KR101840183B1 - 미결정 반도체막의 제작 방법 및 반도체 장치의 제작 방법 - Google Patents
미결정 반도체막의 제작 방법 및 반도체 장치의 제작 방법 Download PDFInfo
- Publication number
- KR101840183B1 KR101840183B1 KR1020110062372A KR20110062372A KR101840183B1 KR 101840183 B1 KR101840183 B1 KR 101840183B1 KR 1020110062372 A KR1020110062372 A KR 1020110062372A KR 20110062372 A KR20110062372 A KR 20110062372A KR 101840183 B1 KR101840183 B1 KR 101840183B1
- Authority
- KR
- South Korea
- Prior art keywords
- film
- semiconductor film
- flow rate
- semiconductor
- hydrogen
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 461
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title abstract description 34
- 239000007789 gas Substances 0.000 claims abstract description 154
- 230000008021 deposition Effects 0.000 claims abstract description 109
- 239000001257 hydrogen Substances 0.000 claims abstract description 98
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 98
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims description 65
- 238000005530 etching Methods 0.000 claims description 47
- 238000012545 processing Methods 0.000 claims description 22
- 150000002431 hydrogen Chemical class 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000007667 floating Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 78
- 229910052710 silicon Inorganic materials 0.000 abstract description 78
- 239000010703 silicon Substances 0.000 abstract description 78
- 229910052732 germanium Inorganic materials 0.000 abstract description 66
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 abstract description 65
- 230000003247 decreasing effect Effects 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 431
- 238000000151 deposition Methods 0.000 description 97
- 239000010409 thin film Substances 0.000 description 80
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 76
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 58
- 239000012535 impurity Substances 0.000 description 52
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 49
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 38
- 238000006243 chemical reaction Methods 0.000 description 37
- 229910052757 nitrogen Inorganic materials 0.000 description 29
- 230000008569 process Effects 0.000 description 29
- 239000000523 sample Substances 0.000 description 29
- 229910052786 argon Inorganic materials 0.000 description 26
- 239000013078 crystal Substances 0.000 description 26
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 25
- 229910052581 Si3N4 Inorganic materials 0.000 description 22
- 229910021417 amorphous silicon Inorganic materials 0.000 description 22
- 239000000463 material Substances 0.000 description 22
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 22
- 238000009832 plasma treatment Methods 0.000 description 21
- 229910052760 oxygen Inorganic materials 0.000 description 19
- 239000001301 oxygen Substances 0.000 description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 18
- 229910052719 titanium Inorganic materials 0.000 description 18
- 239000010936 titanium Substances 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 17
- 230000001747 exhibiting effect Effects 0.000 description 17
- 230000005669 field effect Effects 0.000 description 17
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 16
- 229910052782 aluminium Inorganic materials 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 229910000077 silane Inorganic materials 0.000 description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- 239000011521 glass Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- -1 silicon or germanium Chemical compound 0.000 description 12
- 230000009977 dual effect Effects 0.000 description 10
- 239000001307 helium Substances 0.000 description 10
- 229910052734 helium Inorganic materials 0.000 description 10
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 10
- 229910052743 krypton Inorganic materials 0.000 description 10
