US20130221837A1 - Polycarbonate made from low sulfur bisphenol a and containing converions material chemistry, and articles made therefrom - Google Patents
Polycarbonate made from low sulfur bisphenol a and containing converions material chemistry, and articles made therefrom Download PDFInfo
- Publication number
- US20130221837A1 US20130221837A1 US13/779,781 US201313779781A US2013221837A1 US 20130221837 A1 US20130221837 A1 US 20130221837A1 US 201313779781 A US201313779781 A US 201313779781A US 2013221837 A1 US2013221837 A1 US 2013221837A1
- Authority
- US
- United States
- Prior art keywords
- conversion material
- polycarbonate
- combinations
- foregoing
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims description 314
- 239000004417 polycarbonate Substances 0.000 title claims description 121
- 229920000515 polycarbonate Polymers 0.000 title claims description 121
- LSNDPMWDZDGVFO-UHFFFAOYSA-N [S].OC1=CC=CC=C1.OC1=CC=CC=C1 Chemical compound [S].OC1=CC=CC=C1.OC1=CC=CC=C1 LSNDPMWDZDGVFO-UHFFFAOYSA-N 0.000 title 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 363
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 138
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 132
- 239000011593 sulfur Substances 0.000 claims abstract description 132
- 238000000034 method Methods 0.000 claims abstract description 89
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 88
- 230000008569 process Effects 0.000 claims abstract description 71
- 239000013078 crystal Substances 0.000 claims abstract description 49
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 36
- 230000002829 reductive effect Effects 0.000 claims abstract description 18
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 17
- 239000011541 reaction mixture Substances 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 259
- 239000000203 mixture Substances 0.000 claims description 125
- 239000004033 plastic Substances 0.000 claims description 85
- 229920003023 plastic Polymers 0.000 claims description 85
- 230000005855 radiation Effects 0.000 claims description 60
- -1 diaryl carbonate ester Chemical class 0.000 claims description 59
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 59
- 230000005284 excitation Effects 0.000 claims description 34
- 239000002585 base Substances 0.000 claims description 26
- 229910052791 calcium Inorganic materials 0.000 claims description 26
- 238000004020 luminiscence type Methods 0.000 claims description 26
- 230000003287 optical effect Effects 0.000 claims description 26
- 125000003118 aryl group Chemical group 0.000 claims description 23
- 229910052788 barium Inorganic materials 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 23
- 229910052749 magnesium Inorganic materials 0.000 claims description 22
- 229920000642 polymer Polymers 0.000 claims description 22
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 claims description 22
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 claims description 21
- 229910052712 strontium Inorganic materials 0.000 claims description 20
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 claims description 19
- 239000003054 catalyst Substances 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- 150000001491 aromatic compounds Chemical class 0.000 claims description 17
- 239000003957 anion exchange resin Substances 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 16
- 229910052698 phosphorus Inorganic materials 0.000 claims description 16
- 239000000654 additive Substances 0.000 claims description 15
- 125000005587 carbonate group Chemical group 0.000 claims description 14
- 239000002223 garnet Substances 0.000 claims description 13
- 229920001296 polysiloxane Polymers 0.000 claims description 13
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 229920002545 silicone oil Polymers 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- 229930185605 Bisphenol Natural products 0.000 claims description 11
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims description 11
- FNCIDSNKNZQJTJ-UHFFFAOYSA-N alumane;terbium Chemical compound [AlH3].[Tb] FNCIDSNKNZQJTJ-UHFFFAOYSA-N 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 229910052909 inorganic silicate Inorganic materials 0.000 claims description 11
- 150000004760 silicates Chemical class 0.000 claims description 11
- 229910052693 Europium Inorganic materials 0.000 claims description 10
- 229910052787 antimony Inorganic materials 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 10
- 238000009472 formulation Methods 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052763 palladium Inorganic materials 0.000 claims description 10
- 229910052703 rhodium Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 125000001931 aliphatic group Chemical group 0.000 claims description 9
- 239000000460 chlorine Substances 0.000 claims description 9
- 229910052801 chlorine Inorganic materials 0.000 claims description 9
- 239000000178 monomer Substances 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 claims description 8
- 238000001125 extrusion Methods 0.000 claims description 8
- 239000003921 oil Substances 0.000 claims description 8
- 229920000728 polyester Polymers 0.000 claims description 8
- 238000005809 transesterification reaction Methods 0.000 claims description 8
- 229910052794 bromium Inorganic materials 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 239000000376 reactant Substances 0.000 claims description 7
- VOWWYDCFAISREI-UHFFFAOYSA-N Bisphenol AP Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=CC=C1 VOWWYDCFAISREI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 6
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 6
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 5
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 claims description 5
- UMPGNGRIGSEMTC-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl]phenol Chemical compound C1C(C)CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 UMPGNGRIGSEMTC-UHFFFAOYSA-N 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 239000003518 caustics Substances 0.000 claims description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 5
- 239000002019 doping agent Substances 0.000 claims description 5
- 239000003063 flame retardant Substances 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 4
- BBYNYNMPOUQKKS-UHFFFAOYSA-N 2,2-bis(methylsulfanyl)propane Chemical compound CSC(C)(C)SC BBYNYNMPOUQKKS-UHFFFAOYSA-N 0.000 claims description 4
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- 125000000732 arylene group Chemical group 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- HDFRDWFLWVCOGP-UHFFFAOYSA-N carbonothioic O,S-acid Chemical compound OC(S)=O HDFRDWFLWVCOGP-UHFFFAOYSA-N 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 4
- QBDSZLJBMIMQRS-UHFFFAOYSA-N p-Cumylphenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=CC=C1 QBDSZLJBMIMQRS-UHFFFAOYSA-N 0.000 claims description 4
- NKTOLZVEWDHZMU-UHFFFAOYSA-N p-cumyl phenol Natural products CC1=CC=C(C)C(O)=C1 NKTOLZVEWDHZMU-UHFFFAOYSA-N 0.000 claims description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 230000000087 stabilizing effect Effects 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 239000004416 thermosoftening plastic Substances 0.000 claims description 4
- YBLBHSSRHHJKEK-UHFFFAOYSA-N 3,3-bis(4-hydroxyphenyl)-2-phenylisoindol-1-one Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)N1C1=CC=CC=C1 YBLBHSSRHHJKEK-UHFFFAOYSA-N 0.000 claims description 3
- 230000002411 adverse Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 238000005342 ion exchange Methods 0.000 claims description 3
- 125000000962 organic group Chemical group 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims description 3
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims description 2
- CVNOWLNNPYYEOH-UHFFFAOYSA-N 4-cyanophenol Chemical compound OC1=CC=C(C#N)C=C1 CVNOWLNNPYYEOH-UHFFFAOYSA-N 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- 229910017623 MgSi2 Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005286 illumination Methods 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 239000011256 inorganic filler Substances 0.000 claims description 2
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000011572 manganese Substances 0.000 claims description 2
- 229910021645 metal ion Inorganic materials 0.000 claims description 2
- 239000006082 mold release agent Substances 0.000 claims description 2
- 239000012766 organic filler Substances 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 239000004054 semiconductor nanocrystal Substances 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- 239000006085 branching agent Substances 0.000 claims 9
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims 4
- 125000002723 alicyclic group Chemical group 0.000 claims 2
- 238000005227 gel permeation chromatography Methods 0.000 claims 2
- LVTHXRLARFLXNR-UHFFFAOYSA-M potassium;1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound [K+].[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F LVTHXRLARFLXNR-UHFFFAOYSA-M 0.000 claims 2
- JGZNRHNJTFCSOH-UHFFFAOYSA-N 3,3-bis(4-hydroxyphenyl)-2-methylisoindol-1-one Chemical compound CN1C(=O)C2=CC=CC=C2C1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 JGZNRHNJTFCSOH-UHFFFAOYSA-N 0.000 claims 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- 229910052783 alkali metal Inorganic materials 0.000 claims 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 claims 1
- 150000008052 alkyl sulfonates Chemical class 0.000 claims 1
- 229920001400 block copolymer Polymers 0.000 claims 1
- NKCVNYJQLIWBHK-UHFFFAOYSA-N carbonodiperoxoic acid Chemical compound OOC(=O)OO NKCVNYJQLIWBHK-UHFFFAOYSA-N 0.000 claims 1
- 238000000113 differential scanning calorimetry Methods 0.000 claims 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical group CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 claims 1
- 125000004185 ester group Chemical group 0.000 claims 1
- 125000001033 ether group Chemical group 0.000 claims 1
- 230000009477 glass transition Effects 0.000 claims 1
- 239000010954 inorganic particle Substances 0.000 claims 1
- 125000002950 monocyclic group Chemical group 0.000 claims 1
- SJDACOMXKWHBOW-UHFFFAOYSA-N oxyphenisatine Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2NC1=O SJDACOMXKWHBOW-UHFFFAOYSA-N 0.000 claims 1
- YFSUTJLHUFNCNZ-UHFFFAOYSA-N perfluorooctane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-N 0.000 claims 1
- 229920005668 polycarbonate resin Polymers 0.000 claims 1
- 239000004431 polycarbonate resin Substances 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- GGRIQDPLLHVRDU-UHFFFAOYSA-M potassium;2-(benzenesulfonyl)benzenesulfonate Chemical compound [K+].[O-]S(=O)(=O)C1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1 GGRIQDPLLHVRDU-UHFFFAOYSA-M 0.000 claims 1
- 238000000518 rheometry Methods 0.000 claims 1
- 229910052917 strontium silicate Inorganic materials 0.000 claims 1
- QSQXISIULMTHLV-UHFFFAOYSA-N strontium;dioxido(oxo)silane Chemical compound [Sr+2].[O-][Si]([O-])=O QSQXISIULMTHLV-UHFFFAOYSA-N 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- FPRCMFSFXRSRLY-UHFFFAOYSA-M tetraethylazanium;1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexane-1-sulfonate Chemical compound CC[N+](CC)(CC)CC.[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F FPRCMFSFXRSRLY-UHFFFAOYSA-M 0.000 claims 1
- 229940106691 bisphenol a Drugs 0.000 description 38
- 239000000047 product Substances 0.000 description 34
- 239000011347 resin Substances 0.000 description 29
- 229920005989 resin Polymers 0.000 description 29
- 238000002425 crystallisation Methods 0.000 description 17
- 230000008025 crystallization Effects 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 230000009467 reduction Effects 0.000 description 14
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 12
- QQVIHTHCMHWDBS-UHFFFAOYSA-N perisophthalic acid Natural products OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 12
- 229920001897 terpolymer Polymers 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 11
- 238000001914 filtration Methods 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 0 C[1*]OC(=O)OC Chemical compound C[1*]OC(=O)OC 0.000 description 10
- 239000003456 ion exchange resin Substances 0.000 description 10
- 229920003303 ion-exchange polymer Polymers 0.000 description 10
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 9
- 239000007790 solid phase Substances 0.000 description 9
- 238000003795 desorption Methods 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 150000007942 carboxylates Chemical class 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000002045 lasting effect Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- MIHINWMALJZIBX-UHFFFAOYSA-N cyclohexa-2,4-dien-1-ol Chemical compound OC1CC=CC=C1 MIHINWMALJZIBX-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000001473 noxious effect Effects 0.000 description 3
- 239000013500 performance material Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 235000011118 potassium hydroxide Nutrition 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 3
- 230000035943 smell Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical group C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N Bisphenol F Natural products C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WNDYPFCAWAPLJE-UHFFFAOYSA-N CC(C)(C1=CC=C(O)C=C1)C1=CC=C(O[Si](C)(C)O[Si](C)(C)OC2=CC=C(C(C)(C)C3=CC=C(O)C=C3)C=C2)C=C1 Chemical compound CC(C)(C1=CC=C(O)C=C1)C1=CC=C(O[Si](C)(C)O[Si](C)(C)OC2=CC=C(C(C)(C)C3=CC=C(O)C=C3)C=C2)C=C1 WNDYPFCAWAPLJE-UHFFFAOYSA-N 0.000 description 2
- IWAHQNGLUFJSCK-VPHIFKJOSA-N CO[2H]OC(=O)[3H]C(C)=O Chemical compound CO[2H]OC(=O)[3H]C(C)=O IWAHQNGLUFJSCK-VPHIFKJOSA-N 0.000 description 2
- GKWUBPCTRKDZGN-UHFFFAOYSA-N C[Si](C)(OC1=CC(O)=CC=C1)O[Si](C)(C)OC1=CC(O)=CC=C1 Chemical compound C[Si](C)(OC1=CC(O)=CC=C1)O[Si](C)(C)OC1=CC(O)=CC=C1 GKWUBPCTRKDZGN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 238000012695 Interfacial polymerization Methods 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910003564 SiAlON Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- AYHOQSGNVUZKJA-UHFFFAOYSA-N [B+3].[B+3].[B+3].[B+3].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] Chemical compound [B+3].[B+3].[B+3].[B+3].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] AYHOQSGNVUZKJA-UHFFFAOYSA-N 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000003302 alkenyloxy group Chemical group 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000005248 alkyl aryloxy group Chemical group 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- RGIBXDHONMXTLI-UHFFFAOYSA-N chavicol Chemical compound OC1=CC=C(CC=C)C=C1 RGIBXDHONMXTLI-UHFFFAOYSA-N 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 125000000068 chlorophenyl group Chemical group 0.000 description 2
- 208000012839 conversion disease Diseases 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000000000 cycloalkoxy group Chemical group 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- NYMPGSQKHIOWIO-UHFFFAOYSA-N hydroxy(diphenyl)silicon Chemical compound C=1C=CC=CC=1[Si](O)C1=CC=CC=C1 NYMPGSQKHIOWIO-UHFFFAOYSA-N 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 2
- 125000001741 organic sulfur group Chemical group 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001843 polymethylhydrosiloxane Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 150000003512 tertiary amines Chemical group 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 125000000725 trifluoropropyl group Chemical group [H]C([H])(*)C([H])([H])C(F)(F)F 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- UXUFTKZYJYGMGO-CMCWBKRRSA-N (2s,3s,4r,5r)-5-[6-amino-2-[2-[4-[3-(2-aminoethylamino)-3-oxopropyl]phenyl]ethylamino]purin-9-yl]-n-ethyl-3,4-dihydroxyoxolane-2-carboxamide Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(NCCC=3C=CC(CCC(=O)NCCN)=CC=3)=NC(N)=C2N=C1 UXUFTKZYJYGMGO-CMCWBKRRSA-N 0.000 description 1
- KNUQTXWYBWMTMP-UHFFFAOYSA-N (3-hydroxyphenyl) hydrogen carbonate Chemical group OC(=O)OC1=CC=CC(O)=C1 KNUQTXWYBWMTMP-UHFFFAOYSA-N 0.000 description 1
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 1
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- YKPAABNCNAGAAJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)propane Chemical compound C=1C=C(O)C=CC=1C(CC)C1=CC=C(O)C=C1 YKPAABNCNAGAAJ-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- MYMNFZDGHOLHOF-UHFFFAOYSA-N 2-(2-carboxy-4-methylphenoxy)carbonyloxy-5-methylbenzoic acid Chemical compound C(OC1=C(C=C(C=C1)C)C(=O)O)(OC1=C(C=C(C=C1)C)C(=O)O)=O MYMNFZDGHOLHOF-UHFFFAOYSA-N 0.000 description 1
- QIRNGVVZBINFMX-UHFFFAOYSA-N 2-allylphenol Chemical compound OC1=CC=CC=C1CC=C QIRNGVVZBINFMX-UHFFFAOYSA-N 0.000 description 1
- ZVOWVWZBDTZSEJ-UHFFFAOYSA-N 2-methoxy-4-methyl-6-prop-2-enylphenol Chemical compound COC1=CC(C)=CC(CC=C)=C1O ZVOWVWZBDTZSEJ-UHFFFAOYSA-N 0.000 description 1
- LHQUXEBZWKMROX-UHFFFAOYSA-N 2-methyl-4-prop-1-enylphenol Chemical compound CC=CC1=CC=C(O)C(C)=C1 LHQUXEBZWKMROX-UHFFFAOYSA-N 0.000 description 1
- 229940061334 2-phenylphenol Drugs 0.000 description 1
- YNNMNWHCQGBNFH-UHFFFAOYSA-N 3-tert-butyl-4-[1-(2-tert-butyl-4-hydroxyphenyl)propyl]phenol Chemical compound C=1C=C(O)C=C(C(C)(C)C)C=1C(CC)C1=CC=C(O)C=C1C(C)(C)C YNNMNWHCQGBNFH-UHFFFAOYSA-N 0.000 description 1
- GXDIDDARPBFKNG-UHFFFAOYSA-N 4,4'-(Butane-1,1-diyl)diphenol Chemical compound C=1C=C(O)C=CC=1C(CCC)C1=CC=C(O)C=C1 GXDIDDARPBFKNG-UHFFFAOYSA-N 0.000 description 1
- VWGKEVWFBOUAND-UHFFFAOYSA-N 4,4'-thiodiphenol Chemical compound C1=CC(O)=CC=C1SC1=CC=C(O)C=C1 VWGKEVWFBOUAND-UHFFFAOYSA-N 0.000 description 1
- IYDQSPIOJHDHHO-UHFFFAOYSA-N 4,6-dimethylbenzene-1,3-diol Chemical compound CC1=CC(C)=C(O)C=C1O IYDQSPIOJHDHHO-UHFFFAOYSA-N 0.000 description 1
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- HCUNREWMFYCWAQ-UHFFFAOYSA-N 4-[2-(4-carboxyphenyl)ethyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1CCC1=CC=C(C(O)=O)C=C1 HCUNREWMFYCWAQ-UHFFFAOYSA-N 0.000 description 1
- YTRKBSVUOQIJOR-UHFFFAOYSA-N 4-[2-(4-hydroxy-1-methylcyclohexa-2,4-dien-1-yl)propan-2-yl]-4-methylcyclohexa-1,5-dien-1-ol Chemical compound C1C=C(O)C=CC1(C)C(C)(C)C1(C)CC=C(O)C=C1 YTRKBSVUOQIJOR-UHFFFAOYSA-N 0.000 description 1
