CA2608791C - Surgical stapler with timer and feedback display - Google Patents

Surgical stapler with timer and feedback display Download PDF

Info

Publication number
CA2608791C
CA2608791C CA2608791A CA2608791A CA2608791C CA 2608791 C CA2608791 C CA 2608791C CA 2608791 A CA2608791 A CA 2608791A CA 2608791 A CA2608791 A CA 2608791A CA 2608791 C CA2608791 C CA 2608791C
Authority
CA
Canada
Prior art keywords
surgical stapler
controller
anvil
cartridge
staple cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2608791A
Other languages
French (fr)
Other versions
CA2608791A1 (en
Inventor
Frank J. Viola
Gregg Krehel
Michael A. Soltz
Robert J. Desantis
Henry Holsten
Russell Heinrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to PCT/US2006/021524 priority Critical patent/WO2007142625A2/en
Publication of CA2608791A1 publication Critical patent/CA2608791A1/en
Application granted granted Critical
Publication of CA2608791C publication Critical patent/CA2608791C/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00128Electrical control of surgical instruments with audible or visual output related to intensity or progress of surgical action
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00132Setting operation time of a device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument

Abstract

A surgical apparatus has a clamp and a stapling mechanism. The clamp has a first jaw and a second jaw to clamp on a body tissue at a desired location for a stapling operation. The stapling mechanism is controlled by a trigger handle or a switch assembly. The surgical apparatus has a controller for providing a delay between clamping and actuating of the firing mechanism of the stapling mechanism. The delay provides for a desired amount of time for tissue compression producing a more uniform staple formation. The surgical apparatus also has an indicator. The indicator provides feedback about the status of the stapling mechanism and also displays a time of tissue compression by the clamp.

Description

SURGICAL STAPLER WITH TIMER AND FEEDBACK DISPLAY
BACKGROUND
1. Technical Field The present disclosure relates to surgical instruments. More particularly, the present disclosure relates to a surgical stapling device that has a feedback and a timer device. Even more particularly, the present disclosure relates to a surgical stapling device that has a controller to modulate one or more parameters of the surgical stapling device and to provide for compression of tissue. Still even more particularly, the present disclosure relates to a surgical stapling device that may also include a sensory indicator (i.e., visual, audible, tactile) which determines position, time, or other valuable user feedback.

Attorney Docket No.: H-US-Q)378 (203-4731) 2. Ba ground of the Related Art Once under pressure from a jawed structure, such as a clamping device, of a surgical stapler, the body tissue will slowly compress.
s Compression by a clamping device reduces the amount of blood and fluid to the clamped tissue. Without such compression, an uncompressed body tissue remains thicker whereas the compressed body tissue would be thinner, and more compact. Compressing the tissue also causes blood and other fluid to generally traverse from the high pressure or compressed area to another low pressure or adjacent area.
Once released, the fluid due to the visco-elastic property of the tissue will return from the adjacent area to the previously compressed tissue. Some current surgical stapling devices initially compress tissue prior to the is introduction of the staple into the body tissue. The amount of time tissue is compressed is currently left to the discretion of the surgeon. The surgeon manually controls the amount of time that the tissue is compressed prior to firing the staples into tissue. It would be therefore desirable to have a surgical stapling device that consistently fires staples after a predetermined amount of compression.
SUMMARY
According to a first embodiment of the present disclosure, there is provided a surgical stapler that has a handle assembly including a stationary Attorney Docket No.: H-US-t.õ1378 (203-4731) handle and a pivotable handle mounted for manipulation through an actuating stroke. In another embodiment, the stapler may have a trigger that is operable to manipulate a cam member through the actuating stroke. The stapler also has an elongated body extending distally from the handle assembly and defining a longitudinal axis and a staple cartridge supported adjacent the distal end of the elongated body and containing a plurality of staples.
The stapler further has an anvil pivotally mounted in relation to the to cartridge adjacent the distal end of the elongated body with the anvil having a fastener forming surface thereon and being mounted for pivotal movement in relation to the cartridge between an open position having a distal end spaced from the staple cartridge and a closed position in close cooperative alignment with the staple cartridge. The stapler also has an actuation sled supported is within the cartridge. The actuation sled moves to urge the plurality of staples from the cartridge.
The stapler further has a drive assembly including a body having a working end and a cam member supported on the working end. The cam 20 member is positioned to translate relative to the anvil to maintain the anvil in the closed position during firing of the stapler. The trigger or pivotable handle is operatively connected to the drive assembly such that manipulation of the pivotable handle through its actuating stroke effects translation of the cam member relative to the anvil. The stapler also has a channel for supporting 25 the staple cartridge and a controller configured to control the actuation sled Attorney Docket No.: H-US-Cµ;378 (2034731) supported within the cartridge. The controller delays movement of the actuation sled to urge the plurality of staples from the cartridge for a predetermined time period when the anvil is in the closed position and in cooperative alignment with the staple cartridge.
According to another aspect of the present disclosure, the surgical stapler has a handle assembly including a stationary handle and a trigger configured to manipulate a cam member through an actuating stroke. The stapler also has an elongated body extending distally from the handle to assembly and defining a longitudinal axis and a staple cartridge supported adjacent the distal end of the elongated body with staples. The stapler further has an anvil pivotally mounted in relation to the cartridge adjacent the distal end of the elongated body. The anvil has a fastener forming surface thereon and is mounted for pivotal movement in relation to the cartridge between an Is open position having a distal end spaced from the staple cartridge and a closed position in close cooperative alignment with the staple cartridge.
The stapler also has an actuation sled supported within the cartridge.
The actuation sled moves to urge the staples from the cartridge. The drive 20 assembly includes a body having a working end and a cam member supported on the working end. The cam member is positioned to translate relative to the anvil to maintain the anvil in the closed position during firing of the stapler.

Attorney Docket No.: H-US-L _378 (203-4731) The trigger is connected to the drive assembly such that manipulation of the trigger through its actuating stroke effects translation of the cam member relative to the anvil. The stapler also has a channel for supporting the staple cartridge. The stapler also has a controller_ The controller is configured to control the actuation sled supported within the cartridge_ The controller delays the actuation sled's movement to urge the plurality of staples from the cartridge for a predetermined time period when the anvil is in the closed position and in cooperative alignment with the staple cartridge_ The surgical stapler also has an indicator connected to the controller. The io controller controls the indicator to provide an indication when the predetermined time period is reached.
According to another embodiment of the present disclosure, there is provided a method for stapling tissue. The method includes the steps of is locating tissue between a staple cartridge and an anvil and compressing tissue between the staple cartridge and the anvil. The method also has the step of manipulating an actuator to fire staples from the staples cartridge.
The actuator is configured to automatically delay firing staples for a predetermined time period. The predetermined time period is suitable in length to allow 20 compression of the tissue for the predetermined time period and to allow tissue to settle from a first initial state into a second compressed state.
The method also has the steps of urging staples from the staple cartridge through the tissue at the elapse of the predetermined time period when the tissue is in the second compressed state.

Attorney Docket No.: H-US-,....s378 (203-4731) According to another aspect of the present disclosure, the surgical stapler has a controller to place a delay between actuation of the firing mechanism component and actual firing of the staple.
According to another aspect of the present disclosure, the surgical stapler has a control device that controls a stroke parameter, a distance parameter and/or a time parameter of a firing mechanism component to increase a tissue compression time of the clamp.
io According to still another aspect of the present disclosure, the surgical stapler has a motor and a first switch. The first switch is connected to a motor and delays the motor from actuating in order to achieve an amount of tissue compression by a clamp. The surgical stapler may have a second switch.
The second switch senses another location of a drive screw and actuates a 15 reverse function of the motor to return the drive screw to an initial position.
According to still yet another aspect of the present disclosure, the surgical stapler has an indicator that measure a distance traveled of the drive screw or a tissue compression time of the clamp.
According to still another aspect of the present disclosure, the surgical stapler has a visual indicator that indicates a position of the firing mechanism component or indicates a status condition of the surgical stapling.

