RU2530067C2 - Способ призводства нанофибриллярных целлюлозных гелей - Google Patents

Способ призводства нанофибриллярных целлюлозных гелей Download PDF

Info

Publication number
RU2530067C2
RU2530067C2 RU2011143854/05A RU2011143854A RU2530067C2 RU 2530067 C2 RU2530067 C2 RU 2530067C2 RU 2011143854/05 A RU2011143854/05 A RU 2011143854/05A RU 2011143854 A RU2011143854 A RU 2011143854A RU 2530067 C2 RU2530067 C2 RU 2530067C2
Authority
RU
Russia
Prior art keywords
filler
pigment
fibers
pulp
gel
Prior art date
Application number
RU2011143854/05A
Other languages
English (en)
Other versions
RU2011143854A (ru
Inventor
Патрик А. К. ГЕЙН
Йоахим Шелкопф
Даниэль ГАНТЕНБАЙН
Мишель ШЕНКЕР
Original Assignee
Омиа Интернэшнл Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40733170&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2530067(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Омиа Интернэшнл Аг filed Critical Омиа Интернэшнл Аг
Publication of RU2011143854A publication Critical patent/RU2011143854A/ru
Application granted granted Critical
Publication of RU2530067C2 publication Critical patent/RU2530067C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/02Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/423Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by fibrillation of films or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/30Defibrating by other means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/004Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Abstract

Изобретение относится к нанофибриллярным целлюлозным гелям, предназначенным для широкого применения в промышленности и при заживлении ран. Способ их производства включает (a) подготовку целлюлозных волокон; (b) подготовку по меньшей мере одного наполнителя и/или пигмента; (c) объединение целлюлозных волокон и наполнителя и/или пигмента; (d) фибриллирование целлюлозных волокон в присутствии по меньшей мере одного наполнителя и/или пигмента до образования геля только из первичных фибрилл, наполнитель и/или пигмент выбирают из группы, включающей осажденный карбонат кальция, природный измельченный карбонат кальция, доломит, тальк, бентонит, глину, магнезит, сатинит, сепиолит, гунтит, диатомит, силикаты и их смеси. Описываются также нанофибриллярный целлюлозный гель, полученный указанным способом, и его применение. Изобретение обеспечивает повышение производительности нанофибриллярных целлюлозных гелей при энергоэффективности производства. 4 н. и 12 з.п. ф-лы, 8 ил., 2 табл., 9 пр.