- QHJPJZROUNGTRJ-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)octan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(CCCCCC)C1=CC=C(O)C=C1 QHJPJZROUNGTRJ-UHFFFAOYSA-N 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- FNYDIAAMUCQQDE-UHFFFAOYSA-N 4-methylbenzene-1,3-diol Chemical compound CC1=CC=C(O)C=C1O FNYDIAAMUCQQDE-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HTVITOHKHWFJKO-UHFFFAOYSA-N Bisphenol B Chemical compound C=1C=C(O)C=CC=1C(C)(CC)C1=CC=C(O)C=C1 HTVITOHKHWFJKO-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- CJCWVOPPIGMXNG-UHFFFAOYSA-N C1C2CC3CC1CC(C2)C3.CC.CC.CC1=CC=C(C2(C3=CC=C(O)C=C3)C3=C(C=CC=C3)C3=C2C=CC=C3)C=C1.CC1=CC=C(O)C=C1.CC1=CC=C(O)C=C1 Chemical compound C1C2CC3CC1CC(C2)C3.CC.CC.CC1=CC=C(C2(C3=CC=C(O)C=C3)C3=C(C=CC=C3)C3=C2C=CC=C3)C=C1.CC1=CC=C(O)C=C1.CC1=CC=C(O)C=C1 CJCWVOPPIGMXNG-UHFFFAOYSA-N 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- 125000005915 C6-C14 aryl group Chemical group 0.000 description 1
- PHKKBXRBLJXAFL-UHFFFAOYSA-N CC.CC.CC.CC.CC1(C)C(C)(C)C(C)(C)C(C2=CC=C(O)C=C2)(C2=CC=C(O)C=C2)C(C)(C)C1(C)C Chemical compound CC.CC.CC.CC.CC1(C)C(C)(C)C(C)(C)C(C2=CC=C(O)C=C2)(C2=CC=C(O)C=C2)C(C)(C)C1(C)C PHKKBXRBLJXAFL-UHFFFAOYSA-N 0.000 description 1
- AFAYDGSJHHERLW-UHFFFAOYSA-N COC1=CC(CCC[Si](C)(C)OO[Si](C)(C)CCCC2=CC=C(O)C(CO)=C2)=CC=C1O Chemical compound COC1=CC(CCC[Si](C)(C)OO[Si](C)(C)CCCC2=CC=C(O)C(CO)=C2)=CC=C1O AFAYDGSJHHERLW-UHFFFAOYSA-N 0.000 description 1
- JQFBRUOVWXSJJO-UHFFFAOYSA-N COC1=CC(CCC[Si](C)(C)OO[Si](C)(C)CCCC2=CC=C(O)C(CO)=C2)=CC=C1O.C[Si](C)(CCCC1=CC=CC=C1O)OO[Si](C)(C)CCCC1=CC=CC=C1O Chemical compound COC1=CC(CCC[Si](C)(C)OO[Si](C)(C)CCCC2=CC=C(O)C(CO)=C2)=CC=C1O.C[Si](C)(CCCC1=CC=CC=C1O)OO[Si](C)(C)CCCC1=CC=CC=C1O JQFBRUOVWXSJJO-UHFFFAOYSA-N 0.000 description 1
- ARRWDXDKHXBZKM-UHFFFAOYSA-N COC1=CC=C(C(C)(C)C2=CC=C(OC(=O)CCCCCCCCC(=O)COC3=CC=C(C(C)(C)C4=CC=C(OC(C)=O)C=C4)C=C3)C=C2)C=C1 Chemical compound COC1=CC=C(C(C)(C)C2=CC=C(OC(=O)CCCCCCCCC(=O)COC3=CC=C(C(C)(C)C4=CC=C(OC(C)=O)C=C4)C=C3)C=C2)C=C1 ARRWDXDKHXBZKM-UHFFFAOYSA-N 0.000 description 1
- XRFONKBEWYROHZ-UHFFFAOYSA-N COC1=CC=C(C2(C3=CC=C(OC)C=C3)C3=C(C=CC=C3)C(=O)N2C)C=C1 Chemical compound COC1=CC=C(C2(C3=CC=C(OC)C=C3)C3=C(C=CC=C3)C(=O)N2C)C=C1 XRFONKBEWYROHZ-UHFFFAOYSA-N 0.000 description 1
- GJUQLZUQNCPXCL-UHFFFAOYSA-N C[Si](C)(CCCC1=CC=CC=C1O)OO[Si](C)(C)CCCC1=CC=CC=C1O Chemical compound C[Si](C)(CCCC1=CC=CC=C1O)OO[Si](C)(C)CCCC1=CC=CC=C1O GJUQLZUQNCPXCL-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- 229920005692 JONCRYL® Polymers 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- MUCRFDZUHPMASM-UHFFFAOYSA-N bis(2-chlorophenyl) carbonate Chemical compound ClC1=CC=CC=C1OC(=O)OC1=CC=CC=C1Cl MUCRFDZUHPMASM-UHFFFAOYSA-N 0.000 description 1
- FSTRGOSTJXVFGV-UHFFFAOYSA-N bis(4-chlorophenyl) carbonate Chemical compound C1=CC(Cl)=CC=C1OC(=O)OC1=CC=C(Cl)C=C1 FSTRGOSTJXVFGV-UHFFFAOYSA-N 0.000 description 1
- ACBQROXDOHKANW-UHFFFAOYSA-N bis(4-nitrophenyl) carbonate Chemical compound C1=CC([N+](=O)[O-])=CC=C1OC(=O)OC1=CC=C([N+]([O-])=O)C=C1 ACBQROXDOHKANW-UHFFFAOYSA-N 0.000 description 1
- TZSMWSKOPZEMAJ-UHFFFAOYSA-N bis[(2-methoxyphenyl)methyl] carbonate Chemical compound COC1=CC=CC=C1COC(=O)OCC1=CC=CC=C1OC TZSMWSKOPZEMAJ-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 230000004456 color vision Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004966 cyanoalkyl group Chemical group 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- 150000001934 cyclohexanes Chemical group 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007337 electrophilic addition reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229920003247 engineering thermoplastic Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910003443 lutetium oxide Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical class C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- OIPPWFOQEKKFEE-UHFFFAOYSA-N orcinol Chemical compound CC1=CC(O)=CC(O)=C1 OIPPWFOQEKKFEE-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- KSSNXJHPEFVKHY-UHFFFAOYSA-N phenol;hydrate Chemical compound O.OC1=CC=CC=C1 KSSNXJHPEFVKHY-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- MCZDHTKJGDCTAE-UHFFFAOYSA-M tetrabutylazanium;acetate Chemical compound CC([O-])=O.CCCC[N+](CCCC)(CCCC)CCCC MCZDHTKJGDCTAE-UHFFFAOYSA-M 0.000 description 1
- GFZMLBWMGBLIDI-UHFFFAOYSA-M tetrabutylphosphanium;acetate Chemical compound CC([O-])=O.CCCC[P+](CCCC)(CCCC)CCCC GFZMLBWMGBLIDI-UHFFFAOYSA-M 0.000 description 1
- DFQPZDGUFQJANM-UHFFFAOYSA-M tetrabutylphosphanium;hydroxide Chemical compound [OH-].CCCC[P+](CCCC)(CCCC)CCCC DFQPZDGUFQJANM-UHFFFAOYSA-M 0.000 description 1
- SFORWUUPTGSYHA-UHFFFAOYSA-M tetrabutylphosphanium;phenoxide Chemical compound [O-]C1=CC=CC=C1.CCCC[P+](CCCC)(CCCC)CCCC SFORWUUPTGSYHA-UHFFFAOYSA-M 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- QVOFCQBZXGLNAA-UHFFFAOYSA-M tributyl(methyl)azanium;hydroxide Chemical compound [OH-].CCCC[N+](C)(CCCC)CCCC QVOFCQBZXGLNAA-UHFFFAOYSA-M 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
- C07C37/20—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
- C07C29/78—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by condensation or crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/70—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
- C07C37/84—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/86—Purification; separation; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/04—Aromatic polycarbonates
- C08G64/045—Aromatic polycarbonates containing aliphatic unsaturation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/30—General preparatory processes using carbonates
- C08G64/307—General preparatory processes using carbonates and phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/57—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
- C09K11/572—Chalcogenides
- C09K11/574—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7734—Aluminates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V1/00—Shades for light sources, i.e. lampshades for table, floor, wall or ceiling lamps
- F21V1/14—Covers for frames; Frameless shades
- F21V1/16—Covers for frames; Frameless shades characterised by the material
- F21V1/17—Covers for frames; Frameless shades characterised by the material the material comprising photoluminescent substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V3/00—Globes; Bowls; Cover glasses
- F21V3/04—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
- F21V3/06—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
- F21V3/062—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/30—Elements containing photoluminescent material distinct from or spaced from the light source
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/56—Materials, e.g. epoxy or silicone resin
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
Definitions
- This disclosure relates to polycarbonate formed from 2,2-bis(4-hydroxyphenyl)propane (bisphenol A, BPA) with reduced sulfur content, and containing conversion material chemistry, and articles made therefrom.
- BPA is widely employed in the manufacture of polymeric materials, such as engineering thermoplastics.
- BPA is a principle monomer used in the manufacture of polycarbonate.
- higher purity levels are needed of the raw material BPA.
- the word high in the context of BPA and polycarbonate refers to BPA and/or polycarbonate with lower sulfur levels as a result of the processes encompassed by this disclosure.
- Bisphenols such as BPA
- BPA Bisphenols
- aldehydes or ketones such as acetone
- aromatic hydroxyl compounds such as phenol
- a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone, cooling the reaction mixture to form a crystal stream comprising crystals of bisphenol A and phenol; separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur; contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product.
- a process for making polycarbonate comprises: reacting, in the presence of a transesterification catalyst, a diaryl carbonate ester and a bisphenol A, wherein the bisphenol A has a sulfur concentration of 0.5 ppm to 15 ppm, based upon a weight of the bisphenol A.
- a process for making polycarbonate comprises: forming a mixture of bisphenol A in aqueous caustic material, wherein the bisphenol A has a sulfur concentration of 0.5 ppm to 15 ppm, based upon a weight of the bisphenol A; adding the mixture to a water-immiscible solvent medium; and contacting the reactants with a carbonate precursor in the presence of a catalyst to form the polycarbonate.
- FIG. 1 depicts a schematic illustration of 3-MPA when used as a bulk promoter in a BPA ion exchange resin (IER) reaction can generate a series of by-products through side reactions.
- IER BPA ion exchange resin
- FIG. 2 depicts a BPA production process flow diagram using a single adduct crystallization.
- FIG. 3 depicts a BPA production process flow diagram using a double crystallization.
- FIG. 4 depicts a BPA production process flow diagram using a double adduct crystallization.
- conversion material chemistry in LED housings, specifically incorporating conversion materials throughout the LED housing, e.g., in close proximity to the LED.
- Conversion materials e.g., luminescent materials, which emit light of longer wavelengths than that of the excitation source, include those having a solid inorganic host lattice doped with rare-earth elements.
- Conversion materials can be incorporated within a polymeric substrate by either coatings or being compounded directly into the polymer matrix during extrusion. However, such conversion materials are expected to degrade the polymer (e.g., polycarbonate) when incorporated into the polymer melt during extrusion.
- polycarbonate melt stability is expected to decrease and the general color of the conversion material, before and during LED excitation will likely produce an undesirable effect.
- Loss of melt stability could lead to at least one of the following: embrittlement; undesirable resin color. Resin yellowing can affect correlated color temperature (downward shift), color rendering index; and decreased luminous efficacy.
- loss of melt stability could negatively affect the molder's ability to accurately mold a flat disk or sphere shaped optic, wherein the molded conversion material optic needs uniform surface features and reliable shrink properties for optimal light modeling (ray tracing), production quality, and angular color uniformity.
- Optimized polymer and conversion material and optical properties are needed so that the LED lighting products can meet Department of Energy (DOE) Energy Star rating using measurement methods described in IESNA LM-79 and IES LM-80-08.
- DOE Department of Energy
- a light emitting device comprising a lighting element located in a housing, wherein the housing is formed from a plastic composition comprising a plastic material and a conversion material.
- the conversion material can, for example, absorb at least a portion of a first wavelength range radiation that is emitted from the light emitting device and emits radiation having a second wavelength range. This results in an altered light color perception by the viewer.
- the conversion material can convert some of the blue light from a blue LED to yellow light and the overall combination of available light is perceived as white light to an observer. In this manner light emitting LEDs can effectively be tuned to result in different color than those immediately emitted from the LED.
- industry requirements as well as processes that effectuate the manufacture of materials can be met.
- Bisphenol A can be obtained by reacting acetone and phenol in the presence of a strong acid catalyst, such as hydrochloric acid (HCl) or a sulfonic resin and a sulfur containing promoter, e.g., a mercaptan promoter, such as methyl mercaptan (MM), ethyl mercaptan, 2,2-bis(methylthio)propane, mercaptocarboxylic acid, and/or 3-mercaptopropionic acid (3-MPA), as well as combinations comprising at least one of the foregoing.
- a strong acid catalyst such as hydrochloric acid (HCl) or a sulfonic resin
- a sulfur containing promoter e.g., a mercaptan promoter, such as methyl mercaptan (MM), ethyl mercaptan, 2,2-bis(methylthio)propane, mercaptocarboxylic acid, and/or 3-mercaptopropionic acid
- BPA bisphenol A
- a sulfur containing promoter such as 3-MPA
- the reaction proceeds much slower and is less selective in producing bisphenol A (BPA).
- BPA bisphenol A
- the compound with the systematic name 2,2-bis(4-hydroxyphenyl)propane is meant.
- the use of a sulfur containing promoter can increase reaction conversion and improve selectivity.
- the use of a sulfur containing promoter in the reaction is desirable for at least the above reasons, the use of such as promoter can generate sulfur containing byproducts, and can result in sulfur being present in the bisphenol A product stream(s) thereby resulting in a reduction in BPA purity. High purity levels are needed of the raw material BPA in order to manufacture high quality polycarbonate products.
- Such sulfur also could result in sulfur based noxious smells in the resulting BPA products, as well as in the polycarbonate end product. Potential degradation, as well as color worsening also could occur in the BPA monomer and resultant polycarbonate polymer as a result of sulfur impurities.
- sulfur compounds can be a source of odor issues during production of BPA and also during production of polycarbonate end products made from the BPA.
- a sulfur containing reaction promoter such as 3-MPA, is an effective promoter for BPA production processes.
- some of the promoter or sulfur containing byproducts derived from the promoter
- it can also react with the phosgene, diphenyl carbonate, or the BPA during polycarbonate production and thus some sulfur can undesirably become incorporated into the polymer backbone and hence remain in the final product.
- FIG. 1 depicts a schematic illustration showing that when 3-MPA is used as a bulk promoter in a BPA ion exchange resin (IER) reaction, the 3-MPA can generate a series of side reactions, such as those referred to as equation 1 (dimer or trimer of 3-MPA) and equations 2 and 3 (sulfide and disulfide, respectively).
- equation 1 dimer or trimer of 3-MPA
- equations 2 and 3 sulfide and disulfide, respectively.
- the majority of sulfur species present in the polycarbonate are bound to the polymer chain either as a chain building block or as an end cap, as opposed to being in a soluble state.
- Disclosed herein is a method to remove sulfur from a process stream comprising BPA such as a BPA product stream, in order to produce a high purity BPA product, specifically, how to, for example, remove sulfur impurities that have been incorporated into the BPA without destroying the monomer.
- the addition of a base to the BPA product stream at elevated temperatures can result in a significant reduction in organic sulfur concentration in the BPA.
- sulfur is removed downstream in the BPA process, as opposed to removing sulfur in the reaction section. More particularly, sulfur can be removed from a liquid stream comprising BPA and phenol (derived from melting a slurry of a crystallized adduct of BPA and phenol), where the sulfur is present at lower levels than in the upstream sections or initial reaction vessel of the process.
- Such removal of sulfur downstream in the process is beneficial for creating a high purity BPA product, as well as a high purity polycarbonate end product made from the purified BPA.
- embodiments can employ a sulfur based promoter in the process and thus avoid complex adaptations and potential reconfigurations of processing equipment and processing parameters.
- processes can be tailored to existing BPA plants where sulfur containing promoters can be employed.
- a BPA process 10 will now be described with reference to the exemplary and non-limiting process flow diagram depicted in FIG. 2 .
- a formulation vessel 12 a mixture can be made that is effective for conducting the reaction: acetone 14 and phenol 16 are present as reactants in stream 60 to form BPA (e.g., 2 moles of phenol and one mole of acetone can react to form BPA plus water). An excess of phenol can be present since phenol also can optionally serve as a solvent for the BPA.
- the sulfur containing reaction promoter 18 can be added in stream 62 to facilitate the reaction.
- the promoter 18 can be added, for example, at levels of greater than or equal to 500 parts per million by weight (ppm), specifically, 1,000 ppm to 4,000 ppm, based upon the weight of the whole formulation.
- the promoter 18 can comprise a sulfur containing promoter such as set forth above.
- the temperature in the formulation vessel can be greater than or equal to 50° C., for example.
- the formulation can be fed, for example, continuously to the reaction section 20 where it is heated to greater than or equal to 70° C.
- an acid catalyst e.g., inorganic and organic acids, such as sulfuric acid and hydrogen chloride, and cationic exchange resins, ion-exchange-resin (IER) (e.g., an acidic condensation catalyst, such as sulfonic resin, sulfuric acid, hydrochloric acid)
- IER ion-exchange-resin
- an acidic condensation catalyst such as sulfonic resin, sulfuric acid, hydrochloric acid
- the reaction can take place at above room temperature, for example, 60° C.
- a co-promoter can be added to the reaction section 20 .
- the co-promoter e.g. additional promoter added into the reaction
- co-promoters include the above described sulfur containing promoters (namely, 3-MPA, methyl mercaptan, ethyl mercaptan, 2,2-bis(methylthio)propane, mercaptocarboxylic acid (e.g., mercaptopropionic acid)), promoter-bound resins (including resins ionically-bound to quaternary amine groups contained in mercaptoalkylpyridines and/or mercaptoalkylamines, the latter including 2-mercaptoethylamine derived from hydrolysis of 2,2 dimethylthiozolidine), as well as combinations comprising at least one of any of the foregoing.
- the co-promoters can be present, for example, to enhance selectivity in forming BPA, and
- the reaction mixture which comprises acetone, phenol, BPA, sulfur and traces of isomers and promoter, can then flow in stream 66 to the crystallization section 22 where the mixture can be cooled to a temperature where crystals comprising BPA and phenol form.
- the temperature can be less than or equal to 45° C.
- the crystals can be a BPA/phenol adduct.
