KR101884178B1 - 형상화 연마 입자들을 포함하는 연마 물품 - Google Patents

형상화 연마 입자들을 포함하는 연마 물품 Download PDF

Info

Publication number
KR101884178B1
KR101884178B1 KR1020167031434A KR20167031434A KR101884178B1 KR 101884178 B1 KR101884178 B1 KR 101884178B1 KR 1020167031434 A KR1020167031434 A KR 1020167031434A KR 20167031434 A KR20167031434 A KR 20167031434A KR 101884178 B1 KR101884178 B1 KR 101884178B1
Authority
KR
South Korea
Prior art keywords
less
shaped abrasive
microns
abrasive particles
item
Prior art date
Application number
KR1020167031434A
Other languages
English (en)
Other versions
KR20160146802A (ko
Inventor
크리스틴 브레더
제니퍼 에이치. 제레핀스키
플라비앙 프레미
데이빗 로아프레
사무엘 에스. 말린
이브 부상트-루
수자타 아이옌가
Original Assignee
생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 filed Critical 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드
Publication of KR20160146802A publication Critical patent/KR20160146802A/ko
Application granted granted Critical
Publication of KR101884178B1 publication Critical patent/KR101884178B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles

Abstract

형상화 연마 입자는 제1 주면, 제2 주면, 및 제1 주면 및 상기 제2 주면을 연장하는 측면을 포함하는 몸체로 구성되고, 몸체는 약 0.7 내지 약 1.7 범위의 첨예도-형상-강도 인자 (3SF) 및 적어도 약 0.51 내지 약 0.99 이하 범위의 형상지수를 포함한다.

