TW200838000A - Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp - Google Patents

Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp Download PDF

Info

Publication number
TW200838000A
TW200838000A TW097101381A TW97101381A TW200838000A TW 200838000 A TW200838000 A TW 200838000A TW 097101381 A TW097101381 A TW 097101381A TW 97101381 A TW97101381 A TW 97101381A TW 200838000 A TW200838000 A TW 200838000A
Authority
TW
Taiwan
Prior art keywords
layer
nitride compound
compound semiconductor
iii nitride
light
Prior art date
Application number
TW097101381A
Other languages
English (en)
Inventor
Hiroaki Kaji
Yasunori Yokoyama
Hiromitsu Sakai
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200838000A publication Critical patent/TW200838000A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/32025Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Led Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

200838000 九、發明說明 【發明所屬之技術領域】 本發明係有關適合使用於發光二極體(LED ),雷射 二極體(LD ),電子裝置等之III族氮化物化合物半導體 元件及該製造方法,III族氮化物化合物半導體發光元件 及該製造方法,以及使用III族氮化物化合物半導體發光 元件的燈。 本申請專利係依據對於日本國在2007年1月16日所 提出申請之日本特願2007-6790號,在2007年7月13曰 所提出申請之日本特願2007-184456號,在2007年10月 22日所提出申請之日本特願2007-27445 8號,以及在 2007年1 1月2日所提出申請之日本特願2007-28669 1號 ,主張優先權,並引用其內容於此。 【先前技術】 III族氮化物化合物半導體係例如於做爲發光元件之 情況,發光光譜爲從紫外遍佈於紅色之廣範圍之直接轉換 型的半導體,並使用於發光二極體(LED )或雷射二極體 (LD )等之發光元件,如此之發光元件係因比較於以往之 照明相關的元件,發光效率爲高,故可以低消耗能量完成 ,另外,如此之發光元件係亦有壽命長之優點,室成則急 速擴大。 通常,ΙΠ族氮化物化合物半導體係形成於藍寶石基 板的上方,但,當於藍寶石基板上形成ΠΙ族氮化物化合 200838000 物半導體時,經由藍寶石基與III族氮化物化合物半導體 之晶格常數的錯合而產生轉位,由此,有著對於元件特性 帶來不良影響的問題,經由錯合而產生的轉位係爲貫通半 導體於縱方向(於基板面垂直方向)之貫通轉位,在針對 發光元件之半導體層中的貫通轉位中,電子產生歆亂,電 子的移動度變低,或引起洩漏電流發生等之現象,因此, 發光元件之半導體層中的貫通轉位係使發光元件的發光效 率下降而使發光強度下降。 爲了控制錯合,從以往,於基板上,藉由中間層而使 III族氮化物化合物半導體成長(例如,參照專利文獻1, 專利文獻2),而中間層係爲將與III族氮化物化合物半 導體相同組成的GaN或相同纖鋅礦構造之A1N等,以有 機金屬氣相成長法(MOCVD法)進行成膜而成之構成。 但,即使爲於基板上,藉由中間層而使III族氮化物 化合物半導體成長之情況,亦無法充分防止半導體層中之 貫通轉位,而更要求貫通轉位少之半導體層。 [專利文獻1 ]日本特許3 0 2 6 0 8 7號公報 [專利文獻2]日本特開平4-297023號公報 【發明內容】 [欲解決發明之課題] 本發明係有件於上述課題所作爲之構成,其目的爲, 提供半導體層之貫通轉位少,而得到優越之發光特性的 ΠI族氮化物化合物半導體發光元件者。 200838000 另外,其目的爲提供半導體層之貫通轉位少,而得到 優越之發光特性的III族氮化物化合物半導體發光元件之 製造方法者。 更加地,其目的爲提供使用上述ΠΙ族氮化物化合物 半導體發光元件的燈。 [爲解決課題之手段] 本發明者們係爲了解決上述問題而重複進行銳意檢討 ,調查貫通轉位與發光元件之發光特性的關係。 作爲檢測半導體層中之貫通轉位之方法,係認爲有使 用透過電子顯微鏡(TEM )而觀察樣品剖面的方法,但, 以經由TEM之觀察所得到之貫通轉位的評價結果係因爲 爲存在於某個所限制之範圍的貫通轉位之評價結果,故成 爲代表半導體層全體之結果則成爲問題,另外,爲了以 TEM觀察貫通轉位’係因有必要加工樣品,故使用於觀察 的樣品係無法做爲元件而使用,因此,有著無法正確地關 聯貫通轉位之評價結果與元件的特性之問題。 因此,本發明者係做爲檢測半導體層中之貫通轉位之 方法,係檢討使用以非破壞評價貫通轉位之方法。 圖1係爲爲了說明構成發光元件之半導體層的π I族 氮化物化合物半導體之結晶的貫通轉位的圖,於基板面, 從垂直方向而視的槪略模式圖,而針對在圖1,符號4 1係 表示ΠI族氮化物化合物半導體之結晶,而π〗族氮化物 化合物半導體之結晶4 1係如圖1所示,具有最密塡充結 200838000 晶構造,作爲於基板上,垂直成長六角柱之構造,在此, 例如在爲III族氮化物化合物半導體之結晶4 1的六角柱之 平面內的配置,當朝相同方向聚集時,則無間隙,但圖1 所示,當即使方向少而不同時,六角柱與六角柱之間,產 生間隙42,其間隙42係爲表示結晶41之配向程度的構成 ,認爲相當於貫通轉位。 作爲評價結晶之配向程度的方法之一,有著使用X線 而測定搖盪曲線法。 圖2係爲表示構成發光元件之半導體層的in族氮化 物化合物半導體(10-10 )面之搖盪曲線半寬度(full width at half maximum in rocking curve),和發光元件的 洩漏電流之關係圖表。 以搖盪曲線法所檢測之半寬度係因對應於圖1所示之 六角柱的結晶4 1之間隙4 2的量,故如圖2所示,以搖盪 曲線法所檢測之半寬度越小,六角柱之結晶4 1間的間隙 則越少’而成爲作爲Μ好配向之情況,其結果,將可得到 作爲裝置時之洩漏電流越小等之效果。 因此’本發明者等係對於以搖盪曲線法所檢測之半寬 度與發光元件的特性之關係,重覆銳意硏究的結果,由將 發光元件之半導體層之半寬度作爲特定範圍之時,發現可 提供半導體層中的貫通轉位少而得到良好之發光特性的發 光元件,想出本發明。 [1] 一種ΠΙ族氮化物化合物半導體元件,其特徵乃 由具備基板,和設置於前述基板上之中間層,和設置於前 -8- 200838000 述中間層上,( 0002 )面的搖盪曲線半寬度爲lOOarcsec 以下,且(10-10 )面的搖盪曲線半寬度爲300arcsec以下 之基底層而成。 [2] 如第[1]項記載之III族氮化物化合物半導體元件 ,其中,前述(0002 )面的搖盪曲線半寬度爲50arCSeC以 下,且前述(10-10 )面的搖盪曲線半寬度爲25 Oarcsec以 下。 [3] 如第[1]或[2]項記載之III族氮化物化合物半導體 元件,其中,前述基板爲藍寶石。 [4] 如第[3]項記載之III族氮化物化合物半導體元件 ,其中,前述中間層則形成於前述藍寶石基板之c面上。 [5] 如第[1]至[4]項任一記載之III族氮化物化合物半 導體元件,其中,前述中間層則由 AlxGai_xN ( OS xg 1 ) 而成。 [6] 如第[1]至[5]項任一記載之III族氮化物化合物半 導體元件,其中,前述中間層則由A1N而成。 [7] 如第[1]至[6]項任一記載之III族氮化物化合物半 導體元件,其中,前述基底層則由AlGaN而成。 [8] 如第[1]至[4]項任一記載之III族氮化物化合物半 導體元件,其中,前述基底層則由GaN而成。 [9] 一種III族氮化物化合物半導體元件,其特徵乃 具備第[1]至第[8]任一記載之III族氮化物化合物半導體元 件,和由依序層積η型半導體層,發光層及p型半導體層 而成之半導體層; -9- 200838000 於具備於前述III族氮化物化合物半導體元 層的上方’形成有前述半導體層。 [1〇]如第[9]項記載之ΙΠ族氮化物化合物 件,其中’於前述η型半導體層,具備有η型包 時’對於前述ρ型半導體層係具備ρ型包覆層, 包覆層及/或前述ρ型包覆層則至少包含超晶格構 另外’本發明者們係著眼於貫通轉位的生成 別是,當中間層當爲對於均一性優越之構成時, 基底層中之貫通轉位情況,對於針對在戒貫通轉 存在於基板與基底層之間的中間層,得到優越均 法’進行檢討,其結果,由濺鍍法所形成之中間 MOCVD法所形成之中間層做比較,由即使薄化 成爲對於面內均一性優越的構成,以及將介入存 與基底層之間的中間層,作爲以濺鍍法所形成之 ,發現可減少基底層中之貫通轉位情況而想出本: [Π] —種III族氮化物化合物半導體元件之 ,屬於第[1]至第[8]任一記載之III族氮化物化合 元件之製造方法,其特徵乃具有以濺鍍法形成前 之工程。 [12] 如第[11]項記載之III族氮化物化合物 件之製造方法,其中,更加具有以MOCVD法形 底層之工程。 [13] —種III族氮化物化合物半導體元件之 ,其特徵乃具有於具備於第[1]至第[8]任一記載之 件之基底 半導體元 覆層之同 前述η型 造。 機構,特 從可減少 位的介入 一性之方 層係與以 膜厚而亦 入於基板 構成情況 發明。 製造方法 物半導體 述中間層 半導體元 成前述基 製造方法 ΠΙ族氮 -10- 200838000 化物化合物半導體元件之基底層的上方’形成由依序層積 η型半導體層,發光層及P型半導體層而成之半導體層之 工程,和以濺鍍法形成前述中間層之工程。 [14] 如第[13]項記載之III族氮化物化合物半導體元 件之製造方法,其中,更加具有以M0CVD法形成前述基 底層之工程。 [15] 一種III族氮化物化合物半導體發光元件,其特 徵乃經由第[η ]或[12]項記載之製造方法所得到。 [16] —種III族氮化物化合物半導體發光元件,其特 徵乃經由第[1 3 ]或[1 4]項記載之製造方法所得到。 [17] 一種燈,其特徵乃使用如申請專利範圍第9項 ,第10項,第6項任一*記載之III族氣化物化合物半導體 發光元件。 [發明之效果] 本發明之III族氮化物化合物半導體元件發光元件係 因具備設置於基板上之中間層,(0002 )面的搖盪曲線半 寬度爲lOOarcsec以下,且(10-10)面的搖盪曲線半寬度 爲3 00arCSeC以下之基底層,故得到半導體層之貫通轉位 少,而優越之發光特性。 另外,如根據本發明之III族氮化物化合物半導體元 件之製造方法,因以濺鍍法而形成中間層,故可形成均一 之中間層,並可於中間層上,容易地形成(〇〇〇2 )面的搖 盪曲線半寬度爲lOOarcsec以下,且(10-10 )面的搖盪曲 -11 - 200838000 線半寬度爲300arcsec以下之基底層,隨之,如根據本發 明之III族氮化物化合物半導體元件之製造方法,可容易 提供具有半導體層之貫通轉位少,而優越之發光特性之本 發明的III族氮化物化合物半導體元件發光元件。 