- adduct refers to the physical association of BPA and phenol (e.g., one molecule of BPA and one molecule of phenol can crystallize together to form a 1:1 molar ratio of BPA/phenol adduct).
- Water 24 can optionally be added in stream 68 to the crystallization section 22 , e.g., before crystallization to increase the rate of the crystallization process.
- the amount of water can be up to 3 weight percent (wt %), specifically, 0.1 to 3 wt % based upon a total weight of the mixture in the crystallization section 22 .
- the stream exiting the crystallization section 22 (stream 70 ) can comprise a liquid phase and a solid phase.
- the liquid phase, stream 38 (e.g., mother liquor) can be separated from the solid phase, stream 80 , which comprises the BPA/phenol crystals. Additional phenol from stream 27 and/or stream 32 can optionally be added to the filtration section 26 to wash the crystals.
- this phase can comprise the BPA/phenol (PhOH) crystals, phenol, and traces of the isomers, and promoter.
- the solid phase which is in the form of a slurry, can comprise, for example, up to 30 wt % of phenol.
- the solid phase From the filtration section 26 , the solid phase enters melting section 28 via slurry stream 80 . Addition of phenol to the filtration section 26 also facilitates the melting of the crystals at a lower temperature.
- this slurry stream 80 comprising the crystals can then become molten by heating (e.g., at 80° C.) in the melting section 28 .
- the resulting molten stream can comprise a promoter, a solution of BPA in phenol, sulfur containing by-products, and possibly isomers.
- the molten stream can comprise 50 wt % to 85 wt % BPA, specifically, 50 wt % to 75 wt % BPA, and more specifically, 55 wt % to 70 wt % BPA, based upon a total weight of the molten stream 82 .
- sulfur impurities can be removed from a stream comprising BPA and located downstream from an initial reaction section, e.g., a BPA product stream, instead of, for example, changing the sulfur containing promoter for an alternative technology.
- a sulfur removal unit 54 could be located downstream of melting section 28 and upstream of a phenol desorption unit 30 (e.g., between the melting unit 28 and phenol desorption unit 30 ) without adversely affecting the other existing units or their operation. Therefore stream 82 exiting the melting section 28 can be directed to the sulfur removal unit 54 . Since the molten stream 82 is at an elevated temperature, e.g., a temperature of greater than or equal to 70° C. to 120° C., the conditions are effective for sulfur removal while being sufficiently mild such that thermal degradation of the BPA is avoided.
- Reduction of the concentration of sulfur impurities in the molten stream 82 comprises contacting the stream with a base in the sulfur removal unit 54 .
- a base in the sulfur removal unit 54 e.g., a high temperature (e.g., greater than or equal to 200° C.) and under vacuum conditions, can be effective as the conditions prior to entering the desorportion unit 30 are more mild and conducive to sulfur removal. More particularly, after the phenol is evaporated off in the desorportion unit 30 , a solid will be obtained or a product needing a higher temperature to remain liquid.
- the BPA/phenol crystals can be melted and maintained molten, for example, at a temperature of 70° C. to 120° C., more specifically, 80° C. to 100° C.
- the bases e.g., resin bases
- the bases can remove the sulfur without becoming unstable and degrading.
- the resin bases are unstable and degrade when contacted with molten BPA at a temperature of greater than or equal to 200° C.
- molten stream 82 which comprises BPA, phenol, and sulfur (e.g., sulfur containing by-products), can enter the sulfur removal unit 54 located upstream from the desorption unit 30 , as shown in FIGS. 2 , 3 , and 4 .
- the BPA of stream 82 can be dissolved in a solvent prior to treating the stream with a base.
- solvents include, but are not limited to, methanol, hexane, diethyl ether, carbon tetrachloride, tetrahydrofuran, chloroform, acetone, acetonitrile, additional phenol, and so forth, as well as combinations comprising at least one of the foregoing.
- an alkali solution such as potassium hydroxide, sodium hydroxide, and/or other (earth)alkali metal hydroxide(s) can be added to the molten stream 82 to form a mixture, exiting the melting section 28 to form a mixture to enable the reduction of sulfur in the mixture.
- the mixture can be treated at temperatures up to the solvent boiling temperature for a period of time, e.g., greater than 10 minutes.
- a treatment temperature of 70° C. to 90° C. e.g., using solvent such as methanol
- a contact time of greater than or equal to 8 hours can result in a 95% reduction in organic sulfur concentration in the BPA.
- other treatment temperatures and contact times are possible depending upon, for example, the phenol content.
- the molten stream 82 exiting the melting section 28 can be treated with an anion exchange resin (e.g., in addition or alternative to the alkali solution) as the base.
- the treatment can be, for example, at a temperature near the solvent boiling temperature and below the anion exchange resin operating temperature, e.g., until sufficient amount of sulfur has been removed.
- the treatment temperature can be 70° C. to 120° C., specifically, 80° C. to 100° C., as described above.
- anion exchange resins include, but are not limited to, AMBERLYST* A21, which is a tert-amine divinely benzene/styrene ion exchange copolymer commercially available from Dow, Lewatit MP 62 WS, a weakly basic macroporous anion exchange resin with tertiary amine groups on crosslinked polystyrene (e.g., commercially available from Lanxess, Tulsion A-8XMP), a basic macroporous anion exchange resin with tertiary amine functionality attached to crosslinked polystyrene (e.g., commercially available from Thermax), and a combination comprising at least one of the foregoing.
- AMBERLYST* A21 is a tert-amine divinely benzene/styrene ion exchange copolymer commercially available from Dow, Lewatit MP 62 WS
- the sulfur removal unit 54 can, for example, be a packed bed column filled with the anion exchange resin.
- the molten stream 82 exiting the melting unit 28 and comprising the molten BPA can pass through the column.
- the conditions for example, can be a contact time of greater than or equal to 10 minutes, specifically greater than or equal to 1 hour, at a temperature of 70° C. to 120° C., more specifically, 80° C. to 100° C. It is noted that treatment with the base can be in a batch, semi-batch, or continuous process.
- Treatment of the molten stream 82 can reduce the sulfur content in the final BPA product to less than or equal to 15 ppm sulfur, specifically, 0.05 to 15 ppm sulfur, more specifically, 1 to 10 ppm sulfur, yet more specifically, 1 to 5 ppm sulfur, based upon the weight of the BPA product.
- the sulfur content can be 2 to 10 ppm sulfur, based upon the weight of the BPA product.
- a twelfth stream 84 comprising BPA and phenol can enter phenol desorption unit 30 .
- phenol can be recycled from the phenol desorption unit 30 to the initial phenol supply 16 and/or to the filtration unit 26 .
- Product stream 86 can exit the phenol desorption unit 30 and optionally proceed for further processing and/or storage.
- the product stream 86 can optionally be processed in flaking section 34 and/or sent to storage section 36 via stream 88 .
- the reaction mixture which comprises acetone, phenol, BPA, sulfur and traces of isomers and promoter
- the reaction mixture can flow in stream 66 to the crystallization section 22 ′ where the mixture can be cooled to a temperature where crystals comprising BPA and phenol form.
- the temperature can be less than or equal to 45° C.
- water can be added to facilitate crystallization.
- initial crystal stream 70 ′ comprising a liquid phase and a solid phase, enters filtration section 26 ′ where the liquid phase, stream 38 ′ can be separated from the solid phase, stream 80 ′. Additional phenol from stream 27 and/or stream 32 can optionally be added to the filtration section 26 ′ to wash the crystals.
- the solid phase, stream 80 ′ can then be melted in melting section 28 ′ to form an initial molten stream 82 ′.
- This initial molten stream 82 ′ can then be directed to the crystallization section 22 where it is crystallized and then further processed as described above.
- both liquid phase streams 38 , 38 ′ can be directed to the dehydration section 40 and processed as described below.
- FIG. 3 also illustrates a double crystallization, here, product stream 86 is further processed by directing the product stream 86 from the phenol desorption unit 30 into a melt crystallization unit 89 to form BPA crystals.
- the BPA crystals in phenol can be directed from the melt crystallization unit 89 via stream 91 to filtration unit 26 ′′ where phenol can optionally be removed and recycled via recycle stream 32 ′′, and stream 91 typically is in the form of a slurry (solid phase) comprising BPA crystals and phenol and can be further processed at section 93 , e.g., melted, phenol removed, flaking, and/or storage.
- the resultant BPA can be used in the production of BPA purified polycarbonate products. Accordingly, also disclosed in accordance with embodiments is a process of producing polycarbonate via in an interfacial or melt transesterification process.
- the polycarbonate can be formed into articles comprising reduced sulfur and characterized by virtually no sulfur based noxious smell.
- the product can be a lighting device
- the liquid phase in stream 38 , 38 ′ can be processed in the dehydration section 40 .
- a stream 74 comprising water can proceed into the phenol-water separation (PWS) unit while a ninth stream 78 comprising the mother liquor can exit the dehydration section 40 and be fed back into formulation vessel 12 and/or be purged (stream 42 ).
- Purge stream 42 can enter phenol recovery station 44 where phenol is recovered and recycled via stream 46 while a tar stream 48 exits the phenol recovery station 44 and proceed to waste.
- the bisphenol A product from this process can be used to form polycarbonate, e.g., in an interfacial polymerization or melt polymerization process.
- aqueous caustic material e.g., aqueous caustic soda or potash
- a water-immiscible solvent medium e.g., aqueous caustic soda or potash
- a catalyst such as triethylamine and/or a phase transfer catalyst
- controlled pH conditions e.g., about 8 to about 12.
- water immiscible solvents include methylene chloride, 1,2-dichloroethane, chlorobenzene, toluene, and the like.
- polycarbonates can be prepared by co-reacting, in a molten state, the bisphenol A and a diaryl carbonate ester, such as diphenyl carbonate, in the presence of a transesterification catalyst in a Banbury* mixer, twin screw extruder, or the like to form a uniform dispersion. Volatile monohydric phenol is removed from the molten reactants by distillation and the polymer is isolated as a molten residue.
- a specifically useful melt process for making polycarbonates uses a diaryl carbonate ester having electron-withdrawing substituents on the aryls.
- diaryl carbonate esters with electron withdrawing substituents include bis(4-nitrophenyl)carbonate, bis(2-chlorophenyl)carbonate, bis(4-chlorophenyl)carbonate, bis(methyl salicyl)carbonate, bis(4-methylcarboxylphenyl)carbonate, bis(2-acetylphenyl)carboxylate, bis(4-acetylphenyl)carboxylate, or a combination comprising at least one of the foregoing esters.
- transesterification catalysts include tetrabutylammonium hydroxide, methyltributylammonium hydroxide, tetrabutylammonium acetate, tetrabutylphosphonium hydroxide, tetrabutylphosphonium acetate, tetrabutylphosphonium phenolate, or a combination comprising at least one of the foregoing.
- the polycarbonate can be formed from various materials such as one or more of those set forth in the following formulas:
- PPPBP 3,3-bis(4-hydroxyphenyl)-2-phenylisoindolin-1-one
- bisphenol TMC also known as 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane
- adamantyl containing aromatic dihydroxy compounds and flourene containing aromatic dihydroxy compounds Formulas (4) and (5) respectively;
- bisphenols containing substituted or unsubstituted cyclohexane units e.g., bisphenols of formula (7)
- each R f is independently hydrogen, C 1-12 alkyl, or halogen; and each R g is independently hydrogen or C 1-12 alkyl.
- the substituents can be aliphatic or aromatic, straight chain, cyclic, bicyclic, branched, saturated, or unsaturated. Cyclohexyl bisphenol containing polycarbonates, or a combination comprising at least one of the foregoing with other bisphenol polycarbonates, are supplied by Bayer Co. under the APEC® trade name.
- Polycarbonate as used herein includes homopolycarbonates, copolymers comprising formula (8)
- R 1 moieties in the carbonate also referred to herein as “copolycarbonates”
- copolymers comprising carbonate units and other types of polymer units, such as ester units. More specifically, greater than or equal to 60%, particularly greater than or equal to 80% of the R 1 groups in the polycarbonate are derived from bisphenol A.
- copolymer is a polyester carbonate, also known as a polyester-polycarbonate.
- Such copolymers further contain, in addition to recurring carbonate chain units of the formula (1), repeating units of formula (9):
- D is a divalent group derived from a dihydroxy compound, and can be, for example, a C 2 -C 10 alkylene group, a C 6 -C 20 alicyclic group, a C 6 -C 20 aromatic group or a polyoxyalkylene group in which the alkylene groups contain 2 to 6 carbon atoms, specifically 2, 3, or 4 carbon atoms; and T divalent group derived from a dicarboxylic acid, and can be, for example, a C 2 -C 10 alkylene group, a C 6 -C 20 alicyclic group, a C 6 -C 20 alkyl aromatic group, or a C 6 -C 20 aromatic group.
- D is a C 2 -C 30 alkylene group having a straight chain, branched chain, or cyclic (including polycyclic) structure. In another embodiment, D is derived from an aromatic dihydroxy compound.
- aromatic dicarboxylic acids that can be used to prepare the polyester units include isophthalic or terephthalic acid, 1,2-di(p-carboxyphenyl)ethane, 4,4′-dicarboxydiphenyl ether, 4,4′-bisbenzoic acid, and combinations comprising at least one of the foregoing acids. Acids containing fused rings can also be present, such as in 1,4-, 1,5-, or 2,6-naphthalenedicarboxylic acids. Specific dicarboxylic acids are terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, or combinations thereof.
- a specific dicarboxylic acid comprises a combination of isophthalic acid and terephthalic acid wherein the weight ratio of isophthalic acid to terephthalic acid is 91:9 to 2:98.
- D is a C 2-6 alkylene group and T is p-phenylene, m-phenylene, naphthalene, a divalent cycloaliphatic group, or a combination thereof.
- This class of polyester includes the poly(alkylene terephthalates).
- the molar ratio of ester units to carbonate units in the copolymers can vary broadly, for example 1:99 to 99:1, specifically 10:90 to 90:10, more specifically 25:75 to 75:25, depending on the desired properties of the final composition.
- the polyester unit of a polyester-polycarbonate can be derived from the reaction of a combination of isophthalic and terephthalic diacids (or derivatives thereof) with resorcinol.
- the polyester unit of a polyester-polycarbonate is derived from the reaction of a combination of isophthalic acid and terephthalic acid with bisphenol-A.
- the polycarbonate units are derived from bisphenol A.
- the polycarbonate units are derived from resorcinol and bisphenol A in a molar ratio of resorcinol carbonate units to bisphenol A carbonate units of 1:99 to 99:1.
- polycarbonate-polyester is a copolycarbonate-polyester-polysiloxane terpolymer comprising carbonate units of formula (8), ester units of formula (9), and polysiloxane (also referred to herein as “polydiorganosiloxane”) units of formula (10):
- R is same or different, and is a C 1-13 monovalent organic group.
- R may independently be a C 1-13 alkyl group, C 1-13 alkoxy group, C 2-13 alkenyl group, C 2-13 alkenyloxy group, C 3-6 cycloalkyl group, C 3-6 cycloalkoxy group, C 6-14 aryl group, C 6-10 aryloxy group, C 7-13 arylalkyl group, C 7-13 arylalkoxy group, C 7-13 alkylaryl group, or C 7-13 alkylaryloxy group.
- the foregoing groups may be fully or partially halogenated with fluorine, chlorine, bromine, or iodine, or a combination thereof.
- the polysiloxane comprises R groups that have a minimum hydrocarbon content.
- an R group with a minimum hydrocarbon content is a methyl group.
- E in formula (10) may vary widely depending on the type and relative amount of each component in the plastic (e.g., thermoplastic) composition, the desired properties of the composition, and like considerations.
- E has an average value of 5 to 200, with the specific amount chosen so that a 1.0 mm thick plaque of the plastic composition (i.e., plastic material, conversion material(s), any additive(s)) has a transparency (% T) of greater than or equal to 30%.
- the E value is chosen (e.g., adjusted such as when the amount of siloxane in the material and when the siloxane is introduced to form the material and/or the process for making the material) to achieve a balance between transparency, flame retardancy, and impact.
- E has an average value of 16 to 50, specifically 20 to 45, and more specifically 25 to 45.
- E has an average value of 4 to 15, specifically 5 to 15, more specifically 6 to 15, and still more specifically 7 to 12.
- polydiorganosiloxane units are derived from dihydroxy aromatic compound of formula (11):
- each R may independently be the same or different, and is as defined above; and each Ar may independently be the same or different, and is a substituted or unsubstituted C 6-30 arylene group, wherein the bonds are directly connected to an aromatic moiety.
- Suitable Ar groups in formula (11) may be derived from a C 6-30 dihydroxy aromatic compound, for example a dihydroxy aromatic compound of formula (2), (3), (7), or (8) above. Combinations comprising at least one of the foregoing dihydroxy aromatic compounds may also be used.
- dihydroxy aromatic compounds examples include resorcinol (i.e., 1,3-dihydroxybenzene), 4-methyl-1,3-dihydroxybenzene, 5-methyl-1,3-dihydroxybenzene, 4,6-dimethyl-1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 1,1-bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)n-butane, 2,2-bis(4-hydroxy-1-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl sulfide), and 1,1-bis(4-hydroxy
- dihydroxy aromatic compound is unsubstituted, or is not substituted with non-aromatic hydrocarbon-containing substituents such as, for example, alkyl, alkoxy, or alkylene substituents.
- the polydiorganosiloxane repeating units are derived from dihydroxy aromatic compounds of formula (12):
- polydiorganosiloxane units are derived from dihydroxy aromatic compound of formula (14):
- R and E are as described above, and each occurrence of R 2 is independently a divalent C 1-30 alkylene or C 7-30 arylene-alkylene, and wherein the polymerized polysiloxane unit is the reaction residue of its corresponding dihydroxy aromatic compound.
- R 2 is C 7-30 arylene-alkylene
- the polydiorganosiloxane units are derived from dihydroxy aromatic compound of formula (15):
- Each R 3 is independently a divalent C 2-8 aliphatic group.
- Each M may be the same or different, and may be a halogen, cyano, nitro, C 1-8 alkylthio, C 1-8 alkyl, C 1-8 alkoxy, C 2-8 alkenyl, C 2-8 alkenyloxy group, C 3-8 cycloalkyl, C 3-8 cycloalkoxy, C 6-10 arylalkoxy, C 7-12 alkylaryl, or C 7-12 aryl, C 6-10 aryloxy, C 7-12 arylalkyl, C 7-12 alkylaryloxy, wherein each n is independently 0, 1, 2, 3, or 4.