Description

형상화 연마 입자들을 포함하는 연마 물품{ABRASIVE ARTICLE INCLUDING SHAPED ABRASIVE PARTICLES}
본 발명은 연마물품들, 특히, 형상화 연마 입자들을 포함하는 연마 물품들에 관한 것이다.
연마 입자들 및 연마입자들로 제조되는 연마 물품들은 연삭(grinding), 다듬질(finishing) 및 폴리싱(polishing)을 포함하는 다양한 물질의 제거 작업에 유용하다. 연마재의 유형에 따라 그러한 연마 입자는 상품 제조에서 다양한 재료 및 표면의 성형 또는 연삭에 유용할 수 있다. 삼각형으로 성형된 연마 입자들 및 그러한 물체를 포함하는 연마 물품과 같이, 특정한 기하학적 구조를 가지고 있는 특정한 유형의 연마입자들이 현재까지 제조되었다. 예를 들면, 미국 특허 번호 제5,201,916호, 제5,366,523호 및 제5,984,988호 참조.
소정의 형상을 가지는 연마입자들을 생산하는 데 이용되었던 세 가지 기본 기술은 (1) 용융, (2) 소결, 및 (3) 화학 세라믹이다. 용융 과정에서, 연마입자들은, 표면이 조각될 수 있거나 조각될 수 없는 냉각 롤러, 용융된 재료가 부어지는 주형, 또는 산화알루미늄 용융물에 침지된 히트 싱크 물질에 의해, 성형될 수 있다. 예를들면, 미국 특허 번호 제3,377,660호 참고 (로에서 나오는 용융 연마재를 냉각 회전 주조 실린더로 유동시키고, 신속하게 고체화하여 얇은 반고체 만곡 시트를 형성하고, 가압롤로 반고체 재료를 조밀화한 후, 급속 구동 냉각 컨베이어로 반고체 재료 스트립을 실린더로부터 곡률 반대 방향으로 당겨 균열시키는 단계들을 포함한 공정 개시).
소결 과정에서는, 직경이 10마이크로미터까지인 입자 크기의 내화 분말로부터 연마 입자들이 형성될 수 있다. 윤활제 및 적절한 용매 예를들면 물과 함께, 바인더가 분말에 첨가되어 혼합물을 형성한다. 생성된 혼합물 또는 슬러리를 다양한 길이와 직경의 판상체 또는 로드로 성형될 수 있다. 예를들면, 미국 특허 번호 제3,079,242호 참고 (소결 보크사이트 재료로부터 연마입자들 제조방법을 개시하고, 이는 (1) 재료를 미세 분말화하는 단계 (2) 정압 하에서 압축 성형하여 상기 분말들의 미세입자들을 입자 크기의 응집체로 성형하는 단계 및 (3) 입자 응집체를 융점 이하에서 소결하여 입자들에 제한적인 재결정을 유동하는 단계를 포함하고, 이에 따라 크기를 가지는 연마입자들이 직접 제조).
화학 세라믹 기술은, 선택적으로 다른 금속산화물 전구체 용액과의 혼합물에서 콜로이드 분산액 또는 히드로졸 (간혹 졸(sol)이라 함)을 성분들의 유동성을 보유하는 겔 또는 임의의 기타 물리적 상태로 전환하는 단계, 건조 단계, 및 연소하여 세라믹 물질을 획득하는 단계를 수반한다. 예를들면, 미국 특허 번호 제4,744,802호 및 제4,848,041호 참고. 형상화 연마 입자들 및 연관된 형성 방법 및 이러한 입자들을 포함하는 연마 물품에 관한 다른 관련 개시들은 다음에서 입수된다: http://www.abel-ip.com/publications/.
그러나, 산업계에서는 연마입자들, 및 연마입자들을 이용하는 연마물품들의 성능, 수명 및 효율 개선에 대한 필요성이 여전하다.
하나의 양태에 의하면, 형상화 연마 입자 제조 방법은 형상화 연마입자 몸체 형성 단계를 포함하고 이는 i) 미리 결정된 강도를 가지는 재료 선택 단계 및 미리 결정된 강도에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 형상지수를 가지는 형상화 연마 입자 몸체 형성 단계, ii) 형상화 연마 입자 몸체의 미리 결정된 형상지수를 선택하는 단계 및 미리 결정된 형상지수에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 강도를 가지는 몸체 형성 단계, 및 iii) 형상화 연마 입자 몸체의 미리 결정된 팁 첨예도를 선택하는 단계 및 미리 결정된 팁 첨예도에 기초하여 미리 결정된 형상지수 및 미리 결정된 강도를 가지는 형상화 연마 입자 몸체 형성 단계 중 적어도 하나를 포함한다.
또 다른 양태에서, 형상화 연마 입자는 몸체를 포함하고 이는 제1 주면, 제2 주면, 및 제1 주면 및 제2 주면을 연장하는 측면으로 구성되고, 몸체는 약 0.7 내지 약 1.7 범위의 첨예도-형상-강도 인자 (3SF) 및 적어도 약 0.51 내지 약 0.99 이하 범위의 형상지수를 포함한다.
또 다른 양태에 의하면, 형상화 연마 입자는 몸체를 포함하고 이는 제1 주면, 제2 주면, 및 제1 주면 및 제2 주면을 연장하는 측면으로 구성되고, 몸체는 적어도 약 0.51 내지 약 0.99 이하 범위의 형상지수 및 약 600 MPa 이하 및 적어도 약 100 MPa의 강도를 포함한다.
또한, 또 다른 양태에 있어서, 형상화 연마 입자는 몸체를 포함하고 이는 제1 주면, 제2 주면, 및 제1 주면 및 제2 주면을 연장하는 측면으로 구성되고, 몸체는 적어도 4개의 코너들을 포함하고, 각각의 코너는 약 80 미크론 이하 및 적어도 약 1 미크론 범위의 팁 첨예도, 적어도 약 0.51 내지 약 0.99 이하 범위의 형상지수를 포함하고, 몸체는 약 600 MPa 이하 내지 적어도 약 100 MPa의 강도를 포함한다.
첨부되는 도면을 참고함으로써, 본 개시내용은 더 잘 이해될 수 있고, 이의 많은 특징들과 장점들이 당해 분야에서 통상의 지식을 가진 자에게 분명해질 수 있다.
도 1은 실시태양에 의한 입자 재료 형성 시스템 일부를 도시한 것이다.
도 2는 실시태양에 의한 입자 재료 형성 도 1 시스템 일부를 도시한 것이다.
도 3은 실시태양들에 의한 소정의 특징부들을 보이는 형상화 연마입자의 단면도이다.
도 4는 실시태양에 의한 형상화 연마입자 측면도 및 플래싱 비율을 도시한 것이다.
도 5A는 실시태양에 의한 형상화 연마 입자들을 포함하는 결합 연마물품을 도시한 것이다.
도 5B는 실시태양에 의한 코팅 연마물품 일부에 대한 단면도이다.
도 6은 실시태양에 의한 코팅 연마물품 일부에 대한 단면도이다.
도 7은 실시태양에 의한 코팅 연마물품 일부에 대한 평면도이다.
도 8A는 실시태양에 의한 코팅 연마물품 일부에 대한 평면도이다.
도 8B는 실시태양에 의한 코팅 연마물품 일부에 대한 사시도이다.
도 9는 실시태양에 의한 코팅 연마물품 일부에 대한 사시도이다.
도 10은 실시태양에 의한 코팅 연마물품 일부에 대한 평면도이다.
도 11은 지지판 (backing)의 형상화 연마입자들 배향을 분석하기 위하여 사용된 실시태양에 의한 코팅 연마재 일부에 대한 사진들이다.
도 12A-12C는 실시태양에 의한 형상화 연마 입자를 도시한 것이다.
도 13A-13C는 실시태양에 의한 형상화 연마 입자를 도시한 것이다.
도 13D는 실시태양에 따라 구배각 (draft angle) 측정을 위한 단면 라인을 보이는 형상화 연마 입자의 평면 사진이다.
도 13E는 실시태양에 따라 구배각 측정을 위한 형상화 연마 입자의 단면 사진이다.
도 13F는 실시태양에 따라 구배각 측정을 위한 형상화 연마 입자의 단면 사진이다.
도 14- 26은 실시태양들에 의한 형상화 연마 입자들을 도시한 것이다.
도 27-29는 실시태양에 의한 형상화 연마 입자들의 평면 사진들이다.
도 30은 종래 형상화 연마 입자의 평면 사진이다.
도 31은 실시태양에 의한 형상화 연마 입자의 평면 사진이다.
도 32는 실시예 1의 형상화 연마 입자들에 대한 가공물에서 제거된 총 면적 당 중간 (median) 힘을 도시한 것이다.
도 33은 대표 샘플 및 종래 샘플에 대한 가공물에서 연삭 비에너지 대 제거된 재료 누적량의 도표이다.
다음은 형상화 연마입자들을 포함하는 연마 물품에 관한 것이다. 본원의 방법은 형상화 연마 입자들 형성 및 형상화 연마 입자들을 포함한 연마 물품 이용에 적용된다. 형상화 연마 입자들은 예를들면 코팅 연마재, 결합 연마재, 자유 연마재, 및 이들 조합을 포함한 다양한 분야에서 적용된다. 형상화 연마 입자들에 대한 다양한 기타 용도가 유도될 수 있다.
형상화 연마 입자들
다양한 방법들로 형상화 연마 입자들을 얻는다. 입자들은 상업적 구입처에서 입수되거나 또는 제작될 수 있다. 제한되지 않지만, 적층, 인쇄 (예를들면, 스크린-인쇄), 몰딩, 압축, 캐스팅, 절편화, 절단, 다이싱, 펀칭, 압축, 건조, 경화, 코팅, 압출, 롤링, 및 이들의 조합을 포함한 일부 적합한 공정으로 형상화 연마 입자들을 제작할 수 있다.
동일한 2-차원 및 3-차원 형상을 가지는 형상화 연마 입자들에 있어서 각각의 입자는 서로에 대하여 실질적으로 동일한 표면 및 에지 배열을 가지도록 형상화 연마 입자들이 형성된다. 따라서, 형상화 연마 입자들은 동일한 2-차원 및 3-차원 형상을 가지는 그룹의 다른 형상화 연마 입자들에 대하여 표면 및 에지 배열에 있어서 높은 형상 정확도 및 일관성을 가진다. 대조적으로, 비-형상화 연마 입자들은 상이한 공정을 통해 형성되고 상이한 형상 속성을 가진다. 예를들면, 비-형상화 연마 입자들은 전형적으로 분쇄 공정으로 형성되고, 여기에서 재료 덩이가 형성된 후 분쇄되고 체질되어 소정 크기의 연마 입자들을 얻는다. 그러나, 비-형상화 연마 입자는 대체로 무작위 표면 및 에지 배열을 가지고, 몸체 주위의 표면 및 에지 배열에 있어서 일반적으로 임의의 인지 가능한 2-차원 또는 3 차원 형상이 결여된다. 또한, 동일 그룹 또는 배치의 비-형상화 연마 입자들은 대체적으로 서로 일관된 형상이 결여되어, 서로 비교할 때 표면 및 에지는 무작위로 배열된다. 따라서, 비-형상화 입자 (grain) 또는 분쇄 입자들은 형상화 연마 입자들에 비하여 상당히 낮은 형상 정확도를 가진다.
도 1은 하나의 비-제한적 실시태양에 의한 형상화 연마입자 형성을 위한 시스템 (150)을 도시한 것이다. 형상화 연마입자들 형성 공정은 먼저 세라믹 재료 및 액체를 포함한 혼합물 (101) 형성 단계로 개시된다. 특히, 혼합물 (101)은 세라믹 분말 재료 및 액체로 형성되는 겔일 수 있다. 실시태양에 의하면, 겔은 개별 입자들의 일체적 네트워크로서 세라믹 분말 재료로 형성된다.
혼합물 (101)은 소정 함량의 고체 재료, 액체 재료, 및 첨가제들을 함유하여 본원에 상세하게 설명되는 공정에서 사용하기에 적합한 유변학적 특성들을 가진다. 즉, 소정의 실시예들에서, 혼합물은 소정의 점도, 특히, 본원에 기재된 공정으로 형성될 수 있는 치수적으로 안정한 재료 상 (phase)을 형성하기에 적합한 유변학적 특성들을 가진다. 치수적으로 안정한 재료 상이란 특정 형상을 가지고 형성 이후 적어도 공정 일부에서 이러한 형상이 실질적으로 유지될 수 있는 재료이다. 소정의 예들에서, 형상은 이후 공정에서 유지되어, 형성 공정에서 제공된 초기 형상은 최종-형성 물체 (object)에 존재한다. 일부 경우들에서, 혼합물 (101)은 형상-안정 재료가 아니고, 공정은 추가 처리, 예컨대 건조에 의해 혼합물 (101)의 고화 및 안정화가 달라질 수 있다는 것을 이해하여야 한다.
혼합물 (101)은 특정 함량의 고체 재료, 예컨대 세라믹 분말 재료를 가지도록 형성된다. 예를들면, 일 실시태양에서, 혼합물 (101)의 고체 함량은 혼합물 (101) 총 중량에 대하여 적어도 약 25 wt%, 예컨대 적어도 약 35 wt%, 또는 적어도 약 38 wt%이다. 또한, 적어도 하나의 비-제한적 실시태양에서, 혼합물 (101)의 고체 함량은 약 75 wt% 이하 예컨대 약 70 wt% 이하, 약 65 wt% 이하, 약 55 wt% 이하, 약 45 wt% 이하, 또는 약 42 wt% 이하이다. 혼합물 (101) 재료 중 고체 함량은 상기 임의의 최소 내지 최대 백분율 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
하나의 실시태양에 따르면, 세라믹 분말재료는 산화물, 질화물, 탄화물, 붕화물, 산탄화물, 산질화물, 및 이들의 조합을 포함한다. 특정한 경우, 세라믹 재료는 알루미나를 포함한다. 더욱 상세하게는, 세라믹 재료는 알파 알루미나 전구체인 베마이트 재료를 포함한다. 용어 “베마이트”는 본원에서 전형적으로 Al2O3ㆍH2O 으로 물 함량이 15% 정도인 베마이트 광물 및, 물 함량이 15% 이상, 예컨대 20-38중량%인 유사(pseudo)베마이트 을 포함한 알루미나 수화물을 표기하도록 일반적으로 사용된다. 베마이트 (유사베마이트 포함)는 특정한 및 차별되는 결정 구조 및 따라서 특유한 X-ray 회절 패턴을 가진다는 것을 이해하여야 한다. 따라서 베마이트는 기타 수화 알루미나들 예컨대 베마이트 미립자 소재 제조에 전구체로 통상 사용되는 ATH (삼수산화알루미늄)를 포함한 기타 알루미늄 재료와는 차별된다.
또한, 혼합물 (101)은 특정 함량의 액상 재료를 가진다. 일부 적합한 액체로는 물을 포함한다. 하나의 실시태양에 따르면, 혼합물 (101)은 혼합물 (101) 중 고체 함량보다 낮은 액체 함량을 가지도록 형성된다. 특정 실시예들에서, 혼합물 (101)의 액체 함량은 혼합물 (101) 총 중량에 대하여 적어도 약 25 wt%이다. 다른 실시예들에서, 혼합물 (101)의 액체 함량은 더 크고, 예컨대 적어도 약 35 wt%, 적어도 약 45 wt%, 적어도 약 50 wt%, 또는 적어도 약 58 wt%이다. 또한, 비-제한적인 적어도 하나의 실시태양에서, 혼합물의 액체 함량은 약 75 wt% 이하, 예컨대 약 70 wt% 이하, 약 65 wt% 이하, 약 62 wt% 이하, 또는 약 60 wt% 이하이다. 혼합물 (101) 중 액체 함량은 상기 임의의 최소 비율 및 최대 비율 사이에 있을 수 있다는 것을 이해하여야 한다.
또한, 본원 실시태양에 의한 형상화 연마입자들 처리 및 형성이 용이하도록, 혼합물 (101)은 특정 저장탄성률을 가진다. 예를들면, 혼합물 (101)의 저장탄성률은 적어도 약 1x104 Pa, 예컨대 적어도 약 4x104 Pa, 또는 적어도 약 5x104 Pa이다. 그러나, 비-제한적인 적어도 하나의 실시태양에서, 혼합물 (101)의 저장탄성률은 약 1x107 Pa 이하, 예컨대 약 2x107 Pa 이하이다. 혼합물 (101)의 저장탄성률은 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다.
저장탄성률은 ARES 또는 AR-G2 회전형 레오미터를 이용한 평행판 시스템 및 펠티어 판 (Peltier plate) 온도 조절시스템으로 측정한다. 시험에 있어서, 혼합물 (101)을 서로 대략 8 mm 이격 설정되는 두 판들 사이 간극으로 압출한다. 간극으로 겔을 압출한 후, 혼합물 (101)이 완전히 판들 사이 간극을 채울 때까지 간극을 형성하는 두 판들 사이 간격을 2 mm로 좁힌다. 과잉 혼합물을 닦아낸 후, 간격을 0.1 mm만큼 좁히고 시험을 개시한다. 시험은 변형 범위가 0.01% 내지 100%, 6.28 rad/s (1 Hz)로 설정된 장비로, 25-mm 평행판을 이용하고 10 포인트 감소할 때 기록하는 진동 변형 일소 시험이다. 시험 완료 후 1 시간 내에, 간격을 다시 0.1 mm만큼 좁히고 시험을 반복한다. 시험은 적어도 6 회 반복한다. 제1 시험은 제2 및 제3 시험들과는 다를 수 있다. 각각의 시편에 대한 제2 및 제3 시험들 결과만을 보고하여야 한다.
또한, 본원 실시태양에 의한 형상화 연마입자들 처리 및 성형이 용이하도록, 혼합물 (101)은 특정 점도를 가진다. 예를들면, 혼합물 (101)의 점도는 적어도 약 2x103 Pa s, 예컨대 적어도 약 3x103 Pa s 적어도 약 4x103 Pa s, 적어도 약 5x103 Pa s, 적어도 약 6x103 Pa s, 적어도 약 8x103 Pa s, 적어도 약 10x103 Pa s, 적어도 약 20x103 Pa s, 적어도 약 30x103 Pa s, 적어도 약 40x103 Pa s, 적어도 약 50x103 Pa s, 적어도 약 60x103 Pa s, 또는 적어도 약 65x103 Pa s이다. 비-제한적인 적어도 하나의 실시태양에서, 혼합물 (101)의 점도는 약 100x103 Pa s 이하, 예컨대 약 95x103 Pa s 이하, 약 90x103 Pa s 이하, 또는 약 85x103 Pa s 이하이다. 혼합물 (101) 점도는 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다. 점도는 상기된 저장탄성률과 동일한 방법으로 측정된다.
또한, 본원 실시태양에 의한 형상화 연마입자들 처리 및 성형이 용이하도록, 혼합물 (101)은 상기 액체와는 구별되는 유기 첨가제들을 포함한 특정 함량의 유기재료들을 가지도록 형성된다. 일부 적합한 유기 첨가제들은 안정화제, 바인더, 예컨대 프룩토오스, 수크로오스, 락토오스, 글루코오스, UV 경화성 수지들, 및 기타 등을 포함한다.
특히, 본원 실시태양들은 종래 성형 공정에서 사용되는 슬러리와 차별되는 혼합물 (101)을 사용한다. 예를들면, 혼합물 (101) 내의 유기재료들, 특히, 임의의 상기 유기 첨가제들의 함량은 혼합물 (101) 내의 다른 성분들과 비교할 때 소량이다. 적어도 하나의 실시태양에서, 혼합물 (101)은 혼합물 (101) 총 중량에 대하여 약 30 wt% 이하의 유기재료를 가지도록 형성된다. 다른 실시예들에서, 유기재료 함량은 더 적고, 예컨대 약 15 wt% 이하, 약 10 wt% 이하, 또는 약 5 wt% 이하이다. 또한, 비-제한적인 적어도 하나의 실시태양에서, 혼합물 (101) 내의 유기재료 함량은 혼합물 (101) 총 중량에 대하여 적어도 약 0.01 wt%, 예컨대 약 0.5 wt%이다. 혼합물 (101) 내의 유기재료 함량은 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다.
또한, 본원 실시태양에 의한 형상화 연마입자들 처리 및 성형이 용이하도록 혼합물 (101)은 상기 액체와는 구분되는 특정 함량의 산 또는 염기를 가지도록 형성된다. 일부 적합한 산 또는 염기는 질산, 황산, 시트르산, 염소산, 타타르산, 인산, 질산암모늄, 및 구연산암모늄을 포함한다. 질산 첨가제를 사용하는 특정 실시태양에 의하면, 혼합물 (101)은 약 5 미만, 더욱 상세하게는, 적어도 약 2 내지 약 4 pH 이하를 가진다.
도 1의 시스템 (150)은, 다이 (103)를 포함한다. 도시된 바와 같이, 혼합물 (101)은 다이 (103) 일단에 위치한 다이 개구 (105)를 통해 압출되도록 구성되는 다이 (103) 내부에 제공된다. 더욱 도시된 바와 같이, 압출 단계는 힘 (180)을 혼합물 (101)에 인가하여 혼합물 (101)은 다이 개구 (105)를 통해 용이하게 압출된다. 인가 구역 (183) 내에서 압출되는 동안, 도구 (151)는 다이 (103) 일부와 직접 접촉되어 도구 캐비티 (152)로의 혼합물 (101) 압출이 구현된다. 도구 (151)는 예컨대 도 1에 도시된 스크린 형태일 수 있고, 여기에서 캐비티 (152)는 도구 (151)의 전체 두께를 관통 연장된다. 또한, 캐비티 (152)가 도구 (151) 전체 두께의 일부에 대하여 연장되어 바닥면을 가질 있어, 혼합물 (101)을 보유하여 형상화하도록 구성되는 공간 부피는 바닥면 및 측면에 의해 정의되도록 도구 (151)가 형성될 수 있다는 것을 이해하여야 한다.
도구 (151)는 예를들면, 금속 합금, 예컨대 스테인레스 강을 포함한 금속 재료로 제작될 수 있다. 다른 경우들에서, 도구 (151)는 유기 재료, 예컨대 고분자로 제작될 수 있다.
실시태양에 의하면, 압출 과정에서 특정 압력이 적용된다. 예를들면, 압력은 적어도 약 10 kPa, 예컨대 적어도 약 500 kPa이다. 또한, 적어도 하나의 비-제한적 실시태양에서, 압출 과정에서 사용되는 압력은 약 4 MPa 이하이다. 혼합물 (101)을 압출하기 위하여 적용되는 압력은 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 특정 실시예들에서, 피스톤 (199)에 의해 전달되는 압력 균일도는 형상화 연마입자들 처리 및 성형을 개선시킬 수 있다. 특히, 혼합물 (101) 및 다이 (103) 폭에 걸쳐 인가되는 압력을 균일하게 제어함으로써 공정 제어를 개선시킬 수 있고 형상화 연마입자들 치수 특성들을 개선시킬 수 있다.
혼합물 (101)을 도구 캐비티 (152)에 적층하기 전에, 몰드 이형제를 도구 캐비티 (152) 표면에 도포하여, 추가 처리 후 도구 캐비티 (152)로부터 전구체 형상화 연마 입자들의 탈락을 용이하게 할 수 있다. 이러한 공정은 선택적이고 성형 공정 수행에 반드시 적용되지는 않는다. 적합한 예시적 몰드 이형제는 유기 재료, 예컨대 하나 이상의 고분자 (예를들면, PTFE)를 포함한다. 다른 경우들에서, 오일 (합성 또는 유기)이 몰드 이형제로서 도구 캐비티 (152) 표면에 적용된다. 하나의 적합한 오일은 땅콩기름일 수 있다. 몰드 이형제는 제한되지는 않지만, 적층, 분무, 인쇄, 브러싱, 코팅, 및 기타 등을 포함한 임의의 적합한 방식으로 적용될 수 있다.
혼합물 (101)을 도구 캐비티 (152) 내부에 적층하고, 임의의 적합한 방식으로 형상화되어 도구 캐비티 (152) 형상에 상응하는 형상을 가지는 형상화 연마 입자들을 형성한다.
간략히 도 2를 참조하면, 도구 (151) 일부가 도시된다. 도시된 바와 같이, 도구 (151)는 도구 캐비티 (152), 상세하게는, 도구 (151)을 통과하여 연장되는 다수의 도구 캐비티들 (152)을 포함한다. 실시태양에 의하면, 도구 캐비티들 (152)은 도구 (151)의 길이 (l) 및 폭 (w)에 의한 평면에서 관찰할 때 2차원 형상을 가진다. 2-차원 형상은 다양한 형상, 예를들면, 다각형, 타원형, 숫자, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 다각형들의 조합인 복잡 형상, 및 이들의 조합을 포함한다. 특정 실시예들에서, 도구 캐비티들 (152)은 2차원 다각형들 예컨대 삼각, 직사각, 사각, 오각, 육각, 칠각, 팔각, 구각, 십각, 및 이들의 조합을 가진다. 특히, 본원의 실시태양들의 형상화 연마 입자들을 참조하여 더욱 이해되는 바와 같이, 도구 캐비티 (152)는 다양한 다른 형상을 적용할 수 있다.
도 2의 도구 (151)는 서로에 대하여 특정 방식으로 배향되는 도구 캐비티들 (152)을 가지는 것으로 도시되지만, 다양한 다른 배향들이 적용될 수 있다는 것을 이해하여야 한다. 하나의 실시태양에 의하면, 각각의 도구 캐비티 (152)는 서로에 대하여 실질적으로 동일한 방향 및 도구 표면에 대하여 실질적으로 동일한 방향을 가진다. 예를들면, 각각의 도구 캐비티 (152)는 도구 (151) 횡축 (158)을 따라 횡방향으로 연장되는 도구 캐비티들 (152) 제1 줄 (row, 156)에 대하여 제1 평면 (155)을 이루어지는 제1 모서리 (154)를 가진다. 제1 평면 (155)은 도구 (151) 길이방향 축 (157)에 실질적으로 직교하는 방향으로 연장된다. 그러나, 다른 예들에서, 도구 캐비티들 (152)은 반드시 서로 동일한 방향을 가질 필요는 없다는 것을 이해하여야 한다.
또한, 도구 캐비티들 (152) 제1 줄 (156)은 병진이동 방향에 대하여 형상화 연마입자들에 대한 특정 처리 및 형성이 가능하도록 배향된다. 예를들면, 제1 줄 (156)의 제1 평면 (155)이 병진이동 방향 (171)에 대하여 각을 이루도록 도구 캐비티들 (152)은 도구 (151)에서 배열된다. 도시된 바와 같이, 제1 평면 (155)은 병진이동 방향 (171)에 실질적으로 직교하는 각을 형성한다. 또한, 일 실시태양에서, 제1 줄 (156)의 제1 평면 (155)은 병진이동 방향에 대하여 예를들면, 예각 또는 둔각을 포함하는 다른 각을 형성하도록 도구 캐비티들 (152)이 도구 (151)에 배열될 수 있다는 것을 이해할 수 있다. 또한, 도구 캐비티들 (152)이 줄로 배열될 필요는 없다는 것을 이해하여야 한다. 도구 캐비티들 (152)은 도구 (151)에서 여러 특정한 정렬 분포로 예컨대 2차원 패턴 형상으로 배열될 수 있다. 달리, 도구 캐비티들은 도구 (151)에 무작위 방식으로 배치될 수 있다.
도 1로 돌아가, 시스템 (150) 동작 과정에서, 도구 (151)은 방향 (153)으로 이동되어 연속 성형 작업이 구현된다. 도구 (151)은 연속 벨트 형태일 수 있고 연속 처리가 용이하도록 롤러 상에서 병진 이동될 수 있다는 것을 이해하여야 한다. 일부 실시태양들에서, 혼합물 (101)이 다이 개구 (105)를 통해 압출되는 동안 도구 (151)는 이동된다. 시스템 (150)에서 도시된 바와 같이, 혼합물 (101)은 방향 (191)로 압출될 수 있다. 도구 (151)의 이동 방향 (153)은 혼합물 (101) 압출 방향 (191)과 각을 이룰 수 있다. 시스템 (100)에서 도구 (151)의 이동 방향 (153) 및 혼합물 (101)의 압출 방향 (191) 간의 각은 실질적으로 직교하는 것으로 도시되지만, 다른 각 예를들면, 예각 또는 둔각이 고려될 수 있다. 혼합물 (101)이 다이 개구 (105)를 통과하여 압출된 후, 혼합물 (101) 및 도구 (151)는 다이 (103) 표면에 부착된 칼날 (107) 아래에서 벨트 (109)를 따라 이동된다. 칼날 (107)은 다이 (103) 정면에서 영역을 형성하여 도구 (151)의 도구 캐비티들 (152) 내로의 혼합물 (101) 이동을 용이하게 한다.
성형 공정에서, 혼합물 (101)은 도구 캐비티 (152)에 들어 있는 동안 상당한 건조가 진행된다. 따라서, 형상화는 주로 혼합물 (101)을 형상화하는 도구 캐비티 (152)에서 혼합물 (101)의 실질적인 건조 및 고화에 기인한다. 소정의 경우들에서, 성형 공정에 의해 형성되는 형상화 연마 입자들은 예를들면, 스크린 인쇄 공정을 포함한 다른 공정들과 비교하여 몰드 캐비티의 특징부들을 더욱 정확하게 복제한 형상을 보인다. 그러나, 소정의 유리한 형상 특성들은 스크린 인쇄 공정을 통해 더욱 용이하게 달성된다는 것을 이해하여야 한다.
몰드 이형제 적용 후, 혼합물 (101)을 몰드 캐비티 내부에 적층하고 건조시킨다. 건조는 휘발물질, 예컨대 물 또는 유기물질을 포함한 특정 함량의 소정 재료가 혼합물 (101)로부터 제거되는 것을 포함한다. 실시태양에 의하면, 건조 공정은 건조 온도가 약 300°C 이하, 예컨대 약 250°C 이하, 약 200°C 이하, 약 150°C 이하, 약 100°C 이하, 약 80°C 이하, 약 60°C 이하, 약 40°C 이하, 또는 약 30°C 이하에서 수행된다. 또한, 하나의 비-제한적인 실시태양에서, 건조 공정은 건조 온도가 적어도 약 -20°C, 예컨대 적어도 약 -10°C 적어도 약 0°C 적어도 약 5°C 적어도 약 10°C, 또는 적어도 약 20°C에서 수행될 수 있다. 건조 온도는 상기 임의의 최소 온도 및 최대 온도 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
소정의 경우들에서, 건조는 본원의 실시태양들에 의한 형상화 연마 입자들 형성이 구현되는 특정 시간 동안 수행될 수 있다. 예를들면, 건조는 적어도 약 1 분, 예컨대 적어도 약 2 분, 적어도 약 4 분, 적어도 약 6 분, 적어도 약 8 분, 적어도 약 10 분, 예컨대 적어도 약 30 분, 적어도 약 1 시간, 적어도 약 2 시간, 적어도 약 4 시간, 적어도 약 8 시간, 적어도 약 12 시간, 적어도 약 15 시간, 적어도 약 18 시간, 적어도 약 24 시간 동안 수행될 수 있다. 또 다른 경우들에서, 건조 공정은 약 30 시간 이하, 예컨대 약 24 시간 이하, 약 20 시간 이하, 약 15 시간 이하, 약 12 시간 이하, 약 10 시간 이하, 약 8 시간 이하, 약 6 시간 이하, 약 4 시간 이하일 수 있다. 건조 시간은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또한, 건조는 본원의 실시태양들에 의한 형상화 연마 입자들 형성에 용이하도록 특정 상대습도에서 수행될 수 있다. 예를들면, 건조는 상대습도가 적어도 약 20%, 적어도 약 30%, 적어도 약 40%, 적어도 약 50%, 적어도 약 60%, 예컨대 적어도 약 62%, 적어도 약 64%, 적어도 약 66%, 적어도 약 68%, 적어도 약 70%, 적어도 약 72%, 적어도 약 74%, 적어도 약 76%, 적어도 약 78%, 또는 적어도 약 80%에서 수행될 수 있다. 또 다른 비-제한적인 실시태양들에서, 건조는 상대습도가 약 90% 이하, 예컨대 약 88% 이하, 약 86% 이하, 약 84% 이하, 약 82% 이하, 약 80% 이하, 약 78% 이하, 약 76% 이하, 약 74% 이하, 약 72% 이하, 약 70% 이하, 약 65% 이하, 약 60% 이하, 약 55% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 또는 약 25% 이하에서 수행될 수 있다. 건조 과정에서 적용되는 상대습도는 상기 임의의 최소 백분율 및 최대 백분율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
건조 공정 완료 후, 혼합물 (101)을 도구 캐비티 (152)에서 탈락시켜 전구체 형상화 연마 입자들을 생성한다. 특히, 혼합물 (101)이 도구 캐비티 (152)에서 제거되기 전 또는 혼합물 (101)이 제거되어 전구체 형상화 연마 입자들이 형성된 후, 하나 이상의 성형-후 공정이 완료될 수 있다. 이러한 공정은 표면 형상화, 경화, 반응, 조사 (radiat6ing), 평탄화, 하소, 소결, 체질, 도핑, 및 이들의 조합을 포함한다. 예를들면, 하나의 선택적인 공정에서, 혼합물 (101) 또는 전구체 형상화 연마 입자들은 선택적 형상화 구역으로 이동되어, 혼합물 또는 전구체 형상화 연마 입자들의 적어도 하나의 외면이 형상화될 수 있다. 또 다른 실시태양에서, 몰드 캐비티에 담긴 혼합물 (101) 또는 전구체 형상화 연마 입자들은 선택적 인가 구역으로 이동되고, 여기에서 도펀트 재료가 인가될 수 있다. 특정 경우들에서, 도펀트 재료 인가 공정은 혼합물 (101) 또는 전구체 형상화 연마 입자들의 적어도 하나의 외면에 도펀트 재료의 선택적 배치를 포함한다.
도펀트 재료는 예를들면, 분무, 침지, 적층, 함침, 전달, 펀칭, 절단, 압축, 파쇄, 및 임의의 이들의 조합을 포함한 다양한 방법들을 이용하여 인가될 수 있다. 실시태양에 의하면, 도펀트 재료 인가는 특정 재료, 예컨대 전구체 인가를 포함한다. 소정의 실시예들에서, 전구체는 최종-형성 형상화 연마입자들에 통합되는 도펀트 재료를 포함하는 염 예컨대 금속염일 수 있다. 예를들면, 금속염은 도펀트 재료에 대한 전구체인 원소 또는 화합물을 포함한다. 염 물질은 액체 형태, 예컨대 염 및 액체 캐리어를 포함하는 분산액일 수 있다는 것을 이해하여야 한다. 염은 질소를 포함하고, 상세하게는, 질산염을 포함할 수 있다. 다른 실시태양들에서, 염은 염화물, 황산염, 인산염, 및 이들의 조합일 수 있다. 일 실시태양에서, 염은 금속 질산염을 포함하고, 상세하게는, 실질적으로 금속 질산염으로 이루어진다. 일 실시태양에서, 도펀트 재료는 원소 또는 화합물 예컨대 알칼리 금속원소, 알칼리 토금속원소, 희토류 원소, 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 또는 이들의 조합을 포함한다. 하나의 특정 실시태양에서, 도펀트 재료는 원소 또는 화합물을 포함하고 원소는 예컨대 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란탄, 세슘, 프라세오디뮴, 니오븀, 하프늄, 지르코늄, 탄탈, 몰리브덴, 바나듐, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 이들의 조합을 포함한다.
성형 공정은 소결 공정을 더욱 포함한다. 본원의 소정의 실시태양들에서, 소결 공정은 도구 캐비티 (152)에서 혼합물을 제거한 후 및 전구체 형상화 연마입자들을 형성한 후 진행된다. 전구체 형상화 연마입자들 (123)을 소결함으로써 일반적으로 미처리 상태인 입자들을 치밀화한다. 특정 실시예에서, 소결 공정으로 고온 상의 세라믹 재료를 형성한다. 예를들면, 일 실시태양에서, 전구체 형상화 연마입자들이 소결되어 고온 상의 알루미나, 예컨대 알파 알루미나가 형성된다. 하나의 실시예에서, 형상화 연마입자는 입자 총 중량에 대하여 적어도 약 90 wt%의 알파 알루미나를 포함한다. 다른 실시예들에서, 알파 알루미나 함량은 더 높고 형상화 연마입자는 실질적으로 알파 알루미나로 이루어진다.
최종-형성된 형상화 연마입자들의 몸체는 특정한 2차원 형태를 가질 수 있다. 예를들면, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰할 때 2차원 형상을 가지고, 다각형, 타원형, 숫자, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 다각형들의 조합인 복잡 형상, 또는 이의 조합을 포함한 형상을 가진다. 특정 다각형들은 삼각, 직사각, 사다리꼴, 오각, 육각, 칠각, 팔각, 구각, 십각, 임의의 이들의 조합을 포함한다. 또 다른 경우에서, 최종-형성된 형상화 연마 입자들은 2-차원 형상 예컨대 불규칙 사변형, 불규칙 직사각형, 불규칙 사다리꼴, 불규칙 오각형, 불규칙 육각형, 불규칙 칠각형, 불규칙 팔각형, 불규칙 구각형, 불규칙 십각형, 및 이들 조합의 몸체를 가진다. 불규칙 다각 형상은 다각 형상을 정의하는 측면들 중 적어도 하나가 또 다른 측면과 비교하여 치수 (예를들면, 길이)가 상이한 것이다. 본원의 다른 실시태양들에서 도시된 바와 같이, 소정의 형상화 연마 입자들의 2-차원 형상은 특정 개수의 외점들 또는 외부 코너들을 가진다. 예를들면, 형상화 연마 입자들의 몸체는 길이 및 폭으로 정의되는 평면에서 관찰할 때2-차원 다각 형상을 가지고, 몸체는 적어도 4개의 외점들 (예를들면, 사변형), 적어도 5개의 외점들 (예를들면, 오각형), 적어도 6개의 외점들 (예를들면, 육각형), 적어도 7개의 외점들 (예를들면, 칠각형), 적어도 8개의 외점들 (예를들면, 팔각형), 적어도 9개의 외점들 (예를들면, 구각형), 및 기타 등을 가지는2-차원 형상을 포함한다.
도 3은 본원 실시태양들의 형상화 연마 입자들의 소정의 특징부를 보이는 형상화 연마 입자의 단면도이다. 이러한 단면도는 본원에 기술된 바와 같이 하나 이상의 형상 양태 또는 치수 특징을 결정하기 위하여 실시태양들의 임의의 예시적 형상화 연마 입자들에 적용될 수 있다는 것을 이해하여야 한다. 형상화 연마 입자의 몸체는 상부 주면 (303) (즉, 제1 주면) 및 상부 주면 (303) 반대측의 하부 주면 (304) (즉, 제2 주면)을 포함한다. 상면 (303) 및 하면 (304)은 측면 (314)에 의해 서로 분리된다.
소정의 경우들에서, 본원 실시태양들의 형상화 연마 입자들은, hc 및 hm 간의 차이인 평균 높이 차이를 가진다. 특히, 치수 Lmiddle 은 코너 높이 (hc) 및 코너 반대측 중점 에지 높이 (hm) 사이의 거리를 정의하는 길이일 수 있다. 또한, 몸체 (301)는 몸체 (301)에서 임의의 코너 및 반대측 중점 에지 사이의 치수를 따라 측정될 때 몸체 (301) 높이의 최소 치수일 수 있는 내부 높이 (hi)를 가질 수 있다. 본원에 있어서, 평균 높이 차이는 포괄적으로 hc-hm로서 나타내지만, 차이의 절대값으로 나타낼 수 있다. 따라서 측면 (314) 중점에서의 몸체 (301) 높이가 코너 (313)에서의 높이보다 클 때 평균 높이 차이는 hm-hc로서 계산될 수 있다는 것을 이해할 수 있다. 상세하게는, 평균 높이 차이는 적합한 샘플 크기인 다수의 형상화 연마입자들에 기초하여 계산된다. 입자들의 높이들 hc 및 hm은 STIL (Sciences et Techniques Industrielles de la Lumiere - France) Micro Measure 3D 표면 조면계 (백광 (LED) 색수차 기술)을 이용하여 측정할 수 있고 평균 높이 차이는 샘플의 hc 및 hm 평균값들로부터 계산된다.
도 3에 도시된 바와 같이, 하나의 특정 실시태양에서, 형상화 연마입자 (300)의 몸체 (301)는 몸체 (301)다른 지점들에서의 평균 높이 차이를 가진다. 몸체 (301)는 제1 코너 높이 (hc) 및 제2 중점 높이 (hm) 사이의 [hc-hm]의 절대값인 평균 높이 차이를 가지고 이는 아주 작아 입자는 비교적 평탄하고 평균 높이 차이는 약 300 미크론 이하, 예컨대 약 250 미크론 이하, 약 220 미크론 이하, 또는 약 180 미크론 이하, 약 150 미크론 이하, 약 100 미크론 이하, 약 50 미크론 이하, 또는 약 20 미크론 이하이다.
본원의 형상화 연마 입자들의 몸체는 몸체의 최장 치수이고 측면을 따라 연장되는 폭 (w)을 포함한다. 형상화 연마 입자들은 (주면을 따라) 몸체 중점을 관통 연장되고 몸체를 반분하는 길이 (즉, Lmiddle)를 포함한다. 몸체는 몸체 (301) 측면에 의해 정의되는 길이 및 폭 방향에 수직 방향으로 연장되는 몸체 치수인 높이 (h)를 더욱 포함한다. 특정 경우들에서, 폭은 길이보다 크거나 같고, 길이는 높이보다 크거나 같고, 폭은 높이보다 크거나 같다.
특정 실시예들에서, 몸체 (301)는 폭: 길이로 표현되는 비율인1차 종횡비를 가지고, 적어도 1:1을 가진다. 다른 실시예들에서, 몸체 (301)는 1차 종횡비 (w:l)가 적어도 약 1.5:1, 예컨대 적어도 약 2:1, 적어도 약 4:1, 또는 적어도 약 5:1이 되도록 형성된다. 또한, 다른 실시예들에서, 연마입자 (300)는 몸체 (301)의 1차 종횡비가 약 10:1 이하, 예컨대 9:1 이하, 약 8:1 이하, 또는 약 5:1 이하가 되도록 형성된다. 몸체 (301)의 1차 종횡비는 상기 임의의 비율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 본원에서 높이를 언급할 때에는 연마입자 (300)에서 측정 가능한 최고 높이를 언급하는 것이다.
1차 종횡비 외에도, 연마입자 (300)는 몸체 (301)가 길이: 높이의 비율로 정의되는2차 종횡비를 가지도록 형성되고, 상기 높이는 중앙 내부 높이 (Mhi)이다. 소정의 실시예들에서, 2차 종횡비는 적어도 약 1:1, 예컨대 적어도 약 2:1, 적어도 약 4:1, 또는 적어도 약 5:1일 수 있다. 또한, 다른 실시예들에서, 연마 입자 (300)는 몸체 (301)의 2차 종횡비가 약 1:3 이하, 예컨대 1:2 이하, 또는 약 1:1 이하가 되도록 형성될 수 있다. 몸체 (301)의 2차 종횡비는 상기 임의의 비율 내의 범위, 예컨대 약 5:1 내지 약 1:1일 수 있다는 것을 이해하여야 한다.
또 다른 실시태양에 의하면, 연마입자 (300)는 몸체 (301)가 폭: 높이의 비율로 정의되는3차 종횡비를 가지도록 형성도고, 상기 높이는 중앙 내부 높이 (Mhi)이다. 몸체 (101)의3차 종횡비는 적어도 약 1:1, 예컨대 적어도 약 2:1, 적어도 약 4:1, 적어도 약 5:1, 또는 적어도 약 6:1이다. 또한, 다른 실시예들에서, 연마 입자 (300)는 몸체 (301)의 3차 종횡비가 약 3:1 이하, 예컨대 2:1 이하, 또는 약 1:1 이하가 되도록 형성될 수 있다. 몸체 (301)의 3차 종횡비는 상기 임의의 비율 내의 범위, 예컨대 약 6:1 내지 약 1:1 일 수 있다는 것을 이해하여야 한다.
하나의 실시태양에 의하면, 형상화 연마입자 (300)의 몸체 (301)는 개선된 성능이 가능한 특정 치수들을 가진다. 예를들면, 하나의 실시예에서, 몸체 (301)는 몸체 (301)의 임의의 코너 및 대항 중점 모서리 사이를 따라 측정되는 몸체 (301)의 최저 높이인 내부 높이 (hi)를 가진다. 특정한 경우, 내부 높이 (hi)는 각각 외부 코너 및 대향 중점 모서리 사이에서 측정되는 몸체 (301)의 최저 높이 (즉, 저면 (304) 및 상면 (303) 사이 측정치)이다. 형상화 연마입자 (300) 몸체 (301)의 내부 높이 (hi)는 도 3에 도시된다. 하나의 실시태양에 따르면, 내부 높이 (hi)는 폭 (w)의 적어도 약 20%이다. 높이 (hi)는 형상화 연마입자 (300)를 절단 또는 장착 및 연마 및 몸체 (301) 내부 최저 높이 (hi)를 결정하기에 충분한 방식으로 관찰하여 (예를들면, 광학현미경 또는 SEM) 측정한다. 하나의 특정 실시태양에서, 높이 (hi)는 몸체 (301)폭의 적어도 약 22%, 예컨대 적어도 약 25%, 적어도 약 30%, 또는 적어도 약 33%이다. 비-제한적인 하나의 실시태양에서, 몸체 (301) 높이 (hi)는 몸체 (301) 폭의 약 80% 이하, 예컨대 약 76% 이하, 약 73% 이하, 약 70% 이하, 약 68% 이하, 약 56% 이하, 약 48% 이하, 또는 약 40% 이하이다. 몸체 (301) 높이 (hi)는 임의의 상기 최소율 및 최대율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
중앙 내부 높이 (Mhi)가 제어된 형상화 연마입자들 배치 (batch)가 조립되어, 성능을 향상시킬 수 있다. 상세하게는, 배치의 중앙 내부 높이 (hi)는 상기된 바와 같이 동일한 방식의 형상화 연마배치 입자들의 중앙 폭과 관련된다. 특히, 중앙 내부 높이 (Mhi)는 형상화 연마배치 입자들 중앙 폭의 적어도 약 20%, 예컨대 적어도 약 22%, 적어도 약 25%, 적어도 약 30%, 또는 적어도 약 33% 이다. 비-제한적인 하나의 실시태양에서, 몸체 (301)의 중앙 내부 높이 (Mhi)는 중앙 폭의 약 80% 이하, 예컨대 약 76% 이하, 약 73% 이하, 약 70% 이하, 약 68% 이하, 약 56% 이하, 약 48% 이하, 또는 약 40% 이하이다. 몸체 (301)의 중앙 내부 높이 (Mhi)는 임의의 상기 최소율 및 최대율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또한, 형상화 연마입자들의 배치는 적합한 샘플 크기로부터의 치수 특정 표준 편차로 측정되는 바와 같이 개선된 치수 균일성을 보인다. 하나의 실시태양에 의하면, 형상화 연마입자들의 내부 높이 편차 (Vhi)는, 배치 입자들의 적합한 샘플 크기에 대한 내부 높이 (hi) 표준편차로서 계산될 수 있다. 하나의 실시태양에 의하면, 내부 높이 편차는 약 60 미크론 이하, 예컨대 약 58 미크론 이하, 약 56 미크론 이하, 또는 약 54 미크론 이하이다. 하나의 비-제한적 실시태양에서, 내부 높이 편차 (Vhi)는 적어도 약 2 미크론이다. 몸체의 내부 높이 편차는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또 다른 실시태양에 있어서, 형상화 연마입자 (300) 몸체 (301)는 높이를 가질 수 있고, 이는 적어도 약 70 미크론인 내부 높이 (hi)일 수 있다. 더욱 상세하게는, 높이는 적어도 약 80 미크론, 예컨대 적어도 약 90 미크론, 또는 적어도 약 100 미크론, 적어도 약 110 미크론, 또는 적어도 약 120 미크론, 적어도 약 150 미크론, 또는 적어도 약 175 미크론, 적어도 약 200 미크론, 또는 적어도 약 225 미크론, 적어도 약 250 미크론, 적어도 약 275 미크론, 또는 적어도 약 300 미크론이다.
또 다른 하나의 비-제한적 실시태양에서, 몸체 (301) 높이는 약 3 mm 이하, 예컨대 약 2 mm 이하, 약 1.5 mm 이하, 약 1 mm 이하, 약 800 미크론 이하, 약 600 미크론 이하, 약 500 미크론 이하, 약 475 미크론 이하, 약 450 미크론 이하, 약 425 미크론 이하, 약 400 미크론 이하, 약 375 미크론 이하, 약 350 미크론 이하, 약 325 미크론 이하, 약 300 미크론 이하, 약 275 미크론 이하, 또는 약 250 미크론 이하이다. 몸체 (301) 높이는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 범위 값들은 배치의 형상화 연마입자들에 대한 중앙 내부 높이 (Mhi)를 나타낸다는 것을 이해할 수 있다.
소정의 본원 실시태양들에 있어서, 형상화 연마입자 (300) 몸체 (301)는 예를들면, 폭>길이, 길이>높이, 및 폭>높이를 포함한 특정 치수들을 가진다. 상세하게는, 형상화 연마입자 (300) 몸체 (301)의 폭 (w)은 적어도 약 600 미크론, 예컨대 적어도 약 200 미크론, 예컨대 적어도 약 250 미크론, 적어도 약 300 미크론, 적어도 약 350 미크론, 적어도 약 400 미크론, 적어도 약 450 미크론, 적어도 약 500 미크론, 적어도 약 550 미크론, 적어도 약 600 미크론, 적어도 약 700 미크론, 적어도 약 800 미크론, 또는 적어도 약 900 미크론이다. 하나의 비-제한적 실시예에서, 몸체 (301)의 폭은 약 4 mm 이하, 예컨대 약 3 mm 이하, 약 2.5 mm 이하, 또는 약 2 mm 이하이다. 몸체 (301)의 폭은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 범위 값들은 배치의 형상화 연마입자들에 대한 중앙 폭 (Mw)을 나타낸다는 것을 이해할 수 있다.
형상화 연마입자 (300) 몸체 (301)는 특정 치수들을 가지고, 예를들면, 길이 (L middle 또는 Lp)는 적어도 약 0.4 mm, 예컨대 적어도 약 0.6 mm, 적어도 약 0.8 mm, 또는 적어도 약 0.9 mm이다. 또한, 적어도 하나의 비-제한적 실시태양에 있어서, 몸체 (301)의 길이는 약 4 mm 이하, 예컨대 약 3 mm 이하, 약 2.5 mm 이하, 또는 약 2 mm 이하이다. 몸체 (301) 길이는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 범위 값들은 중앙 길이 (Ml), 상세하게는, 배치의 형상화 연마입자들에 대한 중앙 중간 길이 (MLmiddle) 또는 중앙 외형 길이 (MLp) 를 나타낸다는 것을 이해하여야 한다.
형상화 연마입자 (300)의 몸체 (301)는 특정 디싱값을 가지고, 디싱값 (d)은 최소 치수의 내부 몸체 높이 (hi)에 대한 외부 코너들에서 몸체 (301) 평균 높이 (Ahc)의 비율로 정의된다. 코너들에서 몸체 (301) 평균 높이 (Ahc)는 모든 코너들에서 몸체 (301) 높이를 측정하고 값들을 평균하여 계산될 수 있고, 하나의 코너에서의 단일 높이 값 (hc)과는 차별된다. 코너들에서 또는 내부에서 몸체 (301) 평균 높이는 STIL (Sciences et Techniques Industrielles de la Lumiere - France) Micro Measure 3D 표면 조면계 (백광 (LED) 색수차 기술)을 이용하여 측정할 수 있다. 달리, 디싱은 배치 입자들의 적합한 샘플로부터 계산되는 코너에서의 입자들 중앙 높이 (Mhc) 에 기초할 수 있다. 유사하게, 내부 높이 (hi)는 배치의 형상화 연마입자들에 대한 적합한 샘플에서 유도되는 중앙 내부 높이 (Mhi)일 수 있다. 하나의 실시태양에 의하면, 디싱값 (d)은 약 2 이하, 예컨대 약 1.9 이하, 약 1.8 이하, 약 1.7 이하, 약 1.6 이하, 약 1.5 이하, 또는 약 1.2 이하일 수 있다. 또한, 적어도 하나의 비-제한적 실시태양에서, 디싱값 (d)은 적어도 약 0.9, 예컨대 적어도 약 1.0이다. 디싱 비율은 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 디싱값들은 형상화 연마입자들 배치에 대한 중앙 디싱 (Md)을 나타낼 수 있는 것을 이해할 수 있다.
본원 실시태양들의 형상화 연마입자들, 예를들면, 도 3의 입자의 몸체 (301)는 바닥 면적 (Ab)을 형성하는 하면 (304)을 가진다. 특정 실시예들에서 하면 (304)은 몸체 (301)의 최대 표면이다. 하부 주면 (304)은 상부 주면 (303) 표면적과 다른 바닥 면적 (Ab)을 형성하는 표면적을 가진다. 하나의 특정 실시태양에서, 하부 주면 (304)은 상부 주면 (303) 표면적과 다른 바닥 면적 (Ab)을 형성하는 표면적을 가진다. 다른 실시태양에서, 하부 주면 (304)은 상부 주면 (303) 표면적보다 작은 바닥 면적 (Ab)을 형성하는 표면적을 가진다.
또한, 몸체 (301)는 바닥 면적 (Ab)에 수직한 평면 면적을 형성하고 입자 (300) 중점 (381)을 통과하여 연장되는 단면 중점 면적 (Am)을 가진다. 소정의 실시예들에서, 몸체 (301)의 중점 면적에 대한 바닥 면적의 면적비 (Ab/Am)는 약 6 이하이다. 더욱 상세한 실시예들에서, 면적비는 약 5.5 이하, 예컨대 약 5 이하, 약 4.5 이하, 약 4 이하, 약 3.5 이하, 또는 약 3 이하이다. 또한, 하나의 비-제한적 실시태양에서, 면적비는 적어도 약 1.1, 예컨대 적어도 약 1.3, 또는 적어도 약 1.8이다. 면적비는 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 면적비는 형상화 연마입자들의 배치에 대한 중앙 면적비를 나타낼 수 있다는 것을 이해할 수 있다.
또한 본원 실시태양들의 형상화 연마입자들, 예를들면, 도 3의 입자는 약 0.3 이하의 정규화 (normalized) 높이 차이를 가진다. 정규화 높이 차이는 식 [(hc-hm)/(hi)]의 절대값으로 정의된다. 다른 실시태양들에서, 정규화 높이 차이는 약 0.26 이하, 예컨대 약 0.22 이하, 또는 약 0.19 이하이다. 또, 하나의 특정 실시태양에서, 정규화 높이 차이는 적어도 약 0.04, 예컨대 적어도 약 0.05, 또는 적어도 약 0.06이다. 정규화 높이 차이는 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 정규화 높이 값들은 형상화 연마입자들 배치에 대한 중앙 정규화 높이를 나타낼 수 있다는 것을 이해하여야 한다.
형상화 연마입자 (300)는 몸체 (301)가 결정 재료, 더욱 상세하게는, 다결정 재료를 가지도록 형성된다. 특히, 다결정 재료는 연마입자들을 포함한다. 일 실시태양에서, 몸체 (301)는 예를들면, 바인더를 포함한 유기재료가 실질적으로 부재이다. 상세하게는, 몸체 (301)는 실질적으로 다결정 재료로 이루어진다.
일 양태에서, 형상화 연마입자 (300) 몸체 (301)는 다수의 연마입자들, 그릿, 및/또는 결정들이 서로 결합되어 연마입자 (300)의 몸체 (301)를 형성하는 응집체일 수 있다. 적합한 연마입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 산붕화물, 다이아몬드, 및 이들의 조합을 포함한다. 특정한 경우, 연마입자들은 산화물 또는 복합체, 예컨대 알루미늄 산화물, 지르코늄 산화물, 티타늄 산화물, 이트륨 산화물, 크롬 산화물, 스트론튬 산화물, 규소산화물, 및 이들의 조합을 포함한다. 하나의 특정 실시예에서, 연마입자 (300)는 몸체 (301)를 형성하는 연마입자들이 알루미나를 포함하도록, 더욱 상세하게는, 실질적으로 알루미나로 이루어지도록 형성된다. 또한, 특정 실시예들에서, 형상화 연마입자 (300)는 시드화 (seeded) 졸-겔일 수 있다.
몸체 (301)에 함유되는 연마입자들 (즉, 미세결정들)의 평균 결정 크기는 일반적으로 약 100 미크론 이하이다. 다른 실시태양들에서, 평균 결정 크기는 더 작고, 예컨대 약 80 미크론 이하, 약 50 미크론 이하, 약 30 미크론 이하, 약 20 미크론 이하, 약 10 미크론 이하, 또는 약 1 미크론 이하, 약 0.9 미크론 이하, 약 0.8 미크론 이하, 약 0.7 미크론 이하, 또는 약 0.6 미크론 이하이다. 또한, 몸체 (301)에 함유되는 연마입자들의 평균 결정 크기는 적어도 약 0.01 미크론, 예컨대 적어도 약 0.05 미크론, 적어도 약 0.06 미크론, 적어도 약 0.07 미크론, 적어도 약 0.08 미크론, 적어도 약 0.09 미크론, 적어도 약 0.1 미크론, 적어도 약 012 미크론,또는 적어도 약 0.15 미크론, 적어도 약 0.17 미크론, 적어도 약 0.2미크론, 또는 적어도 약 0.5 미크론이다. 연마입자들의 평균 결정 크기는 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다.
소정의 실시태양들에 의하면, 연마입자 (300)는 적어도 2종의 상이한 유형의 입자들이 몸체 (301)에 포함되는 복합 물품 (composite article)이다. 상이한 유형의 입자들은 서로 상이한 조성을 가지는 입자들이라는 것을 이해하여야 한다. 예를들면, 몸체 (301)는 적어도 2종의 상이한 유형의 입자들을 포함하도록 형성되고, 2종의 상이한 유형의 입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 산붕화물, 다이아몬드, 및 이들의 조합일 수 있다.
실시태양에 의하면, 몸체 (301)의 측정 가능한 최대 치수로 측정할 때 연마입자 (300)의 평균 입자크기는, 적어도 약 100 미크론이다. 실제로, 연마입자 (300)의 평균 입자크기는 적어도 약 150 미크론, 예컨대 적어도 약 200 미크론, 적어도 약 300 미크론, 적어도 약 400 미크론, 적어도 약 500 미크론, 적어도 약 600 미크론, 적어도 약 700 미크론, 적어도 약 800 미크론, 또는 적어도 약 900 미크론이다. 또한, 연마입자 (300)의 평균 입자크기는 약 5 mm 이하, 예컨대 약 3 mm 이하, 약 2 mm 이하, 또는 약 1.5 mm 이하이다. 연마입자 (300)의 평균 입자크기는 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다.
본원 실시태양들의 형상화 연마입자들은 개선된 성능을 제공할 수 있는 플래싱 비율을 가진다. 특히, 플래싱은, 예컨대 도 4에 도시된 바와 같이 일 측면에서 관찰될 때 상자들 (402, 403) 내에서 몸체 (301) 측면으로 연장되는 입자 면적을 정의한다. 플래싱은 몸체 (301) 상면 (303) 및 하면 (304)에 근접한 경사 영역들로 나타낼 수 있다. 플래싱은 측면 최내부 지점 (예를들면, 421) 및 몸체 (301) 측면의 최외부 지점(예를들면, 422) 사이에 연장되는 상자에 포함되는 측면을 따르는 몸체 (301) 면적 비율로 측정된다. 하나의 특정 실시예에서, 몸체 (301)는 상자들 (402, 403, 404)에 포함되는 몸체 (301) 총 면적에 대한 상자들 (402, 403)에 포함되는 몸체 (301) 면적 비율인 특정 플래싱 값을 가진다. 하나의 실시태양에 의하면, 몸체 (301)의 플래싱 비율 (f)은 적어도 약 1%이다. 또 다른 실시태양에서, 플래싱 비율은 더 크고, 예컨대 적어도 약 2%, 예컨대 적어도 약 3%, 적어도 약 4%, 적어도 약 5%, 적어도 약 8%, 적어도 약 10%, 적어도 약 12%, 적어도 약 15%, 적어도 약 18%, 또는 적어도 약 20%이다. 또한, 비-제한적 실시태양에서, 몸체 (301)의 플래싱 비율은 제어될 수 있고 약 45% 이하, 예컨대 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 약 18% 이하, 약 15% 이하, 약 12% 이하, 약 10% 이하, 약 8% 이하, 약 6% 이하, 또는 약 4% 이하일 수 있다. 몸체 (301)의 플래싱 비율은 상기 임의의 최소 비율 및 최대 비율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 플래싱 비율은 형상화 연마입자들의 배치에 대한 평균 플래싱 백분율 또는 중앙 플래싱 백분율일 수 있다는 것을 이해하여야 한다.
예컨대 도 4에 도시된 바와 같이 플래싱 비율은 형상화 연마입자 (300)를 측면으로 세우고 측면에서 몸체 (301)를 관찰하여 흑백 영상을 생성하여 측정될 수 있다. 이에 적합한 프로그램은 ImageJ 소프트웨어를 포함한다. 플래싱 비율은 중앙 (404) 및 상자들 내에서의 면적을 포함하여 측면에서 관찰될 때의 몸체 (301) 총 면적 (총 음영 면적)에 대한 상자들 (402, 403) 내의 몸체 (301) 면적을 결정함으로써 계산할 수 있다. 이러한 절차는 적합한 입자들 샘플에 대하여 수행되어 평균, 중앙값, 및/또는 및 표준편차 값들을 생성할 수 있다.
도 12A 내지 26은 실시태양에 의한 형상화 연마 입자들을 도시한 것이다. 일 실시태양에 따르면, 본원 실시태양들의 형상화 연마 입자들의 몸체는 팁 첨예도, 강도, 및 형상지수를 포함한 적어도 3개의 입자 특징부들 사이 특정 관계를 가질 수 있다. 특정 이론에 구속되지 않고, 실험적 연구에 기초하여 소정 입자 특징부들 사이 특정 연관성이 존재하는 것으로 보이고, 이들 입자 특징부들의 연관성을 조절함으로써, 형상화 연마 입자의 자기-예리화 (self-sharpening) 거동이 변경되고, 개선될 수 있고, 이에 따라 효율 및 수명 성능이 개선되는 연마 물품이 형성될 수 있다.
도 12A는 실시태양에 의한 형상화 연마 입자의 사시도이다. 도 12B는 실시태양에 의한 형상화 연마 입자의 평면도이다. 도시된 바와 같이, 형상화 연마 입자 (1200)는 상부 주면 (1203) (즉, 제1 주면) 및 상부 주면 (1203) 반대측 하부 주면 (1204) (즉, 제2 주면)을 가지는 몸체 (1201)를 포함한다. 상면 (1203) 및 하면 (1204)은 예를들면, 별개의 측면 부분들 (1206, 1207, 1208)을 포함하는 하나 이상의 별개의 측면 부분들을 포함하는 측면 (1205) 중 적어도 하나에 의해 서로 이격된다. 별개의 측면 부분들 (1206-1208)은 제한되지는 않지만, 에지 (1209, 1210)를 포함하는 에지에서 서로 결합된다. 에지 (1209)는 상부 주면 (1203)의 외부 코너 및 하부 주면 (1204)의 외부 코너 사이에서 연장된다. 에지 (1210)는 상부 주면 (1203)의 외부 코너 (1213) 및 하부 주면 (1204)의 외부 코너 (1214) 사이에서 연장된다.
도시된 바와 같이, 형상화 연마 입자 (1200)의 몸체 (1201)는 상면 (1203)에 평행한 평면에서 관찰될 때 대체로 다각 형상을 가지고, 상세하게는, 몸체의 폭 및 길이의 평면에서 관찰될 때 (즉, 도 12B에서 도시된 바와 같은 평면도), 5개의 외부 점들 또는 외부 코너들을 가지는 2-차원 오각 형상을 가진다. 특히, 몸체 (1201)는 도 12A에 도시된 바와 같이 길이 (L 또는 Lmiddle)를 가지고, 이는 외부 코너 (1216)에서 몸체 (1201)의 반대측 에지 (1217) 중점으로 연장되는 치수로서 측정된 것이다. 특히, 예컨대 도 12A에 도시된 일부 실시태양들에서, 길이는 몸체 (1201)의 상부 표면 (1203)의 중점 (1281)을 통해 연장되지만, 반드시 모든 실시태양에서 그럴 필요는 없다. 또한, 몸체 (1201)는 폭 (W)을 가지고, 이는 측면 (1205)의 별개의 측면 일부를 따르는 몸체 (1201)의 최장 치수 측정치이다. 몸체의 높이는 대체로 상부 주면 (1203) 및 하부 주면 (1204) 간의 거리이다. 본원의 실시태양들에서 개시된 바와 같이, 높이는 몸체 (1201)의 상이한 지점들에서, 예컨대 몸체 (1201)의 코너들 대 내부에서 치수가 다를 수 있다.
특정 경우들에서, 몸체 (1201)는 폭: 길이로 표현되는 비율인 1차 종횡비를 가지도록 형성되고, 본원의 실시태양들에서 기술되는 값들을 가진다. 또한, 소정의 실시태양들, 예컨대 도 12A의 실시태양의 형상화 연마 입자에서, 길이는 폭과 같거나 길수 있고, 따라서 1차 종횡비는 적어도 약 1:1이다. 다른 경우들에서, 몸체 (1201)는 1차 종횡비 (w:l)가 적어도 약 1:1.5, 예컨대 적어도 약 1:2, 적어도 약 1:4, 또는 적어도 약 5:1이 되도록 형성된다. 또한, 다른 경우들에서, 몸체 (1201)의 1차 종횡비가 약 1:10 이하, 예컨대 1:9 이하, 약 1:8 이하, 또는 약 1:5 이하가 되도록 연마 입자 (1200)가 형성된다. 몸체 (1201)의 1차 종횡비는 상기 임의 비율들 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
1차 종횡비 외에도, 연마 입자 (1200)는 몸체 (1201)가 길이: 높이의 비율로 정의되는 2차 종횡비를 포함하도록 형성될 있고, 상기 높이는 중점 (1281)에서 측정되는 내부 중간 높이 (Mhi)일 수 있다. 소정의 경우들에서, 2차 종횡비는 적어도 약 1:1, 예컨대 적어도 약 2:1, 적어도 약 4:1, 또는 적어도 약 5:1이다. 또한, 다른 경우들에서, 연마 입자 (1200)는 몸체 (1201)의 2차 종횡비가 약 1:3 이하, 예컨대 1:2 이하, 또는 약 1:1 이하가 되도록 형성될 수 있다. 몸체 (1201)의 2차 종횡비는 상기 임의 비율들 사이 범위, 예컨대 약 5:1 내지 약 1:1의 범위에 있을 수 있다는 것을 이해하여야 한다.
또 다른 실시태양에 의하면, 연마 입자 (1200)는 몸체 (1201)가 폭: 높이의 비율로 정의되는 3차 종횡비를 가지도록 형성되고, 높이는 내부 중간 높이 (Mhi)일 수 있다. 몸체 (1201)의3차 종횡비는 적어도 약 1:1, 예컨대 적어도 약 2:1, 적어도 약 4:1, 적어도 약 5:1, 또는 적어도 약 6:1이다. 또한, 다른 경우들에서, 연마 입자 (1200)는 몸체 (1201)의 3차 종횡비가 약 3:1 이하, 예컨대 2:1 이하, 또는 약 1:1 이하가 되도록 형성된다. 몸체 (1201)의 3차 종횡비눈 상기 임의 비율들 사이 범위, 예컨대 약 6:1 내지 약 1:1에 있을 수 있다는 것을 이해하여야 한다.
하나의 실시태양에 의하면, 형상화 연마 입자 (1200)의 몸체 (1201)는 본원에 기술된 임의의 공정으로 형성될 수 있다. 특히, 몸체 (1201)는 미리 결정된 강도, 미리 결정된 팁 첨예도, 및 미리 결정된 형상지수를 포함하는 적어도 3종의 입자 특징부들의 특정 연관성을 가지도록 형성될 수 있다. 평균 팁 첨예도일 수 있는 형상화 연마 입자의 팁 첨예도는 몸체 (1201) 외부 코너에서 최적 원의 최대 반경을 결정함으로써 측정된다. 예를들면, 도 12B를 참조하면, 몸체 (1201)의 상부 주면 (1203)의 평면도가 제공된다. 코너 (1231)에서, 최적 원은 형상화 연마 입자 (1201) 몸체 (1201) 사진에 중첩되고, 외부 코너 (1231)의 곡률에 대한 최적 원의 반경은 외부 코너 (1231)에 대한 팁 첨예도 값을 나타낸다. 몸체 (1201)의 각각의 외부 코너에 대하여 측정을 반복하여 단일 형상화 연마 입자에 대한 평균 개별 팁 첨예도를 결정한다. 또한, 형상화 연마 입자들 배치에서 적합한 샘플 크기의 형상화 연마 입자들에 대하여 측정을 반복하여 평균 배치 팁 첨예도를 유도한다. 적합한 배율의 사진 (예를들면, SEM 사진 또는 광학현미경 사진)과 함께 임의의 적합한 컴퓨터 프로그램, 예컨대 ImageJ 를 사용하여 최적 원 및 팁 첨예도를 정확하게 측정할 수 있다.
본원 실시태양들의 형상화 연마 입자들은 특정 첨예도, 강도 및 형상지수 인자 (즉, 3SF)를 가지는 형상화 연마 입자들의 형성을 가능하게 하는 특정 팁 첨예도를 가질 수 있다. 예를들면, 실시태양에 의한 형상화 연마 입자 몸체의 팁 첨예도 범위는 약 80 미크론 이하 내지 적어도 약 1 미크론이다. 또한, 소정의 경우들에서, 몸체의 팁 첨예도는 약 78 미크론 이하, 예컨대 약 76 미크론 이하, 약 74 미크론 이하, 약 72 미크론 이하, 약 70 미크론 이하, 약 68 미크론 이하, 약 66 미크론 이하, 약 64 미크론 이하, 약 62 미크론 이하, 약 60 미크론 이하, 약 58 미크론 이하, 약 56 미크론 이하, 약 54 미크론 이하, 약 52 미크론 이하, 약 50 미크론 이하, 약 48 미크론 이하, 약 46 미크론 이하, 약 44 미크론 이하, 약 42 미크론 이하, 약 40 미크론 이하, 약 38 미크론 이하, 약 36 미크론 이하, 약 34 미크론 이하, 약 32 미크론 이하, 약 30 미크론 이하, 약 38 미크론 이하, 약 36 미크론 이하, 약 34 미크론 이하, 약 32 미크론 이하, 약 30 미크론 이하, 약 28 미크론 이하, 약 26 미크론 이하, 약 24 미크론 이하, 약 22 미크론 이하, 약 20 미크론 이하, 약 18 미크론 이하, 약 16 미크론 이하, 약 14 미크론 이하, 약 12 미크론 이하, 약 10 미크론 이하이다. 또 다른 비-제한적인 실시태양에서, 팁 첨예도는 적어도 약 2 미크론, 예컨대 적어도 약 4 미크론, 적어도 약 6 미크론, 적어도 약 8 미크론, 적어도 약 10 미크론, 적어도 약 12 미크론, 적어도 약 14 미크론, 적어도 약 16 미크론, 적어도 약 18 미크론, 적어도 약 20 미크론, 적어도 약 22 미크론, 적어도 약 24 미크론, 적어도 약 26 미크론, 적어도 약 28 미크론, 적어도 약 30 미크론, 적어도 약 32 미크론, 적어도 약 34 미크론, 적어도 약 36 미크론, 적어도 약 38 미크론, 적어도 약 40 미크론, 적어도 약 42 미크론, 적어도 약 44 미크론, 적어도 약 46 미크론, 적어도 약 48 미크론, 적어도 약 50 미크론, 적어도 약 52 미크론, 적어도 약 54 미크론, 적어도 약 56 미크론, 적어도 약 58 미크론, 적어도 약 60 미크론, 적어도 약 62 미크론, 적어도 약 64 미크론, 적어도 약 66 미크론, 적어도 약 68 미크론, 적어도 약 70 미크론이다. 몸체의 팁 첨예도는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