更加地,針對在本發明,由將η型包覆層及/或p型 包覆層,作爲含有超晶格構造之層構成情況,輸出則特別 提升,並可做爲電性優越之發光元件者。 更加地,本發明的燈係因使用本發明之III族氮化物 化合物半導體元件發光元件的構成,故成爲具備優越發光 特性的構成。 【實施方式】 [爲了實施發明之最佳型態] 以下,關於有關本發明之III族氮化物化合物半導體 元件及該製造方法,III族氮化物化合物半導體發光元件 及該製造方法,以及燈之一實施形態,適宜參照圖面進行 說明。 [ΠΙ族氮化物化合物半導體發光元件] 圖3係爲模式性地表示有關本發明之ΠΙ族氮化物化 合物半導體元件發光元件(III族氮化物化合物半導體元 件發光元件:以下,有略稱爲發光元件)之一例的槪略剖 面圖’另外’圖4係爲表示圖3所示之III族氮化物化合 物半導體元件發光元件之平面構造圖。 -12- 200838000 本實施形態之發光元件係如圖3所示,爲一面電極型 之構成,於基板1 1上,形成有中間層1 2,和基底層1 4a ,和作爲III族元素,由含有Ga之III族氮化物化合物半 導體而成之半導體層20之構成,而半導體層20係半導體 層20係如圖3所示,由依序層積η型半導體層14’發光 層15及ρ型半導體層16之各層而成的構成。 [發光元件之層積構成] <基板> 針對在本實施形態之發光元件,作爲可使用於基板1 1 之材料,係如爲IΠ族氮化物化合物半導體結晶外延成長 於表面之基板材料,並無特別限定,而可選擇各種材料來 使用,例如,可舉出藍寶石,SiC,矽’氧化鋅’氧化鎂 ’氧化猛’氧化銷’氧化鑑鈴鐵’氧化錶銘’砸化銷’氧 化鎵,氧化銦,氧化鋰鎵,氧化鋰鋁’氧化鈸鎵,氧化鑭 總銘鉬,氧化總,氧化鈦,給’鎢’銷等。 另外,在上述基板材料之中,特別理想爲使用藍寶石 ,期望於藍寶石基板的c面上,形成中間層1 2者。 然而,對於上述基板材料之中’使用知道由以高溫接 觸於氨之情況而引起化學性變性之氧化物基板或金屬基板 ,未使用氨而將中間層1 2進行成膜的同時,以使用氨的 方法而將構成後述之η型半導體層14之基底層進行成膜 之情況,係因在詳細後述之中間層1 2 ’亦作爲被覆層而作 用,故在防止基板11之化學性的變質則爲有效。 -13- 200838000 另外,一般而言’濺鍍法係因可壓低基板1 1的溫度 ,故在使用由具有以高溫分解之性質的材料而成之基板1 1 情況,亦未對於基板帶來損傷而可對於基板上之各層的成 膜。 <中間層> 針對在本實施型態之發光元件1 ’係於基板11上’將 具有六方晶系之結晶構造的中間層12進行成膜。 構成中間層1 2之III族氮化物化合物半導體的結晶係 理想爲由多結晶之AlxGa^N ( OS 1 )而成之構成,而 更理想爲由單結晶之AlxGanN ( OS 1 )而成之構成。 之III族氮化物半導體的結晶係經由控制成長條件之 情況,不止只有上方向,於面內方向亦成長而行成單結晶 構造,因此,經由控制中間層12之成膜條件情況’可做 爲由單結晶構造之III族氮化物半導體的結晶而成之中間 層1 2。 將具有如此之單結晶構造的中間層1 2,成膜於基板 1 1上之情況,因中間層1 2之緩衝機能有效地作用,故成 膜於其上方之III族氮化物半導體係成爲具有良好支配向 性及結晶性的結晶膜。 另外,構成中間層1 2之III族氮化物半導體的結晶係 晶由控制成膜條件的情況,亦可作爲將六角柱作爲基本之 集合組織而成之柱狀結晶(多結晶)者,然而’在此支及 合組織而成之柱狀結晶係指:於與鄰接之結晶粒之間’形 -14- 200838000 成結晶粒界所隔開’其本身係做爲縱剖面形狀而成爲 之結晶之情況。 中間層1 2係從在高溫之化學反應保護基板i〗之 ,或緩和基板1 1之材料與半導體層2 0之晶格常數的 之目的,或者做爲爲了促進爲了結晶成長之核產生的 形成。 作爲中間層1 2之材料,係理想爲使用含有Ga -族氮化物化合物之情況,特別是由AlxGa^N層(0 € ,理想爲〇 · 5 € X $ 1,更理想爲〇. 9 $ X $ 1 )所構成之 則更爲理想’另外,作爲使用於中間層1 2之材料, A1N之情況亦爲理想。 另外’中間層1 2係需要被覆基板1 1之表面1 1 a 少6 0 %以上,而理想爲呈被覆8 0 %以上地加以行成者 更爲理想爲呈被覆90%以上地加以行成者,另外,中 12係表面1 la之100%,即呈無間隙被覆基板1 1之 1 1 a上地加以形成之情況則最爲理想。 當中間層1 2,被覆基板1 1之表面1 1 a的範圍變 ,基板1 1則呈爲大露出之狀態,如此之情況,成膜 間層1 2上之基底層1 4a與直接成膜於基板1 1上之基 1 4a之晶格常數則成爲不同之構成,無法成爲均一的 ,而有產生突起或凹坑之虞。 另外,中間層12係亦可加上於基板1 1之表面1 作爲呈被覆側面而加以形成,更加地,亦可作爲呈被 板1 1之背面而形成。 柱狀 目的 不同 層所 :III 1 情況 使用 之至 ,而 間層 表面 小時 於中 底層 結晶 la, 覆基 -15- 200838000 <基底層> 本實施型態之η型半導體層14之基底層14a係由III 族氮化物化合物半導體而成,構成ΠΙ族氮化物化合物半 導體元件,而基底層14a之材料係亦可爲與中間層12相 同或不同,但,含有Ga之III族氮化物化合物,即GaN 系化合物半導體,因容易產生轉位之環化,故爲理想,由 AlxGa卜XN層(OS 1,理想爲OS 〇·5,更理想爲 〇 S X S 0.1 )所構成之情況則更爲理想,另外,本發明者們 進行實驗時,作爲使用於基底層14a之材料,含有Ga之 ΙΠ族氮化物化合物,特別是期望爲A1 GaN,而GaN亦爲 適合。 針對在本實施型態,關於基底層1 4a之厚度並無特別 限制,但理想做爲Ο.ίμηι至20μιη之範圍,更理想做爲 0.5μιη至15μιη之範圍,而基底層14a係有必要呈未直接 承接結晶界面爲明瞭之柱狀結晶的集合體之中間層1 2的 結晶性地,經由遷移而使轉位作爲環化,但,基底層1 4a 之厚度當未達〇 . 5 μιη時,有著轉位之環化成爲不充分的情 況,另外,即使做爲超過20μιη之基底層14a的厚度,對 於機能上亦無變化,而只有不必要地延長製造時間。 對於基底層14a係因應必要,如爲lxlO17〜lxl〇19/cm3 之範圍內,亦可摻雜η型不純物,但亦可作爲未摻雜(< 1 X 1 0 17/cm3 ),未摻雜之情況則在良好的結晶性之維持的 點,則爲理想。 -16- 200838000 例如’對於基板1 1具有導電性之情況,係經由於基 底層1 4a ’摻雜摻雜劑而作爲導電性之情況,可於發光元 件1之上下,形成電極,另一方面,對於做爲基板1 1而 使用絕緣性之材料的情況,係因成爲得到於發光元件1之 相同面,設置正極及負極之各電極的晶片構造,故基板1 1 正上方的層係做爲未摻雜之結晶的情況,從結晶性成爲梨 好之情況,則爲理想,作爲η型不純物,並無特別限定, 但例如可舉出Si,Ge及Sn等,而理想爲Si及Ge。 基底層14a係爲(0002 )面的搖盪曲線半寬度爲 lOOarcsec以下,且(10-10 )面的搖盪曲線半寬度爲 300arcsec以下之構成,另外,基底層14a係期望爲( 00 02 )面的搖盪曲線半寬度爲50arcsec以下,且(10-10 )面的搖盪曲線半寬度爲2 5 0arcSec以下之情況。 然而,針對在本發明「搖盪曲線半寬度」係指X線繞 射之搖盪曲線半寬度,另外,對於針對在本發明之「搖盪 曲線半寬度」的測定,作爲X線產生裝置,輸出爲電壓 45kV,電流40mA,於射入部光學系,作爲單色光鏡,使 用設置Ge混合單色光鏡2次繞射裝置,將來自X線管球 的發散光束,變換爲單色平行光束之構成,另一方面,作 爲受光部光學系,係使用分解能12 ”之3軸模組,作爲X 線檢測器係使用正比計數器,另外,對於X線產生裝置側 ,係做爲發散縫隙而使用1 /8 ’’之構成,將X線光束口徑調 整爲縱1 0 m m X 0.3 6 5 m m之大小。 對於從III族氮化物化合物半導體而成之基底層14a -17- 200838000 的上方’係可設置層積半導體層積構造之構成,例如,形 成爲了做爲發光元件之半導體層積構造之情況,可層積摻 雜Si,Ge ’ sn等之η型摻雜劑之η型導電性的層,或摻 雜鎂等之ρ型摻雜劑的ρ型導電性的層等而行成者,另外 ’作爲材料係對於發光層,係可使用InGaN,對於包覆層 等係可使用A1GaN,如此,於基底層1 4a上,更加地經由 形成具有機能之III族氮化物半導體結晶層之情況,可製 作發光二極體或雷射二極體,或者使用於電子裝置之製作 ’製作具有半導體層積構造之晶圓者。 <半導體層> 如圖3所示,半導體層20係具備η型半導體層14, 發光層15及ρ型半導體層16。 「η型半導體層」 η型半導體層14係層積於基底層14a之上方,並由η 型接觸層14b,和η型包覆層14c所構成。 然而,η型接觸層係可兼具基底層,及/或,η型包覆 層,但基底層則亦可兼具η型接觸層,及/或,η型包覆層 之情況。 (η型接觸層) η型接觸層1 4b係由III族氮化物化合物半導體而成 ,而η型接觸層14b係與基底層14a同樣地,由 -18- 200838000
AlxGai_xN 層(OS 1,理想爲 OS xS 0·5,更理想爲 0 $ x S 0.1 )所構成之情況則爲理想。 另外,對於η型接觸層1 4b係理想摻雜η型不純物, 而當以 lxl〇17 〜lxl〇19/cm3,理想係 ΙχΙΟ18 〜lxl019/cm3 之 濃度含有η型不純物時,在與負極之良好之有電阻接觸的 維持,斷裂產生的控制,良好結晶性的維持的點,則爲理 想,作爲η型不純物,並無特別限定,但例如可舉出Si, Ge及Sn等,而理想爲Si及Ge。 然而,構成基底層14a及η型接觸層14b之氮化鎵系 化合物半導體係理想爲同一組成者,而理想爲將此等合計 的膜厚,設定爲0.1〜20μπι,理想爲0.5〜15μιη,更理想爲 1〜1 2 μηι之範圍情況,當膜厚爲其範圍時,則良好地維持 半導體之結晶性。 (η型包覆層) 對於η型接觸層14b與發光層15之間,係理想爲設 置η型包覆層14c,經由設置η型包覆層14c之情況,可 具有對於活性層(發光層1 5 )之電子供給,晶格常數差的 緩和等之效果,η型包覆層14c係可經由AlGaN,GaN, GalnN等進行成膜,另外,亦可做爲此等之構造的異質接 合或進行複數次層積的超晶格構造,而對於將η型包覆層 14c作爲GalnN之情況,係當然期望作爲較發光層15之 GalnN之帶隙爲大情況。 η型包覆層14c之η型摻雜濃度係理想爲1x1 〇17〜lx -19- 200838000 l〇2()/Cm3之範圍,更理想爲lxlO18〜lxl〇19/cm3之範圍,當 摻雜濃度爲此範圍時,在良好結晶性的維持及發光元件之 動作電壓降低的點,則爲理想。 然而,對於將η型包覆層1 4c作爲含有超晶格構造的 層之情況,係省略詳細之圖示,但亦可爲含有層積由具有 1〇〇埃以下膜厚之III族氮化物化合物半導體而成之η側 第1層,和與該η側第1層組成不同之同時,由具有1 〇 〇 埃以下膜厚之III族氮化物化合物半導體而成之η側第2 層之構造的構成,另外,η型包覆層14c係亦可爲含有交 互重覆層積η側第1層與n側第2層之構造的構成,另外 ,理想係前述η側第1層或η側第2層任一則如做爲接合 於活性層(發光層1 5 )之構成即可。 