- M is bromo or chloro, an alkyl group such as methyl, ethyl, or propyl, an alkoxy group such as methoxy, ethoxy, or propoxy, or an aryl group such as phenyl, chlorophenyl, or tolyl;
- R 3 is a dimethylene, trimethylene or tetramethylene group; and
- R is a C 1-8 alkyl, haloalkyl such as trifluoropropyl, cyanoalkyl, or aryl such as phenyl, chlorophenyl or tolyl.
- R is methyl, or a combination of methyl and trifluoropropyl, or a combination of methyl and phenyl.
- M is methoxy, n is 0 or 1
- R 3 is a divalent C 1-3 aliphatic group, and R is methyl.
- the polydiorganosiloxane units are derived from a dihydroxy aromatic compound of formula (16):
- polydiorganosiloxane units are derived from dihydroxy aromatic compound of formula (17):
- Dihydroxy polysiloxanes typically can be made by functionalizing a substituted siloxane oligomer of formula (18):
- R and E are as previously defined, and Z is H, halogen (Cl, Br, I), or carboxylate.
- carboxylates include acetate, formate, benzoate, and the like.
- Z is H
- compounds of formula (18) may be prepared by platinum catalyzed addition with an aliphatically unsaturated monohydric phenol.
- aliphatically unsaturated monohydric phenols include eugenol, 2-allylphenol, 4-allylphenol, 4-allyl-2-methylphenol, 4-allyl-2-phenylphenol, 4-allyl-2-bromophenol, 4-allyl-2-t-butoxyphenol, 4-phenyl-2-allylphenol, 2-methyl-4-propenylphenol, 2-allyl-4,6-dimethylphenol, 2-allyl-4-bromo-6-methylphenol, 2-allyl-6-methoxy-4-methylphenol, and 2-allyl-4,6-dimethylphenol. Combinations comprising at least one of the foregoing may also be used. Where Z is halogen or carboxylate, functionalization may be accomplished by reaction with a dihydroxy aromatic compound.
- compounds of formula (12) may be formed from an alpha, omega-bisacetoxypolydiorangonosiloxane and a dihydroxy aromatic compound under phase transfer conditions.
- a copolycarbonate terpolymer can be used.
- Specific copolycarbonate terpolymers include those with polycarbonate units of formula (1) wherein R 1 is a C 6-30 arylene group, polysiloxane units derived from siloxane diols of formula (13), (16) or (17), and polyester units wherein T is a C 6-30 arylene group.
- T is derived from isophthalic and/or terephthalic acid, or reactive chemical equivalents thereof.
- R 1 is derived from the carbonate reaction product of a resorcinol of formula (8), or a combination of a resorcinol of formula (8) and a bisphenol of formula (4).
- the polycarbonate-polyester-polysiloxane terpolymer can comprise siloxane units in an amount of 0.1 to 25 weight percent (wt %), specifically 0.2 to 10 wt %, more specifically 0.2 to 6 wt %, even more specifically 0.2 to 5 wt %, and still more specifically 0.25 to 2 wt %, based on the total weight of the polycarbonate-polyester-polysiloxane terpolymer, with the proviso that the siloxane units are provided by polysiloxane units covalently bonded in the polymer backbone of the polycarbonate-polyester-polysiloxane terpolymer.
- the polycarbonate-polyester-polysiloxane terpolymer can further comprise 0.1 to 49.85 wt % carbonate units, 50 to 99.7 wt % ester units, and 0.2 to 6 wt % polysiloxane units, based on the total weight of the polysiloxane units, ester units, and carbonate units.
- the polycarbonate-polyester-polysiloxane terpolymer comprises 0.25 to 2 wt % polysiloxane units, 60 to 96.75 wt % ester units, and 3.25 to 39.75 wt % carbonate units, based on the total weight of the polysiloxane units, ester units, and carbonate units.
- the specific amount of terpolymer and the composition of the terpolymer will be chosen so that a 1.0 mm thick plaque of the composition transparency (% T) of greater than or equal to 30%.
- conversion material(s) can be utilized in conjunction with a plastic (e.g., polycarbonate) containing composition described in this disclosure.
- Conversion material(s) are selected and added in an effective quantity so as to facilitate luminescence or transmission of an LED or other light-emitting device.
- the useful conversion material(s) have a shortlived luminescence lifetime of less than 10 ⁇ 4 seconds(s). It is noted that, depending upon how a conversion material is made, it may be longlived (luminescence lifetime of greater than minutes) or shortlived.
- the conversion material(s) can be coated (e.g., result of applying a material to the surface of the conversion material(s), wherein the coating is on the surface and/or chemically interacts with the surface).
- Radiometric values such as radiant power, radiant intensity, irradiance, and radiance
- corresponding photometric values such as total luminance flux, luminous intensity, illuminance, luminance), luminance efficacy (in lumens per watt (lm/W)), color rendering index, color quality scale (CQS), correlated color temperature, and chromaticity, are expected to improve compared to the uncoated conversion material(s) when added to a plastic material such as polycarbonate.
- the conversion material(s) can be sufficiently coated so as to maintain melt stability with an MVR change of less than or equal to 30%, specifically less than or equal to 10% (i.e., MVR is determined at 6 minutes and again at 18 minutes, and the difference between these MVRs is less than or equal to 30% of the 6 minute value).
- the conversion material(s) can be coated with silicone oil(s) and/or a layer of amorphous silica.
- silicone oils include, but are not limited to: hydrogen-alkyl siloxane oil; polydialkyl siloxance oil; polydimethyl siloxane codiphenyl siloxane, dihydroxy terminated (such as Gelest PDS 1615 commercially available from Gelest, Inc.); as well as combinations comprising at least one of the foregoing.
- Such silicone oils are considered coatings where the conversion material is first treated with the silicone oil(s) prior to addition to a matrix or binder (collectively referred to as matrix), such as polycarbonate.
- matrix such as polycarbonate.
- the coating itself is neither the binder nor the matrix that contains the conversion material to hold in place for exposure to blue LED radiation. Additionally, the coating does not require a curing method.
- the conversion material can be coated with silicone oil e.g., by a method such as spraying the silicon oil.
- the conversion material can be coated by spraying of the silicone oil in a fluidized bed reactor.
- the total amount of silicone oil can be 0.05 wt % to 20 wt % with respect to the conversion material, specifically, 0.1 wt % to 10 wt %, and more specifically, 0.5 wt % to 5 wt %, based upon the total weight of the conversion material.
- two silicone coatings such as polymethylhydrosiloxane and polydimethylsiloxane
- oils include polymethylhydrosiloxane (for example, DF1040 commercially available from Momentive Performance Materials) and polydimethyl siloxane (e.g., DF581 commercially available from Momentive Performance Materials).
- diphenyl siloxane e.g., silanol terminated oils such as silanol terminated diphenylsiloxane (e.g., PDS-1615 commercially available from Gelest, Inc., Morrisville, Pa.).
- Loading level up to 4 pph by weight, specifically a loading of 0.1 to 0.5 (e.g., 0.2) pph by weight of pigment (e.g., Gelest PDS-1615).
- the final article comprising the conversion material(s) comprises less than or equal to 20 pbw of conversion material(s) to 100 pbw of plastic material.
- the conversion material(s), including those of which are surface treated, include: conversion material(s) having formula:
- a 3 is a divalent metal selected from Sr, Ca, Ba, Mg, Zn, Cd, and combinations comprising at least one of the foregoing
- D 1 is a dopant selected from F, Cl, Br, I, P, S or N, and optionally combinations comprising at least one of the foregoing.
- the conversion material(s) can be material(s) having formula: (A 4 ) 2 SiO 4 :Eu 2+ D 2 with an optional dopant selected from Al, Co, Fe, Mg, Mo, Na, Ni, Pd, P, Rh, Sb, Ti or Zr, and optionally combinations comprising at least one of the foregoing, wherein A 4 is selected from Sr, Ba, Ca, and combinations comprising at least one of the foregoing.
- the conversion material(s) can be material(s) having formula:
- a 5 is a trivalent metal selected from Gd, Tb, La, Sm, or a divalent metal ion such as Sr, Ca, Ba, Mg, Zn, Cd, and combinations comprising at least one of the foregoing; B is selected from Si, B, P, and Ga, and optionally combinations comprising at least one of the foregoing; and D 3 is a dopant selected from F, Cl, Br, I, P, S or N, and optionally combinations comprising at least one of the foregoing.
- Possible yellow/green conversion material(s) include: (Sr, Ca, Ba)(Al, Ga) 2 S 4 :Eu 2+ ; Ba 2 (Mg, Zn)Si 2 O 7 :Eu 2+ ; Gd 0.46 Sr 0.31 Al 1.23 O x F 1.38 :Eu 2+ 0.06 ; (Ba 1-x-y Sr x Ca y )SiO 4 :Eu; and Ba 2 SiO 4 :Eu 2+ .
- the conversion material(s) can be a material having the following formula: (YGd) 3 Al 5 O 12 :Ce 3+ or Y 3 Al 5 (OD 3 ) 12 :Ce 3+ .
- the conversion material(s) can be orange-red silicate-based conversion material(s) having formula:
- M1 is selected from Ba, Ca, Mg, Zn, and combinations comprising at least one of the foregoing; and D 4 is selected from F, Cl, S, and N, and optionally combinations comprising at least one of the foregoing; conversion material(s); a Eu 2+ doped and or Dy 3+ conversion material(s) having formula:
- M is selected from Ca, Sr, Ba and combinations comprising at least one of the foregoing.
- the conversion material(s) can be red silicon nitride based Eu 2+ doped conversion material(s) having a formula:
- M2 is selected from Ca, Mg, and Zn.
- Other nitridosilicates, oxonitridosilicates, oxonitridoaluminosilicates examples include:
- Rare earth doped red sulfate based conversion material(s) e.g., have the formula:
- M3 is selected from Ca, Ba, and Mg, and optionally combinations comprising at least one of the foregoing.
- Other possible red conversion material(s) include Sr x Ca 1-x S:Eu,Y, wherein Y is a halide; CaSiAlN 3 :Eu 2+ ; Sr 2-y Ca y SiO 4 :Eu; Lu 2 O 3 :Eu 3+ ; (Sr 2-x La x )(Ce 1-x Eu x )O 4 ; Sr 2 Ce 1-x Eu x O 4 ; Sr 2-x Eu x CeO 4 ; SrTiO 3 :Pr 3+ , Ga 3+ ; CaAlSiN 3 :Eu 2+ ; and Sr 2 Si 5 N 8 :Eu 2+ .
- the conversion material(s) can comprise blue conversion material(s), e.g., having the formula BaMgAl 10 O 17 :Eu 2+ .
- the conversion material(s) can comprise green sulfate based conversion material(s), e.g., having formula:
- M3 is set forth above, and M4 is selected from Al and In.
- the conversion material(s) can include Tb 3-x RE 1 x O 12 :Ce(TAG), wherein RE 1 is selected from Y, Gd, La, Lu, and combinations comprising at least one of the foregoing; yttrium aluminum garnet (YAG) doped with cerium (e.g., (Y, Gd) 3 Al 5 O 12 :Ce 3+ ; YAG:Ce); terbium aluminum garnet doped with cerium (TAG:Ce); silicate conversion material(s) (BOSE), (e.g.
- nitride conversion material(s) e.g., doped with cerium and/or europium
- nitrido silicates e.g., LaSi 3 N 5 :Eu 2+ , O 2 ⁇ or Ba 2 Si 5 N 8 :Eu 2+
- nitride orthosilicate e.g., such as disclosed in DE 10 2006 016 548 A1; or combinations comprising at least one of the foregoing.
- green conversion material(s) include: SrGa2S 4 :Eu, Sr 2-y BaySiO 4 :Eu, SrSiO 2 N 2 :Eu, and Ca 3 Si 2 O 4 N 2 :Eu 2+
- the various conversion material(s) described above can be used alone or in combination.
- the conversion material(s) can comprise combinations of yellow conversion material(s) (such as (Y, Gd) 3 Al 5 O 12 :Ce3+ or (Sr, Ba, Ca) 2 SiO 4 :Eu) with a red conversion material(s) (such as (Sr, Ca)AlSiN 3 :Eu), e.g., to produce a warm white light.
- the conversion material(s) comprise combinations of green aluminate (GAL) and a red conversion material(s) (e.g., to produce white light from the RGB of blue led, green light and red light).
- Green aluminate and red nitride conversion material(s) can be used alone or combined to generate white light when exposed to blue LED light.
- Red nitride conversion material(s) may contain ions to promote quantum efficiency.
- the conversion material(s) can comprise a combination of a semiconductor nanocrystals of cadmium sulfide mixed with manganese; and/or a La 3 Si 6 N 11 :Ce 3+ .
- a YAG:Ce conversion material or BOSE (boron ortho-silicate) conversion material, for example, can be utilized to convert the blue light to yellow.
- a reddish AlInGaP LED can be included to pull yellow light from the conversion material to the black body curve.
- the YAG:Ce based conversion material(s) can be synthetic aluminum garnets, with garnet structure A 3 3+ B 5 3+ O 12 2 ⁇ (containing Al 5 O 12 9 ⁇ and A is a trivalent element such as Y 3+ ).
- the conversion material(s) are not an aluminum spinel, wherein a spinel has the structure A 2+ B 2 3+ O 4 2 ⁇ (Al 2 O 4 2 ⁇ and A is a divalent alkaline earth element such as Ca 2+ , Sr 2+ , and Ba 2+ ).
- the aluminum garnet is synthetically prepared in such a manner (annealing) as to impart short-lived luminescence lifetime lasting less than 10 ⁇ 4 seconds.
- Another process for forming short-lived luminescence i.e., avoiding forming long afterglow materials is disclosed in Advanced Powder Technology to Shii Choua et al., Volume 23, Issue 1, January 2012, Pages 97-103.
- the amount of conversion material(s) added to a plastic material to form the plastic composition may vary according to the selected plastic composition and/or the surface coating for the selected conversion material(s).
- the conversion material(s) can be added to the plastic material in an amount of 0.1 to 40 parts by weight (pbw) of conversion material based on 100 pbw of plastic material, specifically, 4 to 20 pbw of conversion material(s) to 100 pbw of plastic material.
- the conversion material(s) can have a median particle size of 10 nanometers (nm) to 100 micrometers ( ⁇ m), as determined by laser diffraction.
- the median particle size is sometimes indicated as D 50 -value.
- the median particle size can be 1 to 30 micrometers, specifically, 5 to 25 micrometers. Examples of median particle sizes include 1 to 5 micrometers, 6 to 10 micrometers, 11 to 15 micrometers, 16 to 20 micrometers, 21 to 25 micrometers, 26 to 30 micrometers, or 31 to 100 micrometers, or larger.
- the plastic composition comprising conversion material(s) can take many different shapes.
- the plastic composition comprising the conversion material(s) can have more or fewer bends such that it is U-shaped or V-shaped, or can have different bends with different radiuses of curvature. There can be multiple bends in different locations and different embodiments the plastic composition comprising the conversion material(s) can take more complex compound shapes.
- the plastic composition comprising the conversion material(s) can be rounded or polygonal, for example, the shape can be circular, oval, rectangular, square, pentagon, hexagon, octagon, etc., and/or it can have a more complex shape such as those illustrated in U.S. Patent Publication No. 2011/0140593 to Negley et al.
- Examples of some more complex shapes include hyperbolic paraboloid shapes, such as doubly ruled surface shaped like a saddle. Desirably, the radius of curvature for the different sections is such that there are no facing surfaces or the number of facing surfaces is minimized.
- the shape is generally open when viewed from the top. It is understood that the plastic composition comprising the conversion material(s) can take many different compound shapes beyond those described above. For example, a generally open shape comprising multiple edges and surfaces with different radiuses of curvature.
- a silicone-coated conversion material(s) in polycarbonate is expected to maintain melt stability with an MVR change of less than or equal to 10% (i.e., MVR is determined at 6 minutes and again at 18 minutes, and the difference between these MVRs is less than or equal to 10% of the 6 minute value).
- the addition of the conversion material(s) (e.g., coated conversion material(s)) to plastic should change the 6 min MVR by less than or equal to 30%, specifically, less than or equal to 15%, and more specifically less than or equal to 5%.
- the MVR of the 18 min dwell of the coated conversion material(s) plastic sample compared to the plastic material should change by less than or equal to 30%, specifically less than or equal to 10%, and more specifically, less than or equal to 5%. It is also desirable to have a MVR change from the 6 min MVR of the coated conversion material(s) containing sample compared to the 18 min MVR for the same sample of less than or equal to 20%, specifically, less than or equal to 10%, and more specifically, less than or equal to 5%.
- Notched Izod impact (% ductility) at 3.2 mm as determined according to ASTM D256-10 at room temperature (RT) of 23° C. and low temperature (e.g., 0° C.) can be greater than or equal to 80%, specifically, greater than or equal to 90%, and more specifically, 100%.
- Lightness (L*) is expected to be greater as well as measured by CIELAB (Reflectance, with a D65 illuminant, and a 10 degree observer). Coated conversion materials will not scrub the inside of the extruder or injection molding machine. Scrubbing leads to graying of the resin and/or the final part. Any unintended color shift either due to resin yellowing or graying will lead to undesirable effects on the total luminous flux and chromaticity across the lifetime of a solid state lighting device. It is desirable to prevent the solid state lighting device from emitting different amounts of light and different colors through its life.
- Lumen maintenance may be evaluated according to IES LM-80-08 method, IES TM-21, IESNA methods or any other type of method used to determine lifetime of a solid state lighting product, but not limited to these methods.
- a YAG:Ce conversion material or BOSE (boron ortho-silicate) conversion material can be utilized to convert the blue light to yellow.
- a reddish AlInGaP LED can be included to pull yellow light from the conversion material to the black body curve.
- the conversion material can be arranged so that none or a minimal amount of heat from the LEDs passes into the conversion material to avoid heat degradation.
- the plastic composition can also be shaped to provide a uniform distribution of light from the lamp while minimizing absorption of re-emitted light.
- the conversion material comprises YAG:Ce conversion material or BOSE conversion material and a red conversion material so that the lamp emits the desired CRI and color temperature.
- the plastic composition can also have different characteristics to provide the desired emission pattern from the lamp.
- the conversion material layer can have regions with different thickness, with the sections of greater thickness presenting more conversion material for the light to pass through.