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 10
- 229910052754 neon Inorganic materials 0.000 description 10
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 10
- 229910052724 xenon Inorganic materials 0.000 description 10
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 238000009616 inductively coupled plasma Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 239000010937 tungsten Substances 0.000 description 7
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 229920001940 conductive polymer Polymers 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 101100489584 Solanum lycopersicum TFT1 gene Proteins 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000001678 elastic recoil detection analysis Methods 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000000628 photoluminescence spectroscopy Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 2
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 229910000583 Nd alloy Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 101100214488 Solanum lycopersicum TFT2 gene Proteins 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 150000002831 nitrogen free-radicals Chemical class 0.000 description 2
- QEHKBHWEUPXBCW-UHFFFAOYSA-N nitrogen trichloride Chemical compound ClN(Cl)Cl QEHKBHWEUPXBCW-UHFFFAOYSA-N 0.000 description 2
- 229960001730 nitrous oxide Drugs 0.000 description 2
- 235000013842 nitrous oxide Nutrition 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- 229910018507 Al—Ni Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- GLFAEFVIKYUOJK-UHFFFAOYSA-N [B].[Cl] Chemical compound [B].[Cl] GLFAEFVIKYUOJK-UHFFFAOYSA-N 0.000 description 1
- PRPAGESBURMWTI-UHFFFAOYSA-N [C].[F] Chemical compound [C].[F] PRPAGESBURMWTI-UHFFFAOYSA-N 0.000 description 1
- DRPJATXTOYFOEI-UHFFFAOYSA-N [Si].O1[SiH2]O[SiH2]O[SiH2]O[SiH2]1 Chemical compound [Si].O1[SiH2]O[SiH2]O[SiH2]O[SiH2]1 DRPJATXTOYFOEI-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- AWFPGKLDLMAPMK-UHFFFAOYSA-N dimethylaminosilicon Chemical compound CN(C)[Si] AWFPGKLDLMAPMK-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- MDQRDWAGHRLBPA-UHFFFAOYSA-N fluoroamine Chemical compound FN MDQRDWAGHRLBPA-UHFFFAOYSA-N 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- OLRJXMHANKMLTD-UHFFFAOYSA-N silyl Chemical compound [SiH3] OLRJXMHANKMLTD-UHFFFAOYSA-N 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/515—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
- H01L29/456—Ohmic electrodes on silicon
- H01L29/458—Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66765—Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78645—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
- H01L29/78648—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78651—Silicon transistors
- H01L29/7866—Non-monocrystalline silicon transistors
- H01L29/78672—Polycrystalline or microcrystalline silicon transistor
- H01L29/78678—Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
전기 특성이 양호한 반도체 장치를 생산성 높게 제작하는 방법을 제공한다.
제 1 조건에 의해, 높은 결정성의 혼상 입자를 낮은 입자 밀도로 갖는 씨드를 형성한 후, 제 2 조건에 의해 혼상 입자를 성장시켜서 혼상 입자의 틈을 메우도록, 씨드 위에 미결정 반도체막을 적층 형성한다. 제 1 조건은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량을 50배 이상 1000배 이하로 해서 퇴적성 기체를 희석하고, 또한 처리실 내의 압력을 67Pa 이상 1333Pa 이하로 하는 조건이다. 제 2 조건은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시키면서 처리실에 공급하고, 또한 처리실 내의 압력을 1333Pa 이상 13332Pa 이하로 하는 조건이다.
제 1 조건에 의해, 높은 결정성의 혼상 입자를 낮은 입자 밀도로 갖는 씨드를 형성한 후, 제 2 조건에 의해 혼상 입자를 성장시켜서 혼상 입자의 틈을 메우도록, 씨드 위에 미결정 반도체막을 적층 형성한다. 제 1 조건은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량을 50배 이상 1000배 이하로 해서 퇴적성 기체를 희석하고, 또한 처리실 내의 압력을 67Pa 이상 1333Pa 이하로 하는 조건이다. 제 2 조건은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시키면서 처리실에 공급하고, 또한 처리실 내의 압력을 1333Pa 이상 13332Pa 이하로 하는 조건이다.
Description
본 발명은, 미결정 반도체막의 제작 방법 및 상기 미결정 반도체막을 사용한 반도체 장치의 제작 방법 및 표시 장치에 관한 것이다.
또, 본 명세서 중에 있어서 반도체 장치란, 반도체 특성을 이용함으로써 기능할 수 있는 장치 전반을 가리키며, 표시 장치, 전기 광학 장치, 광전 변환 장치, 반도체 회로 및 전자 기기는 모두 반도체 장치이다.