Description

Настоящее изобретение относится к способу производства нанофибриллярных целлюлозных гелей и к нанофибриллярным целлюлозным гелям, полученным этим способом.
Целлюлоза представляет собой структурный компонент основной клеточной стенки зеленых растений и является наиболее распространенным органическим соединением на земле. Она имеет большое значение во многих вариантах применения и в промышленности.
Целлюлоза является главной составляющей бумаги и картона, а также тканей, изготовленных из хлопка, льна и других растительных волокон. Целлюлоза может быть превращена в целлофан, тонкую прозрачную пленку и в вискозу - ценное волокно, которое используют для тканей с начала 20-го столетия. И целлофан, и вискоза известны как «гидратцеллюлозные волокна».
Целлюлозные волокна также используют при фильтрации жидкостей, чтобы создать фильтрующий слой инертного материала. Целлюлозу также используют для изготовления гидрофильных и сильно абсорбирующих пористых материалов.
Для промышленного применения целлюлозу главным образом получают из древесной пульпы и хлопка. Преимущественно ее используют для производства картона и бумаги; и в меньшей степени ее превращают в широкий ряд вторичных продуктов.
Целлюлозную пульпу в качестве сырьевого материала производят из древесины или стеблей растений, таких как конопля, лен и манильская пенька. Волокна пульпы состоят преимущественно из целлюлозы и других органических компонентов (гемицеллюлозы и лигнина). Макромолекулы целлюлозы (состоят из молекул 1-4-гликозидсвязанной β-D-глюкозы) связаны вместе с помощью водородных связей с образованием так называемых первичных фибрилл (мицелл), которые имеют кристаллические и аморфные домены. Несколько первичных фибрилл (около 55) образуют так называемую микрофибриллу. Около 250 из таких микрофибрилл образуют фибриллу.
Фибриллы расположены в разных слоях (которые могут содержать лигнин и/или гемицеллюлозу) с образованием волокна. Отдельные волокна также связаны вместе с помощью лигнина.
Пульпы, используемые для производства бумаги, часто получают путем измельчения древесины и необязательной переработки с помощью тепла или химикатов для удаления мешающих соединений из целлюлозных волокон.
Волокна измельчают и нарезают до определенной степени измельчения (в зависимости от желаемых свойств). Измельчения волокон достигают с помощью рафинера (например, конической мельницы с ротором и статором или дискового, либо двухдискового рафинера). Рафинер также фибриллирует волокна на поверхности, что означает, что некоторые фибриллы частично вытаскивают из поверхности волокон. Это приводит к более хорошему удерживанию и часто адгезии пигментов, которые могут быть добавлены при производстве бумаги, а также к усилению потенциального водородного связывания между волокнами бумаги. Это приводит к улучшению механических свойств. Побочным эффектом также является то, что бумага становится плотнее и более прозрачной вследствие потери светорассеивания, так как размер рассеивающих центров сдвигается от приемлемого оптимума половины длины света (калька и жиростойкая бумага).
Когда волокна рафинируются при прикладывании энергии, они становятся фибриллярными, так как стенки клеток разрушаются и рвутся на связанные полосы, то есть на фибриллы. Если такое разрушение продолжать до отделения фибрилл от тела волокна, это высвобождает фибриллы. Разрушение фибрилл до микрофибриллы называют «микрофибриллированием». Этот способ можно продолжать до тех пор, пока не будет фибрилл и останутся только фибриллы наноразмера (толщина).
Если процесс проходит дальше и разрушает такие фибриллы в более мелкие фибриллы, они постепенно становятся целлюлозными фрагментами или наногелем. В зависимости от того, насколько далеко проходит такая последняя стадия, некоторое количество нанофибрилл может оставаться в нанофибриллярном геле. Разрушение до первичных фибрилл может быть названо «нанофибриллированием», где может иметь место плавный переход между двумя режимами. Первичные фибриллы образуют в водной среде гель (метастабильную сетку первичных фибрилл), который может быть назван «нанофибриллярным гелем». Гель, образованный из нанофибрилл, можно рассматривать как содержащий наноцеллюлозу.
Нанофибриллярные гели являются желательными, так как они обычно содержат очень тонкие фибриллы, состоящие, как считают, частично из наноцеллюлозы, проявляющие более сильный связывающий потенциал к самим себе или к любому другому присутствующему материалу, чем проявляют фибриллы, которые не являются настолько мелкими или не демонстрируют наноцеллюлозную структуру.
Однако степень мелкости, достигаемая с помощью обычных рафинеров, ограничена. Кроме того, ряд других устройств для разрушения частиц не способен разрушать целлюлозные волокна до нанофибрилл, например, разрыхлители, упомянутые в патенте США 2001/0045264, которые способны только отделять фракции волокна заданного размера друг от друга.
Аналогично, в публикации WO 02/090651 описан способ рециркулирования отходов пульпы, полученных при производстве бумаги, бумажного картона или плотной бумаги, где более чистые отходы, содержащие, наряду с прочим, волокна, пигменты и/или волокна, измельчают до некоторого размера гранул с помощью шаровых мельниц. Однако нет упоминания о фибриллировании присутствующих волокон, не говоря уже о фибриллировании до нанофибрилл или нанофибриллярных целлюлозных гелей.
Если желательно дополнительное разрушение волокон в фибриллы или даже до молекул целлюлозы, необходимы другие способы.
Например, в патенте США 4374702 описан способ получения микрофибриллярной целлюлозы, включающий пропускание жидкой суспензии волокнообразной целлюлозы через гомогенизатор высокого давления, имеющий отверстие небольшого диаметра, в котором суспензию подвергают воздействию перепада давления, по меньшей мере, 3000 фунт/кв.дюйм, и высокоскоростному сдвигающему действию, после чего следует высокоскоростной тормозящий удар по твердой поверхности, повторение прохода указанной суспензии через отверстие до тех пор, пока указанная целлюлозная суспензия не станет по существу стабильной суспензией, причем указанный способ превращает указанную целлюлозу в микрофибриллярную целлюлозу без существенного химического изменения исходного целлюлозного материала. Нанофибриллярный целлюлозный гель не упоминается.
В патенте США 6183596 В1 описан способ производства супермикрофибриллярной целлюлозы путем пропускания суспензии предварительно раздробленной целлюлозной массы через перетирающее устройство, имеющее два или больше дефибрера (измельчитель целлюлозы), которые расположены так, чтобы они могли тереться друг от друга, чтобы микрофибриллировать целлюлозную массу с получением микрофибриллярной целлюлозы, а также суперфибриллировать полученную микрофибриллярную целлюлозу с помощью гомогенизатора высокого давления с получением супермикрофибриллярной целлюлозы. Однако нет упоминания о нанофибриллярном целлюлозном геле.
Более того, могут быть использованы фрикционные дефибреры ультратонкого помола, где дефибрер уменьшает волокна до мелких размеров за счет механического сдвига (см., например, патент США 6214163 В1), что, однако, не приводит автоматически к нанофибриллярному целлюлозному гелю.
Механическое производство нанофибриллярной целлюлозы не является банальным. Например, существует проблема повышения вязкости во время процесса фибриллирования. Это может полностью остановить процесс или увеличить удельное потребление энергии.
Таким образом, все еще существует потребность в способе производства нанофибриллярных целлюлозных гелей, которые не только легко осуществимы, но также являются энергоэффективными.
Одной из целей настоящего изобретения является разработка такого способа получения нанофибриллярных целлюлозных гелей.
В настоящее время установлено, что в машинах, где производительность является функцией вязкости, наблюдается полезное снижение вязкости нанофибриллярных целлюлозных гелей за счет добавления и совместной переработки некоторых наполнителей и/или пигментов с содержащей целлюлозные волокна пульпой, что приводит к более высокой производительности.
Таким образом, описанную выше проблему решают с помощью способа производства нанофибриллярных целлюлозных гелей настоящего изобретения.
Этот способ характеризуется следующими стадиями:
(а) подготовки целлюлозных волокон;
(b) подготовки по меньшей мере одного наполнителя и/или пигмента;
(с) объединения целлюлозных волокон в присутствии по меньшей мере одного наполнителя и/или пигмента;
(d) фибриллирования целлюлозных волокон в присутствии по меньшей мере одного наполнителя и/или пигмента до тех пор, пока не образуется гель.
Нанофибриллярная целлюлоза в контексте настоящего изобретения означает волокна, которые по меньшей мере частично разрушены до первичных фибрилл. Если такие первичные фибриллы находятся в водной среде, образуется гель (метастабильная сетка первичных фибрилл, которую с точки зрения мелкости считают по существу наноцеллюлозой); и этот гель называют «нанофибриллярным гелем», где существует плавный переход между нановолокнами и нанофибриллярным гелем, включая нанофибриллярные гели, содержащие нанофибриллы, в изменяющейся степени, которые все охвачены определением нанофибриллярных целлюлозных гелей в соответствии с настоящим изобретением.
В этой связи фибриллирование в контексте настоящего изобретения означает любой способ, который преимущественно разрушает волокна и фибриллы вдоль их длинной оси, что приводит к уменьшению диаметра волокон и фибрилл соответственно.
В соответствии со способом настоящего изобретения фибриллирование целлюлозных волокон в присутствии по меньшей мере одного наполнителя и/или пигмента дает нанофибриллярный целлюлозный гель. Фибриллирование проводят до тех пор, пока не образуется гель, где образование геля подтверждают путем мониторинга вязкости в зависимости от скорости сдвига. При ступенчатом повышении скорости сдвига получают определенную кривую, отражающую понижение вязкости. Если затем скорость сдвига ступенчато снижают, вязкость снова растет, но соответствующие значения в пределах по меньшей мере части интервала скорости сдвига, когда сдвиг достигает нуля, являются более низкими, чем при повышении скорости сдвига, что графически выражается гистерезисом на графике зависимости вязкости относительно скорости сдвига. Как только наблюдают такое поведение, это значит, что происходит образование нанофибриллярного целлюлозного геля в соответствии с настоящим изобретением.
Кроме того, во время фибриллирования целлюлозной массы в машинах, где производительность является функцией вязкости, вязкость геля, образованного в соответствии с настоящим изобретением, предпочтительно является более низкой, чем вязкость соответствующей суспензии нанофибриллярной целлюлозы, которая фибриллирована в отсутствие наполнителей и/или пигментов.
Вязкость по Брукфилду можно измерить с помощью любого вискозиметра Брукфилда с использованием обычных операций, известных специалисту в данной области техники.
Целлюлозные волокна, которые могут быть использованы в способе настоящего изобретения, могут находиться в целлюлозной массе, выбранной из группы, включающей эвкалиптовую целлюлозную массу, еловую целлюлозную массу, сосновую целлюлозную массу, буковую целлюлозную массу, конопляную целлюлозную массу, хлопковую целлюлозную массу и их смеси. В одном из вариантов осуществления все волокно или часть такого целлюлозного волокна могут быть получены со стадии вторичной переработки материала, содержащего целлюлозные волокна. Таким образом, целлюлозная масса также может представлять собой вторичную целлюлозную массу.
Размер целлюлозных волокон в принципе не имеет критического значения. Подходящими в настоящем изобретении обычно являются любые волокна, коммерчески доступные и перерабатываемые в устройстве, используемом для их фибриллирования. В зависимости от их происхождения целлюлозные волокна могут иметь длину от 50 мм до 0,1 мкм. Такие волокна, а также волокна, имеющие длину предпочтительно от 20 мм до 0,5 мкм, более предпочтительно от 10 мм до 1 мм и, как правило, от 2 до 5 мм, могут быть успешно использованы в настоящем изобретении, где также могут быть полезны более длинные и более короткие волокна.
Для использования в настоящем изобретении предпочтительно, чтобы целлюлозные волокна были представлены в форме суспензии, особенно водной суспензии. Предпочтительно, чтобы такие суспензии имели содержание твердых веществ от 0,2 до 35% масс., более предпочтительно от 0,25 до 10% масс., еще более предпочтительно от 0,5 до 5% масс., в особенности от 1 до 4% масс., наиболее предпочтительно от 1,3 до 3% масс., например 1,5% масс.
По меньшей мере один наполнитель и/или пигмент выбирают из группы, включающей осажденный карбонат кальция (ОКК, РСС), природный измельченный карбонат кальция (ИКК, GCC); доломит; тальк; бентонит; глину; магнезит; сатинит, сепиолит; гантит; диатомит, силикаты и их смеси. Осажденный карбонат кальция, который имеет кристаллическую структуру ватерита, кальцита или арагонита, и природный измельченный карбонат кальция, который может быть выбран из мрамора, извести и/или мела, являются особенно предпочтительными.
В конкретных вариантах осуществления может быть полезным использование ультратонкого, дискретного, призматического, скаленоэдрического или ромбоэдрического осажденного карбоната кальция.
Наполнители и/или пигменты могут быть представлены в форме порошка, хотя предпочтительно их добавляют в форме суспензии, такой как водная суспензия. В этом случае содержание твердых веществ в суспензии не является критическим, если она представляет собой подаваемую насосом жидкость.
В предпочтительном варианте осуществления частицы наполнителя и/или пигмента имеют медианный размер частиц от 0,5 до 1,5 мкм, предпочтительно от 0,7 до 10 мкм, более предпочтительно от 1 до 5 мкм и наиболее предпочтительно от 1,1 до 2 мкм, например 1,5 мкм или 3,2 мкм.
Особенно предпочтительно, чтобы частицы наполнителя и/или пигмента имели медианный размер частиц от 0,01 до 15 мкм, предпочтительно от 0,1 до 10 мкм, более предпочтительно от 0,3 до 5 мкм и наиболее предпочтительно от 0,5 до 4 мкм.
Для определения весового медианного размера частиц d50 для частиц, имеющих d50 больше чем 0,5 мкм, используют устройство Sedigraph 5100 (компания Micromeritics, США). Измерения проводят в водном растворе 0,1% масс. Na4P2O7. Образцы диспергируют с использованием высокоскоростной мешалки и ультразвука. Для определения объемного медианного размера частиц для частиц, имеющих d50≤500 нм, используют устройство Malvern Zetasizer Nano ZS (компания Malvern, UK). Измерения проводят в водном растворе 0,1% масс. Na4P2O7. Образцы диспергируют с использованием высокоскоростной мешалки и ультразвука.
Наполнители и/или пигменты могут быть объединены с диспергирующими агентами, такими как агенты, выбранные из группы, включающей гомополимеры или сополимеры поликарбоновых кислот и/или их солей или производных, таких как сложные эфиры на основе, например, акриловой кислоты, метакриловой кислоты, малеиновой кислоты, фумаровой кислоты, итаконовой кислоты, например, акриламиды или акриловые эфиры, такие как метилметакрилат, или их смеси; полифосфаты щелочных металлов, фосфоновую, лимонную и винную кислоты и их соли или сложные эфиры; или их смеси.
Объединение волокон и по меньшей мере одного наполнителя и/или пигмента может быть проведено путем добавления наполнителя и/или пигмента к волокнам на одной или нескольких стадиях. Также волокна могут быть добавлены к наполнителю и/или пигменту на одной или нескольких стадиях. Наполнитель и/или пигмент, а также волокна могут быть добавлены целиком или частями до или во время стадии фибриллирования. Однако добавление до фибриллирования является предпочтительным.
Во время процесса фибриллирования размер наполнителей и/или пигментов, а также размер волокон может меняться.
Предпочтительно массовое отношение волокон к наполнителям и/или пигментам из расчета на сухую массу основы составляет от 1:33 до 10:1, более предпочтительно от 1:10 до 7:1, еще более предпочтительно от 1:5 до 5:1, как правило, от 1:3 до 3:1, особенно от 1:2 до 2:1 и наиболее предпочтительно от 1:1 до 1,5:1, например 1:1.
Дозировка наполнителя и/или пигмента может быть критической. Если присутствует слишком много наполнителя и/или пигмента, это может повлиять на формирование геля. Следовательно, если образования геля не наблюдается при определенной комбинации, может быть необходимым уменьшение количества наполнителя и/или пигмента.
Кроме того, в одном из вариантов осуществления комбинацию хранят в течение от 2 до 12 часов, предпочтительно от 3 до 10 часов, более предпочтительно от 4 до 8 часов, например 6 часов, до ее фибриллирования, так как это идеально приводит к набуханию волокон, ускоряющему фибриллирование.
Набухание волокон может быть ускорено за счет хранения при повышенном значении рН, а также путем добавления растворителей целлюлозы, например этилендиамина меди(II), тартрата железа-натрия или хлорида лития/диметилацетамина, или с помощью любого другого способа, известного в данной области.
Фибриллирование проводят посредством любого устройства, приемлемого для этого. Предпочтительно устройство представляет собой гомогенизатор. Устройство также может представлять собой фрикционный дефибрер ультратонкого помола, который описан в патентах США № 6214163 или 6183596.
Подходящими для использования в настоящем изобретении являются любые коммерчески доступные гомогенизаторы, особенно гомогенизаторы высокого давления, где суспензию пропускают при повышенном давлении через ограниченное отверстие, которое может включать вентиль, и выгружают из ограниченного отверстия при высоком давлении напротив жесткой ударной поверхности непосредственно перед ограниченным отверстием, уменьшая за счет этого размер частиц. Давление может быть генерировано с помощью насоса, такого как поршневой насос, и ударная поверхность может содержать ударное кольцо, простирающееся вокруг кругового отверстия вентиля. Примером гомогенизаторов, которые могут быть использованы в настоящем изобретении, являются Ariete NS2006L (GEA Niro Soavi). Однако в числе прочих также могут быть использованы такие гомогенизаторы, как APV Gaulin Series, HST HL Series или Alfa Laval SHL Series.
Кроме того, такие устройства, как фрикционные дефибреры ультратонкого помола, например, Super Mass Colloider, могут быть успешно использованы в настоящем изобретении.
Рассматриваемый способ производства особенно полезен с точки зрения его эффективности. Как упоминалось выше, недостаток суспензий или гелей целлюлозной массы состоит в том, что они имеют относительно высокую вязкость в процессе фибриллирования, часто приводя к высокому потреблению энергии, что нежелательно с экономической, а также экологической точки зрения.
В общем случае минимизирование вязкости в процессе обеспечивает два преимущества:
(i) гель может быть получен более эффективно, но тем не менее вязкость будет расти (по линии более низкого уровня) по мере того, как постепенно образуется гель;
(ii) еще более благоприятный гель может быть получен в процессах, для которых вязкость является критичной за счет осуществления настоящего изобретения, пока вязкость снова не поднимется близко к рабочему максимуму, осуществимому в процессе, что означает, что протекает развитие даже до более тонкого геля, чем ранее могло быть достигнуто.
Таким образом, общая энергия, которая должна быть приложена для достижения некоторой вязкости, значительно выше для гелей, содержащих один и тот же тип и одно и то же количество целлюлозной массы, как и нанофибриллярные целлюлозные гели в соответствии с настоящим изобретением, но которые не содержат наполнителя и/или пигмента. То же самое применимо к гелям или суспензиям такого же вида и количества целлюлозной массы, но где наполнитель и/или пигмент добавляют после фибриллирования.
Следовательно, эффективность нанофибриллярного целлюлозного геля с точки зрения суммарного потребления энергии для достижения некоторой вязкости по Брукфилду является более высокой, чем эффективность соответствующих нанофибриллярного целлюлозного геля или суспензии, которые фибриллированы в отсутствие наполнителей и/или пигментов, или соответствующих геля или суспензии, не содержащих наполнителя и/или пигмента.
Таким образом, еще одним аспектом настоящего изобретения является разработка способа повышения эффективности производства нанофибриллярных целлюлозных гелей за счет получения нанофибриллярных гелей способом, описанным выше.
Другой аспект настоящего изобретения составляет нанофибриллярный целлюлозный гель, полученный способами в соответствии с настоящим изобретением, эффективность которого с точки зрения суммарного потребления энергии для достижения некоторой вязкости по Брукфилду предпочтительно выше, чем эффективность соответствующего нанофибриллярного целлюлозного геля, фибриллярного в отсутствие наполнителей и/или пигментов, или соответствующего геля, не содержащего наполнителя и/или пигмента.
Благодаря их характеристикам механической прочности нанофибриллярные целлюлозные гели могут быть успешно для применения, например, в материалах-композитах, пластиках, красках, каучуке, бетоне, керамике, клеях, пищевых продуктах, или для применения при заживлении ран.
Фигуры, описанные ниже, и примеры и эксперименты служат для иллюстрации настоящего изобретения и ни коим образом не будут его ограничивать.
Описание чертежей
Фиг.1 показывает развитие вязкости по Брукфилду во время гомогенизации смесей целлюлозной массы с карбонатом кальция и без карбоната кальция.
Фиг.2 показывает вязкость по Брукфилду смесей целлюлозной массы с карбонатом кальция и без карбоната кальция, добавленным до или после гомогенизации.
Фиг.3 показывает зависимость вязкости смесей целлюлозной массы с карбонатом кальция и без карбоната кальция, добавленным до или после гомогенизации, от скорости сдвига.
Фиг.4а и 4b показывают изображения в СЭМ (SEM) только волокон (фиг.4а), волокон и 100% масс. карбоната кальция из расчета на массу присутствующих волокон до гомогенизации (фиг.4b).
Фиг.5а и 5b показывают изображения в СЭМ (SEM) только волокон (фиг.5а), волокон и 100% масс. карбоната кальция из расчета на массу присутствующих волокон после 2 часов гомогенизации (фиг.5b).
Фиг.6а и 6b показывают изображения в СЭМ (SEM) только волокон (фиг.6а), волокон и 100% масс. карбоната кальция из расчета на массу присутствующих волокон после 10 часов гомогенизации (фиг.6b).
Фиг.7 показывает эффективность гелеобразования смеси с наполнителем карбонатом кальция и без наполнителя карбоната кальция.
Фиг.8 показывает эффективность гелеобразования смесей, содержащих в качестве наполнителей карбонат кальция и тальк наноразмера.
Примеры
А) Определение реологических характеристик
Для иллюстрации настоящего изобретения высокооблагороженная целлюлозная масса (стандартная эвкалиптовая целлюлозная масса с 20°ШР, облагороженная до 80-83°ШР, с помощью рафинера целлюлозной массы, используемого на бумагоделательных установках) и смесь такой целлюлозной массы с определенным количеством карбоната (100% масс. из расчета на сухую массу присутствующих волокон, сухая масса на сухую массу (с/с)) фибриллируют с использованием гомогенизатора. Целлюлозную массу (эталон) и смесь гомогенизируют в течение 10 часов при давлении около 1000 бар, проводят измерения вязкости и получают изображения в СЭМ через определенные промежутки времени.
Вязкость (при 50°С) эталона 560 мПа·сек через 10 часов гомогенизации может быть понижена до 435 мПа·сек за счет совместной гомогенизации со 100% масс. карбоната кальция (Omyacarb 1 AV) из расчета на сухую массу присутствующих волокон.
Чтобы проверить, приводит ли добавление одного карбоната кальция к понижению вязкости гомогенизированной целлюлозной массы или необходима совместная гомогенизация, образец уже гомогенизированной целлюлозной массы смешивают с карбонатом кальция (100% масс. карбоната кальция из расчета на сухую массу присутствующих волокон, с/с), которую называют «композицией».
Вязкость «композиции» (865 мПа·сек) выше, чем вязкость со-гомогенизированной смеси (435 мПа·сек), и даже выше, чем вязкость гомогенизированного эталона (560 мПа·сек) без карбоната кальция.
Суспензии карбоната с таким же содержанием твердых веществ, но без гомогенизированной целлюлозной массы, с другой стороны, не показывает значительно более высокой вязкости, чем содержащие волокно образцы.
2. Материал
Карбонат: Omyacarb 1 AV (GCC, содержание твердых веществ 100% из расчета на массу присутствующих волокон, весовой медианный размер частиц d50=1,7 мкм, измеренный с помощью Sedigraph 5100) поставляется Omya AG.
Целлюлозная масса: Стандартная эвкалиптовая целлюлозная масса (20°ШР (SR)), фибриллярная до 80-83°ШР с помощью рафинера, используемого на бумагоделательных установках. Градус Шоппер-Риглера (°ШР) измеряют в соответствии с Zellcheming Merkblatt V/7/61 и стандартизированном в ISO 5267/1.
3. Экспериментальная схема
3.1. Приготовление образцов
Для длительного испытания с одним гомогенизатором 1000 г (содержание твердых веществ приблизительно 3%) целлюлозной массы, как она получена, смешивают с 1250 г водопроводной воды с использованием мешалки (диссольвер с диском, работающий при скорости вращения 4000 об/мин) с получением содержания твердых веществ приблизительно 1,3% масс. Если это необходимо, то добавляют соответствующее количество карбоната кальция (Omyacarb 1 AV) при дополнительном перемешивании (см. таблицу 1). Отбирают соответствующие количества суспензии, чтобы провести опыты по определению вязкости и для получения микрофотографий в СЭМ, как описано ниже. Остаток суспензии переносят в резервуар гомогенизатора. Образцы, которые используют для измерения вязкости, возвращают в процесс после проведения измерений.
Таблица 1
Образец, № Карбонат кальция Количество,% масс. (с/с) Исходное содержание твердых веществ,
% масс.
Конечное содержание твердых веществ,
% масс.
Общее время в гомогенизаторе,
час
1 Omyacarb 1 AV 0 1,3 1,7 10
2 Omyacarb 1 AV 100 2,6 2,4 10
3.2. Гомогенизатор
В опытах по фибриллированию используют гомогенизатор (GEA Niro Soavi; тип NS 2006 L). Резервуар перемешивают с помощью внешней мешалки с двумя пропеллерами, чтобы предупредить седиментацию суспензии и сохранить хорошую конверсию.
Устройство запускают, не прикладывая давления (поршень на обеих стадиях гомогенизации полностью выведен назад), и при наиболее низкой скорости подачи насосом. Для установки давления приблизительно 1000 бар вводят только поршень первой стадии. Реакционное время начинается, когда давление достигает 1000 бар, причем наблюдаются колебания давления ±200 бар. Последовательно достигаемое пониженное или повышенное давление компенсируют за счет изменения положения поршня.
Суспензию удерживают в состоянии циркуляции. Образцы отбирают после камеры гомогенизации (до поступления снова в резервуар), чтобы гарантировать по меньшей мере один проход волокон через камеру гомогенизации.
4. Способы
4.1. Измерения вязкости
4.1.1. Вязкость по Брукфилду
Измерения вязкости проводят на вискозиметре Брукфилда DV-II+. Скорость привода устанавливают на 100 об/мин и вязкость регистрируют через 10, 60 и 600 секунд. Образцы оценивают или при комнатной температуре, или при 50°С. Образцы нагревают в термически регулируемой ультразвуковой бане.
4.1.2. Реологические измерения
Реологические измерения проводят с использованием Paar-Physika MCR 300 с помощью системы измерения СС28.7. Образцы оценивают при 20°С.
4.2. СЭМ
Микрофотографии в сканирующем электронном микроскопе (СЭМ) получают путем добавления 0,5 г образцов к 200 см3 дистиллированной воды, которую затем фильтруют через 0,8 мкм пористый нитроцеллюлозный фильтр. Фильтр с находящимся на нем образце сушат в вакуумной сушилке. Препараты, полученные таким образом на мембранном фильтре, металлизируют с помощью 50 нм золота и оценивают в СЭМ при различных увеличениях.
5. Результаты
5.1. Измерения вязкости
Развитие вязкости (по Брукфилду) во время гомогенизации можно получить из фиг.1. Вязкости определяют через 600 секунд. Образцы замеряют приблизительно при 35°С (при температуре, которая представляет собой температуру образцов, полученных непосредственно после камеры гомогенизации). Образец 1 представляет собой только целлюлозную массу и поэтому его используют в качестве эталонного материала для содержащего карбонат кальция образца 2. Как уже упоминалось, вязкость измеряют во время фибриллирования. Как можно увидеть, образец 2, содержащий 100% масс. карбоната кальция (из расчета на сухую массу присутствующих волокон; с/с), всегда имеет более низкую вязкость, чем эталон, но также растет с увеличением времени гомогенизации.
Для проверки того, является ли присутствие карбоната кальция во время гомогенизации необходимым для снижения вязкости, также готовят и исследуют композицию гомогенизированного (10 час) образца 1 и 100% масс. карбоната кальция (из расчета на сухую массу присутствующих волокон; с/с), добавленного после гомогенизации. Вязкость определяют через 10, 60 и 600 секунд. Образцы нагревают в термически регулируемой ультразвуковой бане и оценивают при 50°С.
Фиг.2 иллюстрирует вязкости чистой гомогенизированной целлюлозной массы (образец 1), целлюлозной массы, со-гомогенизированной со 100% масс. карбоната кальция (из расчета на сухую массу присутствующих волокон; с/с) (образец 2), и смесей гомогенизированной целлюлозной массы и 100% масс. карбоната кальция (из расчета на сухую массу присутствующих волокон; с/с), добавленного после гомогенизации (композиция). В этом случае «10 сек», «60 сек» и «600 сек» относятся к значениям вязкости по Брукфилду, полученным через 10, 60 и 600 секунд после «включения» привода.
Как можно увидеть, со-гомогенизированная смесь имеет более низкую вязкость, чем эталон, тогда как композиция имеет более высокую вязкость, чем соответствующая со-гомогенизированная смесь (смесь 2) и эталон (образец 1).
При сравнении конечных вязкостей (при времени гомогенизации 10 час) на фиг.1 и на фиг.2 можно заметить немного разные значения. Эта разница связана с температурной зависимостью вязкости смесей целлюлозной массы.
5.2. Реологические измерения
Как можно увидеть на фиг.3, все образцы проявляют разжижение при сдвиге. Данные таблицы 2 показывают вязкость эталона, со-гомогенизированной с 100% масс. карбоната кальция смеси и композиции со 100% масс. при 18000 сек-1. Аналогично данным измерения по Брукфилду (фиг.2) со-гомогенизированная со 100% масс. карбоната смесь имеет самую низкую вязкость (8 мПа·сек) и композиция со 100% масс. имеет наиболее высокую вязкость (17 мПа·сек).
Таблица 2
Образец Вязкость, мПа·сек при 18000 сек-1
Образец 1 (эталон) 14
Образец 2 (со-гомогенизированный с 100% масс. карбоната) 8
Образец 3 (композиция с 100% масс. карбоната) 17
Кроме того, из фиг.3 можно ясно увидеть, что существует гистерезис в случае примера 2, иллюстрирующего случай волокон, со-гомогенизированных со 100% масс. карбоната кальция.
При низких скоростях сдвига вязкость снижается постепенно по мере увеличения сдвига до скорости сдвига приблизительно 18000 сек-1. Затем при медленном снижении скоростей сдвига можно наблюдать более низкие вязкости, чем при соответствующих скоростях сдвига на предыдущей стадии повышения, где вязкость всегда остается более низкой, чем вязкости на предыдущей стадии, и более низкой, чем вязкость композиции и целлюлозной массы только образца 1 при одинаковых условиях сдвига.
Такое поведение показывает не только низкие вязкости, которые могут быть достигнуты в соответствии с настоящим изобретением, но также являются очевидным индикатором образования геля.
5.3. СЭМ
При сравнении фиг.4а (относящейся к образцу 1) и фиг.4b (относящейся к образцу 2) до гомогенизации, соответственно, с фиг.5а и 5b после 2 часов гомогенизации, соответственно, и фиг.6а и 6b после 10 часов гомогенизации, соответственно, можно увидеть, что волокна целлюлозной смеси становятся тоньше с увеличением времени гомогенизации; и без привязки к какой-либо теории оказывается, что после достижения фибриллами некоторой тонины они оборачиваются вокруг частиц карбоната кальция и образуют разновидность слоя на поверхности частиц карбоната.
В) Эффективность гелеобразования
«Эффективность» в контексте настоящего изобретения определяют как вязкость по Брукфилду (более высокая вязкость по Брукфилду означает более стабильный гель, что означает более высокую степень фибриллирования), достигаемую на удельное потребление энергии.
1. Переработка
Все примеры (образцы 4-9) перерабатывают с помощью фрикционного дефибрера ультратонкого помола (Supermasscolloider, Masuko Sangyo Co., Ltd., Япония (Модель МКСА 6-2) с навесными абразивными камнями из карбида кремния, имеющими абразивный материал класса 46 (с размером абразива 297-420 мкм). Зазор между абразивными камнями регулируют до «-50» мкм (динамическая 0 точка, как описано в руководстве, предоставляемом поставщиком). Скорость вращения дефибрера устанавливают на 2500 об/мин для проходов 1-5, на 2000 об/мин для проходов 6 и 7, на 1500 об/мин для проходов 8 и 9, на 1000 об/мин для проходов 10 и 11, на 750 об/мин для проходов 12 и 13 и на 500 об/мин для проходов 14 и 15.
2. Измерение энергии
Измерение энергии проводят путем установки счетчика электроэнергии (ELKO Syteme AG, DIZ D665Di) между основным источником питания и преобразователем, чтобы измерить потребление энергии всей системой Supermasscolloider (которая подана от поставщика). Счетчик электроэнергии подает один сигнал на ватт-час (Wh) к цифровому счетчику (Hengstler, tico 731), который способен выводить данные потребления энергии на проход в конце прохода с погрешностью один ватт-час.
3. Измерение массы
Содержание твердых веществ измеряют с использованием галогеновых весов для твердых веществ Mettler Toledo BH 43-S. Конечную общую массу измеряют с использованием весов Mettler PK 36 Delta Range. Исходная сухая масса представляет собой сумму всех сухих масс в начале опыта (подробные составы могут быть найдены в рецептуре отдельных опытов).
4. Определение вязкости по Брукфилду
Вязкость по Брукфилду измеряют с помощью вискозиметра Brookfield модель DV-II+.
Для более хорошей совместимости данных измерения по Брукфилду вязкость по Брукфилду измеряют в ряде разбавлений, чтобы рассчитать вязкость по Брукфилду при фиксированном содержании твердых веществ. Дополнительно указано, что только отношение содержания сухой целлюлозы (происходящей из сухой целлюлозной массы) к воде берут в качестве справочного параметра для вязкости по Брукфилду. Следующую формулу используют для расчета содержания целлюлозных твердых веществ (s.c.c):
Figure 00000001
s.c. c : Содержание целлюлозных твердых веществ;
s.c.: Измеренное содержание твердых веществ образца;
р с : часть целлюлозного содержания, на определение = 1;
p f : части наполнителя, массовое отношение к части целлюлозного содержания.
Стандартизированную вязкость по Брукфилду BV2% определяют следующим способом:
1. Измеряют содержание твердых веществ и вязкость по Брукфилду (100 об/мин, измеренная через 30 сек) исходного продукта.
2. Проводят три разбавления исходных продуктов путем добавления соответствующих количеств водопроводной воды, в которых измеряют содержание твердых веществ (масса, по меньшей мере, в 10 г) и вязкости по Брукфилду (100 об/мин, измеренная через 30 сек).
3. Получают xy-диаграмму разброса результатов анализа (х: содержание твердых веществ; у: вязкость по Брукфилду) и точки аппроксимируют кривой со степенной зависимостью (y=axb).
4. Используют параметры а и b для расчета вязкости по Брукфилду при стандартизированном содержании твердых целлюлозных веществ, xs 2% масс.
Чтобы скорректировать собственное влияние Omyacarb 1 AV (образцы 5-7) на вязкость по Брукфилду гелей, сравнительный гель, не содержащий наполнителя (образец 4), смешивают с соответствующими количествами Omyacarb 1 AV (чтобы иметь аналогичные соотношения, как в образах 5-7). Значения BV2% для этих смесей определяют в соответствии с упомянутой выше методикой и рассчитывают процентные поправки со ссылкой на гель, не содержащий наполнителя. Процентные поправки составляют: 0,1 части (массовая часть; с/с; ср. образец 5) наполнителя: <0,1% (пренебрегают); 3 части (массовая часть; с/с; ср. образец 6) наполнителя: -14,5%; 10 частей (массовая часть; с/с; ср. образец 7) наполнителя: -37,5%.
Соответствующие коррекции для образцов 8 и 9 не проводят, так что представленные значения «эффективности», описанные ниже, будут преувеличены в интервале приблизительно от 15 до 20%.
5. Расчет удельного потребления энергии
Удельное потребление энергии на проход En рассчитывают следующим образом:
Figure 00000002
Figure 00000003
Figure 00000004
E n : удельное потребление энергии прохода n [МВатт-час/дм]([MWh/dmt]);
E n : измеренная энергия прохода n [Ватт-час]([Wh]);
m n : сухая масса прохода n [г];
m 1 : начальная сухая масса [г];
m 15 : конечная сухая масса [г];
n: номер прохода;
σ: содержание твердых веществ конечной массы [% масс.];
М: конечная суммарная масса [г].
6. Расчет «эффективности»
«Эффективность» (ε) в контексте настоящего изобретения определяют как вязкость по Брукфилду (более высокая вязкость по Брукфилду означает более стабильный гель, что означает более высокую степень фибриллирования), достигнутую на удельное потребление энергии:
Figure 00000005
ε : "Эффективность" [ мПа сек МВатт-час/дм ]
Figure 00000006
BV 2% : вязкость по Брукфилду при содержании твердых веществ 2% масс. [мПа·сек]([mPas]);
Е 1-15 : Общее удельное потребление энергии одного примера [МВатт-час/дм].
7. Материал
Omyacarb 1 AV: поставляется Omya AG; тонкоизмельченный порошок карбоната кальция, произведен из высокочистого белого мрамора; весовой медианный размер частиц d50 составляет 1,7 мкм при измерении с помощью Sedigraph 5100.
Nano GCC: Природный измельченный карбонат кальция (мрамор из Vermont); диспергированная суспензия (содержание твердых веществ 50% масс.); объемный медианный размер частиц d50 составляет 246 нм, измерен с помощью Malvern Zetasizer Nano ZS.
Finntalc F40: Finntalc F40 поставляется Mondo Minerals; наполнитель тальк для бумаги и картона.
Эвкалиптовая целлюлозная масса: сухой мат, степень белизны 88,77%, 17°ШР.
Сосновая целлюлозная масса: сухой мат, степень белизны 88,19%, 20°ШР.
8. Получение образца
Образец 4 (сравнительный)
В течение по меньшей мере 10 минут смешивают 180 г эвкалиптовой целлюлозной массы и 5820 г водопроводной воды с использованием смесителя Pendraulik при 2000 об/мин с навесным диссольвером с диском (d=70 мм). Эту смесь перерабатывают с помощью Supermasscolloider, как описано выше в соответствующем разделе. Данный пример проводят три раза, чтобы показать его воспроизводимость.
Образец 5
В течение по меньшей мере 10 минут смешивают 180 г эвкалиптовой целлюлозной массы, 5820 г водопроводной воды и 18 г Omyacarb 1 AV (10:1, (целлюлозная масса):наполнитель; сухая масса/сухая масса) с использованием смесителя Pendraulik при 2000 об/мин с навесным диссольвером с диском (d=70 мм). Эту смесь перерабатывают с помощью Supermasscolloider, как описано выше в соответствующем разделе. Данный пример проводят три раза, чтобы показать его воспроизводимость.
Образец 6
В течение по меньшей мере 10 минут смешивают 180 г эвкалиптовой целлюлозной массы, 5820 г водопроводной воды и 540 г Omyacarb 1 AV (1:3, (целлюлозная масса):наполнитель; сухая масса/сухая масса) с использованием смесителя Pendraulik при 2000 об/мин с навесным диссольвером с диском (d=70 мм). Эту смесь перерабатывают с помощью Supermasscolloider, как описано выше в соответствующем разделе. Данный пример проводят три раза, чтобы показать его воспроизводимость.
Образец 7
В течение по меньшей мере 10 минут смешивают 180 г эвкалиптовой целлюлозной массы, 5820 г водопроводной воды и 1800 г Omyacarb 1 AV (1:10, (целлюлозная масса):наполнитель; сухая масса/сухая масса) с использованием смесителя Pendraulik при 2000 об/мин с навесным диссольвером с диском (d=70 мм). Эту смесь перерабатывают с помощью Supermasscolloider, как описано выше в соответствующем разделе.
Образец 8
В течение по меньшей мере 10 минут смешивают 180 г сосновой целлюлозной массы, 5820 г водопроводной воды и 180 г Finntalc F40 (1:1, (целлюлозная масса):наполнитель; сухая масса/сухая масса) с использованием смесителя Pendraulik при 2000 об/мин с навесным диссольвером с диском (d=70 мм). Эту смесь перерабатывают с помощью Supermasscolloider, как описано выше в соответствующем разделе.
Образец 9
В течение по меньшей мере 10 минут смешивают 180 г эвкалиптовой целлюлозной массы, 5820 г водопроводной воды и 360 г Nano GCC (1:1, (целлюлозная масса):наполнитель; сухая масса/сухая масса) с использованием смесителя Pendraulik при 2000 об/мин с навесным диссольвером с диском (d=70 мм). Эту смесь перерабатывают с помощью Supermasscolloider, как описано выше в соответствующем разделе.
9. Результаты
Образцы 4-7
При сравнении образцов 4-7 очевидно, что эффективность растет для гелей, которые произведены в присутствии большего количества наполнителя, а именно до 250%. Увеличение эффективности должно быть больше чем 15% по сравнению с гелем, который образован в отсутствие наполнителя.
Образцы 8 и 9
Образцы 8 и 9 не подвергают коррекции вязкости по Брукфилду, так как характеристическую вязкость по Брукфилду повышает добавление наполнителя (см. раздел «Определение вязкости по Брукфилду»).
Однако, как можно увидеть на фиг.8, эффективность приблизительно на 75% выше, чем эффективность сравнительного примера 4, и еще на 40% выше, если принять поправку минус 20% значения измеренной эффективности.