Attorney Docket No.: H-US-,4378 (203-4731) In another embodiment of the present disclosure, there is provided a surgical stapler. The stapler has a handle assembly including a trigger and a clamping device with a staple cartridge including a plurality of staples and an anvil having a fastener forming surface thereon. The stapler has a controller s configured to determine an occurrence of clamping by the anvil and the staple cartridge. The controller controls a firing of the plurality of staples from the staple cartridge. When the trigger is actuated the controller delays firing of the plurality of staples from the staple cartridge to provide for a predetermined =
time period of tissue compression of the tissue between the anvil and staple cartridge. The controller outputs a control signal to allow firing once the predetermined time period is reached.
DESCRIPTION OF THE DRAWINGS
Other and further objects, advantages and features of the present disclosure will be understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference characters denote like elements of structure and:
Fig. 1 is a perspective view of a first embodiment of a surgical stapler of the present disclosure;
Fig. 2 is a block diagram of a number of components of the surgical stapler of Fig. 1;

Attorney Docket No.: H-US-1..,.378 (203-4731) Fig. 2A is an exploded view of a channel of the surgical stapler of Fig.
1;
Fig. 2B is an exploded view of the staple cartridge, anvil and the drive sled of Fig. 1;
Fig. 3 is a perspective view of another embodiment of the surgical stapler of the present disclosure having a plurality of lights;
io Fig. 4 is a perspective view of still another embodiment of the surgical stapler with a linear indicator or display;
Fig. 5 is a perspective view of yet another embodiment of the surgical stapler having a digital indicator or display;
Fig. 6 is a perspective view of still another embodiment of the surgical stapler with an analog indicator or display;
Fig. 7 is a cross sectional view of the surgical stapler of Fig. 3 along line 7-7;
Fig. 8 is another cross sectional view of still another embodiment of the surgical stapler of the present disciosure along line 7-7 of Fig. 3 with the stapler having a first switch and a second switch;
zs Attorney Docket No.: H-US-6(478 (203-4731) Fig. 8A is another cross sectional view of another embodiment of the stapler of Fig. 8 having the first switch which engages a tab on the lever;
Fig. 8B is still another cross sectional view of yet another embodiment s of the stapler of Fig. 8 having the first switch located distally on the lever;
Fig. 9 is another perspective view of still another embodiment of the surgical stapler with an audible alarm;
Fig. 10 is still another perspective view of another embodiment of the surgical stapler having the display showing an image;
Fig. 11 is a schematic/cross sectional view of a travel path of a drive member through an endoscopic portion of the surgical stapler with a resistor strip; and Fig. 12 is a schematic of another embodiment of the surgical stapler having a non-contact sensor_ DETAILED DESCRIPTION
In the drawings and in the description which follows, the term "proximar, as is traditional, will refer to the end of the apparatus which is closest to the operator, while the term "distal" will refer to the end of the apparatus which is furthest from the operator.

Attorney Docket No,: H-US-w378 (203-4731) The present disclosure can be used with any stapler device known in the art and is intended to encompass the same, and is intended to be discussed in terms of both conventional and endoscopic procedures and apparatus. However, use herein of terms such as "endoscopic", s "endoscopically", and "endoscopic portion", among others, should not be construed to limit the present disclosure to an apparatus for use only in conjunction with an endoscopic tube. The apparatus of present disclosure may find use in procedures in these and other uses including but not limited to uses where access is limited to a small incision such as arthroscopic and/or io laparoscopic procedures, or other conventional medical procedures. The present mechanism may also be used with surgical stapling devices that have independent or combined clamping and firing procedures. The present disclosure may further be incorporated with surgical stapling devices that have simultaneous or dependent clamping and firing mechanisms. The s present disclosure is also intended to be used with such surgical stapling devices which have a discrete clamping gradient.
Referring now to the figures, wherein like reference numerals identify similar structural elements of the subject disclosure, there is illustrated in FIG.
20 1 a self-contained, powered surgical stapler constructed in accordance with an embodiment of the subject disclosure and designated generally by reference numeral 10. The surgical stapler 10 is generally intended to be disposable, however the disposable arrangement is non-limiting and other non-disposable arrangements may be contemplated and are within the scope 25 of the present disclosure.

Attorney Docket No.: H-US-Ov478 (203-4731) The surgical stapler 10 of the present disclosure (shown in a perspective view in Fig. 1 and described herein) includes a frame generally represented by reference numeral 12 and handle generally represented by reference numeral 14. The frame 12 defines a series of internal chambers or spaces for supporting various inter-cooperating mechanical components of the surgical stapler 10 as well as a number of staples therein for the application to the body tissue.
The frame 12 supports a portion 16 or an extended tube-like portion.
The portion 16 is capable of being rotated and has a relatively narrow diameter in a range of about 10 millimeters, and is for insertion into a small opening or tube inserted into the body, such as in the abdominal cavity, or other similar body cavities. The portion 16 has a longitudinal axis and has a length appropriate for reaching the operation site in the interior of the body.
The surgical stapler 10 may be used in conjunction with other instruments such as endoscopes or other such optical devices for visually examining the interior of the body, for example, cameras by means of CCD devices, fiber optics or other optical or recording devices.
Generally, portion 16 of the surgical stapler 10 is inserted through the small opening or wound, and is manipulated to the operation site. The present disclosure is intended to be used with any surgical stapler including but not limited to surgical staplers having simultaneous clamping and 2$ independent clamping.