- the article (e.g., housing) formed from the composition can have different concentrations of conversion materials in different regions.
- the plastic composition can also have more than one conversion material mixed throughout, or can have different regions of different conversion materials.
- the conversion material can also have dispersing agents arranged throughout, or dispersing agents arranged in different concentrations in different regions.
- the plastic composition can also have regions that are substantially transparent.
- the thermoplastic composition can include various additive(s) ordinarily incorporated in polycarbonate compositions of this type, with the proviso that the additives are selected so as to not significantly adversely affect the desired properties of the polycarbonate, for example, impact, viscosity, and flame retardance. Combinations of additives can be used. Such additives can be mixed at a suitable time during the mixing of the components for forming the composition.
- the additive(s) can be selected from at least one of the following: UV stabilizing additives, impact modifiers, thermal stabilizing additives, flame retarding agents, mold release agents, colorants, melt stabilizers, scattering agents (such as titanium dioxide), organic and inorganic fillers, interference particles, color absorbing particles, gamma-stabilizing agents, and scattering particles, and/or diffusers (e.g., Tospearl 120 (also known as TSR9004 commercially available from Momentive Performance Materials), acrylic particles, and so forth).
- Epoxies such as Joncryl* commercially available from BASF, for example could be added for melt stability.
- scattering particles e.g., in a concentration of greater than 0 to 1 pbw, specifically, 0.001 pbw to 0.3 pbw, more specifically, 0.01 pbw to 0.2 pbw, based upon 100 pbw of plastic material.
- concentrations of the scattering particles should be chosen in order to maintain an acceptable light absorption loss.
- the scattering particles can comprise many different materials including but not limited to: silica gel, zinc oxide (ZnO), yttrium oxide (Y 2 O 3 ), titanium dioxide (TiO 2 ), barium sulfate (BaSO 4 ), alumina (Al 2 O 3 ), fused silica (SiO 2 ), fumed silica (SiO 2 ), aluminum nitride, glass beads, zirconium dioxide (ZrO 2 ), silicon carbide (SiC), tantalum oxide (TaO 5 ), silicon nitride (Si 3 N 4 ), niobium oxide (Nb 2 O 5 ), boron nitride (BN), conversion material particles (e.g., YAG:Ce, BOSE), as well as combinations comprising at least one of the foregoing.
- silica gel silica gel, zinc oxide (ZnO), yttrium oxide (Y 2 O 3 ), titanium dioxide (TiO 2 ), barium
- Plastic compositions can be manufactured by various methods. For example, a blend of various plastic compositions, e.g. polycarbonate can be fed into the throat of a single or twin-screw extruder via a hopper. Care must be taken so as to not effectuate shear of the conversion material(s) (e.g., coated conversion material(s)) and should limit pressure applied to conversion materials and/polycarbonate material so as to not affect its desired properties.
- the final conversion material can be used in plastic material(s) (e.g., polycarbonate or any other thermoplastic resin formulation).
- plastic material(s) e.g., polycarbonate or any other thermoplastic resin formulation.
- the conversion material(s) e.g., coated conversion material(s)
- the conversion material(s) (coated conversion material(s)) can be added to the melt gone.
- the conversion material(s) (coated conversion material(s)) can also be added directly to a blender and mixed with resin powder.
- the advantage of the coated conversion material(s) in this case is the reduction of the contacts between the abrasive conversion material(s) and the walls or the mixing elements, which reduces the graying issues in the final product and therefore leads to greater luminous flux and color quality in a solid state lighting device that produces white light.
- the conversion material(s) (coated conversion material(s)) can first be compounded into polycarbonate with an appropriate heat stabilizer on a single screw or twin screw extruder in order to wet the surface for production (e.g., a master batch production). Multiple passes through an extruder may be necessary to fully wet the coated conversion material surface. Such master batches can then be added downstream or at the throat on a dedicated feeder(s) for accurate addition the final polymer formulation in an extruder. When added to the final polymer formulation, only mild distributive mixing is then used to fully disperse the coated conversion material(s) into the formulation. Examples of processing are further described in commonly assigned U.S. Pat. No. 6,692,659 B2 to Brown et al.
- Shaped, formed, or molded articles comprising the plastic (e.g., thermoplastic) compositions are also provided.
- the plastic compositions can be formed into useful shaped articles by a variety of means such as injection molding, extrusion (e.g., film/sheet extrusion), rotational molding, blow molding, and thermoforming.
- the plastic composition or polycarbonate containing compositions and the coated conversion material can be employed in a lighting type application, e.g., as a housing for an LED light.
- the LEDs in a housing formed from the plastic composition can be employed in aviation lighting, automotive lighting, (e.g., brake lamps, turn signals, headlamps, cabin lighting, and indicators), traffic signals, text and video displays and sensors, a backlight of the liquid crystal display device, control units of various products (e.g., for televisions, DVD players, radios, and other domestic appliances), and a dimmable solid state lighting device.
- automotive lighting e.g., brake lamps, turn signals, headlamps, cabin lighting, and indicators
- traffic signals e.g., text and video displays and sensors
- a backlight of the liquid crystal display device e.g., control units of various products (e.g., for televisions, DVD players, radios, and other domestic appliances), and a dimmable solid state lighting device.
- An article e.g., illumination device such as a light, luminaire, signal, and so forth
- a semiconductor light-emitting element which emits light (e.g., having a peak wavelength of 370 nm to 470 nm); and a light-emitting portion comprising the composition, wherein the light-emitting portion is excited by the light emitted from the semiconductor light-emitting element to emit light.
- a lighting arrangement can comprise: a radiation source configured to emit radiation having a first wavelength range; a coated conversion material configured to absorb at least a portion of said first wavelength range radiation and emit radiation having a second wavelength range; and an optical component through which at least said first wavelength range radiation passes, wherein the coated conversion material contained with/dispersed in the optical component.
- the conversion material is surface coated.
- the conversion material(s) can be coated with one or more surface coatings described in this disclosure.
- the lighting arrangement can further comprise a radiation source, e.g., a light emitting diode (LED) or a light pipe.
- a radiation source e.g., a light emitting diode (LED) or a light pipe.
- the lighting arrangement can comprise an LED chip comprising a gallium nitride LED.
- the radiation source can be operable to emit radiation having a wavelength of 300 nanometers (nm) to 500 nm.
- the conversion material can optionally be configured to emit radiation having a wavelength of 450 nm to 700 nm. Desirably, the conversion material emits at a different wavelength than the radiation source.
- the lighting arrangement can comprise an optical component (e.g., a lens) having a surface that can be convex, concave, hemispherical, spherical, hollow cylinder, a paraboloid, and planar, as well as combinations comprising at least one of the foregoing.
- the coated conversion material(s) can be within the surface, e.g., can be mixed within the composition that forms the optical component.
- a light diffusing material can be incorporated with the plastic composition. Examples of diffusing materials include: crosslinked polymethylmethacrylate (PMMA), polytetrafluoroethylene (Teflon), and methylsesquioxane (e.g., Tospearl 120 or TSR9004).
- the housing can be transparent to light from the light source and the coated conversion material, or can comprise a diffusing particle or a diffusing surface to help mix the light as it passes through the housing.
- portions of the housing can be diffusive, while other portions can be transparent or clear.
- an optical component can be for a lighting arrangement of a type comprising a radiation source configured to emit radiation having a first wavelength range.
- the optical component can comprise a plastic and (e.g., throughout the optical component) a coated conversion material configured to absorb at least a portion of said first wavelength range radiation and emit radiation having a second wavelength range; and said optical component being configured such that at least said first wavelength range radiation passes though the optical component.
- the radiation source can be a LED (e.g., light emitting diode (LED) chip or die, light emitting polymers (LEPs), polymer light emitting diodes (PLEDs), organic light emitting diodes (OLEDs), or the like) and is a solid-state semiconductor device, which can convert electricity directly into light.
- LED comprises a semiconductor chip, one side of the chip is attached to a stent, the end is negative (“n”), the other side connects to the positive (“p”) terminal of the power.
- the whole chip can optionally be packaged (e.g., coated, encapsulated, and so forth).
- LEDs e.g., in the form of an array, can be fashioned on a base (substrate or “PCB” printed circuit board) in thermal communication with a heat sink.
- the semiconductor chip has two parts, one is p-type semiconductor and the other part is the n-type semiconductor. A p-n junction is formed between them when the two semiconductors are connected.
- An electrical path for supplying control signals to the LEDs can be provided through conductors.
- the conductors are electrical elements (e.g., strips) applied to a surface of an insulative layer.
- the insulative layer is mounted to a heat sink.
- the insulative layer can be a circuit board.
- the conductor may be any suitable electrically conductive material. Examples of electrically conductive materials include copper, aluminum, or the like, and combinations comprising at least one of the foregoing.
- the current acting on the chip causes the emission of energy (e.g., in the form of photons).
- the wavelength of the light or the color is determined by the material of p-n junction.
- a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone in the presence of the promoter, cooling the reaction mixture to form a crystal stream comprising crystals of bisphenol A and phenol (e.g., that contain sulfur); separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur (e.g., promoter, sulfur containing by-products, etc.); contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product.
- the molten stream can be contacted with a base at a temperature of 70° C. to 120° C.; and/or (ii) the molten stream can be contacted with a base at a temperature of 80° C.
- the promoter can comprise a catalyst selected from 3-mercaptopropionic acid, methyl mercaptan, ethyl mercaptan, 2,2-bis(methylthio)propane, mercaptocarboxylic acid, and combinations comprising at least one of the foregoing promoters; and/or (iv) the promoter can comprise 3-mercaptopropropionic acid; and/or (v) the base can comprise an alkali solution; and/or (vi) the base can comprise an anion exchange resin; and/or (vii) the anion exchange resin comprises a tert-amine divinylbenzene/styrene ion exchange copolymer; and/or (viii) the process can further comprise adding additional phenol to the molten stream prior to contacting the stream with the base; and/or (ix) the sulfur concentration can be reduced to 0.5 ppm to 15 ppm based upon the weight of the bisphenol A; and/or (x
- polycarbonate made from the bisphenol A product of any of the above processes, as well as products made from the polycarbonate.
- a process for making polycarbonate comprises: reacting, in the presence of a transesterification catalyst, a diaryl carbonate ester and the bisphenol A product formed in any of the above methods, wherein the bisphenol A has a sulfur concentration of 1 ppm to 15 ppm, based upon a weight of the bisphenol A.
- a process for making polycarbonate comprises: forming a mixture of the bisphenol A product from any of the above methods, in aqueous caustic material, wherein the bisphenol A has a sulfur concentration of 1 ppm to 15 ppm, based upon a weight of the bisphenol A; adding the mixture to a water-immiscible solvent medium; and contacting the reactants with a carbonate precursor in the presence of a catalyst to form the polycarbonate.
- a light emitting device comprises: a lighting element located in a housing, wherein the housing is formed from a plastic composition comprising: any of the polycarbonate formed by any of the processes disclosed above and a conversion material, the conversion material is optionally coated.
- the conversion material comprises: greater than 0 ppm of a first material selected from Si, Sr, Ba, Ca, Eu, and combinations comprising at least one of the foregoing first materials; and less than 50 ppm of a second material selected from Al, Co, Fe, Mg, Mo, Na, Ni, Pd, P, Rh, Sb, Ti, Zr, and combinations comprising at least one of the foregoing second materials.
- the conversion material After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10 ⁇ 4 seconds when the excitation source is removed.
- a plastic molded device has a transparency of greater than or equal to 30%, wherein the article is formed from the plastic composition.
- the plastic composition comprises the polycarbonate formed by any of the processes disclosed above and a conversion material, the conversion material is optionally coated.
- the conversion material comprises greater than 0 ppm of a first material selected from Si, Sr, Ba, Ca, Eu, and combinations comprising at least one of the foregoing first materials; and less than 50 ppm of a second material selected from Al, Co, Fe, Mg, Mo, Na, Ni, Pd, P, Rh, Sb, Ti, Zr, and combinations comprising at least one of the foregoing second materials.
- the conversion material After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10 ⁇ 4 seconds when the excitation source is removed.
- a light emitting device comprises: a radiation source and an emitting portion in optical communication with the radiation source, wherein the emitting portion is formed from a plastic composition.
- the plastic composition comprises the polycarbonate formed by any of the processes disclosed above and a conversion material, the conversion material is optionally coated.
- the conversion material comprises greater than 0 ppm of a first material selected from Si, Sr, Ba, Ca, Eu, and combinations comprising at least one of the foregoing first materials; and less than 50 ppm of a second material selected from Al, Co, Fe, Mg, Mo, Na, Ni, Pd, P, Rh, Sb, Ti, Zr, and combinations comprising at least one of the foregoing second materials.
- the conversion material After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10 ⁇ 4 seconds when the excitation source is removed.
- a lighting device comprises: a radiation source configured to emit radiation having a first wavelength range and an optical component comprising a plastic composition.
- the plastic composition comprises the polycarbonate formed by any of the processes disclosed above and a conversion material, the conversion material is optionally coated.
- the conversion material comprises greater than 0 ppm of a first material selected from Si, Sr, Ba, Ca, Eu, and combinations comprising at least one of the foregoing first materials; and less than 50 ppm of a second material selected from Al, Co, Fe, Mg, Mo, Na, Ni, Pd, P, Rh, Sb, Ti, Zr, and combinations comprising at least one of the foregoing second materials.
- the conversion material After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10 ⁇ 4 seconds when the excitation source is removed.
- the conversion material is configured to absorb at least a portion of the first wavelength range radiation and emit radiation having a second wavelength range; wherein the optical component is configured such that at least the first wavelength range radiation passes though the optical component.
- a light-emitting device comprises: a means for emitting radiation having a first wavelength range, wherein the means for emitting radiation is located in a housing formed from a plastic composition.
- the plastic composition comprises: the polycarbonate formed by any of the processes disclosed above, and means for absorbing at least a portion of the first wavelength range radiation and emitting radiation having a second wavelength range. After the means for absorbing has been exposed to the radiation, the means for absorbing has a luminescence lifetime of less than 10 ⁇ 4 seconds when the radiation exposure stops.
- the means for absorbing comprises greater than 0 ppm of a first material selected from Si, Sr, Ba, Ca, Eu, and combinations comprising at least one of the foregoing first materials; and less than 50 ppm of a second material selected from Al, Co, Fe, Mg, Mo, Na, Ni, Pd, P, Rh, Sb, Ti, Zr, and combinations comprising at least one of the foregoing second materials.
- a light emitting device comprises: a lighting element located in a housing.
- the housing is formed from a plastic composition comprising: the polycarbonate formed by any of the processes disclosed above and a conversion material.
- the conversion material can comprise yttrium aluminum garnet (YAG) doped with a rare earth element, terbium aluminum garnet doped with a rare earth element, silicate (BOSE) doped with a rare earth element; nitrido silicates doped with a rare earth element; nitride orthosilicate doped with a rare earth element, oxonitridoaluminosilicates doped with a rare earth element, and combinations comprising at least one of the foregoing.
- the conversion material After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10 ⁇ 4 seconds when the excitation source is removed.
- Another embodiment is a plastic molded device formed from a plastic composition comprising the polycarbonate formed by any of the processes disclosed above and a conversion material, wherein the conversion material comprises yttrium aluminum garnet (YAG) doped with a rare earth element, terbium aluminum garnet doped with a rare earth element, silicate (BOSE) doped with a rare earth element; nitrido silicates doped with a rare earth element; nitride orthosilicate doped with a rare earth element, oxonitridoaluminosilicates doped with a rare earth element, and combinations comprising at least one of the foregoing.
- the conversion material After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10 ⁇ 4 seconds when the excitation source is removed.
- Another embodiment is a light emitting device comprising: a radiation source; and an emitting portion in optical communication with the radiation source.
- the emitting portion is formed from a plastic composition, wherein the plastic composition comprises: the polycarbonate formed by any of the processes disclosed above, and a conversion material.
- the conversion material comprises yttrium aluminum garnet (YAG) doped with a rare earth element, terbium aluminum garnet doped with a rare earth element, silicate (BOSE) doped with a rare earth element; nitrido silicates doped with a rare earth element; nitride orthosilicate doped with a rare earth element, oxonitridoaluminosilicates doped with a rare earth element, and combinations comprising at least one of the foregoing.
- YAG yttrium aluminum garnet
- BOSE silicate
- nitrido silicates doped with a rare earth element
- nitride orthosilicate doped with a rare earth element oxonitridoaluminosilicates doped with a rare earth element, and combinations comprising at least one of the foregoing.
- a lighting device comprises: a radiation source configured to emit radiation having a first wavelength range and an optical component comprising a plastic composition.
- the plastic composition comprises: the polycarbonate formed by any of the processes disclosed above and a conversion material.
- the conversion material comprises yttrium aluminum garnet (YAG) doped with a rare earth element, terbium aluminum garnet doped with a rare earth element, silicate (BOSE) doped with a rare earth element; nitrido silicates doped with a rare earth element; nitride orthosilicate doped with a rare earth element, oxonitridoaluminosilicates doped with a rare earth element, and combinations comprising at least one of the foregoing.
- YAG yttrium aluminum garnet
- BOSE silicate
- the conversion material is configured to absorb at least a portion of the first wavelength range radiation and emit radiation having a second wavelength range.
- the optical component is configured such that at least the first wavelength range radiation passes though the optical component. After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10 ⁇ 4 seconds when the excitation source is removed.
- a light-emitting device comprises: a means for emitting radiation having a first wavelength range, wherein the means for emitting radiation is located in a housing.
- the housing is formed from a plastic composition comprising: a polycarbonate formed from any of the processes disclosed above; and means for absorbing at least a portion of the first wavelength range radiation and emitting radiation having a second wavelength range. After the means for absorbing has been exposed to the radiation, the means for absorbing has a luminescence lifetime of less than 10 ⁇ 4 seconds when the radiation exposure stops.
- the means for absorbing comprises greater than 0 ppm of a first material selected from at least one of the following Si, Sr, Ba, Ca, Eu, and combinations comprising at least one of the foregoing first materials; and less than 50 ppm of a second material selected from at least one of the following Al, Co, Fe, Mg, Mo, Na, Ni, Pd, P, Rh, Sb, Ti, Zr, and combinations comprising at least one of the foregoing second materials.