본원에 기재된 바와 같이, 또 다른 입자 특징부는 형상지수이다. 몸체 (1201)의 형상지수는 몸체 (1201) 길이 및 폭의 2차원 평면에서 관찰될 때 몸체 (1201) 내부에 전체적으로 피팅되는 최대-최적 내부 원의 내부 반경과 비교되는 길이 및 폭의 동일 평면 (즉, 상부 주면 (1203) 또는 하부 주면 (1204))에서 관찰될 때 몸체에 중첩되는 최적 외부 원의 외부 반경 값으로 기술된다. 예를들면, 도 12C를 참조하면, 형상지수 계산을 보이기 위하여 도면에 중첩되는2개의 원들과 함께 형상화 연마 입자 (1201)의 평면도가 제공된다. 제1 원은 형상화 연마입자의 몸체에 중첩되고, 형상화 연마 입자 몸체의 전체 주연부를 경계 내부로 맞추기 위하여 사용되는 최소 원을 나타내는 최적 외부 원이다. 외부 원은 반경 (Ro)을 가진다. 예컨대 도 12C에 도시된 형상에서, 외부 원은 오각형의 5개의 코너 각각에서 몸체 주연부과 교차한다. 그러나, 소정의 불규칙 또는 복잡 형상에 있어서, 몸체는 원 내부에 균일하게 맞추어질 수 없어 코너 각각은 원과 동일 간격으로 교차하지만, 이와 무관하게 최적, 외부 원이 형성될 수 있다는 것을 이해하여야 한다. 적합한 배율의 사진 (예를들면, SEM 사진 또는 광학현미경 사진)과 함께 임의의 적합한 컴퓨터 프로그램, 예컨대 ImageJ 를 사용하여 외부 원을 만들고 반경 (Ro)을 측정할 수 있다.
도 12C에서 도시된 바와 같이 제2, 내부 원이 형상화 연마 입자 사진에 중첩될 수 있고, 이는 몸체 (1201) 길이 및 폭의 평면에서 관찰될 때 몸체 (1201)의2차원 형상 주연부 내부에 전체가 놓일 수 있는 최대 원을 나타내는 최적 원이다. 내부 원은 반경 (Ri)을 가질 수 있다. 소정 불규칙 또는 복잡 형상에 있어서, 내부 원은 몸체 내부에 균일하게 맞추어질 수 없어 예컨대 도 12C의 정오각형에 대하여 도시된 바와 같이 원 주연부는 몸체 부분들을 동일 간격으로 접촉한다는 것을 이해하여야 한다. 그러나, 최적의, 내부 원은 이와 무관하게 형성될 수 있다. 적합한 배율의 사진 (예를들면, SEM 사진 또는 광학현미경 사진)과 함께 임의의 적합한 컴퓨터 프로그램, 예컨대 ImageJ 를 사용하여 내부 원을 만들고 반경 (Ri)을 측정할 수 있다.
형상지수는 외부 반경을 내부 반경으로 나누어 계산한다 (즉, 형상지수 = Ri/Ro). 예를들면, 도 12A-12C의 형상화 연마 입자 (1200)의 몸체 (1201)의 형상지수 범위는 대략 0.81이다.
본원 실시태양들의 형상화 연마 입자들은 특정 3SF를 가지는 형상화 연마 입자들의 형성을 가능하게 하는 특정 형상지수를 가진다. 예를들면, 몸체의 형상지수는 적어도 약 0.51 내지 약 0.99 이하 범위에 있다. 더욱 상세하게는, 하나의 비-제한적인 실시태양에서, 형상화 연마 입자 몸체의 형상지수는 적어도 약 0.52, 예컨대 적어도 약 0.53, 적어도 약 0.54, 적어도 약 0.55, 적어도 약 0.56, 적어도 약 0.57, 적어도 약 0.58, 적어도 약 0.59, 적어도 약 0.60, 적어도 약 0.61, 적어도 약 0.62, 적어도 약 0.63, 적어도 약 0.64, 적어도 약 0.65, 적어도 약 0.66, 적어도 약 0.67, 적어도 약 0.68, 적어도 약 0.69, 적어도 약 0.70, 적어도 약 0.71, 적어도 약 0.72, 적어도 약 0.73, 적어도 약 0.74, 적어도 약 0.75, 적어도 약 0.76, 적어도 약 0.77, 적어도 약 0.78, 적어도 약 0.79, 적어도 약 0.80, 적어도 약 0.81, 적어도 약 0.82, 적어도 약 0.83, 적어도 약 0.84, 적어도 약 0.85, 적어도 약 0.86, 적어도 약 0.87, 적어도 약 0.88, 적어도 약 0.89, 적어도 약 0.90, 적어도 약 0.91, 적어도 약 0.92, 적어도 약 0.93, 적어도 약 0.94, 적어도 약 0.95이다. 또 다른 비-제한적인 실시태양에서, 몸체의 형상지수는 약 0.98 이하, 예컨대 약 0.97 이하, 약 0.96 이하, 약 0.95 이하, 약 0.94 이하, 약 0.93 이하, 약 0.92 이하, 약 0.91 이하, 약 0.90 이하, 약 0.89 이하, 약 0.88 이하, 약 0.87 이하, 약 0.86 이하, 약 0.85 이하, 약 0.84 이하, 약 0.83 이하, 약 0.82 이하, 약 0.81 이하, 약 0.80 이하, 약 0.79 이하, 약 0.78 이하, 약 0.77 이하, 약 0.76 이하, 약 0.75 이하, 약 0.74 이하, 약 0.73 이하, 약 0.72 이하, 약 0.71 이하, 약 0.70 이하, 약 0.69 이하, 약 0.68 이하, 약 0.67 이하, 약 0.66 이하, 약 0.65 이하, 약 0.64 이하, 약 0.63 이하, 약 0.62 이하, 약 0.61 이하, 약 0.60 이하, 약 0.59 이하, 약 0.58 이하, 약 0.57 이하, 약 0.56 이하, 약 0.55 이하, 약 0.54 이하이다. 몸체의 형상지수는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또한, 본원에 기재된 바와 같이, 몸체 (1201)는 특정 강도를 가지도록 형성된다. 몸체의 강도는 헤르츠 압입 (Hertzian indentation)으로 측정된다. 본 방법에서 연마 입자들을 슬롯형 알루미늄 SEM 샘플 장착 스터브에 붙인다. 슬롯 깊이는 대략 250 μm이고 입자들을 일렬로 수용하기에 충분히 넓다. 입자들을 가장 미세한 페이스트가 1 μm인 일련의 다이아몬드 페이스트를 이용하여 자동 연마기로 연마하여, 최종 거울 마감을 얻는다. 최종 단계에서, 연마된 입자들은 평탄하고 알루미늄 표면과 수평을 이룬다. 연마된 입자들의 높이는 따라서 대략 250 μm이다. 금속 스터브를 금속 지지 홀더에 고정시키고 MTS 범용 시험 프레임을 이용하여 강재 구형 압자로 압입한다. 시험 과정에서 크로스헤드 속도는 2 μm/s이었다. 압자로 사용되는 강재 볼 직경은 3.2 mm 이었다. 최대 압입 하중은 모든 입자들에 대하여 동일하고, 제1 파괴 하중은 하중 변위 곡선에서 하중 격감으로 결정된다. 압입 후, 입자들을 광학 촬영하여 균열 존재 및 균열 패턴을 기록한다.
제1 하중 격감 (drop)을 제1 링 균열의 돌출 (pop-in) 하중으로 이용하여, 헤르츠 강도를 계산할 수 있다. 헤르츠 응력장은 잘 정의되고 선대칭적이다. 응력은 압자 바로 아래에서는 압축 응력이고 접촉 면적의 반경으로 정의되는 영역 밖에서는 인장응력이다. 낮은 하중에서, 장은 완전 탄성이다. 반경 R의 구체 및 인가 수직 하중 P에서, 응력장의 해는 접촉이 마찰이 없다고 가정하면 다음 본래의 헤르츠에서 쉽게 얻어진다.
접촉 면적 반경 a 는 다음과 같이 주어진다:
Figure 112016109873874-pct00001
(1)
식 중
Figure 112016109873874-pct00002
(2)
및 E* 은 압자 및 샘플 재료 각자에 대한 탄성계수 E 및 푸아송 비 v의 조합이다.
최대 접점 압력은 다음과 같이 주어진다:
Figure 112016109873874-pct00003
(3)
최대 전단 응력은 다음으로 주어진다 (v= 0.3이라 가정): τ1= 0.31, p0, R = 0 및 z = 0.48 a에서.
헤르츠 강도는 균열이 발생할 때 최대 인장 응력이고 다음에 따라 계산된다: σr = 1/3 (1-2v) p 0 , R= a 및 z=0에서.
Eq. (3) 에서 제1 하중 격감을 하중 P 로 이용하여 최대 인장 응력을 상기 식에서 계산하고, 이것이 시료에 대한 헤르츠 강도 값이다. 전체적으로, 각각의 그릿 타입에 대하여 20 내지 30개의 개별 형상화 연마 입자 샘플들을 시험하고, 헤르츠 파괴 응력 범위를 얻었다. Weibull 분석 절차 (ASTM C1239에 개관) 후, Weibull 확률 도표를 생성하고, 최우법으로 분포에 대한 Weibull 특성 강도 (측정치) 및 Weibull 계수 (modulus) (형상 변수)를 계산한다.
본원 실시태양들의 형상화 연마 입자들은 특정 3SF를 가지는 형상화 연마 입자들의 형성이 가능하도록 특정 강도를 가질 수 있다. 예를들면, 본원 실시태양들의 형상화 연마 입자들 몸체의 강도 범위는 약 600 MPa 이하 내지 적어도 약 100 MPa이다. 이는 본원의 실시태양들에서 기술된 제한되지는 않지만, 단일 세라믹 조성물, 도핑된 세라믹 조성물, 또는 복합 조성물을 포함한 임의의 조성물로 달성될 수 있다. 특정 실시태양에 의하면, 몸체의 강도는 약 590 MPa 이하, 예컨대 약 580 MPa 이하, 약 570 MPa 이하, 약 560 MPa 이하, 약 550 MPa 이하, 약 540 MPa 이하, 약 530 MPa 이하, 약 520 MPa 이하, 약 510 MPa 이하, 약 500 MPa 이하, 약 490 MPa 이하, 약 480 MPa 이하, 약 470 MPa 이하, 약 460 MPa 이하, 약 450 MPa 이하, 약 440 MPa 이하, 약 430 MPa 이하, 약 420 MPa 이하, 약 410 MPa 이하, 약 400 MPa 이하, 약 390 MPa 이하, 약 380 MPa 이하, 약 370 MPa 이하, 약 360 Mpa 이하, 약 350 MPa 이하, 약 340 MPa 이하, 약 330 MPa 이하, 약 320 MPa 이하, 약 310 MPa 이하, 약 300 MPa 이하, 약 290 MPa 이하, 약 280 MPa 이하, 약 270 MPa 이하, 약 260 MPa 이하, 약 250 MPa 이하, 약 240 MPa 이하, 약 230 MPa 이하, 약 220 MPa 이하, 약 210 MPa 이하, 또는 약 200 MPa 이하이다. 또 다른 비-제한적인 실시태양에서, 몸체의 강도 적어도 약 110 MPa, 예컨대 적어도 약 120 MPa, 적어도 약 130 MPa, 적어도 약 140 MPa, 적어도 약 150 MPa, 적어도 약 160 MPa, 적어도 약 170 MPa, 적어도 약 180 MPa, 적어도 약 190 MPa, 적어도 약 200 MPa, 적어도 약 210 MPa, 적어도 약 220 MPa, 적어도 약 230 MPa, 적어도 약 240 MPa, 적어도 약 250 MPa, 적어도 약 260 MPa, 적어도 약 270 MPa, 적어도 약 280 MPa, 적어도 약 290 MPa, 적어도 약 300 MPa, 적어도 약 310 MPa, 적어도 약 320 MPa, 적어도 약 330 MPa, 적어도 약 340 MPa, 적어도 약 350 MPa, 적어도 약 360 MPa, 적어도 약 370 MPa, 적어도 약 380 MPa, 적어도 약 390 MPa, 적어도 약 400 MPa, 적어도 약 410 MPa, 적어도 약 420 MPa, 적어도 약 430 MPa, 적어도 약 440 MPa, 적어도 약 450 MPa, 적어도 약 460 MPa, 적어도 약 470 MPa, 적어도 약 480 MPa, 적어도 약 490 MPa, 또는 적어도 약 500 MPa 이다. 몸체의 강도는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
하나의 양태에 의하면, 형상화 연마 입자들에 대한 실험적 연구는 팁 첨예도, 강도, 및 형상지수의 특정 입자 특징부들을 서로에 대하여 조절함으로써, 형상화 연마 입자들의 연삭 거동 (예를들면, 자기-예리화 거동)이 변경될 수 있다는 것을 나타낸다. 특히, 몸체의 팁 첨예도, 형상지수 및 강도의 입자 특징부에 대한 연관성이 선택되고 미리 결정된 방식으로 조절되어 형상화 연마 입자의 연삭 성능 (예를들면, 자기-예리화 거동)에 영향이 미치도록 성형 공정이 수행된다. 예를들면, 하나의 실시태양에서, 형상화 연마 입자 형성 방법은 미리 결정된 강도를 가지는 재료를 선택하는 단계 및 미리 결정된 강도에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 형상지수를 가지는 형상화 연마 입자의 몸체를 형성하는 단계를 포함한다. 즉, 형상화 연마 입자 형성을 위한 재료가 먼저 선택되고, 이에 따라 몸체는 미리 결정된 강도를 가지고, 이후 미리 결정된 강도에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 형상지수의 입자 특징부가 선택되고 조절될 수 있어, 형상화 연마 입자는 종래 형상화 연마 입자들에 비하여 개선된 성능을 가질 수 있다.
또 다른 실시태양에서, 형상화 연마 입자 형성 방법은 미리 결정된 형상지수를 가지는 재료 선택 단계 및 미리 결정된 형상지수에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 강도를 가지는 형상화 연마 입자 몸체 형성 단계를 포함한다. 즉, 형상화 연마 입자 몸체 형상이 먼저 선택되고, 이후 미리 결정된 형상지수에 기초하여 몸체의 미리 결정된 팁 첨예도 및 미리 결정된 강도의 입자 특징부가 선택되고 조절될 수 있어, 형상화 연마 입자는 종래 형상화 연마 입자들에 비하여 개선된 성능을 가질 수 있다.
또 다른 방법에서, 형상화 연마 입자 형성 방법은 형상화 연마 입자 몸체의 미리 결정된 팁 첨예도를 선택하는 단계를 포함한다. 몸체의 팁 첨예도를 미리 결정한 후, 미리 결정된 팁 첨예도에 기초하여 몸체의 형상지수 및 강도를 선택하고 조절한다. 이러한 공정으로 종래 형상화 연마 입자들에 비하여 개선된 성능을 가지는 형상화 연마 입자 형성이 가능하다.
또 다른 실시태양에서, 형상화 연마 입자 형성 방법은 평균 높이, 내부 높이, 또는 몸체의 에지 또는 팁에서의 높이일 수 있는 미리 결정된 높이를 가지는재료 선택 단계, 및 미리 결정된 높이에 기초하여 미리 결정된 팁 첨예도, 미리 결정된 강도, 및 미리 결정된 형상지수를 가지는 형상화 연마 입자의 몸체 형성 단계를 포함한다. 즉, 형상화 연마 입자 몸체의 높이가 먼저 선택되고, 이후 미리 결정된 높이에 기초하여 미리 결정된 팁 첨예도, 강도, 및 형상지수인 몸체의 입자 특징부가 선택되고 조절되어, 형상화 연마 입자는 종래 형상화 연마 입자들에 비하여 개선된 성능을 가질 수 있다.
또한, 실험적 연구를 통해, 형상화 연마 입자의 성능은 팁 첨예도, 강도, 및 형상지수의 연관성으로 초기 예측될 수 있고, 이는 식: 3SF = [(S*R*B²)/2500]에 의한 첨예도-형상-강도 인자 (3SF)에 기초하여 평가될 수 있다는 것을 알았고, 상기에서 “S”는 몸체의 강도 (MPa 단위)를 나타내고, R은 몸체의 팁 첨예도 (미크론 단위)를 나타내고, “B”는 몸체의 형상지수를 나타낸다. 3SF 식은 입자 특징부들의 연관성에 기초하여 입자의 연삭 거동 효율성에 대한 초기 예측을 제공한다. 다른 인자들, 예컨대 형상화 연마 입자가 통합되는 연마 물품의 양태들이 입자 거동에 영향을 줄 수 있다는 것을 이해하여야 한다.
하나의 실시태양에 의하면, 형상화 연마 입자 몸체의 특정 3SF 값 범위는 적어도 약 0.7 내지 약 1.7 이하이다. 적어도 하나의 실시태양에서, 몸체의 3SF는 적어도 약 0.72, 예컨대 적어도 약 0.75, 적어도 약 0.78, 적어도 약 0.8, 적어도 약 0.82, 적어도 약 0.85, 적어도 약 0.88, 적어도 약 0.90, 적어도 약 0.92, 적어도 약 0.95, 또는 적어도 약 0.98이다. 또 다른 경우에, 몸체의 3SF는 약 1.68 이하, 예컨대 약 1.65 이하, 약 1.62 이하, 약 1.6 이하, 약 1.58 이하, 약 1.55 이하, 약 1.52 이하, 약 1.5 이하, 약 1.48 이하, 약 1.45 이하, 약 1.42 이하, 약 1.4 이하, 약 1.38 이하, 약 1.35 이하, 약 1.32 이하, 약 1.3 이하, 약 1.28 이하, 약 1.25 이하, 약 1.22 이하, 약 1.2 이하, 약 1.18 이하, 약 1.15 이하, 약 1.12 이하, 약 1.1 이하이다. 몸체의 3SF는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
본원 실시태양들의 상기 입자 특징부 및 3SF 값들 외에도, 소정의 경우들에서, 입자의 높이는 본원에 기술된 소정 입자 특징부와 상호 연관되는 추가적 또는 대안의 입자 특징부일 수 있다. 특히, 형상화 연마 입자들 및 이러한 형상화 연마 입자들을 이용하는 연마 물품의 개선된 연삭 성능을 가능하도록 입자의 높이가 임의의 입자 특징부 (예를들면, 강도 및 팁 첨예도)에 대하여 조절될 수 있다. 특히, 본원 실시태양들의 형상화 연마 입자들은 소정의 입자 특징부와 연관될 수 있는 특정 높이를 가지고, 따라서 연삭 과정에서 부여되는 응력은 자기-예리화 거동이 개선되도록 몸체에 분배된다. 하나의 실시태양에 의하면, 형상화 연마 입자들의 몸체 높이 (h) 범위는 약 70 미크론 내지 약 500 미크론, 예컨대 약 175 미크론 내지 약 350 미크론, 예컨대 약 175 미크론 내지 약 300 미크론, 또는 약 200 미크론 내지 약 300 미크론이다.
특정한 입자 특징부 및 3SF를 가지는 본원 실시태양들의 형상화 연마 입자들은 본원에 기술된 실시태양들의 임의의 다른 특징부를 가질 수 있다. 일 양태에서, 형상화 연마 입자의 몸체 (1201)는 특정 조성물을 가질 수 있다. 예를들면, 몸체 (1201)는 세라믹 재료, 예컨대 다결정 세라믹 재료, 상세하게는 산화물을 포함한다. 산화물은, 예를들면 알루미나를 포함한다. 소정의 경우들에서, 몸체는 몸체 총 중량에 대하여 다량의 알루미나, 예컨대 몸체 총 중량에 대하여 적어도 약 95 wt% 알루미나, 또는 예컨대 적어도 약 95.1 wt%, 적어도 약 95.2 wt%, 적어도 약 95.3 wt%, 적어도 약 95.4 wt%, 적어도 약 95.5 wt%, 적어도 약 95.6 wt%, 적어도 약 95.7 wt%, 적어도 약 95.8 wt%, 적어도 약 95.9 wt%, 적어도 약 96 wt%, 적어도 약 96.1 wt%, 적어도 약 96.2 wt%, 적어도 약 96.3 wt%, 적어도 약 96.4 wt%, 적어도 약 96.5 wt%, 적어도 약 96.6 wt%, 적어도 약 96.7 wt%, 적어도 약 96.8 wt%, 적어도 약 96.9 wt%, 적어도 약 97 wt%, 적어도 약 97.1 wt%, 적어도 약 97.2 wt%, 적어도 약 975.3 wt%, 적어도 약 97.4 wt%, 또는 적어도 약 97.5 wt% 알루미나를 포함한다. 또한, 또 다른 비-제한적인 실시태양에서, 몸체 (1201)의 알루미나 함량은 몸체 (1201) 총 중량에 대하여 약 99.5 wt% 이하, 예컨대 약 99.4 wt% 이하, 약 99.3wt% 이하, 약 99.2 wt% 이하, 약 99.1 wt% 이하, 약 99 wt% 이하, 약 98.9 wt% 이하, 약 98.8 wt% 이하, 약 98.7wt% 이하, 약 98.6 wt% 이하, 약 98.5 wt% 이하, 약 98.4 wt% 이하, 약 98.3 wt% 이하, 약 98.2 wt% 이하, 약 98.1wt% 이하, 약 98 wt% 이하, 약 97.9 wt% 이하, 약 97.8 wt% 이하, 약 97.7 wt% 이하, 약 97.6 wt% 이하, 또는 약 97.5wt% 알루미나 이하이다. 몸체 (1201)의 알루미나 함량은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 최소한 하나의 실시태양에서, 몸체는 실질적으로 알루미나로 이루어진다.
본원의 실시태양들에서 기재된 바와 같이, 형상화 연마 입자들의 몸체는 소정 첨가제를 포함하여 형성될 수 있다. 첨가제는 제한되지는 않지만 금속원소, 희토류원소 및 이들의 조합을 포함하는 비-유기 종일 수 있다. 하나의 특정 경우에서, 첨가제는 재료의 미세구조에 영향을 주기에 충분한 특정 소량이지만, 반드시 미량 보다 적게 존재하지는 않는 도펀트 재료일 수 있다. 도펀트 재료는 알칼리 금속원소, 알칼리토금속원소, 희토류원소, 전이금속 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함한다. 도펀트 재료는 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란탄, 세슘, 프라세오디뮴, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 이들의 조합의 군에서 선택되는 원소를 포함한다. 추가로 더욱 특정한 실시태양에서, 도펀트 재료는 예를들면 , 제한되지는 않지만, 마그네슘 산화물 (MgO)인 마그네슘-함유 종일 수 있다.
하나의 실시태양에 의하면, 마그네슘-함유 종은 마그네슘 및 적어도 하나의 다른 원소를 포함하는 화합물일 수 있다. 적어도 하나의 실시태양에서, 마그네슘-함유 화합물은 산화 화합물을 포함하고, 마그네슘-함유 종은 마그네슘 및 산소를 포함한다. 또 다른 실시태양에서, 마그네슘-함유 종은 알루미늄을 포함하고, 상세하게는 마그네슘 알루미네이트 종일 수 있다. 예를들면, 소정의 경우들에서, 마그네슘-함유 종은 스피넬 재료일 수 있다. 스피넬 재료는 화학양론적 또는 비-화학양론적 스피넬일 수 있다.
마그네슘-함유 종은 예를들면, 알루미나 상을 포함한 또 다른 주요 상과 비교하여 몸체에서 구분된 재료 상일 수 있다. 마그네슘-함유 종은 바람직하게는 주요 상 (예를들면, 알루미나 입자들)의 입자 경계에 배치된다. 또 다른 경우들에서, 마그네슘-함유 종은 주요 상의 입자 공간에 걸쳐 주로 균일하게 분산된다.
마그네슘-함유 종은 강도-변경 재료일 수 있다. 예를들면, 적어도 하나의 실시태양에서, 마그네슘-함유 종을 첨가하면 마그네슘-함유 종을 포함하지 않는 몸체에 비하여 몸체 강도를 감소시킬 수 있다.
실시태양들의 형상화 연마 입자들의 소정 조성물은 특정 함량의 마그네슘 산화물을 포함한다. 예를들면, 몸체 (1201)에서 마그네슘-함유 종의 함량은 몸체 (1201) 총 중량에 대하여 적어도 약 0.5 wt%, 예컨대 적어도 약 0.6 wt%, 적어도 약 0.7 wt%, 적어도 약 0.8 wt%, 적어도 약 0.9 wt%, 적어도 약 1 wt%, 적어도 약 1.1 wt%, 적어도 약 1.2 wt%, 적어도 약 1.3 wt%, 적어도 약 1.4 wt%, 적어도 약 1.5 wt%, 적어도 약 1.6 wt%, 적어도 약 1.7 wt%, 적어도 약 1.8 wt%, 적어도 약 1.9 wt%, 적어도 약 2 wt%, 적어도 약 2.1 wt%, 적어도 약 2.2 wt%, 적어도 약 2.3 wt%, 적어도 약 2.4 wt%, 또는 적어도 약 2.5 wt%이다. 또 다른 비-제한적인 실시태양에서, 몸체 (1201) 중 마그네슘-함유 종의 함량은 약 8 wt% 이하, 약 7 wt% 이하, 약 6 wt% 이하, 약 5 wt% 이하, 약 4.9 wt% 이하, 약 4.8 wt% 이하, 약 4.7wt% 이하, 약 4.6 wt% 이하, 약 4.5 wt% 이하, 약 4.4 wt% 이하, 약 4.3 wt% 이하, 약 4.2wt% 이하, 약 4.1 wt% 이하, 약 4 wt% 이하, 약 3.9 wt% 이하, 약 3.8 wt% 이하, 약 3.7wt% 이하, 약 3.6 wt% 이하, 약 3.5 wt% 이하, 약 3.4 wt% 이하, 약 3.3 wt% 이하, 약 3.2wt% 이하, 약 3.1 wt% 이하, 약 3 wt% 이하, 약 2.9 wt% 이하, 약 2.8 wt% 이하, 약 2.7wt% 이하, 약 2.6 wt% 이하, 또는 약 2.5 wt% 이하이다. 몸체 중 마그네슘-함유 종의 함량은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 적어도 하나의 실시태양에서, 몸체 (1201)는 실질적으로 알루미나 (Al2O3) 및 마그네슘-함유 종 (예를들면 MgO 및/또는 마그네슘 알루미네이트)으로 이루어진다.
또한, 본원에 기재된 바와 같이 본원 임의의 실시태양들의 형상화 연마 입자의 몸체는 재료 예컨대 질화물, 산화물, 탄화물, 붕화물, 산질화물, 다이아몬드, 및 이들의 조합으로 제조되는 결정 입자들을 포함한 다결정 재료로 형성된다. 또한, 몸체 (1201)는 실질적으로 유기 재료, 실질적으로 희토류원소, 및 실질적으로 철이 없다. 몸체 (1201)는 실질적으로 질화물, 실질적으로 염화물, 실질적으로 질화물, 또는 실질적으로 산질화물이 없다. 실질적으로 없다는 것은 몸체는 이러한 재료를 제외하고 형성되지만, 이러한 재료가 미량 이하로 존재할 수 있으므로 몸체는 완전히 이러한 재료가 없을 필요는 없다고 이해되어야 한다.
도 13A는 실시태양에 의한 형상화 연마 입자의 평면도이다. 형상화 연마 입자 (1300)는 본원 실시태양들의 다른 형상화 연마 입자들의 특징부를 가지는 몸체 (1301)를 가지고, 이는 상부 주면 (1303) 및 상부 주면 (1303) 반대측의 하부 주면 (미도시)을 포함한다. 상부 주면 (1303) 및 하부 주면은 서로 적어도 하나의 측면 (1304)에 의해 분리되고, 이는 하나 이상의 별개의 측면 영역들을 포함할 수 있다. 하나의 실시태양에 의하면, 몸체 (1301)는 불규칙 육각형으로 형성되고, 몸체는 몸체 (1301)의 길이 및 폭의 평면에서 관찰될 때 2차원 육각 형상 (즉, 6-면)을 가지고, 적어도 두 측면들, 예컨대 측면 (1305, 1306)은, 서로 상이한 길이를 가진다. 특히, 측면의 길이는 본원에서 몸체 (1301)의 폭으로 언급되고 몸체의 길이는 몸체 (1301) 중점을 통해 연장되는 가장 긴 치수이다. 또한, 도시된 바와 같이, 어떠한 측면들도 서로 평행하지 않다. 또한, 도시되지는 않지만, 임의의 측면은 측면들이 양 측면을 연결하는 코너들 사이에서 몸체 (1301) 중점을 향하여 내향으로 만곡되는 오목부를 포함한 만곡부를 가질 수 있다.
더욱 특정한 실시태양에 의하면, 위에서 아래로 관찰할 때 몸체 (1301)는 비스듬하게, 끝이 잘린 (truncated) 형상을 가진다. 이러한 실시태양들에서, 측면은 제1 비스듬한 코너 각 Ao1을 정의하는 제1 비스듬한 코너 (1307)에서 서로 연결되는 제1 측면 영역 (1305) 및 제1 비스듬한 측면 영역 (1306)을 포함할 수 있다. 특히, 제1 측면 영역 (1305) 및 제1 비스듬한 측면 영역 (1306)은 제1 비스듬한 각 Ao1이 둔각인 특정 방식으로 서로 연결된다. 더욱 특정한 경우들에서, 제1 비스듬한 각 Ao1은 적어도 약 92 °, 예컨대 적어도 약 94°, 적어도 약 96°, 적어도 약 98°, 적어도 약 100°, 적어도 약 102°, 적어도 약 104°, 적어도 약 106°, 적어도 약 108°, 적어도 약 110°, 적어도 약 112°, 적어도 약 124°, 적어도 약 126°, 적어도 약 128°, 적어도 약 120°, 적어도 약 122°, 적어도 약 124°, 적어도 약 126°, 적어도 약 128°, 적어도 약 130°, 적어도 약 132°, 적어도 약 134°, 적어도 약 136°, 적어도 약 138°, 또는 적어도 약 140°의 둔각 값을 가질 수 있다. 또한, 적어도 하나의 비-제한적인 실시태양에서, 제1 비스듬한 각 Ao1은 약 176° 이하, 예컨대 약 174° 이하, 약 172° 이하, 약 170° 이하, 약 168° 이하, 약 166° 이하, 약 164° 이하, 약 162° 이하, 약 160° 이하, 약 158° 이하, 약 156° 이하, 약 154° 이하, 약 152° 이하, 약 150° 이하, 약 148° 이하, 약 146° 이하, 약 144° 이하, 약 142° 이하, 또는 약 140° 이하의 둔각 값을 가질 수 있다. 제1 비스듬한 각 Ao1의 값은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
도 13A의 실시태양에서 더욱 도시된 바와 같이, 형상화 연마 입자는 몸체 (1301)를 가지고, 제1 측면 영역 (1305)은 제1 측면 영역 길이 (Lss1)를 가지고 제1 비스듬한 측면 영역 (1306)은 길이 (Los1)를 가진다. 소정의 경우들에서, 제1 비스듬한 측면 영역 (Los1) 길이는 제1 측면 영역 (Lss1) 길이와 상이할 수 있다. 예를들면, 소정의 실시태양들에서, 제1 비스듬한 측면 영역 (Los1) 길이는 제1 측면 영역 (Lss1) 길이보다 클 수 있다 (즉, Los1>Lss1). 또 다른 실시태양에서, 제1 측면 영역 (Lss1) 길이는 제1 비스듬한 측면 영역 (Los1) 길이보다 클 수 있다 (즉, Lss1>Los1). .
적어도 하나의 특정한 경우에서, 제1 비스듬한 측면 영역 (Los1) 길이 및 제1 측면 영역 (Lss1) 길이 사이 관계는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 길이 인자 (Los1/Lss1)를 정의한다. 예를들면, 길이 인자 (Los1/Lss1)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하일 수 있다. 또 다른 비-제한적인 실시태양에 있어서, 길이 인자 (Los1/Lss1)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 길이 인자 (Los1/Lss1)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
대안의 실시태양에 의하면, 제1 비스듬한 측면 영역 (Los1) 길이 및 제1 측면 영역 (Lss1) 길이 사이 관계는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 길이 인자 (Lss1/Los1)를 정의한다. 예를들면, 길이 인자 (Lss1/Los1)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하일 수 있다. 또 다른 비-제한적인 실시태양에 있어서, 길이 인자 (Lss1/Los1)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 길이 인자 (Lss1/Los1)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
더욱 도시된 바와 같이, 제2 측면 영역 (1311) 및 제1 비스듬한 측면 영역 (1306)은 서로 연결되고 제1 외부 코너 (1309)를 형성한다. 제1 외부 코너 (1309)는 제1 외부 코너 각 Aec1을 정의한다. 소정의 경우들에서, 제1 외부 코너 각 Aec1은 제1 비스듬한 각 값 Ao1과 상이하다. 적어도 하나의 실시태양에서, 제1 외부 코너 각 Aec1은 제1 비스듬한 각 Ao1 값보다 작다.
제1 외부 코너 각 Aec1은 형상화 연마 입자 성능을 개선시킬 수 있는 특정 값을 가지도록 형성된다. 예를들면, 제1 외부 코너 각 Aec1은 약 130° 이하, 예컨대 약 125° 이하, 약 120° 이하, 약 115° 이하, 약 110° 이하, 약 105° 이하, 약 100° 이하, 약 95° 이하, 약 94° 이하, 또는 약 93° 이하이다. 또한, 적어도 하나의 비-제한적인 실시태양에서, 제1 외부 코너 각 Aec1은 적어도 약 50°, 예컨대 적어도 약 55°, 적어도 약 60°, 적어도 약 65°, 적어도 약 70°, 적어도 약 80°, 또는 적어도 약 85°이다. 제1 외부 코너 각 Aec1 값은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 하나의 특정 실시태양에서, 제1 외부 코너 각 Aec1은 실질적으로 직각이다.
제1 외부 코너 각 Aec1 및 제1 비스듬한 각 Ao1은 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 특정 값을 가지는 제1 각 인자 (Aec1/Ao1)으로 기술되는 특정 관계를 가지도록 형성되고. 예를들면, 제1 각 인자 (Aec1/Ao1)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하이다. 또 다른 실시태양에서, 제1 각 인자 (Aec1/Ao1)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 제1 각 인자 (Aec1/Ao1)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
더욱 도시된 바와 같이, 몸체 (1301)는 서로 제2 비스듬한 각 Ao2에서 연결되는 제2 측면 영역 (1311) 및 제2 비스듬한 측면 영역 (1312)을 포함하는 측면 (1304)을 가진다. 특히, 제2 측면 영역 (1311) 및 제2 비스듬한 측면 영역 (1312)은 제2 비스듬한 각 Ao2이 둔각인 특정 방식으로 서로 연결된다. 더욱 특정한 경우들에서, 제2 비스듬한 각 Ao2의 둔각 값은 적어도 약 92°, 예컨대 적어도 약 94°, 적어도 약 96°, 적어도 약 98°, 적어도 약 100°, 적어도 약 102°, 적어도 약 104°, 적어도 약 106°, 적어도 약 108°, 적어도 약 110°, 적어도 약 112°, 적어도 약 124°, 적어도 약 126°, 적어도 약 128°, 적어도 약 120°, 적어도 약 122°, 적어도 약 124°, 적어도 약 126°, 적어도 약 128°, 적어도 약 130°, 적어도 약 132°, 적어도 약 134°, 적어도 약 136°, 적어도 약 138°, 또는 적어도 약 140°이다. 또한, 적어도 하나의 비-제한적인 실시태양에서, 제2 비스듬한 각 Ao2의 둔각 값은 약 176° 이하, 예컨대 약 174° 이하, 약 172° 이하, 약 170° 이하, 약 168° 이하, 약 166° 이하, 약 164° 이하, 약 162° 이하, 약 160° 이하, 약 158° 이하, 약 156° 이하, 약 154° 이하, 약 152° 이하, 약 150° 이하, 약 148° 이하, 약 146° 이하, 약 144° 이하, 약 142° 이하, 또는 약 140° 이하이다. 제2 비스듬한 각 Ao2 값은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또한, 형상화 연마 입자는 몸체 (1301)를 가지고, 제2 측면 영역 (1311)은 제2 측면 영역 길이 (Lss2)를 가지고 제2 비스듬한 측면 영역 (1312)은 길이 (Los2)를 가진다. 소정의 경우들에서, 제2 비스듬한 측면 영역 (Los2) 길이는 제2 측면 영역 (Lss2) 길이와 상이하다. 예를들면, 소정의 실시태양들에서, 제2 비스듬한 측면 영역 (Los2) 길이는 제2 측면 영역 (Lss2) 길이보다 길다 (즉, Los2>Lss2). 또 다른 실시태양에서, 제2 측면 영역 (Lss2) 길이는 제2 비스듬한 측면 영역 (Los2) 길이보다 길다 (즉, Lss2>Los2).
적어도 하나의 양태에서, 제2 비스듬한 측면 영역 (Los2) 길이 및 제2 측면 영역 (Lss2) 길이 간의 관계는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 길이 인자 (Los2/Lss2)를 정의한다. 예를들면, 길이 인자 (Los2/Lss2)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하이다. 또 다른 비-제한적인 실시태양에 있어서, 길이 인자 (Los2/Lss2)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 길이 인자 (Los2/Lss2)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
대안의 실시태양에서, 제2 비스듬한 측면 영역 (Los2) 길이 및 제2 측면 영역 (Lss2) 길이 간의 관계는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 길이 인자 (Lss2/Los2)를 정의한다. 예를들면, 길이 인자 (Lss2/Los2)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하이다. 또 다른 비-제한적인 실시태양에 있어서, 길이 인자 (Lss2/Los2)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 길이 인자 (Lss2/Los2)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또한, 제1 측면 영역 (Lss1) 길이에 대한 제2 측면 영역 (Lss2) 길이는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있도록 조절될 수 있다. 하나의 실시태양에서, Lss2 는 Lss1과 비교할 때 상이하다. 예를들면, Lss2는 Lss1보다 크다. 또 다른 실시태양들에서, Lss2는 Lss1보다 작다. 또 다른 실시태양에 있어서, 예컨대 도 13A에 도시된 바와 같이, Lss1 및 Lss2는 서로 실질적으로 동일하다.
또한, 제1 비스듬한 측면 영역 (Los1) 길이에 대한 제2 비스듬한 측면 영역 (Los2) 길이는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있도록 조절된다. 하나의 실시태양에서, Los2는 Los1과 비교할 때 상이하다. 예를들면, Los2는 Los1보다 길다. 또 다른 실시태양들에서, Los2는 Los1보다 짧다. 또 다른 실시태양에 있어서, 예컨대 도 13A에 도시된 바와 같이, Los1 및 Los2는 서로 실질적으로 동일하다.
더욱 도시된 바와 같이, 측면 (1304)은 제2 외부 코너 (1315)에서 제2 비스듬한 측면 영역 (1312)에 연결되는 제3 측면 영역 (1317)을 포함한다. 제2 외부 코너 (1315)는 제2 외부 코너 각 Aec2를 형성한다. 소정의 경우들에서, 제2 외부 코너 각 Aec2는 제2 비스듬한 각 Ao2 값과 상이하다. 적어도 하나의 실시태양에서, 제2 외부 코너 각 Aec2는 제2 비스듬한 각 Ao2 값보다 작다.
제2 외부 코너 각 Aec2는 형상화 연마 입자 성능을 개선시킬 수 있는 특정 값을 가지도록 형성된다. 예를들면, 제2 외부 코너 각 Aec2는 약 130° 이하, 예컨대 약 125° 이하, 약 120° 이하, 약 115° 이하, 약 110° 이하, 약 105° 이하, 약 100° 이하, 약 95° 이하, 약 94° 이하, 또는 약 93° 이하이다. 또한, 적어도 하나의 비-제한적인 실시태양에서, 제2 외부 코너 각 Aec2는 적어도 약 50°, 예컨대 적어도 약 55°, 적어도 약 60°, 적어도 약 65°, 적어도 약 70°, 적어도 약 80°, 또는 적어도 약 85°이다. 제2 외부 코너 각 Aec2 값은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 하나의 특정 실시태양에서, 제2 외부 코너 각 Aec2는 실질적으로 직각이다.
제2 외부 코너 각 Aec2 및 제2 비스듬한 각 Ao2는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 특정 값을 가지는 제2 각 인자 (Aec2/Ao2)로 기술되는 서로 특정 관계를 가지도록 형성된다. 예를들면, 제2 각 인자 (Aec2/Ao2)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하이다. 또 다른 실시태양에서, 제2 각 인자 (Aec2/Ao2)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 제2 각 인자 (Aec2/Ao2)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
더욱 도시된 바와 같이, 몸체 (1301)는 제3 비스듬한 각 Ao3을 형성하는 제3 비스듬한 코너 (1318)에서 서로 연결되는 제3 측면 영역 (1317) 및 제3 비스듬한 측면 영역 (1319)을 포함하는 측면 (1304)을 가진다. 특히, 제3 측면 영역 (1317) 및 제3 비스듬한 측면 영역 (1319)은 제3 비스듬한 각 Ao3이 둔각일 수 있는 특정 방식으로서로 연결된다. 더욱 특정한 경우들에서, 제3 비스듬한 각 Ao3의 둔각 값은 적어도 약 92°, 예컨대 적어도 약 94°, 적어도 약 96°, 적어도 약 98°, 적어도 약 100°, 적어도 약 102°, 적어도 약 104°, 적어도 약 106°, 적어도 약 108°, 적어도 약 110°, 적어도 약 112°, 적어도 약 124°, 적어도 약 126°, 적어도 약 128°, 적어도 약 120°, 적어도 약 122°, 적어도 약 124°, 적어도 약 126°, 적어도 약 128°, 적어도 약 130°, 적어도 약 132°, 적어도 약 134°, 적어도 약 136°, 적어도 약 138°, 또는 적어도 약 140°이다. 또한, 적어도 하나의 비-제한적인 실시태양에서, 제3 비스듬한 각 Ao3의 둔각 값은 약 176° 이하, 예컨대 약 174° 이하, 약 172° 이하, 약 170° 이하, 약 168° 이하, 약 166° 이하, 약 164° 이하, 약 162° 이하, 약 160° 이하, 약 158° 이하, 약 156° 이하, 약 154° 이하, 약 152° 이하, 약 150° 이하, 약 148° 이하, 약 146° 이하, 약 144° 이하, 약 142° 이하, 또는 약 140° 이하이다. 제3 비스듬한 각 Ao3 값은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
소정의 경우들에서, 형상화 연마 입자는 몸체 (1301)를 가지고, 제3 측면 영역 (1317)은 제3 측면 영역 길이 (Lss3)를 가지고 제3 비스듬한 측면 영역 (1319)은 길이 (Los3)를 가진다. 또한, 제3 비스듬한 측면 영역 (Los3) 길이는 제3 측면 영역 (Lss3) 길이와 상이하다. 예를들면, 소정의 실시태양들에서, 제3 비스듬한 측면 영역 (Los3) 길이는 제3 측면 영역 (Lss3) 길이보다 길다 (즉, Los3>Lss3). 또 다른 실시태양에서, 제3 측면 영역 (Lss3) 길이는 제3 비스듬한 측면 영역 (Los3) 길이보다 작다 (즉, Lss3>Los3).
적어도 하나의 양태에서, 제3 비스듬한 측면 영역 (Los3) 길이 및 제3 측면 영역 (Lss3) 길이 사이의 관계는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 길이 인자 (Los3/Lss3)를 정의한다. 예를들면, 길이 인자 (Los3/Lss3)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하이다. 또 다른 비-제한적인 실시태양에 있어서, 길이 인자 (Los3/Lss3)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 길이 인자 (Los3/Lss3)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
대안의 실시태양에서, 제3 비스듬한 측면 영역 길이 (Los3) 및 제3 측면 영역 길이 (Lss3) 간의 관계는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 길이 인자 (Lss2/Los2)를 형성한다. 예를들면, 길이 인자 (Lss3/Los3)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하이다. 또 다른 비-제한적인 실시태양에 있어서, 길이 인자 (Lss3/Los3)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 길이 인자 (Lss3/Los3)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또한, 제1 측면 영역 길이 (Lss1)에 대한 제3 측면 영역 길이 (Lss3)는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있도록 조절된다. 하나의 실시태양에서, Lss3은 Lss1과 비교하여 상이하다. 예를들면, Lss3은 Lss1보다 크다. 또 다른 실시태양들에서, Lss3은 Lss1보다 작다. 또 다른 실시태양에 있어서, 예컨대 도 13A에 도시된 바와 같이, Lss3 및 Lss1은 실질적으로 서로 동일하다.
또 다른 양태에서, 제2 측면 영역 (Lss2) 길이에 대한 제 3 측면 영역 (Lss3) 길이는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있도록 조절될 수 있다. 하나의 실시태양에서, Lss3은 Lss2와 비교할 때 상이하다. 예를들면, Lss3은 Lss2보다 길다. 또 다른 실시태양들에서, Lss3은 Lss2보다 짧다. 또 다른 실시태양에 있어서, 예컨대 도 13A에 도시된 바와 같이, Lss3 및 Lss2는 실질적으로 서로 동일하다.
또한, 제1 비스듬한 측면 영역 길이 (Los1)에 대한 제3 비스듬한 측면 영역 길이 (Los3)는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있도록 조절될 수 있다. 하나의 실시태양에서, Los3은 Los1과 비교할 때 상이하다. 예를들면, Los3은 Los1보다 길다. 또 다른 실시태양들에서, Los3은 Los1보다 작다. 또 다른 실시태양에 있어서, 예컨대 도 13에 도시된 바와 같이 A, Los3 및 Los1은 실질적으로 서로 동일하다.
또 다른 실시태양에 있어서, 제2 비스듬한 측면 영역 길이 (Los2)에 대한 제3 비스듬한 측면 영역 길이 (Los3)는 형상화 연마 입자 (1300) 성능을 개선시킬 수 있도록 조절된다. 하나의 실시태양에서, Los3은 Los2와 비교할 때 상이하다. 예를들면, Los3은 Los2보다 길다. 또 다른 실시태양들에서, Los3은 Los2보다 짧다. 또 다른 실시태양에 있어서, 예컨대 도 13A에 도시된 바와 같이, Los3 및 Los2는 실질적으로 서로 동일하다.
더욱 도시된 바와 같이, 제1 측면 영역 (1305) 및 제3 비스듬한 측면 영역 (1319)은 제3 외부 코너 각 Aec3을 형성하는 제3 외부 코너 (1321)에서 서로 연결된다. 소정의 경우들에서, 제3 외부 코너 각 Aec3은 제3 비스듬한 각 Ao3 값과 상이하다. 적어도 하나의 실시태양에서, 제3 외부 코너 각 Aec3은 제3 비스듬한 각 Ao3 값보다 작다.
제3 외부 코너 각 Aec3은 형상화 연마 입자 성능을 개선시킬 수 있는 특정 값을 가지도록 형성될 수 있다. 예를들면, 제3 외부 코너 각 Aec3은 약 130° 이하, 예컨대 약 125° 이하, 약 120° 이하, 약 115° 이하, 약 110° 이하, 약 105° 이하, 약 100° 이하, 약 95° 이하, 약 94° 이하, 또는 약 93° 이하이다. 또한, 적어도 하나의 비-제한적인 실시태양에서, 제3 외부 코너 각 Aec3은 적어도 약 50°, 예컨대 적어도 약 55°, 적어도 약 60°, 적어도 약 65°, 적어도 약 70°, 적어도 약 80°, 또는 적어도 약 85°이다. 제3 외부 코너 각 Aec3 값은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 하나의 특정 실시태양에서, 제3 외부 코너 각 Aec3은 실질적으로 직각일 수 있다.
제3 외부 코너 각 Aec3 및 제3 비스듬한 각 Ao3은 서로 형상화 연마 입자 (1300) 성능을 개선시킬 수 있는 특정 값을 가지는 제3 각 인자 (Aec3/Ao3)로 기술되는 특정 관계를 가지도록 형성될 수 있다. 예를들면, 제3 각 인자 (Aec3/Ao3)는 약 1 이하, 예컨대 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 또는 약 0.05 이하이다. 또 다른 실시태양에서, 제3 각 인자 (Aec3/Ao3)는 적어도 약 0.05, 예컨대 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 또는 적어도 약 0.95이다. 제3 각 인자 (Aec3/Ao3)는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
도 13B는 실시태양에 의한 도 13A 형상화 연마 입자의 평면도이다. 형상화 연마 입자 (1300)는 본원 실시태양들의 임의의 특징부를 가지는 몸체 (1301)를 가진다. 특히, 몸체 (1301)의 형상지수는 대략 0.63이다.
도 13C는 실시태양에 의한 형상화 연마 입자의 평면도이다. 형상화 연마 입자 (1350)는 본원 실시태양들의 다른 형상화 연마 입자들의 특징부를 가지는 몸체 (1351)를 가지고, 상부 주면 (1353) 및 상부 주면 (1353) 반대측의 하부 주면 (미도시)을 포함한다. 상부 주면 (1353) 및 하부 주면은 하나 이상의 별개의 측면 영역들을 포함하는 적어도 하나의 측면 (1354)에 의해 서로 분리된다. 하나의 실시태양에 의하면, 몸체 (1351)는 불규칙 육각형으로 형성되고, 몸체는 몸체 (1351)의 길이 및 폭의 평면에서 관찰될 때 2차원 육각형상 (즉, 6-측면들)을 가지고, 적어도 2개의 측면 영역들, 예컨대 측면 영역들 (1355, 1356)은 서로 상이한 길이를 가진다. 또한, 도시된 바와 같이, 어떠한 측면들도 서로 평행하지 않다. 또한, 도시되지는 않지만, 임의의 측면은 측면들이 양 측면을 연결하는 코너들 사이에서 몸체 (1351) 중점을 향하여 내향으로 만곡되는 오목부를 포함한 만곡부를 가질 수 있다.
몸체 (1351)는 위에서 아래로 관찰할 때 비스듬하게, 끝이 잘린 형상을 가지고, 상세하게는, 측면 (1354)의 적어도 하나의 일부가 만곡되는 비스듬하게, 끝이 잘린 형상을 가진다. 몸체 (1351)는 도 13A 형상화 연마 입자 몸체 (1300)의 임의의 특징부를 가진다. 하나의 실시태양에서, 측면 (1354)은 제1 측면 영역 (1355) 및 제1 비스듬한 측면 영역 (1356)을 포함하고, 이들은 둔각 값을 가질 수 있는 제1 비스듬한 코너 각 Ao1을 형성하는 제1 비스듬한 코너 (1357)에서 서로 연결된다. 특히, 제1 측면 영역 (1355)은 실질적으로 선형 외관 (contour)을 가진다. 제1 비스듬한 측면 영역 (1356)은 실질적으로 비-선형일 수 있고, 따라서 제1 비스듬한 측면 영역의 적어도 일부는 만곡부를 포함한다. 하나의 실시태양에서, 제1 비스듬한 측면 영역 (1356)의 전체 길이가 만곡부를 가진다. 예를들면, 제1 비스듬한 코너 (1357) 및 제1 외부 코너 (1359) 사이를 연장하는 제1 비스듬한 측면 영역 (1356)의 전체 길이는 만곡을 이룬다. 더욱 특정한 실시태양에서, 제1 비스듬한 측면 영역 (1356)은 만곡부를 가지고, 만곡부는 단조 (monotonic) 곡선을 형성한다. 제1 비스듬한 측면 영역 (1356)은 오목부를 형성하고, 따라서 제1 비스듬한 측면 영역 (1356)에 의해 형성되는 몸체의 일부는 몸체 (1351)의 중점 (1381)을 향하여 내향 연장된다.
또 다른 경우에서, 제1 비스듬한 측면 영역 (1356)은 원의 원호부를 형성하고 및 제1 비스듬한 측면 영역 반경 (Ros1)을 형성하는 만곡부를 가진다. 제1 비스듬한 측면 영역 (1356)의 반경 (Ros1) 크기는 몸체 (1351)의 성능을 개선하도록 조절된다. 적어도 하나의 실시태양에 의하면, 제1 비스듬한 측면 영역 반경 (Ros1)은 코너들 (1357, 1359) 사이 가장 짧은 선형 거리로서 측정되는 제1 비스듬한 측면 영역 길이 (Los1)와는 상이하다. 더욱 특정한 경우들에서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 비스듬한 측면 영역 길이 (Los1)보다 크다. Ros1 및 Los1 간의 관계는 본원 실시태양들에서 정의된 Lss1 및 Los1 간의 관계와 동일하다.
또 다른 실시태양에서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 길이 (Lss1)에 대하여, 몸체 (1351)의 성능을 개선할 수 있도록 조절된다. 예를들면, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 길이 (Lss1)와는 상이하다. 특히, Ros1 및 Lss1 사이의 관계는 본원 실시태양들에서 정의되는 Lss1 및 Los1 간의 관계와 동일하다. 특정 경우들에서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 길이 (Lss1)보다 크다. 또한, 또 다른 실시태양에서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 길이 (Lss1)보다 작다.
또 다른 양태에서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 길이 (Lss1) 및 제1 비스듬한 측면 영역 길이 (Los1)를 포함하는 제1 측면의 총 길이에 대하여, 몸체 (1351)의 성능을 개선할 수 있도록 조절 가능하다. 예를들면, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 (Lss1) 및 제1 비스듬한 측면 영역 (Los1)의 총 길이와 상이하다. 특정 경우들에서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 (Lss1) 및 제1 비스듬한 측면 영역 (Los1)의 총 길이보다 크다. 또 다른 실시태양에서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 (Lss1) 및 제1 비스듬한 측면 영역 (Los1)의 총 길이보다 작다.
하나의 실시태양에 의하면, 제1 비스듬한 측면 영역 반경은 10 mm 이하, 예컨대 9 mm 이하 또는 8 mm 이하 또는 7 mm 이하 또는 6 mm 이하 또는 5 mm 이하 또는 4 mm 이하 또는 3 mm 이하 또는 2 mm 이하이다. 또한, 적어도 하나의 비-제한적인 실시태양에서, 제1 비스듬한 측면 영역 반경 (Ros1)은 적어도 0.01 mm, 예컨대 적어도 0.05 mm 또는 적어도 0.1 mm 또는 적어도 0.5 mm이다. 제1 비스듬한 측면 영역 반경은 상기 임의의 최소값 및 최대값을 범위한 범위 내에 있다는 것을 이해하여야 한다.
예를들면 제1 비스듬한 각 (Ao1), 제1 외부 코너 각 (Aec1), 제2 비스듬한 각 (Ao2), 제2 외부 코너 각 (Aec2), 제3 비스듬한 각 (Ao3), 및 제3 외부 코너 각 (Aec3)을 포함한 몸체의 각에 대한 임의 언급은 본원 실시태양들에서 제공된 바와 동일할 수 있다. 특히, 만곡부를 가지는 적어도 하나의 비스듬한 측면 영역의 제공으로 만곡 영역이 종료되는 연결 코너들 (예를들면, 코너들 (1357, 1359))에서 각을 작게할 수 있다. 도시된 바와 같이, 제1 외부 코너 각 (Aec1)은 제2 측면 영역 (1361) 및 점선으로 도시되는 바와 같이 코너 (1359)에서 제1 비스듬한 측면 영역 (1356)에 대한 접선 (1358) 에 의해 형성되는 각으로 측정된다. 또한, 만곡부를 가지는 제1 비스듬한 측면 영역 (1356)의 제공으로 도 13C에 도시된 바와 같이 도시된 배향 또는 몸체 (1351) 배향 거울상에서 몸체 (1351)에 대하여 코너 (1359)에서 더 작은 경사각 및 개선된 연삭 성능이 가능하다. 다중 배향에 대한 경사각 감소로 다양한 배향에서 몸체 (1351)에 의한 개선된 연삭 성능이 가능하다.
더욱 도시된 바와 같이, 몸체 (1351)는 둔각 값을 가질 수 있는 제2 비스듬한 코너 각 (Ao2)을 형성하는 코너 (1363)에서 서로 연결되는 제2 측면 영역 (1361) 및 제2 비스듬한 측면 영역 (1362)을 포함한다. 제2 측면 영역 (1361)은 제1 외부 코너 (1359)에서 제1 비스듬한 측면 영역 (1356)과 결합되고, 제1 외부 코너 (1359)는 제1 외부 코너 각 (Aec1)을 형성하고 제1 외부 코너 각 (Aec1)은 본원의 다른 실시태양들에 의해 기재되는 바와 같이 제1 비스듬한 각 (Ao1) 값과 상이하다. 제1 외부 코너 (1359)는 제1 비스듬한 측면 영역 (1356)의 만곡 일부 및 제2 측면 영역 (1362)의 선형 일부 사이의 연결점으로 형성된다.
더욱 도시된 바와 같이, 및 실시태양에 의하면, 적어도 제2 비스듬한 측면 영역 (1362)의 일부는 만곡부를 포함하고, 상세하게는, 제2 비스듬한 측면 영역 (1362)의 전체 길이는 만곡부를 가질 수 있다. 적어도 하나의 실시태양에서, 제2 비스듬한 측면 영역 (1362)은 단조 곡선을 가진다. 제2 비스듬한 측면 영역 (1362)은 원의 원호부를 형성하고 제2 비스듬한 측면 영역 반경 (Ros2)을 정의하는 만곡부를 가진다. 적어도 하나의 실시태양에서, Ros1 및 Ros2는 실질적으로 동일하다. 또한, 제1 비스듬한 측면 영역 (1356)의 상대 곡률은 제2 비스듬한 측면 영역 (1362)의 곡률과 실질적으로 동일하다. 또 다른 실시태양에서, Ros1 및 Ros2 는 서로 상이할 수 있다. 또한, 제1 비스듬한 측면 영역 (1356)의 상대 곡률은 제2 비스듬한 측면 영역 (1362)의 곡률과 상이하다.
몸체 (1351)는 둔각 값을 가지는 제3 비스듬한 코너 각 (Ao3)을 형성하는 코너 (1373)에서 서로 연결되는 제3 측면 영역 (1371) 및 제3 비스듬한 측면 영역 (1372)을 포함한다. 제3 측면 영역 (1371)은 제2 외부 코너 각 (Aec2)을 형성하고, 본원에 기술된 형상화 연마 입자들의 유사한 코너들의 임의의 속성을 가지는 제2 외부 코너 (1364)에서 제2 비스듬한 측면 영역 (1362)과 결합된다. 제2 외부 코너 (1364)는 제2 비스듬한 측면 영역 (1362)의 만곡 일부 및 제3 측면 영역 (1372)의 선형 일부 사이 연결점으로 형성된다. 몸체는 제3 비스듬한 측면 영역 (1372) 및 제1 측면 영역 (1355) 사이에 제3 외부 코너 (1374)를 더욱 포함한다. 제3 외부 코너 (1374)는 제3 외부 코너 각 (Aec3)을 형성하고, 이는 본원의 실시태양들에 기재된 유사한 코너들의 임의의 속성을 가질 수 있다. 또한, 제3 측면 영역 (1371), 제3 비스듬한 측면 영역 (1372), 및 제3 비스듬한 측면 영역의 반경은 본원 실시태양들에서 기술된 상응하는 요소들과 동일한 임의의 특징부를 가진다.
또 다른 실시태양에서, 몸체 (1301)는 외부 코너 (예를들면, 코너 (1364))에서 몸체 (1351)의 중점 (1381)을 통해 연장되어 몸체 (1351)를 절분하는 적어도 하나의 중앙축 (1382)을 가진다. 하나의 실시태양에 의하면, 몸체 (1351)는 중앙축 (1382) 주위로 비대칭이다. 즉, 중앙축 (1382)의 어느 일측면에서 평면으로 관찰할 때 측면 (1354) 외관으로 형성되는 몸체 (1351)의 형상은 동일하지 않고, 따라서, 중앙축 (1382)은 비대칭 축을 형성한다. 다른 경우들에서, 몸체는 예를들면, 적어도 3개의 상이한 중앙축들을 포함한 비대칭 축인 중앙축을 하나 이상 가질 수 있고, 몸체는 3개의 상이한 중앙축들 각각의 주위에서 비대칭을 이룬다.
본원 실시태양들의 형상화 연마 입자들은, 제한되지는 않지만 형상화 연마 입자 (1350)의 몸체 (1351)를 포함하고 이는 적어도 5개의 상이한 측면 영역들을 포함하는 측면을 포함하고, 5개의 상이한 측면 영역들은 외부 코너일 수 있는 코너에 의해 분리된다. 외부 코너들은 가상의 고무줄이 걸쳐져 휘어지는 코너들이다. 즉, 가상의 고무줄이 몸체 (1351)의 측면 (1354) 주위에 놓이면, 코너들 (1357, 1359, 1363, 1364, 1373, 1374)에서 휘어질 것이다. 외부 코너들 (1357, 1359, 1363, 1364, 1373, 1374) 각각은 측면 (1354)의 구분된 측면 영역들을 형성하고 분리시킨다. 적어도 하나의 실시태양에서, 몸체 (1351)의 측면 (1354)은 적어도 하나의 만곡 부분으로 분리되는 적어도 2개의 선형 부분들을 포함한다. 예를들면, 몸체 (1351)는 제1 측면 영역 (1355) 및 제2 측면 영역 (1361)을 포함하고 이들은 서로 제1 비스듬한 측면 영역 (1356)에 의해 분리된다. 또 다른 실시태양에서, 몸체 (1351)의 측면 (1354)은 선형 부분들 및 만곡 부분들을 포함하고 이들은 서로 교번한다. 예를들면, 몸체 (1351)의 측면 (1354)은 선형 부분들 및 만곡 부분들을 포함하고 각각의 선형 일부는 적어도 하나의 만곡 부분에 연결되고, 또한, 서로 외부 코너에서 결합된다 . 몸체 (1351)는 반드시 서로 직접 연결되는 2개의 선형 부분들 또는 서로 직접 연결되는2개의 만곡 부분들을 가질 필요는 없다. 하나의 비-제한적인 실시태양에 대하여 그러하고, 다른 형상은 서로 직접 연결되는 선형 부분들 및/또는 만곡 부분들을 가질 수 있다는 것을 이해하여야 한다.
특정 경우에, 본원 실시태양들의 형상화 연마 입자들은 가장 작은 주면 및 측면의 교차에서 특정 구배각을 가지고, 이는 특정 성형 양태이고 및/또는 연마 입자의 성능을 개선시킬 수 있다. 하나의 특정 경우에서, 본원의 형상화 연마 입자들은 통계적 연관 및 무작위 형상화 연마 입자들의 샘플 크기 (예를들면, 적어도 20 입자들)에 대한 구배각 평균 측정치인평균 구배각, α를 가질 수 있다. 특정 경우에, 평균 구배각은 95° 이하, 예컨대 94° 이하 또는 93° 이하 또는 92° 이하 또는 91° 이하 또는 90° 이하이다. 적어도 하나의 비-제한적인 실시태양에서, 본원 실시태양들의 형상화 연마 입자들의 평균 구배각은 적어도 80° 예컨대 적어도 82° 또는 적어도 84° 또는 적어도 85° 또는 적어도 86° 또는 적어도 87°이다. 본원 실시태양들의 형상화 연마 입자들의 평균 구배각은 제한되지는 않지만, 적어도 80° 및 내지 95° 이하 또는 적어도 80° 내지 94° 이하 또는 적어도 82° 내지 93° 이하 또는 적어도 84° 내지 93° 이하를 포함하는 상기 임의의 최소값 및 최대값을 포함한 범위 내에 있다는 것을 이해하여야 한다.
구배각은 예컨대 도 13D에서 점선으로 도시된 바와 같이 주면에 대하여 대략 90° 및 측면들 중 하나에 대하여 수직으로 형상화 연마 입자를 절단하여 측정한다. 가능한, 단면 선은 측면에 수직으로 연장되고 입자 주면의 중점을 관통하여야 한다. 이어 형상화 연마 입자 일부를 장착하고 도 13E에 도시된 것과 유사하게 SEM으로 관찰한다. 이러한 적합한 프로그램은 ImageJ 소프트웨어를 포함한다. 몸체 사진을 이용하여, 최소 주면은 최대 주면을 확인하고 이의 반대측 표면을 선택함으로써 결정된다. 소정의 형상화 연마 입자들은 대체로 사각 단면 형상을 가진다. 최소 주면을 확인하기 위하여, 최대 주면이 먼저 결정되어야 한다. 최소 주면은 최대 주면 반대측 표면이다. 화상화 소프트웨어, 예컨대 ImageJ 를 활용하여 최소 주면을 결정한다. 적합한 사진 처리 소프트웨어 (예를들면, ImageJ)를 사용하여 도 13E에 라인으로 제공되는 바와 같이 주면들 및 측벽을 연결하는 코너들 사이에 양 주면들을 따라 직선을 긋는다. 사진 분석 소프트웨어를 이용하여, 더 긴 선을 측정한다. 두 선들 중 더 짧은 것을 두 주면들 중 더욱 작은 것으로 가정한다. 도 13E에서는, 사진 우측 선이 더욱 짧고 구배각은 또한 도 13F에 도시된 바와 같이 상부 우측 코너에서 확인되는 코너에서 측정된다.
구배각을 측정하기 위하여, 최소 주면 및 측면을 따라 선을 그려 도 13F에 제공되는 바와 같이 교차 각을 형성한다. 선들은 전체로서 표면 형상을 고려하고 입자 코너에서 결함 또는 다른 비-대표적 표면 기복 (예를들면, 장착 과정에서 균열 또는 조각 등)을 무시하고 그린다. 또한, 더 작은 주면을 나타내는 선은 구배각에서 측벽을 연결하는 주면 일부를 나타내도록 그린다. 구배각 (즉, 교차점에서 측정되는 몸체의 각)은 선들의 교차점에서 형성되는 내부 각으로 결정된다.
도 14는 실시태양에 의한 또 다른 형상화 연마 입자의 평면도이다. 형상화 연마 입자 (1400)는 본원 실시태양들의 임의의 특징부를 가지는 몸체 (1401)를 가진다. 특히, 몸체 (1401)는 몸체 (1401)의 길이 및 폭의 평면에서 관찰될 때 규칙적인 2차원 칠각 형상 (즉, 7-측면들)을 가지고, 모든 측면들은 실질적으로 서로 동일한 길이이다. 몸체 (1401)의 형상지수는 대략 0.9이다.
도 15 내지 도 26은 본원 실시태양들에 의한 다른 형상화 연마 입자들을 포함한다. 특히, 도 15의 형상화 연마 입자의 형상지수 는 0.66이다. 도 16, 17 및 18의 형상화 연마 입자들의 형상지수는 대략 0.81이다. 특히, 도 19의 형상화 연마 입자의 형상지수는 0.57이다. 도 20의 형상화 연마 입자의 형상지수는 대략 0.69이다. 도 21의 형상화 연마 입자의 형상지수는 대략 0.77이다. 도 22의 형상화 연마 입자의 형상지수는 대략 0.62이다. 도 23의 형상화 연마 입자의 형상지수는 대략 0.57이다. 도 24의 형상화 연마 입자의 형상지수는 대략 0.67이다. 도 25의 형상화 연마 입자의 형상지수는 대략 0.82이다. 도 26의 형상화 연마 입자의 형상지수는 대략 0.77이다.
고정 연마 물품
형상화 연마 입자 성형 또는 입수 후, 입자들을 다른 재료에 결합시켜 고정 연마 물품을 형성한다. 고정 연마 물품에서, 형상화 연마 입자들은 기질 또는 기판에 결합되어 재료 제거 작업에 사용된다. 일부 적합한 예시적 고정 연마 물품은 형상화 연마 입자들이 3차원 결합재 기질에 포함되는 결합 연마 물품을 포함한다. 다른 예시에서, 고정 연마 물품은 형상화 연마 입자들이 지지판 상에 적층되는 단일-층에 분산되고 및 하나 이상의 접착층으로 지지판에 결합되는 코팅 연마 물품을 포함한다.
도 5A는 실시태양에 의한 연마 미립자 소재를 포함하는 결합 연마물품을 도시한 것이다. 도시된 바와 같이, 결합 연마재 (590)는 결합재 (591), 결합재에 함유되는 연마 미립자 소재 (592), 및 결합재 (591) 내의 공극 (598)을 포함한다. 특정한 경우, 결합재 (591)는 유기재료, 무기재료, 및 이들의 조합을 포함한다. 적합한 유기재료는 고분자, 예컨대 에폭시, 수지들, 열경화성 소재, 열가소성 소재, 폴리이미드, 폴리아미드, 및 이들의 조합을 포함한다. 소정의 적합한 무기재료는 금속, 합금, 유리상 재료, 결정상 재료, 세라믹스, 및 이들의 조합을 포함한다.
일부 예시들에서, 결합 연마재 (590)의 연마 미립자 소재 (592)는 형상화 연마입자들 (593, 594, 595, 596)을 포함한다. 특정 예시들에서, 형상화 연마입자들 (593, 594, 595, 596)은 상이한 유형의 입자들일 수 있고, 이들은 서로 본원 실시태양들에 기재된 바와 같이 조성, 2차원 형상, 3차원 형상, 크기, 및 이들의 조합에 있어서 서로 다르다. 달리, 결합 연마 물품은 단일 유형의 형상화 연마입자를 포함할 수 있다.
결합 연마재 (590)는 부형 연마입자들을 나타내는 연마 미립자 소재 (597)를 포함하고, 이들은 형상화 연마입자들 (593, 594, 595, 596)와 조성, 2차원 형상, 3차원 형상, 크기, 및 이들의 조합에 있어서 상이하다.
결합 연마재 (590) 공극 (598)은 개방 공극, 폐쇄 공극, 및 이들의 조합일 수 있다. 공극 (598)은 결합 연마재 (590) 몸체 총 부피 기준으로 주 함량(vol%)으로 존재할 수 있다. 달리, 공극 (598)은 결합 연마재 (590) 몸체 총 부피 기준으로 부 함량(vol%)으로 존재할 수 있다. 결합재 (591)는 결합 연마재 (590) 몸체 총 부피 기준으로 주 함량(vol%)으로 존재할 수 있다. 달리, 결합재 (591)는 결합 연마재 (590) 몸체 총 부피 기준으로 부 함량(vol%)으로 존재할 수 있다. 또한, 연마 미립자 소재 (592)는 결합 연마재 (590) 몸체 총 부피 기준으로 주 함량(vol%)으로 존재할 수 있다. 달리, 연마 미립자 소재 (592)는 결합 연마재 (590) 몸체 총 부피 기준으로 부 함량(vol%)으로 존재할 수 있다.
도 5B는 실시태양에 의한 코팅 연마 물품 단면도이다. 특히, 코팅 연마물품 (500)은 기판 (501) (예를들면, 지지판) 및 기판 (501) 표면 상부에 도포되는 적어도 하나의 접착층을 포함한다. 접착층은 메이크 코트 (503) 및/또는 사이즈 코트 (504)를 포함한다. 코팅 연마물품 (500)는 본원 실시태양들의 형상화 연마입자들 (505)을 포함한 연마 입자 소재 (510), 및 반드시 형상화 연마입자들이 아닌 무작위 형상의 부형 연마입자들 형태인 제2 유형의 연마 입자 소재 (507)를 포함한다. 도 5B의 형상화 연마입자들 (505)은 일반적으로 설명 목적으로 도시되고 코팅 연마 물품은 임의의 형상화 연마 입자들을 포함할 수 있다는 것을 이해하여야 한다.
메이크 코트 (503)는 기판 (501) 표면 상부에 도포되고 형상화 연마입자들 (505) 및 제2 유형의 연마 입자 소재 (507)의 적어도 일부를 둘러싼다. 사이즈 코트 (504)는 형상화 연마입자들 (505) 및 제2 유형의 연마 입자 소재 (507) 및 메이크 코트 (503) 상부에서 이들과 결합된다.
하나의 실시태양에 의하면, 기판 (501)은 유기 재료, 무기 재료, 및 이들의 조합을 포함한다. 소정의 실시예들에서, 기판 (501)은 직물 소재를 포함한다. 그러나, 기판 (501)은 부직물 소재로 제작될 수 있다. 특히 적합한 기판 재료는 고분자, 예컨대 폴리에스테르, 폴리우레탄, 폴리프로필렌, 및/또는 폴리이미드 예컨대 DuPont의 KAPTON, 및 페이퍼를 포함하는 유기 재료를 포함한다. 일부 적합한 무기 재료는 금속, 금속 합금, 특히, 구리박, 알루미늄, 스틸, 및 이들의 조합을 포함한다. 지지판은 촉매, 커플링제, 경화제 (curants), 대전방지제, 현탁제, 안티-로딩제, 윤활제, 습윤제, 염료, 충전제, 점도조절제, 분산제, 소포제, 및 분쇄제로 이루어진 군에서 선택되는 첨가제를 포함할 수 있다.
프론트필 (frontfill), 프리-사이즈 코트, 메이크 코트, 사이즈 코트, 및/또는 슈퍼사이즈 코트와 같은 코팅 연마물품 (500)의 임의의 다양한 층들을 형성하기 위하여 고분자 조성물들이 사용될 수 있다. 프론트필 형성에 있어서, 고분자 조성물은 일반적으로 고분자 수지, 섬유화 파이버 (바람직하게는 펄프 형태), 충전재, 및 기타 선택적인 첨가제들을 포함한다. 일부 프론트필 실시태양들에 있어서 적합한 조성물은 재료들 예컨대 페놀수지, 규회석 충전재, 소포제, 계면활성제, 섬유화 파이버, 및 나머지는 물을 포함한다. 적합한 고분자 수지는 페놀수지, 요소/포름알데히드 수지, 페놀/라텍스 수지, 및 이러한 수지의 조합을 포함한 열 경화성 수지에서 선택되는 경화성 수지를 포함한다. 기타 적합한 고분자 수지 재료는 또한 광 경화성 수지, 예컨대 전자빔, UV 선, 또는 가시광선을 이용하여 경화 가능한 수지, 예컨대 에폭시 수지, 아크릴레이트 에폭시 수지의 아크릴레이트 올리고머, 폴리에스테르 수지, 아크릴레이트 우레탄 및 폴리에스테르 아크릴레이트 및 모노 아크릴레이트, 다중아크릴레이트 단량체들을 포함한 아크릴레이트 단량체를 포함한다. 또한 조성물은 침식성을 개선시켜 적층된 연마 물품의 자체-첨예 특성을 개선시킬 수 있는 비반응성 열가소성수지 바인더를 포함한다. 이러한 열가소성 수지의 예시로는 폴리프로필렌 글리콜, 폴리에틸렌 글리콜, 및 폴리옥시프로필렌-폴리옥시에텐 블록 공중합체, 기타 등을 포함한다. 기판 (501)에서 프론트필을 적용하면 표면 균일성이 개선되어, 메이크 코트 (503) 도포에 적합하고 형상화 연마입자들 (505)의 적용 및 소정 방향으로의 배향이 개선된다.
메이크 코트 (503)는 단일 공정으로 기판 (501) 표면에 도포되지만, 또는 달리, 연마 입자 소재 (510)와 메이크 코트 (503) 재료가 혼합되어 혼합물로서 기판 (501) 표면에 적용될 수 있다. 메이크 코트 (503)의 적합한 재료는 유기 재료, 특히 고분자 재료, 예를들면, 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이의 혼합물을 포함한다. 일 실시태양에서, 메이크 코트 (503)는 폴리에스테르 수지를 포함한다. Te 코팅된 기판은 이후 가열되어 수지 및 연마입자 소재를 기판에 경화시킨다. 일반적으로, 이러한 경화 공정에서 코팅 기판 (501)은 약 100 ºC 내지 약 250 ºC 미만으로 가열된다.
연마 입자 소재 (510)는 본원 실시태양들에 의한 형상화 연마입자들을 포함한다. 특정 실시예들에서, 연마 입자 소재 (510)는 상이한 유형의 형상화 연마입자들을 포함한다. 상이한 유형의 형상화 연마입자들은 본원 실시태양들에서 기재된 바와 같이 조성, 2차원 형상, 3차원 형상, 크기, 및 이들의 조합에 있어서 서로 다르다. 도시된 바와 같이, 코팅 연마재 (500)는 본원 실시태양들의 형상화 연마입자들의 임의의 형상을 가질 수 있다.
기타 유형의 연마입자들 (507)은 형상화 연마입자들 (505)과는 다른 부형 입자들일 수 있다. 예를들면, 부형 입자들은 형상화 연마입자들 (505)과 조성, 2차원 형상, 3차원 형상, 크기, 및 이들의 조합에 있어서 차별된다. 예를들면, 연마입자들 (507)은 무작위 형상을 가지는 종래, 파쇄 연마 그릿일 수 있다. 연마입자들 (507)은 형상화 연마입자들 (505) 중앙 입자 크기보다 작은 중앙 입자 크기를 가질 수 있다.
연마 입자 소재 (510)로 메이크 코트 (503)를 충분히 형성한 후, 사이즈 코트 (504)가 연마 입자 소재 (510) 위에 형성되어 결합된다. 사이즈 코트 (504)는 유기 재료를 포함하고, 실질적으로 고분자 재료로 제조되고, 특히, 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이의 혼합물을 이용한다.
하나의 실시태양에 의하면, 본원의 형상화 연마 입자들 (505)은 서로 및 기판 (501)에 대하여 예정된 배향으로 배향된다. 완전히 이해되지는 않지만, 치수 특징부들 중 하나 또는 조합으로 형상화 연마 입자들 (505)의 배향을 개선시킬 수 있다고 판단된다. 하나의 실시태양에 의하면, 예컨대 도 5B에 도시된 바와 같이 형상화 연마 입자들 (505)은 기판 (501)에 대하여 평탄 배향으로 배향된다. 평탄 배향에서, 형상화 연마 입자들의 하면 (304)은 기판 (501) (즉, 지지판) 표면에 최근접하고 형상화 연마 입자들 (505)의 상면 (303)은 기판 (501)에서 멀어지고 가공물과 초기 체결되도록 구성된다.
또 다른 실시태양에 의하면, 도 6에 도시된 바와 같이 형상화 연마입자들 (505)은 기판 (501)에 소정의 측 방향으로 배치된다. 특정 실시예들에서, 연마물품 (505)의 형상화 연마입자들 (505) 총 함량 중 대부분의 형상화 연마입자들 (505)은 소정의 측 방향을 가진다. 측 방향에서, 형상화 연마입자들 (505)의 하면 (304)은 기판 (501) 표면에서 이격되고 이에 대하여 유각을 이룬다. 특정 실시예들에서, 하면 (304)은 기판 (501) 표면에 대하여 둔각 (B)을 형성한다. 또한, 상면 (303)은 기판 (501) 표면에서 이격되고 이에 대하여 유각을 이루고, 특정 실시예들에서, 대체로 예각 (A)을 이룰 수 있다. 측 방향에서, 측면 (305)은 기판 (501) 표면에 최근접하고, 상세하게는, 기판 (501) 표면과 직접 접촉될 수 있다.
소정의 본원의 다른 연마물품들에 있어서, 연마물품 (500)의 적어도 약 55%의 다수의 형상화 연마입자들 (505)은 소정의 측 방향에서 지지판에 결합된다. 또한, 상기 백분율은 더 클 수 있고, 예컨대 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 77%, 적어도 약 80%, 적어도 약 81%, 또는 적어도 약 82%일 수 있다. 하나의 비-제한적 실시태양에서, 연마물품 (500)은 본원의 형상화 연마입자들 (505)로 형성될 수 있고, 형상화 연마입자들 총량의 약 99% 이하가 소정의 측 방향을 가질 수 있다.
소정 방향에 있는 입자들 백분율을 결정하기 위하여, 하기 표 1의 조건으로 동작하는CT 스캔 기기를 이용하여 연마물품 (500)에 대한2D 미소초점 x-ray 영상을 얻는다. X-ray 2D 영상을 RB214에서 품질 보장 (Quality Assurance) 소프트웨어로 지지판 상의 형상화 연마입자들에 대하여 실행한다. 시료 장착 고정구는 4” x 4” 윈도우의 플라스틱 프레임 및 프레임에 고정시키기 위한 2개의 나사가 있는 상부가 반-평탄화되는 Ø0.5” 고체 금속성 로드를 이용한다. 영상화 전에, 나사 머리가 X-선 입사 방향과 대향되는 지점에서 프레임 일측에 시료를 고정시킨다. 이어 120kV/80μA에서 영상화하기 위한 4” x 4” 윈도우 면적 내에서5 영역들을 선택한다. X-ray 오프-셋 (off-set)/게인 교정 및 15 배율로 각각의 2D 투사 영상을 기록한다.
전압 (kV) 전류 (μA) 배율 영상 당 시계
(mm x mm)
노출시간
120 80 15X 16.2 x 13.0 500ms/2.0 fps
이어 영상들을 보내 ImageJ 프로그램으로 분석하고, 다른 방향들은 하기 표 2에 따라 값들이 지정되었다. 도 11은 지지판에 있는 형상화 연마입자들 방향 분석에 사용된 실시태양에 의한 코팅 연마물품 일부의 영상들이다.
셀 마커 타입 설명
1 영상 주위에 있는 입자들, 부분 노출 - 상향
2 영상 주위에 있는 입자, 부분 노출 - 하향
3 영상 중의 입자들, 완전 노출 - 직립
4 영상 중의 입자들, 완전 노출 - 하향
5 영상 중의 입자들, 완전 노출 -경사 (직립 및 하향의 중간)
이어 하기 표 3에서 제공되는 3가지 계산식이 수행된다. 계산이 수행된 후 평방 센티미터 당 특정 배향 (예를들면 측 방향) 입자의 백분율이 유도된다.
5)?인자 프로토콜*
% 상향 입자들 ((0.5×1)+3+5)/(1+2+3+4+5))
cm2 당 입자들 총 # (1+2+3+4+5)
cm2 당 상향 입자들 # (% 상향 입자들 × cm2 당 입자들 총 #
* - 이들은 모두 영상 각자의 면적에 대하여 정규화된다.
+ - 영상에서 완전하게 존재하지 않으므로 환산계수 0.5가 적용되었다.
또한, 형상화 연마입자들로 제조되는 연마물품들은 다양한 함량의 형상화 연마입자들을 이용할 수 있다. 예를들면, 연마물품들은 개방-코트 구성 또는 밀폐-코트 구성으로 단일층의 다수의 형상화 연마입자들을 포함하는 코팅 연마물품들일 수 있다. 예를들면, 다수의 형상화 연마입자들은 약 70 입자들/cm2 이하의 형상화 연마입자 코팅 밀도를 가지는 개방 코트 연마 물품을 형성할 수 있다. 다른 실시예들에서, 연마물품 평방 센티미터 당 형상화 연마입자들의 개방-코트 밀도는 약 65 입자들/cm2 이하, 예컨대 약 60 입자들/cm2 이하, 약 55 입자들/cm2 이하, 또는 약 50 입자들/cm2 이하일 수 있다. 또한, 하나의 비-제한적 실시태양에서, 본원 형상화 연마입자를 적용한 개방 코트 코팅 연마물품의 밀도는 적어도 약 5 입자들/cm2, 또는 적어도 약 10 입자들/cm2이다. 코팅 연마물품의 개방 코트 밀도는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
대안의 실시태양에서, 다수의 형상화 연마 입자들은 형상화 연마 입자들의 코팅 밀도가 적어도 약 75 입자들/cm2, 예컨대 적어도 약 80 입자들/cm2, 적어도 약 85 입자들/cm2, 적어도 약 90 입자들/cm2, 적어도 약 100 입자들/cm2인 밀폐-코트 연마 물품을 형성한다. 또한, 하나의 비-제한적 실시태양에서, 본원의 형상화 연마 입자를 이용한 코팅 연마물품의 밀폐-코트 밀도는 약 500 입자들/cm2 이하이다. 코팅 연마 물품의 밀폐-코트 밀도는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
소정의 실시예들에서, 연마물품은 물품의 외부 연마 표면을 덮고 있는 연마입자 재료의 피복율이 약 50% 이하인 개방 코트 밀도를 가질 수 있다. 다른 실시태양들에서, 연마 표면 총면적에 대한 연마입자 재료의 피복율은 약 40% 이하, 약 30% 이하, 약 25% 이하, 또는 약 20% 이하이다. 또한, 하나의 비-제한적 실시태양에서, 연마 표면 총면적에 대한 연마입자 재료의 피복율은 적어도 약 5%, 예컨대 적어도 약 10%, 적어도 약 15%, 적어도 약 20%, 적어도 약 25%, 적어도 약 30%, 적어도 약 35%, 또는 적어도 약 40%이다. 연마 표면의 총면적에 대한 형상화 연마입자들의 피복율은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
일부 연마물품들은 지지판 또는 기판 (501) 길이 (예를들면, 림)에 대하여 특정 함량의 연마입자들을 가진다. 예를들면, 일 실시태양에서, 연마물품은 적어도 약 20 lbs/림, 예컨대 적어도 약 25 lbs/ 림, 또는 적어도 약 30 lbs/림인 형상화 연마입자들의 정규화 중량을 적용한다. 또한, 하나의 비-제한적 실시태양에서, 연마물품들의 형상화 연마입자들 정규화 중량은 약 60 lbs/림 이하, 예컨대 약 50 lbs/림 이하, 또는 약 45 lbs/림 이하이다. 본원 실시태양들의 연마물품들은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있는 형상화 연마입자들의 정규화 중량을 적용할 수 있다는 것을 이해하여야 한다.
본원에 기재되는 연마물품의 다수 형상화 연마입자들은 연마입자들 배치의 제1 부분을 형성하고, 본원 실시태양들에 기재되는 형상들은 적어도 형상화 연마입자들 배치의 제1 부분에 존재하는 형상들을 대표할 수 있다. 또한, 실시태양에 의하면, 상기된 하나 이상의 공정 인자들을 제어하여 본원 실시태양들의 형상화 연마입자들에서 하나 이상의 형상들의 지배성 (prevalence)을 제어할 수 있다. 배치의 임의 형상화 연마입자에 대하여 하나 이상의 형상들을 제공하면 연마물품에서 입자들의 전개 (deployment)에 대한 대안 또는 개선이 가능하고 연마물품의 성능 또는 용도를 더욱 개선시킬 수 있다. 배치는 또한 연마입자들의 제2 부분을 포함할 수 있다. 연마입자들의 제2 부분은 부형 (diluent) 입자들을 포함한다.
본원 실시태양들의 일 양태에 의하면, 고정 연마 물품은 연마 입자들의 블렌드를 포함한다. 연마 입자들의 블렌드는 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자를 포함한다. 제1 유형의 형상화 연마입자는 본원 실시태양들의 형상화 연마입자들의 임의의 특징부를 포함한다. 제2 유형의 형상화 연마입자는 본원 실시태양들의 형상화 연마입자들의 임의의 특징부를 포함한다. 또한, 본 개시에 비추어 본원의 실시태양들의 연마 입자들 및/또는 종래 연마 입자들을 포함한 하나 이상의 상이한 타입의 연마 입자들은, 고정 연마물품에서 조합되어 연마 물품의 전체 성능을 개선시킬 수 있다는 것을 이해하여야 한다. 이는 상이한 타입의 연마 입자들의 블렌드 사용을 포함하고, 상이한 타입의 연마 입자들은 크기, 형상, 경도, 파괴 인성, 강도, 팁 첨예도, 형상지수, 조성물, 타입 및/또는 도펀트 함량, 및 이들의 조합에서 차별된다.
연마 입자들의 블렌드에서 제1 유형의 형상화 연마 입자는 블렌드의 입자들 총 중량과 비교하여 제1 유형의 형상화 연마 입자들의 백분율로 표기될 수 있는 (예를들면, 중량%) 제1 함량 (C1)으로 존재한다. 추가로, 연마 입자들의 블렌드에서 제2 유형의 형상화 연마 입자는 블렌드의 총 중량에 대하여 제2 유형의 형상화 연마 입자들의 백분율로 표기될 수 있는 (예를들면, 중량%) 제2 함량 (C2)으로 존재한다. 제1 함량은 제2 함량과는 동일하거나 다르다. 예를들면, 소정의 예시들에서, 블렌드는 제1 함량 (C1)이 블렌드 총 함량의 약 90% 이하가 되도록 형성된다. 또 다른 실시태양에서, 제1 함량은 더욱 낮을 수 있고, 예컨대 약 85% 이하, 약 80% 이하, 약 75% 이하, 약 70% 이하, 약 65% 이하, 약 60% 이하, 약 55% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 약 15% 이하, 약 10% 이하, 또는 약 5% 이하이다. 또한, 하나의 비-제한적 실시태양에서, 제1 유형의 형상화 연마 입자들의 제1 함량은 블렌드 연마 입자들 총 함량의 적어도 약 1%로 존재할 수 있다. 또 다른 예시들에서, 제1 함량 (C1)은 적어도 약 5%, 예컨대 적어도 약 10%, 적어도 약 15%, 적어도 약 20%, 적어도 약 25%, 적어도 약 30%, 적어도 약 35%, 적어도 약 40%, 적어도 약 45%, 적어도 약 50%, 적어도 약 55%, 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 80%, 적어도 약 85%, 적어도 약 90%, 또는 적어도 약 95%일 수 있다. 제1 함량 (C1)은 상기 임의의 최소 백분율 및 최대 백분율 사이 범위에 존재할 수 있다는 것을 이해하여야 한다.
연마 입자들의 블렌드는 특정 함량의 제2 유형의 형상화 연마 입자를 포함할 수 있다. 예를들면, 제2 함량 (C2)은 블렌드 총 함량의 약 98% 이하일 수 있다. 다른 실시태양들에서, 제2 함량은 약 95% 이하, 예컨대 약 90% 이하, 약 85% 이하, 약 80% 이하, 약 75% 이하, 약 70% 이하, 약 65% 이하, 약 60% 이하, 약 55% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 약 15% 이하, 약 10% 이하, 또는 약 5% 이하일 수 있다. 또한, 하나의 비-제한적 실시태양에서, 제2 함량 (C2)은 블렌드 총 함량의 적어도 약 1% 함량으로 존재할 수 있다. 예를들면, 제2 함량은 적어도 약 5%, 예컨대 적어도 약 10%, 적어도 약 15%, 적어도 약 20%, 적어도 약 25%, 적어도 약 30%, 적어도 약 35%, 적어도 약 40%, 적어도 약 45%, 적어도 약 50%, 적어도 약 55%, 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 80%, 적어도 약 85%, 적어도 약 90%, 또는 적어도 약 95%일 수 있다. 제2 함량 (C2)은 상기 임의의 최소 백분율 및 최대 백분율 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
또 다른 실시태양에 따르면, 연마 입자들의 블렌드는 제1 함량 (C1) 및 제2 함량 (C2) 간의 비율을 규정하는 블렌드 비율 (C1/C2)을 가질 수 있다. 예를들면, 일 실시태양에서, 블렌드 비율 (C1/C2)은 약 10 이하일 수 있다. 또 다른 실시태양에서, 블렌드 비율 (C1/C2)은 약 8 이하, 예컨대 약 6 이하, 약 5 이하, 약 4 이하, 약 3 이하, 약 2 이하, 약 1.8 이하, 약 1.5 이하, 약 1.2 이하, 약 1 이하, 약 0.9 이하, 약 0.8 이하, 약 0.7 이하, 약 0.6 이하, 약 0.5 이하, 약 0.4 이하, 약 0.3 이하, 또는 약 0.2 이하이다. 또한, 또 다른 비-제한적 실시태양에서, 블렌드 비율 (C1/C2)은 적어도 약 0.1, 예컨대 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.22, 적어도 약 0.25, 적어도 약 0.28, 적어도 약 0.3, 적어도 약 0.32, 적어도 약 0.3, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.9, 적어도 약 0.95, 적어도 약 1, 적어도 약 1.5, 적어도 약 2, 적어도 약 3, 적어도 약 4, 또는 적어도 약 5 일 수 있다. 블렌드 비율 (C1/C2)은 상기 임의의 최소값 및 최대값 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
적어도 하나의 실시태양에서, 연마 입자들의 블렌드는 대부분 형상화 연마 입자들을 포함한다. 즉, 블렌드는 주로, 제한되지 않지만, 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자를 포함하는 형상화 연마 입자들로 형성된다. 적어도 하나의 특정 실시태양에서, 연마 입자들의 블렌드는 실질적으로 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자로 이루어진다. 그러나, 기타 비-제한적 실시태양들에서, 블렌드는 다른 유형의 연마 입자들을 포함할 수 있다. 예를들면, 블렌드는 종래 연마 입자 또는 형상화 연마 입자를 포함하는 제3 유형의 연마 입자를 포함할 수 있다. 제3 유형의 연마 입자는 종래 분쇄 및 파쇄 기술을 통해 달성될 수 있는 불규칙 형상의 부형 연마 입자를 포함할 수 있다.
또 다른 실시태양에 의하면, 연마 입자들의 블렌드는 다수의 형상화 연마 입자들을 포함하고 다수의 형상화 연마 입자 각각은 지지판, 예컨대 코팅 연마물품의 기판에 대하여 조절된 배향으로 배열될 수 있다. 적합한 예시적 조절 배향은 미리 결정된 회전 배향, 미리 결정된 가로 (lateral) 배향, 및 미리 결정된 세로 (longitudinal) 배향 중 적어도 하나를 포함한다. 적어도 하나의 실시태양에서, 조절된 배향을 가지는 다수의 형상화 연마 입자들은 블렌드의 제1 유형의 형상화 연마 입자들의 적어도 일부, 블렌드의 제2 유형의 형상화 연마 입자들의 적어도 일부, 및 이들 조합을 포함할 수 있다. 더욱 상세하게는, 조절된 배향을 가지는 다수의 형상화 연마 입자들은 모든 제1 유형의 형상화 연마 입자들을 포함할 수 있다. 또 다른 실시태양에서, 지지판에 대하여 조절된 배향으로 배열된 다수의 형상화 연마 입자들은 연마 입자들의 블렌드의 모든 제2 유형의 형상화 연마 입자들을 포함할 수 있다.
도 7은 조절된 배향을 가지는 형상화 연마 입자들을 가지는 코팅 연마 물품의 부분 평면도를 도시한 것이다. 도시된 바와 같이, 코팅 연마 물품 (700)은 지지판 (701)을 포함하고, 이는 지지판 (701) 길이를 형성하고 이를 따라 연장되는 세로 축 (780) 및 지지판 (701) 폭을 형성하고 이를 따라 연장되는 가로 축 (781)에 의해 형성된다. 실시태양에 의하면, 형상화 연마 입자 (702)는 지지판 (701) 가로 축 (781)에 대하여 특정 제1 가로 위치 및 지지판 (701) 세로 축 (780)에 대하여 제1 세로 위치에 의해 규정되는 제1의 미리 결정된 위치 (712)에 배치된다. 추가로, 형상화 연마 입자 (703)는 지지판 (701) 가로 축 (781)에 대하여 제2 가로 위치, 및 실질적으로 형상화 연마 입자 (702) 제1 세로 위치와 동일할 수 있는 지지판 (701) 세로 축 (780)애 대하여 제1 세로 위치에 의해 규정되는 제2의 미리 결정된 위치 (713)를 가진다. 특히, 형상화 연마 입자들 (702, 703)은 가로 간격 (721)만큼 서로 이격되고, 이는 지지판 (701) 가로 축 (781)에 평행한 가로 면 (784)을 따라 측정될 때 2개의 인접 형상화 연마 입자들 (702, 703) 사이 최소 거리로 정의된다. 실시태양에 의하면, 가로 간격 (721)은 0보다 커서, 형상화 연마 입자들 (702, 703) 사이 일부 거리가 존재한다. 그러나, 도시되지는 않지만, 가로 간격 (721)은 0일 수 있고, 인접 형상화 연마 입자 일부들의 접촉 및 심지어 중첩이 가능하다는 것을 이해하여야 한다.
더욱 도시된 바와 같이, 코팅 연마 물품 (700)은 제3의 미리 결정된 위치 (714)에 배치되는 형상화 연마 입자 (704)를 포함하고 이는 지지판 (701) 세로 축 (780)에 대하여 제2 세로 위치 및 또한 가로 축 (784)에서 이격되고 지지판 (701) 가로 축 (781)에 평행한 가로 면 (785)에 대하여 제3 가로 위치로 정의된다. 또한, 도시된 바와 같이, 세로 간격 (723)은 형상화 연마 입자들 (702, 704) 사이에 존재할 수 있고, 이는 세로 축 (780)에 평행한 방향으로 측정될 때 2개의 인접 형상화 연마 입자들 (702, 704)사이 최소 거리로 정의될 수 있다. 실시태양에 의하면, 세로 간격 (723)은 0보다 클 수 있다. 또한, 도시되지는 않지만, 세로 간격 (723)은 0일 수 있어, 인접 형상화 연마 입자들은 서로 접촉 및 심지어 중첩된다는 것을 이해하여야 한다.
도 8A는 실시태양에 의한 형상화 연마 입자들을 포함한 연마 물품 일부의 평면도를 도시한 것이다. 도시된 바와 같이, 연마 물품 (800)은 지지판 (801) 폭을 정의하는 가로 축 (781)에 대하여 제1 회전 배향을 가지는 제1 위치에서 지지판 (801)에 적층되는 형상화 연마 입자 (802)를 포함한다. 특히, 형상화 연마 입자 (802)는 가로 축 (781)에 평행한 가로 면 (884) 및 형상화 연마 입자 (802) 치수 사이 제1 회전 각으로 정의되는 미리 결정된 회전 배향을 가진다. 특히, 본원에서 형상화 연마 입자 (802) 치수를 언급할 때 형상화 연마 입자 (802)의 등분 축 (831)에 대한 언급을 포함하고, 이러한 등분 축 (831)은 지지판 (801)에 (직접 또는 간접적으로) 결합된 표면 (예를들면, 측면 또는 에지)를 따라 형상화 연마 입자 (802) 중심 점 (821)을 통과하여 연장된다. 따라서, 측면 배향 위치의 형상화 연마 입자 위치 문맥에서, (예를들면, 도 6 참고), 등분 축 (831)은 중심 점 (821)을 통과하여 지지판 (801) 표면에서 가장 가까운 측면 (833) 폭 (w) 방향으로 연장된다.
소정의 실시태양들에서, 형상화 연마 입자 (802)의 미리 결정된 회전 배향은 등분 축 (831) 및 가로 면 (884) 사이 최소 각을 정의하는 미리 결정된 회전 각 (841)으로 형성되고, 이 둘은 도 8A 평면도에서와 같이 중심 점 (821)을 통과하여 연장된다. 실시태양에 의하면, 미리 결정된 회전 각 (841), 따라서 미리 결정된 회전 배향은, 0º일 수 있다. 다른 실시태양들에서, 미리 결정된 회전 배향을 형성하는 미리 결정된 회전 각은 더욱 클 수 있고, 예컨대 적어도 약 2º, 적어도 약 5º, 적어도 약 10º, 적어도 약 15º, 적어도 약 20º, 적어도 약 25º, 적어도 약 30º, 적어도 약 35º, 적어도 약 40º, 적어도 약 45º, 적어도 약 50º, 적어도 약 55º, 적어도 약 60º, 적어도 약 70º, 적어도 약 80º, 또는 적어도 약 85º이다. 또한, 회전 각 (841)에 의해 형성되는 미리 결정된 회전 배향은 약 90º 이하, 예컨대 약 85º 이하, 약 80º 이하, 약 75º 이하, 약 70º 이하, 약 65º 이하, 약 60º 이하, 예컨대 약 55º 이하, 약 50º 이하, 약 45º 이하, 약 40º 이하, 약 35º 이하, 약 30º 이하, 약 25º 이하, 약 20º 이하, 예컨대 약 15º 이하, 약 10º 이하, 또는 약 5º 이하일 수 있다. 미리 결정된 회전 배향은 임의의 상기 최소 각 및 최대 각 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
도 8B는 2차원 삼각 형상을 가지는 연마 입자 (802)를 포함한 연마 물품 (800) 일부의 사시도이다. 2-차원 삼각형상을 가지는 참조된 형상화 연마 입자는 단지 예시적인 것이고, 본원의 실시태양들의 임의의 형상을 가지는 임의의 형상화 연마 입자가 도 8B의 삼각형 형상화 연마 입자를 대체할 수 있다는 것을 이해하여야 한다. 도시된 바와 같이, 연마 물품 (800)은 지지판 (801)에 제1 위치 (812)에서 적층되는 형상화 연마 입자 (802)를 포함하여 형상화 연마 입자 (802)는 지지판 (801) 폭을 정의하는 가로 축 (781)에 대하여 제1 회전 배향을 포함한다. 형상화 연마 입자의 미리 결정된 배향의 소정의 양태는 도시된 바와 같이 x, y, z 3-차원 축을 참조하여 기술될 수 있다. 예를들면, 형상화 연마 입자 (802)의 미리 결정된 세로 배향은 지지판 (801) 세로 축 (780)에 평행하게 연장되는 y-축에 대한 형상화 연마 입자 (802) 위치를 참조하여 기술될 수 있다. 또한, 형상화 연마 입자 (802)의 미리 결정된 가로 배향은 지지판 (801) 가로 축 (781)에 평행하게 연장되는 x-축 상에서 형상화 연마 입자 위치를 참조하여 기술될 수 있다. 추가로, 형상화 연마 입자 (802)의 미리 결정된 회전 배향은 형상화 연마 입자 (802) 측면 (833)의 중심 점 (821)을 통해 연장되는 등분 축 (831)을 참조하여 정의될 수 있다. 특히, 형상화 연마 입자 (802)의 측면 (833)은 직접 또는 간접적으로 지지판 (801)에 결합된다. 특정 실시태양에서, 등분 축 (831)은 임의의 적합한 기준 축, 예를들면, 가로 축 (781)에 평행하게 연장되는 x-축과 각을 형성한다. 형상화 연마 입자 (802)의 미리 결정된 회전 배향은 x-축 및 등분 축 (831) 사이에 형성되는 회전 각으로 기술되고, 회전 각은 도 8B에서 각 (841)로 표시된다. 특히, 연마 물품 지지판 상에 다수의 형상화 연마 입자들의 조절된 배치로 연마물품의 성능을 개선시킬 수 있다.
도 9는 실시예에 따른 연삭 방향에 대해 미리 결정된 배향 특성들을 가진 성형 연마 입자들을 포함한 연마 물품의 일 부분의 사시도를 포함한다. 특히, 도 8B에서와 같이, 형상화 연마 입자들은 2-차원 삼각형상을 가지고, 이는 단지 연마 물품의 소정 특징부를 도시하고 설명할 목적이다. 본원 실시태양들의 임의의 형상화 연마 입자들이 도 9에 도시된 형상화 연마 입자들을 대체할 수 있다는 것을 이해하여야 한다. 일 실시예에서, 연마 물품 (900)은 또 다른 성형 연마 입자(903)에 대해 및/또는 연삭 방향(985)에 대해 미리 결정된 배향을 가진 성형 연마 입자(902)를 포함할 수 있다. 연삭 방향(985)은 재료 제거 동작에서 가공물에 대하여 연마 물품이 이동되는 의도된 방향일 수 있다. 특정한 실시예들에서, 연삭 방향(985)은 지지판(901)의 치수들에 대하여 형성될 수 있다. 예를들면, 일 실시태양에서, 연삭 방향(985)은 지지판의 가로 축(981)에 실질적으로 수직이며 지지판(901)의 세로 축(980)에 대하여 실질적으로 평행할 수 있다. 형상화 연마 입자(902)의 미리 결정된 배향 특성들은 가공물과 형상화 연마 입자(902)의 초기 접촉 표면을 정의할 수 있다. 예를들면, 형상화 연마 입자(902)는 주면들(963, 964) 및 주면들(963, 964) 사이에 각각 연장된 측면(965, 966)을 포함할 수 있다. 형상화 연마 입자(902)의 미리 결정된 배향 특성들은 재료 제거 조작 과정에서 주면 (963)이 형상화 연마 입자 (902)의 다른 표면들에 앞서 가공물과 초기 접촉을 이루도록 입자 (902)를 배치할 수 있다. 이러한 배향은 연삭 방향 (985)에 대하여 주면 배향인 것으로 고려될 수 있다. 더욱 상세하게, 형상화 연마 입자(902)는 연삭 방향 (985)에 대하여 특정 배향을 가진 등분 축 (931)을 가질 수 있다. 예를들면, 도시된 바와 같이, 연삭 방향 (985) 및 등분 축(931)의 벡터는 서로에 실질적으로 수직이다. 지지판에 대한 임의 범위의 미리 결정된 회전 배향들이 형상화 연마 입자에 대해 고려되는 것처럼, 연삭 방향 (985)에 대한 임의 범위의 형상화 연마 입자들의 배향들이 고려되며 이용될 수 있다는 것이 이해될 것이다.
형상화 연마 입자(903)는 형상화 연마 입자(902) 및 연삭 방향(985)과 비교할 때 하나 이상의 상이한 미리 결정된 배향 특성들을 가질 수 있다. 도시된 바와 같이, 형상화 연마 입자 (903)는 주면들 (991, 992)을 포함할 수 있으며, 각각은 측면들(971, 972)에 의해 연결될 수 있다. 게다가, 도시된 바와 같이, 형상화 연마 입자(903)는 연삭 방향(985)의 벡터에 대하여 특정한 각도를 형성하는 등분 축 (973)을 가질 수 있다. 도시된 바와 같이, 형상화 연마 입자(903)의 등분 축 (973)은 등분 축 (973) 및 연삭 방향 (985) 사이에서의 각도가 근본적으로 0이도록 연삭 방향 (985)과 실질적으로 평행 배향을 가질 수 있다. 따라서, 형상화 연마 입자 (903)의 미리 결정된 배향 특성들은 형상화 연마 입자 (903)의 다른 표면들 중 임의의 것에 앞서 가공물과의 측면 (972) 초기 접촉을 가능하게 한다. 형상화 연마 입자 (903)의 이러한 배향은 연삭 방향 (985)에 대해 측면 배향인 것으로 고려될 수 있다.
또한, 하나의 비-제한적 실시태양에서, 연마 물품은 지지판, 연삭 방향 및/또는 서로에 대해 하나 이상의 미리 결정된 분포로 배열될 수 있는 형상화 연마 입자들의 하나 이상의 그룹들을 포함할 수 있다는 것이 이해될 것이다. 본원에 설명된 바와 같이, 예를들면 하나 이상의 형상화 연마 입자들의 그룹들은 연삭 방향에 대해 미리 결정된 배향을 가질 수 있다. 게다가, 본원의 연마 물품들은 형상화 연마 입자들의 하나 이상의 그룹들을 가질 수 있으며, 그룹들 각각은 연삭 방향에 대해 상이한 예정된 배향을 가진다. 연삭 방향에 대해 상이한 미리 결정된 배향들을 가진 형상화 연마 입자들 그룹들을 이용하면 연마 물품의 개선된 성능을 가능하게 할 수 있다.
도 10은 실시태양에 따른 연마 물품 일부의 평면도를 포함한다. 특히, 연마 물품 (1000)은 다수의 형상화 연마 입자들을 포함한 제 1 그룹 (1001)을 포함할 수 있다. 도시된 바와 같이, 형상화 연마 입자들은 미리 결정된 분포를 정의하기 위해 하나의 지지판 (101)에서 서로에 대해 배열될 수 있다. 보다 특히, 미리 결정된 분포는 하향식으로 보여지는 바와 같이 패턴 (1023)의 형태에 있을 수 있으며, 보다 특히 삼각형 형태 2-차원 어레이를 정의한다. 추가로 예시된 바와 같이, 제1 그룹 (1001)은 지지판 (101) 위에 놓인 미리 결정된 마이크로-형태 (1031)를 정의하는 연마 물품 (1000) 상에 배열될 수 있다. 실시태양에 따르면, 마이크로-형태 (1031)는 상부에서 하부로 도시될 때 특정한 2-차원 형태를 가질 수 있다. 몇몇 대표적인 2-차원 형태들은 다각형들, 타원체들, 숫자들, 그리스 알파벳 문자들, 라틴 알파벳 문자들, 러시아 알파벳 문자들, 아랍어 알파벳 문자들, 간지 문자들, 복합 형태들, 불규칙 형태들, 설계들, 그것의 임의의 조합을 포함할 수 있다. 특정한 실시태양들에서, 특정한 마이크로-형태를 가진 그룹의 형성은 연마 물품의 개선된 성능을 가능하게 할 수 있다.
추가로 도시된 바와 같이, 연마 물품 (1000) 은 미리 결정된 분포를 정의하기 위해 지지판 (101)의 표면상에 배열될 수 있는 복수의 형상화 연마 입자들을 포함한 그룹 (1004)을 포함할 수 있다. 특히, 미리 결정된 분포는 패턴, 및 보다 특히, 일반적으로 사각형 패턴 (422)을 정의하는 복수의 형상화 연마 입자들의 배열을 포함할 수 있다. 도시된 바와 같이, 그룹 (1004)은 연마 물품 (1000)의 표면상에서의 마이크로-형태 (1034)를 정의할 수 있다. 하나의 실시태양에서, 그룹 (1004)의 마이크로-형태 (1034)는 예를들면, 다각형 형태, 및 보다 특히, 연마 물품 (1000)의 표면상에서 하향식으로 보여지는 바와 같이 일반적으로 사각형 (다이아몬드)을 포함하여, 하향식으로 보여지는 바와 같이 2-차원 형태를 가질 수 있다. 도 10의 예시된 실시태양에서, 그룹 (1001)은 실질적으로 그룹 (1004)의 마이크로-형태 (1034)와 동일한 마이크로-형태 (1031)를 가질 수 있다. 그러나, 다른 실시태양들에서, 다양한 상이한 그룹들은 연마 물품의 표면상에서 사용될 수 있으며, 보다 특히 상이한 그룹들의 각각은 서로 상이한 마이크로-형태를 가질 수 있다는 것을 이해하여야 한다.
추가로 도시되는 바와 같이, 연마 물품은 그룹들 (1001-1004) 사이에서 연장된 채널 영역들 (1021, 1024)에 의해 분리될 수 있는 그룹들 (1001, 1002, 1003, 1004)을 포함할 수 있다. 특정 실시태양들에서, 채널 영역들 (1021, 1024)은 실질적으로 형상화 연마 입자들이 없을 수 있다. 게다가, 채널 영역들 (1021, 1024)은 그룹들 (1001-1004) 사이에서 액체를 이동시키며 연마 물품의 스와프 개선 및 연삭 성능을 추가로 개선하도록 구성될 수 있다. 더욱이, 특정한 실시태양에서, 연마 물품 (1000)은 그룹들 (1001-1004) 사이에서 연장된 채널 영역들 (1021, 1024)을 포함할 수 있으며, 채널 영역들 (1021, 1024)은 연마 물품 (1000)의 표면 상에서 패턴화될 수 있다. 특정 예시들에서, 채널 영역들 (1021, 1024)은 연마 물품의 표면을 따라 연장된 특징들의 규칙적 및 반복하는 어레이를 나타낼 수 있다.
본원 실시태양들의 고정 연마 물품은 다양한 재료 제거 조작에 사용될 수 있다. 예를들면, 고정 연마 물품을 가공물에 대하여 상대적으로 이동시킴으로써 본원의 고정 연마 물품은 가공물로부터 재료 제거 방법에 사용된다. 고정 연마재 및 가공물 사이 상대 운동으로 가공물 표면에서 재료가 제거된다. 제한되지 않지만 무기 재료, 유기 재료, 및 이들 조합으로 구성된 가공물을 포함한 다양한 가공물이 본원 실시태양들의 고정 연마 물품을 이용하여 개질된다. 특정 실시태양에서, 가공물은 금속, 예컨대 금속 합금을 포함한다. 하나의 특정 예시에서, 가공물은 실질적으로 금속 또는 금속 합금, 예컨대 스테인리스강으로 이루어진다.
많은 상이한 양태들 및 실시태양들이 가능하다. 이들 양태 및 실시태양 일부가 하기된다. 본 명세서를 독해한 후, 당업자는 이들 양태 및 실시태양은 단지 예시적인 것이고 본 발명의 범위를 제한하지 않는다는 것을 이해할 것이다. 실시태양들은 하기 나열된 사항들 중 임의의 하나 이상의 항목들에 따른다.
항목들
항목 1. 형상화 연마 입자로서,
제1 주면, 제2 주면, 및 제1 주면 및 제2 주면을 연장하는 측면을 포함하는 몸체를 포함하고, 몸체는 약 0.7 내지 약 1.7범위의 첨예도-형상-강도 인자 (3SF) 및 적어도 약 0.51 내지 약 0.99 이하 범위의 형상지수를 포함하는, 형상화 연마 입자.
항목 2. 형상화 연마 입자로서,
제1 주면, 제2 주면, 및 제1 주면 및 제2 주면을 연장하는 측면을 포함하는 몸체를 포함하고, 몸체는 적어도 약 0.51 내지 약 0.99 이하 범위의 형상지수 및 약 600 MPa 이하 및 적어도 약 100 MPa의 강도를 포함하는, 형상화 연마 입자.
항목 3. 형상화 연마 입자로서,
제1 주면, 제2 주면, 및 제1 주면 및 제2 주면을 연장하는 측면을 포함하는 몸체를 포함하고, 몸체는 적어도 4개의 코너들을 포함하고, 각각의 코너는 약 80 미크론 이하 및 적어도 약 1 미크론 범위의 팁 첨예도, 적어도 약 0.51 내지 약 0.99 이하 범위의 형상지수를 포함하고, 몸체는 약 600 MPa 이하 및 적어도 약 100 MPa의 강도를 포함하는, 형상화 연마 입자.
항목 4. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체의 형상지수는 적어도 약 0.52, 적어도 약 0.53, 적어도 약 0.54, 적어도 약 0.55, 적어도 약 0.56, 적어도 약 0.57, 적어도 약 0.58, 적어도 약 0.59, 적어도 약 0.60, 적어도 약 0.61, 적어도 약 0.62, 적어도 약 0.63, 적어도 약 0.64, 적어도 약 0.65, 적어도 약 0.66, 적어도 약 0.67, 적어도 약 0.68, 적어도 약 0.69, 적어도 약 0.70, 적어도 약 0.71, 적어도 약 0.72, 적어도 약 0.73, 적어도 약 0.74, 적어도 약 0.75, 적어도 약 0.76, 적어도 약 0.77, 적어도 약 0.78, 적어도 약 0.79, 적어도 약 0.80, 적어도 약 0.81, 적어도 약 0.82, 적어도 약 0.83, 적어도 약 0.84, 적어도 약 0.85, 적어도 약 0.86, 적어도 약 0.87, 적어도 약 0.88, 적어도 약 0.89, 적어도 약 0.90, 적어도 약 0.91, 적어도 약 0.92, 적어도 약 0.93, 적어도 약 0.94, 적어도 약 0.95인, 형상화 연마 입자.
항목 5. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체의 형상지수는 약 0.98 이하, 약 0.97 이하, 약 0.96 이하, 약 0.95 이하, 약 0.94 이하, 약 0.93 이하, 약 0.92 이하, 약 0.91 이하, 약 0.90 이하, 약 0.89 이하, 약 0.88 이하, 약 0.87 이하, 약 0.86 이하, 약 0.85 이하, 약 0.84 이하, 약 0.83 이하, 약 0.82 이하, 약 0.81 이하, 약 0.80 이하, 약 0.79 이하, 약 0.78 이하, 약 0.77 이하, 약 0.76 이하, 약 0.75 이하, 약 0.74 이하, 약 0.73 이하, 약 0.72 이하, 약 0.71 이하, 약 0.70 이하, 약 0.69 이하, 약 0.68 이하, 약 0.67 이하, 약 0.66 이하, 약 0.65 이하, 약 0.64 이하, 약 0.63 이하, 약 0.62 이하, 약 0.61 이하, 약 0.60 이하, 약 0.59 이하, 약 0.58 이하, 약 0.57 이하, 약 0.56 이하, 약 0.55 이하, 약 0.54 이하인, 형상화 연마 입자.
항목 6. 항목들 2 및 3 중 임의의 하나의 항목에 있어서, 몸체의 첨예도-형상-강도 인자 (3SF) 범위는 약 0.7 내지 약 1.7인, 형상화 연마 입자.
항목 7. 항목들 1 및 6 중 임의의 하나의 항목에 있어서, 몸체의 3SF는 적어도 약 0.72, 적어도 약 0.75, 적어도 약 0.78, 적어도 약 0.8, 적어도 약 0.82, 적어도 약 0.85, 적어도 약 0.88, 적어도 약 0.90, 적어도 약 0.92, 적어도 약 0.95, 적어도 약 0.98인, 형상화 연마 입자.
항목 8. 항목들 1 및 6 중 임의의 하나의 항목에 있어서, 몸체의 3SF는 약 1.68 이하, 약 1.65 이하, 약 1.62 이하, 약 1.6 이하, 약 1.58 이하, 약 1.55 이하, 약 1.52 이하, 약 1.5 이하, 약 1.48 이하, 약 1.45 이하, 약 1.42 이하, 약 1.4 이하, 약 1.38 이하, 약 1.35 이하, 약 1.32 이하, 약 1.3 이하, 약 1.28 이하, 약 1.25 이하, 약 1.22 이하, 약 1.2 이하, 약 1.18 이하, 약 1.15 이하, 약 1.12 이하, 약 1.1 이하인, 형상화 연마 입자.
항목 9. 항목 1에 있어서, 몸체의 강도는 약 600 MPa 이하 및 적어도 약 100 MPa 인, 형상화 연마 입자.
항목 10. 항목들 2, 3, 및 9 중 임의의 하나의 항목에 있어서, 몸체의 강도는 약 590 MPa 이하, 약 580 MPa 이하, 약 570 MPa 이하, 약 560 MPa 이하, 약 550 MPa 이하, 약 540 MPa 이하, 약 530 MPa 이하, 약 520 MPa 이하, 약 510 MPa 이하, 약 500 MPa 이하, 약 490 MPa 이하, 약 480 MPa 이하, 약 470 MPa 이하, 약 460 MPa 이하, 약 450 MPa 이하, 약 440 MPa 이하, 약 430 MPa 이하, 약 420 MPa 이하, 약 410 MPa 이하, 약 400 MPa 이하, 약 390 MPa 이하, 약 380 MPa 이하, 약 370 MPa 이하, 약 360 MPa 이하, 약 350 MPa 이하, 약 340 MPa 이하, 약 330 MPa 이하, 약 320 MPa 이하, 약 310 MPa 이하, 약 300 MPa 이하, 약 290 MPa 이하, 약 280 MPa 이하, 약 270 MPa 이하, 약 260 MPa 이하, 약 250 MPa 이하, 약 240 MPa 이하, 약 230 MPa 이하, 약 220 MPa 이하, 약 210 MPa 이하, 약 200 MPa이하인, 형상화 연마 입자.
항목 11. 항목들 2, 3, 및 9 중 임의의 하나의 항목에 있어서, 몸체의 강도는 적어도 약 110 MPa, 적어도 약 120 MPa, 적어도 약 130 MPa, 적어도 약 140 MPa, 적어도 약 150 MPa, 적어도 약 160 MPa, 적어도 약 170 MPa, 적어도 약 180 MPa, 적어도 약 190 MPa, 적어도 약 200 MPa, 적어도 약 210 MPa, 적어도 약 220 MPa, 적어도 약 230 MPa, 적어도 약 240 MPa, 적어도 약 250 MPa, 적어도 약 260 MPa, 적어도 약 270 MPa, 적어도 약 280 MPa, 적어도 약 290 MPa, 적어도 약 300 MPa, 적어도 약 310 MPa, 적어도 약 320 MPa, 적어도 약 330 MPa, 적어도 약 340 MPa, 적어도 약 350 MPa, 적어도 약 360 MPa, 적어도 약 370 MPa, 적어도 약 380 MPa, 적어도 약 390 MPa, 적어도 약 400 MPa, 적어도 약 410 MPa, 적어도 약 420 MPa, 적어도 약 430 MPa, 적어도 약 440 MPa, 적어도 약 450 MPa, 적어도 약 460 MPa, 적어도 약 470 MPa, 적어도 약 480 MPa, 적어도 약 490 MPa, 적어도 약 500 MPa인, 형상화 연마 입자.
항목 12. 항목들 1 및 2 중 임의의 하나의 항목에 있어서, 몸체의 팁 첨예도 범위는 약 80 미크론 이하 내지 적어도 약 1 미크론인, 형상화 연마 입자.
항목 13. 항목들 3 및 12 중 임의의 하나의 항목에 있어서, 몸체의 팁 첨예도는 약 78 미크론 이하, 약 76 미크론 이하, 약 74 미크론 이하, 약 72 미크론 이하, 약 70 미크론 이하, 약 68 미크론 이하, 약 66 미크론 이하, 약 64 미크론 이하, 약 62 미크론 이하, 약 60 미크론 이하, 약 58 미크론 이하, 약 56 미크론 이하, 약 54 미크론 이하, 약 52 미크론 이하, 약 50 미크론 이하, 약 48 미크론 이하, 약 46 미크론 이하, 약 44 미크론 이하, 약 42 미크론 이하, 약 40 미크론 이하, 약 38 미크론 이하, 약 36 미크론 이하, 약 34 미크론 이하, 약 32 미크론 이하, 약 30 미크론 이하, 약 38 미크론 이하, 약 36 미크론 이하, 약 34 미크론 이하, 약 32 미크론 이하, 약 30 미크론 이하, 약 28 미크론 이하, 약 26 미크론 이하, 약 24 미크론 이하, 약 22 미크론 이하, 약 20 미크론 이하, 약 18 미크론 이하, 약 16 미크론 이하, 약 14 미크론 이하, 약 12 미크론 이하, 약 10 미크론 이하인, 형상화 연마 입자.
항목 14. 항목들 3 및 12 중 임의의 하나의 항목에 있어서, 몸체의 팁 첨예도는 적어도 약 2 미크론, 적어도 약 4 미크론, 적어도 약 6 미크론, 적어도 약 8 미크론, 적어도 약 10 미크론, 적어도 약 12 미크론, 적어도 약 14 미크론, 적어도 약 16 미크론, 적어도 약 18 미크론, 적어도 약 20 미크론, 적어도 약 22 미크론, 적어도 약 24 미크론, 적어도 약 26 미크론, 적어도 약 28 미크론, 적어도 약 30 미크론, 적어도 약 32 미크론, 적어도 약 34 미크론, 적어도 약 36 미크론, 적어도 약 38 미크론, 적어도 약 40 미크론, 적어도 약 42 미크론, 적어도 약 44 미크론, 적어도 약 46 미크론, 적어도 약 48 미크론, 적어도 약 50 미크론, 적어도 약 52 미크론, 적어도 약 54 미크론, 적어도 약 56 미크론, 적어도 약 58 미크론, 적어도 약 60 미크론, 적어도 약 62 미크론, 적어도 약 64 미크론, 적어도 약 66 미크론, 적어도 약 68 미크론, 적어도 약 70 미크론인, 형상화 연마 입자.
항목 15. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 첨가제를 포함하고, 첨가제는 산화물을 포함하고, 첨가제는 금속 원소를 포함하고, 첨가제는 희토류 원소를 포함하는, 형상화 연마 입자.
항목 16. 항목 15에 있어서, 첨가제는 도펀트 재료를 포함하고, 도펀트 재료는 알칼리 금속원소, 알칼리 토금속원소, 희토류 원소, 전이금속 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하고, 도펀트 재료는 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란탄, 세슘, 프라세오디뮴, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하는, 형상화 연마 입자.
항목 17. 항목 16에 있어서, 도펀트는 MgO를 포함하고, 몸체의 MgO 함량은 적어도 약 0.5 wt%, 적어도 약 0.6 wt%, 적어도 약 0.7 wt%, 적어도 약 0.8 wt%, 적어도 약 0.9 wt%, 적어도 약 1 wt%, 적어도 약 1.1 wt%, 적어도 약 1.2 wt%, 적어도 약 1.3 wt%, 적어도 약 1.4 wt%, 적어도 약 1.5 wt%, 적어도 약 1.6 wt%, 적어도 약 1.7 wt%, 적어도 약 1.8 wt%, 적어도 약 1.9 wt%, 적어도 약 2 wt%, 적어도 약 2.1 wt%, 적어도 약 2.2 wt%, 적어도 약 2.3 wt%, 적어도 약 2.4 wt%, 적어도 약 2.5 wt%인, 형상화 연마 입자.
항목 18. 항목 17에 있어서, 몸체의 MgO 함량은 약 8 wt% 이하, 약 7 wt% 이하, 약 6 wt% 이하, 약 5 wt% 이하, 약 4.9 wt% 이하, 약 4.8 wt% 이하, 약 4.7wt% 이하, 약 4.6 wt% 이하, 약 4.5 wt% 이하, 약 4.4 wt% 이하, 약 4.3 wt% 이하, 약 4.2wt% 이하, 약 4.1 wt% 이하, 약 4 wt% 이하, 약 3.9 wt% 이하, 약 3.8 wt% 이하, 약 3.7wt% 이하, 약 3.6 wt% 이하, 약 3.5 wt% 이하, 약 3.4 wt% 이하, 약 3.3 wt% 이하, 약 3.2wt% 이하, 약 3.1 wt% 이하, 약 3 wt% 이하, 약 2.9 wt% 이하, 약 2.8 wt% 이하, 약 2.7wt% 이하, 약 2.6 wt% 이하, 약 2.5 wt% 이하인, 형상화 연마 입자.
항목 19. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 몸체 총 중량에 대하여 적어도 약 95 wt%, 적어도 약 95.1 wt%, 적어도 약 95.2 wt%, 적어도 약 95.3 wt%, 적어도 약 95.4 wt%, 적어도 약 95.5 wt%, 적어도 약 95.6 wt%, 적어도 약 95.7 wt%, 적어도 약 95.8 wt%, 적어도 약 95.9 wt%, 적어도 약 96 wt%, 적어도 약 96.1 wt%, 적어도 약 96.2 wt%, 적어도 약 96.3 wt%, 적어도 약 96.4 wt%, 적어도 약 96.5 wt%, 적어도 약 96.6 wt%, 적어도 약 96.7 wt%, 적어도 약 96.8 wt%, 적어도 약 96.9 wt%, 적어도 약 97 wt%, 적어도 약 97.1 wt%, 적어도 약 97.2 wt%, 적어도 약 975.3 wt%, 적어도 약 97.4 wt%, 적어도 약 97.5 wt%의 알루미나를 포함하는, 형상화 연마 입자.
항목 20. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 몸체 총 중량에 대하여 약 99.5 wt% 이하, 약 99.4 wt% 이하, 약 99.3wt% 이하, 약 99.2 wt% 이하, 약 99.1 wt% 이하, 약 99 wt% 이하, 약 98.9 wt% 이하, 약 98.8 wt% 이하, 약 98.7wt% 이하, 약 98.6 wt% 이하, 약 98.5 wt% 이하, 약 98.4 wt% 이하, 약 98.3 wt% 이하, 약 98.2 wt% 이하, 약 98.1wt% 이하, 약 98 wt% 이하, 약 97.9 wt% 이하, 약 97.8 wt% 이하, 약 97.7 wt% 이하, 약 97.6 wt% 이하, 약 97.5wt% 이하의 알루미나를 포함하는, 형상화 연마 입자.
항목 21. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 실질적으로 알루미나 및 MgO로 이루어지는, 형상화 연마 입자.
항목 22. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 실질적으로 알루미나로 이루어지는, 형상화 연마 입자.
항목 23. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 결정 입자들을 포함하는 다결정 재료를 포함하고, 평균 결정 입자 크기는 약 1 미크론 이하, 약 0.9 미크론 이하, 약 0.8 미크론 이하, 약 0.7 미크론 이하, 약 0.6 미크론 이하인, 형상화 연마 입자.
항목 24. 항목 23에 있어서, 평균 결정 입자 크기는 적어도 약 0.01 미크론, 적어도 약 0.05 미크론, 적어도 약 0.06 미크론, 적어도 약 0.07 미크론, 적어도 약 0.08 미크론, 적어도 약 0.09 미크론, 적어도 약 0.1 미크론, 적어도 약 0.12 미크론, 적어도 약 0.15 미크론, 적어도 약 0.17 미크론, 적어도 약 0.2 미크론인, 형상화 연마 입자.
항목 25. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 실질적으로 바인더가 부재이고, 몸체는 실질적으로 유기 재료가 부재이고, 몸체는 실질적으로 희토류원소가 부재이고, 몸체는 실질적으로 철이 부재인, 형상화 연마 입자.
항목 26. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 시드화 졸 겔에서 형성되는, 형상화 연마 입자.
항목 27. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체의 폭: 길이인 1차 종횡비는 적어도 약 1:1 및 약 1:10 이하인, 형상화 연마 입자.
항목 28. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체의 폭: 높이의 비율로 정의되는2차 종횡비 범위는 약 5:1 내지 약 1:1인, 형상화 연마 입자.
항목 29. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체의 길이: 높이의 비율로 정의되는 3차 종횡비 범위는 약 6:1 내지 약 1:1인, 형상화 연마 입자.
항목 30. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 다결정 재료를 포함하고, 다결정성 재료는 입자들을 포함하고, 입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 다이아몬드 및 이들의 조합으로 이루어진 재료 군에서 선택되고, 입자들은 알루미늄 산화물, 지르코늄 산화물, 티타늄 산화물, 이트륨 산화물, 크롬 산화물, 스트론튬 산화물, 규소산화물, 및 이들의 조합으로 이루어진 군에서 선택되는 산화물을 포함하고, 입자들은 알루미나를 포함하고, 입자들은 실질적으로 알루미나로 이루어진, 형상화 연마 입자.
항목 31. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 몸체는 사각, 직사각, 사다리꼴, 오각, 육각, 칠각, 팔각, 및 이들의 조합으로 이루어진 군에서 선택되는 2-차원 형상으로 구성되고, 몸체는 몸체의 길이 및 폭으로 정의되는 평면에서 관찰될 때 타원형, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 및 이들의 조합으로 이루어진 군에서 선택되는2차원 형상으로 구성되는, 형상화 연마 입자.
항목 32. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 몸체는 불규칙 사변형, 불규칙 직사각형, 불규칙 사다리꼴, 불규칙 오각형, 불규칙 육각형, 불규칙 칠각형, 불규칙 팔각형, 불규칙 구각형, 불규칙 십각형, 및 이들의 조합으로 이루어진 군에서 선택되는 형상으로 구성되는, 형상화 연마 입자.
항목 33. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 몸체의 2차원 형상은 적어도 4개의 외점들, 적어도 5개의 외점들, 적어도 6개의 외점들, 적어도 7개의 외점들, 적어도 8개의 외점들, 적어도 9개의 외점들을 가지는, 형상화 연마 입자.
항목 34. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 고정 연마물품의 일부로서 기판과 결합되고, 고정 연마 물품은 결합 연마 물품, 코팅 연마 물품, 및 이들의 조합으로 이루어진 군에서 선택되는, 형상화 연마 입자.
항목 35. 항목 34에 있어서, 기판은 지지판이고, 지지판은 직물 재료를 포함하고, 지지판은 부직물 재료를 포함하고, 지지판은 유기 재료를 포함하고, 지지판은 고분자를 포함하고, 지지판은 천, 페이퍼, 필름, 직물, 털소재 직물 (fleeced fabric), 경화 파이버, 직물소재, 부직물 소재, 웨빙 (webbing), 고분자, 수지, 페놀수지, 페놀-라텍스 수지, 에폭시 수지, 폴리에스테르 수지, 요소 포름알데히드 수지, 폴리에스테르, 폴리우레탄, 폴리프로필렌, 폴리이미드, 및 이들의 조합으로 이루어진 군에서 선택되는 재료를 포함하는, 형상화 연마 입자.
항목 36. 항목 34에 있어서, 형상화 연마 입자는 다수의 제1 타입의 형상화 연마 입자들의 일부이고, 다량의 제1 타입의 형상화 연마 입자들은 개방 코트에서 지지판에 결합되고, 개방 코트의 코팅 밀도는 약 70 입자들/cm2 이하, 약 65 입자들/cm2 이하, 약 60 입자들/cm2 이하, 약 55 입자들/cm2 이하, 약 50 입자들/cm2 이하, 적어도 약 5 입자들/cm2 이하, 적어도 약 10 입자들/cm2 이하인, 형상화 연마 입자.
항목 37. 항목 34에 있어서, 형상화 연마 입자는 다수의 제1 타입의 형상화 연마 입자들의 일부이고, 다량의 제1 타입의 형상화 연마 입자들은 지지판에서 형상화 연마 입자들 블렌드인 밀폐 코트에서 지지판에 결합되고, 밀폐 코트의 코팅 밀도는 적어도 약 75 입자들/cm2, 적어도 약 80 입자들/cm2, 적어도 약 85 입자들/cm2, 적어도 약 90 입자들/cm2, 적어도 약 100 입자들/cm2인, 형상화 연마 입자.
항목 38. 항목 34에 있어서, 형상화 연마 입자는 다수의 제1 타입의 형상화 연마 입자들 및 제3 타입의 연마 입자를 포함하는 블렌드 (blend) 일부이고, 제3 타입의 연마 입자는 형상화 연마 입자를 포함하고, 제3 타입의 연마 입자는 부형의 (diluent type) 연마 입자를 포함하고, 부형의 연마 입자는 불규칙 형상을 포함하는, 형상화 연마 입자.
항목 39. 항목 38에 있어서, 연마 입자들의 블렌드는 다수의 형상화 연마 입자들을 포함하고, 다수의 형상화 연마 입자들의 각각의 형상화 연마 입자는 지지판에 대하여 조절된 배향으로 배열되고, 조절된 배향은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 포함하는, 형상화 연마 입자.
항목 40. 항목 35에 있어서, 지지판은 촉매, 커플링제, 경화제 (curants), 대전방지제, 현탁제, 안티-로딩제, 윤활제, 습윤제, 염료, 충전제, 점도조절제, 분산제, 소포제, 및 분쇄제로 이루어진 군에서 선택되는 첨가제를 포함하는, 형상화 연마 입자.
항목 41. 항목 35에 있어서, 지지판 상부에 놓이는 접착층을 더욱 포함하고, 접착층은 메이크 코트를 포함하고, 메이크 코트는 지지판 상부에 놓이고, 메이크 코트는 지지판 일부에 직접 결합되고, 메이크 코트는 유기재료를 포함하고, 메이크 코트는 고분자 재료를 포함하고, 메이크 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 형상화 연마 입자.
항목 42. 항목 40에 있어서, 접착층은 사이즈 코트를 포함하고, 사이즈 코트는 다수의 형상화 연마 입자들 일부 상부에 놓이고, 사이즈 코트는 메이크 코트 상부에 놓이고, 사이즈 코트는 다수의 형상화 연마 입자 일부에 직접 결합되고, 사이즈 코트는 유기 재료를 포함하고, 사이즈 코트는 고분자 재료를 포함하고 , 사이즈 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 형상화 연마 입자.
항목 43. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체는 길이 (l), 폭 (w), 및 높이 (hi)를 포함하고, 길이>폭, 길이>높이, 및 폭>높이인, 형상화 연마 입자.
항목 44. 항목 43에 있어서, 높이 (h)는 적어도 약 100 미크론, 적어도 약 110 미크론, 적어도 약 120 미크론, 적어도 약 150 미크론, 적어도 약 175 미크론, 적어도 약 200 미크론, 적어도 약 225 미크론, 적어도 약 250 미크론, 적어도 약 275 미크론, 또는 적어도 약 300 미크론, 및 이하 약 3 mm, 예컨대 이하 약 2 mm, 이하 약 1.5 mm, 이하 약 1 mm, 또는 이하 약 800 미크론, 이하 약 600 미크론, 이하 약 500 미크론, 이하 약 475 미크론, 이하 약 450 미크론, 이하 약 425 미크론, 이하 약 400 미크론, 이하 약 375 미크론, 이하 약 350 미크론, 이하 약 325 미크론, 이하 약 300 미크론, 이하 약 275 미크론, 또는 이하 약 250 미크론인, 형상화 연마 입자.
항목 45. 항목 44에 있어서, 폭은 적어도 약 600 미크론, 적어도 약 700 미크론, 적어도 약 800 미크론, 적어도 약 900 미크론, 및 이하 약 4 mm, 이하 약 3 mm, 이하 약 2.5 mm, 이하 약 2 mm인, 형상화 연마 입자.
항목 46. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체의 플래싱 비율은 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 약 18% 이하, 약 15% 이하, 약 12% 이하, 약 10% 이하, 약 8% 이하, 약 6% 이하, 약 4% 이하인, 형상화 연마 입자.
항목 47. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 몸체의 디싱 값 (d)은 약 2 이하, 약 1.9 이하, 약 1.8 이하, 약 1.7 이하, 약 1.6 이하, 약 1.5 이하, 약 1.2 이하, 및 적어도 약 0.9 이하, 적어도 약 1.0 이하인, 형상화 연마 입자.
항목 48. 항목들 1, 2, 및 3 중 임의의 하나의 항목에 있어서, 형상화 연마 입자는 다수의 제1 타입의 형상화 연마 입자들의 일부이고, 다량의 제1 타입의 형상화 연마 입자들은 측면 배향에서 지지판에 결합되고, 다수의 형상화 연마 입자들의 형상화 연마 입자들 적어도 약 55%, 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 77%, 적어도 약 80%, 및 약 99% 이하, 약 95% 이하, 약 90% 이하, 약 85% 이하는 측면 배향에서 지지판에 결합되는, 형상화 연마 입자.
항목 49. 형상화 연마 입자 제조 방법으로서, 형상화 연마입자의 몸체 형성 단계를 포함하고, 이는:
i) 미리 결정된 강도를 가지는 재료의 선택 단계 및 미리 결정된 강도에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 형상지수를 가지는 형상화 연마 입자의 몸체를 형성하는 단계;
ii) 형상화 연마 입자의 몸체의 미리 결정된 형상지수를 선택하는 단계 및 미리 결정된 형상지수에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 강도를 가지는 몸체를 형성하는 단계; 및
iii) 형상화 연마 입자의 몸체의 미리 결정된 팁 첨예도를 선택하는 단계 및 미리 결정된 팁 첨예도에 기초하여 미리 결정된 형상지수 및 미리 결정된 강도를 가지는 형상화 연마 입자의 몸체를 형성하는 단계 중 적어도 하나를 포함하는, 형상화 연마 입자 제조 방법.
항목 50. 항목 49에 있어서, 형성 단계는 형상화 연마 입자의 자기-예리화 거동에 영향을 주는 형상화 연마 입자 몸체의 미리 결정된 팁 첨예도, 미리 결정된 형상지수, 및 미리 결정된 강도의 군에서 선택되는 입자 특징부의 연관성을 조절하는 단계를 포함하는, 형상화 연마 입자 제조 방법.
항목 51. 항목 50에 있어서, 입자 특징부의 연관성을 조절하는 단계는 약 0.7 내지 약 1.7 범위의 첨예도-형상-강도 인자 (3SF)를 가지는 몸체 형성 단계를 포함하는, 형상화 연마 입자 제조 방법.
항목 52. 항목 49에 있어서, 형성 단계는 적층, 인쇄, 압출, 성형, 캐스팅, 압축, 펀칭, 절편화, 및 이들의 조합으로 이루어진 군에서 선택되는 방법을 포함하는, 형상화 연마 입자 제조 방법.
항목 53. 항목 49에 있어서, 미리 결정된 형상지수 범위는 적어도 약 0.51 내지 약 0.99 이하인, 형상화 연마 입자 제조 방법.
항목 54. 항목 49에 있어서, 미리 결정된 팁 첨예도 범위는 약 80 미크론 이하 내지 적어도 약 1 미크론인, 형상화 연마 입자 제조 방법.
항목 55. 항목 49에 있어서, 미리 결정된 강도 범위는 약 600 MPa 이하 내지 적어도 약 100 MPa인, 형상화 연마 입자 제조 방법.
항목 56. 형상화 연마 입자로서,
제1 주면, 제2 주면, 및 제1 주면 및 제2 주면을 연장하는 측면을 포함하는 몸체로 구성되고, 몸체는 비스듬하게, 끝이 잘린 형상을 포함하는, 형상화 연마 입자.
항목 57. 항목 56에 있어서, 측면은 제1 측면 영역 및 제1 비스듬한 측면 영역을 포함하고, 제1 측면 영역 및 제1 비스듬한 측면 영역은 둔각 값을 가지는 제1 비스듬한 각 (Ao1)에서 연결되는, 형상화 연마 입자.
항목 58. 항목 57에 있어서, 둔각 값은 적어도 약 92°, 적어도 약 94°, 적어도 약 96°, 적어도 약 98°, 적어도 약 100°, 적어도 약 102°, 적어도 약 104°, 적어도 약 106°, 적어도 약 108°, 적어도 약 110°, 적어도 약 112°, 적어도 약 124°, 적어도 약 126°, 적어도 약 128°, 적어도 약 120°, 적어도 약 122°, 적어도 약 124°, 적어도 약 126°, 적어도 약 128°, 적어도 약 130°, 적어도 약 132°, 적어도 약 134°, 적어도 약 136°, 적어도 약 138°, 적어도 약 140°인, 형상화 연마 입자.
항목 59. 항목 57에 있어서, 둔각은 약 176° 이하, 약 174° 이하, 약 172° 이하, 약 170° 이하, 약 168° 이하, 약 166° 이하, 약 164° 이하, 약 162° 이하, 약 160° 이하, 약 158° 이하, 약 156° 이하, 약 154° 이하, 약 152° 이하, 약 150° 이하, 약 148° 이하, 약 146° 이하, 약 144° 이하, 약 142° 이하, 약 140° 이하인, 형상화 연마 입자.
항목 60. 항목 56에 있어서, 제1 측면 영역은 제1 측면 영역 길이 (Lss1)를 가지고 제1 비스듬한 측면 영역은 길이 (Los1)를 가지고, 제1 비스듬한 측면 영역 길이는 제1 측면 영역 길이와 상이한, 형상화 연마 입자.
항목 61. 항목 60에 있어서, Los1>Lss1인, 형상화 연마 입자.
항목 62. 항목 60에 있어서, Lss1>Los1인, 형상화 연마 입자.
항목 63. 항목 60에 있어서, 또한 길이 인자 (Los1/Lss1)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 64. 항목 63에 있어서, 길이 인자 (Los1/Lss1)는 적어도 약 0.05, 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 적어도 약 0.95인, 형상화 연마 입자.
항목 65. 항목 60에 있어서, 또한 길이 인자 (Lss1/Los1)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 66. 항목 65에 있어서, 길이 인자 (Lss1/Los1)는 적어도 약 0.05, 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 적어도 약 0.95인, 형상화 연마 입자.
항목 67. 항목 57에 있어서, 측면은 제2 측면 영역 및 제2 비스듬한 측면 영역을 더욱 포함하고, 제2 측면 영역은 제1 외부 코너에서 제1 비스듬한 영역에 결합되고, 제1 외부 코너는 제1 외부 코너 각 (Aec1)을 형성하고 제1 외부 코너 각은 제1 비스듬한 각 (Ao1) 값과 상이한, 형상화 연마 입자.
항목 68. 항목 67에 있어서, 제1 외부 코너 각은 제1 비스듬한 각 값보다 작은, 형상화 연마 입자.
항목 69. 항목 67에 있어서, 제1 외부 코너 각은 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 65°, 적어도 약 70°, 적어도 약 80°, 적어도 약 85°인, 형상화 연마 입자.
항목 70. 항목 69에 있어서, 제1 외부 코너 각은 약 130° 이하, 약 125° 이하, 약 120° 이하, 약 115° 이하, 약 110° 이하, 약 105° 이하, 약 100° 이하, 약 95° 이하, 약 94° 이하, 약 93°이하인, 형상화 연마 입자.
항목 71. 항목 67에 있어서, 또한 제1 각 인자 (Aec1/Ao1)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 72. 항목 71에 있어서, 제1 각 인자 (Aec1/Ao1)는 적어도 약 0.05, 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 적어도 약 0.95인, 형상화 연마 입자.
항목 73. 항목 68에 있어서, 제1 외부 코너 각은 실질적으로 직각인, 형상화 연마 입자.
항목 74. 항목 67에 있어서, 제2 측면 영역은 제2 측면 영역 길이 (Lss2)를 가지고 제2 비스듬한 측면 영역은 길이 (Los2)를 가지고, 제2 비스듬한 측면 영역 길이는 제2 측면 영역 길이와 상이한, 형상화 연마 입자.
항목 75. 항목 74에 있어서, Lss2는 Lss1과 상이한, 형상화 연마 입자.
항목 76. 항목 74에 있어서, Lss2는 Lss1과 실질적으로 동일한, 형상화 연마 입자.
항목 77. 항목 74에 있어서, Los2는 Los1과 상이한, 형상화 연마 입자.
항목 78. 항목 74에 있어서, Los2는 Los1과 실질적으로 동일한, 형상화 연마 입자.
항목 79. 항목 74에 있어서, Los2>Lss2인, 형상화 연마 입자.
항목 80. 항목 74에 있어서, Lss2>Los2인, 형상화 연마 입자.
항목 81. 항목 74에 있어서, 또한 길이 인자 (Los2/Lss2)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 82. 항목 81에 있어서, 길이 인자 (Los2/Lss2)는 적어도 약 0.05, 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 적어도 약 0.95인, 형상화 연마 입자.
항목 83. 항목 74에 있어서, 또한 길이 인자 (Lss2/Los2)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 84. 항목 83에 있어서, 길이 인자 (Lss2/Los2)는 적어도 약 0.05, 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 적어도 약 0.95인, 형상화 연마 입자.
항목 85. 항목 67에 있어서, 측면은 제3 측면 영역 및 제3 비스듬한 측면 영역을 더욱 포함하고, 제3 측면 영역은 제2 외부 코너에서 제2 비스듬한 영역에 결합되는, 형상화 연마 입자.
항목 86. 항목 85에 있어서, 제2 외부 코너는 제2 외부 코너 각 (Aec2)을 형성하고 제2 외부 코너 각은 제2 비스듬한 각 (Ao1) 값과 상이한, 형상화 연마 입자.
항목 87. 항목 86에 있어서, 제2 외부 코너 각 (Aec2)은 제2 비스듬한 각 (Ao2) 값보다 작은, 형상화 연마 입자.
항목 88. 항목 86에 있어서, 제2 외부 코너 각은 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 65°, 적어도 약 70°, 적어도 약 80°, 적어도 약 85°인, 형상화 연마 입자.
항목 89. 항목 86에 있어서, 제2 외부 코너 각은 약 130° 이하, 약 125° 이하, 약 120° 이하, 약 115° 이하, 약 110° 이하, 약 105° 이하, 약 100° 이하, 약 95° 이하, 약 94° 이하, 약 93° 이하인, 형상화 연마 입자.
항목 90. 항목 86에 있어서, 또한 제2 각 인자 (Aec2/Ao2)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 91. 항목 90에 있어서, 제2 각 인자 (Aec2/Ao2)은 적어도 약 0.05, 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 적어도 약 0.95인, 형상화 연마 입자.
항목 92. 항목 86에 있어서, 제2 외부 코너 각 (Aec2)은 실질적으로 직각인, 형상화 연마 입자.
항목 93. 항목 85에 있어서, 제3 비스듬한 측면 영역은 제3 외부 코너에서 제1 측면 영역에 결합되고, 제3 외부 코너는 제3 외부 코너 각 (Aec3)을 형성하고, 제3 외부 코너 각은 제3 비스듬한 각 (Ao3) 값과 상이한, 형상화 연마 입자.
항목 94. 항목 93에 있어서, 제3 외부 코너 각 (Aec3)은 제2 비스듬한 각 (Ao3) 값보다 작은, 형상화 연마 입자.
항목 95. 항목 93에 있어서, 제3 외부 코너 각 (Aec3)은 적어도 약 50°, 적어도 약 55°, 적어도 약 60°, 적어도 약 65°, 적어도 약 70°, 적어도 약 80°, 적어도 약 85°인, 형상화 연마 입자.
항목 96. 항목 93에 있어서, 제3 외부 코너 각 (Aec3)은 약 130° 이하, 약 125° 이하, 약 120° 이하, 약 115° 이하, 약 110° 이하, 약 105° 이하, 약 100° 이하, 약 95° 이하, 약 94° 이하, 약 93° 이하인, 형상화 연마 입자.
항목 97. 항목 93에 있어서, 제3 외부 코너 각 (Aec3)은 실질적으로 직각인, 형상화 연마 입자.
항목 98. 항목 93에 있어서, 또한 제2 각 인자 (Aec2/Ao2)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 99. 항목 98에 있어서, 제2 각 인자 (Aec2/Ao2)는 적어도 약 0.05, 적어도 약 0.1, 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.25, 적어도 약 0.3, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.85, 적어도 약 0.9, 적어도 약 0.95인, 형상화 연마 입자.
항목 100. 항목 85에 있어서, 제3 측면 영역은 제3 측면 영역 길이 (Lss3)를 가지고 제3 비스듬한 측면 영역은 길이 (Los3)를 가지고, 제3 비스듬한 측면 영역 길이는 제3 측면 영역 길이와 상이한, 형상화 연마 입자.
항목 101. 항목 100에 있어서, Lss3은 Lss2와 상이한, 형상화 연마 입자.
항목 102. 항목 100에 있어서, Lss3은 Lss1과 상이한, 형상화 연마 입자.
항목 103. 항목 100에 있어서, Lss3은 Lss1과 실질적으로 동일한, 형상화 연마 입자.
항목 104. 항목 100에 있어서, Lss3은 Lss2와 실질적으로 동일한, 형상화 연마 입자.
항목 105. 항목 100에 있어서, Los3은 Los1과 상이한, 형상화 연마 입자.
항목 106. 항목 100에 있어서, Los3은 Los2와 상이한, 형상화 연마 입자.
항목 107. 항목 100에 있어서, Los3은 Los1과 실질적으로 동일한, 형상화 연마 입자.
항목 108. 항목 100에 있어서, Los3은 Los2와 실질적으로 동일한, 형상화 연마 입자.
항목 109. 항목 100에 있어서, Los3>Lss3인, 형상화 연마 입자.
항목 110. 항목 100에 있어서, Lss3>Los3인, 형상화 연마 입자.
항목 111. 항목 100에 있어서, 또한 길이 인자 (Los3/Lss3)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 112. 항목 100에 있어서, 또한 길이 인자 (Lss3/Los3)는 약 1 이하, 약 0.95 이하, 약 0.9 이하, 약 0.85 이하, 약 0.8 이하, 약 0.75 이하, 약 0.7 이하, 약 0.65 이하, 약 0.6 이하, 약 0.55 이하, 약 0.5 이하, 약 0.45 이하, 약 0.4 이하, 약 0.35 이하, 약 0.3 이하, 약 0.35 이하, 약 0.3 이하, 약 0.25 이하, 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하인, 형상화 연마 입자.
항목 113. 항목 56에 있어서, 몸체의 형상지수는 적어도 약 0.52, 적어도 약 0.53, 적어도 약 0.54, 적어도 약 0.55, 적어도 약 0.56, 적어도 약 0.57, 적어도 약 0.58, 적어도 약 0.59, 적어도 약 0.60, 적어도 약 0.61, 적어도 약 0.62, 적어도 약 0.63, 적어도 약 0.64, 적어도 약 0.65, 적어도 약 0.66, 적어도 약 0.67, 적어도 약 0.68, 적어도 약 0.69, 적어도 약 0.70, 적어도 약 0.71, 적어도 약 0.72, 적어도 약 0.73, 적어도 약 0.74, 적어도 약 0.75, 적어도 약 0.76, 적어도 약 0.77, 적어도 약 0.78, 적어도 약 0.79, 적어도 약 0.80, 적어도 약 0.81, 적어도 약 0.82, 적어도 약 0.83, 적어도 약 0.84, 적어도 약 0.85, 적어도 약 0.86, 적어도 약 0.87, 적어도 약 0.88, 적어도 약 0.89, 적어도 약 0.90, 적어도 약 0.91, 적어도 약 0.92, 적어도 약 0.93, 적어도 약 0.94, 적어도 약 0.95인, 형상화 연마 입자.
항목 114. 항목 56에 있어서, 몸체의 형상지수는 약 0.98 이하, 약 0.97 이하, 약 0.96 이하, 약 0.95 이하, 약 0.94 이하, 약 0.93 이하, 약 0.92 이하, 약 0.91 이하, 약 0.90 이하, 약 0.89 이하, 약 0.88 이하, 약 0.87 이하, 약 0.86 이하, 약 0.85 이하, 약 0.84 이하, 약 0.83 이하, 약 0.82 이하, 약 0.81 이하, 약 0.80 이하, 약 0.79 이하, 약 0.78 이하, 약 0.77 이하, 약 0.76 이하, 약 0.75 이하, 약 0.74 이하, 약 0.73 이하, 약 0.72 이하, 약 0.71 이하, 약 0.70 이하, 약 0.69 이하, 약 0.68 이하, 약 0.67 이하, 약 0.66 이하, 약 0.65 이하, 약 0.64 이하, 약 0.63 이하, 약 0.62 이하, 약 0.61 이하, 약 0.60 이하, 약 0.59 이하, 약 0.58 이하, 약 0.57 이하, 약 0.56 이하, 약 0.55 이하, 약 0.54 이하인, 형상화 연마 입자.
항목 115. 항목 56에 있어서, 몸체의 첨예도-형상-강도 인자 (3SF) 범위는 약 0.7 내지 약 1.7인, 형상화 연마 입자.
항목 116. 항목 56에 있어서, 몸체의 3SF는 적어도 약 0.72, 적어도 약 0.75, 적어도 약 0.78, 적어도 약 0.8, 적어도 약 0.82, 적어도 약 0.85, 적어도 약 0.88, 적어도 약 0.90, 적어도 약 0.92, 적어도 약 0.95, 적어도 약 0.98인, 형상화 연마 입자.
항목 117. 항목 56에 있어서, 몸체의 3SF는 약 1.68 이하, 약 1.65 이하, 약 1.62 이하, 약 1.6 이하, 약 1.58 이하, 약 1.55 이하, 약 1.52 이하, 약 1.5 이하, 약 1.48 이하, 약 1.45 이하, 약 1.42 이하, 약 1.4 이하, 약 1.38 이하, 약 1.35 이하, 약 1.32 이하, 약 1.3 이하, 약 1.28 이하, 약 1.25 이하, 약 1.22 이하, 약 1.2 이하, 약 1.18 이하, 약 1.15 이하, 약 1.12 이하, 약 1.1 이하인, 형상화 연마 입자.
항목 118. 항목 56에 있어서, 몸체의 강도는 약 600 MPa 이하 및 적어도 약 100 MPa인, 형상화 연마 입자.
항목 119. 항목 56에 있어서, 몸체의 강도는 약 590 MPa 이하, 약 580 MPa 이하, 약 570 MPa 이하, 약 560 MPa 이하, 약 550 MPa 이하, 약 540 MPa 이하, 약 530 MPa 이하, 약 520 MPa 이하, 약 510 MPa 이하, 약 500 MPa 이하, 약 490 MPa 이하, 약 480 MPa 이하, 약 470 MPa 이하, 약 460 MPa 이하, 약 450 MPa 이하, 약 440 MPa 이하, 약 430 MPa 이하, 약 420 MPa 이하, 약 410 MPa 이하, 약 400 MPa 이하, 약 390 MPa 이하, 약 380 MPa 이하, 약 370 MPa 이하, 약 360 MPa 이하, 약 350 MPa 이하, 약 340 MPa 이하, 약 330 MPa 이하, 약 320 MPa 이하, 약 310 MPa 이하, 약 300 MPa 이하, 약 290 MPa 이하, 약 280 MPa 이하, 약 270 MPa 이하, 약 260 MPa 이하, 약 250 MPa 이하, 약 240 MPa 이하, 약 230 MPa 이하, 약 220 MPa 이하, 약 210 MPa 이하, 약 200 MPa 이하인, 형상화 연마 입자.
항목 120. 항목 56에 있어서, 몸체의 강도는 적어도 약 110 MPa, 적어도 약 120 MPa, 적어도 약 130 MPa, 적어도 약 140 MPa, 적어도 약 150 MPa, 적어도 약 160 MPa, 적어도 약 170 MPa, 적어도 약 180 MPa, 적어도 약 190 MPa, 적어도 약 200 MPa, 적어도 약 210 MPa, 적어도 약 220 MPa, 적어도 약 230 MPa, 적어도 약 240 MPa, 적어도 약 250 MPa, 적어도 약 260 MPa, 적어도 약 270 MPa, 적어도 약 280 MPa, 적어도 약 290 MPa, 적어도 약 300 MPa, 적어도 약 310 MPa, 적어도 약 320 MPa, 적어도 약 330 MPa, 적어도 약 340 MPa, 적어도 약 350 MPa, 적어도 약 360 MPa, 적어도 약 370 MPa, 적어도 약 380 MPa, 적어도 약 390 MPa, 적어도 약 400 MPa, 적어도 약 410 MPa, 적어도 약 420 MPa, 적어도 약 430 MPa, 적어도 약 440 MPa, 적어도 약 450 MPa, 적어도 약 460 MPa, 적어도 약 470 MPa, 적어도 약 480 MPa, 적어도 약 490 MPa, 적어도 약 500 MPa인, 형상화 연마 입자.
항목 121. 항목 56에 있어서, 몸체의 팁 첨예도 범위는 약 80 미크론 이하 내지 적어도 약 1 미크론인, 형상화 연마 입자.
항목 122. 항목 56에 있어서, 몸체의 팁 첨예도는 약 78 미크론 이하, 약 76 미크론 이하, 약 74 미크론 이하, 약 72 미크론 이하, 약 70 미크론 이하, 약 68 미크론 이하, 약 66 미크론 이하, 약 64 미크론 이하, 약 62 미크론 이하, 약 60 미크론 이하, 약 58 미크론 이하, 약 56 미크론 이하, 약 54 미크론 이하, 약 52 미크론 이하, 약 50 미크론 이하, 약 48 미크론 이하, 약 46 미크론 이하, 약 44 미크론 이하, 약 42 미크론 이하, 약 40 미크론 이하, 약 38 미크론 이하, 약 36 미크론 이하, 약 34 미크론 이하, 약 32 미크론 이하, 약 30 미크론 이하, 약 38 미크론 이하, 약 36 미크론 이하, 약 34 미크론 이하, 약 32 미크론 이하, 약 30 미크론 이하, 약 28 미크론 이하, 약 26 미크론 이하, 약 24 미크론 이하, 약 22 미크론 이하, 약 20 미크론 이하, 약 18 미크론 이하, 약 16 미크론 이하, 약 14 미크론 이하, 약 12 미크론 이하, 약 10 미크론 이하인, 형상화 연마 입자.
항목 123. 항목 56에 있어서, 몸체의 팁 첨예도는 적어도 약 2 미크론, 적어도 약 4 미크론, 적어도 약 6 미크론, 적어도 약 8 미크론, 적어도 약 10 미크론, 적어도 약 12 미크론, 적어도 약 14 미크론, 적어도 약 16 미크론, 적어도 약 18 미크론, 적어도 약 20 미크론, 적어도 약 22 미크론, 적어도 약 24 미크론, 적어도 약 26 미크론, 적어도 약 28 미크론, 적어도 약 30 미크론, 적어도 약 32 미크론, 적어도 약 34 미크론, 적어도 약 36 미크론, 적어도 약 38 미크론, 적어도 약 40 미크론, 적어도 약 42 미크론, 적어도 약 44 미크론, 적어도 약 46 미크론, 적어도 약 48 미크론, 적어도 약 50 미크론, 적어도 약 52 미크론, 적어도 약 54 미크론, 적어도 약 56 미크론, 적어도 약 58 미크론, 적어도 약 60 미크론, 적어도 약 62 미크론, 적어도 약 64 미크론, 적어도 약 66 미크론, 적어도 약 68 미크론, 적어도 약 70 미크론인, 형상화 연마 입자.
항목 124. 항목 56에 있어서, 몸체는 첨가제를 포함하고, 첨가제는 산화물을 포함하고, 첨가제는 금속 원소를 포함하고, 첨가제는 희토류 원소를 포함하고, 첨가제는 도펀트 재료를 포함하고, 도펀트 재료는 알칼리 금속원소, 알칼리 토금속원소, 희토류 원소, 전이금속 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하고, 도펀트 재료는 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란탄, 세슘, 프라세오디뮴, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하는, 형상화 연마 입자.
항목 125. 항목 124에 있어서, 도펀트는 MgO를 포함하고, 몸체의 MgO 함량은 적어도 약 0.5 wt%, 적어도 약 0.6 wt%, 적어도 약 0.7 wt%, 적어도 약 0.8 wt%, 적어도 약 0.9 wt%, 적어도 약 1 wt%, 적어도 약 1.1 wt%, 적어도 약 1.2 wt%, 적어도 약 1.3 wt%, 적어도 약 1.4 wt%, 적어도 약 1.5 wt%, 적어도 약 1.6 wt%, 적어도 약 1.7 wt%, 적어도 약 1.8 wt%, 적어도 약 1.9 wt%, 적어도 약 2 wt%, 적어도 약 2.1 wt%, 적어도 약 2.2 wt%, 적어도 약 2.3 wt%, 적어도 약 2.4 wt%, 적어도 약 2.5 wt%인, 형상화 연마 입자.
항목 126. 항목 124에 있어서, 몸체의 MgO 함량은 약 8 wt% 이하, 약 7 wt% 이하, 약 6 wt% 이하, 약 5 wt% 이하, 약 4.9 wt% 이하, 약 4.8 wt% 이하, 약 4.7wt% 이하, 약 4.6 wt% 이하, 약 4.5 wt% 이하, 약 4.4 wt% 이하, 약 4.3 wt% 이하, 약 4.2wt% 이하, 약 4.1 wt% 이하, 약 4 wt% 이하, 약 3.9 wt% 이하, 약 3.8 wt% 이하, 약 3.7wt% 이하, 약 3.6 wt% 이하, 약 3.5 wt% 이하, 약 3.4 wt% 이하, 약 3.3 wt% 이하, 약 3.2wt% 이하, 약 3.1 wt% 이하, 약 3 wt% 이하, 약 2.9 wt% 이하, 약 2.8 wt% 이하, 약 2.7wt% 이하, 약 2.6 wt% 이하, 약 2.5 wt% 이하인, 형상화 연마 입자.
항목 127. 항목 56에 있어서, 몸체는 몸체 총 중량에 대하여 적어도 약 95 wt%, 적어도 약 95.1 wt%, 적어도 약 95.2 wt%, 적어도 약 95.3 wt%, 적어도 약 95.4 wt%, 적어도 약 95.5 wt%, 적어도 약 95.6 wt%, 적어도 약 95.7 wt%, 적어도 약 95.8 wt%, 적어도 약 95.9 wt%, 적어도 약 96 wt%, 적어도 약 96.1 wt%, 적어도 약 96.2 wt%, 적어도 약 96.3 wt%, 적어도 약 96.4 wt%, 적어도 약 96.5 wt%, 적어도 약 96.6 wt%, 적어도 약 96.7 wt%, 적어도 약 96.8 wt%, 적어도 약 96.9 wt%, 적어도 약 97 wt%, 적어도 약 97.1 wt%, 적어도 약 97.2 wt%, 적어도 약 975.3 wt%, 적어도 약 97.4 wt%, 적어도 약 97.5 wt%의 알루미나를 포함하는, 형상화 연마 입자.
항목 128. 항목 56에 있어서, 몸체는 몸체 총 중량에 대하여 약 99.5 wt% 이하, 약 99.4 wt% 이하, 약 99.3wt% 이하, 약 99.2 wt% 이하, 약 99.1 wt% 이하, 약 99 wt% 이하, 약 98.9 wt% 이하, 약 98.8 wt% 이하, 약 98.7wt% 이하, 약 98.6 wt% 이하, 약 98.5 wt% 이하, 약 98.4 wt% 이하, 약 98.3 wt% 이하, 약 98.2 wt% 이하, 약 98.1wt% 이하, 약 98 wt% 이하, 약 97.9 wt% 이하, 약 97.8 wt% 이하, 약 97.7 wt% 이하, 약 97.6 wt% 이하, 약 97.5wt% 이하의 알루미나를 포함하는, 형상화 연마 입자.
항목 129. 항목 56에 있어서, 몸체는 실질적으로 알루미나 및 MgO로 이루어지는, 형상화 연마 입자.
항목 130. 항목 56에 있어서, 몸체는 실질적으로 알루미나로 이루어지는, 형상화 연마 입자.
항목 131. 항목 56에 있어서, 몸체는 결정 입자들을 포함하는 다결정 재료를 포함하고, 평균 결정 입자 크기는 약 1 미크론 이하, 약 0.9 미크론 이하, 약 0.8 미크론 이하, 약 0.7 미크론 이하, 약 0.6 미크론 이하인, 형상화 연마 입자.
항목 132. 항목 131 있어서, 평균 결정 입자 크기는 적어도 약 0.01 미크론, 적어도 약 0.05 미크론, 적어도 약 0.06 미크론, 적어도 약 0.07 미크론, 적어도 약 0.08 미크론, 적어도 약 0.09 미크론, 적어도 약 0.1 미크론, 적어도 약 0.12 미크론, 적어도 약 0.15 미크론, 적어도 약 0.17 미크론, 적어도 약 0.2 미크론인, 형상화 연마 입자.
항목 133. 항목 56에 있어서, 몸체는 실질적으로 바인더가 부재이고, 몸체는 실질적으로 유기 재료가 부재이고, 몸체는 실질적으로 희토류원소가 부재이고, 몸체는 실질적으로 철이 부재인, 형상화 연마 입자.
항목 134. 항목 56에 있어서, 몸체는 시드화 졸 겔에서 형성되는, 형상화 연마 입자.
항목 135. 항목 56에 있어서, 몸체의 폭: 길이인 1차 종횡비는 적어도 약 1:1 및 약 1:10 이하인, 형상화 연마 입자.
항목 136. 항목 56에 있어서, 몸체의 폭: 높이의 비율로 정의되는2차 종횡비 범위는 약 5:1 내지 약 1:1인, 형상화 연마 입자.
항목 137. 항목 56에 있어서, 몸체의 길이: 높이의 비율로 정의되는 3차 종횡비 범위는 약 6:1 내지 약 1:1인, 형상화 연마 입자.
항목 138. 항목 56에 있어서, 몸체는 다결정 재료를 포함하고, 다결정성 재료는 입자들을 포함하고, 입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 다이아몬드 및 이들의 조합으로 이루어진 재료 군에서 선택되고, 입자들은 알루미늄 산화물, 지르코늄 산화물, 티타늄 산화물, 이트륨 산화물, 크롬 산화물, 스트론튬 산화물, 규소산화물, 및 이들의 조합으로 이루어진 군에서 선택되는 산화물을 포함하고, 입자들은 알루미나를 포함하고, 입자들은 실질적으로 알루미나로 이루어진, 형상화 연마 입자.
항목 139. 항목 56에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 몸체의 2차원 형상은 적어도 4개의 외점들, 적어도 5개의 외점들, 적어도 6개의 외점들, 적어도 7개의 외점들, 적어도 8개의 외점들, 적어도 9개의 외점들을 가지는, 형상화 연마 입자.
항목 140. 항목 56에 있어서, 몸체는 고정 연마물품의 일부로서 기판과 결합되고, 고정 연마 물품은 결합 연마 물품, 코팅 연마 물품, 및 이들의 조합으로 이루어진 군에서 선택되는, 형상화 연마 입자.
항목 141. 항목 140에 있어서, 기판은 지지판이고, 지지판은 직물 재료를 포함하고, 지지판은 부직물 재료를 포함하고, 지지판은 유기 재료를 포함하고, 지지판은 고분자를 포함하고, 지지판은 천, 페이퍼, 필름, 직물, 털소재 직물 (fleeced fabric), 경화 파이버, 직물소재, 부직물 소재, 웨빙 (webbing), 고분자, 수지, 페놀수지, 페놀-라텍스 수지, 에폭시 수지, 폴리에스테르 수지, 요소 포름알데히드 수지, 폴리에스테르, 폴리우레탄, 폴리프로필렌, 폴리이미드, 및 이들의 조합으로 이루어진 군에서 선택되는 재료를 포함하는, 형상화 연마 입자.
항목 142. 항목 140에 있어서, 형상화 연마 입자는 다수의 제1 타입의 형상화 연마 입자들의 일부이고, 다량의 제1 타입의 형상화 연마 입자들은 개방 코트에서 지지판에 결합되고, 개방 코트의 코팅 밀도는 약 70 입자들/cm2 이하, 약 65 입자들/cm2 이하, 약 60 입자들/cm2 이하, 약 55 입자들/cm2 이하, 약 50 입자들/cm2 이하, 적어도 약 5 입자들/cm2 이하, 적어도 약 10 입자들/cm2 이하인, 형상화 연마 입자.
항목 143. 항목 140에 있어서, 형상화 연마 입자는 다수의 제1 타입의 형상화 연마 입자들의 일부이고, 다량의 제1 타입의 형상화 연마 입자들은 지지판에서 형상화 연마 입자들 블렌드인 밀폐 코트에서 지지판에 결합되고, 밀폐 코트의 코팅 밀도는 적어도 약 75 입자들/cm2, 적어도 약 80 입자들/cm2, 적어도 약 85 입자들/cm2, 적어도 약 90 입자들/cm2, 적어도 약 100 입자들/cm2인, 형상화 연마 입자.
항목 144. 항목 140에 있어서, 형상화 연마 입자는 다수의 제1 타입의 형상화 연마 입자들 및 제3 타입의 연마 입자를 포함하는 블렌드 (blend) 일부이고, 제3 타입의 연마 입자는 형상화 연마 입자를 포함하고, 제3 타입의 연마 입자는 부형의 (diluent type) 연마 입자를 포함하고, 부형의 연마 입자는 불규칙 형상을 포함하는, 형상화 연마 입자.
항목 145. 항목 144에 있어서, 연마 입자들의 블렌드는 다수의 형상화 연마 입자들을 포함하고, 다수의 형상화 연마 입자들의 각각의 형상화 연마 입자는 지지판에 대하여 조절된 배향으로 배열되고, 조절된 배향은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 포함하는, 형상화 연마 입자.
항목 146. 항목 140에 있어서, 지지판은 촉매, 커플링제, 경화제 (curants), 대전방지제, 현탁제, 안티-로딩제, 윤활제, 습윤제, 염료, 충전제, 점도조절제, 분산제, 소포제, 및 분쇄제로 이루어진 군에서 선택되는 첨가제를 포함하는, 형상화 연마 입자.
항목 147. 항목 140에 있어서, 지지판 상부에 놓이는 접착층을 더욱 포함하고, 접착층은 메이크 코트를 포함하고, 메이크 코트는 지지판 상부에 놓이고, 메이크 코트는 지지판 일부에 직접 결합되고, 메이크 코트는 유기재료를 포함하고, 메이크 코트는 고분자 재료를 포함하고, 메이크 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 형상화 연마 입자.
항목 148. 항목 147에 있어서, 접착층은 사이즈 코트를 포함하고, 사이즈 코트는 다수의 형상화 연마 입자들 일부 상부에 놓이고, 사이즈 코트는 메이크 코트 상부에 놓이고, 사이즈 코트는 다수의 형상화 연마 입자 일부에 직접 결합되고, 사이즈 코트는 유기 재료를 포함하고, 사이즈 코트는 고분자 재료를 포함하고 , 사이즈 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 형상화 연마 입자.
항목 149. 항목 56에 있어서, 몸체는 길이 (l), 폭 (w), 및 높이 (hi)를 포함하고, 길이>폭, 길이>높이, 및 폭>높이이고, 높이 (h)는 적어도 약 100 미크론, 적어도 약 110 미크론, 적어도 약 120 미크론, 적어도 약 150 미크론, 적어도 약 175 미크론, 적어도 약 200 미크론, 적어도 약 225 미크론, 적어도 약 250 미크론, 적어도 약 275 미크론, 또는 적어도 약 300 미크론, 및 이하 약 3 mm, 예컨대 이하 약 2 mm, 이하 약 1.5 mm, 이하 약 1 mm, 또는 이하 약 800 미크론, 이하 약 600 미크론, 이하 약 500 미크론, 이하 약 475 미크론, 이하 약 450 미크론, 이하 약 425 미크론, 이하 약 400 미크론, 이하 약 375 미크론, 이하 약 350 미크론, 이하 약 325 미크론, 이하 약 300 미크론, 이하 약 275 미크론, 또는 이하 약 250 미크론. 미크론, 적어도 약 450 미크론, 적어도 약 475 미크론, 적어도 약 500 미크론, 및 이하 약 3 mm, 이하 약 2 mm, 이하 약 1.5 mm, 이하 약 1 mm, 이하 약 800 미크론인, 형상화 연마 입자.
항목 150. 항목 149에 있어서, 폭은 적어도 약 600 미크론, 적어도 약 700 미크론, 적어도 약 800 미크론, 적어도 약 900 미크론, 및 이하 약 4 mm, 이하 약 3 mm, 이하 약 2.5 mm, 이하 약 2 mm인, 형상화 연마 입자.
항목 151. 항목 56에 있어서, 몸체의 플래싱 비율은 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 약 18% 이하, 약 15% 이하, 약 12% 이하, 약 10% 이하, 약 8% 이하, 약 6% 이하, 약 4% 이하인, 형상화 연마 입자.
항목 152. 항목 56에 있어서, 몸체의 디싱 값 (d)은 약 2 이하, 약 1.9 이하, 약 1.8 이하, 약 1.7 이하, 약 1.6 이하, 약 1.5 이하, 약 1.2 이하, 및 적어도 약 0.9 이하, 적어도 약 1.0 이하인, 형상화 연마 입자.
항목 153. 항목 56에 있어서, 형상화 연마 입자는 다수의 제1 타입의 형상화 연마 입자들의 일부이고, 다량의 제1 타입의 형상화 연마 입자들은 측면 배향에서 지지판에 결합되고, 다수의 형상화 연마 입자들의 형상화 연마 입자들 적어도 약 55%, 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 77%, 적어도 약 80%, 및 약 99% 이하, 약 95% 이하, 약 90% 이하, 약 85% 이하는 측면 배향에서 지지판에 결합되는, 형상화 연마 입자.
항목 154. 항목 56에 있어서, 측면은 제1 측면 영역 및 제1 비스듬한 측면 영역을 포함하고, 적어도 제1 비스듬한 측면 영역 일부는 만곡부를 포함하는, 형상화 연마 입자.
항목 155. 항목 56에 있어서, 측면은 제1 측면 영역 및 제1 비스듬한 측면 영역을 포함하고, 제1 비스듬한 측면 영역의 전체 길이는 만곡부를 포함하는, 형상화 연마 입자.
항목 156. 항목 56에 있어서, 측면은 제1 측면 영역 및 제1 비스듬한 측면 영역을 포함하고, 제1 비스듬한 측면 영역은 단조 곡선을 포함하는, 형상화 연마 입자.
항목 157. 항목 56에 있어서, 측면은 제1 측면 영역 및 제1 비스듬한 측면 영역을 포함하고, 제1 비스듬한 측면 영역은 원의 원호부를 형성하고 제1 비스듬한 측면 영역 (Ros1) 반경을 형성하는 만곡부를 포함하는, 형상화 연마 입자.
항목 158. 항목 157에 있어서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 비스듬한 측면 영역 길이 (Los1)와 상이한, 형상화 연마 입자.
항목 159. 항목 157에 있어서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 비스듬한 측면 영역 길이 (Los1)보다 큰, 형상화 연마 입자.
항목 160. 항목 157에 있어서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 길이 (Lss1)와 상이한, 형상화 연마 입자.
항목 161. 항목 157에 있어서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 길이 (Lss1)보다 큰, 형상화 연마 입자.
항목 162. 항목 157에 있어서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 (Lss1) 길이보다 작은, 형상화 연마 입자.
항목 163. 항목 157에 있어서, 제1 비스듬한 측면 영역 반경 (Ros1)은 제1 측면 영역 (Lss1) 및 제1 비스듬한 측면 영역 (Los1)의 총 길이보다 작은, 형상화 연마 입자.
항목 164. 항목 154에 있어서, 제1 측면 영역 및 제1 비스듬한 측면 영역은 둔각 값을 가지는 제1 비스듬한 각 (Ao1)에서 연결되는, 형상화 연마 입자.
항목 165. 항목 164에 있어서, 측면은 제2 측면 영역 및 제2 비스듬한 측면 영역을 더욱 포함하고, 제2 측면 영역은 제1 외부 코너에서 제1 비스듬한 영역에 결합되고, 제1 외부 코너는 제1 외부 코너 각 (Aec1)을 형성하고 제1 외부 코너 각은 제1 비스듬한 각 (Ao1) 값과 상이한, 형상화 연마 입자.
항목 166. 항목 165에 있어서, 적어도 제2 비스듬한 측면 영역 일부는 만곡부를 포함하는, 형상화 연마 입자.
항목 167. 항목 165에 있어서, 제2 비스듬한 측면 영역의 전체 길이는 만곡부를 포함하는, 형상화 연마 입자.
항목 168. 항목 165에 있어서, 제2 비스듬한 측면 영역은 단조 곡선을 포함하는, 형상화 연마 입자.
항목 169. 항목 165에 있어서, 제1 외부 코너는 제1 비스듬한 측면 영역의 만곡 일부 및 제2 측면 영역의 선형 일부 사이 연결부에서 형성되는, 형상화 연마 입자.
항목 170. 항목 165에 있어서, 제2 비스듬한 측면 영역은 원의 원호부를 형성하고 제2 비스듬한 측면 영역 반경 (Ros2)을 형성하는 만곡부를 포함하는, 형상화 연마 입자.
항목 171. 항목 165에 있어서, 제1 비스듬한 측면 영역은 원의 원호부를 형성하고 제1 비스듬한 측면 영역 반경 (Ros1)을 형성하는 만곡부를 포함하고, Ros1 및 Ros2는 실질적으로 동일한, 형상화 연마 입자.
항목 172. 항목 165에 있어서, 제1 비스듬한 측면 영역은 원의 원호부를 형성하고 제1 비스듬한 측면 영역 반경 (Ros1)을 형성하는 만곡부를 포함하고, Ros1 및 Ros2는 서로 상이한, 형상화 연마 입자.
항목 173. 항목 56에 있어서, 몸체는 중앙축을 포함하고 몸체는 중앙축을 기준으로 비대칭인, 형상화 연마 입자.
항목 174. 항목 56에 있어서, 몸체는 적어도 3개의 상이한 중앙축을 가지고 몸체는 3개의 상이한 중앙축 각각의 주위로 비대칭인, 형상화 연마 입자.
항목 175. 항목 56에 있어서, 몸체의 측면 적어도 5개의 상이한 측면 영역들을 포함하는, 형상화 연마 입자.
항목 176. 항목 56에 있어서, 몸체의 측면은, 적어도 제1 비스듬한 측면 영역에 의해 서로 분리되는 제1 측면 영역 및 제2 측면 영역을 포함하여, 적어도 하나의 만곡 일부에 의해 분리되는 적어도 2개의 선형 부분들을 포함하는, 형상화 연마 입자.
항목 177. 항목 56에 있어서, 몸체의 측면은 서로 교번하는 선형 부분들 및 만곡 부분들을 포함하는, 형상화 연마 입자.
항목 178. 항목 56에 있어서, 몸체의 측면은 선형 부분들 및 만곡 부분들을 포함하고 각각의 선형 부분은 적어도 하나의 만곡 부분에 연결되는, 형상화 연마 입자.
항목 179. 항목 56에 있어서, 몸체의 측면은 선형 부분들 및 만곡 부분들을 포함하고 각각의 선형 부분은 외부 코너에서 적어도 하나의 만곡 부분에 연결되는, 형상화 연마 입자.
실시예들
실시예 1
4 종의 형상화 연마 입자 샘플들을 시험하여 성능을 비교하였다. 제1 샘플, 샘플 S1은, 먼저 대략 45-50 wt%의 베마이트를 포함하는 혼합물로부터 형성된다. 베마이트는 Sasol Corp. 에서 Catapal B로 입수되고 탈이온수로 30 중량%의 Catapal B 및 질산의 혼합물을 고압가열 (autoclaving)하여 개질하였다. 오토클레이브에서 질산-대-베마이트 비율은 대략 0.025이고 100 °C 내지 250 °C에서 5 분 내지 24 시간 처리하였다. 이어 고압가열된 Catapal B 졸을 종래 수단으로 건조하였다. 또한 Disperal로서 Sasol Corp. 에서 상업적으로 입수되는 대안의 베마이트를 사용할 수 있다. 혼합물의 총 알루미나 함량에 대하여 1% 알파 알루미나 시드를 베마이트와 혼합하여 접종하였다. 예를들면 US 4,623,364에 기술된 종래 기술을 이용하여 커런덤 (corundum)을 밀링하여 알파 알루미나 시드 제조하였다. 바람직한 혼합물 점도에 따라 혼합물은 겔 혼합물 형성에 사용되는 45-50 wt% 물 및 2.5-7 wt% 추가 질산을 더욱 포함한다. 성분들을 종래 설계의 행성식 (planetary) 혼합기에서 혼합하고 혼합물에서 기체 성분들 (예를들면, 거품)을 제거하기 위하여 감압으로 혼합하였다.
겔화 후, 혼합물을 손으로 스테인레스 강재의 생산 도구의 개구에 적층하였다. 생산 도구의 개구는 생산 도구의 양측에서 개방되어, 생산 도구의 전체 두께를 관통 연장하는 장치이다. 생산 도구의 캐비티 또는 개구는 본원에 제공되는 입자들 형상과 대략 동일한 형상을 가진다. 모든 샘플들은 스테인레스 강재의 생산 도구로 제작하되, 단 샘플 S7 입자들은 PEEK로 제작된 생산 도구로 제조하였다. 전구체 형상화 연마 입자들이 생산 도구에서 용이하게 탈락하도록 생산 도구의 개구 표면을 올리브유 윤활제로 도포하였다. 겔을 생산 도구의 개구에 넣고 실온에서 적어도 12 시간 건조하였다. 건조 후, 전구체 형상화 연마 입자들을 스크린에서 탈락시키고 1250-1400 °C에서 대략 10 분 소결하였다.
샘플 S1의 형상화 연마 입자들은 도 27의 사진에서 제공되는 바와 같이2-차원 정삼각 형상이고, 평균 폭은 약 1400 미크론 및 높이는 대략 300 미크론이다. 몸체는 실질적으로 1 미크론 미만의 평균 입자 크기를 가지는 시드화 (seeded) 졸-겔 알루미나 재료로 형성되었다. 샘플 S1의 형상화 연마 입자들의 평균 강도는 대략 847 MPa, 평균 팁 첨예도는 대략 20 미크론, 형상지수는 대략 0.5, 및 3SF는 대략 1.7이다.
제2 샘플, 샘플 S2는 샘플 S1의 형상화 연마 입자들 형성에 적용된 동일한 공정으로 형성되었다. 샘플 S2는 도 28의 사진에 제공되는 바와 같이2-차원, 오각 형상을 가지는 형상화 연마 입자들을 포함하였다. 몸체의 평균 폭은 대략 925 미크론 및 높이는 대략 300 미크론이었다. 몸체는 실질적으로 1 미크론 미만의. 평균 입자 크기를 가지는 시드화 졸-겔 알루미나 재료에서 형성되었다. 샘플 S2의 형상화 연마 입자들 평균 강도는 대략 847 MPa, 평균 팁 첨예도는 대략 20 미크론, 형상지수는 대략 0.81, 및 3SF는 대략 1.7이다.
제3 샘플, 샘플 S3은 샘플 S1의 형상화 연마 입자들 형성에 적용된 동일한 공정으로 형성되었다. 샘플 S3은 도 29의 사진에 제공되는 바와 같이 비스듬한, 끝이 잘린 (truncated) 2-차원 형상을 가지는 형상화 연마 입자들을 포함한다. 몸체는 실질적으로 1 미크론 미만의. 평균 입자 크기를 가지는 시드화 졸-겔 알루미나 재료에서 형성되었다. 몸체의 평균 폭은 대략 925 미크론 및 높이는 대략 300 미크론이다. 샘플 S3의 형상화 연마 입자들 평균 강도는 대략 847 MPa, 평균 팁 첨예도는 대략 20 미크론, 형상지수는 대략 0.63, 및 3SF는 대략 2.7이다.
제4 샘플, 샘플 CS4는 상업적으로 3M 사에서3M984F로 입수되는 종래 형상화 연마 입자이다. 몸체의 평균 폭은 1400 미크론 및 높이는 대략 300 미크론이다. 샘플 CS4의 형상화 연마 입자들은 희토류원소 도핑된 알파-알루미나 조성물을 가지고, 평균 팁 첨예도는 대략 20 미크론, 평균 강도는 대략 606MPa, 형상지수는 0.5, 및 3SF는 대략 1.2이다. 도 30은 샘플 CS4의 형상화 연마 입자 사진이다.
제5 샘플, 샘플 S5는 샘플 S1의 형상화 연마 입자들을 형성하기 위하여 적용된 것과 동일한 공정으로 형성되었다. 샘플 S5는 도 28 사진에서 제공되는 바와 같이2-차원, 오각형 형상을 가지는 형상화 연마 입자들을 포함한다. 몸체의 평균 길이는 대략 1400 미크론, 폭은 대략 900 미크론 및 높이는 대략 300 미크론이다. 몸체는 평균 결정 입자 크기가 1 미크론 미만인 5wt% MgO 도핑된, 시드화 졸-겔 알루미나 재료로 형성되었다. 샘플 S5의 형상화 연마 입자들의 평균 강도는 대략 557 MPa, 평균 팁 첨예도는 대략 20 미크론, 형상지수는 대략 0.81, 및 3SF는 대략 2.9이다.
제6 샘플, 샘플 S6은, 샘플 S1의 형상화 연마 입자들을 형성하기 위하여 적용된 것과 동일한 공정으로 형성되었다. 샘플 S6은 도 29 사진에서 제공되는 바와 같이 비스듬하게, 끝이 잘린 2-차원 형상을 가지는 형상화 연마 입자들을 포함한다. 몸체는 평균 결정 입자 크기가 1 미크론 미만인 5wt% MgO 도핑된, 시드화 졸-겔 알루미나 재료로 형성되었다. 몸체의 평균 길이는 대략 1400 미크론, 몸체 최장 측면들에서 측정되고 더 짧은 측면들을 제외하여 측정되는 평균 폭은 대략 900 미크론, 높이는 대략 300 미크론이다. 샘플 S6의 형상화 연마 입자들의 평균 강도는 대략 557 MPa, 평균 팁 첨예도는 대략 20 미크론, 형상지수는 대략 0.63, 및 3SF는 대략 1.8이다.
제7 샘플, 샘플 S7은, 생산 도구가 PEEK로 제작된 것을 제외하고 샘플 S1의 형상화 연마 입자들을 형성하기 위하여 적용된 것과 동일한 공정으로 형성되었다. 샘플 S7은 도 31 사진에서 제공되는 바와 같이 만족되고, 비스듬한 측면 영역들을 가지는 비스듬하게, 끝이 잘린 2-차원 형상의 형상화 연마 입자들을 포함한다. 몸체는 평균 결정 입자 크기가 1 미크론 미만인 시드화 졸-겔 알루미나 재료로 형성되었다. 몸체의 평균 길이 (Lmiddle)는 대략 1590 미크론, 평균 폭은 대략 1570 미크론, 및 높이는 대략 280 미크론이다. 샘플 S7의 형상화 연마 입자들의 평균 강도는 예상되는 미세구조에 기초하여 대략 847 MPa이고, 평균 팁 첨예도는 대략 20 미크론, 형상지수는 대략 0.61, 및 3SF는 대략 2.5이다.
모든 샘플들에 대하여 주면 배향 및 측면 배향에서 단일 그릿 연삭 테스트 (SGGT)에 따라 시험하였다. SGGT 수행에 있어서, 하나의 단일 형상화 연마 입자를 에폭시 재료로 그릿 홀더에 결합 유지시킨다. 형상화 연마 입자를 원하는 배향 (즉, 주면 배향 또는 측면 배향)으로 고정시키고 휠 속도 22 m/s로 스크래치 길이 8 인치 및 초기 스크래치 깊이 30 미크론으로304 스테인레스 강재의 가공물에 횡단 주행시킨다. 형상화 연마 입자는 가공물에 단면적 (AR)의 홈을 만든다. 각각의 샘플 세트에 대하여, 각각의 형상화 연마 입자는 8 인치 길이에 걸쳐 15 회 통과하고, 각각의 배향에 대하여10개의 개별 입자들을 시험하고 결과를 분석한다. 시험은 가공물 표면에 평행 방향 및 홈 방향에서 그릿에 의해 발휘되는 가공물에 대한 접선력을 측정하는 것이고, 스크래치 길이 처음에서 끝까지 홈 단면적의 실제 변화를 측정하여 형상화 연마 입자 마모를 결정한다. 각각의 통과에 대하여 홈 단면적의 실제 변화를 측정할 수 있다. SGGT에 있어서, 실제 홈 단면적은 표면 아래 홈 단면적 및 표면 위로 변위된 재료의 단면적 사이 차이로 정의된다. 성능 (Ft/A)은 실제 홈 단면적에 대한 접선력의 비율로 정의된다.
SGGT는 가공물에 대하여 형상화 연마 입자들의 상이한 두 배향들에서 수행된다. SGGT는 주면 배향 (즉, 도 18에서 “정면”)에서 형상화 연마 입자들의 제1 샘플 세트에 대하여 수행되고, 각각의 형상화 연마 입자의 주면은 연삭 방향에 대하여 수직 배향이므로 주면에서 가공물 연삭이 개시된다. 주면 배향에서 형상화 연마 입자들의 샘플 세트를 이용한 SGGT 결과로 주면 배향에서 형상화 연마 입자들의 연삭 효율 측정이 가능하다.
SGGT는 또한 측면 배향 (즉, 도 18에서 “측면”)에서 형상화 연마 입자들의 제2 샘플 세트에 대하여 수행되고, 각각의 형상화 연마 입자 측면은 연삭 방향에 대하여 수직 배향이므로 주면에서 가공물 연삭이 개시된다. 측면 배향에서 형상화 연마 입자들의 샘플 세트를 이용한 SGGT 결과로 측면 배향에서 형상화 연마 입자들의 연삭 효율 측정이 가능하다. 샘플 S7는 2개의 상이한 측면 배향에서 시험된 것에 주목하여야 한다. 제1 측면 배향 (“측면-C”)에서, 측면의 만곡된, 비스듬한 측면 영역은 연삭 테스트 과정에서 코너의 선단 에지에서 형성된다. 제2 측면 배향 (“측면-S”)에서, 측면의 선형 표면 영역은 연삭 테스트 과정에서 외부 코너의 선단 에지이다.
도 32는 모든 샘플들에 대하여 SGGT로부터 얻은 대표적인 데이터인 정면 배향 (즉, 주면 배향) 및 측면 배향 (즉, 측면 배향)에서 시험되는 형상화 연마 입자들에 대하여 가공물에서 제거되는 총 면적 당 중간 힘의 도표를 포함한다. 제거되는 총면적 당 힘은 형상화 연마 입자들의 연삭 효율 측정치이고, 더 작은 제거 총면적 당 힘은 더욱 효율적인 연삭 성능을 나타낸다. 도시된 바와 같이, 샘플 S3은 정면 배향에서 시험되는 모든 샘플들 중 최고 성능을 보인다. 이러한 결과는 아주 주목하고 놀라운 것이고, 특정 이론에 구속되지 않고, 샘플 S3의 비스듬하게, 끝이 잘린 다각 형상, 강도, 팁 첨예도, 형상지수, 및 높이의 하나 이상의 특징부 조합이 다른 입자들과 비교하여 개선된 성능을 가능하게 하였다고 판단된다. 특히, 샘플 S3은 정면 배향에서 샘플들 CS4 및 S2의 형상화 연마 입자들에 비하여 대략 50%의 연삭 효율 개선을 보였다. 또한, 샘플들 S3은 샘플 S1과 비교하여77%의 연삭 효율 증가를 보였다. 또한, 샘플 S7은 모든 상이한 배향에서 전반적인 최고 성능을 보였다.
실시예 2
샘플 S7에서 개략된 형상 및 미세구조를 가지는 연마 입자들을, 다이를 포함한 기계에서 형성되고, 다이는 아래에서 이동되는 생산 도구의 개구로 겔 혼합물을 압출한다. 이들 입자가 아래 개략되고 CAS7로 지정되는 구조를 가지는 코팅 연마 샘플들 형성에 사용되었다. 또한, 샘플 CS4의 입자들로 CAS7와 동일한 구조를 가지고 CACS4로 지정되는 코팅 연마재를 형성하였다. 샘플들 CAS7 및 CACS4을 형성하기 위하여, 림 당 대략 47 파운드의 마감 천의 지지판을 입수하고 표 4에 제공되는 바와 같이 페놀 포름알데히드 수지를 포함하는 메이크 제제로 도포하였다. 전착 공정으로, 림 당 41파운드의 샘플 S7 또는 CS4에 대하여 개략된 형상 및 미세구조를 가지는 연마 입자들을 메이크 코트가 있는 지지판에 인가하였다. 구조체를 2 시간 동안 80°C에서 오븐 건조하였다. 표 4에 제시된 성분들의 합이 100%가 되도록 메이크 코트가 생성된다는 것을 이해하여야 한다.
표 4: 메이크 코트 제제
메이크 제제 성분 백분율
충전제 NYAD 규회석 400 45-50 wt%
습식 Witcona 1260 0.10-.2 wt%
수지, SI 45-50 wt%
Solmod 실란 A1100 0.1-3 wt%
0.1-1 wt%
이어 코팅 연마 구조체는 표 5에 제시된 제제를 가지는 사이즈 코트로 도포되었다. 구조체를 최종 흡수 (soak) 온도 100-120ºC로 설정된 오븐에서 샘플을 대략 20-30 분 유지하여 가열 처리하였다. 표 5에 제시된 성분들의 합이 100%가 되도록 사이즈 코트가 생성된다는 것을 이해하여야 한다.
표 5: 사이즈 코트 제제
사이즈 제제 성분 백분율
염료 2-4 wt%
Solmod Tamol 165A 0.5-2 wt%
충전제 Syn Cryolite K 40-45 wt%
Resin Single Comp 94-908 50-55 wt%
DF70 Defoamer 0.1-0.2 wt%
2-4 wt%
이어 코팅 연마 샘플을 최종 흡수 온도가 대략 110-120°C로 설정되는 오븐에 넣고 대략 10-12 시간 동안 유지하여 열 처리하였다.
이어 하기 표 6에 제공되는 제제를 가지는 슈퍼사이즈 코트를 샘플들 CAS7 및 CACS4 에 적용하고 사이즈 코트와 동일한 방식으로 처리하였다. 표 6에 제시된 성분들의 합이 100%가 되도록 슈퍼사이즈 코트가 생성된다는 것을 이해하여야 한다.
표 6: 슈퍼사이즈 코트 제제
슈퍼사이즈 제제 성분 백분율
염료 1-3 wt%
Solmod Cabosil 0.05-3 wt%
Solmod DAXAD 11 1-4 wt%
충전제 타입 A 63-67 wt%
수지 PF Prefere 80-5080A 20-25 wt%
DF70 소포제 0.1-0.2 wt%
6-10 wt%
코팅 연마 샘플들, CACS4 및 CAS7 각각을 표 7에 요약된 조건으로 표준화 연삭 테스트에 따라 시험하였다. 2종의 코팅 연마 샘플들을 각각의 경우에 시험하여 결과를 얻었다.
시험 조건: 시험 방식: 건조 (Dry), 수직 상승 및 하강 (Straight Plunge)
일정 MRR' = 4 inch3/min/인치
벨트 속도 (Vs) = 7500 sfpm (38 m/s)
가공 재료: 304 ss
경도: 96-104 HRB
크기: 0.5 x 0.5 x 12 인치
접촉 폭:0.5 in
접촉 휠: 강재
측정치: 전력, 연마력, MRR' 및 SGE
SGE = 2.4 Hp.min/인치3 에서 비교되는 Cum MR
도 33은 각각의 샘플에 대한 연삭 비에너지 대 (재료 제거율 4 인치3/min 인치에서) 제거 재료 누적량의 도표를 포함한다. 특히 아주 주목할 것은 샘플 CAS7은 샘플 CACS4 입자들보다 더 높은 형상지수를 가지는 더욱 뭉뚝한 (blockier) 입자임에도 불구하고 샘플 CACS4에 비하여 시험 대부분에서 상당히 더 작은 연삭 비에너지를 가진다는 것이다. 따라서, 특정 이론에 구속되지 않고, 형상화 연마 입자 및 이와 연관된 고정 연마물품의 성능은 연마 입자들의 첨예도, 강도, 및 형상의 조합을 조절하여 달성될 수 있는 것으로 보인다.
본원은 본 분야 기술보다 진보된 것이다. 종래 형상화 연마 입자들은 이전에 최대로 예리한 잠재적 코너들 및 에지를 가지는 삼각 형상화 입자들 제조에 주목하였다. 그러나, 다양한 형상 및 미세구조를 가지는 형상화 연마 입자들에 대한 실험적 연구를 통해, 소정의 입자 특징부 (예를들면, 팁 첨예도, 강도, 및 형상지수)는 상호 연관되고 서로에 대하여 조절되어 개선된 형상화 연마 입자 성능을 제공할 수 있다는 것을 알았다. 또한, 본원에 기재된 바와 같이, 높이 또한 연관될 수 있다. 특히, 본원에서, 반드시 가장 예리한 특징부를 가지는 형상화 연마 입자를 생성할 필요는 없고, 대신 팁 첨예도, 강도, 형상지수, 및 높이를 포함한 하나 이상의 입자 특징부의 조합을 서로 조절하여, 종래 형상화 연마 입자들보다 형상화 연마 입자 연삭 성능을 개선할 수 있다는 점에 주목하여야 한다. 특히, 형상지수는 몸체의 전체 형상 및 연삭 과정에서 응력이 몸체에 분포되는 것을 정의하고, 적합한 팁 첨예도 및 강도와 조합될 때, 예리한 팁을 가지는 종래 삼각 형상화 연마 입자들보다 개선된 결과를 제공한다는 점에 주목하여야 한다. 또한, 완전히 이해되지 않고 특정 이론에 구속되지 않지만, 본원에 기술된 실시태양들의 이들 특징부의 하나 또는 조합은 고정 연마재, 예컨대 코팅 연마재 및 결합 연마재에서 이들 입자의 현저하고도 예기치 못한 성능을 가능하게 한다고 판단된다.
명백하게 기술하기 위하여 개별 실시태양에서 본원에 기재된 소정의 특징부들은 단일 실시태양의 조합으로도 제공된다. 반대로, 간결성을 위하여 단일 실시태양에 기재된 다양한 특징부들은, 개별적 또는 임의의 부조합으로도 제공될 수 있다. 또한, 범위 값들에 대한 언급은 범위에 속하는 각각 및 모든 값들을 포함한다.
장점들, 다른 이점들, 및 문제점들에 대한 해결방안이 특정한 실시태양들과 관련하여 상기되었다. 그러나, 장점들, 이점들, 문제들에 대한 해결방안, 및 임의의 장점, 이점, 또는 해결방안을 발생하게 하거나 더 현저하게 할 수 있는 임의의 특징(들)이 청구항들의 일부 또는 전부의 중요하거나, 요구되거나, 또는 필수적인 특징으로 해석되지 말아야 한다.
명세서 및 본원에 기재된 실시태양의 설명들은 다양한 실시태양들의 구조에 대한 총괄적 이해를 제공할 의도이다. 명세서 및 설명들은 본원에 기재된 구조 또는 방법들을 이용하는 모든 요소들 및 장치 및 시스템의 특징부들에 대한 전적이고 종합적인 설명으로 기능하지 않을 수 있다. 개별 실시태양들은 단일 실시태양의 조합으로도 제공되고, 반대로, 간결성을 위하여 단일 실시태양에 기재된 다양한 특징부들은, 개별적 또는 임의의 부조합으로도 제공될 수 있다. 또한, 범위 값들에 대한 언급은 범위에 속하는 각각 및 모든 값들을 포함한다. 본 명세서를 읽은 후 당업자들에게 많은 기타 실시태양들이 명백할 수 있다. 기타 실시태양들이 적용될 수 있고 본 발명에서 유래될 수 있고, 따라서 구조적 치환, 논리적 치환, 또는 다른 변형은 본 발명의 범위를 일탈하지 않고 가능하다. 따라서, 본 발명은 제한적이 아닌 단지 예시적으로 간주된다.
도면들과 함께 하기 상세한 설명은 본원의 교시의 이해를 위하여 제공된다. 하기 논의는 본 발명의 특정 구현예들 및 실시태양들에 집중될 것이다. 이러한 논의는 본 교시를 설명하기 위한 것이고 본 발명의 범위 또는 적용 가능성을 제한하는 것으로 해석되어서는 아니된다. 그러나, 다른 실시태양들이 본원에 개시된 교시들을 바탕으로 적용될 수 있다.
본원에서 사용되는 용어 "구성한다(comprises)", "구성하는(comprising)", "포함한다(includes)", "포함하는(including)", "가진다(has)", 가지는(having)" 또는 이들의 임의의 다른 변형은 비배타적인 포함을 커버하기 위한 것이다. 예를들면, 특징부들의 목록을 포함하는 방법, 물품, 또는 장치는 반드시 이러한 특징부들에만 한정될 필요는 없으며 명시적으로 열거되지 않거나 이와 같은 방법, 물품, 또는 장치에 고유한 다른 특징부들을 포함할 수 있다. 게다가, 명시적으로 반대로 기술되지 않는다면, "또는"은 포괄적인 의미의 "또는"을 가리키며 배타적인 의미의 "또는"을 가리키지 않는다. 예를들면, 조건 A 또는 B는 다음 중의 어느 하나에 의해 만족된다: A가 참이고 (또는 존재하고) B는 거짓이며 (또는 존재하지 않으며), A가 거짓이고 (또는 존재하지 않고) B는 참이며 (또는 존재하며), A와 B 모두가 참 (또는 존재한다)이다.
또한, "하나의 (a)" 또는 "하나의 (an)"은 여기에서 설명되는 요소들과 구성요소들을 설명하는데 사용된다. 이는 단지 편의성을 위해 그리고 본 발명의 범위의 일반적인 의미를 부여하기 위해 행해진다. 이 설명은 하나 또는 적어도 하나를 포함하는 것으로 읽혀져야 하며, 다르게 의미한다는 것이 명백하지 않다면 단수는 또한 복수를 포함한다. 예를들면, 단일 사항이 본원에 기재되면, 하나 이상의 사항이 단일 사항을 대신하여 적용될 수 있다. 유사하게, 하나 이상의 사항이 본원에서 기재되면, 단일 사항이 하나 이상의 사항을 대신할 수 있는 것이다.
달리 정의되지 않는 한, 본원에서 사용되는 모든 기술적 및 과학적 용어들은 본 발명이 속하는 분야의 통상의 기술자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 재료, 방법 및 실시예들은 예시적인 것일 뿐이고 제한적이지 않다. 본원에 기재되지 않는 한, 특정 재료 및 공정과 관련된 많은 상세 사항들은 통상적이고 참고 서적들 및 구조 분야 및 상응하는 제조 분야의 기타 자료들에서 발견될 수 있다.
개시된 주제는 예시적이고 제한적인 것이 아니며, 첨부된 청구범위는 본 발명의 진정한 범위에 속하는 이러한 모든 변경, 개선 및 기타 실시태양들을 포괄할 의도이다. 따라서, 법이 허용한 최대로, 본 발명의 범위는 청구범위 및 이의 균등론을 광의로 해석하여 판단되어야 하고 상기 상세한 설명에 제한 또는 한정되어서는 아니된다.
특허법에 부합되고 청구범위 및 의미를 해석 또는 한정하는 것이 아니라는 이해로 요약서가 제출된다. 또한, 상기된 상세한 설명에서, 다양한 특징부들이 개시의 간소화를 위하여 단일 실시태양에서 집합적으로 함께 설명된다. 청구되는 실시태양들이 각각의 청구항에서 명시적으로 언급되는 것 이상의 특징부들을 필요로 한다는 의도로 이러한 개시가 해석되어서는 아니된다. 오히려, 하기 청구범위에서 와 같이, 본 발명의 주제는 개시된 임의의 실시태양의 모든 특징부들보다 적은 것에 관한 것이다. 따라서, 하기 청구범위는 상세한 설명에 통합되고, 각각의 청구항은 그 자체로 청구되는 주제를 별개로 정의하는 것이다.