전계 효과 트랜지스터의 일종으로서, 절연 표면을 갖는 기판 위에 형성된 반도체막을 사용해서 채널 영역이 형성되는 박막 트랜지스터가 알려져 있다. 박막 트랜지스터의 채널 영역에 사용할 수 있는 반도체막으로, 비정질 실리콘, 미결정 실리콘 및 다결정 실리콘을 사용하는 기술이 개시되어 있다(특허 문헌 1 내지 5 참조). 박막 트랜지스터의 대표적인 응용예는, 액정 텔레비전 장치이며, 표시 화면을 구성하는 각 화소의 스위칭 트랜지스터로서 실용화되어 있다.
또한, 플라즈마 CVD법에 의해 제작 가능한 결정계 실리콘으로서 미결정 실리콘을, 광전 변환을 행하는 반도체막에 사용한 광전 변환 장치의 개발이 진행되고 있다(예를 들면, 특허 문헌 6 참조).
비정질 실리콘막을 사용해서 채널 영역이 형성되는 박막 트랜지스터는, 전계 효과 이동도 및 온 전류가 낮다는 문제가 있다. 한편, 미결정 실리콘막을 사용해서 채널 영역이 형성되는 박막 트랜지스터는, 비정질 실리콘막으로 채널 영역이 형성되는 박막 트랜지스터와 비교하여, 전계 효과 이동도는 향상되지만 오프 전류가 높아져, 충분한 스위칭 특성을 얻을 수 없다는 문제가 있다.
다결정 실리콘막이 채널 영역이 되는 박막 트랜지스터는, 상기 2종류의 박막 트랜지스터보다도 전계 효과 이동도가 각별히 높고, 높은 온 전류를 얻을 수 있다는 특성이 있다. 이 박막 트랜지스터는, 그 특성에 의해, 화소에 형성되는 스위칭용 트랜지스터로서 사용할 수 있고, 또한 고속 동작이 요구되는 드라이버 회로도 구성할 수 있다.
그러나, 다결정 실리콘막을 사용해서 채널 영역이 형성되는 박막 트랜지스터의 제작 공정은, 비정질 실리콘막을 사용해서 채널 영역이 형성되는 박막 트랜지스터를 제작하는 경우에 비해, 반도체막의 결정화 공정이 필요하고, 제조 가격이 증대하는 것이 문제되고 있다. 예를 들면, 다결정 실리콘막의 제조를 위해 필요한 레이저 어닐 기술은, 레이저 빔의 조사 면적이 작고, 대화면의 액정 패널을 효율 좋게 생산할 수 없다는 문제가 있다.
그런데, 표시 패널의 제조에 사용할 수 있는 유리 기판은, 제 3 세대(550mm×650mm), 제 3.5 세대(600mm×720mm 또는 620mm×750mm), 제 4 세대(680mm×880mm 또는 730mm×920mm), 제 5 세대(1100mm×1300mm), 제6 세대(1500mm×1850mm), 제7 세대(1870mm×2200mm), 제8 세대(2200mm×2400mm), 제9 세대(2400mm×2800mm), 제 10세대(2950mm×3400mm)로 대면적화가 진행된다. 유리 기판의 대형화는 코스트 미니멈 설계의 사상에 기초한다.
이에 대하여, 제 10 세대(2950mm×3400mm)에서와 같은 대면적의 마더 유리 기판에, 고속 동작이 가능한 박막 트랜지스터를, 생산성 좋게 제조할 수 있는 기술은 여전히 확립되어 있지 않고, 그것이 산업계의 문제가 되고 있다.
그래서, 본 발명의 일 형태는, 전기 특성이 양호한 반도체 장치를, 생산성 높게 제작하는 방법을 제공하는 것을 과제로 한다.
본 발명의 일 형태는, 제 1 조건에 의해, 높은 결정성의 혼상 입자를 낮은 입자 밀도로 갖는 씨드(seed)를 형성한 후, 제 2 조건에 의해 혼상 입자를 성장시켜서 혼상 입자의 틈을 메우도록 미결정 반도체막을 형성하는 것을 요지로 한다.