Attorney Docket No.: H-US-4.,....78 (203-4731) Portion 16 has a fastening assembly generally represented by reference number 18 and cutting assembly (not shown) that is known in the art. The fastening assembly 18 and the cuffing assembly (not shown) are $ located in a housing 20 which carries a fastener and an optional cutter to the operation site. The fastening assembly 18 in this particular embodiment has a jaw or a staple cartridge 21 and a second jaw or anvil 22. The staple cartridge 21 and the anvil 22 may be brought into close cooperative alignment with one another so the jaws 21, 22 form a clamp therebetween. The jaws io 21, 22 may be a first and second jaw that open and close or may be another different clamping type structure as is known in the art. The staple cartridge 21 may be located at the distal end of the housing 20, in the jaws 21, 22 themselves or may be located in other locations as described in United States Patent No. 7,044,353 to Mastri, et al. which is herein incorporated by 15 reference in its entirety. The staple cartridge 21 has one or a number of rows of staples. The surgical stapler 10 also has an anvil (not shown) and further may include an optional knife (not shown) as is well known in the art for accomplishing the stapling. It is appreciated that the closing of the jaws 21, 22 with the staple cartridge 21 and the anvil 22 may be accomplished by 20 pivoting the anvil 22 relative to the staple cartridge 21, or by pivoting the staple cartridge 21 relative to the anvil 22, or by pivoting both the staple cartridge 21 and the anvil 22 relative to one another.
Generally, actuating the operating portion of the fastening assembly 18 25 is accomplished via intermediate components disposed on or within the Attorney Docket No.: H-US-.....378 (203-4731) narrow longitudinally extending tubular portion 16. In one non-limiting embodiment, a cylindrical tubular sleeve member surrounds the portion 16.
The sleeve may be manipulated in a direction with the longitudinal axis of the surgical stapling device. The sleeve slides onto the anvil 22 for closing the jaws 21, 22 that are biased open by a biasing device (not shown) to accomplish the clamping. The surgical stapler 10 of the present disclosure has three basic actions or functions, however, the present disclosure is intended to be used with any surgical stapler including but not limited to surgical staplers having simultaneous clamping (Le., clamping and firing the stapler at the same time) and independent clamping (Le., clamping prior to the staple firing).
First, portion 16 is introduced into the human or animal body and is positioned with the jaws 21, 22 aligned at the desired stapling site to receive is the target tissue. This may involve rotation of the portion 16 relative to the body, either by rotating the surgical stapler 10 as a whole, by rotating simply the portion 16 relative to the frame 12 as permitted, or a combination of both actions. Thereafter (Le., secondly), the surgical stapler 10 secures the target body tissue between the staple cartridge or jaw 21 in the distal portion of the 2o housing 20 and the anvil 22. This is accomplished by a clamping action of the jaws 21, 22 or alternatively by another similar or different clamping member.
The jaws 21, 22 are allowed to remain in the closed position for a desired period of time depending on the particular tissue. By configuring the 25 jaws 21, 22 to remain closed for a predetermined period of time allows any Attorney Docket No.: H-US...4378 (203-4731) excess liquid or fluid in the tissues to drain out of the body tissues prior to actuation of the stapling cartridge 21. This ensures that the liquid does not traverse out of the tissues after firing to form non-uniform staples and instead ensures a proper and uniform staple formation.
With the target tissue clamped between the anvil 22 and the staple cartridge 21, a Gemming surface which surrounds the housing 20 and anvil 22 is employed to close the jaws 21, 22 of the surgical stapler 10 and clamp the tissue between the anvil 22 and the tissue contacting surface of the staple io cartridge 21. The jaws 21, 22 are clamped by actuation of a lever 24 opposite = the jaws 21, 22 as is known in the art. Thereafter, the surgeon applies the staples to the body tissue. A longitudinally extending channel is employed to deliver longitudinal motion to an axial drive member and a tissue cutting knife as is known in the art.
The axial drive member or an axial drive screw contacts pusher elements. The pusher elements drive the staples through the body tissue against the fastener or forming surface of the anvil as discussed herein.
Typically, in the art the surgical stapler 10 fires usually by an actuation of a first trigger handle or alternatively using a trigger switch 26. Thereafter, the clamping action of the jaws 21, 22 is released and the surgical stapler 10 or a portion thereof may be withdrawn from the body.
Referring now to Fig. 2, there is shown a block diagram of the surgical stapler 10 of the present disclosure. According to a first aspect of the present Attorney Docket No.: 1-i-US-µ,J378 (203-4731) disclosure, the surgical stapler 10 may have an optional controller 28. The controller 28 is any electronic device being coupled to a memory for executing one or more readable program instructions or alternatively may be a suitable analog circuit. Still further, the controller 28 may be a suitable mechanical member or linkage for controlling one or more functions of the surgical stapler la The controller 28 is connected to an internal or external power supply and a motor and is connected between the anvil 22 and the stapling cartridge ro 21. In an alternative embodiment a trigger handle or another actuating switch or component 26 is mechanically or electronically linked or otherwise connected to the stapling cartridge 21 as is known in the art as indicated by a dotted line, and the present disclosure is not intended to be limited to any configuration. Once the stapling cartridge 21 is fired using the trigger switch is 26, the jaws 21, 22 are opened and the firing mechanism is retracted.
The surgical stapler 10 as a whole may be withdrawn from the body tissue or may be manipulated for a next or second stapling operation as shown.
The present surgical stapler 10 has the controller 28 which is 20 connected to one of the jaw or anvil 21 or jaw or staple cartridge 21 and the trigger switch 26 or is connected to both jaws 21, 22 and the trigger switch 26.
In one embodiment, once the desired site is reached, the surgeon uses the jaws 21, 22 to compress the selected body tissue. Alternatively, the surgical stapler 10 may have a single drive component that can actuate both the anvil 25 22 and stapling cartridge 21.

Attorney Docket No.: H-US- J378 (203-4731) Thereafter, the controller 28 may provide for a requisite amount of delay between clamping and firing (or after clamping and before firing) to ensure tissue compression and expulsion of fluid. After the desired compression is reached, the stapling cartridge 21 may be automatically engaged by the controller 28 to fire the staples from the stapling cartridge into the body tissue or alternatively the controller 28 may send a signal to the surgeon thereby informing the surgeon a suggestion that the surgeon is to fire the staples. It is envisioned that the firing may be automatic or manual.
Furthermore, the controller 28 may control the speed with which the staples are fired from the staple cartridge 21. Still further, the controller may control an amount of delay before firing. The controller 28 in one embodiment may provide for a predetermined amount of time to elapse prior is to outputting a signal to the stapling cartridge 21. In another powered stapler embodiment, the controller 28 may slow a motor speed to increase the body tissue compression time, in still another embodiment, the controller 28 may engage a dampening device 30. The dampening device 30 is configured to slow the actuating of the staple cartridge 21 in order to increase the overall compression time of the body tissue. Such a dampening device 30 may be a hydraulic or a pneumatic type damper or any other device that may dampen or modulate the operation of one or more components of the surgical stapler 10. In another embodiment, the trigger 26 may simply hold the fire signal for a Attorney Docket No.: H-US-u0378 (203-4731) predetermined time period in associated control circuitry and upon the expiration of the predetermined time period may communicate the signal to the stapling cartridge 21.
The controller 28 may be configured to slow a motor speed, modulate a gear or, still further, engage a circuitry of the motor to slow an operation thereof to otherwise reduce actuation, le, a rotation rate of the axial drive screw. Still further, the surgical stapler 10 may also include an override switch 32. The override switch 32 is an automatic or manual device (or other io switch) that selectively disengages the controller 28 to permit direct actuation of the stapling cartridge 21 by the trigger switch 26 without any delay at the surgeon's discretion.
In one aspect of the present disclosure, the present surgical stapler 10 includes jaws 21,22 which compresses tissue between the anvil 130 and the stapler cartridge 132 of the stapling cartridge 21 (Fig. 28). The jaws 21,22 are understood in the art as a device that allows the surgeon to manipulate and compress tissue between the anvil 130 and the staple cartridge 132 prior to urging of the staples 158 from the staple cartridge 132 as shown in Fig.
2B.
The jaws 21, 22 may be independently powered by a power source such as a motor or pneumatic device, or may be powered by the same power source as the staple cartridge 21. The surgical stapler 10 uses the jaws 21, 22 to clamp tissue between the stapler cartridge 132 and the anvil 130 (Fig. 2b), then when the stapler 10 is fired the jaws 21, 22 may be further tightened and then the staples 158 urged from the stapling cartridge 21.

Attorney Docket No.: H-UL 3378 (203-4731) In one aspect, the surgical stapler 10 may pre-clamp or compress tissue using the jaws 21, 22 for a first interval. The first time interval may be preset and fixed, or variable depending on the tissue type. The first time s interval may be for minutes, seconds or any other variable or fixed predetermined period of time. Then prior to stapling, the jaws 21, 22 may further tighten to further compress the tissue for another second compression lime interval and then fire. The second time interval may be different from the first time interval and can be shorter or longer than the first. In another to aspect, the instrument may pre-clamp or compress tissue using the jaws 21, 22 and then simply automatically fire the device to urge the staples 158 from the staple cartridge 132 at the conclusion of the first interval. Various configurations are possible, and the present surgical stapler 10 may have program instructions for any number of compression intervals desired by the is surgeon and/or designer. The surgical stapler 10 may alternatively further use a second separate clamping device in association with the stapler 10. It is understood that the present disclosure may be incorporated into an instrument that approximates the tissue before firing such as with a TA
surgical stapler such as United States Patent No. 6,817,508 to Racenet, etal.
20 which is herein incorporated by reference in its entirety, or can be used with an instrument that requires no such approximation before firing.
In another embodiment of the present disclosure, the surgical stapling device 10 may provide the surgeon with feedback by virtue of an indicator 36.
25 The indicator 36 may display an amount of compression time and/or provide =

Attorney Docket No.: H-US-1.0378 (203-4731) feedback of the status of the stapling, or display information relating to the location of the drive screw, or drive member. In another embodiment of the present disclosure, the surgical stapler 10 may not have separate clamping and firing actuators and include a clamping gradient indicator 36 or simultaneous clamping and firing indication mechanism. For example, the surgical stapler 10 may be configured to allow control of the firing speed which, in turn, controls the clamping speed and timing and then provide optimal compression for squeezing the tissue and pushing the blood and fluid out of the tissue at the desired site.
Fig. 2A shows an exploded view of a number of components of the surgical stapler 10 of Fig. 1. The stapler 10 has a rack 100 that is slidable in the handle portion 14. The rack 100 interfaces with a clamp tube 102. On a distal side of the clamp tube 102 is a channel 104. The channel 104 engages with the clamp tube 102 and a pair of forks 106, 108 on a distal side thereof.
The stapler 10 also has an upper cover 110 and a lower cover 112, and an extension tube 114. The extension tube 114 engages with a collar tube 116.
The stapler 10 also has a rotation knob 118 with a channel portion 120. The channel portion 120 has a pair of camming surfaces 122 on a distal end. The distal end also has a crimp 124 in a distal side to receive the anvil 22.
=
in operation, the rack 100 slides and moves the clamp tube 102 distally. The clamp tube 102 is provided to interconnect the handle portion 14 and the extension tube 114. The channel 104 is slidably mounted for reciprocal longitudinal motion. The extension tube 114 provides support for Attorney Docket No.: H-US-w378 (203-4731) the surgical stapler 10 and has slots that interface with the collar tube 116.