如上述之η側第1層及η側第2層係例如,可做爲含 有Α1之AlGaN系(有單以記載爲AlGaN之情況),含有 In之GalnN系(有單以記載爲GaInN之情況),GaN之 組成之情況,另外,η側第1層及n側第2層係亦可爲 GalnN/GaN之交互構造,AlGaN/GaN之交互構造, GalnN/AlGaN之交互構造,組成不同之GalnN/GalnN之交 互構造(針對在本發明之”組成不同”的說明係指個元素組 成比不同之情況,以下相同),組成不同之AlGaN/AlGaN 之交互構造’針對在本發明,η側第1層及η側第2層係 理想爲GalnN/GaN之交互構造或組成不同之GalnN/GalnN 之情況。 上述η側第1層及n側第2層之超晶格層係各自理想 -20- 200838000 爲60埃以下者,更理想爲各自爲40埃以下者,而最 想爲各自爲1 〇埃〜40埃之範圍者,形成超晶格層之η 1層與η側第2層的膜厚,當超過100埃時,容易造 晶缺陷而不理想。 上述η側第1層及η側第2層係亦可各自做爲摻 構造,另外,亦可爲摻雜構造/未摻雜構造之組合, 摻雜之不純物係對於上述材料組成而言,無任何限制 適用以往公知的構成,例如,對於作爲η型包覆層, GalnN/GaN之交互構造或組成不同之GalnN/GalnN之 構造的構成之情況,作爲不純物,Si則爲最佳,另外 上述之η側超晶格多層膜係由GalnN或AlGaN,GaN 表之組成,即使爲相同,亦可將摻雜適宜做爲ON、 同時而製作。 <發光層> 發光層15係爲層積於η型半導體層14之同時, ρ型半導體層16於其上方的層,發光層係可採取多重 井構造,單一井構造,體構造等,針對在本實施型態 光層1 5係如圖3所示,作爲交互重覆層積由氮化鎵 合物半導體而成之障壁層15a,和由含有銦之氮化鎵 合物半導體而成之井層15b,且於η型半導體層14及 半導體層1 6側,配置有障壁層1 5 a,而在圖3所示的 中,發光層15係交互重覆層積6層的障壁層15a與 的井層15b,並於發光層15之最上層及最下層,配置
爲理 側第 成結 雜之 作爲 地可 使用 交互 ,如 所代 OFF 層積 量子 ,發 系化 系化 P型 例之 5層 有障 -21 - 200838000 壁層15a,於各障壁層15a間,配置井層15b之多重量子 井構造。 作爲障壁層1 5 a,係例如,可適當地使用較井層1 5 b 帶隙能量爲大之AUGa^NCOSc^S)等之氮化鎵系化合 物半導體。 另外,對於井層1 5 b係做爲含有銦之氮化鎵系化合物 半導體,例如可使用 GanInsN (0<s<l)等之氮化鎵系 化合物半導體。 <P型半導體層> p型半導體層16係由p型包覆層16a及p型接觸層 16b所構成,然而,p型接觸層則亦可爲兼具p型包覆層 之構成。 < P型包覆層> 作爲P型包覆層1 6a係爲較發光層1 5之帶隙能量爲 大的組成,如爲可封入載體於發光層1 5之構成,並無特 別限制,但理想係可舉出 AldGa^N ( 0 < d S 4,理想爲 〇· 1 € d S 0.3 )之構成,而p型包覆層1 6a當由AlGaN而 成時,在封入載體於發光層1 5的情況,則爲理想。 P型包覆層16a之p型摻雜濃度係理想爲1χ1〇18〜lx 1021/cm3之範圍,更理想爲lxlO19〜1X102G/Cm3,當p型摻 雜濃度爲上述範圍時,未使結晶性下降而得到良好之p型 結晶,作爲p型不純物係並無特別限制,但例如,理想係 -22- 200838000 可舉出Mg,而p型包覆層16a係亦可作爲進行複數次層 積之超晶格構造。 然而,對於將P型包覆層1 6 a作爲含有超晶格構造的 層之情況,係省略詳細的圖示,但亦可爲含有層積由具有 1〇〇埃以下膜厚之πι族氮化物化合物半導體而成之p側 第1層,和與該P側第1層組成不同之同時,由具有10 0 埃以下膜厚之III族氮化物化合物半導體而成之P側第2 層之構造的構成,另外,亦可爲含有交互重覆層積P側第 1層與P側第2層之構造的構成。 如上述之P側第1層及P側第2層係例如,可做爲各 自組成不同,例如,亦可爲AlGaN,GalnN或GaN內之任 一組成,另外,亦可爲 GalnN/GaN 之交互構造, AlGaN/GaN之交互構造,或 GalnN/A1 GaN之交互構造, 針對在本發明,P側第1層及p側第 2層係理想爲 AlGaN/AlGaN 或 AlGaN/GaN 之交互構造。 上述P側第1層及P側第2層之超晶格層係各自理想 爲60埃以下者’更理想爲各自爲40埃以下者,而最爲理 想爲各自爲1 0埃〜4 0埃之範圍者,形成超晶格層之p側第 1層與p側第2層的膜厚,當超過1 〇 〇埃時,成爲多包含 結晶缺陷等的層而不理想。 上述P側第1層及p側第2層之係亦可各自做爲摻雜 之構造,另外,亦可爲摻雜構造/未摻雜構造之組合,作 爲摻雜之不純物係對於上述材料組成而言,無任何限制地 可適用以往公知的構成,例如,對於作爲p型包覆層,使 -23- 200838000 用AlGaN/GaN之交互構造或組成不同之AlGaN/AlGaN之 交互構造的構成之情況,作爲不純物,Mg則爲最佳,另 外,如上述之p側超晶格多層膜係由GalnN或AlGaN, GaN所代表之組成,即使爲相同,亦可將摻雜適宜做爲 ON、OFF同時而製作。 (P型接觸層) P型接觸層16b係爲至少含有AleGabeN(0Se<0.5 ,理想爲OS eg 0.2,更理想爲〇$ 0.1 )而成之氮化鎵 系化合物半導體層,當Α1組成爲上述範圍時,在良好之 結晶性的維持及ρ電阻電極(參照後述之透光性電極1 7 ) 之良好的電組接觸情況,則爲理想。 另外,Ρ型接觸層16b係當以lxl〇18〜lxl〇21/cm3之範 圍的濃度含有P型摻雜劑時,在良好之有電阻接觸的維持 ,斷裂產生的防止,良好結晶性的維持的點,則爲理想, 更爲理想爲5xl019〜5xl02G/cm3之範圍,作爲ρ型不純物 ’並無特別限定,但例如理想係可舉出Mg。 然而,構成本發明之發光元件1之半導體層2〇,並不 限定於上述之實施型態的構成。 例如,作爲構成本發明之半導體層係除了上述之構成 ’知道有例如由一般式AlxGaylnzNhAMA層(0SXS1,0 SYS1 ’ 0SZS1 ’且X + Z + Y= l,記號Μ係表示與氮素( Ν)不同之第V族元素,爲〇‘Α<1)所表示知氮化鎵系 化合物半導體,針對在本發明,亦可無任何限制地使用此 -24- 200838000 等周知之氮化鎵系化合物半導體。 另外,作爲III族元素而含有Ga之III族氮化物化合 物半導體係除了 Al,Ga及In以外,可含由其他之III族 元素,而因應需要,亦可含有Ge,Si,Mg,Ca,Zn,Be ’ P ’ As及B等之元素,更加地,不限於意圖性地添加的 元素’而亦可包含依存於成膜條件而必然性所含有之不純 物,以及含於原料,反應管材質之微量不純物之情況。 <透光性正極> 透光性正極17係爲具有形成於p型半導體層16上之 透光性的電極。 作爲透光性正極1 7之材料,並無特別限定,可使用 ITO ( In2〇3-Sn〇2 ) ,AZO ( ZnO-A1203 ) ,IZO ( Ιη203 -
ZnO) ,GZO ( Zn0-Ga203 )等之材料,另外,透光性正極 1 7係亦可包含以往公知之構造而無任何限制地使用任何構 造之構成。 另外,透光性正極17係亦可呈被覆p型半導體層16 上之全面地形成,而亦可打開間隙而形成格子狀或樹形狀 <正極接合墊片> 正極接合墊片1 8係爲如圖4所示,形成於透光性正 極1 7上之略圓形的電極。 作爲正極接合墊片1 8之材料係使用A u,A1,N i及 -25- 200838000 C u等之構造則爲周知,此等之周知的材料,可無任何限 制地使用構造之構成。 正極接合墊片18之厚度係理想爲1〇〇〜1 000nm之範圍 內者,另外,正極接合墊片之特性上,厚度爲厚的情況, 因接合特性高,故正極接合墊片1 8之厚度係更理想爲作 爲3 0 0 nm以上者,更加地,從製造成本的觀點,理想爲作 爲500nm以下者。 <負極> 負極19係爲接合於構成半導體層20之n型半導體層 14之η型接觸層1 4 b的構成,因此,負極1 9係如圖3及 圖4所示,於去除p型半導體層16,發光層15,及η型 半導體層14之一部分,使η型接觸層14b露出而成之露 出範圍14d之上方,形成爲略圓形狀,作爲負極19之材 料係各種組成及構造的負極則爲周知,可無任何限制地使 用此等周知的負極。 [發光元件之製造方法] 對於製造圖3所示之發光元件1,係首先,於基板1 1 上,形成形成有半導體層20之圖5所示之層積半導體10 ,對於形成圖5所示之層積半導體1 0,係首先準備基板 1 1,基板1 1係其望施以前處理之後而使用者。 例如,對於使用由矽而成之基板Π的情況,進行眾 知之RCA洗淨方法等之溼式的方法,可使用使表面做爲 -26· 200838000 氫終端之方法,由此,成膜處理安定。 另外,亦可經由於濺鍍裝置之腔室,配置基板1 1,在 形成中間層1 2之前,進行濺鍍等之方法而進行前處理, 具體而言,針對在腔室內,可經由將基板1 1曝露於Ar或 N2之電漿中的情況,進行洗淨表面之前處理,而由使Ar 氣體或N2氣體等之電漿,作用於基板1 1之表面情況,可 去除附著於基板1 1表面之有機物或氧化物,此情況,如 未施加功率於標靶,而失加電壓於基板11與腔室之間, 電漿粒子則有效地作用於基板11。 於基板1 1進行前處理之後,於基板1 1上,經由濺鍍 法,將圖5所示之中間層1 2進行成膜。 作爲中間層1 2之成膜方法,係可無任何問題地使用 做爲III族氮化物化合物半導體之結晶成長方法一般所知 道之方法,例如,可使用MOCVD法,MBE法(分子線外 延法),濺鍍法及HVPE法(氫化物氣相磊晶法)等。 形成於中間層1 2上之η型半導體層1 4之配向係經由 中間層1 2之狀態的影響爲大,至此對於爲了得到結晶性 高之中間層12,係期望爲MOCVD法,但,MOCVD法係 有著堆積由在基板1 1上分解之原料生成之金屬的方法, 因於最初形成核,接著結晶成長於核的周圍,再來進行成 膜,故對於如中間層1 2,形成薄的膜之情況,係有著均一 性成爲不充分之情況,對此,濺鍍法係即使在形成薄的膜 之情況,亦可生成均一的膜,並因亦適合量產,故爲理想 ,可容易地形成具有單結晶構造之中間層1 2,或具有適當 -27- 200838000 構造之柱狀結晶(多結晶)構造的111族氣化物化合物半 導體。 經由濺鍍法形成中間層1 2之情況,在DC濺鍍法之中 ,因招致標靶表面之充電,而成膜速度不安定的可能性高 ,故期望做爲脈衝DC,或RF (高頻率)濺鍍法者,另外 ,在濺鍍法中,經由封閉電漿於磁場內之情況而提升效率 之方法則一般所實用,並做爲得到均一之膜厚的方法,期 望爲在中間電即使磁鐵的位置移動,而具體之運動方法係 可經由裝置而選擇,並可做爲搖動,或旋轉運動者,經由 如此之操作,可將具有單結晶構造之中間層1 2,或以適當 的密度具有結晶界面之明瞭的柱狀結晶之中間層1 2,進行 成膜。 經由濺鍍法形成中間層1 2之情況,成膜時之基板溫 度係期望爲3 0 0〜80 (TC者,在未達上述範圍之溫度中,無 法經由中間層1 2而被覆基板1 1之全面,有基板1 1面露 出之情況,另外,在超過上述範圍的溫度中,金屬原料的 遷移則變爲活潑,因不易形成具有結晶界面之明瞭的柱狀 結晶的中間層1 2,故不理想,另外,在超過上述範圍的溫 度中,因結晶成長速度極端地變小,因不易形成具有單結 晶構造的中間層1 2,故不理想。 另外,經由濺鍍法形成中間層12之情況,期望爲將 腔室內的壓力,作爲〇.3Pa以上者,在未達上述範圍之壓 力中,氮素的存在量則變少,有著做爲濺鍍之金屬未成未 氮化物而附著之情況,另外,腔室內之壓力的上限並無特 -28- 200838000 別訂定,但當然需要爲可使電漿產生之程度的低壓。 另外,對於腔室內之氮素原料與對於不活性氣體之流 量的氮素流量比,係有期望的範圍,對於氮素流量比過低 的情況,濺鍍金屬則有金屬直接附著之虞,而對於過高之 情況’不活性氣體的量則變少,而濺鍍速度則降低。 形成具有單結晶構造之中間層1 2的情況,將腔室內 之氮素原料與對於不活性氣體之流量的氮素流量比,呈作 爲氮素原料爲50%以上100%以下,期望爲60%以上90% 以下,更理想爲70%以上80%以下,特別期望爲75%。 另外,形成具有柱狀結晶(多結晶)之中間層12的 情況,將腔室內之氮素原料與對於不活性氣體之流量的氮 素流量比,呈作爲氮素原料爲1%以上50%以下,期望爲 10%以上40%以下,更理想爲20%以上30%以下,特別期 望爲2 5 %。 在此,作爲使用本技術之氮素原料,係可無任何問題 地使用一般所知道之化合物,而作爲氮素原料而使用氮氣 之情況,取代裝置以簡便完成,而無法得到高的反應速度 ,但,由經由電場或熱等而分解氮素之後,導入於裝置之 情況,可得到對於氨不佳可利用之程度的成膜速度。 隨之,當考慮與裝置成本之均衡時,氮素則爲最爲適 當之氮素原料。 經由濺鍍法形成中間層1 2之情況,經由將成膜時之 基板溫度,腔室內的壓力,腔室內之氮素原料與對於不活 性氣體之流量的氮素流量比,作爲上述範圍之情況,可將 -29- 200838000 具有單結晶構造之中間層1 2或結晶界面爲明瞭, 密度含有柱狀結晶之中間層1 2進行成膜。 如此,由經由濺鍍法形成中間層12之情況, 單結晶構造或匯集在結晶面之柱狀結晶層而成之面 性良好的中間層1 2,並可於面內均一性良好的中^ 上,使結晶配向性高之η型半導體層14外延 epitaxial growth ) 〇 例如,由以MOCVD法形成GaN系化合物半導 間層1 2之上方情況,將構成中間層1 2之單結晶構 集在結晶面之柱狀結晶層,作爲成長核,實現轉位 之結晶成長。 之後,於將中間層1 2進行成膜之基板1 1上, 所示,形成基底層14a。 在將中間層1 2進行成膜後,並無特別需要將 14a進行成膜之前的退火,但,對於以MOCVD法 法及HVPE法等之氣相化學成膜方法而實施基底層 情況,一般,歷經伴隨成膜之升溫過程與溫度的安 程,針對在此等過程,因多爲流通V族之原料氣體 故作爲結果有產生退火之效果的可能性,但,此係 別利用退效果之構成,而爲一般的公知技術。 另外,此時流通之載氣係可無問題地使用一般 ,也就是使用在MOCVD等之氣相化學成膜方法而 使用的氫或氮素即可。 但,化學性的比較而言,在活性的氫中之升溫 以期望 可形成 內均一 5層 12 成長( 體於中 造或匯 密度小 如圖5 基底層 ,MBE 14a之 定化過 情況, 並無特 的構成 被廣泛 係有著 -30- 200838000 有損結晶性或結晶表面之平坦性之虞,長時間進行之情況 爲佳。 層積基底層1 4a之方法係如爲可使如上述之轉位的環 化產生情況之結晶成長方手法即可,並無特別限定,但, MOCVD法,MBE法及HVPE法係因可經由遷移而使轉位 環化之情況,故可將良好之結晶性的膜進行成膜,而爲適 合,其中,MOCVD法係因可得到結晶性最佳的膜,故爲 理想。 以MOCVD法將基底層14a進行成膜情況的基板溫度 係期望爲8 00 °C以上者,當基板溫度爲高時,因容易產生 原子的遷移,而容易進行轉位之環化,而更期望爲900 °C 以上,特別期望爲1 000 °C以上,另外,將基底層14a進行 成膜時的基板溫度係當然作爲較分解結晶之溫度爲低之情 況,而作爲1 200 °C以上之溫度係作爲基底層14a之成長溫 度,並不適合。 另外,基底層14a係亦可使用濺鍍法而進行成膜者, 而使用濺鍍法而將基底層1 4a進行成膜之情況,比較於 MOCVD法或MBE法,可簡便地製作裝置而爲理想。 由濺鍍法將基底層1 4a進行成膜之情況,例如,於濺 鍍裝置之腔室內,導入氬及氮氣之後,使基板11之溫度 升溫,於基板1 1側施加高頻率偏壓之同時,於由金屬Ga 而成之濺鍍標靶側,施加電源’將腔室內的壓力保持爲特 定的壓力同時,可於基板1 1上,將基底層14a進行成膜 者0 -31 - 200838000 作爲濺鍍法係經由使用RF (高頻率)濺鍍法,或dC 濺鍍法之情況,對於濺鍍標靶而言,施加電源之情況則爲 理想。 另外,經由濺鍍法將基底層1 4a進行成膜之情況,作 爲經由使氮化物原料流通於反應室內之反應濺鍍法而成膜 之方法,在由控制反應之情況,可良好地保持結晶性,安 定地再現其良好之結晶性的情況,則更爲理想。 對於使用反應濺鍍法之情況,係從可容易地控制成膜 比例之情況,使用RF濺鍍法之情況則更爲理想,而DC 濺鍍法之中,使用反應濺鍍法之情況,當作爲以DC連續 施加電場之狀態時,濺鍍標靶則充電,因提升成膜比例之 情況變爲困難,故作爲脈衝地傳達偏壓之脈衝式DC濺鍍 法之情況則爲理想。 另外,以濺鍍法將半導體層進行成膜時,對於濺鍍標 靶而言,使磁場旋轉,或使磁場搖動之情況則爲理想,特 別是,使用RF濺鍍之情況,作爲得到均一之膜厚的方法 ,在濺鍍標靶,使磁鐵的位置移動的同時進行成膜之情況 則爲理想。 在本實施形態之中,對於氮素(N2 )與氬(Ar )的流 量之N2流量比爲20%以上90%以下的範圍之情況則爲理 想,當低於其範圍之N2流量比時,濺鍍金屬則直接金屬 狀態附著於基板,另外,當超過上述範圍之流量比時,因 Ar的量過少,故濺鍍比例則下降。 另外,在本實施形態之中,提升針對在濺鍍裝置之腔 •32- 200838000 室內的氣體中之N 2濃度,更加地,以上述流量比混合爲 重量大之氣體的Ar,而當腔室內之氣體只有N2之情況時 ,因敲金屬標?E的力爲弱,而限制成膜比例,而在本實施 形態之中,經由以上述流量比混合爲重量大之Ar情況, 可使成膜比例提升的同時,可將在基板1 1上的遷移,作 爲活潑。 作爲在本實施形態所使用之氮素原料係除了上述之 N2氣體之外,可無任什限制地使用一般所知之氮素化合物 ,但從氨或N2氣體係處理爲簡單的同時,可以比較便宜 價格得到之情況則爲理想,氮氣係如作爲經由電場或熱等 而分解之後,導入於裝置之方法,因可得到可利用於較氨 爲低之構成之工業生產性之程度的成膜速度者,當考慮與 裝置成本之均衡時,N2氣體則爲最爲適當之氮素源。 在本實施形態之製造方法之中,在將基底層1 4a進行 成膜時,理想爲將腔室內的壓力作爲1 OPa以下之情況, 更理想爲作爲5Pa以下之情況,最理想爲作爲IPa以下, 而腔室內之壓力則如爲上述範圍,可以高效率將結晶性良 好之基底層14a進行成膜,當腔室內的壓力超過l〇Pa以 下時,有著成爲無法得到結晶性良好之基底層1 4a之虞。 另外,以濺鍍法將基底層1 4a進行成膜時之腔室內的 壓力係理想爲〇.3Pa以上,而當將腔室內的壓力作爲未達 〇.3Pa時,氮素的存在量則變過小,有著在作爲濺鍍之金 屬未成爲氮化物的狀態而附著於基板1 1上之虞。 以濺鍍將基底層1 4a進行成膜時之基板1 1的溫度係 -33- 200838000 理想爲作爲4 0 0〜1 3 0 0 °C之範圍者,經由提升將基底層1 4 a 進行成膜時之基板1 1的溫度之情況而容易產生原子的遷 移,容易進行轉位之環化,另外,將基底層1 4 a進行成膜 時之基板1 1的溫度係因有必要較分解結晶之溫度爲低, 理想爲未達1 3 0 0 °c者。 在本實施形態之製造方法之中,經由將由濺鍍法之基 底層1 4a成膜時之基板1 1的溫度,作爲上述範圍之情況 ,可活性化在到達至基板1 1之反應種(從金屬標靶所取 出的金屬)之結晶表面的運動,得到結晶性佳之基底層 1 4 a 〇 另外,經由濺鍍法而將基底層1 4a進行成膜時之成膜 速度係理想爲作爲〇·1〜l〇nm/sec之範圍,而當成膜比例爲 未達0.1 nm/s時,成膜處理則成爲長時間,對於工業生產 性產生很大的浪費,另外,當成膜比例超過1 Oiim/s時, 得到良好的膜之情況則變爲困難。 然而,由使用濺鍍法而將基底層1 4a進行成膜之情況 ,比較於MOCVD法,而可提升成膜比例,並可縮短成膜 (製造)時間之情況,另外,經由縮短製造時間之情況, 可將不純物進入於濺鍍裝置內之腔室內的情況,控制爲最 小限度,可將高品質之基底層1 4a進行成膜。 之後,於將基底層1 4a進行成膜之基板1 1上,如圖5 所示,將η型接觸層14b,η型包覆層14c,由障壁層15a 與井層15b而成之發光層15,p型半導體層16之p型包 覆層1 6a及p型接觸層1 6b,以結晶性良好的層之形成可 -34 - 200838000 能之MOCVD (有機金屬化學氣相成長法)法’進行成膜 〇 在MOCVD法之中,作爲載體氣體使用氫(H2 )或氮 (N2 )、作爲III族元素源之Ga源,使用三甲基鎵( TMG )或三乙基鎵(TEG )、作爲 A1源,使用三甲基鋁 (TMA )或三乙基鋁(TEA )、作爲In源,使用三甲基銦 (TMI )或三乙基銦(TEI )、作爲V族元素源之N源, 理想爲使用使用氨或聯氨等。 另外,對於摻雜劑元素之η型不純物係作爲S i原料 ,可利用甲矽烷(SiH4 )或乙矽烷(ShH6 )、作爲Ge源 料,使用鍺烷氣體(GeH4 ),或四甲基鍺酸((CH3)4Ge)或 四乙基鍺酸((C2H5 ) 4Ge )等之有機鍺酸化合物。 對於摻雜劑元素之P型不純物係,作爲Mg原料,係 例如可使用雙環戊二烯鎂(CP2Mg )或雙乙環戊二烯鎂( EtCp2Mg ) 〇 於如此做爲所得到之圖5所示之層積半導體1 0之p 型接觸層16b上,使用光微影法而依序形成透光性正極17 及正極接合墊片18。 接著,經由將形成透光性正極1 7及正極接合墊片1 8 之層積半導體10進行乾蝕刻之情況,使η型接觸層14b 上之露出範圍14d露出。 之後,於露出範圍1 4d上,經由使用光微影法而形成 負極1 9之情況,得到圖3及圖4所示之發光元件1。 本實施形態之發光元件1係因具備設置於設置在基板 35- 200838000 1 1上之中間層12, ( 0002 )面的搖盪曲線半寬度爲 lOOarcsec以下,且(10-10 )面的搖盪曲線半寬度爲 300arcsec以下之基底層14a,故基底層14a中的貫通轉位 少而得到良好之發光特性。 另外,如根據本實施形態之發光元件1的製造方法, 因以濺鍍法而形成中間層1 2,故即使爲薄亦可形成均一之 中間層12,並於中間層12上,可容易地形成(0002 )面 的搖盪曲線半寬度爲lOOarcsec以下,且(10-10 )面的搖 盪曲線半寬度爲3 00arcsec以下之基底層14a,隨之,如 根據本實施形態之發光元件1的製造方法,可容易地提供 半導體層中的貫通轉位少而具有良好之發光特性之發光元 件1 〇 另外,本實施形態之發光元件1係因爲爲於貫通轉位 少之基底層14a上,依序形成η型半導體層14之η型接 觸層14b與η型包覆層14c,和發光層15,ρ型半導體層 16之構成,故發光層15及p型半導體層16中之貫通轉位 亦爲少的構成,成爲半導體層中的貫通轉位少而具有良好 之發光特性之構成。 然而,本發明之發光元件1的製造方法,並不侷限於 上述的例之構成,而半導體層2 0之成膜係亦可組合濺鍍 法,MOCVD法(有機金屬化學氣相成長法),HVPE法( 氣化物氣相嘉晶法)’ Μ B E法(分子線外延法)等,可使 半導體層成長之構成之任何方法而進行之。 另外,本發明之III族氮化物化合物半導體元件係除 -36- 200838000 了上述之發光元件,可使用於雷射元件或受光元件等之光 電變換元件,或HBT或HEMT等電子裝置等’此等半導 體元件係知道多數各種構造之構成,有關本發明之111族 氮化物化合物半導體元件之構造係包含此等周知之元件構 造而無任何限制。 [燈] 本發明的燈係爲使用本發明之發光元件的構成。 作爲本發明的燈係例如可舉出組合本發明之發光元件 與螢光體而成之構成,而組合發光元件與螢光體的燈係可 經由該業者周知的手段而作爲該業者周知的構成,另外, 由以往,知道有經由組合本發明之發光元件與螢光體而改 變發光色的技術,針對在本發明的燈亦可無任何限制地採 用如此之技術者。 例如,經由適當地選定使用於燈之螢光體的情況,亦 可成爲得到較發光元件爲長波長的發光,另外,經由混合 發光元件本身的發光玻常與經由螢光體所變換之波長情況 ,亦可作爲呈白色發光的等者。 圖6係模式性地表示使用有關本發明之III族氮化物 化合物半導體元件發光元件而構成的燈之一例的槪略圖, 圖6所示的燈3係爲砲彈型之構成,並使用圖3所示之發 光元件1,而如圖6所示,經由以導線3 3接著發光元件1 之正極接合墊片(參照圖3所示之符號1 8 )於2條框體 3 1,3 1之內的一方(在圖6係框體3 1 ),而以導線3 4接 -37- 200838000 合發光元件1之負極(參照圖\所示之符號1 9 )於另一方 的框體3 2,安裝發光元件1,另外,發光元件1之周邊係 由透明之樹脂而成的塑膜3 5所密封。 本發明的燈係爲使用本發明的發光元件1而成之構成 ,故成爲具備優越之發光特性的構成。 另外,本發明的燈係亦可使用於一般用途之砲彈型’ 攜帶之背照光用途的側視型,使用於顯示器之前視型等之 任何用途者。 [實施例] 接著,將本發明,表示實施例及比較例而作更詳細說 明,但本發明,並不侷限於此等實施例之構成。 [實施例1] 於藍寶石基板的c面上,作爲中間層12,使用RF濺 鍍法,形成由A1N而成的層,並於其上方,作爲基底層’ 使用MOCVD法,形成由GaN而成的層。 <中間層的形成> 將c面藍寶石基板,導入於濺鍍裝置’在腔室內’將 基板加熱至5 00°C,以1 5sccm的流量導入氮氣,之後,由 將腔室內的壓力保持爲1 P a,施加5 0 0 W之高頻率偏壓於 基板側,曝露於氮素電漿之情況,洗淨基板表面。 接著,導入氬與氮氣,將基板溫度作爲5 00 °C,之後 -38- 200838000 ,將2 0 0 0 W之高頻率功率施加於標靶側,再由將腔室內 的壓力保持爲〇.5Pa’使氬氣5sccm流通,使氮氣15sccm 流通之條件(對於氣體全體之氮素比係75%),於藍寶石 基板之c面上開始A1N層的成膜,並且,以〇.〇8nm/s之 成長速度,將具有單結晶構造之厚度50nm之A1N層,進 行成膜後,停止起動電漿情況.,使基板溫度降低。 然而,對於中間層之形成,作爲濺鍍裝置,使用擁有 高頻率式之電源,並具有在標靶內移動磁鐵位置之機構的 構成,作爲標靶,使用金屬A1標靶,並且,標靶內之磁 鐵係在基板洗淨時及成膜時,均使其搖動。 <基底層之形成> 將從濺鍍裝置取出之A1N進行成膜之基板,導入於 MOCVD爐,經由以下所示之方法,進行GaN層之成膜。 首先,於配置在MOCVD爐內之加熱用的碳製感應器 上,載置基板,於MOCVD爐內,流通氮氣之後,使加熱 器動作而使基板溫度升溫至1 150°C,之後,確認溫度安定 之情況,開始對於MOCVD爐內之氨的流通,接著,將含 有三甲基鎵(TMG)之蒸氣的氫,供給至MOCVD爐內, 開始對於基板上之GaN層的成膜,此時,V族/III族元素 比則呈成爲6000地進行調節,以約1小時,由未摻雜進 行 2 μιη之膜厚的 GaN層的成長之後,結束原料對於 MOCVD爐之供給而停止成長,之後,停止對於力□熱器之 通電,將基板的溫度降溫至室溫,所取出之基板係呈無色 -39- 200838000 透明之反射狀。 [實施例2] 針對在實施例2,係除了洗淨基板表面時之條件與將 中間層進行成膜之條件以外係作爲與實施例1同樣,於基 板上,形成中間層及基底層。 <中間層之形成> 將c面藍寶石基板,導入於濺鍍裝置,在腔室內,將 基板加熱至750°C,以15sccm的流量導入氮氣,之後,由 將腔室內的壓力保持爲〇.〇8Pa,施加5 00W之高頻率偏壓 於基板側,曝露於氮素電漿之情況,洗淨基板表面。 接著,導入氬與氮氣,將基板溫度作爲500 °C,之後 ,將2000W之筒頻率功率施加於標祀側,再由將腔室內 的壓力保持爲〇.5Pa,使氣15sccm流通,使氮氣5sccm 流通之條件(對於氣體全體之氮素比係2 5 % ),於藍寶石 基板之c面上開始A1N層的成膜,並且,以0.08nm/s之 成長速度’將具柱狀結晶之集合體(多結晶)而成之厚度 50nm之A1N層,進行成膜後,停止起動電漿情況,使基 板溫度降低。 之後’作爲與實施例1同樣,進行基底層之成膜,從 MOCVD爐內取出之基板係呈無色透明之反射狀。 [比較例] •40- 200838000 於與實施例1同樣的藍寶石基板之C面上’作爲中間 層,使用MOCVD法而形成A1N而成的層,並於其上方, 作爲與實施例1同樣,形成與實施例1同樣的基底層。 <中間層及基底層之形成> 於配置在MOCVD爐內之加熱用的碳製感應器上’載 置c面藍寶石基板,於MOCVD爐內,流通氮氣之後’使 加熱器動作而使基板溫度升溫至ll5〇°C,之後’確認溫度 安定之情況,將含有三甲基鎵(TMG )之蒸氣的氫,供給 至MOCVD爐內,開始對於基板上之A1N層的附著。 並且,進行約10分鐘A1N之成長之後’作爲與實施 例1同樣,進行GaN層的成長,而取出之基板係呈無色透 明之反射狀。 並且,準備於基板上形成實施例1及實施例2之中間 層及基底層的20個之試驗體,和於基板上形成比較例之 中間層及基底層的40個之試驗體,各自測定GaN層的搖 盪曲線半寬度,而搖盪曲線半寬度之測定係對於(0002 ) 面與(10-10)面進行。 作爲X線源係使用CuKcx線,使用發散角爲0.01°之 射入光,採用 Spectris 公司製 PANalytical X’pert Pro MRD裝製而進行測定。 另外,(0002 )面的搖盪曲線測定係在發現相當於( 0 0 02 )面的峰値之後,將2Θ與ω作爲最佳化,之後,經 由調整P s i,進行在峰値強度成爲最大之方向的搖盪曲線 -41 - 200838000 測定之情況而進行,如此,經由測定搖盪曲線測定之情況 ’校正對於基板之裝置之安裝方向或對於基板之配向方向 ’經由根據被測試料而不同情況之誤差,可比較在實施例 1及實施例2 ’和比較例之間的搖盪曲線半寬度。 (1 0-1 0 )面之搖盪曲線測定係使用以χ線全反射之 條件而透過面內之X線,進行之,具體而言,對於放置於 #平2 «沏I試材料而言,從水平方向射入發散於垂直方向 之X線源時’因一部分則全反射,故利用其X線,另外 ’將檢測器固定於(1 〇_丨〇 )面相當之2 0位置,進行φ 掃描’並且’測定六次對稱之峰値,並將光學系固定於表 示最大牆度之峰値位置之後,將2 19與ω作爲最佳化,進 行搖盪曲線測定。 測定實施例1及實施例2,比較例之GaN基底層的搖 盪曲線半寬度之結果,實施例1及實施例2之GaN層的( 0002 )面的搖盪曲線半寬度係爲40arc sec程度,(10-10 )面之半見度係爲220〜250arcsec之車e圍。 對此,比較例之GaN層的(0002 )面的搖盪曲線半寬 度係爲 200arcsec程度,(10-10)面之半寬度係爲 400〜500arcsec 之範圍 ° 實施例1及實施例2,和比較例之GaN層的搖盪曲線 半寬度之結果的差係比較於以MOCVD法成膜之中間層, 以濺鍍法成膜之A1N層之情況則因對於面內均一性優越, 故認爲因成長於A1N層上之GaN層的配向性變佳。 接著,作爲實施例3,作成如圖3及圖4 (亦參照圖5 -42- 200838000 之層積半導體10)所示之發光元件1,並作成使用如圖6 所示之發光元件1而成的燈3 (發光二極體:L E D )。 針對在本例,係首先於由藍寶石而成之基板1 1的c 面上,作爲中間層12,使用RF濺鍍法而形成由A1N而成 之單結晶的層之構成上方,作爲基底層 14a,使用 MOCVD法,以以下的方法形成GaN ( III族氮化物化合物 半導體)而成的層之後,層積各層。 <中間層之形成> 首先,將鏡面硏磨表面之直徑2公分之(0001) c面 藍寶石而成之基板11,導入腔室中,此時,使用高頻率式 之濺鍍裝置,作爲標靶係使用由金屬A1而成之構成。 並且,在腔室內,將基板11加熱至5 00 °C,並導入氮 氣之後,施加高頻率偏壓於基板1 1側,經由曝露於氮素 電漿之情況而洗淨基板1 1表面。 接著,基板1 1之溫度係直接保持現狀,於濺鍍裝置 內,導入氬及氮氣,並且,施加高頻率偏壓於金屬 A1標 靶側,將爐內的壓力保持爲〇.5Pa,由使氬氣5Sccm流通 ,使氮氣1 5 s c c m流通之條件下,於藍寶石而成之基板1 1 上,將A1N而成之單結晶之中間層12進形成膜,並且, 隨著預先測定知成膜速度,經由規定之時間的處理,將 40nm之A1N(中間層12)進形成膜後’停止電黎動作, 使基板Π之溫度下降。 並且,將形成於基板11上之中間層12的X線搖盪曲 -43- 200838000 線(XRC ),使用X線測定裝置(Spectris公司製,型號 ·· X’pert Pro MRD)而進行測定,其測定係作爲光源而使 用CuKa線而使用進行之,其結果,中間層12之XRC半 寬度係表示〇 . 1 °優越之特性,並確認到中間層1 2良好地 進行配向之情況。 <基底層之形成> 接著,將A1N (中間層1 2 )進形成膜之基板1 1,從 濺鍍裝置取出而運送於MOCVD裝置內,於中間層12上 方,由以下的順序,將GaN而成之基底層14a進形成膜。 首先,將該基板11導入於反應爐(M0CVD裝置)內 ,接著,與反應爐內,使氮氣流通之後,使加熱器動作, 將基板溫度,從室溫升溫至5 00 °C。 並且’將基板溫度保持爲5 0 0 °C,使N Η 3氣體及氮氣 流通,將氣相成長反應爐內作爲95kPa,接著,使基板溫 度升溫至l〇〇〇°C,將基板的表面,進行熱洗淨(thermal cleaning),然而,熱洗淨結束後,亦使對於氣相成長反 應爐內之氮氣的供給繼續。 之後,持續氨氣之流通的同時,在氫環境中,使基板 溫度升溫至1100°C之同時,將反應爐內之壓力作爲40kPa ,在確認到基板溫度爲1 1 0 (TC安定之情況後,開始對於氣 相成長反應爐內供給三甲基鎵(TMG ),並開始於中間層 12上,將構成基底層之iU族氮化物化合物半導體( GaN )進形成膜之工程,在如此做爲而使GaN成長之後, -44 - 200838000 切換TMG之配管的閥,結束原料對於反應爐之工擠而停 止GaN的成長。 經由以上的工成,於成膜於基板1 1上之單結晶組織 之A1N而成之中間層12上方,以未摻雜,將8μπι膜厚之 GaN而成之基底層14a進行成膜。 <n型接觸層之形成> 持續基底層14a之形成,相同經由MOCVD裝置,形 成GaN而成之η型接觸層14b的初期層,此時,對於η型 接觸層14b係摻雜Si,結晶成長係除了作爲Si之摻雜劑 原料而使S iH4流通以外,係經由與基底層相同條件進行 之。 經由如以上說明之工程,於表面施以逆濺鍍之藍寶石 而成之基板1 1上,形成具有單結晶組織之A1N知中間層 12,並於其上方,以未摻雜形成8μηι膜厚之GaN層(η型 基底層14a),和具有5xl018cm_3之載體濃度的2μιη之Si 摻雜GaN層(構成η型接觸層14b之初期層),於成膜後 ,從裝置內取出之基板係爲無色透明,GaN層(在此係η 型接觸層14b之初期層)之表面係爲鏡面。 將如此作爲形成之Si摻雜GaN層的X線搖盪曲線( XRC ),使用X線測定裝置(Spectris公司製,型號:X ’ pert Pro MRD )而進行測定,其測定係作爲光源而使用 C u β線,在爲對稱面之(0 0 0 2 )面與爲非對稱面之(1 0 -1 0 )面進行,一般而言,III族氮化物化合物半導體之情況 -45- 200838000 ,( 0002 )面之XRC光譜半値寬度係成爲結晶之平坦性 的指標,並(10-10 )面之XRC光譜半値寬度係成爲轉位 密度之指標,而其測定的結果’以本發明之方法所製作之 Si摻雜GaN層(η型接觸層)係在(0002 )面之測定中’ 係表示半値寬度 46arcsec,在(10-10)面之中,係表示 半値寬度220arcsec 。 <n型接觸層及發光層之形成> 於以上述順序製作之η型接觸層14b上方,經由 MOCVD法,層積η型包覆層14c及發光層15。 「η型包覆層14c之形成」 以上述順序,將使η型接觸層14b成長之基板,導入 於MOCVD裝置之後,使氨流通的同時,將載氣作爲氮素 ,使基板溫度降地至760°C。 此時,於等待爐內之溫度的變更之間,設定SiH4之 供給量,對於使其流通之SiH4的量,係在事前進行計算 ,Si摻雜層之電子濃度則呈4x10 18cm_3地進行調整,氨係 以原來的流量持續供給至爐內。 接著,使氨流通於腔室內之同時,使SiH4氣體,和 經由沸騰而產生之Τ ΜI及T E G的蒸氣,流通於爐內,並 以1.7nm將Gao.^Ino.inN而成的層進行成膜,以1.7nm將 GaN而成的層進行成膜,而在1 9循環重覆如此之處理之 後’最後’以1.7nm’再次將GaG.99InG.GiN而成的層進f了 -46- 200838000 成長,另外,進行其工程處理之間係繼續S iH4的流通 由此,形成Si摻雜之Gao.^Ino.inN與GaN之超晶格構 而成之η型包覆層14c。 「發光層之形成」 發光層 係由 GaN而成之障壁層 15a’
Ga〇.92lnG.()8N成的井層15b所構成,具有多重量子阱構 ,而對於其發光層15之形成,係於Si摻雜之GalnN GaN之超晶格構造而成之η型包覆層14c上,首先,形 障壁層15a,並於其障壁層15a上,形成In〇.2Ga().8N而 之井層1 5 b,在本例中係在重複6次如此之層積順序之 ,於層積於第6之井層15b上,形成第7之障壁層15a 作爲於具有多重量子阱構造之發光層1 5兩側,配置障 層1 5a之構造(然而,針對在圖3及圖5,係表示將障 層15a作爲6層,將井層15b作爲5層的例)。 首先,基板溫度係在保持760 °C之狀態,開始供 TEGa與SiH4於爐內,在所定的時間,形成0.8nm摻雜 之GaN而成的初期障壁層,並停止TEGa與SiH4之供 ,之後,將感應器的溫度升溫至92CTC,並且,再次開 對於爐內供給TEGa與SiH4,至基板溫度920 °C爲止, 加地,進行1.7nm之中間障壁層的成長後,停止TEGa SiH4之爐內供給,接著,將感應器的溫度降溫至760°C 開啓對於爐內供給TEGa與SiH4,更加地,進行3.5nm 最終障壁層的成長後,再次停止T E G a與S i Η 4之供給, 造 和 造 與 成 成 後 壁 壁 給 Si 給 啓 更 與 之 結 -47- 200838000 束GaN障壁層的成長,經由如上述之3階段的成膜處理, 形成由初期障壁層’中間障壁層及最終障壁層3層而成, 總膜厚爲6nm之Si摻雜GaN障壁層(障壁層15a ),而 SiH4的量係Si濃度呈ixi〇i7crn·3地進行調整。 上述GaN障壁層(障壁層15a)之成長結束後,將 TEGa與TMIn供給至爐內而進行井層之成膜處理,形成構 成3nm膜厚之GamInQ.osN層(井層15b)。 並且,在Gao.92lno.o8N而成的井層15b之成長結束後 ,變更TEGa之供給量的設定,接著,再開啓TEGa與 S i Η 4之供給,進行第2層之障壁層1 5 a的形成。 經由重覆6次如上述之順序情況,形成6層之Si摻 雜GaN而成之障壁層15a,和6層之Gac.92lno.o8而成的井 層 1 5 b 〇 並且,再形成第6層之Gamlno.os而成的井層15b 之後,接著進行第7層之障壁層的形成,而針對在第7層 之障壁層的形成處理,係首先停止SiH4之供給,並在形 成未摻雜GaN而成之初期障壁層之後,由保持持續對於 TEGa之爐內的供給,將基板溫度升溫至920 °C,以其基板 溫度92 0 °C,在規定的時間進行中間障壁層之成長之後, 停止對於TEGa之爐內的供給,接著,將基板溫度下降至 7 60 °C,開始TEGa之供給,進行最終障壁層之成長之後, 再次停止TEGa之供給,結束GaN障壁層之成長,由此, 形成由初期障壁層,中間障壁層及最終障壁層3層而成, 總膜厚爲4m之未摻雜GaN而成之障壁層(參照針對在圖 -48- 200838000 3之發光層15內,最上層之障壁層15a)。 由以上之順序,形成包含厚度不均一之井層(從針對 在圖3之η型半導體層14側,第1〜5之井層15b),與厚 度均一之井層(參照從針對在圖3之η型半導體層14側 ,第6層之井層15b)之多重量子井構造的發光層15。 <P型半導體層之形成> 持續上述各工程,使用相同MOCVD裝置,將具有摻 雜4層之未摻雜之Alo.o6Gao.94N與3層之Mg之GaN而成 之超晶格構造的P型包覆層1 6a,進行成膜’更加地’於 其上方,將膜厚爲20 Onm之Mg摻雜GaN而成之p型接觸 層16b,進行成膜,作爲p型半導體層16。 首先,供給NH3氣體的同時,將基板溫度升溫至 9 7 5 °C之後,以其溫度將載氣從氮素切換爲氫素’接著"’ 將基板溫度變更爲1〇5〇 t:,並且,經由供給TMGa與 TMA1於爐內之情況,將未摻雜之Alo.o6Gao.94N而成的層 2.5nm進行成膜,接著,未採取間隔而關閉TMA1的閥’ 開啓Cp2Mg的閥,將摻雜Mg之GaN的層,進行2.5nm , 成膜。 重覆3次如以上的操作,最後,經由形成 Al〇.Q6Ga().94N的層之情況,由超晶格構造而形成p型包覆 層 1 6 a 〇 之後,只將Cp2Mg與TMGa供給至爐內,形成2〇〇nm 之p型GaN而成之p型接觸層16b。 -49- 200838000 如上設作爲所製作之LED用之外延晶圓係具有於具 有c面之藍寶石而成之基板11上’形成具有單結晶構造 之A1N層(中間層12 )之後,從基板1 1側依序層積8μιη 之未摻雜GaN(基底層14a),具有5xl018m3之電子濃度 之Si摻雜GaN初期層與200nm之Si摻雜GaN再成長層 而成之η型接觸層14b,具有4xl018cnT3之Si濃度,並具 有 20 層之 1.7nm 之 Gao.99lno.oiN 與 19 層之 1.7nm 之 GaN 而成之超晶格構造的包覆層(η型包覆層14c),由GaN 障壁層開始結束於GaN障壁層,層厚作爲6nm之6層的 Si摻雜GaN障壁層(障壁層1 5a ),和層厚作爲3nm之 6層的未摻雜GaG.92In〇.()8N層(井層15b),和具備未摻 雜之GaN而成之最終障壁層之最上位障壁層(參照針對在 圖4之發光層15內,最上層之障壁層15a)而成之多層量 子井構造(發光層 15),膜厚爲 2.5 nm之未摻雜 AU.o6Gao.9 4N而成之4個層,和膜厚爲2. 5nm之Mg摻雜 AU.o6Gao.99N而成,具有超晶格構造之3個的層所構成之 P型包覆層16a,以及膜厚爲200nm之Mg摻雜GaN層而 成之P型接觸層16b所形成之p型半導體層1〇6之構造。 [實施例4] 針對在形成如在上述實施例3說明之發光層1 5的工 程’ kf於7層之障壁層1 5 a之內,最後形成之P草壁層’除 了作爲未摻雜的點,經由與實施例3同樣的操作順序,依 序層積η型半導體層14,發光層15,p型半導體層16而 -50- 200838000 成,製造LED用之外延晶圓(然而,針對在圖3及圖5, 係表示將障壁層15a作爲6層,將井層15b作爲5層的例 [實施例5] 如在上述實施例3及實施例說明之,除了將於發光層 1 5上形成p型半導體層1 6之工程,作爲如以下說明之順 序的點,經由與實施例3同樣的操作順序,製造LED用 之外延晶圓。 在本例之中,於發光層1 5的上方,使用與使用於該 發光層15之形成的構成相同之MOCVD裝置,將具有4 層之未摻雜之 AU.o6Gao.94N而與摻雜 3層之 Mg之 AU.cnGao.^而成之超晶格構造之p型包覆層16a,適宜調 整TMGa,TMA1及Cp2Mg的供給量而進行成膜,更加地 ,於其上方,將膜厚爲200nm之Mg摻雜GaN層而成之p 型接觸層16b進行成膜,作爲p型半導體層16。 [實施例6] 接著,使用在上述各實施例之方法所得到之LED用 之外延晶圓,製作LED。 即,例如於上述外延晶圓之Mg摻雜GaN層(p型接 觸層16b)的表面,經由公知的光微影技術,形成IZO而 成之透光性正極1 7,並於其上方,形成具有依鉻,鈦及金 的順序層積構造之正極接合墊片1 8 ( P電極接合墊片), -51 - 200838000 作爲p側電極,更加地,對於晶圓而言,施以乾 形成η型接觸層14b之η側電極(負極)的範圍 其露出範爲14d,形成依Cr,Ti及Au之3層順 成之負極1 9 ( η側電極),經由如此之順序,於 形成具有圖3及圖4所示之形狀的各電極。 並且,以上述順序,形成ρ側及η側的電極 將藍寶石而成之基板1 1的內面進行硏削極硏磨 面的面,並且,將該晶圓,切斷爲3 5 0μιη角之正 片,作爲圖3及圖4所示之發光元件1,並且, 爲上方地,載置於導線架上,並以金線結線於導 爲發光二極體(LED )(參照圖6的燈3 ),而 作爲所製作之發光二極體的ρ側及η側的電極間 方向電流之時,在電流20mA之順方向電壓係爲 外,在通過P側的透光性正極1 7而觀察發光狀 光波長係爲460nm,發光輸出係表示20mW,而 光二極體的特性係對於從所製作之晶圓的幾乎全 之發光二極體,不會不均而得到。 * [業上之利用可能性] 經由本發明所得到之III族氮化物化合物半 係具有持有良好結晶性之III族氮化物化合物半 且具有優越之發光特性,隨之,可製作具有優越 之發光二極體,雷射二極體,或電子裝置等之半 者0 蝕刻,使 露出,於 序層積而 晶圓上, 之晶圓, ,做爲鏡 方形的晶 電極呈成 線架而作 於如上述 ,流動順 3· 1 V,另 態時,發 如此之發 面所製作 導體元件 導體層, 發光特性 導體元件 -52- 200838000 【圖式簡單說明】 [圖1]係爲爲了說明構成發光元件之半導體層的in族 氮化物化合物半導體之結晶的貫通轉位的圖,於基板面, 從垂直方向而視的槪略模式圖。 [圖2]係爲表示構成發光元件之半導體層的in族氮化 物化合物半導體(1 0- 1 0 )面之搖盪曲線半寬度,和發光 元件的洩漏電流之關係圖表。 [圖3]係爲模式性地表示有關本發明之III族氮化物化 合物半導體元件發光元件之一例的槪略剖面圖。 [圖4]係爲表示圖3所示之III族氮化物化合物半導體 元件發光元件之平面構造圖。 [圖5]係爲爲了說明圖3所示之πΐ族氮化物化合物半 導體元件發光元件之製造方法的圖,並模式性地表示層積 半導體之槪略剖面圖。 [圖6]係爲模式性地表示使用有關本發明之ΙΠ族氮化 物化合物半導體元件發光元件而構成的燈之一例的槪略圖 【主要元件符號說明】 1 : ΙΠ族氮化物化合物半導體發光元件(III族氮化 物化合物半導體元件,發光元件) 3 :燈 10 :層積半導體 -53- 200838000 1 1 :基板 1 1 a :表面 1 2 :中間層 14 : η型半導體層 14c : η型包覆層 1 4 a :基底層 1 5 :發光層 1 6 : p型半導體層 1 6 a : p型包覆層 1 7 :透光性正極 20 :半導體層 -54