Claims (15)

  1. 형상화 연마 입자로서,
    제1 주면, 제2 주면, 상기 제1 주면 및 상기 제2 주면을 연장하는 제1 측면 및 상기 제1 주면 및 상기 제2 주면을 연장하는 제2 측면을 포함하는 몸체를 포함하고, 상기 몸체는 적어도 1.3의 첨예도-형상-강도 인자 (3SF), 적어도 100 MPa의 강도 및 적어도 0.51 및 0.80 이하의 형상지수 (Shape Index)를 포함하며, 상기 몸체는 적어도 2 미크론 및 50 미크론 이하의 팁 첨예도를 포함하는, 형상화 연마 입자.
  2. 제1항에 있어서, 상기 제1 측면은 제1 측면 영역 및 제1 비스듬한 영역을 포함하고, 상기 제1 측면 영역 및 제1 비스듬한 영역은 제1 비스듬한 코너에서 연결되며, 상기 제1 비스듬한 코너는 제1 비스듬한 코너 각을 갖고, 상기 제1 비스듬한 코너 각은 적어도 92°및 176°이하의 값을 가지며, 상기 제1 측면 및 상기 제2 측면은 제1 외부 코너에서 결합되고, 상기 제1 외부 코너는 제1 외부 코너 각을 가지며, 상기 제1 외부 코너 각은 상기 제1 비스듬한 코너 각의 값보다 작은 값을 갖는, 형상화 연마 입자.
  3. 제1항에 있어서, 상기 몸체는 1.65 이하의 3SF를 갖는, 형상화 연마 입자.
  4. 제1항에 있어서, 상기 몸체는 600 MPa 이하의 강도를 포함하는, 형상화 연마 입자.
  5. 제1항에 있어서, 상기 몸체는 40 미크론 이하 및 적어도 4 미크론의 팁 첨예도를 포함하는, 형상화 연마 입자.
  6. 제1항에 있어서, 상기 몸체는 첨가제를 포함하고 첨가제는 알칼리 금속원소, 알칼리 토금속원소, 희토류 원소, 전이금속 및 이들의 조합으로 이루어진 군에서 선택되는 도펀트 재료를 포함하는, 형상화 연마 입자.
  7. 제1항에 있어서, 상기 몸체는 결정 입자들을 포함하는 다결정 재료를 포함하고, 상기 평균 결정 입자 크기는 1 미크론 이하인, 형상화 연마 입자.
  8. 제1항에 있어서, 상기 몸체는 사각형, 직사각형, 사다리꼴, 오각형, 육각형, 칠각형, 팔각형, 및 이들의 조합으로 이루어진 군에서 선택되는 2-차원 형상을 포함하는, 형상화 연마 입자.
  9. 제1항에 있어서, 상기 몸체는 결합 연마 물품, 코팅 연마 물품, 및 이들의 조합으로 이루어진 군에서 선택되는 고정 연마물품의 일부로서 기판과 결합되는, 형상화 연마 입자.
  10. 형상화 연마 입자 제조 방법으로서, 형상화 연마입자의 몸체 형성 단계를 포함하고, 이는:
    i) 미리 결정된 강도를 갖는 재료의 선택 단계 및 상기 미리 결정된 강도에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 형상지수를 갖는 상기 형상화 연마 입자의 상기 몸체를 형성하는 단계;
    ii) 상기 형상화 연마 입자의 상기 몸체의 미리 결정된 형상지수를 선택하는 단계 및 상기 미리 결정된 형상지수에 기초하여 미리 결정된 팁 첨예도 및 미리 결정된 강도를 갖는 상기 몸체를 형성하는 단계; 및
    iii) 상기 형상화 연마 입자의 몸체의 미리 결정된 팁 첨예도를 선택하는 단계 및 상기 미리 결정된 팁 첨예도에 기초하여 미리 결정된 형상지수 및 미리 결정된 강도를 갖는 형상화 연마 입자의 상기 몸체를 형성하는 단계 중 적어도 하나를 포함하고,
    상기 몸체는 적어도 1.3의 첨예도-형상-강도 인자 (3SF), 적어도 100 MPa의 강도 및 적어도 0.51 및 0.80 이하의 형상지수 (Shape Index)를 포함하며, 상기 몸체는 적어도 2 미크론 및 50 미크론 이하의 팁 첨예도를 포함하는, 형상화 연마 입자 제조 방법.
  11. 제10항에 있어서, 형성 단계는 상기 형상화 연마 입자의 자기-예리화 거동에 영향을 주는 상기 형상화 연마 입자의 상기 몸체의 미리 결정된 팁 첨예도, 미리 결정된 형상지수, 및 미리 결정된 강도의 군에서 선택되는 입자 특징부의 연관성을 조절하는 단계를 포함하는, 형상화 연마 입자 제조 방법.
  12. 제11항에 있어서, 상기 입자 특징부의 연관성을 조절하는 단계는 1.32 내지 1.7 범위의 첨예도-형상-강도 인자 (3SF)를 갖는 상기 몸체 형성 단계를 포함하는, 형상화 연마 입자 제조 방법.
  13. 제10항에 있어서, 상기 미리 결정된 형상지수의 범위는 적어도 0.52 내지 0.79 이하이고, 상기 미리 결정된 팁 첨예도의 범위는 40 미크론 이하 내지 적어도 4 미크론이고, 상기 미리 결정된 강도의 범위는 600 MPa 이하 내지 적어도 110 MPa인, 형상화 연마 입자 제조 방법.
  14. 삭제
  15. 삭제
KR1020167031434A 2014-04-14 2015-04-14 형상화 연마 입자들을 포함하는 연마 물품 KR101884178B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201461979316P 2014-04-14 2014-04-14
US61/979,316 2014-04-14
US201462079218P 2014-11-13 2014-11-13
US62/079,218 2014-11-13
US201562106545P 2015-01-22 2015-01-22
US62/106,545 2015-01-22
PCT/US2015/025826 WO2015160855A1 (en) 2014-04-14 2015-04-14 Abrasive article including shaped abrasive particles

Publications (2)

Publication Number Publication Date
KR20160146802A KR20160146802A (ko) 2016-12-21
KR101884178B1 true KR101884178B1 (ko) 2018-08-02

Family

ID=54264578

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167031434A KR101884178B1 (ko) 2014-04-14 2015-04-14 형상화 연마 입자들을 포함하는 연마 물품

Country Status (10)

Country Link
US (1) US9803119B2 (ko)
EP (1) EP3131705A4 (ko)
JP (1) JP6484647B2 (ko)
KR (1) KR101884178B1 (ko)
CN (2) CN106457521A (ko)
AU (1) AU2015247739B2 (ko)
BR (1) BR112016023880A2 (ko)
CA (1) CA2945493C (ko)
MX (1) MX2016013464A (ko)
WO (1) WO2015160855A1 (ko)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769735B2 (ja) 2010-03-03 2015-08-26 スリーエム イノベイティブ プロパティズ カンパニー 結合した研磨ホイール
CN103702800B (zh) 2011-06-30 2017-11-10 圣戈本陶瓷及塑料股份有限公司 包括氮化硅磨粒的磨料制品
BR112014007089A2 (pt) 2011-09-26 2017-03-28 Saint-Gobain Ceram & Plastics Inc artigos abrasivos incluindo materiais de partículas abrasivas, abrasivos revestidos usando os materiais de partículas abrasivas e os métodos de formação
JP5903502B2 (ja) 2011-12-30 2016-04-13 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子を備える粒子材料
KR20170018102A (ko) 2011-12-30 2017-02-15 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마입자 및 이의 형성방법
WO2013106602A1 (en) 2012-01-10 2013-07-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
RU2602581C2 (ru) 2012-01-10 2016-11-20 Сэнт - Гобэйн Керамикс Энд Пластик,Инк. Абразивные частицы, имеющие сложные формы, и способы их формования
PL2852473T3 (pl) 2012-05-23 2021-06-28 Saint-Gobain Ceramics & Plastics Inc. Ukształtowane cząstki ścierne i sposoby ich formowania
IN2015DN00343A (ko) 2012-06-29 2015-06-12 Saint Gobain Ceramics
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
CN105050770B (zh) 2013-03-12 2018-08-17 3M创新有限公司 粘结磨料制品
CA2984232C (en) 2013-03-29 2021-07-20 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
CN110591645A (zh) 2013-09-30 2019-12-20 圣戈本陶瓷及塑料股份有限公司 成形磨粒及其形成方法
CN106029301B (zh) 2013-12-31 2018-09-18 圣戈班磨料磨具有限公司 包括成形磨粒的研磨制品
JP6562841B2 (ja) * 2014-01-31 2019-08-21 日本碍子株式会社 多孔質板状フィラー
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
CA2945493C (en) 2014-04-14 2020-08-04 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2015163249A1 (ja) * 2014-04-23 2015-10-29 日本碍子株式会社 多孔質板状フィラー、その製造方法、及び断熱膜
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
MX365727B (es) * 2015-04-14 2019-06-12 3M Innovative Properties Co Articulo abrasivo de tela no tejida y metodo para fabricarlo.
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2017147510A1 (en) 2016-02-24 2017-08-31 Saint-Gobain Abrasives, Inc. Abrasive articles including a coating and methods for forming the same
WO2017197006A1 (en) 2016-05-10 2017-11-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
CN107350980B (zh) 2016-05-10 2021-02-26 圣戈班磨料磨具有限公司 研磨制品和形成其的方法
CN109563398A (zh) * 2016-08-01 2019-04-02 3M创新有限公司 具有尖锐顶端的成形磨料颗粒
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
EP3559142A4 (en) * 2016-10-25 2020-12-09 3M Innovative Properties Company AGGLOMERATED MAGNETISABLE ABRASIVE PARTICLES, ABRASIVE ARTICLES AND THEIR MANUFACTURING PROCESSES
CN109863220B (zh) * 2016-10-25 2021-04-13 3M创新有限公司 功能性磨料颗粒、磨料制品及其制备方法
CN109843509A (zh) 2016-10-25 2019-06-04 3M创新有限公司 结构化磨料制品及其制备方法
PL3532562T3 (pl) * 2016-10-25 2021-10-04 3M Innovative Properties Company Magnesowalna cząstka ścierna oraz sposób jej wytwarzania
CN109890931B (zh) 2016-10-25 2021-03-16 3M创新有限公司 可磁化磨料颗粒和包含可磁化磨料颗粒的磨料制品
EP3532251A4 (en) * 2016-10-25 2020-07-01 3M Innovative Properties Company LINKED ABRASIVE ARTICLES COMPRISING ORIENTED ABRASIVE PARTICLES AND METHODS OF MAKING SAME
EP3532247B1 (en) 2016-10-25 2021-06-09 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
WO2018080755A1 (en) 2016-10-25 2018-05-03 3M Innovative Properties Company Method of making magnetizable abrasive particles
EP3532248B1 (en) * 2016-10-25 2021-08-04 3M Innovative Properties Company Bonded abrasive wheel and method of making the same
CN108251056A (zh) * 2016-12-29 2018-07-06 圣戈本陶瓷及塑料股份有限公司 研磨颗粒、固定研磨制品以及形成该固定研磨制品的方法
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
CN110719946B (zh) 2017-06-21 2022-07-15 圣戈本陶瓷及塑料股份有限公司 颗粒材料及其形成方法
JP2021504171A (ja) * 2017-11-21 2021-02-15 スリーエム イノベイティブ プロパティズ カンパニー 被覆研磨ディスク並びにその製造方法及び使用方法
CA3083967C (en) * 2017-11-30 2022-07-26 Saint-Gobain Abrasives, Inc. Abrasive articles and methods of forming same
AU2019270631B2 (en) * 2018-05-17 2022-07-14 3M Innovative Properties Company Scouring article with mixture of abrasive particles
DE102018212732A1 (de) * 2018-07-31 2020-02-06 Robert Bosch Gmbh Geformtes keramisches Schleifkorn, Verfahren zur Herstellung eines geformten keramischen Schleifkorns und Schleifartikel
CN113710767B (zh) * 2019-04-15 2023-05-23 3M创新有限公司 部分成形磨料颗粒、制造方法和包含该部分成形磨料颗粒的制品
WO2021072293A1 (en) 2019-10-11 2021-04-15 Saint-Gobain Abrasives, Inc. Abrasive particle including coating, abrasive article including the abrasive particles, and method of forming
CN114867582A (zh) * 2019-12-27 2022-08-05 圣戈本陶瓷及塑料股份有限公司 磨料制品及其形成方法
US20210198545A1 (en) * 2019-12-27 2021-07-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761321B2 (ja) * 1992-02-06 1998-06-04 電気化学工業株式会社 砥 粒
WO2013102177A1 (en) * 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same