The surgical stapler 10 also has a support 120 for longitudinal motion and to operate the stapling mechanism as described in Fig. 2b. The operation of these components is well known and is disclosed in United States Patent No, 5,318,221 to Green, etal., which is herein incorporated by reference in its entirety.
Advantageously, the rack 100 moves distally to advance the channel 104 in a distal manner. The channel 104 delivers longitudinal motion to a lo pusher cam bar as is known in the art for operation of the stapler cartridge 21 shown in Fig. 2b. It should be appreciated that the components shown in Fig.
2a only illustrate one embodiment of the present surgical stapler 10, and instead of the rack 100, the surgical stapler 10 may have a drive screw (not shown) for longitudinal motion and in order to actuate the stapler cartridge 21.
Referring now to Fig. 2b, there is shown an exploded view of the anvil 22 and the stapler cartridge 132 having an actuation sled 169.
Referring to FIG. 2b, the stapler cartridge 21 includes an anvil assembly 130 and a cartridge assembly 132 shown in an exploded view for illustration purposes. The anvil assembly 130 includes anvil portion 22 having a plurality of staple deforming concavities (not shown) and a cover plate 136 secured to a top surface of anvil portion 134 to define a cavity (not shown). The cover plate 136 prevents pinching of tissue during clamping and firing of the surgical stapler 10. The cavity is dimensioned to receive a distal end of an axial drive assembly 138.

Attorney Docket No.: H-US-k,o378 (203-4731) The anvil 130 has a longitudinal slot 140 that extends through anvil portion 130 to facilitate passage of retention flange 142 of the axial drive assembly 138 into the anvil slot 140. A camming surface 144 formed on anvil 22 is positioned to engage axial drive assembly 138 to facilitate clamping of tissue. A pair of pivot members 146 formed on anvil portion 130 is positioned within slots 146' formed in carrier 148 to guide the anvil portion 130 between the open and clamped positions.
The stapler 10 has a pair of stabilizing members 152 engage a respective shoulder formed on carrier 148 to prevent anvil portion 30 from sliding axially relative to staple cartridge 132 as camming surface of the anvil 130 is deformed. Cartridge assembly 132 includes the carrier 148 which defines an elongated support channel 154. Elongated support channel 154 is dimensioned and configured to receive the staple cartridge 132 which is shown above the carrier 148 in the exploded view of Fig. 2b. Corresponding tabs and slots formed along staple cartridge 132 and elongated support channel 148' function to retain staple cartridge 132 within support channel of carrier 148. A pair of support struts formed on the staple cartridge 132 are positioned to rest on side walls of carrier 148 to further stabilize staple cartridge 132 within support channel 154, however other arrangements to support the cartridge 132 on the channel 154 can be used and this arrangement is not limiting.
Staple cartridge 132 includes retention slots 156 for receiving a Attorney Docket No.: H-US-t.,,)378 (203-4731) plurality of fasteners 158 and pushers 160. Longitudinal slots 156 extend through staple cartridge 132 to accommodate upstanding cam wedges 162 of the actuation sled 164. A central longitudinal slot 166 extends along the length of staple cartridge 132 to facilitate passage of a knife blade (not Referring to Fig. 3, the surgical stapler 10 may include indicator 36 which may be any device known in the art to provide sensory feedback to the surgeon. The indicator 36 may be any device that permits a visual, tactile or 14. Alternatively, the indicator 36 may be disposed on portion 16, on the trigger switch 26, on the lever 24 or in any other suitable location where the indicator 36 may be easily viewed by the surgeon without a change in position 20 of change in footing by the surgeon.
In one embodiment, as shown the indicator 36 includes a number of light bulbs 38. The lights 38 may be one light or a series of many lights bulbs or LEDs with one color or an assortment of two or more colors. Each of the 25 lights 38 may have a color representing one or more conditions of the surgical Attorney Docket No.: H-US,J378 (203-4731) stapler 10. Alternatively, one or all of the lights 36 may flash to indicate a condition of the surgical stapler 10.
Upon being actuated by the trigger switch 26, the surgical stapler 10 may impart a delay before firing of the staples. However, in order to provide the proper feedback to the surgeon, the lights 38 provide, for example, a visual indication of the progress of the firing of the stapling cartridge 21.
For example, still referring to Fig. 3, there is shown a first light 40, a second light 42, a third light 44, a fourth light 46, and a fifth light 48. As the axial drive io screw (not shown and in the handle) travels the predetermined drive path the lights 40, 42, 44, 46, and 48 illuminate in series to portray the relative distance of the drive screw on the exterior of the handle. When the lights 40, 42, 44, 46, and 48 are illuminated, the stapling cartridge 21 fires which ensures that proper tissue compression occurs prior to deployment of the staples.
Referring now to Fig. 4, in another exemplary embodiment of the present disclosure, the surgical stapler 10 includes a linear indicator 50 having a plurality of discrete segments, first segment 52, second segment 54, third segment 56, fourth segment 58, and fifth segment 60. Again, once the trigger switch 26 is actuated to fire the stapling cartridge 21, the segments 52, 54, 56, 58, and 60 each illuminate in a predetermined pattern to indicate to the surgeon the status of the progression of the drive screw in the handle 14.
Upon all of the segments 52, 54, 56, 58, and 60 being illuminated, the stapling cartridge 21 fires the staple into the body tissue with assurance that Attorney Docket No.: H-US-u0378 (203-4731) an amount of compression time of the body tissue has lapsed. Linear display 50 may have one or more different colors or combinations of colors to indicate a position of the drive screw such as "red" to indicate firing and "green" to indicate that the firing is complete or vice versa. Still further the linear display For example, the linear display 50 may indicate "FIRE" or 15 In still another exemplary embodiment of the present disclosure shown in Fig. 5, the surgical stapler 10 may include a digital display 62. The digital display 62 may indicate a count down or count up (or other time interval) after actuation of the trigger switch 26. For example, the digital display 62 may count down to the desired stapling time after compression to ensure a Attorney Docket No.: H-US:¨.1378 (203-4731) Alternatively, the digital display 62 may be selectively preset and input by the surgeon using an input device (not shown) or button. The surgeon may input a time period of clamping into the display 62. Thereafter, the display 62 will suggest firing at the elapse of the clamping time period, or may automatically fire after a predetermined clamping time elapses (e.g., such as from about ten seconds to forty five seconds) to ensure proper tissue compression. The digital display 62 may be configured to count down from the predetermined set interval of clamping and visually communicate a signal to the controller 28. The controller 28 after receiving the signal allows the io desired time period of clamping to elapse. After the set time period expires, the controller 28 may communicate a second signal to actuate the stapling cartridge 21. Alternatively, the controller 28 may simply modulate the speed of the motor to commence operation at a speed suitable to actuate the stapling cartridge 21 at the end of the desired time period. In still yet another is embodiment, the digital display 62 may be configured to initiate counting after commencement of the clamping of tissue and then simply display the time from that point onwards to allow the surgeon to monitor and manually actuate the trigger switch 26 at the expiration of the desired time period.
Thereafter, the digital display 62 may simply display or flash the compression time to the 20 surgeon and the exact amount of elapsed time. It is appreciated that the instrument may provide a predetermined delay and then indicate that the instrument is ready to be manually fired, or alternatively the instrument may delay then indicate and then automatically fire.