- the molded device, housing, optical component, and/or emitting portion has a transparency of greater than or equal to 30% measured according to ASTM D1003-00, Procedure B, illuminant C, on a spectrophotometer, at a thickness of 1.04 mm; and/or (ii) the plastic composition further comprises a light diffusing material selected from crosslinked polymethylmethacrylate (PMMA), polytetrafluoroethylene, and methylsesquioxane, and combinations comprising at least one of the foregoing.
- PMMA polymethylmethacrylate
- PMMA polytetrafluoroethylene
- methylsesquioxane methylsesquioxane
- the sulfur level in a BPA sample having a BPA organic purity of 99.598 weight percent can be reduced from 23 ppm sulfur based upon the total weight of BPA down to 8 ppm with the addition of a strong base, potassium hydroxide (KOH).
- KOH potassium hydroxide
- the purity level decreased by only 0.367, while the sulfur decreased by 15 ppm.
- Table 1 further shows that when an anion exchange resin (AEX) was added instead of the KOH, even further improvements in purity and reduction in sulfur level resulted.
- AEX anion exchange resin
- the experimental conditions were carried out as follows. For each treatment, 0.5 grams of BPA flakes were dissolved in 5 milliliters (ml) of high performance liquid chromatography (HPLC) grade methanol in a 25 ml glass sample preparation vial. A heating block was used for temperature control.
- HPLC high performance liquid chromatography
- Sample 1 was capped and heated at 80° C. for 6 hours.
- Sample 2 1 ml of 10% mass/volume (w/v) potassium hydroxide (KOH) in methanol was added before capping and heating at 80° C. for 6 hours.
- Sample 3 2 grams (g) of Rohm & Haas AMBERLYST* A-21 anion exchange beads (“A-21 resin”) were added before capping and heating at 80° C. for 6 hours. After the heating, the samples were allowed to cool before filtering (0.45 micrometers ( ⁇ m)) into a fresh sample prep vial. Next, 10 ml of methanol was used to wash the used vial and beads left in the filtration syringe. The washings were then collected. All samples were then evaporated at 80° C. for 5 hours under a stream of nitrogen.
- KOH potassium hydroxide
- Samples 4 to 11 used the same BPA source as that of the BPA Sample 12, which included 19.6 ppm total sulfur, as indicated in Table 2.
- the starting sulfur content was calculated for each sample from the mixture composition of BPA and phenol, and the 19.6 ppm sulfur that had been determined in the BPA source.
- the PhOH was sulfur free.
- Samples 13 to 17 used the same BPA source as that of the BPA Sample 18, which included 23 ppm total sulfur, as indicated in Table 2.
- the starting sulfur content also was calculated from the mixture composition of BPA and phenol, and the 23 ppm sulfur that had been determined in the BPA source.
- the PhOH also was sulfur free in these samples.
- Samples 19 to 26 used the same BPA source as each other.
- a sample of the mixture of Sample 26 was analyzed for sulfur.
- the 10.8 ppm sulfur content of this mixture was used to calculate starting values for the sulfur content for Samples 19 to 25, which were made from the same BPA, as well as PhOH source.
- part of the material was also dried and used in separate tests with water addition.
- the amount of water typically added was 10 wt % based upon the total weight of BPA and phenol.
- the A-21 resin was added first, followed by BPA and phenol.
- wet A-21 resin was used for the sulfur removal.
- the 25 ml vial was closed and exposed to 86° C. in a preheated oven for 1, 2, or 3 hours.
- A-21 resin was used for the sulfur removal. After preparation of the mixture of A-21 resin, BPA, and phenol, water was then added before the 25 ml vial was closed and exposed to 100° C. in a preheated oven for 6 hours.
- the total sulfur measurement was based on the destruction of a 40 milligram (mg) sample at 1100° C.
- the vapors emanating from the sample during the destruction were led through a scrubber followed by a fluorescence detector with a flow of argon and oxygen. Under these conditions, the sulfur was converted into sulfur dioxide (SO 2 ).
- SO 2 sulfur dioxide
- the BPA organic purity can be defined as 100 wt % minus the sum of known and unknown impurities detected using ultraviolet (UV) (see HPLC method in Nowakowska et al., Polish J. Appl. Chem., XI(3), 247-254 (1996)).
- UV ultraviolet
- Samples 13 to 17 show that also at much lower levels of basic ion exchange resins and higher levels of BPA, sulfur can be effectively removed in significant amounts.
- the ion exchange resin had been dried before use.
- the BPA content of these samples was in a practical range that also can be encountered in the plant stream at reference 54 ( FIGS. 2-4 ): 45 to 70 wt %, for example.
- Examples 1-2 demonstrate that the addition of a base is effective in significantly reducing the amount of sulfur present in BPA, and thus is effective in enabling the production of high quality BPA, as well as high quality polycarbonate made from the resultant BPA. Such products also can be characterized by a reduction or elimination of noxious smell and enhanced color due to the low levels of sulfur achievable, according to embodiments.
- the embodiments may alternately comprise, consist of, or consist essentially of, any appropriate components herein disclosed.
- the embodiments may additionally, or alternatively, be formulated so as to be devoid, or substantially free, of any components, materials, ingredients, adjuvants or species used in prior art compositions or that are otherwise not necessary to the achievement of the function and/or objectives of the embodiments herein.
- conversion material refers to an inorganic material that converts radiation of a certain wavelength and re-emits of a different wavelength (much lower energy).
- a conversion material that causes luminescence and/or scintillation (which is characterized by energy loss of ionizing radiation through matter) may exist, for example, in the powder form or as a transparent single crystal.
- the conversion material converts some of the blue light from a blue LED to yellow light and the overall combination of available light is perceived as white light to an observer.
- the lifetime of yellow light produced in this manner (or other colors from conversion material(s)) is very short, lasting less than 10 ⁇ 4 seconds (i.e., lifetime when the excitation source is removed).
- Lifetimes of this order may be regarded as fluorescence lifetimes (lasting less than 10 ⁇ 4 seconds, e.g, lasting 10 ⁇ 4 to 10 ⁇ 9 seconds).
- a conversion material does not produce a long afterglow (lifetime duration generally lasting minutes and even hours).
- luminescence ceases (i.e., no long after-glow).
- the notation (C n -C m ) and the notation (C n-m ) means a group containing from n to m carbon atoms per group.
- MVR Melt-Volumetric Rate
- the pKa for methyl-p-hydroxybenzoate was obtained from the following reference: Chromatographia Vol. 39, No. 5/6, September 1994.
- the pKa value for p-cumylphenol was approximated based on the values of similar structures.
- Transparency refers to that percentage of transmitted light, which in passing through a specimen deviates from the incident beam by forward scattering. Percent (%) transparency can be measured according to ASTM D1003-00, Procedure B, illuminant C, on a spectrophotometer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- General Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/779,781 US20130221837A1 (en) | 2012-02-29 | 2013-02-28 | Polycarbonate made from low sulfur bisphenol a and containing converions material chemistry, and articles made therefrom |
US15/250,244 US9771452B2 (en) | 2012-02-29 | 2016-08-29 | Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261604960P | 2012-02-29 | 2012-02-29 | |
US13/779,781 US20130221837A1 (en) | 2012-02-29 | 2013-02-28 | Polycarbonate made from low sulfur bisphenol a and containing converions material chemistry, and articles made therefrom |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/250,244 Division US9771452B2 (en) | 2012-02-29 | 2016-08-29 | Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130221837A1 true US20130221837A1 (en) | 2013-08-29 |
Family
ID=48045017
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/779,781 Abandoned US20130221837A1 (en) | 2012-02-29 | 2013-02-28 | Polycarbonate made from low sulfur bisphenol a and containing converions material chemistry, and articles made therefrom |
US15/250,244 Active US9771452B2 (en) | 2012-02-29 | 2016-08-29 | Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/250,244 Active US9771452B2 (en) | 2012-02-29 | 2016-08-29 | Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom |
Country Status (4)
Country | Link |
---|---|
US (2) | US20130221837A1 (fr) |
EP (1) | EP2819981B1 (fr) |
CN (1) | CN104144902A (fr) |
WO (1) | WO2013130606A2 (fr) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130200415A1 (en) * | 2012-02-03 | 2013-08-08 | Sabic Innovative Plastics Ip B.V. | Light emitting diode device and method for production thereof containing conversion material chemistry |
US20140051802A1 (en) * | 2011-05-02 | 2014-02-20 | Sabic Innovative Plastics Ip B.V. | High purity bisphenol-a and polycarbonate materials prepared therefrom |
US20140051803A1 (en) * | 2011-05-02 | 2014-02-20 | Sabic Innovative Plastics Ip B.V. | High purity bisphenol-a and polycarbonate materials prepared therefrom |
US8962117B2 (en) | 2011-10-27 | 2015-02-24 | Sabic Global Technologies B.V. | Process for producing bisphenol A with reduced sulfur content, polycarbonate made from the bisphenol A, and containers formed from the polycarbonate |
US9006378B2 (en) | 2013-05-29 | 2015-04-14 | Sabic Global Technologies B.V. | Color stable thermoplastic composition |
US9287471B2 (en) | 2012-02-29 | 2016-03-15 | Sabic Global Technologies B.V. | Polycarbonate compositions containing conversion material chemistry and having enhanced optical properties, methods of making and articles comprising the same |
US9290618B2 (en) | 2011-08-05 | 2016-03-22 | Sabic Global Technologies B.V. | Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions |
US9346949B2 (en) | 2013-02-12 | 2016-05-24 | Sabic Global Technologies B.V. | High reflectance polycarbonate |
US9553244B2 (en) | 2013-05-16 | 2017-01-24 | Sabic Global Technologies B.V. | Branched polycarbonate compositions having conversion material chemistry and articles thereof |
US9772086B2 (en) | 2013-05-29 | 2017-09-26 | Sabic Innovative Plastics Ip B.V. | Illuminating devices with color stable thermoplastic light transmitting articles |
US9771452B2 (en) | 2012-02-29 | 2017-09-26 | Sabic Global Technologies B.V. | Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom |
US9821523B2 (en) | 2012-10-25 | 2017-11-21 | Sabic Global Technologies B.V. | Light emitting diode devices, method of manufacture, uses thereof |
US20180334090A1 (en) * | 2017-05-19 | 2018-11-22 | Ford Global Technologies, Llc | Brake component illuminator and illumination method |
WO2018225014A1 (fr) | 2017-06-07 | 2018-12-13 | Sabic Global Technologies B.V. | Filtre à vide rotatif, procédé et utilisation |
WO2020009705A1 (fr) * | 2018-07-06 | 2020-01-09 | Badger Licensing Llc | Traitement de flux résiduels issus de la fabrication de bisphénols |
WO2020180892A1 (fr) | 2019-03-04 | 2020-09-10 | Viavi Solutions Inc. | Pigments d'interférence à couches minces avec revêtement de nanoparticules |
US20210188750A1 (en) * | 2018-09-05 | 2021-06-24 | Badger Licensing Llc | Process for producing bisphenol-a |
EP3854856A1 (fr) * | 2020-01-27 | 2021-07-28 | Viavi Solutions Inc. | Pigments d'interférence à couches minces avec revêtement de nanoparticules |
US12091557B2 (en) | 2019-03-04 | 2024-09-17 | Viavi Solutions Inc. | Pigment including a coating of nanoparticles |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2771310B1 (fr) * | 2011-10-27 | 2018-01-24 | SABIC Global Technologies B.V. | Procédé de production du bisphénol a présentant une teneur réduite en soufre |
KR101859160B1 (ko) * | 2015-09-01 | 2018-06-28 | 주식회사 엘지화학 | 코폴리카보네이트 및 이의 제조방법 |
WO2017061337A1 (fr) * | 2015-10-09 | 2017-04-13 | 東レ株式会社 | Composition de conversion de couleur, feuille de conversion de couleur, et unité de source de lumière, dispositif d'affichage, système d'éclairage, unité de rétroéclairage, puce à del et boîtier à del la comprenant |
WO2017203495A1 (fr) | 2016-05-27 | 2017-11-30 | Sabic Global Technologies B.V. | Lentilles en copolycarbonate, procédés pour leur fabrication et applications correspondantes |
EP3464470B1 (fr) | 2016-05-27 | 2021-04-07 | SHPP Global Technologies B.V. | Lentilles en copolycarbonate, procédés pour leur fabrication et applications correspondantes |
WO2018020425A1 (fr) | 2016-07-25 | 2018-02-01 | Sabic Global Technologies B.V. | Compositions de copolycarbonate présentant des propriétés optiques améliorées, articles formés à partir desdites compositions et procédés de fabrication |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1377227A (en) * | 1972-03-27 | 1974-12-11 | Basf Ag | Process for the pruification of crude 2,2-bis-4,-oxyphenyl-propane |
US4507509A (en) * | 1984-01-04 | 1985-03-26 | General Electric Company | Purification of bisphenol-A |
US5288926A (en) * | 1992-03-02 | 1994-02-22 | The Dow Chemical Company | Process for preparing a bisphenol |
US5463140A (en) * | 1994-08-31 | 1995-10-31 | The Dow Chemical Company | Process for making polyphenols from ketones or aldehydes and phenols |
US5939494A (en) * | 1994-08-31 | 1999-08-17 | The Dow Chemical Company | Polymeric substrate containing mercapto and sulfonic groups |
US6133190A (en) * | 1998-04-27 | 2000-10-17 | The Dow Chemical Company | Supported mercaptosulfonic acid compounds useful as catalysts for phenolation reactions |
US20060069292A1 (en) * | 2004-09-29 | 2006-03-30 | Ramachandran Kumar | Methods for purifying p,p-bisphenol-A |
Family Cites Families (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US489803A (en) | 1893-01-10 | gillespie | ||
US3049568A (en) | 1958-10-20 | 1962-08-14 | Union Carbide Corp | Preparation of bisphenols |
US3394089A (en) | 1964-12-02 | 1968-07-23 | Dow Chemical Co | Ion exchange catalyst for the preparation of bisphenols |
US3673262A (en) | 1968-12-20 | 1972-06-27 | Hooker Chemical Corp | Crystallization of diphenylol alkanes |
US3839247A (en) | 1973-01-05 | 1974-10-01 | Gen Electric | Water-clear hydrolytically stable polycarbonate composition containing an aromatic or aliphatic epoxy stabilizer |
DE2402367A1 (de) | 1973-01-23 | 1974-07-25 | Gen Electric | Hitzestabilisiertes polycarbonatharz |
GB1539184A (en) | 1975-08-01 | 1979-01-31 | Shell Int Research | Cation-exchange resins |
US4052466A (en) | 1976-09-27 | 1977-10-04 | The Upjohn Company | Process for the preparation of bisphenol-a |
GB1578225A (en) | 1977-07-11 | 1980-11-05 | Shell Int Research | Preparation of bisphenols |
EP0001863B1 (fr) | 1977-11-09 | 1981-07-15 | Shell Internationale Researchmaatschappij B.V. | Préparation de bisphénols |
US4308405A (en) | 1978-07-05 | 1981-12-29 | Shell Oil Company | Preparation of bisphenols |