Claims (1)

  1. 200838000 十、申請專利範圍 1·一種III族氮化物化合物半導體元件,其特徵乃由 具備基板, 和設置於前述基板上之中間層, 和設置於前述中間層上,(0002 )面的搖盪曲線半寬 度爲1 OOarcsec以下,且(1 〇-1 〇 )面的搖盪曲線半寬度爲 300arcsec以下之基底層而成。 2 ·如申請專利範圍第1項記載之III族氮化物化合物 半導體元件,其中,前述(0 002 )面的搖盪曲線半寬度爲 50arcsec以下,且前述(10-10)面的搖盪曲線半寬度爲 250arcsec 以下。 3 ·如申請專利範圍第1項記載之III族氮化物化合物 半導體元件,其中,前述基板爲藍寶石。 4.如申請專利範圍第3項記載之III族氮化物化合物 半導體元件,其中,前述中間層則形成於前述藍寶石基板 之c面上。 5 .如申請專利範圍第1項記載之III族氮化物化合物 半導體元件,其中,前述中間層則由 AlxGanN ( OS 1 )而成。 6. 如申請專利範圍第1項記載之III族氮化物化合物 半導體元件,其中,前述中間層則由A1N而成。 7. 如申請專利範圍第1項記載之III族氮化物化合物 半導體元件,其中,前述基底層則由AlGaN而成。 8 .如申請專利範圍第1項記載之111族氮化物化合物 -55- 200838000 半導體元件,其中,前述基底層則由GaN而成。 9. 一種III族氮化物化合物半導體發光元件,其特徵 乃具備申請專利範圍第1記載之III族氮化物化合物半導 體元件,和由依序層積η型半導體層,發光層及p型半導 體層而成之半導體層; 於具備於前述III族氮化物化合物半導體元件之基底 層的上方,形成有前述半導體層。 10. 如申請專利範圍第9項記載之III族氮化物化合物 半導體發光元件,其中,於前述η型半導體層’具備有η 型包覆層之同時,對於前述Ρ型半導體層係具備Ρ型包覆 層,前述η型包覆層及/或前述ρ型包覆層則至少包含超 晶格構造。 1 1. 一種III族氮化物化合物半導體元件之製造方法, 屬於申請專利範圍第1項記載之III族氮化物化合物半導 體元件之製造方法,其特徵乃具有以濺鍍法形成前述中間 層之工程。 1 2 .如申請專利範圍第1 1項記載之III族氮化物化合 物半導體元件之製造方法,其中,更加具有以MOCVD法 ^ 形成前述基底層之工程。 13.—種III族氮化物化合物半導體發光元件之製造方 法,其特徵乃具有於具備於申請專利範圍第1項之III族 氮化物化合物半導體元件之基底層的上方,形成由依序層 積η型半導體層,發光層及ρ型半導體層而成之半導體層 之工程, -56- 200838000 和以濺鍍法形成前述中間層之工程。 1 4 ·如申請專利範圍第1 3項記載之ΠI族氮化物化合 物半導體發光元件之製造方法,其中,更加具有以 MOCVD法形成前述基底層之工程。 15.—種III族氮化物化合物半導體元件,其特徵乃經 由申請專利範圍第1 1項記載之製造方法所得到。 1 6 · —種111族氮化物化合物半導體發光元件,其特徵 乃經由申請專利範圍第1 3項記載之製造方法所得到。 1 7 . —種燈,其特徵乃使用申請專利範圍第9項記載 之III族氮化物化合物半導體發光元件。 1 8 · —種燈,其特徵乃使用申請專利範圍第1 〇項記載 之III族氮化物化合物半導體發光元件。 19·一種燈,其特徵乃使用申請專利範圍第16項記載 之III族氮化物化合物半導體發光元件。 -57-
TW097101381A 2007-01-16 2008-01-14 Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp TW200838000A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007006790 2007-01-16
JP2007184456 2007-07-13
JP2007274458 2007-10-22
JP2007286691A JP2009123718A (ja) 2007-01-16 2007-11-02 Iii族窒化物化合物半導体素子及びその製造方法、iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ

Publications (1)

Publication Number Publication Date
TW200838000A true TW200838000A (en) 2008-09-16

Family

ID=39635934

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097101381A TW200838000A (en) 2007-01-16 2008-01-14 Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp

Country Status (6)

Country Link
US (1) US20090194784A1 (zh)
EP (1) EP2105973A4 (zh)
JP (1) JP2009123718A (zh)
KR (1) KR101151167B1 (zh)
TW (1) TW200838000A (zh)
WO (1) WO2008087930A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447958B (zh) * 2009-07-10 2014-08-01 Toyoda Gosei Kk 半導體發光元件之製造方法及燈、電子機器、及機械裝置
US8859313B2 (en) 2010-03-05 2014-10-14 Toyoda Gosei Co., Ltd. Method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, electronic device and mechanical apparatus

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272390B2 (ja) * 2007-11-29 2013-08-28 豊田合成株式会社 Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP5262206B2 (ja) 2008-03-12 2013-08-14 豊田合成株式会社 Iii族窒化物半導体層の製造方法及びiii族窒化物半導体発光素子の製造方法
CN102017192B (zh) * 2008-03-26 2013-01-23 晶能光电(江西)有限公司 在发光器件内制造高反射欧姆接触的方法
JP5465469B2 (ja) * 2008-09-04 2014-04-09 日本碍子株式会社 エピタキシャル基板、半導体デバイス基板、およびhemt素子
JP5196160B2 (ja) * 2008-10-17 2013-05-15 日亜化学工業株式会社 半導体発光素子
JP5504618B2 (ja) * 2008-12-03 2014-05-28 豊田合成株式会社 Iii族窒化物半導体発光素子及びその製造方法
US8421056B2 (en) * 2009-03-03 2013-04-16 Hitachi Cable, Ltd. Light-emitting device epitaxial wafer and light-emitting device
JP2010263189A (ja) * 2009-04-07 2010-11-18 Sharp Corp 窒化物半導体発光ダイオード
JP2011018869A (ja) * 2009-06-09 2011-01-27 Nichia Corp 窒化物半導体素子
JP5220687B2 (ja) 2009-06-15 2013-06-26 昭和電工株式会社 植物栽培用の照明装置および植物栽培システム
JP5246079B2 (ja) * 2009-07-10 2013-07-24 豊田合成株式会社 半導体素子の製造方法
JP5246081B2 (ja) * 2009-07-14 2013-07-24 豊田合成株式会社 半導体発光素子の製造方法
JP2011029218A (ja) * 2009-07-21 2011-02-10 Sharp Corp 窒化物半導体発光素子構造とその形成方法
JP2011060900A (ja) * 2009-09-08 2011-03-24 Showa Denko Kk 半導体発光素子の製造方法およびランプ、電子機器、機械装置
JP5636693B2 (ja) * 2010-03-01 2014-12-10 豊田合成株式会社 半導体素子の製造方法
JP5353802B2 (ja) * 2010-04-12 2013-11-27 豊田合成株式会社 半導体発光素子の製造方法およびランプ、電子機器、機械装置
JP5353821B2 (ja) * 2010-05-31 2013-11-27 豊田合成株式会社 半導体発光素子と、その製造方法およびランプ、電子機器、機械装置
JP5353827B2 (ja) * 2010-06-14 2013-11-27 豊田合成株式会社 半導体発光素子の製造方法および半導体発光素子、ランプ、電子機器、機械装置
JP5934575B2 (ja) * 2012-05-16 2016-06-15 サンケン電気株式会社 窒化物半導体装置の製造方法
KR20140010587A (ko) * 2012-07-13 2014-01-27 삼성전자주식회사 도핑된 버퍼층을 포함하는 반도체 발광 소자 및 그 제조 방법
CN103296157B (zh) * 2013-05-31 2015-08-26 华南理工大学 生长在铝酸锶钽镧衬底上的led外延片及制备方法
DE102014102029A1 (de) * 2014-02-18 2015-08-20 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterbauelementen und Halbleiterbauelement
WO2015181648A1 (en) 2014-05-27 2015-12-03 The Silanna Group Pty Limited An optoelectronic device
US11322643B2 (en) 2014-05-27 2022-05-03 Silanna UV Technologies Pte Ltd Optoelectronic device
JP6636459B2 (ja) 2014-05-27 2020-01-29 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd 半導体構造と超格子とを用いた高度電子デバイス
WO2015181656A1 (en) 2014-05-27 2015-12-03 The Silanna Group Pty Limited Electronic devices comprising n-type and p-type superlattices
US9876143B2 (en) * 2014-10-01 2018-01-23 Rayvio Corporation Ultraviolet light emitting device doped with boron
US20160359004A1 (en) * 2015-06-03 2016-12-08 Veeco Instruments, Inc. Stress control for heteroepitaxy
DE102015114478A1 (de) * 2015-08-31 2017-03-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
JP6688109B2 (ja) * 2016-02-25 2020-04-28 日本碍子株式会社 面発光素子、外部共振器型垂直面発光レーザー、および面発光素子の製造方法
US10541514B2 (en) 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device
JP2017220586A (ja) * 2016-06-08 2017-12-14 国立大学法人 東京大学 半導体発光素子
US10643843B2 (en) 2016-06-12 2020-05-05 Beijing Naura Microelectronics Equipment Co., Ltd. Film forming method and aluminum nitride film forming method for semiconductor apparatus
CN107492478B (zh) * 2016-06-12 2019-07-19 北京北方华创微电子装备有限公司 半导体设备的成膜方法以及半导体设备的氮化铝成膜方法
US10121932B1 (en) * 2016-11-30 2018-11-06 The United States Of America As Represented By The Secretary Of The Navy Tunable graphene light-emitting device
JP2020188143A (ja) * 2019-05-15 2020-11-19 スタンレー電気株式会社 半導体多層膜反射鏡を用いた垂直共振器型発光素子及びその製造方法
GB202014592D0 (en) * 2020-09-16 2020-10-28 Spts Technologies Ltd Deposition method

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365917A (ja) 1986-09-06 1988-03-24 Kurita Mach Mfg Co Ltd 濾過ユニット
JPH088217B2 (ja) 1991-01-31 1996-01-29 日亜化学工業株式会社 窒化ガリウム系化合物半導体の結晶成長方法
JP3778609B2 (ja) * 1996-04-26 2006-05-24 三洋電機株式会社 半導体素子の製造方法
JP3644191B2 (ja) * 1996-06-25 2005-04-27 住友電気工業株式会社 半導体素子
JP3897448B2 (ja) * 1998-04-27 2007-03-22 日亜化学工業株式会社 窒化物半導体発光素子
JP3700492B2 (ja) * 1999-09-21 2005-09-28 豊田合成株式会社 Iii族窒化物系化合物半導体素子
US6713789B1 (en) * 1999-03-31 2004-03-30 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method of producing the same
US6531719B2 (en) * 1999-09-29 2003-03-11 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device
JP3888668B2 (ja) * 2000-12-28 2007-03-07 日本碍子株式会社 半導体発光素子
WO2002056435A1 (en) * 2001-01-15 2002-07-18 Sharp Kabushiki Kaisha Nitride semiconductor laser element and optical device containing it
JP4683731B2 (ja) * 2001-01-15 2011-05-18 シャープ株式会社 窒化物半導体レーザ素子とこれを含む光学装置
JP2002270516A (ja) * 2001-03-07 2002-09-20 Nec Corp Iii族窒化物半導体の成長方法、iii族窒化物半導体膜およびそれを用いた半導体素子
JP3886341B2 (ja) * 2001-05-21 2007-02-28 日本電気株式会社 窒化ガリウム結晶基板の製造方法及び窒化ガリウム結晶基板
US7638346B2 (en) * 2001-12-24 2009-12-29 Crystal Is, Inc. Nitride semiconductor heterostructures and related methods
JP3656606B2 (ja) 2002-02-15 2005-06-08 昭和電工株式会社 Iii族窒化物半導体結晶の製造方法
AU2003258919A1 (en) * 2002-06-26 2004-01-19 Ammono Sp.Zo.O. Nitride semiconductor laser device and a method for improving its performance
JP4088111B2 (ja) * 2002-06-28 2008-05-21 日立電線株式会社 多孔質基板とその製造方法、GaN系半導体積層基板とその製造方法
JP4554287B2 (ja) * 2003-07-02 2010-09-29 パナソニック株式会社 Iii族窒化物結晶の製造方法、および半導体基板の製造方法
US7255742B2 (en) * 2003-07-02 2007-08-14 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
US20050082562A1 (en) * 2003-10-15 2005-04-21 Epistar Corporation High efficiency nitride based light emitting device
JP4396816B2 (ja) * 2003-10-17 2010-01-13 日立電線株式会社 Iii族窒化物半導体基板およびその製造方法
US7242705B2 (en) * 2003-12-17 2007-07-10 Palo Alto Research Center, Incorporated Grating-outcoupled cavity resonator having uni-directional emission
US7339255B2 (en) * 2004-08-24 2008-03-04 Kabushiki Kaisha Toshiba Semiconductor device having bidirectionally inclined toward <1-100> and <11-20> relative to {0001} crystal planes
JP4833616B2 (ja) * 2004-09-13 2011-12-07 昭和電工株式会社 Iii族窒化物半導体の製造方法
US7087922B2 (en) * 2004-11-16 2006-08-08 Formosa Epitaxy Incorporation Light-emitting diode structure
JP4563230B2 (ja) * 2005-03-28 2010-10-13 昭和電工株式会社 AlGaN基板の製造方法
EP2019437B1 (en) * 2006-05-10 2018-07-11 Toyoda Gosei Co., Ltd. Iii nitride compound semiconductor laminated structure
KR20090048590A (ko) * 2006-08-18 2009-05-14 쇼와 덴코 가부시키가이샤 Ⅲ족 질화물 화합물 반도체 발광 소자의 제조 방법, 및 ⅲ족 질화물 화합물 반도체 발광 소자와 램프

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447958B (zh) * 2009-07-10 2014-08-01 Toyoda Gosei Kk 半導體發光元件之製造方法及燈、電子機器、及機械裝置
US8896085B2 (en) 2009-07-10 2014-11-25 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element manufacturing method, lamp, electronic equipment, and mechanical apparatus
US8859313B2 (en) 2010-03-05 2014-10-14 Toyoda Gosei Co., Ltd. Method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, electronic device and mechanical apparatus
TWI467801B (zh) * 2010-03-05 2015-01-01 Toyoda Gosei Kk 半導體發光元件之製造方法及半導體發光元件、燈、電子設備、機械裝置

Also Published As

Publication number Publication date
EP2105973A4 (en) 2015-08-05
KR101151167B1 (ko) 2012-06-04
WO2008087930A1 (ja) 2008-07-24
EP2105973A1 (en) 2009-09-30
JP2009123718A (ja) 2009-06-04
KR20090094138A (ko) 2009-09-03
US20090194784A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
TW200838000A (en) Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp
KR101067122B1 (ko) Ⅲ족 질화물 반도체의 제조 방법, ⅲ족 질화물 반도체 발광 소자의 제조 방법 및 ⅲ족 질화물 반도체 발광 소자, 및 램프
TWI413279B (zh) Iii族氮化物半導體發光元件及其製造方法、以及燈
TWI491064B (zh) Iii族氮化物半導體發光元件及該製造方法、以及燈
TWI352436B (zh)
TWI377703B (en) Production method of group iii nitride semiconductor light-emitting device
TWI408733B (zh) Iii族氮化物化合物半導體發光元件之製造方法、及iii族氮化物化合物半導體發光元件、以及燈
TWI375335B (en) Method for producing group iii nitride semiconductor light emitting device, group iii nitride semiconductor light emitting device, and lamp
KR101074178B1 (ko) Ⅲ족 질화물 화합물 반도체 발광 소자의 제조 방법, 및 ⅲ족 질화물 화합물 반도체 발광 소자, 및 램프
TWI418057B (zh) Iii族氮化物化合物半導體發光元件之製造方法,及iii族氮化物化合物半導體發光元件及燈
TW200933933A (en) Group III nitride semiconductor light emitting device, method of manufacturing thereof, and lamps using the same
KR20110045056A (ko) Ⅲ족 질화물 반도체 발광 소자의 제조 방법, ⅲ족 질화물 반도체 발광 소자 및 램프
TW200840096A (en) Method of producing group-III nitride semiconductor layer, group-III nitride semiconductor light-emitting device and lamp thereof
KR20090074092A (ko) Ⅲ족 질화물 반도체 발광 소자의 제조 방법, 및 ⅲ족 질화물 반도체 발광 소자, 및 램프
JP2008047762A (ja) Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
WO2005114754A1 (en) Group iii nitride semiconductor light emitting device
JP5041883B2 (ja) Iii族窒化物半導体層の製造方法、iii族窒化物半導体発光素子の製造方法
JP4974635B2 (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP4781028B2 (ja) Iii族窒化物半導体積層体及びiii族窒化物半導体発光素子の製造方法
JP2008226868A (ja) Iii族窒化物化合物半導体積層構造体
JP2009016505A (ja) Iii族窒化物化合物半導体発光素子
JP2008135463A (ja) Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP2009161434A (ja) Iii族窒化物半導体結晶の製造方法及びiii族窒化物半導体結晶
JP2008098245A (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP2008294449A (ja) Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子並びにランプ