Attorney Docket No.: H-US-.....i378 (203-4731) Referring now to Fig. 6, the surgical stapler 10 may alternatively have an analog display 64 disposed on the outer surface of the handle 14 which functions similar to the digital display 62. Analog display 64 may have an audible alarm or alternatively have a flashing light to indicate that the appropriate tissue compression time has been reached or exceeded.
Referring now to Fig. 7, there is shown a cross sectional view of the handle 12 of the surgical stapler along line 7-7 of Fig. 3. In this embodiment, the surgical stapler 10 is a powered device and has a motor 66 with a driving io mechanism. The driving mechanism is a drive output shaft 68. Shaft 68 connects to a first gear 70. The first gear 70 is connected to a second gear 72 which, in turn, engages an axial drive screw 74_ The motor 66 may be a device that drives one or more components of the surgical stapler 10.
The drive screw 74 is a threaded rod having a number of helical grooves that are intended to rotate and contact another member to actuate the stapling cartridge 21 in the distal location of the surgical stapler 10 once compression is made by the surgeon using the clamp or jaws 21, 22. The axial drive screw 74 is disposed in toothed engagement through a central bore 76 of the second gear 72. The axial drive screw may also be disposed offset from the second gear 72 or in any other desired geared arrangement.
Upon actuation of the motor 66, the axial drive screw 74 rotates and traverses distally through the portion 16 of the surgical stapler 10 to engage the stapler cartridge 21 as is well known in the art. Alternatively, the surgical stapler may have a drive piston or plunger instead of the axial drive screw 74 or a single drive mechanism to control both the anvil 22 and the stapling cartridge 21. Such mechanisms are well known in the art and may be found in United States Patent Nos. 6,330,965 B1 to Milliman, et al., 6,250,532 B1 to Green, et al., 6,241,139 B1 to Milliman, et al., 6,109,500 to Alii et al., 6,202,914 B1 to Geiste, et al., 6,032,849 to Mastri, et al. and 5,954,259 to Viola, et al.
The surgical stapler 10 may include a first switch 80. Switch 80 is located in a fixed position of the handle as shown. The stapler 10 also has a second switch 82 disposed distally relative to the first switch 80 that is distal or near the path of the drive screw 74 in the first initial position 78.
Likewise, the second switch 82 in a second firing position 84 which is disposed distally from the first initial position and proximal or near the path of the drive screw 74. Each of the first and second switches 80, 82 is a limit switch, but alternatively may be any switch known in the art to change or toggle from a first position to a second position by a simple motion of the axial drive screw 74 traversing past or adjacent to the respective limit switch.
Once the axial drive screw 74 or a portion thereof traverses past the first switch 80, the first switch communicates a signal to the controller 28 by lead 86. The controller 28 thus illuminates the indicator 36 or a portion thereof by lead 88 to indicate to the surgeon a first location of the axial drive screw 74.

Attorney Docket No.: H-US,...)378 (203-4731) Thereafter, the drive screw 74 or a portion thereof traverses or contacts the second switch 82 at the second firing position 84. The second switch 82 is also a limit switch and communicates a second signal to the controller 28 by lead 90 of the location or firing of the stapler cartridge 21. The controller s then illuminates indicator 36 (or another portion thereof) by lead 88 to indicate to the surgeon that the stapling has been completed. At the conclusion of the stapling, the surgeon/operator will initiate retraction and then will reverse a direction of the motor 66 by lead 92. The motor 66 then reverses operation and returns the axial drive screw 74 to the initial position 78 for the next io stapling operation.
Alternatively, controller 28 upon receiving the first signal from the first switch 80 by lead 86 modulates one or more operations of the surgical stapler 10. For example, in response to receiving of the first signal, the controller 15 can control one or more parameters of the surgical stapler 10 including tissue gap, speed of the motor 66, control stroke of the axial drive screw 74, axial drive screw travel distance, rotational rate of the axial drive screw and any combinations thereof.
20 Referring now to Fig. 8, the surgeon may operate/ engage the firing mechanism in order to actuate the stapling cartridge 21. The firing mechanism actuates the motor 66 shown in Fig. 8. The axial drive screw 74 commences rotation and by traversing past switch 80 the drive screw 74 actuates the first switch 80. The first switch 80 outputs the signal to the 25 controller 28 by lead 86. The controller 28 in response to the signal from the Attorney Docket No.: H-US--uo' 378 (203-4731) first switch 80 then actuates the first light 40 by lead 92. The surgical stapler may further have a suitable structure in order to engage a stop feature.
The stop feature prohibits overdrive of the drive screw 74.
5 Thereafter, after the axial drive screw 74 traverses a predetermined distance to ensure tissue compression by the clamp or jaws 21, 22. The second switch 82 is actuated and outputs a second signal to the controller 28 by lead 90. The controller 28 in response to the second signal illuminates the second light 42 by lead 94. The second light 42 indicates that the stapling 10 cartridge 21 has fired. The second switch 82 may further emit a signal to the controller 28 to reverse or cease motion in that direction of the motor 66 or to return the axial drive screw 74 to the initial position. The physician/operator may also manually reverse the direction of the motor 66. A third light 44 may illuminate to indicate to the surgeon that the axial drive screw 74 is returning is to the initial position 78.
Fig_ 8A illustrates another embodiment of the present stapler. In the embodiment shown, the surgeon may operate/engage the firing mechanism in order to actuate the stapling cartridge 21. However, the first switch 80' is in a different location than the embodiment shown in Fig. 8. In this embodiment, the first switch 80' is located immediately under the lever 24 proximal to handle 14. The switch 80' in the embodiment of Fig. 8A engages a tab 24' disposed on the lever 24. When the lever 24 is actuated and driven toward the handle 14, the tab 24' contacts switch 80', and the switch 80' outputs the Attorney Docket No.: FI-US-uu378 (203-4731) signal to the controller 28 by lead 86. The controller 28 in response to the signal from the first switch 80 then actuates the first light 40 by lead 92.
Thereafter, after the axial drive screw 74 traverses a predetermined s distance to ensure tissue compression by the clamp or jaws 21, 22, the second switch 82 is actuated and outputs a second signal to the controller 28 by lead 90. Again, the controller 28 in response to the second signal illuminates the second light 42 by lead 94. The second light 42 indicates that the stapling cartridge 21 has fired. The second switch 82 that is actuated by to switch 80' may further emit a signal to the controller 28 to reverse or cease motion in that direction of the motor 66 or to return the axial drive screw 74 to the initial position. A third indicator 44 may be included to indicate to the surgeon that the axial drive screw 74 is returning to the initial position 78.
15 Figure 8B shows still another embodiment wherein the first switch 80"
is located at still another location of the handle 14, and on an opposite distal side of the lever 24 in proximity to pivot Various configurations are possible and within the scope of the present disclosure, and switch 80" may be placed in various configurations relative to the lever 24.
Fig. 9 shows the surgical stapler 10 with a lever 24. The lever 24, shown in the elevated position, controls the clamp or jaws 21, 22, however this arrangement is not limiting and another driving member may control the clamp or jaws 21, 22 such as the motor 66 (Fig. 7). The lever 24 opens and closes the jaws 21, 22 of the clamp to compress the body tissue prior to Attorney Docket No.: H-US,....13713 (203-4731) surgical stapling. The surgical stapler 10 further includes an electrical contact 96 with an electrically conductive member to complete a suitable analog or digital circuit. The electrical contact 96 is in a complementary nesting location of the lever 24 when the lever is in a lowered position or mating with the s handle 14. When the lever 24 is lowered from an elevated or raised position to the lowered position or contacting the handle 14, the lever 24 engages the electrical contact 96. The electrical contact may complete a suitable timer circuit of the display 62 when in the lowered position. In this embodiment, the electrical contact 96 commences the display 62. The display 62 may count to upwards from zero to a predetermined time limit, or may count down from an ideal predetermined tissue compression time interval. Once the displayed time reaches the predetermined time interval, an audible alarm 98 may sound.
The audible alarm 98 provides the surgeon with a cue that the optimal tissue compression time has been reached, and that the firing mechanism should be is actuated in order to fire the staple from the staple cartridge 21 to ensure a uniform staple formation.
Fig. 10 illustrates in still another embodiment where the clamp formed by jaws 21, 22 is actuated by lowering the lever 24. Contemporaneously, the 20 timer circuit of the display 62 is activated by the electrical contact 96 on the lever 24. The indicator 36 may be the linear display 50 which indicates a first color to prompt for the actuation of the stapling mechanism 21 by the trigger switch or button 26. The display 50 may then display a second image or illuminate the number of segments corresponding to a travel path of the axial 25 drive screw 74 as shown in Fig. 7_ Upon actuation, the second switch 82 Attorney Docket No.: H-US-µ....,.378 (2034731) outputs a signal to the controller 28. The controller 28 then stops the motor 66, and the controller outputs a control signal to the display 50 to modulate the display from the first color to another second color or from a first image to a second image to indicate that the stapling cartridge 21 has fired.
Optionally, s the controller 28 may further sound the audible alarm 98 indicating that the stapling cartridge 21 has fired. The alarm may be any sound or audible pattern, including a buzzer, a song, a chirp, a chime or any combinations thereof. Various indicator configurations are possible and within the scope of the present disclosure.
In still another embodiment, the jaws 21, 22 may be actuated by lowering the lever 24. Contemporaneously, the timer circuit of the display 62 is activated by the lever 24. Thereafter, the indicator 36 indicates a first indication to prompt for an actuation of the stapling cartridge 21 by actuating is switch 26 after a desired time period elapses. Once the trigger switch 26 is actuated, the controller 28 activates the motor 30. The motor 30 then moves the drive screw 74 as shown in Fig. 7.
As the axial drive screw 74 moves in an axial manner, the drive screw (or another plunger 100 connected thereto as shown in Fig. 11) contacts a second member 102. Second member 102 may be any member that modulates based on the motion of the plunger 100 and that can be detected or sensed by another device to provide an indication to the surgeon. The second member 102 may be a resistor strip which changes a resistance along a travel surface 104 of the plunger 100 as the plunger 100 or the axial drive Attorney Docket No.: H-US-.'u378 (203-4731) screw 74 traverses along the portion 16 of the surgical stapler 10 (or other suitable travel surface location). The resistor strip 102 is coupled to indicator 36 such that the change in resistance of the resistor strip 102 selectively illuminates each of the fights 40 through 48 to signal an amount of travel by the axial drive screw 74 or the plunger 100 or other suitable drive member.
Alternatively, the resistor strip 102 may be coupled to another indicator 36 such as a linear display 50. The display 50 may illuminate the number of segments 52, 54, 56, 58, and 60 corresponding to a travel of the axial drive io screw 74 or the plunger 100 until the axial drive screw actuates the stapler cartridge 21. Upon actuated, the resistor strip 102 outputs a signal to the controller 28 which modulates the operation of the motor 66, and sends another second signal to the display 50 to indicate that the stapling cartridge 21 has fired. The display 50 in response thereto may then display a suitable is graphical image, another color, a textual message, or any other indication to indicate to the surgeon that the firing of the stapling cartridge 21 has concluded. Various indicator configurations are possible and within the scope of the present disclosure.
20 Referring now to Fig. 12, in yet another embodiment of the present disclosure, the surgical stapler 10 may further include a non-contact sensor 106. The non-contact sensor 106 may optionally be a so-called 'Hall effect non-contact sensor" (or alternatively any other non-contact sensor) that is based in part on the physical principle of the Hall effect named after its 25 discoverer E. H. Hall.