US4294995A (en) | 1979-12-13 | 1981-10-13 | General Electric Company | Method and catalyst for making bisphenol |
US4346247A (en) | 1979-12-13 | 1982-08-24 | General Electric Company | Method and catalyst for making bisphenol |
US4424283A (en) | 1979-12-13 | 1984-01-03 | General Electric Company | Catalyst for synthesizing bisphenol and method for making same |
US4423252A (en) | 1980-08-07 | 1983-12-27 | Mitsubishi Chemical Industries Limited | Process for preparing bisphenols |
US4396728A (en) | 1980-09-30 | 1983-08-02 | General Electric Company | Method and catalyst for making bisphenol |
US4365099A (en) | 1981-05-12 | 1982-12-21 | General Electric Company | Process for the production of bisphenols |
US4400555A (en) | 1981-10-06 | 1983-08-23 | General Electric Company | Ion exchange catalyzed bisphenol synethesis |
US4391997A (en) | 1981-10-23 | 1983-07-05 | General Electric Company | Ion exchange catalyzed bisphenol process |
US4455409A (en) | 1982-12-02 | 1984-06-19 | General Electric Company | Method for making bisphenol catalysts |
US4584416A (en) | 1983-11-14 | 1986-04-22 | General Electric Company | Method and catalyst for making bisphenol |
US4595704A (en) | 1984-08-13 | 1986-06-17 | The Dow Chemical Company | Preparation of ion-exchange catalysts |
US4590303A (en) | 1985-06-03 | 1986-05-20 | General Electric Company | Method for making bisphenol |
US4904710A (en) | 1985-10-31 | 1990-02-27 | The Dow Chemical Company | Gamma radiation resistant carbonate polymer compositions |
US5212206A (en) | 1986-06-10 | 1993-05-18 | Bayer Aktiengesellschaft | Ion exchange modified with mercapto amines |
US5284981A (en) | 1986-06-10 | 1994-02-08 | Bayer Aktiengesellschaft | Ion exchangers modified with mercapto amines |
US4820740A (en) | 1986-10-30 | 1989-04-11 | Shell Oil Company | Process and catalyst for production of bisphenol-A |
DE3873986D1 (de) | 1987-05-23 | 1992-10-01 | Bayer Ag | Stabilisiertes neopentylglykol-polycarbonat. |
CA1318687C (fr) | 1987-10-19 | 1993-06-01 | Simon Ming-Kung Li | Procede pour isomeriser les sous-produits de la synthese du bis-phenol |
US4822923A (en) | 1987-10-19 | 1989-04-18 | Shell Oil Company | Isomerization of by-products of bis-phenol synthesis |
JPH07103058B2 (ja) | 1987-12-04 | 1995-11-08 | 三井東圧化学株式会社 | ビスフェノールaの製造方法 |
EP0320658A1 (fr) | 1987-12-16 | 1989-06-21 | General Electric Company | Compositions de polycarbonate contenant des phosphites |
DE3827643A1 (de) | 1988-08-16 | 1990-02-22 | Bayer Ag | Isomerisierung von bisphenolen |
US5087767A (en) | 1989-12-25 | 1992-02-11 | Mitsui Toatsu Chemicals, Inc. | Method for preparing bisphenol a |
JPH0692529B2 (ja) | 1989-12-28 | 1994-11-16 | 日本ジーイープラスチックス株式会社 | 芳香族系ポリカーボネートの製造方法 |
US5243093A (en) | 1990-09-07 | 1993-09-07 | General Electric Company | Process and composition |
US5233096A (en) | 1990-11-16 | 1993-08-03 | Rohm And Haas Company | Acidic catalyst for condensation reactions |
PL164289B1 (pl) | 1990-11-24 | 1994-07-29 | Inst Ciezkiej Syntezy Orga | Sposób otrzymywani blsfenolu A PL PL |
DE69217393T2 (de) * | 1991-07-16 | 1997-05-28 | Chiyoda Chem Eng Construct Co | Kondensationsverfahren zur Rückgewinnung von Bisphenol A und Phenol |
JPH05117382A (ja) | 1991-10-29 | 1993-05-14 | Nippon G Ii Plast Kk | 共重合ポリカーボネート、その製造方法およびそれからなる組成物 |
FR2685221B1 (fr) | 1991-12-19 | 1994-12-23 | Rhone Poulenc Chimie | Procede et catalyseur pour la preparation de bisphenols. |
FR2685323B1 (fr) | 1991-12-19 | 1994-04-08 | Rhone Poulenc Chimie | Mercaptomethylbenzylamines et leur utilisation dans la synthese de bisphenols. |
JP3326530B2 (ja) | 1992-03-27 | 2002-09-24 | 月島機械株式会社 | ビスフェノール類の異性化触媒および異性化法 |
JP3172577B2 (ja) | 1992-04-20 | 2001-06-04 | 新日鐵化学株式会社 | ビスフェノール類の製造方法 |
JP3172576B2 (ja) | 1992-04-20 | 2001-06-04 | 新日鐵化学株式会社 | ビスフェノール類の製造方法 |
US5780690A (en) | 1992-04-28 | 1998-07-14 | Bayer Aktiengesellschaft | Bisphenol synthesis on modified ion-exchange resins using specially purified carbonyl compounds |
DE4227520A1 (de) | 1992-08-20 | 1994-02-24 | Bayer Ag | Verfahren zur Herstellung von Bisphenolen |
US5364895A (en) | 1993-01-20 | 1994-11-15 | Dover Chemical Corp. | Hydrolytically stable pentaerythritol diphosphites |
DE4312038A1 (de) | 1993-04-13 | 1994-10-20 | Bayer Ag | Mehrfach regenerierbare Ionenaustauscherharze mit geringer Alkyl-SH-Gruppen-Belegung |
DE4312039A1 (de) | 1993-04-13 | 1994-10-20 | Bayer Ag | Optimierte Ionenaustauscherschüttungen für die Bis-phenol-A Synthese |
JP2543825B2 (ja) | 1993-04-28 | 1996-10-16 | 根本特殊化学株式会社 | 蓄光性蛍光体 |
KR100413583B1 (ko) | 1993-08-30 | 2004-05-10 | 도버 케미칼 코포레이션 | 가수분해안정성펜타에리트리톨디포스파이트 |
US5475154A (en) | 1994-03-10 | 1995-12-12 | Rohm And Haas Company | Method for producing high-purity bisphenols |
US5589517A (en) | 1994-04-08 | 1996-12-31 | Mitsubishi Chemical Corporation | Modified ion exchange resins and use thereof |
US5414151A (en) | 1994-05-02 | 1995-05-09 | General Electric Company | Method for making bisphenol |
US5414152A (en) | 1994-05-10 | 1995-05-09 | General Electric Company | Method for extending the activity of acidic ion exchange catalysts |
US5672664A (en) | 1994-06-14 | 1997-09-30 | General Electric Company | Color improved polycarbonate compositions and molded articles |
TW419458B (en) | 1994-07-21 | 2001-01-21 | Mitsui Chemicals Inc | Process for preparing bisphenol A |
JPH0838910A (ja) | 1994-07-29 | 1996-02-13 | Mitsubishi Chem Corp | イオン交換樹脂 |
JPH0871433A (ja) | 1994-09-02 | 1996-03-19 | Mitsubishi Chem Corp | イオン交換樹脂 |
CN1038395C (zh) | 1994-10-25 | 1998-05-20 | 中国石油化工总公司 | 合成双酚用离子交换树脂催化剂及其制备 |
JPH08319248A (ja) | 1995-05-23 | 1996-12-03 | Mitsubishi Chem Corp | ビスフェノールaの製造方法 |
JP3834837B2 (ja) | 1995-06-01 | 2006-10-18 | 三菱化学株式会社 | ビスフェノールaの製造方法 |
EP0848693A4 (fr) | 1995-08-24 | 1999-03-17 | Dow Chemical Co | Somerisation de bisphenols |
DE19539444A1 (de) | 1995-10-24 | 1997-04-30 | Bayer Ag | Verfahren zur Herstellung von Bisphenolen unter Verwendung neuer Cokatalysatoren |
TW354793B (en) | 1995-11-27 | 1999-03-21 | Mitsubishi Gas Chemical Co | Polycarbonate resin with high flowability and process for producing the same |
US5783733A (en) | 1996-06-13 | 1998-07-21 | General Electric Company | Process for manufacture of bisphenol |
DE19638667C2 (de) | 1996-09-20 | 2001-05-17 | Osram Opto Semiconductors Gmbh | Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement |
DE19638888A1 (de) | 1996-09-23 | 1998-03-26 | Bayer Ag | Cokatalysatoren für die Bisphenolsynthese |
DE19701278A1 (de) | 1997-01-16 | 1998-07-23 | Bayer Ag | Verfahren zur Herstellung von Bis-(4-hydroxyaryl)-alkanen |
JP3757517B2 (ja) | 1997-01-29 | 2006-03-22 | 三菱化学株式会社 | イオン交換樹脂及びこれを用いるビスフェノールの製法 |
US6174987B1 (en) | 1997-02-13 | 2001-01-16 | Molecular Optoelectronics Corporation | Polycarbonates derived from spirobiindanols and dihydroxyaromatic compounds |
JP4458204B2 (ja) | 1997-03-10 | 2010-04-28 | 三菱化学株式会社 | ビスフェノールaの製造方法 |
JP3752780B2 (ja) | 1997-05-20 | 2006-03-08 | 三菱化学株式会社 | イオン交換樹脂及びこれを用いるビスフェノールの製造方法 |
JP3826489B2 (ja) | 1997-05-29 | 2006-09-27 | 三菱化学株式会社 | イオン交換樹脂およびその使用 |
SG68668A1 (en) | 1997-06-16 | 1999-11-16 | Gen Electric | Polycarbonate composition for vented moldings |
CN1204664A (zh) | 1997-06-16 | 1999-01-13 | 通用电气公司 | 用于排气模塑的聚碳酸酯组合物 |
FR2768814B1 (fr) | 1997-09-24 | 2004-05-07 | Samuel Bucourt | Procede et dispositif optiques d'analyse de surface d'onde |
US5883218A (en) | 1997-10-24 | 1999-03-16 | Molecular Optoelectronics Corporation | Optically active spirobiindane polymers |
JP3700361B2 (ja) | 1997-12-18 | 2005-09-28 | 三菱化学株式会社 | イオン交換樹脂及びこれを触媒とするビスフェノール類の製造方法 |
JPH11246458A (ja) | 1998-02-26 | 1999-09-14 | Mitsubishi Chemical Corp | ビスフェノールの製造方法 |
JP3960678B2 (ja) | 1998-03-12 | 2007-08-15 | 三菱化学株式会社 | イソチウロニウム塩の製造方法 |
DE69911971T2 (de) | 1998-06-26 | 2004-07-22 | Nippon Steel Chemical Co., Ltd. | Verfahren zur herstellung von bisphenol |
US6613823B1 (en) | 1998-10-21 | 2003-09-02 | Phillips Petroleum Company | Phosphite additives in polyolefins |
JP4093655B2 (ja) | 1998-10-22 | 2008-06-04 | 出光興産株式会社 | ビスフェノールaの製造法 |
DE60006220T2 (de) | 1999-02-26 | 2004-07-29 | General Electric Co. | Kombiniertes ionenaustauscherbett zur herstellung von bisphenol-a |
US6069225A (en) | 1999-03-17 | 2000-05-30 | Bayer Corporation | Polycarbonate composition useful in optical storage applications |
JP2000281608A (ja) | 1999-03-29 | 2000-10-10 | Mitsui Chemicals Inc | ビスフェノールaの製造方法 |
JP2000281607A (ja) | 1999-03-29 | 2000-10-10 | Mitsui Chemicals Inc | ビスフェノールaの製造方法 |
TW501941B (en) | 1999-03-29 | 2002-09-11 | Nippon Steel Chemical Co | Cationic exchange resin |
JP3903634B2 (ja) * | 1999-03-31 | 2007-04-11 | 三菱化学株式会社 | ビスフェノールaの製造方法 |
TW530045B (en) | 1999-04-13 | 2003-05-01 | Idemitsu Petrochemical Co | Method of producing bisphenol A |
JP3888799B2 (ja) | 1999-05-14 | 2007-03-07 | 三井化学株式会社 | ビスフェノールaの製造方法 |
US6689474B2 (en) | 1999-05-18 | 2004-02-10 | General Electric Company | Thermally stable polymers, method of preparation, and articles made therefrom |
CN1089332C (zh) | 1999-06-30 | 2002-08-21 | 中国石油化工集团公司 | 含硫粗酚的精制方法 |
DE19954786A1 (de) | 1999-11-15 | 2001-05-17 | Bayer Ag | Schmelzkristallisation |
CN1195722C (zh) | 2000-01-07 | 2005-04-06 | 出光兴产株式会社 | 双酚a的制备方法 |
JP2001199919A (ja) | 2000-01-18 | 2001-07-24 | Idemitsu Petrochem Co Ltd | ビスフェノールaの製造方法 |
US6373262B1 (en) | 2000-02-17 | 2002-04-16 | International Business Machines Corporation | Method and apparatus for testing a signal line |
JP2001233812A (ja) | 2000-02-24 | 2001-08-28 | Mitsui Chemicals Inc | ビスフェノールaの製造方法 |
DE10036057A1 (de) | 2000-07-25 | 2002-02-07 | Bayer Ag | Flammwidrige Polycarbonat-Zusammensetzungen |
CN1339517A (zh) | 2000-08-22 | 2002-03-13 | 化学工业部晨光化工研究院(成都) | 芳香族聚碳酸酯合成方法 |
US6730816B2 (en) | 2000-12-29 | 2004-05-04 | Rohm And Haas Company | High productivity bisphenol-A catalyst |
FR2819805B1 (fr) | 2001-01-23 | 2003-03-21 | Atofina | Procede de fabrication du bisphenol a |
EP1234845B1 (fr) | 2001-02-26 | 2008-11-12 | Mitsubishi Chemical Corporation | Procédé de préparation de carbonate de diphényle et procédé de préparation de polycarbonates |
JP4723105B2 (ja) | 2001-03-01 | 2011-07-13 | 出光興産株式会社 | ビスフェノールaの製造方法 |
JP2002265402A (ja) | 2001-03-08 | 2002-09-18 | Idemitsu Petrochem Co Ltd | ビスフェノールaの製造方法 |
US6774256B2 (en) | 2001-06-22 | 2004-08-10 | Exxonmobil Chemical Patents Inc. | Low corrosive integrated process for preparing dialkyl carbonates |
US6716368B1 (en) | 2001-08-06 | 2004-04-06 | General Electric Company | Phosporescent polycarbonate and molded articles |
US6620939B2 (en) | 2001-09-18 | 2003-09-16 | General Electric Company | Method for producing bisphenol catalysts and bisphenols |
US6706846B2 (en) | 2001-10-10 | 2004-03-16 | General Electric Company | Method for end-capping polycarbonate resins and composition for use in same |
JP4050053B2 (ja) | 2001-12-27 | 2008-02-20 | 出光興産株式会社 | ビスフェノール類製造用触媒及び該触媒を用いるビスフェノール類の製造方法 |
US7307119B2 (en) | 2002-08-01 | 2007-12-11 | Electronics And Telecommunications Research Institute | Thin film material using pentaerythritol acrylate for encapsulation of organic or polymeric light emitting device, and encapsulation method for LED using the same |
AU2003221442A1 (en) | 2002-03-22 | 2003-10-08 | Nichia Corporation | Nitride phosphor and method for preparation thereof, and light emitting device |
CN1564837B (zh) | 2002-04-22 | 2010-05-26 | 三菱化学株式会社 | 芳香族聚碳酸酯、其制造方法、聚碳酸酯组合物及由该组合物得到的中空容器 |
US6676852B2 (en) | 2002-05-31 | 2004-01-13 | General Electric Company | Phosphorescent thermoplastic composition |
US6692659B2 (en) | 2002-05-31 | 2004-02-17 | General Electric Company | Phosporescent polycarbonate, concentrate and molded articles |
US20030232957A1 (en) | 2002-06-12 | 2003-12-18 | General Electric Company | Method for making an aromatic polycarbonate |
JP4864323B2 (ja) | 2002-10-15 | 2012-02-01 | ソルヴェイ アドバンスド ポリマーズ リミテッド ライアビリティ カンパニー | 抗黄変性重縮合ポリマー組成物及び製品 |
US6780961B2 (en) | 2002-10-16 | 2004-08-24 | General Electric Company | Method of making polycarbonate |
JP4050589B2 (ja) | 2002-10-29 | 2008-02-20 | 出光興産株式会社 | 光反射シート、その製造方法およびその成形品 |
JP4506114B2 (ja) | 2002-12-06 | 2010-07-21 | 東レ株式会社 | ポリエステル樹脂成形体およびその製造方法 |
US7112702B2 (en) | 2002-12-12 | 2006-09-26 | General Electric Company | Process for the synthesis of bisphenol |
US6982045B2 (en) | 2003-05-17 | 2006-01-03 | Phosphortech Corporation | Light emitting device having silicate fluorescent phosphor |
US20050035331A1 (en) | 2003-06-24 | 2005-02-17 | Xiao-Dong Sun | Phosphorescent blends |
JP4391254B2 (ja) | 2003-07-17 | 2009-12-24 | ダイセルポリマー株式会社 | 光散乱性熱可塑性樹脂組成物 |
JP4080967B2 (ja) | 2003-07-18 | 2008-04-23 | 出光興産株式会社 | 光反射シート及びその成形品 |
JP2005082713A (ja) * | 2003-09-09 | 2005-03-31 | Teijin Chem Ltd | 芳香族ポリカーボネート樹脂 |
JP4147202B2 (ja) | 2003-09-30 | 2008-09-10 | 三井化学株式会社 | 改質酸性イオン交換樹脂触媒およびそれを用いたビスフェノール類の製造方法 |
JP4246593B2 (ja) | 2003-10-08 | 2009-04-02 | 出光興産株式会社 | 光反射用ポリカーボネート系樹脂シート及びそれを用いた光反射用積層体 |
DE102004005726A1 (de) | 2004-02-05 | 2005-08-25 | Bayer Materialscience Ag | Entwässerung von Kreislaufströmen bei der Herstellung von Bisphenol A |
DE102004005723A1 (de) * | 2004-02-05 | 2005-08-25 | Bayer Materialscience Ag | Herstellung von Bisphenol A mit verringertem Schwefelgehalt |
US8110622B2 (en) | 2004-07-20 | 2012-02-07 | Teijin Chemicals Ltd. | Aromatic polycarbonate resin composition and manufacturing process thereof |
JP4410054B2 (ja) | 2004-07-30 | 2010-02-03 | 出光興産株式会社 | 光反射シート及びその成形品 |
JP2006124600A (ja) | 2004-11-01 | 2006-05-18 | Teijin Chem Ltd | 光高反射性ポリカーボネート樹脂組成物およびその製造方法 |
ATE534933T1 (de) | 2004-11-05 | 2011-12-15 | Teijin Chemicals Ltd | Polycarbonat-harzmaterial zum formen von brillenlinsen und optischen elementen |
US7718733B2 (en) | 2004-12-20 | 2010-05-18 | Sabic Innovative Plastics Ip B.V. | Optically clear polycarbonate polyester compositions |
CN101111314A (zh) | 2005-01-28 | 2008-01-23 | 陶氏环球技术公司 | 在阳离子交换树脂用作酸性催化剂前对其进行稳定化的方法以及所述经稳定化的阳离子交换树脂在化学反应中的用途 |
FR2882059B1 (fr) | 2005-02-17 | 2007-03-23 | Arkema Sa | Objet moule presentant un effet multichromatique et dispositif lumineux associe |
CN101712869B (zh) | 2005-02-28 | 2013-04-10 | 电气化学工业株式会社 | 荧光体及其制造方法及使用了该荧光体的发光元件 |
DE102006016548B9 (de) | 2005-04-15 | 2021-12-16 | Osram Gmbh | Blau bis Gelb-Orange emittierender Leuchtstoff und Lichtquelle mit derartigem Leuchtstoff |
US7358293B2 (en) | 2005-05-02 | 2008-04-15 | General Electric Company | Thermoplastic polycarbonate compositions with improved optical surface quality, articles made therefrom and method of manufacture |
US7297381B2 (en) | 2005-05-20 | 2007-11-20 | General Electric Company | Light diffusing films, methods of making the same, and articles using the same |
JP2006339033A (ja) | 2005-06-02 | 2006-12-14 | Sumitomo Dow Ltd | 直下型バックライトユニット |
DE102005025788A1 (de) | 2005-06-04 | 2006-12-07 | Bayer Materialscience Ag | Verfahren zur Herstellung von hochreinem Bisphenol A |
JP2007165811A (ja) | 2005-12-16 | 2007-06-28 | Nichia Chem Ind Ltd | 発光装置 |
DE102006001257A1 (de) | 2005-12-30 | 2007-07-12 | Advanced Micro Devices, Inc., Sunnyvale | Automatisiertes Zustandabschätzungssystem für Cluster-Anlagen und Verfahren zum Betreiben des Systems |
ATE449617T1 (de) | 2006-02-02 | 2009-12-15 | Euro Celtique Sa | Hydrogel für wundbehandlung |
US8017713B2 (en) | 2006-06-15 | 2011-09-13 | Mitsubishi Chemical Corporation | Production apparatus of polycarbonate resin and production method of polycarbonate resin |