Family Cites Families (642)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123948A (en) 1964-03-10 Reinforced
CA743715A (en) 1966-10-04 The Carborundum Company Manufacture of sintered abrasive grain of geometrical shape and controlled grit size
US345604A (en) 1886-07-13 Process of making porous alum
US1910444A (en) 1931-02-13 1933-05-23 Carborundum Co Process of making abrasive materials
US2248064A (en) 1933-06-01 1941-07-08 Minnesota Mining & Mfg Coating, particularly for manufacture of abrasives
US2049874A (en) 1933-08-21 1936-08-04 Miami Abrasive Products Inc Slotted abrasive wheel
US2148400A (en) 1938-01-13 1939-02-21 Norton Co Grinding wheel
US2248990A (en) 1938-08-17 1941-07-15 Heany John Allen Process of making porous abrasive bodies
US2290877A (en) 1938-09-24 1942-07-28 Heany Ind Ceramic Corp Porous abrading material and process of making the same
US2318360A (en) 1941-05-05 1943-05-04 Carborundum Co Abrasive
US2376343A (en) 1942-07-28 1945-05-22 Minnesota Mining & Mfg Manufacture of abrasives
US2563650A (en) 1949-04-26 1951-08-07 Porocel Corp Method of hardening bauxite with colloidal silica
US2880080A (en) 1955-11-07 1959-03-31 Minnesota Mining & Mfg Reinforced abrasive articles and intermediate products
US3067551A (en) 1958-09-22 1962-12-11 Bethlehem Steel Corp Grinding method
US3041156A (en) 1959-07-22 1962-06-26 Norton Co Phenolic resin bonded grinding wheels
US3079243A (en) 1959-10-19 1963-02-26 Norton Co Abrasive grain
US3079242A (en) 1959-12-31 1963-02-26 Nat Tank Co Flame arrestor
US3377660A (en) 1961-04-20 1968-04-16 Norton Co Apparatus for making crystal abrasive
GB986847A (en) 1962-02-07 1965-03-24 Charles Beck Rosenberg Brunswi Improvements in or relating to abrasives
US3141271A (en) 1962-10-12 1964-07-21 Herbert C Fischer Grinding wheels with reinforcing elements
US3276852A (en) 1962-11-20 1966-10-04 Jerome H Lemelson Filament-reinforced composite abrasive articles
US3379543A (en) 1964-03-27 1968-04-23 Corning Glass Works Composition and method for making ceramic articles
US3481723A (en) 1965-03-02 1969-12-02 Itt Abrasive grinding wheel
US3477180A (en) 1965-06-14 1969-11-11 Norton Co Reinforced grinding wheels and reinforcement network therefor
US3454385A (en) 1965-08-04 1969-07-08 Norton Co Sintered alpha-alumina and zirconia abrasive product and process
US3387957A (en) 1966-04-04 1968-06-11 Carborundum Co Microcrystalline sintered bauxite abrasive grain
US3536005A (en) 1967-10-12 1970-10-27 American Screen Process Equip Vacuum screen printing method
US3480395A (en) 1967-12-05 1969-11-25 Carborundum Co Method of preparing extruded grains of silicon carbide
US3491492A (en) 1968-01-15 1970-01-27 Us Industries Inc Method of making alumina abrasive grains
US3615308A (en) 1968-02-09 1971-10-26 Norton Co Crystalline abrasive alumina
US3590799A (en) 1968-09-03 1971-07-06 Gerszon Gluchowicz Method of dressing the grinding wheel in a grinding machine
US3495359A (en) 1968-10-10 1970-02-17 Norton Co Core drill
US3619151A (en) 1968-10-16 1971-11-09 Landis Tool Co Phosphate bonded grinding wheel
US3608134A (en) 1969-02-10 1971-09-28 Norton Co Molding apparatus for orienting elongated particles
US3637360A (en) 1969-08-26 1972-01-25 Us Industries Inc Process for making cubical sintered aluminous abrasive grains
US3608050A (en) 1969-09-12 1971-09-21 Union Carbide Corp Production of single crystal sapphire by carefully controlled cooling from a melt of alumina
US3874856A (en) 1970-02-09 1975-04-01 Ducommun Inc Porous composite of abrasive particles in a pyrolytic carbon matrix and the method of making it
US3670467A (en) 1970-04-27 1972-06-20 Robert H Walker Method and apparatus for manufacturing tumbling media
US3672934A (en) 1970-05-01 1972-06-27 Du Pont Method of improving line resolution in screen printing
US3909991A (en) 1970-09-22 1975-10-07 Norton Co Process for making sintered abrasive grains
US3986885A (en) 1971-07-06 1976-10-19 Battelle Development Corporation Flexural strength in fiber-containing concrete
US3819785A (en) 1972-02-02 1974-06-25 Western Electric Co Fine-grain alumina bodies
US3859407A (en) 1972-05-15 1975-01-07 Corning Glass Works Method of manufacturing particles of uniform size and shape
US4261706A (en) 1972-05-15 1981-04-14 Corning Glass Works Method of manufacturing connected particles of uniform size and shape with a backing
IN142626B (ko) 1973-08-10 1977-08-06 De Beers Ind Diamond
US4055451A (en) 1973-08-31 1977-10-25 Alan Gray Cockbain Composite materials
US3950148A (en) 1973-10-09 1976-04-13 Heijiro Fukuda Laminated three-layer resinoid wheels having core layer of reinforcing material and method for producing same
US4004934A (en) 1973-10-24 1977-01-25 General Electric Company Sintered dense silicon carbide
US3940276A (en) 1973-11-01 1976-02-24 Corning Glass Works Spinel and aluminum-base metal cermet
US3960577A (en) 1974-01-08 1976-06-01 General Electric Company Dense polycrystalline silicon carbide
JPS5236637B2 (ko) 1974-03-18 1977-09-17
US4045919A (en) 1974-05-10 1977-09-06 Seiko Seiki Kabushiki Kaisha High speed grinding spindle
US3991527A (en) 1975-07-10 1976-11-16 Bates Abrasive Products, Inc. Coated abrasive disc
US4028453A (en) 1975-10-20 1977-06-07 Lava Crucible Refractories Company Process for making refractory shapes
US4073096A (en) 1975-12-01 1978-02-14 U.S. Industries, Inc. Process for the manufacture of abrasive material
US4194887A (en) 1975-12-01 1980-03-25 U.S. Industries, Inc. Fused alumina-zirconia abrasive material formed by an immersion process
US4037367A (en) 1975-12-22 1977-07-26 Kruse James A Grinding tool
DE2725704A1 (de) 1976-06-11 1977-12-22 Swarovski Tyrolit Schleif Herstellung von korundhaeltigen schleifkoernern, beispielsweise aus zirkonkorund
JPS5364890A (en) 1976-11-19 1978-06-09 Toshiba Corp Method of producing silicon nitride grinding wheel
US4114322A (en) 1977-08-02 1978-09-19 Harold Jack Greenspan Abrasive member
US4711750A (en) 1977-12-19 1987-12-08 Norton Company Abrasive casting process
JPS5524813A (en) 1978-08-03 1980-02-22 Showa Denko Kk Alumina grinding grain
JPS6016388B2 (ja) 1978-11-04 1985-04-25 日本特殊陶業株式会社 高靭性セラミック工具の製法
US4314827A (en) 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
DE2935914A1 (de) 1979-09-06 1981-04-02 Kali-Chemie Ag, 3000 Hannover Verfahren zur herstellung von kugelfoermigen formkoerpern auf basis al(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts) und/oder sio(pfeil abwaerts)2(pfeil abwaerts)
US4286905A (en) 1980-04-30 1981-09-01 Ford Motor Company Method of machining steel, malleable or nodular cast iron
US4541842A (en) 1980-12-29 1985-09-17 Norton Company Glass bonded abrasive agglomerates
JPS57121469A (en) 1981-01-13 1982-07-28 Matsushita Electric Ind Co Ltd Manufacture of electrodeposition grinder
US4393021A (en) 1981-06-09 1983-07-12 Vereinigte Schmirgel Und Maschinen-Fabriken Ag Method for the manufacture of granular grit for use as abrasives
EP0078896A2 (en) 1981-11-10 1983-05-18 Norton Company Abrasive bodies such as grinding wheels
US4728043A (en) 1982-02-25 1988-03-01 Norton Company Mechanical sorting system for crude silicon carbide
JPS58223564A (ja) 1982-05-10 1983-12-26 Toshiba Corp 砥石およびその製造法
US4548617A (en) 1982-08-20 1985-10-22 Tokyo Shibaura Denki Kabushiki Kaisha Abrasive and method for manufacturing the same
JPS5890466A (ja) 1982-11-04 1983-05-30 Toshiba Corp 研削砥石
US4469758A (en) 1983-04-04 1984-09-04 Norton Co. Magnetic recording materials
JPS606356U (ja) 1983-06-24 1985-01-17 神田通信工業株式会社 携帯通信装置
US4505720A (en) 1983-06-29 1985-03-19 Minnesota Mining And Manufacturing Company Granular silicon carbide abrasive grain coated with refractory material, method of making the same and articles made therewith
US4452911A (en) 1983-08-10 1984-06-05 Hri, Inc. Frangible catalyst pretreatment method for use in hydrocarbon hydrodemetallization process
US4457767A (en) 1983-09-29 1984-07-03 Norton Company Alumina-zirconia abrasive
US5395407B1 (en) 1984-01-19 1997-08-26 Norton Co Abrasive material and method
US5383945A (en) 1984-01-19 1995-01-24 Norton Company Abrasive material and method
US4623364A (en) 1984-03-23 1986-11-18 Norton Company Abrasive material and method for preparing the same
NZ210805A (en) 1984-01-19 1988-04-29 Norton Co Aluminous abrasive grits or shaped bodies
US5227104A (en) 1984-06-14 1993-07-13 Norton Company High solids content gels and a process for producing them
US4570048A (en) 1984-06-29 1986-02-11 Plasma Materials, Inc. Plasma jet torch having gas vortex in its nozzle for arc constriction
US4963012A (en) 1984-07-20 1990-10-16 The United States Of America As Represented By The United States Department Of Energy Passivation coating for flexible substrate mirrors
US4961757A (en) 1985-03-14 1990-10-09 Advanced Composite Materials Corporation Reinforced ceramic cutting tools
CA1254238A (en) 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US4659341A (en) 1985-05-23 1987-04-21 Gte Products Corporation Silicon nitride abrasive frit
US4678560A (en) 1985-08-15 1987-07-07 Norton Company Screening device and process
US4657754A (en) 1985-11-21 1987-04-14 Norton Company Aluminum oxide powders and process
US4770671A (en) 1985-12-30 1988-09-13 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith
AT389882B (de) 1986-06-03 1990-02-12 Treibacher Chemische Werke Ag Verfahren zur herstellung eines mikrokristallinen schleifmaterials
DE3705540A1 (de) 1986-06-13 1987-12-17 Ruetgerswerke Ag Hochtemperaturbestaendige formstoffe
JPH0753604B2 (ja) 1986-09-03 1995-06-07 株式会社豊田中央研究所 炭化ケイ素質複合セラミツクス
US5053367A (en) 1986-09-16 1991-10-01 Lanxide Technology Company, Lp Composite ceramic structures
AU586765B2 (en) 1986-09-24 1989-07-20 Foseco International Limited Abrasive media
US5180630A (en) 1986-10-14 1993-01-19 American Cyanamid Company Fibrillated fibers and articles made therefrom
US5024795A (en) 1986-12-22 1991-06-18 Lanxide Technology Company, Lp Method of making shaped ceramic composites
US4829027A (en) 1987-01-12 1989-05-09 Ceramatec, Inc. Liquid phase sintering of silicon carbide
US4876226A (en) 1987-01-12 1989-10-24 Fuentes Ricardo I Silicon carbide sintering
GB8701553D0 (en) 1987-01-24 1987-02-25 Interface Developments Ltd Abrasive article
US4799939A (en) 1987-02-26 1989-01-24 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same
US5244849A (en) 1987-05-06 1993-09-14 Coors Porcelain Company Method for producing transparent polycrystalline body with high ultraviolet transmittance
US4960441A (en) 1987-05-11 1990-10-02 Norton Company Sintered alumina-zirconia ceramic bodies
US5312789A (en) 1987-05-27 1994-05-17 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US4881951A (en) 1987-05-27 1989-11-21 Minnesota Mining And Manufacturing Co. Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith
AU604899B2 (en) 1987-05-27 1991-01-03 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US5185299A (en) 1987-06-05 1993-02-09 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4954462A (en) 1987-06-05 1990-09-04 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4858527A (en) 1987-07-22 1989-08-22 Masanao Ozeki Screen printer with screen length and snap-off angle control
US4797139A (en) 1987-08-11 1989-01-10 Norton Company Boehmite produced by a seeded hydyothermal process and ceramic bodies produced therefrom
US5376598A (en) 1987-10-08 1994-12-27 The Boeing Company Fiber reinforced ceramic matrix laminate
US4848041A (en) 1987-11-23 1989-07-18 Minnesota Mining And Manufacturing Company Abrasive grains in the shape of platelets
US4797269A (en) 1988-02-08 1989-01-10 Norton Company Production of beta alumina by seeding and beta alumina produced thereby
US4930266A (en) 1988-02-26 1990-06-05 Minnesota Mining And Manufacturing Company Abrasive sheeting having individually positioned abrasive granules
US4917852A (en) 1988-04-29 1990-04-17 Norton Company Method and apparatus for rapid solidification
US5076991A (en) 1988-04-29 1991-12-31 Norton Company Method and apparatus for rapid solidification
US4942011A (en) 1988-05-03 1990-07-17 E. I. Du Pont De Nemours And Company Process for preparing silicon carbide fibers
EP0347162A3 (en) 1988-06-14 1990-09-12 Tektronix, Inc. Apparatus and methods for controlling data flow processes by generated instruction sequences
CH675250A5 (ko) 1988-06-17 1990-09-14 Lonza Ag
JP2601333B2 (ja) 1988-10-05 1997-04-16 三井金属鉱業株式会社 複合砥石およびその製造方法
US5011508A (en) 1988-10-14 1991-04-30 Minnesota Mining And Manufacturing Company Shelling-resistant abrasive grain, a method of making the same, and abrasive products
US5053369A (en) 1988-11-02 1991-10-01 Treibacher Chemische Werke Aktiengesellschaft Sintered microcrystalline ceramic material
US4964883A (en) 1988-12-12 1990-10-23 Minnesota Mining And Manufacturing Company Ceramic alumina abrasive grains seeded with iron oxide
US5098740A (en) 1989-12-13 1992-03-24 Norton Company Uniformly-coated ceramic particles
US5190568B1 (en) 1989-01-30 1996-03-12 Ultimate Abrasive Syst Inc Abrasive tool with contoured surface
US5108963A (en) 1989-02-01 1992-04-28 Industrial Technology Research Institute Silicon carbide whisker reinforced alumina ceramic composites
DE69019182T2 (de) 1989-02-02 1995-11-23 Sumitomo Spec Metals Verfahren zur Herstellung von transparentem keramischem Material hoher Dichte.
WO1990009969A1 (en) 1989-02-22 1990-09-07 Kabushiki Kaisha Kobe Seiko Sho Alumina ceramic, production thereof, and throwaway tip made therefrom
US5224970A (en) 1989-03-01 1993-07-06 Sumitomo Chemical Co., Ltd. Abrasive material
YU32490A (en) 1989-03-13 1991-10-31 Lonza Ag Hydrophobic layered grinding particles
JPH0320317A (ja) 1989-03-14 1991-01-29 Mitsui Toatsu Chem Inc 狭い粒度分布を持ったアミノ系樹脂微粒子の製造方法
US5094986A (en) 1989-04-11 1992-03-10 Hercules Incorporated Wear resistant ceramic with a high alpha-content silicon nitride phase
US5103598A (en) 1989-04-28 1992-04-14 Norton Company Coated abrasive material containing abrasive filaments
US5009676A (en) 1989-04-28 1991-04-23 Norton Company Sintered sol gel alumina abrasive filaments
US5035723A (en) 1989-04-28 1991-07-30 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
US5244477A (en) 1989-04-28 1993-09-14 Norton Company Sintered sol gel alumina abrasive filaments
US4970057A (en) 1989-04-28 1990-11-13 Norton Company Silicon nitride vacuum furnace process
US5014468A (en) 1989-05-05 1991-05-14 Norton Company Patterned coated abrasive for fine surface finishing
JPH078474B2 (ja) 1989-08-22 1995-02-01 瑞穂研磨砥石株式会社 高速研削用超硬砥粒砥石
US5431967A (en) 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US4997461A (en) 1989-09-11 1991-03-05 Norton Company Nitrified bonded sol gel sintered aluminous abrasive bodies
DK0432907T3 (da) 1989-11-22 1995-07-10 Johnson Matthey Plc Forbedrede pastasammensætninger
JPH03194269A (ja) 1989-12-20 1991-08-23 Seiko Electronic Components Ltd 全金属ダイヤフラムバルブ
US5081082A (en) 1990-01-17 1992-01-14 Korean Institute Of Machinery And Metals Production of alumina ceramics reinforced with β'"-alumina
US5049166A (en) 1990-02-27 1991-09-17 Washington Mills Ceramics Corporation Light weight abrasive tumbling media and method of making same
CA2036247A1 (en) 1990-03-29 1991-09-30 Jeffrey L. Berger Nonwoven surface finishing articles reinforced with a polymer backing layer and method of making same
JP2779252B2 (ja) 1990-04-04 1998-07-23 株式会社ノリタケカンパニーリミテド 窒化けい素質焼結研摩材及びその製法
US5129919A (en) 1990-05-02 1992-07-14 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
US5085671A (en) 1990-05-02 1992-02-04 Minnesota Mining And Manufacturing Company Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same
US5035724A (en) 1990-05-09 1991-07-30 Norton Company Sol-gel alumina shaped bodies
CA2083693C (en) 1990-05-25 2002-01-01 Alfred Edward Ringwood Abrasive compact of cubic boron nitride and method of making same
US7022179B1 (en) 1990-06-19 2006-04-04 Dry Carolyn M Self-repairing, reinforced matrix materials
JP3094300B2 (ja) 1990-06-29 2000-10-03 株式会社日立製作所 熱転写記録装置
US5219806A (en) 1990-07-16 1993-06-15 Minnesota Mining And Manufacturing Company Alpha phase seeding of transition alumina using chromium oxide-based nucleating agents
US5139978A (en) 1990-07-16 1992-08-18 Minnesota Mining And Manufacturing Company Impregnation method for transformation of transition alumina to a alpha alumina
US5078753A (en) 1990-10-09 1992-01-07 Minnesota Mining And Manufacturing Company Coated abrasive containing erodable agglomerates
CA2043261A1 (en) 1990-10-09 1992-04-10 Muni S. Ramakrishnan Dry grinding wheel
US5114438A (en) 1990-10-29 1992-05-19 Ppg Industries, Inc. Abrasive article
US5132984A (en) 1990-11-01 1992-07-21 Norton Company Segmented electric furnace
US5090968A (en) 1991-01-08 1992-02-25 Norton Company Process for the manufacture of filamentary abrasive particles
JP3227703B2 (ja) 1991-02-04 2001-11-12 セイコーエプソン株式会社 親水性インク流路
US5152917B1 (en) 1991-02-06 1998-01-13 Minnesota Mining & Mfg Structured abrasive article
US5236472A (en) 1991-02-22 1993-08-17 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising an aminoplast binder
US5120327A (en) 1991-03-05 1992-06-09 Diamant-Boart Stratabit (Usa) Inc. Cutting composite formed of cemented carbide substrate and diamond layer
US5131926A (en) 1991-03-15 1992-07-21 Norton Company Vitrified bonded finely milled sol gel aluminous bodies
US5178849A (en) 1991-03-22 1993-01-12 Norton Company Process for manufacturing alpha alumina from dispersible boehmite
US5221294A (en) 1991-05-22 1993-06-22 Norton Company Process of producing self-bonded ceramic abrasive wheels
US5160509A (en) 1991-05-22 1992-11-03 Norton Company Self-bonded ceramic abrasive wheels
US5641469A (en) 1991-05-28 1997-06-24 Norton Company Production of alpha alumina
US5817204A (en) 1991-06-10 1998-10-06 Ultimate Abrasive Systems, L.L.C. Method for making patterned abrasive material
US5273558A (en) 1991-08-30 1993-12-28 Minnesota Mining And Manufacturing Company Abrasive composition and articles incorporating same
US5203886A (en) 1991-08-12 1993-04-20 Norton Company High porosity vitrified bonded grinding wheels
US5316812A (en) 1991-12-20 1994-05-31 Minnesota Mining And Manufacturing Company Coated abrasive backing
BR9206806A (pt) 1991-12-20 1995-10-31 Minnesota Mining & Mfg Suporte abrasivo revestido e abrasivo revestido
US5219462A (en) 1992-01-13 1993-06-15 Minnesota Mining And Manufacturing Company Abrasive article having abrasive composite members positioned in recesses
US5437754A (en) 1992-01-13 1995-08-01 Minnesota Mining And Manufacturing Company Abrasive article having precise lateral spacing between abrasive composite members
US6258137B1 (en) 1992-02-05 2001-07-10 Saint-Gobain Industrial Ceramics, Inc. CMP products
AU650382B2 (en) 1992-02-05 1994-06-16 Norton Company Nano-sized alpha alumina particles
US5215552A (en) 1992-02-26 1993-06-01 Norton Company Sol-gel alumina abrasive grain
US5282875A (en) 1992-03-18 1994-02-01 Cincinnati Milacron Inc. High density sol-gel alumina-based abrasive vitreous bonded grinding wheel
JPH05285833A (ja) 1992-04-14 1993-11-02 Nippon Steel Corp 研削ホイール用ドレッサ
KR100277320B1 (ko) 1992-06-03 2001-01-15 가나이 쓰도무 온라인 롤 연삭 장치를 구비한 압연기와 압연 방법 및 회전 숫돌
JPH05338370A (ja) 1992-06-10 1993-12-21 Dainippon Screen Mfg Co Ltd スクリーン印刷用メタルマスク版
JPH06773A (ja) 1992-06-22 1994-01-11 Fuji Photo Film Co Ltd 研磨テープの製造方法
CA2099734A1 (en) 1992-07-01 1994-01-02 Akihiko Takahashi Process for preparing polyhedral alpha-alumina particles
US5366523A (en) 1992-07-23 1994-11-22 Minnesota Mining And Manufacturing Company Abrasive article containing shaped abrasive particles
BR9306765A (pt) 1992-07-23 1998-12-08 Minnesota Mining & Mfg Processo para a preparação de uma partícula abrasiva e artigo abrasivo
RU95105160A (ru) 1992-07-23 1997-01-10 Миннесота Майнинг энд Мануфакчуринг Компани (US) Способ приготовления абразивной частицы, абразивные изделия и изделия с абразивным покрытием
US5201916A (en) 1992-07-23 1993-04-13 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
US5304331A (en) 1992-07-23 1994-04-19 Minnesota Mining And Manufacturing Company Method and apparatus for extruding bingham plastic-type materials
JP3160084B2 (ja) 1992-07-24 2001-04-23 株式会社ムラカミ スクリーン印刷用メタルマスクの製造方法
JPH07509512A (ja) 1992-07-28 1995-10-19 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 研磨グレイン,研磨グレインの製造方法および研磨製品
US5213591A (en) 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
US5312791A (en) 1992-08-21 1994-05-17 Saint Gobain/Norton Industrial Ceramics Corp. Process for the preparation of ceramic flakes, fibers, and grains from ceramic sols
ATE151063T1 (de) 1992-09-25 1997-04-15 Minnesota Mining & Mfg Aluminiumoxid und zirconiumoxid enthaltendes schleifkorn
BR9307113A (pt) 1992-09-25 1999-03-30 Minnesota Mining & Mfg Grão abrasivo de cerâmica e processo para sua preparação
WO1994007812A1 (en) 1992-10-01 1994-04-14 Nihon Cement Co., Ltd. Sintered oxide ceramics and method of making said ceramics
JPH06114739A (ja) 1992-10-09 1994-04-26 Mitsubishi Materials Corp 電着砥石
US5435816A (en) 1993-01-14 1995-07-25 Minnesota Mining And Manufacturing Company Method of making an abrasive article
CA2114571A1 (en) 1993-02-04 1994-08-05 Franciscus Van Dijen Silicon carbide sintered abrasive grain and process for producing same
US5277702A (en) 1993-03-08 1994-01-11 St. Gobain/Norton Industrial Ceramics Corp. Plately alumina
CA2115889A1 (en) 1993-03-18 1994-09-19 David E. Broberg Coated abrasive article having diluent particles and shaped abrasive particles
CH685051A5 (de) 1993-04-15 1995-03-15 Lonza Ag Siliciumnitrid-Sinterschleifkorn und Verfahren zu dessen Herstellung.
US5441549A (en) 1993-04-19 1995-08-15 Minnesota Mining And Manufacturing Company Abrasive articles comprising a grinding aid dispersed in a polymeric blend binder
WO1995000295A1 (en) 1993-06-17 1995-01-05 Minnesota Mining And Manufacturing Company Patterned abrading articles and methods making and using same
US5681612A (en) 1993-06-17 1997-10-28 Minnesota Mining And Manufacturing Company Coated abrasives and methods of preparation
US5549962A (en) 1993-06-30 1996-08-27 Minnesota Mining And Manufacturing Company Precisely shaped particles and method of making the same
WO1995003370A1 (en) 1993-07-22 1995-02-02 Saint-Gobain/Norton Industrial Ceramics Corporation Silicon carbide grain
US5300130A (en) 1993-07-26 1994-04-05 Saint Gobain/Norton Industrial Ceramics Corp. Polishing material
RU2138461C1 (ru) 1993-07-27 1999-09-27 Сумитомо Кемикал Компани, Лимитед Алюмооксидная композиция (варианты) и способ получения алюмооксидной керамики
ES2134930T3 (es) 1993-09-13 1999-10-16 Minnesota Mining & Mfg Articulo abrasivo, metodo para fabricar el mismo, metodo para utilizar el mismo para el acabado y herramienta de produccion.
JP3194269B2 (ja) 1993-09-17 2001-07-30 旭化成株式会社 研磨用モノフィラメント
US5470806A (en) 1993-09-20 1995-11-28 Krstic; Vladimir D. Making of sintered silicon carbide bodies
US5429648A (en) 1993-09-23 1995-07-04 Norton Company Process for inducing porosity in an abrasive article
US5453106A (en) 1993-10-27 1995-09-26 Roberts; Ellis E. Oriented particles in hard surfaces
US5454844A (en) 1993-10-29 1995-10-03 Minnesota Mining And Manufacturing Company Abrasive article, a process of making same, and a method of using same to finish a workpiece surface
DE4339031C1 (de) 1993-11-15 1995-01-12 Treibacher Chemische Werke Ag Verfahren und Vorrichtung zur Herstellung eines Schleifmittels auf Basis Korund
US5372620A (en) 1993-12-13 1994-12-13 Saint Gobain/Norton Industrial Ceramics Corporation Modified sol-gel alumina abrasive filaments
US6136288A (en) 1993-12-16 2000-10-24 Norton Company Firing fines
US5409645A (en) 1993-12-20 1995-04-25 Saint Gobain/Norton Industrial Ceramics Corp. Molding shaped articles
US5376602A (en) 1993-12-23 1994-12-27 The Dow Chemical Company Low temperature, pressureless sintering of silicon nitride
JPH0829975B2 (ja) 1993-12-24 1996-03-27 工業技術院長 アルミナ基セラミックス焼結体
EP0739396B1 (en) 1993-12-28 1999-03-10 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain
US5489204A (en) 1993-12-28 1996-02-06 Minnesota Mining And Manufacturing Company Apparatus for sintering abrasive grain
WO1995018192A1 (en) 1993-12-28 1995-07-06 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain having an as sintered outer surface
US5443603A (en) 1994-01-11 1995-08-22 Washington Mills Ceramics Corporation Light weight ceramic abrasive media
US5505747A (en) 1994-01-13 1996-04-09 Minnesota Mining And Manufacturing Company Method of making an abrasive article
JP2750499B2 (ja) 1994-01-25 1998-05-13 オークマ株式会社 Nc研削盤における超砥粒砥石のドレッシング確認方法
EP0741632A1 (en) 1994-01-28 1996-11-13 Minnesota Mining And Manufacturing Company Coated abrasive containing erodible agglomerates
DE69504875T2 (de) 1994-02-14 1999-03-11 Toyota Motor Co Ltd Verfahren zur Herstellung von Aluminiumboratwhiskern mit einer verbesserten Oberfläche auf der Basis von Gamma-Aluminiumoxyd
AU1735295A (en) 1994-02-22 1995-09-04 Minnesota Mining And Manufacturing Company Method for making an endless coated abrasive article and the product thereof
JPH07299708A (ja) 1994-04-26 1995-11-14 Sumitomo Electric Ind Ltd 窒化ケイ素系セラミックス部品の製造方法
US5486496A (en) 1994-06-10 1996-01-23 Alumina Ceramics Co. (Aci) Graphite-loaded silicon carbide
US5567251A (en) 1994-08-01 1996-10-22 Amorphous Alloys Corp. Amorphous metal/reinforcement composite material
US5656217A (en) 1994-09-13 1997-08-12 Advanced Composite Materials Corporation Pressureless sintering of whisker reinforced alumina composites
US5759481A (en) 1994-10-18 1998-06-02 Saint-Gobain/Norton Industrial Ceramics Corp. Silicon nitride having a high tensile strength
US6054093A (en) 1994-10-19 2000-04-25 Saint Gobain-Norton Industrial Ceramics Corporation Screen printing shaped articles
US5525100A (en) 1994-11-09 1996-06-11 Norton Company Abrasive products
US5527369A (en) 1994-11-17 1996-06-18 Saint-Gobain/Norton Industrial Ceramics Corp. Modified sol-gel alumina
US5578095A (en) 1994-11-21 1996-11-26 Minnesota Mining And Manufacturing Company Coated abrasive article
DE69606168T2 (de) 1995-03-02 2000-09-28 Minnesota Mining & Mfg Verfahren zur strukturierung eines substates unter verwendung eines strukturierten schleifartikels
JP2671945B2 (ja) 1995-03-03 1997-11-05 科学技術庁無機材質研究所長 超塑性炭化ケイ素焼結体とその製造方法
US5725162A (en) 1995-04-05 1998-03-10 Saint Gobain/Norton Industrial Ceramics Corporation Firing sol-gel alumina particles
US5516347A (en) 1995-04-05 1996-05-14 Saint-Gobain/Norton Industrial Ceramics Corp. Modified alpha alumina particles
US5736619A (en) 1995-04-21 1998-04-07 Ameron International Corporation Phenolic resin compositions with improved impact resistance
US5567214A (en) 1995-05-03 1996-10-22 Saint-Gobain/Norton Industrial Ceramics Corporation Process for production of alumina/zirconia materials
US5582625A (en) 1995-06-01 1996-12-10 Norton Company Curl-resistant coated abrasives
US5571297A (en) 1995-06-06 1996-11-05 Norton Company Dual-cure binder system
KR19990022384A (ko) 1995-06-07 1999-03-25 볼스트 스테판 엘. 직물로 짜여진 절단면을 가진 절단 공구
US5645619A (en) 1995-06-20 1997-07-08 Minnesota Mining And Manufacturing Company Method of making alpha alumina-based abrasive grain containing silica and iron oxide
JP4410850B2 (ja) 1995-06-20 2010-02-03 スリーエム カンパニー シリカおよび酸化鉄を含有するアルファアルミナをベースとした砥粒
US5611829A (en) 1995-06-20 1997-03-18 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain containing silica and iron oxide
US5593468A (en) 1995-07-26 1997-01-14 Saint-Gobain/Norton Industrial Ceramics Corporation Sol-gel alumina abrasives
US5578096A (en) 1995-08-10 1996-11-26 Minnesota Mining And Manufacturing Company Method for making a spliceless coated abrasive belt and the product thereof
EP0846041B1 (en) 1995-08-11 2003-04-23 Minnesota Mining And Manufacturing Company Method of making a coated abrasive article having multiple abrasive natures
US5576409B1 (en) 1995-08-25 1998-09-22 Ici Plc Internal mold release compositions
US5683844A (en) 1995-09-28 1997-11-04 Xerox Corporation Fibrillated carrier compositions and processes for making and using
US5975987A (en) 1995-10-05 1999-11-02 3M Innovative Properties Company Method and apparatus for knurling a workpiece, method of molding an article with such workpiece, and such molded article
US5702811A (en) 1995-10-20 1997-12-30 Ho; Kwok-Lun High performance abrasive articles containing abrasive grains and nonabrasive composite grains
CA2189516A1 (en) 1995-11-06 1997-05-07 Timothy Edward Easler Sintering alpha silicon carbide powder with multiple sintering aids
JP2686248B2 (ja) 1995-11-16 1997-12-08 住友電気工業株式会社 Si3N4セラミックスとその製造用Si基組成物及びこれらの製造方法
US5651925A (en) 1995-11-29 1997-07-29 Saint-Gobain/Norton Industrial Ceramics Corporation Process for quenching molten ceramic material
US5578222A (en) 1995-12-20 1996-11-26 Saint-Gobain/Norton Industrial Ceramics Corp. Reclamation of abrasive grain
US5669941A (en) 1996-01-05 1997-09-23 Minnesota Mining And Manufacturing Company Coated abrasive article
US5855997A (en) 1996-02-14 1999-01-05 The Penn State Research Foundation Laminated ceramic cutting tool
US5876793A (en) 1996-02-21 1999-03-02 Ultramet Fine powders and method for manufacturing
JP2957492B2 (ja) 1996-03-26 1999-10-04 合資会社亀井鉄工所 ワーク表面の研削方法
US6083622A (en) 1996-03-27 2000-07-04 Saint-Gobain Industrial Ceramics, Inc. Firing sol-gel alumina particles
US5667542A (en) 1996-05-08 1997-09-16 Minnesota Mining And Manufacturing Company Antiloading components for abrasive articles
US5810587A (en) 1996-05-13 1998-09-22 Danville Engineering Friable abrasive media
US5738697A (en) 1996-07-26 1998-04-14 Norton Company High permeability grinding wheels
US5738696A (en) 1996-07-26 1998-04-14 Norton Company Method for making high permeability grinding wheels
US6080215A (en) 1996-08-12 2000-06-27 3M Innovative Properties Company Abrasive article and method of making such article
US6475253B2 (en) 1996-09-11 2002-11-05 3M Innovative Properties Company Abrasive article and method of making
US5776214A (en) 1996-09-18 1998-07-07 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
US5893935A (en) 1997-01-09 1999-04-13 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
US5779743A (en) 1996-09-18 1998-07-14 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
US6206942B1 (en) 1997-01-09 2001-03-27 Minnesota Mining & Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
AU2336697A (en) 1996-09-18 1998-04-14 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
EP0870578A4 (en) 1996-09-30 2002-03-13 Osaka Diamond Ind SUSPERABRASIVE HIGHLY ABRASIVE TOOL AND METHOD FOR THE PRODUCTION THEREOF
JPH10113875A (ja) 1996-10-08 1998-05-06 Noritake Co Ltd 超砥粒研削砥石
US5919549A (en) 1996-11-27 1999-07-06 Minnesota Mining And Manufacturing Company Abrasive articles and method for the manufacture of same
US5902647A (en) 1996-12-03 1999-05-11 General Electric Company Method for protecting passage holes in a metal-based substrate from becoming obstructed, and related compositions
US5863306A (en) 1997-01-07 1999-01-26 Norton Company Production of patterned abrasive surfaces
US7124753B2 (en) 1997-04-04 2006-10-24 Chien-Min Sung Brazed diamond tools and methods for making the same
US6524681B1 (en) 1997-04-08 2003-02-25 3M Innovative Properties Company Patterned surface friction materials, clutch plate members and methods of making and using same
US6537140B1 (en) 1997-05-14 2003-03-25 Saint-Gobain Abrasives Technology Company Patterned abrasive tools
JPH10315142A (ja) 1997-05-19 1998-12-02 Japan Vilene Co Ltd 研磨シート
JPH10330734A (ja) 1997-06-03 1998-12-15 Noritake Co Ltd 炭化珪素複合窒化珪素質研磨材及びその製法
US5885311A (en) 1997-06-05 1999-03-23 Norton Company Abrasive products
US5908477A (en) 1997-06-24 1999-06-01 Minnesota Mining & Manufacturing Company Abrasive articles including an antiloading composition
US6024824A (en) 1997-07-17 2000-02-15 3M Innovative Properties Company Method of making articles in sheet form, particularly abrasive articles
US5876470A (en) 1997-08-01 1999-03-02 Minnesota Mining And Manufacturing Company Abrasive articles comprising a blend of abrasive particles
US5946991A (en) 1997-09-03 1999-09-07 3M Innovative Properties Company Method for knurling a workpiece
US5942015A (en) 1997-09-16 1999-08-24 3M Innovative Properties Company Abrasive slurries and abrasive articles comprising multiple abrasive particle grades
US6027326A (en) 1997-10-28 2000-02-22 Sandia Corporation Freeforming objects with low-binder slurry
US6401795B1 (en) 1997-10-28 2002-06-11 Sandia Corporation Method for freeforming objects with low-binder slurry
US6039775A (en) 1997-11-03 2000-03-21 3M Innovative Properties Company Abrasive article containing a grinding aid and method of making the same
US6696258B1 (en) 1998-01-20 2004-02-24 Drexel University Mesoporous materials and methods of making the same
WO1999038817A1 (en) 1998-01-28 1999-08-05 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation and abrasive articles
US5989301A (en) 1998-02-18 1999-11-23 Saint-Gobain Industrial Ceramics, Inc. Optical polishing formulation
US5997597A (en) 1998-02-24 1999-12-07 Norton Company Abrasive tool with knurled surface
US6080216A (en) 1998-04-22 2000-06-27 3M Innovative Properties Company Layered alumina-based abrasive grit, abrasive products, and methods
US6228134B1 (en) 1998-04-22 2001-05-08 3M Innovative Properties Company Extruded alumina-based abrasive grit, abrasive products, and methods
US6019805A (en) 1998-05-01 2000-02-01 Norton Company Abrasive filaments in coated abrasives
US6016660A (en) 1998-05-14 2000-01-25 Saint-Gobain Industrial Ceramics, Inc. Cryo-sedimentation process
US6053956A (en) 1998-05-19 2000-04-25 3M Innovative Properties Company Method for making abrasive grain using impregnation and abrasive articles
US6261682B1 (en) 1998-06-30 2001-07-17 3M Innovative Properties Abrasive articles including an antiloading composition
JP2000091280A (ja) 1998-09-16 2000-03-31 Toshiba Corp 半導体研磨装置及び半導体基板の研磨方法
US6283997B1 (en) 1998-11-13 2001-09-04 The Trustees Of Princeton University Controlled architecture ceramic composites by stereolithography
US6179887B1 (en) 1999-02-17 2001-01-30 3M Innovative Properties Company Method for making an abrasive article and abrasive articles thereof
JP2000336344A (ja) 1999-03-23 2000-12-05 Seimi Chem Co Ltd 研磨剤
US6331343B1 (en) 1999-05-07 2001-12-18 3M Innovative Properties Company Films having a fibrillated surface and method of making
DE19925588A1 (de) 1999-06-04 2000-12-07 Deutsch Zentr Luft & Raumfahrt Faden zur Verbindung von Fasern eines Faserhalbzeuges sowie Faserhalbzeug, und Verfahren zur Herstellung von Faserverbundwerkstoffen
US6238450B1 (en) 1999-06-16 2001-05-29 Saint-Gobain Industrial Ceramics, Inc. Ceria powder
US6391812B1 (en) 1999-06-23 2002-05-21 Ngk Insulators, Ltd. Silicon nitride sintered body and method of producing the same
AU5785700A (en) 1999-07-07 2001-01-30 Cabot Microelectronics Corporation Cmp composition containing silane modified abrasive particles
US6319108B1 (en) 1999-07-09 2001-11-20 3M Innovative Properties Company Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece
DE19933194A1 (de) 1999-07-15 2001-01-18 Kempten Elektroschmelz Gmbh Flüssigphasengesinterte SiC-Formkörper mit verbesserter Bruchzähigkeit sowie hohem elektrischen Widerstand und Verfahren zu ihrer Herstellung
TW550141B (en) 1999-07-29 2003-09-01 Saint Gobain Abrasives Inc Depressed center abrasive wheel assembly and abrasive wheel assembly
US6110241A (en) 1999-08-06 2000-08-29 Saint-Gobain Industrial Ceramics, Inc. Abrasive grain with improved projectability
FR2797638B1 (fr) 1999-08-20 2001-09-21 Pem Abrasifs Refractaires Grains abrasifs pour meules, a capacite d'ancrage amelioree
US6258141B1 (en) 1999-08-20 2001-07-10 Saint-Gobain Industrial Ceramics, Inc. Sol-gel alumina abrasive grain
US6277161B1 (en) 1999-09-28 2001-08-21 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
US6287353B1 (en) 1999-09-28 2001-09-11 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
JP3376334B2 (ja) 1999-11-19 2003-02-10 株式会社 ヤマシタワークス 研磨材および研磨材を用いた研磨方法
JP2001162541A (ja) 1999-12-13 2001-06-19 Noritake Co Ltd プランジ研削用回転砥石
US6096107A (en) 2000-01-03 2000-08-01 Norton Company Superabrasive products
US6596041B2 (en) 2000-02-02 2003-07-22 3M Innovative Properties Company Fused AL2O3-MgO-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
JP4536943B2 (ja) 2000-03-22 2010-09-01 日本碍子株式会社 粉体成形体の製造方法
DE10019184A1 (de) 2000-04-17 2001-10-25 Treibacher Schleifmittel Gmbh Formkörper
US6413286B1 (en) 2000-05-03 2002-07-02 Saint-Gobain Abrasives Technology Company Production tool process
US6702650B2 (en) 2000-05-09 2004-03-09 3M Innovative Properties Company Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use
US6468451B1 (en) 2000-06-23 2002-10-22 3M Innovative Properties Company Method of making a fibrillated article
JP3563017B2 (ja) 2000-07-19 2004-09-08 ロデール・ニッタ株式会社 研磨組成物、研磨組成物の製造方法及びポリシング方法
US6583080B1 (en) 2000-07-19 2003-06-24 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3·rare earth oxide eutectic materials
US6776699B2 (en) 2000-08-14 2004-08-17 3M Innovative Properties Company Abrasive pad for CMP
US6579819B2 (en) 2000-08-29 2003-06-17 National Institute For Research In Inorganic Materials Silicon nitride sintered products and processes for their production
AU2001294927A1 (en) 2000-09-29 2002-04-08 Trexel, Inc. Fiber-filler molded articles
DE60125808T2 (de) 2000-10-06 2007-10-11 3M Innovative Properties Co., St. Paul Keramische aggregatteilchen
EP1326941B1 (en) 2000-10-16 2008-01-02 3M Innovative Properties Company Method of making agglomerate particles
US6652361B1 (en) 2000-10-26 2003-11-25 Ronald Gash Abrasives distribution method
EP1201741A1 (en) 2000-10-31 2002-05-02 The Procter & Gamble Company Detergent compositions
US20020090901A1 (en) 2000-11-03 2002-07-11 3M Innovative Properties Company Flexible abrasive product and method of making and using the same
US8062098B2 (en) 2000-11-17 2011-11-22 Duescher Wayne O High speed flat lapping platen
US7632434B2 (en) 2000-11-17 2009-12-15 Wayne O. Duescher Abrasive agglomerate coated raised island articles
US8545583B2 (en) 2000-11-17 2013-10-01 Wayne O. Duescher Method of forming a flexible abrasive sheet article
US8256091B2 (en) 2000-11-17 2012-09-04 Duescher Wayne O Equal sized spherical beads
JP2004518795A (ja) 2001-01-30 2004-06-24 ザ、プロクター、エンド、ギャンブル、カンパニー 表面を改質するための被覆組成物
US6669745B2 (en) 2001-02-21 2003-12-30 3M Innovative Properties Company Abrasive article with optimally oriented abrasive particles and method of making the same
US6605128B2 (en) 2001-03-20 2003-08-12 3M Innovative Properties Company Abrasive article having projections attached to a major surface thereof
US20030022961A1 (en) 2001-03-23 2003-01-30 Satoshi Kusaka Friction material and method of mix-fibrillating fibers
US6863596B2 (en) 2001-05-25 2005-03-08 3M Innovative Properties Company Abrasive article
US20020174935A1 (en) 2001-05-25 2002-11-28 Motorola, Inc. Methods for manufacturing patterned ceramic green-sheets and multilayered ceramic packages
GB2375725A (en) 2001-05-26 2002-11-27 Siemens Ag Blasting metallic surfaces
US6451076B1 (en) 2001-06-21 2002-09-17 Saint-Gobain Abrasives Technology Company Engineered abrasives
US6599177B2 (en) 2001-06-25 2003-07-29 Saint-Gobain Abrasives Technology Company Coated abrasives with indicia
US20030022783A1 (en) 2001-07-30 2003-01-30 Dichiara Robert A. Oxide based ceramic matrix composites
US7147544B2 (en) 2001-08-02 2006-12-12 3M Innovative Properties Company Glass-ceramics
BR0211578A (pt) 2001-08-02 2006-04-04 3M Innovative Properties Co vidro, cerámica, métodos para a fabricação de um vidro, de uma cerámica, e de um artigo compreendendo vidro, vidro-cerámica, métodos para a fabricação de um vidro-cerámica, e de um artigo de vidro-cerámica, partìcula abrasiva, método para a fabricação de partìculas abrasivas, pluralidade de partìculas abrasivas, artigo abrasivo, e, método para desbastar uma superfìcie
US7563293B2 (en) 2001-08-02 2009-07-21 3M Innovative Properties Company Al2O3-rare earth oxide-ZrO2/HfO2 materials, and methods of making and using the same
JP2003049158A (ja) 2001-08-09 2003-02-21 Hitachi Maxell Ltd 研磨粒子および研磨体
WO2003014251A1 (en) 2001-08-09 2003-02-20 Hitachi Maxell, Ltd. Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles
US6762140B2 (en) 2001-08-20 2004-07-13 Saint-Gobain Ceramics & Plastics, Inc. Silicon carbide ceramic composition and method of making
NL1018906C2 (nl) 2001-09-07 2003-03-11 Jense Systemen B V Laser scanner.
US6593699B2 (en) 2001-11-07 2003-07-15 Axcelis Technologies, Inc. Method for molding a polymer surface that reduces particle generation and surface adhesion forces while maintaining a high heat transfer coefficient
WO2003043954A1 (en) 2001-11-19 2003-05-30 Stanton Advanced Ceramics Llc Thermal shock resistant ceramic composites
US6685755B2 (en) 2001-11-21 2004-02-03 Saint-Gobain Abrasives Technology Company Porous abrasive tool and method for making the same
US6706319B2 (en) 2001-12-05 2004-03-16 Siemens Westinghouse Power Corporation Mixed powder deposition of components for wear, erosion and abrasion resistant applications
US6949128B2 (en) 2001-12-28 2005-09-27 3M Innovative Properties Company Method of making an abrasive product
US6878456B2 (en) 2001-12-28 2005-04-12 3M Innovative Properties Co. Polycrystalline translucent alumina-based ceramic material, uses, and methods
US6949267B2 (en) 2002-04-08 2005-09-27 Engelhard Corporation Combinatorial synthesis
US6833186B2 (en) 2002-04-10 2004-12-21 Ppg Industries Ohio, Inc. Mineral-filled coatings having enhanced abrasion resistance and wear clarity and methods for using the same
US6811579B1 (en) 2002-06-14 2004-11-02 Diamond Innovations, Inc. Abrasive tools with precisely controlled abrasive array and method of fabrication
US6833014B2 (en) 2002-07-26 2004-12-21 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US7297170B2 (en) 2002-07-26 2007-11-20 3M Innovative Properties Company Method of using abrasive product
US7044989B2 (en) 2002-07-26 2006-05-16 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US8056370B2 (en) 2002-08-02 2011-11-15 3M Innovative Properties Company Method of making amorphous and ceramics via melt spinning
US20040115477A1 (en) 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
FR2848889B1 (fr) 2002-12-23 2005-10-21 Pem Abrasifs Refractaires Grains abrasifs a base d'oxynitrure d'aluminium et de zirconium
JP2004209624A (ja) 2003-01-07 2004-07-29 Akimichi Koide 砥粒含有繊維の製造並びに製造方法
US20040148868A1 (en) 2003-02-05 2004-08-05 3M Innovative Properties Company Methods of making ceramics
US7811496B2 (en) 2003-02-05 2010-10-12 3M Innovative Properties Company Methods of making ceramic particles
US7220454B2 (en) 2003-02-06 2007-05-22 William Marsh Rice University Production method of high strength polycrystalline ceramic spheres
US7070908B2 (en) 2003-04-14 2006-07-04 Agilent Technologies, Inc. Feature formation in thick-film inks
US6802878B1 (en) * 2003-04-17 2004-10-12 3M Innovative Properties Company Abrasive particles, abrasive articles, and methods of making and using the same
US20040220627A1 (en) 2003-04-30 2004-11-04 Crespi Ann M. Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture
JP2005026593A (ja) 2003-05-08 2005-01-27 Ngk Insulators Ltd セラミック製品、耐蝕性部材およびセラミック製品の製造方法
FR2857660B1 (fr) 2003-07-18 2006-03-03 Snecma Propulsion Solide Structure composite thermostructurale a gradient de composition et son procede de fabrication
US6843815B1 (en) 2003-09-04 2005-01-18 3M Innovative Properties Company Coated abrasive articles and method of abrading
US7141522B2 (en) 2003-09-18 2006-11-28 3M Innovative Properties Company Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
US7300479B2 (en) 2003-09-23 2007-11-27 3M Innovative Properties Company Compositions for abrasive articles
US7267700B2 (en) 2003-09-23 2007-09-11 3M Innovative Properties Company Structured abrasive with parabolic sides
US20050064805A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Structured abrasive article
US20050060941A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Abrasive article and methods of making the same
US7312274B2 (en) 2003-11-24 2007-12-25 General Electric Company Composition and method for use with ceramic matrix composite T-sections
JP4186810B2 (ja) 2003-12-08 2008-11-26 トヨタ自動車株式会社 燃料電池の製造方法および燃料電池
US20050132655A1 (en) 2003-12-18 2005-06-23 3M Innovative Properties Company Method of making abrasive particles
CA2690126C (en) 2003-12-23 2011-09-06 Diamond Innovations, Inc. Grinding wheel for roll grinding application and method of roll grinding thereof
WO2005080624A1 (en) 2004-02-13 2005-09-01 Nv Bekaert Sa Steel wire with metal layer and roughnesses
US6888360B1 (en) 2004-02-20 2005-05-03 Research In Motion Limited Surface mount technology evaluation board having varied board pad characteristics
US7674706B2 (en) 2004-04-13 2010-03-09 Fei Company System for modifying small structures using localized charge transfer mechanism to remove or deposit material
US7393371B2 (en) 2004-04-13 2008-07-01 3M Innovative Properties Company Nonwoven abrasive articles and methods
US7297402B2 (en) 2004-04-15 2007-11-20 Shell Oil Company Shaped particle having an asymmetrical cross sectional geometry
JP2007536100A (ja) 2004-05-03 2007-12-13 スリーエム イノベイティブ プロパティズ カンパニー ミクロ仕上げ用バックアップシューおよび方法
US20050255801A1 (en) 2004-05-17 2005-11-17 Pollasky Anthony D Abrasive material and method of forming same
US7581906B2 (en) 2004-05-19 2009-09-01 Tdy Industries, Inc. Al2O3 ceramic tools with diffusion bonding enhanced layer
US20050266221A1 (en) 2004-05-28 2005-12-01 Panolam Industries International, Inc. Fiber-reinforced decorative laminate
US7794557B2 (en) 2004-06-15 2010-09-14 Inframat Corporation Tape casting method and tape cast materials
US7560062B2 (en) 2004-07-12 2009-07-14 Aspen Aerogels, Inc. High strength, nanoporous bodies reinforced with fibrous materials
EP2112968A4 (en) 2004-08-24 2011-05-25 Albright & Wilson Australia CERAMIC AND METALLIC COMPONENTS AND METHOD FOR THE PRODUCTION THEREOF OF FLEXIBLE LAYERED MATERIALS
GB2417921A (en) 2004-09-10 2006-03-15 Dytech Corp Ltd A method of fabricating a catalyst carrier
JP4901184B2 (ja) 2004-11-11 2012-03-21 株式会社不二製作所 研磨材及び該研磨材の製造方法,並びに前記研磨材を用いたブラスト加工方法
US7666475B2 (en) 2004-12-14 2010-02-23 Siemens Energy, Inc. Method for forming interphase layers in ceramic matrix composites
US7169029B2 (en) 2004-12-16 2007-01-30 3M Innovative Properties Company Resilient structured sanding article
JP2006192540A (ja) 2005-01-14 2006-07-27 Tmp Co Ltd 液晶カラーフィルター用研磨フィルム
EP1688080B1 (en) 2005-02-07 2009-08-05 The Procter and Gamble Company Abrasive wipe for treating a surface
US7524345B2 (en) 2005-02-22 2009-04-28 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
US7875091B2 (en) 2005-02-22 2011-01-25 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
JPWO2006115106A1 (ja) 2005-04-24 2008-12-18 株式会社プロデュース スクリーン印刷装置
JP4917278B2 (ja) 2005-06-17 2012-04-18 信越半導体株式会社 スクリーン印刷版およびスクリーン印刷装置
US7906057B2 (en) 2005-07-14 2011-03-15 3M Innovative Properties Company Nanostructured article and method of making the same
US20070020457A1 (en) 2005-07-21 2007-01-25 3M Innovative Properties Company Composite particle comprising an abrasive grit
US7556558B2 (en) 2005-09-27 2009-07-07 3M Innovative Properties Company Shape controlled abrasive article and method
US7722691B2 (en) 2005-09-30 2010-05-25 Saint-Gobain Abrasives, Inc. Abrasive tools having a permeable structure
US7491251B2 (en) 2005-10-05 2009-02-17 3M Innovative Properties Company Method of making a structured abrasive article
WO2007070881A2 (en) 2005-12-15 2007-06-21 Laser Abrasive Technologies, Llc Method and apparatus for treatment of solid material including hard tissue
US8419814B2 (en) 2006-03-29 2013-04-16 Antionette Can Polycrystalline abrasive compacts
US7410413B2 (en) 2006-04-27 2008-08-12 3M Innovative Properties Company Structured abrasive article and method of making and using the same
US7670679B2 (en) 2006-05-30 2010-03-02 General Electric Company Core-shell ceramic particulate and method of making
US7373887B2 (en) 2006-07-01 2008-05-20 Jason Stewart Jackson Expanding projectile
JP5374810B2 (ja) 2006-07-18 2013-12-25 株式会社リコー スクリーン印刷版
US20080236635A1 (en) 2006-07-31 2008-10-02 Maximilian Rosenzweig Steam mop
RU2009120540A (ru) 2006-11-01 2010-12-10 Дау Глобал Текнолоджиз Инк. (Us) Формованные пористые элементы из альфа-оксида алюминия и способы их получения
EP2092155B1 (en) 2006-11-30 2017-05-03 Longyear TM, Inc. Fiber-containing diamond-impregnated cutting tools
US8083820B2 (en) 2006-12-22 2011-12-27 3M Innovative Properties Company Structured fixed abrasive articles including surface treated nano-ceria filler, and method for making and using the same
NZ578062A (en) 2007-01-15 2012-05-25 Saint Gobain Ceramics Ceramic particulate material and processes for forming same
EP2125984B1 (en) 2007-01-23 2011-12-14 Saint-Gobain Abrasives, Inc. Coated abrasive products containing aggregates
US20080179783A1 (en) 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Extruded Fibrous Silicon Carbide Substrate and Methods for Producing the Same
JP2008194761A (ja) 2007-02-08 2008-08-28 Roki Techno Co Ltd 研磨シート及びその製造方法
EP1964817B1 (en) 2007-02-28 2010-08-11 Corning Incorporated Method for making microfluidic devices
US7628829B2 (en) 2007-03-20 2009-12-08 3M Innovative Properties Company Abrasive article and method of making and using the same
US20080233850A1 (en) 2007-03-20 2008-09-25 3M Innovative Properties Company Abrasive article and method of making and using the same
DE102007026978A1 (de) 2007-06-06 2008-12-11 Thieme Gmbh & Co. Kg Verfahren und Vorrichtung zum Bedrucken von Solarzellen mittels Siebdruck
US20090017736A1 (en) 2007-07-10 2009-01-15 Saint-Gobain Abrasives, Inc. Single-use edging wheel for finishing glass
US8038750B2 (en) 2007-07-13 2011-10-18 3M Innovative Properties Company Structured abrasive with overlayer, and method of making and using the same
US8562702B2 (en) 2007-07-23 2013-10-22 Element Six Abrasives S.A. Abrasive compact
JP5291307B2 (ja) 2007-08-03 2013-09-18 株式会社不二製作所 スクリーン印刷用メタルマスクの製造方法
CN101376234B (zh) 2007-08-28 2013-05-29 侯家祥 一种研磨工具磨料颗粒有序排列的方法
US8258251B2 (en) 2007-11-30 2012-09-04 The United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration Highly porous ceramic oxide aerogels having improved flexibility
US8080073B2 (en) 2007-12-20 2011-12-20 3M Innovative Properties Company Abrasive article having a plurality of precisely-shaped abrasive composites
CN101909823B (zh) 2007-12-27 2012-11-21 3M创新有限公司 成形的破碎磨粒、使用其制造的磨料制品及其制造方法
US8123828B2 (en) 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
EP2245445B1 (en) 2008-01-18 2017-04-12 Lifescan Scotland Limited Method of manufacturing test strip lots having a predetermined calibration characteristic
JP5527937B2 (ja) 2008-03-26 2014-06-25 京セラ株式会社 窒化珪素質焼結体
AU2009236192B2 (en) 2008-04-18 2011-09-22 Saint-Gobain Abrasifs Hydrophilic and hydrophobic silane surface modification of abrasive grains
WO2009134839A1 (en) 2008-04-30 2009-11-05 Dow Technology Investments, Llc Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same
US8481438B2 (en) 2008-06-13 2013-07-09 Washington Mills Management, Inc. Very low packing density ceramic abrasive grits and methods of producing and using the same
JP5475761B2 (ja) 2008-06-20 2014-04-16 スリーエム イノベイティブ プロパティズ カンパニー ポリマー鋳型
JP2010012530A (ja) 2008-07-01 2010-01-21 Showa Denko Kk 研磨テープ、研磨テープの製造方法およびバーニッシュ加工方法
CN102076462B (zh) 2008-07-02 2013-01-16 圣戈班磨料磨具有限公司 用于电子工业中的磨料切片工具
CN102138203B (zh) 2008-08-28 2015-02-04 3M创新有限公司 结构化磨料制品、其制备方法、及其在晶片平面化中的用途
US8652226B2 (en) 2008-09-16 2014-02-18 Diamond Innovations, Inc. Abrasive particles having a unique morphology
EP2174717B1 (en) 2008-10-09 2020-04-29 Imertech Sas Grinding method
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US8142532B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
RU2506152C2 (ru) 2008-12-17 2014-02-10 3М Инновейтив Пропертиз Компани Фасонные абразивные частицы с канавками
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
BRPI0923722A2 (pt) 2008-12-30 2017-07-11 Saint Gobain Abrasives Inc Ferramentas abrasivas coladas reforçadas
WO2010079729A1 (ja) 2009-01-06 2010-07-15 日本碍子株式会社 成形型、及び、その成形型を用いた成形体の製造方法
JP4782214B2 (ja) * 2009-04-01 2011-09-28 ジョイボンド株式会社 研磨用および表面保護材塗布用可塑性柔軟組成物
SE532851C2 (sv) 2009-06-22 2010-04-20 Gsab Glasmaesteribranschens Se Anordning vid en i en bärprofil fixerbar gångjärnsprofil
US8628597B2 (en) 2009-06-25 2014-01-14 3M Innovative Properties Company Method of sorting abrasive particles, abrasive particle distributions, and abrasive articles including the same
WO2011005808A2 (en) 2009-07-07 2011-01-13 Morgan Advanced Materials And Technology Inc. Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
JP5551568B2 (ja) 2009-11-12 2014-07-16 日東電工株式会社 樹脂封止用粘着テープ及びこれを用いた樹脂封止型半導体装置の製造方法
JP2013511467A (ja) 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボンナノチューブ浸出繊維材料を含有するセラミック複合材料とその製造方法
CN102666022B (zh) 2009-12-02 2015-05-20 3M创新有限公司 制备具有成形磨粒的涂覆的磨料制品的方法和所得产品
BR112012013346B1 (pt) 2009-12-02 2020-06-30 3M Innovative Properties Company partículas abrasivas com formato duplamente afunilado
US8480772B2 (en) 2009-12-22 2013-07-09 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
US8440602B2 (en) 2009-12-22 2013-05-14 The Procter & Gamble Company Liquid cleaning and/or cleansing composition comprising a divinyl benzene cross-linked styrene polymer
AU2010336912B2 (en) 2009-12-31 2013-12-12 Halliburton Energy Services, Inc Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
JP5769735B2 (ja) 2010-03-03 2015-08-26 スリーエム イノベイティブ プロパティズ カンパニー 結合した研磨ホイール
CN101944853B (zh) 2010-03-19 2013-06-19 郁百超 绿色功率变换器
BR112012027030B1 (pt) 2010-04-27 2020-05-19 3M Innovative Properties Co artigo abrasivo, método de abrasão de uma peça de trabalho e método de preparo de uma partícula abrasiva conformada de cerâmica
CN102232949A (zh) 2010-04-27 2011-11-09 孙远 提高药物溶出度的组合物及其制备方法
US8551577B2 (en) 2010-05-25 2013-10-08 3M Innovative Properties Company Layered particle electrostatic deposition process for making a coated abrasive article
FI20105606A (fi) 2010-05-28 2010-11-25 Kwh Mirka Ab Oy Hiomatuote ja menetelmä tällaisen valmistamiseksi
KR101879883B1 (ko) 2010-07-02 2018-07-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 코팅된 연마 용품
BR112013001831B8 (pt) 2010-08-04 2021-05-04 3M Innovative Properties Co partículas abrasivas formatadas
TWI613285B (zh) 2010-09-03 2018-02-01 聖高拜磨料有限公司 粘結的磨料物品及形成方法
JP5702469B2 (ja) 2010-09-21 2015-04-15 ザ プロクター アンド ギャンブルカンパニー 液体洗浄組成物
DE102010047690A1 (de) 2010-10-06 2012-04-12 Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag Verfahren zum Herstellen von Zirkonia-verstärkten Alumina-Schleifkörnern und hierdurch hergestellte Schleifkörner
CN103153544B (zh) 2010-11-01 2016-10-26 3M创新有限公司 成形磨粒以及制备方法
JP6008861B2 (ja) 2010-11-01 2016-10-19 スリーエム イノベイティブ プロパティズ カンパニー 成形セラミック研磨粒子を製造するためのレーザー方法
EP2658942A4 (en) 2010-12-30 2014-10-15 Saint Gobain Ceramics METHOD FOR PRODUCING A SHAPED GRINDING CORN
PL2658680T3 (pl) * 2010-12-31 2021-05-31 Saint-Gobain Ceramics & Plastics, Inc. Wyroby ścierne zawierające cząstki ścierne o określonych kształtach i sposoby formowania takich wyrobów
EP2675575B1 (en) 2011-02-16 2021-11-03 3M Innovative Properties Company Electrostatic abrasive particle coating apparatus and method
CN103328157B (zh) 2011-02-16 2017-03-22 3M创新有限公司 具有旋转对齐的成形陶瓷磨粒的带涂层磨料制品
KR20140024884A (ko) 2011-04-14 2014-03-03 쓰리엠 이노베이티브 프로퍼티즈 컴파니 성형된 연마 그레인의 탄성중합체 결합된 응집체를 함유하는 부직포 연마 용품
US20120321567A1 (en) 2011-06-20 2012-12-20 Denis Alfred Gonzales Liquid cleaning and/or cleansing composition
US8703685B2 (en) 2011-06-20 2014-04-22 The Procter & Gamble Company Liquid cleaning and/or cleansing composition comprising polylactic acid abrasives
EP2721136A1 (en) 2011-06-20 2014-04-23 The Procter and Gamble Company Liquid cleaning and/or cleansing composition
US8852643B2 (en) 2011-06-20 2014-10-07 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
EP2537917A1 (en) 2011-06-20 2012-12-26 The Procter & Gamble Company Liquid detergent composition with abrasive particles
CN103702800B (zh) * 2011-06-30 2017-11-10 圣戈本陶瓷及塑料股份有限公司 包括氮化硅磨粒的磨料制品
EP2726248B1 (en) 2011-06-30 2019-06-19 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
RU2014100042A (ru) 2011-07-12 2015-08-20 3М Инновейтив Пропертиз Компани Способ изготовления керамических формованных абразивных частиц, золь-гельного состава и керамических формованных абразивных частиц
US9038055B2 (en) 2011-08-05 2015-05-19 Microsoft Technology Licensing, Llc Using virtual machines to manage software builds
KR101951506B1 (ko) 2011-09-07 2019-02-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 공작물을 연마하는 방법
EP2567784B1 (en) 2011-09-08 2019-07-31 3M Innovative Properties Co. Bonded abrasive article
KR102002194B1 (ko) * 2011-09-07 2019-07-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 접합된 연마 용품
EP2573156A1 (en) 2011-09-20 2013-03-27 The Procter & Gamble Company Liquid cleaning composition
EP2573157A1 (en) 2011-09-20 2013-03-27 The Procter and Gamble Company Liquid detergent composition with abrasive particles
BR112014007089A2 (pt) 2011-09-26 2017-03-28 Saint-Gobain Ceram & Plastics Inc artigos abrasivos incluindo materiais de partículas abrasivas, abrasivos revestidos usando os materiais de partículas abrasivas e os métodos de formação
IN2014CN03358A (ko) 2011-11-09 2015-07-03 3M Innovative Properties Co
JP5903502B2 (ja) 2011-12-30 2016-04-13 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子を備える粒子材料
JP5847331B2 (ja) 2011-12-30 2016-01-20 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子の形成
RU2602581C2 (ru) 2012-01-10 2016-11-20 Сэнт - Гобэйн Керамикс Энд Пластик,Инк. Абразивные частицы, имеющие сложные формы, и способы их формования
WO2013106602A1 (en) 2012-01-10 2013-07-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
EP2631286A1 (en) 2012-02-23 2013-08-28 The Procter & Gamble Company Liquid cleaning composition
US9770949B2 (en) 2012-02-29 2017-09-26 Bridgestone Corporation Tire
EP2830829B1 (en) 2012-03-30 2018-01-10 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
BR112014024937B1 (pt) 2012-04-04 2021-01-12 3M Innovative Properties Company partícula abrasiva conformada de cerâmica, pluralidade de partículas abrasivas, artigo abrasivo e método para produzir partículas abrasivas conformadas de cerâmica
PL2852473T3 (pl) 2012-05-23 2021-06-28 Saint-Gobain Ceramics & Plastics Inc. Ukształtowane cząstki ścierne i sposoby ich formowania
US20130337725A1 (en) 2012-06-13 2013-12-19 3M Innovative Property Company Abrasive particles, abrasive articles, and methods of making and using the same
IN2015DN00343A (ko) 2012-06-29 2015-06-12 Saint Gobain Ceramics
RU2017118071A (ru) 2012-07-06 2018-10-29 3М Инновейтив Пропертиз Компани Абразивное изделие с покрытием
EP2692815A1 (de) * 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit konkavem Abschnitt
EP2692821A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Basiskörper und Aufsatzkörper
EP2692813A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Erhebungen verschiedener Höhen
EP2692814A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn, enthaltend eine erste Fläche ohne Ecke und zweite Fläche mit Ecke
WO2014020068A1 (de) 2012-08-02 2014-02-06 Robert Bosch Gmbh Schleifkorn mit höchstens drei flächen und einer ecke
JP6474346B2 (ja) 2012-08-02 2019-02-27 スリーエム イノベイティブ プロパティズ カンパニー 精密に成形された形成部を有する研磨要素前駆体及びその作製方法
SG11201500802TA (en) 2012-08-02 2015-04-29 3M Innovative Properties Co Abrasive articles with precisely shaped features and method of making thereof
EP2692818A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Hauptoberflächen und Nebenoberflächen
EP2692816A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit einander durchdringenden flächigen Körpern
EP2692820A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Basiskörper, Erhebung und Öffnung
EP2692817A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit unter einem Winkel angeordneten Platten
EP2692819A1 (de) 2012-08-02 2014-02-05 Robert Bosch GmbH Schleifkorn mit Basisfläche und Erhebungen
WO2014022462A1 (en) 2012-08-02 2014-02-06 3M Innovative Properties Company Abrasive elements with precisely shaped features, abrasive articles fabricated therefrom and methods of making thereof
CN107234550A (zh) 2012-08-02 2017-10-10 罗伯特·博世有限公司 包含不具有角的第一面以及具有角的第二面的磨粒
GB201218125D0 (en) 2012-10-10 2012-11-21 Imerys Minerals Ltd Method for grinding a particulate inorganic material
DE102012023688A1 (de) 2012-10-14 2014-04-17 Dronco Ag Geometrisch bestimmtes Schleifkorn, Verfahren zur Herstellung derartiger Schleifkörner und deren Verwendung in einer Schleifscheibe oder in einem Schleifmittel auf Unterlage
EP2719752B1 (en) 2012-10-15 2016-03-16 The Procter and Gamble Company Liquid detergent composition with abrasive particles
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
CA2888733A1 (en) 2012-10-31 2014-05-08 3M Innovative Properties Company Shaped abrasive particles, methods of making, and abrasive articles including the same
CN105899331A (zh) 2012-12-31 2016-08-24 圣戈本陶瓷及塑料股份有限公司 研磨喷砂介质及其形成和使用方法
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
DE102013202204A1 (de) 2013-02-11 2014-08-14 Robert Bosch Gmbh Schleifelement
WO2014124554A1 (en) 2013-02-13 2014-08-21 Shengguo Wang Abrasive grain with controlled aspect ratio
JP6521871B2 (ja) 2013-03-04 2019-05-29 スリーエム イノベイティブ プロパティズ カンパニー 形成研磨粒子を含有する不織布研磨物品
CN105050770B (zh) 2013-03-12 2018-08-17 3M创新有限公司 粘结磨料制品
CA2984232C (en) 2013-03-29 2021-07-20 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
WO2014165390A1 (en) 2013-04-05 2014-10-09 3M Innovative Properties Company Sintered abrasive particles, method of making the same, and abrasive articles including the same
CN205497246U (zh) 2013-04-24 2016-08-24 3M创新有限公司 涂覆磨料带
US20140352722A1 (en) 2013-05-29 2014-12-04 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
US20140352721A1 (en) 2013-05-29 2014-12-04 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
EP2808379A1 (en) 2013-05-29 2014-12-03 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
DE102013210158A1 (de) 2013-05-31 2014-12-18 Robert Bosch Gmbh Rollenförmige Drahtbürste
DE102013210716A1 (de) 2013-06-10 2014-12-11 Robert Bosch Gmbh Verfahren zum Herstellen von Schleifmittelkörpern für ein Schleifwerkzeug
EP3013526A4 (en) 2013-06-24 2017-03-08 3M Innovative Properties Company Abrasive particles, method of making abrasive particles, and abrasive articles
TWI590917B (zh) 2013-06-25 2017-07-11 聖高拜磨料有限公司 研磨製品及其製造方法
DE102013212528A1 (de) 2013-06-27 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Stahlformkörpers
TWI527886B (zh) 2013-06-28 2016-04-01 聖高拜陶器塑膠公司 包含成形研磨粒子之研磨物品
DE102014210836A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifeinheit
TWI527887B (zh) 2013-06-28 2016-04-01 聖高拜陶器塑膠公司 包含成形研磨粒子之研磨物品
DE102013212687A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
DE102013212677A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifkorns
DE102013212680A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkörpertransportvorrichtung
DE102013212622A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zu einer Aufbringung von Schleifelementen auf zumindest einen Grundkörper
DE102013212666A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifmittels
DE102013212634A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifmittel
DE102013212639A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifwerkzeug
DE102013212690A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkorn
DE102013212644A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifmittels
DE102013212654A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
DE102013212653A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
EP3013920A1 (de) 2013-06-28 2016-05-04 Robert Bosch GmbH Schleifmittel
DE102013212661A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkorn
DE102013212700A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung einer Schleifeinheit
DE102013212598A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Haltevorrichtung für ein Schleifmittel
EP2821469B1 (en) 2013-07-02 2018-03-14 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
EP2821472B1 (en) 2013-07-02 2018-08-29 The Procter and Gamble Company Liquid cleaning and/or cleansing composition
US9878954B2 (en) 2013-09-13 2018-01-30 3M Innovative Properties Company Vacuum glazing pillars for insulated glass units
CN110591645A (zh) 2013-09-30 2019-12-20 圣戈本陶瓷及塑料股份有限公司 成形磨粒及其形成方法
WO2015050781A1 (en) 2013-10-04 2015-04-09 3M Innovative Properties Company Bonded abrasive articles and methods
US10785900B2 (en) 2013-11-15 2020-09-22 3M Innovative Properties Company Electrically conductive article containing shaped particles and methods of making same
WO2015088953A1 (en) 2013-12-09 2015-06-18 3M Innovative Properties Company Conglomerate abrasive particles, abrasive articles including the same, and methods of making the same
AT515229B1 (de) 2013-12-18 2016-08-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifmittel
AT515223B1 (de) 2013-12-18 2016-06-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifmittel
AT515258B1 (de) 2013-12-18 2016-09-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifkörpern
EP2941354B1 (de) 2013-12-19 2017-03-22 Klingspor AG Schleifpartikel und schleifmittel mit hoher schleifleistung
PL3083870T3 (pl) 2013-12-19 2018-02-28 Klingspor Ag Sposób wytwarzania wielowarstwowych cząstek ściernych
WO2015100220A1 (en) 2013-12-23 2015-07-02 3M Innovative Properties Company A coated abrasive article maker apparatus
WO2015100018A1 (en) 2013-12-23 2015-07-02 3M Innovative Properties Company Abrasive particle positioning systems and production tools therefor
EP3950228A1 (en) 2013-12-23 2022-02-09 3M Innovative Properties Company Method of making a coated abrasive article
CN106029301B (zh) 2013-12-31 2018-09-18 圣戈班磨料磨具有限公司 包括成形磨粒的研磨制品
WO2015112379A1 (en) 2014-01-22 2015-07-30 United Technologies Corporation Apparatuses, systems and methods for aligned abrasive grains
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
EP3110900B1 (en) 2014-02-27 2019-09-11 3M Innovative Properties Company Abrasive particles, abrasive articles, and methods of making and using the same
JP6452295B2 (ja) 2014-03-19 2019-01-16 スリーエム イノベイティブ プロパティズ カンパニー 研磨パッド及びガラス基板の研磨方法
DE202014101741U1 (de) 2014-04-11 2014-05-09 Robert Bosch Gmbh Teilweise beschichtetes Schleifkorn
DE202014101739U1 (de) 2014-04-11 2014-05-09 Robert Bosch Gmbh Schleifkorn mit Knoten und Fortsätzen
CA2945493C (en) 2014-04-14 2020-08-04 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
CA2945497A1 (en) 2014-04-14 2015-10-22 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2015158009A1 (en) 2014-04-19 2015-10-22 Shengguo Wang Alumina zirconia abrasive grain especially designed for light duty grinding applications
MX2016013186A (es) 2014-04-21 2017-01-16 3M Innovative Properties Co Particulas abrasivas y articulos abrasivos que las incluyen.
KR20160147700A (ko) 2014-05-01 2016-12-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 가요성 연마 물품 및 이의 사용 방법
WO2015165122A1 (en) 2014-05-02 2015-11-05 Shengguo Wang Drying, sizing and shaping process to manufacture ceramic abrasive grain
EP3145675B1 (en) 2014-05-20 2022-10-12 3M Innovative Properties Company Abrasive material with different sets of plurality of abrasive elements
US20170088759A1 (en) 2014-05-25 2017-03-30 Shengguo WANG Method and apparatus for producing alumina monohydrate and sol gel abrasive grain
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
CN106794570B (zh) 2014-08-21 2020-07-10 3M创新有限公司 具有多重化磨料颗粒结构的带涂层磨料制品及制备方法
EP3194118B1 (en) 2014-09-15 2023-05-03 3M Innovative Properties Company Methods of making abrasive articles and bonded abrasive wheel preparable thereby
JP6718868B2 (ja) 2014-10-21 2020-07-08 スリーエム イノベイティブ プロパティズ カンパニー 研磨プリフォーム、研磨物品を製造する方法、及び結合研磨物品
JP2017536254A (ja) 2014-12-04 2017-12-07 スリーエム イノベイティブ プロパティズ カンパニー 角度を成した成形研磨粒子を備える研磨ベルト
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US20160177152A1 (en) 2014-12-23 2016-06-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
CN107427991B (zh) 2015-03-30 2020-06-12 3M创新有限公司 带涂层磨料制品及其制备方法
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
MX365727B (es) 2015-04-14 2019-06-12 3M Innovative Properties Co Articulo abrasivo de tela no tejida y metodo para fabricarlo.
TWI603813B (zh) 2015-04-20 2017-11-01 中國砂輪企業股份有限公司 研磨工具及其製造方法
TWI609742B (zh) 2015-04-20 2018-01-01 中國砂輪企業股份有限公司 研磨工具
TWI621590B (zh) 2015-05-21 2018-04-21 聖高拜陶器塑膠公司 研磨顆粒及形成研磨顆粒之方法
EP3304581B1 (en) 2015-06-02 2022-09-14 3M Innovative Properties Company Method of transferring particles to a substrate
US10245703B2 (en) 2015-06-02 2019-04-02 3M Innovative Properties Company Latterally-stretched netting bearing abrasive particles, and method for making
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
PL3310532T3 (pl) 2015-06-19 2022-01-17 3M Innovative Properties Company Systemy i sposoby wytwarzania wyrobów ściernych
KR20180010311A (ko) 2015-06-19 2018-01-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 일정 범위 내의 랜덤 회전 배향을 갖는 연마 입자를 구비한 연마 용품
EP3313614A4 (en) 2015-06-25 2019-05-15 3M Innovative Properties Company ABRASIVE ARTICLES WITH VITRIFIED BINDER AND METHODS OF MAKING SAME
WO2017007703A1 (en) 2015-07-08 2017-01-12 3M Innovative Properties Company Systems and methods for making abrasive articles
US10773360B2 (en) 2015-07-08 2020-09-15 3M Innovative Properties Company Systems and methods for making abrasive articles
EP3359588B1 (en) 2015-10-07 2022-07-20 3M Innovative Properties Company Bonded abrasive articles having surface-modified abrasive particles with epoxy-functional silane coupling agents
JP7008474B2 (ja) 2016-11-30 2022-01-25 東京エレクトロン株式会社 プラズマエッチング方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761321B2 (ja) * 1992-02-06 1998-06-04 電気化学工業株式会社 砥 粒
WO2013102177A1 (en) * 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same

Also Published As

Publication number Publication date
AU2015247739B2 (en) 2017-10-26
WO2015160855A1 (en) 2015-10-22
EP3131705A4 (en) 2017-12-06
US9803119B2 (en) 2017-10-31
CA2945493C (en) 2020-08-04
EP3131705A1 (en) 2017-02-22
JP6484647B2 (ja) 2019-03-13
AU2015247739A1 (en) 2016-11-10
CA2945493A1 (en) 2015-10-22
JP2017517402A (ja) 2017-06-29
US20150291865A1 (en) 2015-10-15
CN106457521A (zh) 2017-02-22
BR112016023880A2 (pt) 2017-08-15
CN110055032A (zh) 2019-07-26
KR20160146802A (ko) 2016-12-21
MX2016013464A (es) 2017-04-13

Similar Documents

Publication Publication Date Title
KR101884178B1 (ko) 형상화 연마 입자들을 포함하는 연마 물품
KR101890106B1 (ko) 형상화 연마 입자들을 포함하는 연마 물품
US11879087B2 (en) Abrasive article including shaped abrasive particles
KR20160145098A (ko) 형상화 연마 입자들을 포함하는 연마 물품

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)