Attorney Docket No.: H-US-378 (203-4731) For example, end 108 of the axial screw 74 is directly connected, geared to, or offset from the motor 74, and a cap like free end 110 of axial screw 74 contacts the stapler cartridge 21 to actuate the stapler cartridge and to fire the staple as discussed previously. The free end 110 of the drive screw 74 has a magnetic member 112 which connects thereto and which will not become dislodged by a rotation of the drive screw 74. Alternatively, the magnetic member 112 may be disc shaped and simply connect to the free end 110. In one initial orientation, free end 110 and the magnetic member to 112 are disposed closely adjacent, or near to the non-contact sensor 106. At this initial orientation, the magnetic member 112 is separated by a first distance "d" from the non-contact sensor 106.
Once the trigger switch or button 26 is actuated, the motor 66 is Is actuated, and rotates, the drive axial screw 74 to traverse distally to actuate the stapler cartridge 21 as described above. In the second orientation after the motor 66 has been actuated, the magnetic member 112 moves and is a second distance "d" away from the non-contact sensor 106. The second distance is any distance greater than the first distance "d". As the magnetic 20 member 112 moves away from the non-contact sensor 106, the non-contact sensor now located the second distance away from the magnetic field of the magnetic member 112 modulates an operation of the motor 66.
The term "modulation" is defined as modulating amount of voltage 2$ received by the motor 66 in a dynamic manner, turning the motor dofr at a Attorney Docket No.: H-US-u0378 (203-4731) desired stroke, changing the motor speed, drive gear reduction of the motor, reduction of the axial drive screw pitch, or a change in the voltage or the current input of the motor, or changing another firing component, a change of the motor components and any combinations thereof. This may thereby slow the operation of the motor 66 to increase an amount of compression time of the body tissues between jaws 21, 22. In another alternative embodiment, the magnetic member 112 may be disposed on a suitable drive piston instead of the drive screw 66. As the drive piston travels away from the non-contact sensor 106, a reduced or modulated amount of voltage may be provided to io the motor 66. Still further in another alternative embodiment, the non-contact sensor 106 may be placed at the free end 110 of the drive screw 74 and the magnetic member 112 fixed.
In another embodiment of the present disclosure, the surgical stapler Is may have a combined drive mechanism. The combined drive mechanism may control both a firing component of the stapling mechanism and a clamping mechanism. The surgical stapler 10 may, upon being actuated, has the drive mechanism advance to commence the clamping using the clamping mechanism and then hold and wait thus providing a predetermined delay.
20 The surgical stapler 10 would then provide an indication to the surgeon/operator once a desired amount of compression is reached.
Thereafter, the surgeon/ operator would then actuate the drive mechanism after the time delay. The drive mechanism would then fire the staples from the stapling cartridge 21 into the compressed tissues and thus ensure a Attorney Docket No.: hl-US-,_,378 (203-4731) uniform staple formation. The surgical stapler 10 thus provides a time delay prior to stapling to ensure tissue compression.
Although being shown as an endoscopic surgical stapler, the present drive system may be used with any surgical stapling device known in the art, such as endoscopic surgical stapling devices, a pulmonary stapling device, a GIA surgical stapling devices, an endo-GIA stapling device, a TA surgical stapling device and any other stapler device for surgery know in the art. The present disclosure may also be used with a single drive surgical stapler that io drives both the clamp and the stapling device. The present disclosure may be incorporated into a device that approximates and then fires such as with a TA
surgical stapling device or with a surgical stapler without any such approximation of tissue.
It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure.
Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims (39)

1. A surgical stapler comprising:
a) a handle assembly including a stationary handle and a trigger;
b) an elongated body extending distally from the handle assembly and defining a longitudinal axis;
c) a staple cartridge supported adjacent the distal end of the elongated body and containing a plurality of staples;
d) an anvil pivotally mounted in relation to the cartridge adjacent the distal end of the elongated body, the anvil having a fastener forming surface thereon and being mounted for pivotal movement in relation to the cartridge between an open position having a distal end spaced from the staple cartridge and a closed position in close cooperative alignment with the staple cartridge;
e) an actuation sled supported within the cartridge, the actuation sled being movable to urge the plurality of staples from the cartridge;
f) a drive assembly including a body having a working end and a cam member supported on the working end, the cam member being positioned to translate relative to the anvil to maintain the anvil in the closed position during firing of the stapler, the trigger configured to manipulate the cam member through an actuating stroke and being operably connected to the drive assembly such that manipulation of the trigger effects translation of the cam member relative to the anvil;
g) a channel for supporting the staple cartridge; and h) a controller configured to control the actuation sled supported within the cartridge, the controller delaying movement of the actuation sled to urge the plurality of staples from the cartridge for a predetermined time period when the anvil is in the closed position and in cooperative alignment with the staple cartridge.
2. The surgical stapler of claim 1, wherein the predetermined time period is suitable in length to allow compression of the tissue for the predetermined time period and to allow tissue to settle from a first initial state into a second compressed state when the anvil is in the closed position and in cooperative alignment with the staple cartridge.
3. The surgical stapler of claim 1, further comprising a dampening device, the controller configured to control the dampening device, the dampening device modulating the actuation sled movement for the predetermined time period to compress the tissue when the anvil is in the closed position and in cooperative alignment with the staple cartridge.
4. The surgical stapler of claim 3, wherein the dampening device slows the actuation sled movement to compress the tissue when the anvil is in the closed position and in cooperative alignment with the staple cartridge.
5. The surgical stapler of claim 3, wherein the dampening device is a hydraulic device.
6. The surgical stapler of claim 3, wherein the dampening device is a pneumatic device.
7. The surgical stapler of claim 1, further comprising a motor configured to control the actuation sled movement, wherein the controller controls the motor and delays the actuation sled from urging the plurality of staples from the cartridge into tissue, the delay permitting a predetermined compression time period when the anvil is in the closed position and in cooperative alignment with the staple cartridge.
8. The surgical stapler of claim 7, wherein the controller slows an operation of the motor to provide for the delay to compress the tissue.
9. The surgical stapler of claim 8, further comprising a geared assembly, the controller configured to actuate the geared assembly to slow the operation of the motor to provide for the delay to compress the tissue.
10. A surgical stapler comprising:
a) a handle assembly including a stationary handle and a trigger;

b) an elongated body extending distally from the handle assembly and defining a longitudinal axis;
c) a staple cartridge supported adjacent the distal end of the elongated body and containing a plurality of staples;
d) an anvil pivotally mounted in relation to the cartridge adjacent the distal end of the elongated body, the anvil having a fastener forming surface thereon and being mounted for pivotal movement in relation to the cartridge between an open position having a distal end spaced from the staple cartridge and a closed position in close cooperative alignment with the staple cartridge;
e) an actuation sled supported within the cartridge, the actuation sled being movable to urge the plurality of staples from the cartridge;
f) a drive assembly including a body having a working end and a cam member supported on the working end, the cam member being positioned to translate relative to the anvil to maintain the anvil in the closed position during firing of the stapler, the trigger configured to manipulate the cam member through an actuating stroke and being operably connected to the drive assembly such that manipulation of the trigger effects translation of the cam member relative to the anvil;
g) a channel for supporting the staple cartridge;
h) a controller configured to control the actuation sled supported within the cartridge, the controller delaying the actuation sled movement to urge the plurality of staples from the cartridge for a predetermined time period when the anvil is in the closed position and in cooperative alignment with the staple cartridge; and i) an indicator connected to the controller, the controller controlling the indicator to provide an indication when the predetermined time period is reached.
11. The surgical stapler of claim 10, wherein the indicator is a visual indicator.
12. The surgical stapler of claim 10, wherein the indicator is an audible indicator.
13. The surgical stapler of claim 10, wherein the indicator is a tactile indicator.
14. The surgical stapler of claim 10, wherein the predetermined time perid is an optimal compression time of the tissue being compressed between the anvil in the closed position and in cooperative alignment with the staple cartridge before firing of the plurality of staples.
15. The surgical stapler of claim 10, wherein the predetermined time period is a preset compression time of the tissue being between the anvil in the closed position and in cooperative alignment with the staple cartridge.
16. The surgical stapler of claim 10, wherein the indicator is a linear display having a plurality of segments, the plurality of segments illuminating in a sequential manner, wherein substantially at least two of the segments illuminate to provide the indication that the predetermined time period is reached.
17. The surgical stapler of claim 10, wherein the indicator is a linear display having a graphical representation, the graphical representation being arranged to provide an indication that the predetermined time period has been reached.
18. The surgical stapler of claim 10, wherein the indicator is a linear display having a graphical representation, the graphical representation being arranged to provide an indication of a parameter related to the stapler.
19. The surgical stapler of claim 10, wherein the indicator comprises a timer configured to count from a first interval to the predetermined time period.
20. The surgical stapler of claim 10, wherein the controller is configured to move the actuation sled supported within the cartridge automatically once the predetermined time period is reached, the actuation sled movement urging the plurality of staples from the cartridge.
21. The surgical stapler of claim 10, wherein the controller comprises a resistor strip, the controller being connected to the indicator, wherein the drive assembly contacts the resistor strip during a firing stroke, the contact between the resistor strip and the drive assembly modulating a resistance of the resistor strip during the stroke, the resistor strip being connected to the controller and configured to output the resistance to the controller, the controller modulating one or more parameters of the stapler based on the output.
22. The surgical stapler of claim 21, wherein the controller modulates the indicator based on the output.
23. The surgical stapler of claim 21, wherein the controller modulates the drive assembly based on the output.
24. The surgical stapler of claim 21, wherein the controller slows the drive assembly based on the output.
25. The surgical stapler of claim 21, further comprising a dampening device connected to the drive assembly, wherein the controller actuates the dampening device based on the output.
26. The surgical stapler of claim 10, further comprising a sensor, wherein the drive assembly comprises a magnetic member, and wherein the sensor detects at least one property of the magnetic member and outputs the detected property to the controller, wherein the controller modulates one or more parameters of the stapler based on the output.
27. The surgical stapler of claim 26, wherein the sensor is a Hall sensor.
28. The surgical stapler of claim 26, wherein the sensor is a non-contact sensor.
29. The surgical stapler of claim 26, wherein the controller modulates a gap measured between the anvil and the staple cartridge based on the output.
30. The surgical stapler of claim 26, wherein the controller modulates an actuation sled movement based on the output.
31. The surgical stapler of claim 26, wherein the controller slows the drive assembly in response to the output.
32. The surgical stapler of claim 31, wherein the controller provides an indication in response to the output.
33. The surgical stapler of claim 10, wherein the drive assembly includes the trigger being in contact with a switch, the switch being operably connected to a timer, wherein the trigger contacts the switch to actuate the timer when the trigger is manipulated, wherein the timer counts to the predetermined time interval, wherein when the timer reaches the predetermined time interval, the timer outputs a signal to the controller, the controller upon receiving the signal outputs a control signal to the indicator to provide the indication that the predetermined time interval has been reached.
34. A surgical stapler comprising:
a handle assembly including a trigger;
a clamping device having a staple cartridge containing a plurality of staples and an anvil having a fastener forming surface thereon; and a controller configured to determine an occurrence of clamping by the anvil and the staple cartridge, the controller controlling firing of the plurality of staples from the staple cartridge;
wherein when the trigger is actuated the controller delays firing of the plurality of staples from the staple cartridge to provide for a predetermined time period of tissue compression of the tissue between the anvil and staple cartridge and wherein the controller outputs a control signal to allow firing once the predetermined time period is reached.
35. The surgical stapler of claim 34, wherein the controller is operatively connected to a drive member to urge the plurality of staples from the staple cartridge.
36. The surgical stapler of claim 34, wherein the controller is operatively connected to a motor to urge the plurality of staples from the staple cartridge.
37. The surgical stapler of claim 34, wherein the staples are fired automatically after the predetermined time period.
38. The surgical stapler of claim 34, wherein the staples are fired manually after the predetermined time period.
39. The surgical stapler of claim 34, further comprising an indicator connected to the controller, the indicator indicating a signal to the surgeon after the predetermined time period.
CA2608791A 2006-06-02 2006-06-02 Surgical stapler with timer and feedback display Active CA2608791C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2006/021524 WO2007142625A2 (en) 2006-06-02 2006-06-02 Surgical stapler with timer and feedback display

Publications (2)

Publication Number Publication Date
CA2608791A1 CA2608791A1 (en) 2007-12-02
CA2608791C true CA2608791C (en) 2013-11-12

Family

ID=38801930

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2608791A Active CA2608791C (en) 2006-06-02 2006-06-02 Surgical stapler with timer and feedback display

Country Status (4)

Country Link
JP (1) JP5147837B2 (en)
AU (1) AU2006344427B2 (en)
CA (1) CA2608791C (en)
WO (1) WO2007142625A2 (en)

Families Citing this family (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US9554803B2 (en) 2005-07-26 2017-01-31 Ethicon Endo-Surgery, Llc Electrically self-powered surgical instrument with manual release
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7673783B2 (en) 2005-11-04 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US7673780B2 (en) 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8038046B2 (en) 2006-05-19 2011-10-18 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US7721936B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
US7738971B2 (en) 2007-01-10 2010-06-15 Ethicon Endo-Surgery, Inc. Post-sterilization programming of surgical instruments
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8056787B2 (en) 2007-03-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with travel-indicating retraction member
US7810693B2 (en) 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US7819299B2 (en) 2007-06-04 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7731072B2 (en) 2007-06-18 2010-06-08 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with improved anvil opening features
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US7658311B2 (en) 2007-06-22 2010-02-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7669747B2 (en) 2007-06-29 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819296B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with retractable firing systems
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. The surgical cutting and fastening instrument with Rf electrode
US7810692B2 (en) 2008-02-14 2010-10-12 Ethicon Endo-Surgery, Inc. Disposable loading unit with firing indicator
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US7857185B2 (en) 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7819297B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with reprocessible handle assembly
US7913891B2 (en) 2008-02-14 2011-03-29 Ethicon Endo-Surgery, Inc. Disposable loading unit with user feedback features and surgical instrument for use therewith
US7861906B2 (en) 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US7980443B2 (en) 2008-02-15 2011-07-19 Ethicon Endo-Surgery, Inc. End effectors for a surgical cutting and stapling instrument
US7959051B2 (en) 2008-02-15 2011-06-14 Ethicon Endo-Surgery, Inc. Closure systems for a surgical cutting and stapling instrument
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US7922061B2 (en) 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
US8074858B2 (en) * 2008-07-17 2011-12-13 Tyco Healthcare Group Lp Surgical retraction mechanism
US20100069942A1 (en) * 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US7837080B2 (en) 2008-09-18 2010-11-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with device for indicating when the instrument has cut through tissue
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8020743B2 (en) 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
US7918377B2 (en) 2008-10-16 2011-04-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with apparatus for providing anvil position feedback
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US8245899B2 (en) * 2009-02-06 2012-08-21 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
AU2009339832B2 (en) * 2009-02-10 2014-01-16 Ethicon Endo-Surgery, Inc. An indicator device for indicating properties of body tissue subjected to surgical stapling as a function of tissue compression time
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
US20110087276A1 (en) 2009-10-09 2011-04-14 Ethicon Endo-Surgery, Inc. Method for forming a staple
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8561871B2 (en) * 2009-12-31 2013-10-22 Covidien Lp Indicators for surgical staplers
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8827136B2 (en) * 2010-08-11 2014-09-09 Covidien Lp Endoscopic purse string surgical device
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
JP6224070B2 (en) 2012-03-28 2017-11-01 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Retainer assembly including a tissue thickness compensator
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
RU2606493C2 (en) 2011-04-29 2017-01-10 Этикон Эндо-Серджери, Инк. Staple cartridge, containing staples, located inside its compressible part
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US8840003B2 (en) 2010-09-30 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with compact articulation control arrangement
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
BR112013007717A2 (en) 2010-09-30 2016-08-09 Ethicon Endo Surgery Inc System fasteners which comprises a retaining matrix array and an alignment
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US8795313B2 (en) * 2011-09-29 2014-08-05 Covidien Lp Device detachment systems with indicators
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
RU2014143245A (en) 2012-03-28 2016-05-27 Этикон Эндо-Серджери, Инк. Compensator tissue thickness, comprising a capsule for a medium with a low pressure
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140005678A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
BR112015021098A2 (en) 2013-03-01 2017-07-18 Ethicon Endo Surgery Inc articulated surgical instruments with conductive pathways to sign communication
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9987006B2 (en) 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments
MX2016002328A (en) 2013-08-23 2016-12-14 Ethicon Endo-Surgery Llc End effector detection systems for surgical instruments.
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US20160249916A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc System for monitoring whether a surgical instrument needs to be serviced
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US20160287250A1 (en) 2015-03-31 2016-10-06 Ethicon Endo-Surgery, Llc Surgical instrument with progressive rotary drive systems
US20160367246A1 (en) 2015-06-18 2016-12-22 Ethicon Endo-Surgery, Llc Dual articulation drive system arrangements for articulatable surgical instruments
US20170056000A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Surgical stapling configurations for curved and circular stapling instruments
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US20170086832A1 (en) 2015-09-30 2017-03-30 Ethicon Endo-Surgery, Llc Tubular absorbable constructs
US20170224335A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197649A (en) * 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5658300A (en) * 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5868760A (en) * 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US5782396A (en) * 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US6443973B1 (en) * 1999-06-02 2002-09-03 Power Medical Interventions, Inc. Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6315184B1 (en) * 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
EP3158942B1 (en) * 2001-06-22 2018-08-08 Covidien LP Electro-mechanical surgical device
US6981941B2 (en) * 1999-06-02 2006-01-03 Power Medical Interventions Electro-mechanical surgical device
US7140528B2 (en) * 2003-05-20 2006-11-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US7246734B2 (en) * 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
US7644848B2 (en) * 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same

Also Published As

Publication number Publication date
CA2608791A1 (en) 2007-12-02
WO2007142625A2 (en) 2007-12-13
JP2009538684A (en) 2009-11-12
AU2006344427B2 (en) 2012-03-01
JP5147837B2 (en) 2013-02-20
AU2006344427A1 (en) 2007-12-13
WO2007142625A3 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
US8899462B2 (en) Apparatus for endoscopic procedures
RU2449748C2 (en) Surgical cutting and fixing apparatus with drive from engine and adaptive feedback with user
JP5512659B2 (en) Surgical instrument having an end effector to automatically reconfigurable articulation
US8056791B2 (en) Expanding parallel jaw device for use with an electromechanical driver device
US8757467B2 (en) Surgical instrument with sequential clamping and cutting
US8317073B2 (en) Surgical instrument with indicator
US8444036B2 (en) Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP6138691B2 (en) Motor drive electrosurgical apparatus having a mechanical and electrical feedback
EP2772203B1 (en) Distal tip features for end effector of surgical instrument
AU2008201788B2 (en) Powered tacker instrument
CA2639282C (en) Articulating joint for surgical instruments
US7644848B2 (en) Electronic lockouts and surgical instrument including same
US6488197B1 (en) Fluid delivery device for use with anastomosing resecting and stapling instruments
CA2579606C (en) Surgical stapling instrument
CA2489727C (en) Surgical device
US8020743B2 (en) Powered articulatable surgical cutting and fastening instrument with flexible drive member
EP0648476B1 (en) Self contained gas powered surgical apparatus
AU2011200388B2 (en) Articulating endoscopic surgical clip applier
AU2012238268B2 (en) System and method of using simulation reload to optimize staple formation
US7422136B1 (en) Powered surgical stapling device
US6669073B2 (en) Surgical stapling apparatus
US9119616B2 (en) Articulating powered surgical instruments
JP5466827B2 (en) The surgical stapling apparatus
US9393015B2 (en) Motor driven surgical fastener device with cutting member reversing mechanism
CN105682575B (en) Surgery suturing appliance including the driving assembly with toggle feature structure

Legal Events

Date Code Title Description
EEER Examination request