Claims (16)

1. Способ производства нанофибриллярных целлюлозных гелей, характеризующийся стадиями:
(a) подготовки целлюлозных волокон;
(b) подготовки по меньшей мере одного наполнителя и/или пигмента;
(c) объединения целлюлозных волокон и по меньшей мере одного наполнителя и/или пигмента;
(d) фибриллирования целлюлозных волокон в присутствии по меньшей мере одного наполнителя и/или пигмента до тех пор, пока уже не останется волокон и пока в водной среде не образуется гель только из первичных фибрилл, где образование геля подтверждают путем мониторинга вязкости в зависимости от скорости сдвига, так что при этом понижение вязкости при ступенчатом повышении скорости сдвига является более сильным, чем соответствующее повышение вязкости при последующем ступенчатом снижении скорости сдвига в пределах по меньшей мере части интервала скорости сдвига, по ходу того, как сдвиг стремится к нулю,
и характеризующийся тем, что наполнитель и/или пигмент выбирают из группы, включающей осажденный карбонат кальция, природный измельченный карбонат кальция, доломит, тальк, бентонит, глину, магнезит, сатинит, сепиолит, гунтит, диатомит, силикаты и их смеси.
2. Способ по п.1, отличающийся тем, что вязкость по Брукфилду полученного нанофибриллярного целлюлозного геля является более низкой, чем вязкость по Брукфилду соответствующей нанофибриллярной целлюлозной суспензии, которая была фибриллирована в отсутствие наполнителей и/или пигментов.
3. Способ по любому из пп.1 или 2, отличающийся тем, что целлюлозные волокна представляют собой волокна, содержащиеся в целлюлозной массе, выбранной из группы, включающей эвкалиптовую целлюлозную массу, еловую целлюлозную массу, сосновую целлюлозную массу, буковую целлюлозную массу, конопляную целлюлозную массу, хлопковую целлюлозную массу и их смеси.
4. Способ по любому из пп.1 или 2, отличающийся тем, что целлюлозные волокна готовят в форме суспензии, предпочтительно имеющей содержание твердых веществ от 0,2 до 35% масс., более предпочтительно от 0,25 до 10% масс., еще более предпочтительно от 0,5 до 5% масс., в особенности от 1 до 4% масс., наиболее предпочтительно от 1,3 до 3% масс., например 1,5% масс.
5. Способ по п.1, отличающийся тем, что наполнитель и/или пигмент выбирают из группы осажденного карбоната кальция, предпочтительно имеющего кристаллическую структуру ватерита, кальцита или арагонита; природного измельченного карбоната кальция, предпочтительно выбранного из мрамора, извести и/или мела; и их смесей.
6. Способ по п.5, отличающийся тем, что осажденный карбонат кальция представляет собой ультрамелкий, дискретный, призматический, скаленоэдрический или ромбоэдрический осажденный карбонат кальция.
7. Способ по любому из пп.1 или 2, отличающийся тем, что частицы наполнителя и/или пигмента имеют медианный размер частиц от 0,01 до 15 мкм, предпочтительно от 0,1 до 10 мкм, более
предпочтительно от 0,3 до 5 мкм и наиболее предпочтительно от 0,5 до 4 мкм.
8. Способ по любому из пп.1 или 2, отличающийся тем, что наполнитель и/или пигмент объединяют с диспергирующими агентами, выбранными из группы, включающей гомополимеры или сополимеры поликарбоновых кислот и/или их солей или производных, таких как сложные эфиры, например, на основе акриловой кислоты, метакриловой кислоты, малеиновой кислоты, фумаровой кислоты, итаконовой кислоты, например, акриламиды или акриловые эфиры, такие как метилметакрилат, или их смеси; полифосфаты щелочных металлов, фосфоновую, лимонную и винную кислоты и их соли или сложные эфиры; или их смеси.
9. Способ по любому из пп.1 или 2, отличающийся тем, что объединение волокон и по меньшей мере одного наполнителя и/или пигмента проводят путем добавления наполнителя и/или пигмента к волокнам или волокон к наполнителю и/или пигменту в одну или несколько стадий.
10. Способ по любому из пп.1 или 2, отличающийся тем, что наполнитель и/или пигмент и/или волокна добавляют целиком или частями до или во время стадии фибриллирования (d), предпочтительно до стадии фибриллирования (d).
11. Способ по любому из пп.1 или 2, отличающийся тем, что массовое отношение волокон к наполнителю и/или пигменту из расчета на сухую массу составляет от 1:33 до 10:1, предпочтительно от 1:10 до 7:1, более предпочтительно от 1:5 до 5:1, как правило, от 1:3 до 3:1, еще более предпочтительно от 1:2 до 2:1 и наиболее предпочтительно от 1:1,5 до 1,5:1, например 1:1.
12. Способ по любому из пп.1 или 2, отличающийся тем, что фибриллирование проводят с помощью гомогенизатора или фрикционного дефибрера ультратонкого помола.
13. Применение способа по любому из пп.1-12 для повышения эффективности производства нанофибриллярных целлюлозных гелей.
14. Нанофибриллярный целлюлозный гель, полученный способом по любому из пп.1-12 или 13.
15. Нанофибриллярный целлюлозный гель по п.14, отличающийся тем, что эффективность нанофибриллярного целлюлозного геля относительно общего потребления энергии для достижения определенной вязкости по Брукфилду является более высокой, чем эффективность соответствующих нанофибриллярного целлюлозного геля, фибриллярного в отсутствие наполнителей и/или пигментов, или соответствующего геля, не содержащего наполнителя и/или пигмента.
16. Применение нанофибриллярного целлюлозного геля по любому из пп.14 или 15 в таких вариантах применения, как материалы-композиты, пластики, краски, каучук, бетон, керамика, клеи, пищевые продукты, или для применения при заживлении ран.
RU2011143854/05A 2009-03-30 2010-03-30 Способ призводства нанофибриллярных целлюлозных гелей RU2530067C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP09156703.2 2009-03-30
EP09156703.2A EP2236545B1 (en) 2009-03-30 2009-03-30 Process for the production of nano-fibrillar cellulose gels
US21207309P 2009-04-06 2009-04-06
US61/212,073 2009-04-06
PCT/EP2010/054233 WO2010115785A1 (en) 2009-03-30 2010-03-30 Process for the production of nano-fibrillar cellulose gels

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2014130594A Division RU2671320C2 (ru) 2009-03-30 2014-07-23 Способ производства нанофибриллярных целлюлозных гелей

Publications (2)

Publication Number Publication Date
RU2011143854A RU2011143854A (ru) 2013-05-10
RU2530067C2 true RU2530067C2 (ru) 2014-10-10

Family

ID=40733170

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2011143854/05A RU2530067C2 (ru) 2009-03-30 2010-03-30 Способ призводства нанофибриллярных целлюлозных гелей
RU2014130594A RU2671320C2 (ru) 2009-03-30 2014-07-23 Способ производства нанофибриллярных целлюлозных гелей

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2014130594A RU2671320C2 (ru) 2009-03-30 2014-07-23 Способ производства нанофибриллярных целлюлозных гелей

Country Status (24)

Country Link
US (4) US8871056B2 (ru)
EP (6) EP2805986B1 (ru)
JP (7) JP5894525B2 (ru)
KR (2) KR101830564B1 (ru)
CN (1) CN102378777B (ru)
AR (1) AR075961A1 (ru)
BR (1) BRPI1012691B1 (ru)
CA (1) CA2755495C (ru)
CL (1) CL2010000280A1 (ru)
CO (1) CO6501176A2 (ru)
DK (5) DK2805986T3 (ru)
ES (5) ES2650373T3 (ru)
HR (2) HRP20171405T1 (ru)
HU (2) HUE035151T2 (ru)
NO (1) NO2805986T3 (ru)
PL (5) PL2236545T3 (ru)
PT (3) PT2805986T (ru)
RU (2) RU2530067C2 (ru)
SI (3) SI2805986T1 (ru)
TR (1) TR201909766T4 (ru)
TW (2) TWI647257B (ru)
UA (1) UA108609C2 (ru)
UY (1) UY32532A (ru)
WO (1) WO2010115785A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692349C1 (ru) * 2018-09-07 2019-06-24 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Способ получения целлюлозосодержащего геля
RU2703245C1 (ru) * 2016-03-16 2019-10-15 Асахи Касеи Кабусики Кайся Тонкое целлюлозное волокно и способ его получения
RU2810201C1 (ru) * 2022-11-22 2023-12-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" Способ наноструктуризации волокон целлюлозы

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009086141A2 (en) 2007-12-20 2009-07-09 University Of Tennessee Research Foundation Wood adhesives containing reinforced additives for structural engineering products
EP3617400B1 (en) 2009-03-30 2022-09-21 FiberLean Technologies Limited Use of nanofibrillar cellulose suspensions
DK2805986T3 (en) * 2009-03-30 2017-12-18 Fiberlean Tech Ltd PROCEDURE FOR THE MANUFACTURE OF NANO-FIBRILLARY CELLULOS GELS
GB0908401D0 (en) 2009-05-15 2009-06-24 Imerys Minerals Ltd Paper filler composition
US20130000856A1 (en) * 2010-03-15 2013-01-03 Upm-Kymmene Oyj Method for improving the properties of a paper product and forming an additive component and the corresponding paper product and additive component and use of the additive component
PL2386683T3 (pl) 2010-04-27 2014-08-29 Omya Int Ag Sposób wytwarzania materiałów kompozytowych na bazie żelu
DK2386682T3 (da) * 2010-04-27 2014-06-23 Omya Int Ag Fremgangsmåde til fremstilling af strukturerede materialer under anvendelse af nano-fibrillære cellulosegeler
FI124324B (fi) * 2010-10-18 2014-06-30 Ekokem Palvelu Oy Puukuitupitoisen jakeen käsittely
FI123988B (fi) * 2010-10-27 2014-01-31 Upm Kymmene Corp Soluviljelymateriaali
GB201019288D0 (en) 2010-11-15 2010-12-29 Imerys Minerals Ltd Compositions
PT105422A (pt) * 2010-12-09 2012-06-11 Univ Aveiro Pastas celulósicas modificadas, método de preparação por processamento por alta pressão e respectivas aplicações
EP2529942B1 (en) 2011-06-03 2016-01-13 Omya International AG Process for manufacturing coated substrates
AT511624B1 (de) * 2011-07-13 2014-02-15 Chemiefaser Lenzing Ag Cellulose ii suspension, deren herstellung und daraus gebildete strukturen
SE536780C2 (sv) * 2011-10-26 2014-08-05 Stora Enso Oyj Förfarande för framställning av en dispersion som innefattarnanopartiklar samt en dispersion framställd enligt förfarandet
FI125237B (en) * 2011-12-22 2015-07-31 Upm Kymmene Corp The abstracting agent
FI126819B (en) * 2012-02-13 2017-06-15 Upm Kymmene Corp Procedure for concentrating fibrillar cellulose and fibrillar cellulose product
EP2653508A1 (en) * 2012-04-19 2013-10-23 Imerys S.A. Compositions for paint
CA2874414A1 (en) * 2012-07-13 2014-01-16 Sappi Netherlands Services B.V. Low energy method for the preparation of non-derivatized nanocellulose
FI127526B (en) * 2012-11-03 2018-08-15 Upm Kymmene Corp Process for manufacturing nanofibrillar cellulose
CN103061174B (zh) * 2013-01-18 2015-10-28 中南林业科技大学 一种强酸预处理辅助制备纤维素纳米纤丝的方法
JP6513037B2 (ja) * 2013-03-15 2019-05-15 ファイバーリーン テクノロジーズ リミテッド マイクロフィブリル化セルロースを処理する方法
FI126042B (en) 2014-03-31 2016-06-15 Upm Kymmene Corp Method for producing nanofibril cellulose and nanofibril cellulose product
US9777143B2 (en) 2014-04-11 2017-10-03 Georgia-Pacific Consumer Products Lp Polyvinyl alcohol fibers and films with mineral fillers and small cellulose particles
US9777129B2 (en) 2014-04-11 2017-10-03 Georgia-Pacific Consumer Products Lp Fibers with filler
JP6646045B2 (ja) * 2014-05-30 2020-02-14 ボレガード アーエス ミクロフィブリル化セルロース
FI125883B (en) 2014-12-22 2016-03-31 Upm Kymmene Corp Treatment of Catalytically Oxidized Nanofibril Cellulose Hydrogel
EP3260861A4 (en) * 2015-02-17 2019-10-09 Nippon Paper Industries Co., Ltd. METHOD FOR EVALUATING DISPERSION OF CELLULOSE NANOFIBERS
US20180298370A1 (en) 2015-04-27 2018-10-18 Julius-Maximilians-Universität Würzburg Modified bacterial nanocellulose and its uses in chip cards and medicine
CN105061782B (zh) * 2015-07-21 2018-02-27 华南理工大学 高性能石墨烯/纤维素自组装复合水凝胶和气凝胶及其制备方法
WO2017066119A1 (en) 2015-10-12 2017-04-20 The University Of Massachusetts Nanocellulose-based anti-fogging composition
CN112094432B (zh) 2015-10-14 2022-08-05 纤维精益技术有限公司 可三维成型片材
PT3400333T (pt) * 2016-01-05 2020-06-30 Stora Enso Oyj Método para a formação de um compósito compreendendo mfc e um compósito produzido pelo método
FI130254B (en) * 2016-02-03 2023-05-11 Kemira Oyj METHOD FOR PREPARATION OF MICROFIBRILLATED CELLULOSE AND PRODUCT
JP6699014B2 (ja) * 2016-02-16 2020-05-27 モリマシナリー株式会社 樹脂材料強化材の製造方法、繊維強化樹脂材料の製造方法、及び樹脂材料強化材
CN109071346B (zh) * 2016-04-04 2022-06-14 菲博林科技有限公司 用于在天花板、地板和建筑产品中提供增加的强度的组合物和方法
JP7044711B2 (ja) * 2016-04-04 2022-03-30 ファイバーリーン テクノロジーズ リミテッド 強度の上昇した天井、床材、および建材製品を提供するための組成物および方法
PT3828339T (pt) 2016-04-05 2024-01-02 Fiberlean Tech Ltd Produtos de papel e papelão
US11846072B2 (en) 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
KR102399455B1 (ko) 2016-04-22 2022-05-19 파이버린 테크놀로지스 리미티드 재분산된 미세섬유상 셀룰로오스
DK3445900T3 (da) 2016-04-22 2022-08-01 Fiberlean Tech Ltd FIBRE OMFATTENDE MIKROFIBRILLERET CELLULOSE og FREMGANGSMÅDER TIL FREMSTILLING AF FIBRE OG IKKE-VÆVEDE MATERIALER DERAF
JP6836029B2 (ja) * 2016-05-18 2021-02-24 マーブルワークス株式会社 天然石板材及びその加工方法
SE540667C2 (en) * 2016-07-11 2018-10-09 Stora Enso Oyj Ethylene scavenging material suitable for use in packages and process for manufacturing thereof
CN106544755B (zh) * 2016-10-10 2019-12-03 贵州大学 一种粘土纤维的制备方法
FR3059345B1 (fr) * 2016-11-29 2020-06-12 Centre Technique De L'industrie, Des Papiers, Cartons Et Celluloses Composition liante a base de fibres vegetales et de charges minerales, sa preparation et son utilisation
JP6893649B2 (ja) * 2017-01-11 2021-06-23 日立Astemo株式会社 ゲル状体及びゲル状体の製造方法並びに複合材料及び複合材料の製造方法
KR102076665B1 (ko) * 2017-03-28 2020-02-13 네이처코스텍 주식회사 안정화된 변성 셀룰로오스 조성물과 그 제조방법
SE542671C2 (en) * 2017-07-05 2020-06-23 Stora Enso Oyj Dosing of nanocellulose suspension in gel phase
JP6437679B1 (ja) * 2018-01-16 2018-12-12 タケ・サイト株式会社 圧送用先行材
SE543549C2 (en) * 2018-03-02 2021-03-23 Stora Enso Oyj Method for manufacturing a composition comprising microfibrillated cellulose
AU2019285372A1 (en) * 2018-06-11 2021-01-14 Dugalunji Aboriginal Corporation Materials containing cellulose nanofibers
CN109371487A (zh) * 2018-09-27 2019-02-22 罗莱生活科技股份有限公司 一种硅藻土纤维的制备方法
FR3100038B1 (fr) 2019-08-21 2022-01-28 Kadant Lamort Procede de preparation de fibres de cellulose fonctionnalisees
CN114402104B (zh) * 2020-05-29 2024-04-05 株式会社Lg化学 原纤化纤维及用于制备其的方法
CN112095358B (zh) * 2020-09-25 2023-01-31 江西省钒电新能源有限公司 一种纤维素剥离及其功能化的方法
AU2022287908A1 (en) 2021-06-09 2023-12-14 Soane Materials Llc Articles of manufacture comprising nanocellulose elements
CN113387612B (zh) * 2021-06-18 2022-03-22 武汉三源特种建材有限责任公司 一种降粘增强型抗裂剂及其制备方法
WO2023180807A1 (en) 2022-03-23 2023-09-28 Fiberlean Technologies Limited Nanocellulose and resin make down processes and systems
CN115821635B (zh) * 2022-12-08 2024-03-22 陕西科技大学 一种纤维状柔性填料高加填纸及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1538257A (en) * 1921-09-22 1925-05-19 Norbert L Obrecht Buffer for automobiles
US2583548A (en) * 1948-03-17 1952-01-29 Vanderbilt Co R T Production of pigmented cellulosic pulp
US4087317A (en) * 1975-08-04 1978-05-02 Eucatex S.A. Industria E Comercio High yield, low cost cellulosic pulp and hydrated gels therefrom
US4481077A (en) * 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Process for preparing microfibrillated cellulose
US5156719A (en) * 1990-03-09 1992-10-20 Pfizer Inc. Acid-stabilized calcium carbonate, process for its production and method for its use in the manufacture of acidic paper
US6183596B1 (en) * 1995-04-07 2001-02-06 Tokushu Paper Mfg. Co., Ltd. Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same
RU2345189C2 (ru) * 2003-12-22 2009-01-27 Эка Кемикалс Аб Наполнитель для изготовления бумаги

Family Cites Families (273)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US57307A (en) 1866-08-21 Improved fabric to be used as a substitute for japanned leather
US168783A (en) 1875-10-11 Improvement in gasoline-burners
US2006209A (en) 1933-05-25 1935-06-25 Champion Coated Paper Company Dull finish coated paper
US2169473A (en) 1935-02-08 1939-08-15 Cellulose Res Corp Method of producing cellulose pulp
GB663621A (en) 1943-07-31 1951-12-27 Anglo Internat Ind Ltd Method of preparing a hydrophilic cellulose gel
US3075710A (en) 1960-07-18 1963-01-29 Ignatz L Feld Process for wet grinding solids to extreme fineness
US3794558A (en) 1969-06-19 1974-02-26 Crown Zellerbach Corp Loading of paper furnishes with gelatinizable material
DE2151445A1 (de) 1970-11-03 1972-05-04 Tamag Basel Ag Verfahren zum Aufbereiten von Tabakersatzpflanzenteilen zu einer Tabakersatzfolie
US3730830A (en) 1971-11-24 1973-05-01 Eastman Kodak Co Process for making paper
US3765921A (en) 1972-03-13 1973-10-16 Engelhard Min & Chem Production of calcined clay pigment from paper wastes
SU499366A1 (ru) 1972-10-23 1976-01-15 Всесоюзное научно-производственное объединение целлюлозно-бумажной промышленности Способ размола волокнистых материалов
IT1001664B (it) 1973-11-08 1976-04-30 Sir Soc Italiana Resine Spa Prodotto microfibroso adatto ad es sere impiegato nella produzione di carte sintetiche e relativo procedi mento di ppreparazione
US3921581A (en) 1974-08-01 1975-11-25 Star Kist Foods Fragrant animal litter and additives therefor
US4026762A (en) 1975-05-14 1977-05-31 P. H. Glatfelter Co. Use of ground limestone as a filler in paper
FI54818C (fi) 1977-04-19 1979-03-12 Valmet Oy Foerfarande foer foerbaettring av en termomekanisk massas egenskaper
DE2831633C2 (de) 1978-07-19 1984-08-09 Kataflox Patentverwaltungs-Gesellschaft mbH, 7500 Karlsruhe Verfahren zur Herstellung eines Brandschutzmittels
JPS5581548A (en) 1978-12-13 1980-06-19 Kuraray Co Ltd Bundle of fine fiber and their preparation
US4229250A (en) 1979-02-28 1980-10-21 Valmet Oy Method of improving properties of mechanical paper pulp without chemical reaction therewith
US4318959A (en) 1979-07-03 1982-03-09 Evans Robert M Low-modulus polyurethane joint sealant
US4460737A (en) 1979-07-03 1984-07-17 Rpm, Inc. Polyurethane joint sealing for building structures
US4356060A (en) 1979-09-12 1982-10-26 Neckermann Edwin F Insulating and filler material comprising cellulose fibers and clay, and method of making same from paper-making waste
US4374702A (en) 1979-12-26 1983-02-22 International Telephone And Telegraph Corporation Microfibrillated cellulose
DE3015250C2 (de) 1980-04-21 1982-06-09 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Verfahren und Einrichtung zur Aufbereitung von Mineralfaserschrott unterschiedlicher Beschaffenheit, insbesondere hinsichtlich seiner organischen Bestandteile
US4510020A (en) 1980-06-12 1985-04-09 Pulp And Paper Research Institute Of Canada Lumen-loaded paper pulp, its production and use
US4500546A (en) 1980-10-31 1985-02-19 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4341807A (en) 1980-10-31 1982-07-27 International Telephone And Telegraph Corporation Food products containing microfibrillated cellulose
US4452722A (en) 1980-10-31 1984-06-05 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4452721A (en) 1980-10-31 1984-06-05 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4378381A (en) 1980-10-31 1983-03-29 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
EP0051230B1 (de) 1980-10-31 1984-07-04 Deutsche ITT Industries GmbH Mikrofibrillierte Cellulose enthaltende Suspensionen und Verfahren zur Herstellung
US4464287A (en) 1980-10-31 1984-08-07 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4487634A (en) 1980-10-31 1984-12-11 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
ZA821268B (en) * 1981-03-06 1983-03-30 Courtaulds Ltd Drying wood pulp
CH648071A5 (en) 1981-06-15 1985-02-28 Itt Micro-fibrillated cellulose and process for producing it
NL190422C (nl) 1981-06-15 1994-02-16 Itt Tot microfibrillen gefibrilleerde cellulose, werkwijze voor de bereiding daarvan, alsmede papierprodukt dat dergelijke tot microfibrillen gefibrilleerde cellulose bevat.
US4481076A (en) 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Redispersible microfibrillated cellulose
US4474949A (en) 1983-05-06 1984-10-02 Personal Products Company Freeze dried microfibrilar cellulose
US4495245A (en) 1983-07-14 1985-01-22 E. I. Du Pont De Nemours And Company Inorganic fillers modified with vinyl alcohol polymer and cationic melamine-formaldehyde resin
CN1028660C (zh) 1984-09-17 1995-05-31 埃尔塔克系统公司 无机—聚合物复合纤维的制法及用途
US4744987A (en) 1985-03-08 1988-05-17 Fmc Corporation Coprocessed microcrystalline cellulose and calcium carbonate composition and its preparation
GB8508431D0 (en) 1985-04-01 1985-05-09 English Clays Lovering Pochin Paper coating apparatus
US5104411A (en) 1985-07-22 1992-04-14 Mcneil-Ppc, Inc. Freeze dried, cross-linked microfibrillated cellulose
US4820813A (en) 1986-05-01 1989-04-11 The Dow Chemical Company Grinding process for high viscosity cellulose ethers
US4705712A (en) 1986-08-11 1987-11-10 Chicopee Corporation Operating room gown and drape fabric with improved repellent properties
SE455795B (sv) 1986-12-03 1988-08-08 Mo Och Domsjoe Ab Forfarande och anordning for framstellning av fyllmedelshaltigt papper
US4761203A (en) 1986-12-29 1988-08-02 The Buckeye Cellulose Corporation Process for making expanded fiber
US5244542A (en) 1987-01-23 1993-09-14 Ecc International Limited Aqueous suspensions of calcium-containing fillers
JP2528487B2 (ja) 1987-12-10 1996-08-28 日本製紙株式会社 填料歩留りの改善されたパルプの製造方法及び紙の製造方法
US5227024A (en) 1987-12-14 1993-07-13 Daniel Gomez Low density material containing a vegetable filler
US4983258A (en) 1988-10-03 1991-01-08 Prime Fiber Corporation Conversion of pulp and paper mill waste solids to papermaking pulp
FR2647128B1 (fr) 1989-05-18 1991-12-27 Aussedat Rey Procede de fabrication d'un substrat plan, fibreux, souple, difficilement dechirable et substrat obtenu
US4952278A (en) 1989-06-02 1990-08-28 The Procter & Gamble Cellulose Company High opacity paper containing expanded fiber and mineral pigment
JPH0611793B2 (ja) 1989-08-17 1994-02-16 旭化成工業株式会社 微粒化セルロース系素材の懸濁液及びその製造方法
US5009886A (en) 1989-10-02 1991-04-23 Floss Products Corporation Dentifrice
US5312484A (en) 1989-10-12 1994-05-17 Industrial Progress, Inc. TiO2 -containing composite pigment products
US5279663A (en) 1989-10-12 1994-01-18 Industrial Progesss, Inc. Low-refractive-index aggregate pigments products
US5228900A (en) 1990-04-20 1993-07-20 Weyerhaeuser Company Agglomeration of particulate materials with reticulated cellulose
JP2976485B2 (ja) 1990-05-02 1999-11-10 王子製紙株式会社 微細繊維化パルプの製造方法
US5274199A (en) 1990-05-18 1993-12-28 Sony Corporation Acoustic diaphragm and method for producing same
JP3082927B2 (ja) * 1990-07-25 2000-09-04 旭化成工業株式会社 コンタクトレンズ洗浄用クリーナー
US5316621A (en) 1990-10-19 1994-05-31 Kanzaki Paper Mfg. Co., Ltd. Method of pulping waste pressure-sensitive adhesive paper
JP2940563B2 (ja) 1990-12-25 1999-08-25 日本ピー・エム・シー株式会社 リファイニング助剤及びリファイニング方法
US5098520A (en) 1991-01-25 1992-03-24 Nalco Chemcial Company Papermaking process with improved retention and drainage
GB9101965D0 (en) 1991-01-30 1991-03-13 Sandoz Ltd Improvements in or relating to organic compounds
FR2672315B1 (fr) 1991-01-31 1996-06-07 Hoechst France Nouveau procede de raffinage de la pate a papier.
US5223090A (en) 1991-03-06 1993-06-29 The United States Of America As Represented By The Secretary Of Agriculture Method for fiber loading a chemical compound
EP0592542B1 (en) 1991-07-02 1995-10-11 E.I. Du Pont De Nemours And Company Fibrid thickeners
JPH0598589A (ja) 1991-10-01 1993-04-20 Oji Paper Co Ltd セルロース粒子微細繊維状粉砕物の製造方法
US5290830A (en) 1991-11-06 1994-03-01 The Goodyear Tire And Rubber Company Reticulated bacterial cellulose reinforcement for elastomers
DE4202598C1 (ru) 1992-01-30 1993-09-02 Stora Feldmuehle Ag, 4000 Duesseldorf, De
US5240561A (en) 1992-02-10 1993-08-31 Industrial Progress, Inc. Acid-to-alkaline papermaking process
FR2689530B1 (fr) 1992-04-07 1996-12-13 Aussedat Rey Nouveau produit complexe a base de fibres et de charges, et procede de fabrication d'un tel nouveau produit.
JPH061647A (ja) * 1992-06-23 1994-01-11 Shimizu Corp コンクリート及び塗料
US5510041A (en) 1992-07-16 1996-04-23 Sonnino; Maddalena Process for producing an organic material with high flame-extinguishing power, and product obtained thereby
AU5005993A (en) 1992-08-12 1994-03-15 International Technology Management Associates, Ltd. Algal pulps and pre-puls and paper products made therefrom
SE501216C2 (sv) 1992-08-31 1994-12-12 Eka Nobel Ab Vattenhaltig, stabil suspension av kolloidala partiklar samt framställning och användning av densamma
JPH06240588A (ja) 1993-02-17 1994-08-30 Teijin Ltd メタ型アラミド繊維のカチオン染色法
GB2275876B (en) 1993-03-12 1996-07-17 Ecc Int Ltd Grinding alkaline earth metal pigments
DE4311488A1 (de) 1993-04-07 1994-10-13 Sued Chemie Ag Verfahren zur Herstellung von Sorptionsmitteln auf der Basis von Cellulosefasern, zerkleinertem Holzmaterial und Tonmineralien
US5496934A (en) 1993-04-14 1996-03-05 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nucleic acids encoding a cellulose binding domain
DE4312463C1 (de) 1993-04-16 1994-07-28 Pluss Stauffer Ag CaCO¶3¶ -Talkum-Streichpigmentslurry, Verfahren zu seiner Herstellung und seine Verwendung
US5487419A (en) 1993-07-09 1996-01-30 Microcell, Inc. Redispersible microdenominated cellulose
US5385640A (en) 1993-07-09 1995-01-31 Microcell, Inc. Process for making microdenominated cellulose
US5443902A (en) 1994-01-31 1995-08-22 Westvaco Corporation Postforming decorative laminates
US5837376A (en) 1994-01-31 1998-11-17 Westvaco Corporation Postforming decorative laminates
DE69530890T2 (de) 1994-05-07 2003-12-24 Arjo Wiggins Fine Papers Ltd Herstellung von dessinierten Papier
JP3421446B2 (ja) 1994-09-08 2003-06-30 特種製紙株式会社 粉体含有紙の製造方法
FR2730252B1 (fr) 1995-02-08 1997-04-18 Generale Sucriere Sa Cellulose microfibrillee et son procede d'obtention a partir de pulpe de vegetaux a parois primaires, notamment a partir de pulpe de betteraves sucrieres.
JPH08264090A (ja) 1995-03-24 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> 配線用遮断装置及び製造方法
JP2967804B2 (ja) 1995-04-07 1999-10-25 特種製紙株式会社 超微細フィブリル化セルロース及びその製造方法並びに超微細フィブリル化セルロースを用いた塗工紙の製造方法及び染色紙の製造方法
US5531821A (en) 1995-08-24 1996-07-02 Ecc International Inc. Surface modified calcium carbonate composition and uses therefor
FR2739383B1 (fr) 1995-09-29 1997-12-26 Rhodia Ag Rhone Poulenc Microfibrilles de cellulose a surface modifiee - procede de fabrication et utilisation comme charge dans les materiaux composites
US5840320A (en) 1995-10-25 1998-11-24 Amcol International Corporation Method of applying magnesium-rich calcium montmorillonite to skin for oil and organic compound sorption
JPH09124702A (ja) 1995-11-02 1997-05-13 Nisshinbo Ind Inc アルカリに溶解するセルロースの製造法
DE19543310C2 (de) 1995-11-21 2000-03-23 Herzog Stefan Verfahren zur Herstellung eines organischen Verdickungs- und Suspensionshilfsmittels
DE69612113T2 (de) * 1995-12-28 2001-09-27 Eco Solutions Ltd Wässrige zusammensetzung zum plastifizieren und weichmachen von farbanstrichen
DE19601245A1 (de) 1996-01-16 1997-07-17 Haindl Papier Gmbh Rollendruckpapier mit Coldset-Eignung und Verfahren zu dessen Herstellung
EP0790135A3 (de) 1996-01-16 1998-12-09 Haindl Papier Gmbh Verfahren zum Herstellen eines Druckträgers für das berührungslose Inkjet-Druckverfahren, nach diesem Verfahren hergestelltes Papier und dessen Verwendung
FI100670B (fi) 1996-02-20 1998-01-30 Metsae Serla Oy Menetelmä täyteaineen lisäämiseksi selluloosakuituperäiseen massaan
JP2000512850A (ja) * 1996-06-20 2000-10-03 ザ・ニユートラスイート・ケルコ・カンパニー 細菌セルロースを含有する食品
DE19627553A1 (de) 1996-07-09 1998-01-15 Basf Ag Verfahren zur Herstellung von Papier und Karton
US6117305A (en) 1996-07-12 2000-09-12 Jgc Corporation Method of producing water slurry of SDA asphaltene
AU723409B2 (en) 1996-07-15 2000-08-24 Rhodia Chimie Supplementation of cellulose nanofibrils with carboxycellulose which has a low degree of substitution
US6306334B1 (en) 1996-08-23 2001-10-23 The Weyerhaeuser Company Process for melt blowing continuous lyocell fibers
AT405847B (de) 1996-09-16 1999-11-25 Zellform Ges M B H Verfahren zur herstellung von rohlingen oder formkörpern aus zellulosefasern
US6074524A (en) 1996-10-23 2000-06-13 Weyerhaeuser Company Readily defibered pulp products
US6083317A (en) * 1996-11-05 2000-07-04 Imerys Pigments, Inc. Stabilized calcium carbonate composition using sodium silicate and one or more weak acids or alum and uses therefor
US5817381A (en) 1996-11-13 1998-10-06 Agricultural Utilization Research Institute Cellulose fiber based compositions and film and the process for their manufacture
US6083582A (en) 1996-11-13 2000-07-04 Regents Of The University Of Minnesota Cellulose fiber based compositions and film and the process for their manufacture
BR9713099B1 (pt) 1996-11-19 2011-07-12 material reflexivo para tratamento de planta.
JPH10158303A (ja) 1996-11-28 1998-06-16 Bio Polymer Res:Kk 微細繊維状セルロースのアルカリ溶液又はゲル化物
JPH10237220A (ja) * 1996-12-24 1998-09-08 Asahi Chem Ind Co Ltd 水性懸濁状組成物及び水分散性乾燥組成物
CA2275929C (en) 1996-12-24 2003-04-29 Asahi Kasei Kogyo Kabushiki Kaisha Aqueous suspension composition and water-dispersible dry composition
FI105112B (fi) 1997-01-03 2000-06-15 Megatrex Oy Menetelmä ja laite kuitupitoisen materiaalin kuiduttamiseksi
US6159335A (en) 1997-02-21 2000-12-12 Buckeye Technologies Inc. Method for treating pulp to reduce disintegration energy
US6037380A (en) 1997-04-11 2000-03-14 Fmc Corporation Ultra-fine microcrystalline cellulose compositions and process
US6117804A (en) 1997-04-29 2000-09-12 Han Il Mulsan Co., Ltd. Process for making a mineral powder useful for fiber manufacture
US20020031592A1 (en) 1999-11-23 2002-03-14 Michael K. Weibel Method for making reduced calorie cultured cheese products
SE511453C2 (sv) 1997-05-30 1999-10-04 Gunnarssons Verkstads Ab C Positioneringsanordning
JP2002501582A (ja) 1997-06-04 2002-01-15 パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ 紙および板紙の製造用デンドリマーポリマー
ATE212039T1 (de) 1997-06-12 2002-02-15 Fmc Corp Ultrafeine-mikrokristalline zellulose- zusammensetzungen und verfahren zu ihrer herstellung
CN1086189C (zh) 1997-06-12 2002-06-12 食品机械和化工公司 超细微晶纤维素组合物及其制备方法
AU8139398A (en) * 1997-06-12 1998-12-30 Ecc International Inc. Filler composition for groundwood-containing grades of paper
WO1999001543A1 (en) * 1997-07-04 1999-01-14 Novo Nordisk A/S ENDO-β-1,4-GLUCANASES FROM $i(SACCHAROTHRIX)
SE510506C2 (sv) 1997-07-09 1999-05-31 Assidomaen Ab Kraftpapper och förfarande för framställning av detta samt ventilsäck
US6579410B1 (en) 1997-07-14 2003-06-17 Imerys Minerals Limited Pigment materials and their preparation and use
FR2768620B1 (fr) 1997-09-22 2000-05-05 Rhodia Chimie Sa Formulation buccodentaire comprenant des nanofibrilles de cellulose essentiellement amorphes
FI106140B (fi) 1997-11-21 2000-11-30 Metsae Serla Oyj Paperinvalmistuksessa käytettävä täyteaine ja menetelmä sen valmistamiseksi
FI108238B (fi) 1998-02-09 2001-12-14 Metsae Serla Oyj Paperin valmistuksessa käytettävä hienoaine, menetelmä sen valmistamiseksi sekä hienoainetta sisältävä paperimassa ja paperi
FR2774702B1 (fr) 1998-02-11 2000-03-31 Rhodia Chimie Sa Association a base de microfibrilles et de particules minerales preparation et utilisations
BR9909003A (pt) 1998-03-23 2000-11-28 Pulp Paper Res Inst Processo para a produção de fibras de polpa carregadas em um lúmen com um enchedor particulado de carbonato de cálcio, lúmen de fibras de polpa, e, fibras de polpa
CA2328205A1 (en) 1998-04-16 1999-10-28 Megatrex Oy Method and apparatus for processing pulp stock derived from a pulp or paper mill
US20040146605A1 (en) 1998-05-11 2004-07-29 Weibel Michael K Compositions and methods for improving curd yield of coagulated milk products
JP2981555B1 (ja) * 1998-12-10 1999-11-22 農林水産省蚕糸・昆虫農業技術研究所長 蛋白質ミクロフィブリルおよびその製造方法ならびに複合素材
US6726807B1 (en) 1999-08-26 2004-04-27 G.R. International, Inc. (A Washington Corporation) Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith
EP1263792A1 (en) 2000-03-09 2002-12-11 Hercules Incorporated Stabilized microfibrillar cellulose
DE10115941B4 (de) 2000-04-04 2006-07-27 Mi Soo Seok Verfahren zur Herstellung von Fasern mit funktionellem Mineralpulver und damit hergestellte Fasern
CN2437616Y (zh) 2000-04-19 2001-07-04 深圳市新海鸿实业有限公司 具有加密形防伪盖的铁桶
AU5967101A (en) 2000-05-10 2001-11-20 Rtp Pharma Inc Media milling
EP1158088A3 (de) 2000-05-26 2003-01-22 Voith Paper Patent GmbH Verfahren und Vorrichtung zur Behandlung einer Faserstoffsuspension
WO2001098231A1 (fr) 2000-06-23 2001-12-27 Kabushiki Kaisha Toho Material Materiau a base de beton pour la creation d'espaces verts
CN1246246C (zh) * 2000-10-04 2006-03-22 詹姆斯哈迪国际财金公司 使用上浆的纤维素纤维的纤维水泥复合材料
US6787497B2 (en) 2000-10-06 2004-09-07 Akzo Nobel N.V. Chemical product and process
US7048900B2 (en) 2001-01-31 2006-05-23 G.R. International, Inc. Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment
US20060201646A1 (en) 2001-03-14 2006-09-14 Savicell Spa Aqueous suspension providing high opacity to paper
DE10115421A1 (de) 2001-03-29 2002-10-02 Voith Paper Patent Gmbh Verfahren und Aufbereitung von Faserstoff
FI117873B (fi) 2001-04-24 2007-03-30 M Real Oyj Kuiturata ja menetelmä sen valmistamiseksi
FI117870B (fi) 2001-04-24 2011-06-27 M Real Oyj Päällystetty kuiturata ja menetelmä sen valmistamiseksi
FI117872B (fi) 2001-04-24 2007-03-30 M Real Oyj Täyteaine ja menetelmä sen valmistamiseksi
DE10122331B4 (de) 2001-05-08 2005-07-21 Alpha Calcit Füllstoff Gesellschaft Mbh Verfahren zur Wiederverwertung von Spuckstoff sowie dessen Verwendung
US20020198293A1 (en) 2001-06-11 2002-12-26 Craun Gary P. Ambient dry paints containing finely milled cellulose particles
US20030094252A1 (en) 2001-10-17 2003-05-22 American Air Liquide, Inc. Cellulosic products containing improved percentage of calcium carbonate filler in the presence of other papermaking additives
FR2831565B1 (fr) 2001-10-30 2004-03-12 Internat Paper Sa Nouvelle pate a papier mecanique blanchie et son procede de fabrication
TWI238214B (en) 2001-11-16 2005-08-21 Du Pont Method of producing micropulp and micropulp made therefrom
JP3641690B2 (ja) 2001-12-26 2005-04-27 関西ティー・エル・オー株式会社 セルロースミクロフィブリルを用いた高強度材料
CA2474933A1 (en) 2002-02-02 2003-08-14 Voith Paper Patent Gmbh Method for preparing fibres contained in a pulp suspension
FI20020521A0 (fi) 2002-03-19 2002-03-19 Raisio Chem Oy Paperin pintakäsittelykoostumus ja sen käyttö
FI118092B (fi) 2002-03-25 2007-06-29 Timson Oy Kuitupitoinen rata ja menetelmä sen valmistamiseksi
WO2003096976A2 (en) 2002-05-14 2003-11-27 Fmc Corporation Microcrystalline cewllulose compositions
US7381294B2 (en) 2002-07-18 2008-06-03 Japan Absorbent Technology Institute Method and apparatus for manufacturing microfibrillated cellulose fiber
EP1534894A2 (en) 2002-08-15 2005-06-01 Donaldson Company, Inc. Polymeric microporous paper coating
US20040108081A1 (en) 2002-12-09 2004-06-10 Specialty Minerals (Michigan) Inc. Filler-fiber composite
SE0203743D0 (sv) 2002-12-18 2002-12-18 Korsnaes Ab Publ Fiber suspension of enzyme treated sulphate pulp and carboxymethylcellulose for surface application in paperboard and paper production
JP3867117B2 (ja) 2003-01-30 2007-01-10 兵庫県 扁平セルロース粒子を用いた新規複合体
US7022756B2 (en) 2003-04-09 2006-04-04 Mill's Pride, Inc. Method of manufacturing composite board
US7497924B2 (en) 2003-05-14 2009-03-03 International Paper Company Surface treatment with texturized microcrystalline cellulose microfibrils for improved paper and paper board
US7037405B2 (en) 2003-05-14 2006-05-02 International Paper Company Surface treatment with texturized microcrystalline cellulose microfibrils for improved paper and paper board
FI119563B (fi) 2003-07-15 2008-12-31 Fp Pigments Oy Menetelmä ja laite paperin-, kartongin- tai muun vastaavan valmistuksessa käytettävän kuitumateriaalin esikäsittelemiseksi
CA2437616A1 (en) * 2003-08-04 2005-02-04 Mohini M. Sain Manufacturing of nano-fibrils from natural fibres, agro based fibres and root fibres
DE10335751A1 (de) 2003-08-05 2005-03-03 Voith Paper Patent Gmbh Verfahren zum Beladen einer Faserstoffsuspension und Anordnung zur Durchführung des Verfahrens
US6893492B2 (en) 2003-09-08 2005-05-17 The United States Of America As Represented By The Secretary Of Agriculture Nanocomposites of cellulose and clay
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
US7726592B2 (en) 2003-12-04 2010-06-01 Hercules Incorporated Process for increasing the refiner production rate and/or decreasing the specific energy of pulping wood
US20050256262A1 (en) 2004-03-08 2005-11-17 Alain Hill Coating or composite moulding or mastic composition comprising additives based on cellulose microfibrils
WO2005100489A1 (ja) 2004-04-13 2005-10-27 Kita-Boshi Pencil Co., Ltd. 液状粘土
US20070226919A1 (en) 2004-04-23 2007-10-04 Huntsman International Llc Method for Dyeing or Printing Textile Materials
JP4602698B2 (ja) 2004-05-25 2010-12-22 北越紀州製紙株式会社 建材用シート状不燃成形体
BRPI0402485B1 (pt) 2004-06-18 2012-07-10 compósito contendo fibras vegetais, resìduos industriais e cargas minerais e processo de fabricação.
JP2006008857A (ja) 2004-06-25 2006-01-12 Asahi Kasei Chemicals Corp 高分散性セルロース組成物
SE530267C3 (sv) 2004-07-19 2008-05-13 Add X Biotech Ab Nedbrytbar förpackning av en polyolefin
CN101040083B (zh) 2004-10-15 2010-08-11 斯托拉恩索公司 纸或纸板的生产方法以及根据该方法生产的纸或纸板
EP1817455B1 (de) 2004-11-03 2013-04-10 J. Rettenmaier & Söhne GmbH + Co. KG Cellulosehaltiger füllstoff für papier-, tissue- oder kartonprodukte sowie herstellungsverfahren hierfür sowie einen solchen füllstoff enthaltendes papier-, tissue- oder kartonprodukt oder hierfür verwendete trockenmischung
EP1743976A1 (en) 2005-07-13 2007-01-17 SAPPI Netherlands Services B.V. Coated paper for offset printing
DE102004060405A1 (de) 2004-12-14 2006-07-06 Voith Paper Patent Gmbh Verfahren und Vorrichtung zum Beladen von in einer Suspension enthaltenen Fasern oder enthaltenem Zellstoff mit einem Füllstoff
KR100630199B1 (ko) 2005-03-02 2006-09-29 삼성전자주식회사 잠금기능을 해제하는 단말기 및 그에 따른 방법
US20060266485A1 (en) 2005-05-24 2006-11-30 Knox David E Paper or paperboard having nanofiber layer and process for manufacturing same
FI122674B (fi) 2005-06-23 2012-05-15 M Real Oyj Menetelmä kuituradan valmistamiseksi
US7700764B2 (en) 2005-06-28 2010-04-20 Akzo Nobel N.V. Method of preparing microfibrillar polysaccharide
WO2007006368A2 (de) 2005-07-12 2007-01-18 Voith Patent Gmbh Verfahren zum beladen von in einer faserstoffsuspension enthaltenen fasern
US7594619B2 (en) 2005-07-22 2009-09-29 Ghere Jr A Michael Cotton fiber particulate and method of manufacture
WO2007069262A1 (en) 2005-12-14 2007-06-21 Hilaal Alam A method of producing nanoparticles and stirred media mill thereof
US20070148365A1 (en) 2005-12-28 2007-06-28 Knox David E Process and apparatus for coating paper
JP5419120B2 (ja) 2006-02-02 2014-02-19 中越パルプ工業株式会社 セルロースナノ繊維を用いる撥水性と耐油性の付与方法
US8546558B2 (en) 2006-02-08 2013-10-01 Stfi-Packforsk Ab Method for the manufacture of microfibrillated cellulose
EP1987195B1 (de) 2006-02-23 2011-12-21 J. Rettenmaier & Söhne GmbH + Co. KG Rohpapier und verfahren zu dessen herstellung
US7718036B2 (en) 2006-03-21 2010-05-18 Georgia Pacific Consumer Products Lp Absorbent sheet having regenerated cellulose microfiber network
US8187421B2 (en) 2006-03-21 2012-05-29 Georgia-Pacific Consumer Products Lp Absorbent sheet incorporating regenerated cellulose microfiber
US8187422B2 (en) 2006-03-21 2012-05-29 Georgia-Pacific Consumer Products Lp Disposable cellulosic wiper
JP4831570B2 (ja) * 2006-03-27 2011-12-07 木村化工機株式会社 機能性粒子含有率の高い機能性セルロース材料及びその製造方法
GB0606080D0 (en) 2006-03-27 2006-05-03 Imerys Minerals Ltd Method for producing particulate calcium carbonate
US7790276B2 (en) 2006-03-31 2010-09-07 E. I. Du Pont De Nemours And Company Aramid filled polyimides having advantageous thermal expansion properties, and methods relating thereto
KR101451291B1 (ko) 2006-04-21 2014-10-15 니뽄 세이시 가부시끼가이샤 셀룰로스를 주체로 하는 섬유형상 물질
JP2008007899A (ja) 2006-06-30 2008-01-17 Uchu Kankyo Kogaku Kenkyusho:Kk 情報記録用紙
WO2008008576A2 (en) 2006-07-13 2008-01-17 Meadwestvaco Corporation Selectively reinforced paperboard cartons
US8444808B2 (en) 2006-08-31 2013-05-21 Kx Industries, Lp Process for producing nanofibers
BRPI0706456B1 (pt) 2006-09-12 2021-02-02 Meadwestvaco Corporation papelão
EP2103577B1 (en) 2006-11-21 2018-02-14 Carlos Javier Fernández García Method for premixing and addition of fibres in the dry state
JP2008150719A (ja) 2006-12-14 2008-07-03 Forestry & Forest Products Research Institute セルロースナノファイバーとその製造方法
EP1936032A1 (en) 2006-12-18 2008-06-25 Akzo Nobel N.V. Method of producing a paper product
WO2008076071A1 (en) 2006-12-21 2008-06-26 Akzo Nobel N.V. Process for the production of cellulosic product
JP2008169497A (ja) 2007-01-10 2008-07-24 Kimura Chem Plants Co Ltd ナノファイバーの製造方法およびナノファイバー
GB0702248D0 (en) 2007-02-05 2007-03-14 Ciba Sc Holding Ag Manufacture of Filled Paper
CN101855401B (zh) 2007-04-05 2013-01-02 阿克佐诺贝尔股份有限公司 提高纸的光学性能的方法
FI120651B (fi) 2007-04-30 2010-01-15 Linde Ag Menetelmä energiankulutuksen vähentämiseksi massasuspension jauhatuksessa paperinvalmistusprosessissa
EP2216345B1 (en) 2007-11-26 2014-07-02 The University of Tokyo Cellulose nanofiber, production method of same and cellulose nanofiber dispersion
DE102007059736A1 (de) 2007-12-12 2009-06-18 Omya Development Ag Oberflächenmineralisierte organische Fasern
CN102964635B (zh) 2007-12-21 2015-08-19 三菱化学株式会社 纤维素纤维分散液、平面结构体、颗粒、复合体、开纤方法、分散液的制造方法
JP5351417B2 (ja) 2007-12-28 2013-11-27 日本製紙株式会社 セルロースの酸化方法、セルロースの酸化触媒及びセルロースナノファイバーの製造方法
JP4981735B2 (ja) 2008-03-31 2012-07-25 日本製紙株式会社 セルロースナノファイバーの製造方法
CN101952508B (zh) 2008-03-31 2013-01-23 日本制纸株式会社 制纸用添加剂和含有其的纸
KR101444396B1 (ko) 2008-04-03 2014-09-23 인벤티아 에이비 인쇄지 코팅용 조성물
SE0800807L (sv) 2008-04-10 2009-10-11 Stfi Packforsk Ab Nytt förfarande
EP2297398B1 (en) 2008-06-17 2013-09-25 Akzo Nobel N.V. Cellulosic product
US7776807B2 (en) 2008-07-11 2010-08-17 Conopco, Inc. Liquid cleansing compositions comprising microfibrous cellulose suspending polymers
EP2149913A1 (de) 2008-07-31 2010-02-03 Siemens Aktiengesellschaft Anlage, insbesondere Photovoltaikanlage
FI20085760L (fi) 2008-08-04 2010-03-17 Teknillinen Korkeakoulu Muunnettu komposiittituote ja menetelmä sen valmistamiseksi
US8630435B2 (en) 2008-08-08 2014-01-14 Nokia Corporation Apparatus incorporating an adsorbent material, and methods of making same
MX2008011629A (es) 2008-09-11 2009-08-18 Copamex S A De C V Papel antiadherente resistente al calor, a grasa y al quebrado, y proceso para producir el mismo.
FI122032B (fi) 2008-10-03 2011-07-29 Teknologian Tutkimuskeskus Vtt Kuitutuote, jossa on barrierkerros ja menetelmä sen valmistamiseksi
CA2737784A1 (en) 2008-11-28 2010-06-03 Kior, Inc. Comminution and densification of biomass particles
EP2196579A1 (en) 2008-12-09 2010-06-16 Borregaard Industries Limited, Norge Method for producing microfibrillated cellulose
JP2010168716A (ja) 2008-12-26 2010-08-05 Oji Paper Co Ltd 微細繊維状セルロースシートの製造方法
FI124724B (fi) 2009-02-13 2014-12-31 Upm Kymmene Oyj Menetelmä muokatun selluloosan valmistamiseksi
JP2010202987A (ja) * 2009-02-27 2010-09-16 Asahi Kasei Corp 複合シート材料及びその製法
BRPI1009859A2 (pt) 2009-03-11 2016-11-29 Borregaard Ind método para a secagem de celulose micro-fibrilada e dispositivo para secar celulose micro-fibrilada
US8268391B2 (en) 2009-03-13 2012-09-18 Nanotech Industries, Inc. Biodegradable nano-composition for application of protective coatings onto natural materials
EP3617400B1 (en) 2009-03-30 2022-09-21 FiberLean Technologies Limited Use of nanofibrillar cellulose suspensions
DK2805986T3 (en) * 2009-03-30 2017-12-18 Fiberlean Tech Ltd PROCEDURE FOR THE MANUFACTURE OF NANO-FIBRILLARY CELLULOS GELS
US20100272938A1 (en) 2009-04-22 2010-10-28 Bemis Company, Inc. Hydraulically-Formed Nonwoven Sheet with Microfibers
FI124464B (fi) 2009-04-29 2014-09-15 Upm Kymmene Corp Menetelmä massalietteen valmistamiseksi, massaliete ja paperi
GB0908401D0 (en) 2009-05-15 2009-06-24 Imerys Minerals Ltd Paper filler composition
WO2010143722A1 (ja) 2009-06-12 2010-12-16 三菱化学株式会社 修飾セルロース繊維及びそのセルロース複合体
SE533509C2 (sv) 2009-07-07 2010-10-12 Stora Enso Oyj Metod för framställning av mikrofibrillär cellulosa
SE533510C2 (sv) 2009-07-07 2010-10-12 Stora Enso Oyj Metod för framställning av mikrofibrillär cellulosa
FI124142B (fi) 2009-10-09 2014-03-31 Upm Kymmene Corp Menetelmä kalsiumkarbonaatin ja ksylaanin saostamiseksi, menetelmällä valmistettu tuote ja sen käyttö
WO2011048000A1 (de) 2009-10-20 2011-04-28 Basf Se Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
SE0950819A1 (sv) 2009-11-03 2011-05-04 Stora Enso Oyj Ett bestruket substrat, en process för tillverkning av ett bestruket substrat, en förpackning och en dispersionsbestrykning
EP2501753A4 (en) 2009-11-16 2014-01-22 Kth Holding Ab NANOPAPIER RESISTANT
US8868704B2 (en) 2009-11-16 2014-10-21 Telefonaktiebolaget L M Ericsson (Publ) Method, apparatus and computer program product for standby handling in a streaming media receiver
FI123289B (fi) 2009-11-24 2013-01-31 Upm Kymmene Corp Menetelmä nanofibrilloidun selluloosamassan valmistamiseksi ja massan käyttö paperinvalmistuksessa tai nanofibrilloiduissa selluloosakomposiiteissa
CA2782485C (en) 2009-12-01 2017-10-24 Kyoto University Cellulose nanofibers
SE535014C2 (sv) 2009-12-03 2012-03-13 Stora Enso Oyj En pappers eller kartongprodukt och en process för tillverkning av en pappers eller kartongprodukt
US20120318471A1 (en) 2010-02-10 2012-12-20 Tarja Turkki Process for the preparation of a pigment-fibre composite
PL2386683T3 (pl) 2010-04-27 2014-08-29 Omya Int Ag Sposób wytwarzania materiałów kompozytowych na bazie żelu
DK2386682T3 (da) 2010-04-27 2014-06-23 Omya Int Ag Fremgangsmåde til fremstilling af strukturerede materialer under anvendelse af nano-fibrillære cellulosegeler
MX337769B (es) 2010-05-11 2016-03-16 Fpinnovations Nanofilamentos de celulosa y metodos para producir los mismos.
SE536744C2 (sv) 2010-05-12 2014-07-08 Stora Enso Oyj En process för tillverkning av en komposition innehållande fibrillerad cellulosa och en komposition
SE536746C2 (sv) 2010-05-12 2014-07-08 Stora Enso Oyj En komposition innehållande mikrofibrillerad cellulosa och en process för tillverkning av en komposition
EP2395148A1 (de) 2010-06-11 2011-12-14 Voith Patent GmbH Verfahren zum Herstellen eines gestrichenen Papiers
SE535585C2 (sv) 2010-09-20 2012-10-02 Spc Technology Ab Förfarande och anordning för slagverkande sänkhålsborrning
SE1050985A1 (sv) 2010-09-22 2012-03-23 Stora Enso Oyj En pappers eller kartongprodukt och en process förtillverkning av en pappers eller en kartongprodukt
GB201019288D0 (en) 2010-11-15 2010-12-29 Imerys Minerals Ltd Compositions
US8771463B2 (en) 2010-11-16 2014-07-08 Oji Holdings Corporation Cellulose fiber assembly and method for preparing the same, fibrillated cellulose fibers and method for preparing the same, and cellulose fiber composite
FI126513B (fi) 2011-01-20 2017-01-13 Upm Kymmene Corp Menetelmä lujuuden ja retention parantamiseksi ja paperituote
US20160273165A1 (en) 2011-01-20 2016-09-22 Upm-Kymmene Corporation Method for improving strength and retention, and paper product
EP2673405A2 (en) 2011-02-10 2013-12-18 UPM-Kymmene Corporation Method for fabricating fiber, ribbon and film products and composites
FI127301B (fi) 2011-02-10 2018-03-15 Upm Kymmene Corp Menetelmä nanoselluloosan käsittelemiseksi ja menetelmällä saatu tuote
EP2529942B1 (en) 2011-06-03 2016-01-13 Omya International AG Process for manufacturing coated substrates
FI126041B (fi) 2011-09-12 2016-06-15 Stora Enso Oyj Menetelmä retention säätämiseksi ja menetelmässä käytettävä välituote
CN102669631B (zh) 2011-11-29 2013-07-10 浙江省海洋开发研究院 双喷头防堵塞式盐业加碘装置
GB201222285D0 (en) 2012-12-11 2013-01-23 Imerys Minerals Ltd Cellulose-derived compositions
FI124838B (fi) 2013-04-12 2015-02-13 Upm Kymmene Corp Analyyttinen menetelmä
GB2528487A (en) 2014-07-23 2016-01-27 Airbus Operations Ltd Apparatus and method for testing materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1538257A (en) * 1921-09-22 1925-05-19 Norbert L Obrecht Buffer for automobiles
US2583548A (en) * 1948-03-17 1952-01-29 Vanderbilt Co R T Production of pigmented cellulosic pulp
US4087317A (en) * 1975-08-04 1978-05-02 Eucatex S.A. Industria E Comercio High yield, low cost cellulosic pulp and hydrated gels therefrom
US4481077A (en) * 1983-03-28 1984-11-06 International Telephone And Telegraph Corporation Process for preparing microfibrillated cellulose
US5156719A (en) * 1990-03-09 1992-10-20 Pfizer Inc. Acid-stabilized calcium carbonate, process for its production and method for its use in the manufacture of acidic paper
US6183596B1 (en) * 1995-04-07 2001-02-06 Tokushu Paper Mfg. Co., Ltd. Super microfibrillated cellulose, process for producing the same, and coated paper and tinted paper using the same
RU2345189C2 (ru) * 2003-12-22 2009-01-27 Эка Кемикалс Аб Наполнитель для изготовления бумаги

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703245C1 (ru) * 2016-03-16 2019-10-15 Асахи Касеи Кабусики Кайся Тонкое целлюлозное волокно и способ его получения
US11015291B2 (en) 2016-03-16 2021-05-25 Futamura Kagaku Kabushiki Kaisha Fine cellulose fiber and production method for same
RU2692349C1 (ru) * 2018-09-07 2019-06-24 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Способ получения целлюлозосодержащего геля
RU2810201C1 (ru) * 2022-11-22 2023-12-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" Способ наноструктуризации волокон целлюлозы

Also Published As

Publication number Publication date
EP2414435B1 (en) 2017-09-13
ES2650373T3 (es) 2018-01-18
ES2643032T3 (es) 2017-11-21
TR201909766T4 (tr) 2019-07-22
KR20160128460A (ko) 2016-11-07
TWI647257B (zh) 2019-01-11
JP6480549B2 (ja) 2019-03-13
PT2414435T (pt) 2017-10-20
US10294371B2 (en) 2019-05-21
SI2236545T1 (sl) 2014-12-31
PT2236545E (pt) 2014-11-06
EP3312217A1 (en) 2018-04-25
DK3312217T3 (da) 2019-07-01
RU2011143854A (ru) 2013-05-10
CA2755495C (en) 2016-05-03
NO2805986T3 (ru) 2018-04-07
RU2014130594A (ru) 2016-02-10
HUE034621T2 (en) 2018-02-28
US20120107480A1 (en) 2012-05-03
EP2805986B1 (en) 2017-11-08
JP2018076514A (ja) 2018-05-17
CA2755495A1 (en) 2010-10-14
DK2236545T3 (en) 2014-12-01
BRPI1012691A2 (pt) 2016-03-29
ES2524090T3 (es) 2014-12-03
KR20110133619A (ko) 2011-12-13
CN102378777A (zh) 2012-03-14
PL3312217T3 (pl) 2019-09-30
SI2414435T1 (sl) 2017-12-29
JP2019108549A (ja) 2019-07-04
US20140370179A1 (en) 2014-12-18
JP2020100831A (ja) 2020-07-02
EP2236545A1 (en) 2010-10-06
TWI620772B (zh) 2018-04-11
CN102378777B (zh) 2014-03-19
JP2021119222A (ja) 2021-08-12
HUE035151T2 (en) 2018-05-02
DK2414435T3 (en) 2017-10-30
US20210261781A1 (en) 2021-08-26
JP6257049B2 (ja) 2018-01-10
JP2012522093A (ja) 2012-09-20
JP6698236B1 (ja) 2020-05-27
US8871056B2 (en) 2014-10-28
JP2016065348A (ja) 2016-04-28
US20190276672A1 (en) 2019-09-12
JP5894525B2 (ja) 2016-03-30
EP3567069B1 (en) 2020-11-04
TW201540753A (zh) 2015-11-01
EP2414435A1 (en) 2012-02-08
CL2010000280A1 (es) 2011-03-11
JP2020079402A (ja) 2020-05-28
CO6501176A2 (es) 2012-08-15
HRP20171405T1 (hr) 2017-11-17
JP6651661B2 (ja) 2020-02-19
BRPI1012691B1 (pt) 2020-04-07
PL2236545T3 (pl) 2015-02-27
WO2010115785A1 (en) 2010-10-14
US10975242B2 (en) 2021-04-13
JP6866512B2 (ja) 2021-04-28
EP3312217B1 (en) 2019-06-12
PT2805986T (pt) 2017-12-19
PL3567069T3 (pl) 2021-04-06
RU2671320C2 (ru) 2018-10-30
EP2805986A1 (en) 2014-11-26
HRP20171818T1 (hr) 2018-02-09
EP3795612A1 (en) 2021-03-24
SI2805986T1 (en) 2018-04-30
UA108609C2 (uk) 2015-05-25
PL2805986T3 (pl) 2018-02-28
KR101790353B1 (ko) 2017-10-25
DK3567069T3 (da) 2020-11-30
UY32532A (es) 2010-10-29
JP7187601B2 (ja) 2022-12-12
DK2805986T3 (en) 2017-12-18
AR075961A1 (es) 2011-05-11
PL2414435T3 (pl) 2017-12-29
EP2236545B1 (en) 2014-08-27
ES2836880T3 (es) 2021-06-28
KR101830564B1 (ko) 2018-02-20
TW201038631A (en) 2010-11-01
EP3567069A1 (en) 2019-11-13
ES2739832T3 (es) 2020-02-04

Similar Documents

Publication Publication Date Title
RU2530067C2 (ru) Способ призводства нанофибриллярных целлюлозных гелей
JP6434793B2 (ja) ナノフィブリルセルロース懸濁液を製造する方法

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
PC41 Official registration of the transfer of exclusive right

Effective date: 20190708

PC41 Official registration of the transfer of exclusive right

Effective date: 20190919

PD4A Correction of name of patent owner