높은 결정성을 갖는 혼상 입자를 낮은 입자 밀도로 주어진 제 1 조건은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량을 50배 이상 1000배 이하로 해서 퇴적성 기체를 희석하고, 또한 처리실 내의 압력을 67Pa 이상 1333Pa 이하로 하는 조건이다. 혼상 입자를 성장시켜서 혼상 입자의 틈을 메우는 제 2 조건은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시키면서 처리실에 공급하고, 또한 처리실 내의 압력을 1333Pa 이상 13332Pa 이하로 하는 조건이다.
본 발명의 일 형태는, 제 1 조건에 의해 비정질 실리콘 영역과, 단결정으로 간주할 수 있는 결정자를 포함하는 혼상 입자를 갖는 씨드를 플라즈마 CVD법으로 형성하고, 씨드 위에, 제 2 조건에 의해 미결정 반도체막을 플라즈마 CVD법으로 형성하는 제작 방법이며, 제 1 조건은, 처리실 내에 공급하는 원료 가스로서 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와 수소가 포함된 가스를 사용하고, 퇴적성 기체의 유량에 대한 수소의 유량을 50배 이상 1000배 이하로 해서 퇴적성 기체를 희석하고, 또한 처리실 내의 압력을 67Pa 이상 1333Pa 이하로 하는 조건이다. 또한, 제 2 조건은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시키면서 처리실에 공급하고, 또한 처리실 내의 압력을 1333Pa 이상 13332Pa 이하로 하는 조건인 것을 특징으로 한다.
또한, 상기 제 2 조건에 있어서, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시킨다는 것은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체 또는 수소의 유량을 주기적으로 증감시키는 것이며, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에 대한 수소의 유량비가 낮을 경우에는, 미결정 반도체의 결정 성장이 우선적으로 수행되고, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에 대한 수소의 유량비가 높을 경우에는, 비정질 반도체의 에칭이 우선적으로 수행된다. 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에 대한 수소의 유량비가 낮은 경우로서, 퇴적성 기체의 유량에 대한 수소의 유량을 100배 이상 2000배 이하로 함으로써 미결정 반도체의 결정 성장을 우선적으로 수행할 수 있다.
또한, 씨드는, 혼상 입자가 분산된 상태나, 혼상 입자가 연속된 상태(즉, 막 상태)를 포함한다. 또한, 플라즈마를 생성하는 파워는, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량비에 맞춰서 적당히 선택하는 것이 바람직하다.
또한, 본 발명의 일 형태에 있어서, 상기 제 2 조건에 의해 미결정 반도체막을 형성한 후에, 미결정 반도체막 위에 제 3 조건에 의해 제 2 미결정 반도체막을 플라즈마 CVD법으로 형성하는 것이며, 제 3 조건은, 처리실 내에 공급하는 원료 가스로서 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와 수소가 포함된 가스를 사용하여, 퇴적성 기체의 유량에 대한 수소의 유량비를 상기 제 2 조건보다 높게 해서 퇴적성 기체를 희석하고, 또한 처리실 내의 압력을 1333Pa 이상 13332Pa 이하로 하는 조건인 것도 가능하다.
또한, 본 발명의 일 형태에 있어서, 상기 제 1 조건, 상기 제 2 조건 및 상기 제 3 조건의 적어도 하나에 사용할 수 있는 원료 가스에 희가스를 첨가하는 것도 가능하다.
본 발명의 일 형태는, 제 1 조건에 의해, 높은 결정성을 갖는 혼상 입자를 낮은 밀도로 갖는 씨드를 절연막 위에 플라즈마 CVD법으로 형성하고, 제 2 조건에 의해 혼상 입자의 결정을 성장시켜서 씨드의 틈을 메움으로써, 미결정 반도체막을 플라즈마 CVD법으로 형성하는 것이다.
또한, 본 발명의 일 형태는, 상기 씨드 및 미결정 반도체막을 사용해서 채널 영역을 형성하는 박막 트랜지스터를 갖는 반도체 장치의 제작 방법이다.
또한, 본 발명의 일 형태는, 상기 씨드 및 미결정 반도체막을, p형을 나타내는 반도체막, n형을 나타내는 반도체막 및 광전 변환을 행하는 반도체막의 하나 이상에 사용한 광전 변환 장치의 제작 방법이다.
본 발명의 일 형태를 적용함으로써, 결정성이 높은 미결정 반도체막을 제작할 수 있다. 또한, 전기 특성이 양호한 반도체 장치를 생산성 높게 제작할 수 있다.
도 1은 본 발명의 일 실시형태에 따른 미결정 반도체막의 제작 방법을 설명하는 단면도.
도 2는 본 발명의 일 실시형태에 따른 미결정 반도체막의 제작 방법을 설명하는 도면.
도 3은 본 발명의 일 실시형태에 따른 미결정 반도체막의 제작 방법을 설명하는 단면도.
도 4는 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 5는 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 6은 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 7은 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 상면도.
도 8은 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 9는 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 10은 광전 변환 장치의 제작 방법의 일 형태를 설명하는 단면도.
도 11은 전자 서적의 일 예를 도시하는 사시도.
도 12는 텔레비전 장치 및 디지털 포토 프레임의 예를 도시하는 사시도.
도 13은 휴대형 컴퓨터의 일 예를 도시하는 사시도.
도 14는 반도체막의 에칭 속도를 도시하는 도면.
도 15는 미결정 실리콘막의 SEM 사진.
도 16은 박막 트랜지스터의 전류 전압 특성을 설명하는 도면.
도 17은 미결정 실리콘막의 X선 회절 강도를 설명하는 도면.
도 2는 본 발명의 일 실시형태에 따른 미결정 반도체막의 제작 방법을 설명하는 도면.
도 3은 본 발명의 일 실시형태에 따른 미결정 반도체막의 제작 방법을 설명하는 단면도.
도 4는 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 5는 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 6은 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 7은 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 상면도.
도 8은 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 9는 본 발명의 일 실시형태에 따른 반도체 장치의 제작 방법을 설명하는 단면도.
도 10은 광전 변환 장치의 제작 방법의 일 형태를 설명하는 단면도.
도 11은 전자 서적의 일 예를 도시하는 사시도.
도 12는 텔레비전 장치 및 디지털 포토 프레임의 예를 도시하는 사시도.
도 13은 휴대형 컴퓨터의 일 예를 도시하는 사시도.
도 14는 반도체막의 에칭 속도를 도시하는 도면.
도 15는 미결정 실리콘막의 SEM 사진.
도 16은 박막 트랜지스터의 전류 전압 특성을 설명하는 도면.
도 17은 미결정 실리콘막의 X선 회절 강도를 설명하는 도면.
본 발명의 실시형태에 대해서 도면을 참조하여 이하에 설명한다. 단, 본 발명은 이하의 설명에 한정되는 것이 아니다. 본 발명의 취지 및 그 범위에서 벗어남이 없이 그 형태 및 자세한 내용을 다양하게 변경할 수 있다는 것은, 당업자라면 용이하게 이해할 수 있기 때문이다. 따라서, 본 발명은 이하에 나타내는 실시형태 및 실시예의 기재 내용에만 한정해서 해석되는 것이 아니다. 또, 도면을 사용해서 본 발명의 구성을 설명함에 있어, 같은 것을 가리키는 부호는 상이한 도면 간에서도 공통으로 사용한다.
(실시형태 1)
본 실시형태에서는, 밀도가 높고, 또한 결정성이 높은 미결정 반도체막의 제작 방법에 대해서 도 1 및 도 2를 사용해서 설명한다.
도 1a에 도시하는 바와 같이, 기판(51) 위에 절연막(55)을 형성하고, 절연막(55) 위에 씨드(57)를 형성한다.
기판(51)으로서는, 유리 기판, 세라믹 기판 외에, 본 제작 공정의 처리 온도에 견딜 수 있는 정도의 내열성을 갖는 플라스틱 기판 등을 사용할 수 있다. 또한, 기판에 투광성을 요하지 않을 경우에는, 스테인리스 등의 금속 기판 표면에 절연막을 형성한 것을 사용해도 좋다. 유리 기판으로서는, 예를 들면, 바륨보로실리케이트 유리, 알루미노보로실리케이트 유리 또는 알루미노 규산 유리 등의 무 알칼리 유리 기판을 사용하면 좋다. 또, 기판(51)의 사이즈에 한정은 없고, 예를 들면 상기의 플랫 패널 디스플레이 분야에서 자주 사용되는 제 3 세대 내지 제 10 세대의 유리 기판을 사용할 수 있다.
절연막(55)은, CVD법 또는 스퍼터링법 등을 사용하여, 산화 실리콘막, 산화 질화 실리콘막, 질화 실리콘막, 질화 산화 실리콘막, 산화 알루미늄막, 질화 알루미늄막, 산화 질화 알루미늄막, 또는 질화 산화 알루미늄막을, 단층으로 또는 적층하여 형성할 수 있다.
또, 여기에서는, 산화 질화 실리콘이란, 그 조성으로서, 질소보다도 산소의 함유량이 많은 것으로, 바람직하게는, 러더퍼드 후방 산란법(RBS: Rutherford Backscattering Spectrometry) 및 수소 전방 산란법(HFS: Hydrogen Forward Scattering Spectrometry)을 사용해서 측정했을 경우에, 조성 범위로서 산소가 50 내지 70원자%, 질소가 0.5 내지 15원자%, 실리콘이 25 내지 35원자%, 수소가 0.1 내지 10원자%의 범위에서 포함되는 것을 말한다. 또한, 질화 산화 실리콘이란, 그 조성으로서, 산소보다도 질소의 함유량이 많은 것으로, 바람직하게는, RBS 및 HFS를 사용해서 측정했을 경우에, 조성 범위로서 산소가 5 내지 30원자%, 질소가 20 내지 55원자%, 실리콘이 25 내지 35원자%, 수소가 10 내지 30원자%의 범위에서 포함되는 것을 말한다. 단, 산화 질화 실리콘 또는 질화 산화 실리콘을 구성하는 원자의 합계를 100원자%로 했을 때, 질소, 산소, 실리콘 및 수소의 함유 비율이 상기의 범위 내에 포함되는 것으로 한다.
씨드(57)로서는 미결정 반도체막, 대표적으로는 미결정 실리콘막, 미결정 실리콘 게르마늄막, 미결정 게르마늄막 등을 사용하여 형성한다. 씨드(57)는, 복수의 혼상 입자가 분산된 상태, 혼상 입자가 연속된 막 상태, 또는 혼상 입자 및 비정질 반도체가 연속된 막 상태를 포함한다. 따라서, 씨드(57)는, 혼상 입자(57a)나 비정질 반도체가 인접하지 않고, 혼상 입자(57a) 사이에 틈(57b)을 갖는 것도 포함된다. 더욱이, 높은 결정성의 혼상 입자를 낮은 입자 밀도(씨드 내에 있어서의 혼상 입자의 존재 비율)로 갖는 것을 특징으로 한다. 또, 혼상 입자는, 비정질 반도체 영역과, 단결정으로 간주할 수 있는 결정자를 가진다. 또한, 혼상 입자는 쌍 결정을 갖는 경우도 있다.