US7700696B2 (en) | 2006-06-28 | 2010-04-20 | Sabic Innovative Plastics Ip B.V. | Polycarbonate composition having improved scratch resistance, and articles formed therefrom |
US20080029720A1 (en) | 2006-08-03 | 2008-02-07 | Intematix Corporation | LED lighting arrangement including light emitting phosphor |
US7652083B2 (en) | 2006-09-29 | 2010-01-26 | Sabic Innovative Plastics Ip B.V. | Thermoplastic compostions, methods of making, and articles formed therefrom |
EP1925874B8 (fr) * | 2006-11-24 | 2014-09-10 | OSRAM GmbH | Système DEL d'éclairage à mélange de couleurs |
CN101104803A (zh) | 2007-01-08 | 2008-01-16 | 罗维鸿 | 发光二极管及其荧光粉及有机薄膜层 |
US7959827B2 (en) | 2007-12-12 | 2011-06-14 | General Electric Company | Persistent phosphor |
JP2008184482A (ja) | 2007-01-26 | 2008-08-14 | Lion Corp | スチレン系エラストマー含有導電性樹脂組成物 |
PL210812B1 (pl) | 2007-02-14 | 2012-03-30 | Inst Ciężkiej Syntezy Organicznej Blachownia | Sposób otrzymywania bisfenolu A |
US8513876B2 (en) | 2007-05-22 | 2013-08-20 | National Institute For Materials Science | Fluorescent substance, method for producing the same, and light-emitting device using the same |
US20090043053A1 (en) | 2007-08-07 | 2009-02-12 | Rudiger Gorny | Aircraft window |
US8759428B2 (en) | 2007-08-22 | 2014-06-24 | Sabic Innovative Plastics Ip B.V. | Polycarbonate compositions |
JP5578597B2 (ja) | 2007-09-03 | 2014-08-27 | 独立行政法人物質・材料研究機構 | 蛍光体及びその製造方法、並びにそれを用いた発光装置 |
CN101205358B (zh) | 2007-09-30 | 2011-04-27 | 佛山市顺德区瑞能科技有限公司 | 一种高光反射性的聚碳酸酯组合物及其用途 |
US20100261828A1 (en) | 2007-11-08 | 2010-10-14 | Teijin Chemicals Ltd. | Resin composition |
KR20090059995A (ko) | 2007-12-07 | 2009-06-11 | 삼성전자주식회사 | 액정표시장치 |
TW201003974A (en) | 2008-07-11 | 2010-01-16 | wei-hong Luo | White light emitting diode and light conversion layer thereof |
CN101325238B (zh) | 2008-08-14 | 2012-02-01 | 罗维鸿 | 白光发光二极管及其发光转换层 |
WO2010025876A1 (fr) | 2008-09-04 | 2010-03-11 | Bayer Materialscience Ag | Dispositif électroluminescent et son procédé de production |
CN101358133B (zh) | 2008-09-27 | 2012-12-12 | 罗文渊 | 白光发光二极管及其硫化物荧光粉 |
JP5325560B2 (ja) | 2008-12-18 | 2013-10-23 | スタンレー電気株式会社 | 発光装置、および、発光装置の製造方法 |
JP5271132B2 (ja) | 2009-03-25 | 2013-08-21 | 日立マクセル株式会社 | 方向判別機能を備えているワーク |
JP2011029051A (ja) | 2009-07-28 | 2011-02-10 | Mitsubishi Engineering Plastics Corp | 蛍光灯互換性のled照明灯 |
JP5517037B2 (ja) | 2009-08-06 | 2014-06-11 | 独立行政法人物質・材料研究機構 | 蛍光体及びその製造方法、並びにそれを用いた発光装置 |
CN102020851B (zh) | 2009-09-16 | 2013-10-16 | 大连路明发光科技股份有限公司 | 一种光转换柔性高分子材料及其用途 |
US9293667B2 (en) * | 2010-08-19 | 2016-03-22 | Soraa, Inc. | System and method for selected pump LEDs with multiple phosphors |
KR101267273B1 (ko) | 2009-09-25 | 2013-05-24 | 제일모직주식회사 | 높은 유동성을 갖는 폴리카보네이트 수지 및 그 제조방법 |
TWM405514U (en) | 2009-11-30 | 2011-06-11 | Top Energy Saving System Corp | Lighting module |
US8466611B2 (en) | 2009-12-14 | 2013-06-18 | Cree, Inc. | Lighting device with shaped remote phosphor |
DE102009059771A1 (de) | 2009-12-21 | 2011-06-22 | Bayer MaterialScience AG, 51373 | Polycarbonat mit verbesserten thermischen und mechanischen Eigenschaften sowie reduziertem thermischen Ausdehnungskoeffizienten |
US8962770B2 (en) | 2009-12-30 | 2015-02-24 | Sabic Global Technologies B.V. | Blends of isosorbide-based copolycarbonate, method of making, and articles formed therefrom |
TW201139532A (en) | 2010-04-30 | 2011-11-16 | Styron Europe Gmbh | Improved light diffusing composition |
US8250101B2 (en) | 2010-05-27 | 2012-08-21 | International Business Machines Corporation | Ontology guided reference data discovery |
CN101885907A (zh) | 2010-07-09 | 2010-11-17 | 深圳市科聚新材料有限公司 | 一种led灯遮光板用聚碳酸酯改性材料及其制备方法 |
CN202091807U (zh) * | 2010-09-21 | 2011-12-28 | 常熟琦光光电科技有限公司 | 一种led日光灯 |
CN102134383A (zh) | 2011-01-28 | 2011-07-27 | 暨南大学 | Led照明用光散射型聚碳酸酯组合物及其应用 |
US8350275B2 (en) | 2011-04-01 | 2013-01-08 | Sabic Innovative Plastics Ip B.V. | Optoelectronic devices and coatings therefore |
US8735634B2 (en) | 2011-05-02 | 2014-05-27 | Sabic Innovative Plastics Ip B.V. | Promoter catalyst system with solvent purification |
US20140051803A1 (en) | 2011-05-02 | 2014-02-20 | Sabic Innovative Plastics Ip B.V. | High purity bisphenol-a and polycarbonate materials prepared therefrom |
US20120283485A1 (en) | 2011-05-02 | 2012-11-08 | Umesh Krishna Hasyagar | Robust promoter catalyst system |
CN103502192A (zh) | 2011-05-02 | 2014-01-08 | 沙特基础创新塑料Ip私人有限责任公司 | 高纯度双酚a和由其制备的聚碳酸酯材料 |
US20140051802A1 (en) | 2011-05-02 | 2014-02-20 | Sabic Innovative Plastics Ip B.V. | High purity bisphenol-a and polycarbonate materials prepared therefrom |
CN103547554A (zh) | 2011-05-02 | 2014-01-29 | 沙特基础创新塑料Ip私人有限责任公司 | 高纯度双酚a以及由其制备的聚碳酸酯材料 |
US9290618B2 (en) | 2011-08-05 | 2016-03-22 | Sabic Global Technologies B.V. | Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions |
US20130094179A1 (en) | 2011-10-13 | 2013-04-18 | Intematix Corporation | Solid-state light emitting devices with multiple remote wavelength conversion components |
US8962117B2 (en) | 2011-10-27 | 2015-02-24 | Sabic Global Technologies B.V. | Process for producing bisphenol A with reduced sulfur content, polycarbonate made from the bisphenol A, and containers formed from the polycarbonate |
EP2771310B1 (fr) * | 2011-10-27 | 2018-01-24 | SABIC Global Technologies B.V. | Procédé de production du bisphénol a présentant une teneur réduite en soufre |
WO2013116697A1 (fr) | 2012-02-03 | 2013-08-08 | Sabic Innovative Plastics Ip B.V. | Dispositif à diodes électroluminescentes et son procédé de production comprenant de la chimie de matière de conversion |
CN104145001A (zh) | 2012-02-29 | 2014-11-12 | 沙特基础创新塑料Ip私人有限责任公司 | 含转换材料化学物质并具有增强的光学特性的聚碳酸酯组合物、其制造方法及包含其的制品 |
CN104144902A (zh) | 2012-02-29 | 2014-11-12 | 沙特基础创新塑料Ip私人有限责任公司 | 用于生产低硫双酚a的方法、用于生产聚碳酸酯的方法以及由聚碳酸酯制作的制品 |
WO2014066784A1 (fr) | 2012-10-25 | 2014-05-01 | Sabic Innovative Plastics Ip B.V. | Dispositifs à diode électroluminescente, leurs procédés de fabrication et leurs utilisations |
CN104903393A (zh) | 2013-01-08 | 2015-09-09 | 沙特基础全球技术有限公司 | 聚合物照明电枢 |
US9553244B2 (en) | 2013-05-16 | 2017-01-24 | Sabic Global Technologies B.V. | Branched polycarbonate compositions having conversion material chemistry and articles thereof |
US9006378B2 (en) | 2013-05-29 | 2015-04-14 | Sabic Global Technologies B.V. | Color stable thermoplastic composition |
WO2014191943A1 (fr) | 2013-05-29 | 2014-12-04 | Sabic Innovative Plastics Ip B.V. | Dispositifs d'éclairage ayant des articles thermoplastiques, transmettant de la lumière, de couleur stable |
-
2013
- 2013-02-27 CN CN201380011570.4A patent/CN104144902A/zh active Pending
- 2013-02-27 EP EP13713590.1A patent/EP2819981B1/fr not_active Not-in-force
- 2013-02-27 WO PCT/US2013/028019 patent/WO2013130606A2/fr active Application Filing
- 2013-02-28 US US13/779,781 patent/US20130221837A1/en not_active Abandoned
-
2016
- 2016-08-29 US US15/250,244 patent/US9771452B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1377227A (en) * | 1972-03-27 | 1974-12-11 | Basf Ag | Process for the pruification of crude 2,2-bis-4,-oxyphenyl-propane |
US4507509A (en) * | 1984-01-04 | 1985-03-26 | General Electric Company | Purification of bisphenol-A |
US5288926A (en) * | 1992-03-02 | 1994-02-22 | The Dow Chemical Company | Process for preparing a bisphenol |
US5463140A (en) * | 1994-08-31 | 1995-10-31 | The Dow Chemical Company | Process for making polyphenols from ketones or aldehydes and phenols |
US5939494A (en) * | 1994-08-31 | 1999-08-17 | The Dow Chemical Company | Polymeric substrate containing mercapto and sulfonic groups |
US6133190A (en) * | 1998-04-27 | 2000-10-17 | The Dow Chemical Company | Supported mercaptosulfonic acid compounds useful as catalysts for phenolation reactions |
US20060069292A1 (en) * | 2004-09-29 | 2006-03-30 | Ramachandran Kumar | Methods for purifying p,p-bisphenol-A |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140051802A1 (en) * | 2011-05-02 | 2014-02-20 | Sabic Innovative Plastics Ip B.V. | High purity bisphenol-a and polycarbonate materials prepared therefrom |
US20140051803A1 (en) * | 2011-05-02 | 2014-02-20 | Sabic Innovative Plastics Ip B.V. | High purity bisphenol-a and polycarbonate materials prepared therefrom |
US9957351B2 (en) | 2011-08-05 | 2018-05-01 | Sabic Global Technologies B.V. | Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions |
US9290618B2 (en) | 2011-08-05 | 2016-03-22 | Sabic Global Technologies B.V. | Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions |
US8962117B2 (en) | 2011-10-27 | 2015-02-24 | Sabic Global Technologies B.V. | Process for producing bisphenol A with reduced sulfur content, polycarbonate made from the bisphenol A, and containers formed from the polycarbonate |
US9490405B2 (en) * | 2012-02-03 | 2016-11-08 | Sabic Innovative Plastics Ip B.V. | Light emitting diode device and method for production thereof containing conversion material chemistry |
US20130200415A1 (en) * | 2012-02-03 | 2013-08-08 | Sabic Innovative Plastics Ip B.V. | Light emitting diode device and method for production thereof containing conversion material chemistry |
US9711695B2 (en) * | 2012-02-03 | 2017-07-18 | Sabic Global Technologies B.V. | Light emitting diode device and method for production thereof containing conversion material chemistry |
US20170025587A1 (en) * | 2012-02-03 | 2017-01-26 | Sabic Global Technologies B.V. | Light emitting diode device and method for production thereof containing conversion material chemistry |
US9771452B2 (en) | 2012-02-29 | 2017-09-26 | Sabic Global Technologies B.V. | Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom |
US9299898B2 (en) | 2012-02-29 | 2016-03-29 | Sabic Global Technologies B.V. | Polycarbonate compositions containing conversion material chemistry and having enhanced optical properties, methods of making and articles comprising the same |
US9287471B2 (en) | 2012-02-29 | 2016-03-15 | Sabic Global Technologies B.V. | Polycarbonate compositions containing conversion material chemistry and having enhanced optical properties, methods of making and articles comprising the same |
US9821523B2 (en) | 2012-10-25 | 2017-11-21 | Sabic Global Technologies B.V. | Light emitting diode devices, method of manufacture, uses thereof |
US9346949B2 (en) | 2013-02-12 | 2016-05-24 | Sabic Global Technologies B.V. | High reflectance polycarbonate |
US9553244B2 (en) | 2013-05-16 | 2017-01-24 | Sabic Global Technologies B.V. | Branched polycarbonate compositions having conversion material chemistry and articles thereof |
US9772086B2 (en) | 2013-05-29 | 2017-09-26 | Sabic Innovative Plastics Ip B.V. | Illuminating devices with color stable thermoplastic light transmitting articles |
US9006378B2 (en) | 2013-05-29 | 2015-04-14 | Sabic Global Technologies B.V. | Color stable thermoplastic composition |
US20180334090A1 (en) * | 2017-05-19 | 2018-11-22 | Ford Global Technologies, Llc | Brake component illuminator and illumination method |
US20200164290A1 (en) * | 2017-06-07 | 2020-05-28 | Sabic Global Technologies B.V. | Rotary vacuum filter, method, and use |
WO2018225014A1 (fr) | 2017-06-07 | 2018-12-13 | Sabic Global Technologies B.V. | Filtre à vide rotatif, procédé et utilisation |
WO2020009705A1 (fr) * | 2018-07-06 | 2020-01-09 | Badger Licensing Llc | Traitement de flux résiduels issus de la fabrication de bisphénols |
KR20210040070A (ko) * | 2018-07-06 | 2021-04-12 | 바져 라이센싱 엘엘씨 | 비스페놀 제조로부터의 잔류 스트림의 처리 |
JP2021535926A (ja) * | 2018-07-06 | 2021-12-23 | バジャー・ライセンシング・エルエルシー | ビスフェノールの製造からの残渣流の処理 |
JP7155419B2 (ja) | 2018-07-06 | 2022-10-18 | バジャー・ライセンシング・エルエルシー | ビスフェノールの製造からの残渣流の処理 |
US11760710B2 (en) | 2018-07-06 | 2023-09-19 | Badger Licensing Llc | Treatment of residual streams from the manufacture of bisphenols |
KR102604125B1 (ko) | 2018-07-06 | 2023-11-17 | 바져 라이센싱 엘엘씨 | 비스페놀 제조로부터의 잔류 스트림의 처리 |
US20210188750A1 (en) * | 2018-09-05 | 2021-06-24 | Badger Licensing Llc | Process for producing bisphenol-a |
WO2020180892A1 (fr) | 2019-03-04 | 2020-09-10 | Viavi Solutions Inc. | Pigments d'interférence à couches minces avec revêtement de nanoparticules |
EP3935206A4 (fr) * | 2019-03-04 | 2022-08-17 | Viavi Solutions Inc. | Pigments d'interférence à couches minces avec revêtement de nanoparticules |
US12091557B2 (en) | 2019-03-04 | 2024-09-17 | Viavi Solutions Inc. | Pigment including a coating of nanoparticles |
EP3854856A1 (fr) * | 2020-01-27 | 2021-07-28 | Viavi Solutions Inc. | Pigments d'interférence à couches minces avec revêtement de nanoparticules |
Also Published As
Publication number | Publication date |
---|---|
EP2819981B1 (fr) | 2016-12-21 |
US9771452B2 (en) | 2017-09-26 |
WO2013130606A2 (fr) | 2013-09-06 |
WO2013130606A3 (fr) | 2013-10-24 |
EP2819981A2 (fr) | 2015-01-07 |
CN104144902A (zh) | 2014-11-12 |
US20160369049A1 (en) | 2016-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9771452B2 (en) | Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom | |
US9711695B2 (en) | Light emitting diode device and method for production thereof containing conversion material chemistry | |
KR101965761B1 (ko) | 변환 물질 화학을 포함하며 광학 특성이 개선된 폴리카르보네이트 조성물, 이의 제조 방법, 및 이를 포함하는 물품 | |
CN104918992B (zh) | 发光二极管装置、制造方法、其应用 | |
US9553244B2 (en) | Branched polycarbonate compositions having conversion material chemistry and articles thereof | |
US20160208164A1 (en) | Light-emitting device, wavelength conversion member, phosphor composition and phosphor mixture | |
TW201347242A (zh) | 波長變換構件及使用其之半導體發光裝置 | |
JP2014125597A (ja) | 熱可塑性樹脂組成物、波長変換部材、発光装置、及びled照明器具 | |
WO2014014079A1 (fr) | Dispositif photoémetteur, élément convertisseur de longueur d'onde, composition phosphorescente et mélange phosphorescent | |
JP6204839B2 (ja) | 発光装置、及び波長変換部材 | |
JP5598593B2 (ja) | 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物 | |
WO2017077446A1 (fr) | Procédé de fabrication d'une composition polymère comprenant un polymère densifié et un matériau de conversion | |
JP2014175322A (ja) | 発光装置、該発光装置を有する照明装置、及び画像表示装置、並びに蛍光体組成物、及び該蛍光体組成物を成形してなる波長変換部材 | |
WO2013129509A1 (fr) | Élément de conversion de longueur d'onde et procédé de fabrication associé, dispositif émettant de la lumière et appareil d'éclairage comprenant l'élément de conversion de longueur d'onde, et composition de résine | |
JP2014192251A (ja) | 波長変換部材およびこれを用いた半導体発光装置 | |
JP2014170895A (ja) | 波長変換部材及びこれを用いた発光装置 | |
JP2014125497A (ja) | 蛍光体樹脂組成物及びその製造方法、該蛍光体樹脂組成物を成形してなる波長変換部材、並びに該波長変換部材を備える半導体発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS Free format text: CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033591/0673 Effective date: 20140402 |
|
AS | Assignment |
Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT REMOVE 10 APPL. NUMBERS PREVIOUSLY RECORDED AT REEL: 033591 FRAME: 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033649/0529 Effective date: 20140402 |
|
AS | Assignment |
Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 12/116841, 12/123274, 12/345155, 13/177651, 13/234682, 13/259855, 13/355684, 13/904372, 13/956615, 14/146802, 62/011336 PREVIOUSLY RECORDED ON REEL 033591 FRAME 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033663/0427 Effective date: 20140402 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |