangeable loading units
US5827298A (en) 1995-11-17 1998-10-27 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US5860953A (en) 1995-11-21 1999-01-19 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
US5658281A (en) 1995-12-04 1997-08-19 Valleylab Inc Bipolar electrosurgical scissors and method of manufacture
US5971916A (en) 1995-12-27 1999-10-26 Koren; Arie Video camera cover
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
WO1997024073A1 (en) 1995-12-29 1997-07-10 Gyrus Medical Limited An electrosurgical instrument and an electrosurgical electrode assembly
GB9600354D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
GB9600377D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
US5755717A (en) 1996-01-16 1998-05-26 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with improved coagulation feedback
US5738648A (en) 1996-01-23 1998-04-14 Valleylab Inc Method and apparatus for a valve and irrigator
US6015417A (en) 1996-01-25 2000-01-18 Reynolds, Jr.; Walker Surgical fastener
DE19603889C2 (en) 1996-02-03 1999-05-06 Aesculap Ag & Co Kg A surgical applicator
US5624398A (en) 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
GB9602580D0 (en) 1996-02-08 1996-04-10 Dual Voltage Ltd Plastics flexible core
US5620289A (en) 1996-02-09 1997-04-15 Curry; Rinda M. Colored staples
WO1997029680A1 (en) 1996-02-13 1997-08-21 Imagyn Medical, Inc. Surgical access device and method of constructing same
US5749889A (en) 1996-02-13 1998-05-12 Imagyn Medical, Inc. Method and apparatus for performing biopsy
US5713128A (en) 1996-02-16 1998-02-03 Valleylab Inc Electrosurgical pad apparatus and method of manufacture
US6010054A (en) 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
US5725536A (en) 1996-02-20 1998-03-10 Richard-Allen Medical Industries, Inc. Articulated surgical instrument with improved articulation control mechanism
US5894843A (en) 1996-02-20 1999-04-20 Cardiothoracic Systems, Inc. Surgical method for stabilizing the beating heart during coronary artery bypass graft surgery
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5762255A (en) 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5797537A (en) 1996-02-20 1998-08-25 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved firing mechanism
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5820009A (en) 1996-02-20 1998-10-13 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved jaw closure mechanism
US5891160A (en) 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
US6099537A (en) 1996-02-26 2000-08-08 Olympus Optical Co., Ltd. Medical treatment instrument
US5810721A (en) 1996-03-04 1998-09-22 Heartport, Inc. Soft tissue retractor and method for providing surgical access
US5673842A (en) 1996-03-05 1997-10-07 Ethicon Endo-Surgery Surgical stapler with locking mechanism
US5605272A (en) 1996-03-12 1997-02-25 Ethicon Endo-Surgery, Inc. Trigger mechanism for surgical instruments
US5697543A (en) 1996-03-12 1997-12-16 Ethicon Endo-Surgery, Inc. Linear stapler with improved firing stroke
US5810240A (en) 1996-03-15 1998-09-22 United States Surgical Corporation Surgical fastener applying device
IL117607D0 (en) 1996-03-21 1996-07-23 Dev Of Advanced Medical Produc Surgical stapler and method of surgical fastening
WO1997035533A1 (en) 1996-03-25 1997-10-02 Enrico Nicolo Surgical mesh prosthetic material and methods of use
US5747953A (en) 1996-03-29 1998-05-05 Stryker Corporation Cordless, battery operated surical tool
US6056735A (en) 1996-04-04 2000-05-02 Olympus Optical Co., Ltd. Ultrasound treatment system
US5728121A (en) 1996-04-17 1998-03-17 Teleflex Medical, Inc. Surgical grasper devices
US5785232A (en) 1996-04-17 1998-07-28 Vir Engineering Surgical stapler
US5836503A (en) 1996-04-22 1998-11-17 United States Surgical Corporation Insertion device for surgical apparatus
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
US6050472A (en) 1996-04-26 2000-04-18 Olympus Optical Co., Ltd. Surgical anastomosis stapler
US5741305A (en) 1996-05-06 1998-04-21 Physio-Control Corporation Keyed self-latching battery pack for a portable defibrillator
DE19618291A1 (en) 1996-05-07 1998-01-29 Storz Karl Gmbh & Co Instrument with a bendable handle
US5713505A (en) 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5823066A (en) 1996-05-13 1998-10-20 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5772379A (en) 1996-05-24 1998-06-30 Evensen; Kenneth Self-filling staple fastener
US6119913A (en) 1996-06-14 2000-09-19 Boston Scientific Corporation Endoscopic stapler
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
US5735874A (en) 1996-06-21 1998-04-07 Ethicon Endo-Surgery, Inc. Variable position handle locking mechanism
US5782748A (en) 1996-07-10 1998-07-21 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
US5702408A (en) 1996-07-17 1997-12-30 Ethicon Endo-Surgery, Inc. Articulating surgical instrument
US6440146B2 (en) 1996-07-23 2002-08-27 United States Surgical Corporation Anastomosis instrument and method
US6083234A (en) 1996-07-23 2000-07-04 Surgical Dynamics, Inc. Anastomosis instrument and method
US6024748A (en) 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US6338737B1 (en) 1997-07-17 2002-01-15 Haviv Toledano Flexible annular stapler for closed surgery of hollow organs
US5785647A (en) 1996-07-31 1998-07-28 United States Surgical Corporation Surgical instruments useful for spinal surgery
US5830598A (en) 1996-08-15 1998-11-03 Ericsson Inc. Battery pack incorporating battery pack contact assembly and method
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
US5997528A (en) 1996-08-29 1999-12-07 Bausch & Lomb Surgical, Inc. Surgical system providing automatic reconfiguration
US5873885A (en) 1996-08-29 1999-02-23 Storz Instrument Company Surgical handpiece
US5730758A (en) 1996-09-12 1998-03-24 Allgeyer; Dean O. Staple and staple applicator for use in skin fixation of catheters
US20050143769A1 (en) 2002-08-19 2005-06-30 White Jeffrey S. Ultrasonic dissector