씨드(57)는, 플라즈마 CVD장치의 처리실 내에 있어서, 높은 결정성의 혼상 입자를 낮은 입자 밀도로 형성하는 제 1 조건을 사용하여, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와 수소를 혼합하여, 글로우 방전 플라즈마에 의해 형성한다. 또는, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소와, 헬륨, 아르곤, 네온, 크립톤, 크세논 등의 희가스를 혼합하여, 글로우 방전 플라즈마에 의해 형성한다. 여기에서는, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량을 50배 이상 1000배 이하로 해서 퇴적성 기체를 희석하고, 또한 처리실 내의 압력을 67Pa 이상 1333Pa 이하(0.5Torr 이상 10Torr 이하)로 하는 제 1 조건에 의해, 미결정 실리콘, 미결정 실리콘 게르마늄, 미결정 게르마늄 등을 형성한다. 이때의 퇴적 온도는, 실온 내지 300℃로 하는 것이 바람직하고, 보다 바람직하게는 150 내지 280℃로 한다. 또, 상부 전극 및 하부 전극의 간격은, 플라즈마가 발생할 수 있는 간격으로 하면 좋다. 제 1 조건을 사용하여 형성함으로써, 결정 성장이 촉진되어, 씨드(57)에 포함되는 혼상 입자(57a)의 결정성이 높아진다. 즉, 씨드(57)에 포함되는 혼상 입자(57a)에 포함되는 결정자의 크기가 증대한다. 또한, 서로 이웃하는 혼상 입자(57a) 사이에 틈(57b)이 생기고, 혼상 입자(57a)의 입자 밀도가 저하된다.
실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 대표예로서는, SiH4, Si2H6, GeH4, Ge2H6 등이 있다.
씨드(57)의 원료 가스에, 헬륨, 네온, 아르곤, 크립톤, 크세논 등의 희가스를 첨가함으로써, 씨드(57)의 성막 속도가 높아진다. 이 결과, 성막 속도가 높아져서, 씨드(57)에 혼입되는 불순물량이 저감하기 때문에, 씨드(57)의 결정성을 높일 수 있다. 또한, 씨드(57)의 원료 가스로서, 헬륨, 아르곤, 네온, 크립톤, 크세논 등의 희가스를 사용함으로써, 높은 파워를 공급하지 않더라도 안정된 플라즈마를 발생시키는 것이 가능하기 때문에, 씨드(57)의 플라즈마 손상을 저감할 수 있고, 혼상 입자(57a)의 결정성을 높일 수 있다.
씨드(57)를 형성할 때의 글로우 방전 플라즈마의 생성은, 3MHz로부터 30MHz, 대표적으로는 13.56MHz, 27.12MHz의 HF대 고주파 전력, 또는 30MHz보다 크게 300MHz 정도까지의 VHF대 고주파 전력, 대표적으로는, 60MHz를 인가함으로써 행해진다. 또한, 1GHz 이상의 마이크로파 고주파 전력을 인가함으로써 행해진다. 또, 고주파 전력이 펄스 형상으로 인가되는 펄스 발진이나, 연속적으로 인가되는 연속 발진으로 할 수 있다. 또한, HF대 고주파 전력과, VHF대 고주파 전력을 중첩시킴으로써, 대면적 기판에 있어서도 플라즈마의 얼룩을 저감하여, 균일성을 높일 수 있는 동시에, 퇴적 속도를 높일 수 있다.
상기한 바와 같이 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량을 높게 함으로써, 씨드(57)의 퇴적과 동시에, 씨드(57)에 포함되는 비정질 반도체의 에칭이 생기고, 결정성이 높은 혼상 입자(57a)가 형성됨과 동시에, 인접하는 혼상 입자(57a) 사이에 틈(57b)이 생긴다. 장치 구성 및 피막 표면의 화학 상태에 따라 최적인 조건은 상이하지만, 혼상 입자(57a)가 거의 퇴적하지 않으면, 상기 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량에 있어서 유량비를 작게, 또는 RF 전력을 작게 하면 좋다. 한편, 혼상 입자(57a)의 입자 밀도가 높을 경우, 또는 비정질 반도체 영역이 결정성 반도체 영역보다도 많은 경우에는, 상기 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량에 있어서 유량비를 크게, 또는 RF 전력을 크게 하면 좋다. 씨드(57)의 퇴적 모양은 SEM(Scanning Electron Microscopy) 및 라만 분광법에 의해 평가할 수 있다. 상기 유량비 및 처리실 내의 압력 조건에 의해, 양호한 결정성을 갖고, 또한 혼상 입자의 바람직한 틈을 유지하는 씨드(57)를 형성할 수 있다. 이 결과, 씨드(57)에 포함되는 비정질 반도체 영역을 에칭하면서, 혼상 입자(57a)가 형성되기 때문에, 결정 성장이 촉진되어, 혼상 입자(57a)의 결정성이 높아진다. 즉, 혼상 입자(57a)에 포함되는 결정자의 크기가 증대한다. 또한, 인접하는 혼상 입자(57a) 사이의 비정질 반도체 영역이 에칭되기 때문에, 인접하는 혼상 입자(57a)는 서로 틈(57b)을 갖고, 따라서 혼상 입자(57a)는 낮은 입자 밀도로 형성된다. 또, 본 실시형태에 있어서의 제 1 조건으로 씨드(57)를 형성하면, 혼상 입자의 입자 직경에는 편차가 생기는 경우가 있다.
또, 씨드(57)를 형성하기 전에, CVD장치의 처리실 내 기체를 배기하면서, 처리실 내에 실리콘 또는 게르마늄을 포함하는 퇴적성 기체를 도입하여, 처리실 내의 불순물 원소를 제거함으로써, 씨드(57)에 있어서의 불순물량을 저감하는 것이 가능하다. 또한, 씨드(57)를 형성하기 전에, 불소, 플루오르화 질소, 플루오르화 실란 등의 불소를 포함하는 분위기로 플라즈마를 발생시켜서, 불소 플라즈마를 절연막(55)에 노출시킴으로써, 치밀한 씨드(57)를 형성할 수 있다.
다음에, 도 1b에 도시하는 바와 같이, 씨드(57) 위에 미결정 반도체막(59)을 형성한다. 미결정 반도체막(59)은, 씨드(57)의 결정을 성장시켜서 혼상 입자의 틈을 메우는 조건으로 형성하는 것을 특징으로 한다. 또, 미결정 반도체막(59)의 두께는 30nm 이상 100nm 이하가 바람직하다.
미결정 반도체막(59)은, 플라즈마 CVD장치의 처리실 내에 있어서, 제 2 조건에 의해, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소를 혼합하여, 글로우 방전 플라즈마에 의해 형성한다. 또는, 제 2 조건의 원료 가스에, 헬륨, 아르곤, 네온, 크립톤, 크세논 등의 희가스를 혼합하여, 글로우 방전 플라즈마에 의해 형성한다. 여기에서는, 제 2 조건은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시키고, 또한 처리실 내의 압력을 1333Pa 이상 13332Pa 이하(10Torr 이상 100Torr 이하)로 한다.
실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시킨다는 것은, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체 또는 수소의 유량을 주기적으로 증감시키는 것이며, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에 대한 수소의 유량비가 낮을 경우, 대표적으로는 퇴적성 기체의 유량에 대한 수소의 유량을 100배 이상 2000배 이하로 함으로써, 미결정 반도체의 결정 성장이 우선적으로 수행된다. 한편, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에 대한 수소의 유량비가 높을 경우에는, 비정질 반도체의 에칭이 우선적으로 수행된다.
상기 제 2 조건에 의해, 미결정 실리콘, 미결정 실리콘 게르마늄, 미결정 게르마늄 등을 형성한다. 이 결과, 미결정 반도체막(59)은, 비정질 반도체 영역에 대한 결정 영역의 비율이 증가하는 동시에, 결정 영역 사이가 친밀하게 되어, 결정성이 높아진다. 이때의 퇴적 온도는, 실온 내지 300℃로 하는 것이 바람직하고, 보다 바람직하게는 150 내지 280℃로 한다. 또, 상부 전극 및 하부 전극의 간격은, 플라즈마가 발생할 수 있는 간격으로 하면 좋다.
미결정 반도체막(59)을 형성할 때의, 글로우 방전 플라즈마의 생성은, 씨드(57)의 조건을 적당히 사용할 수 있다. 또, 씨드(57) 및 미결정 반도체막(59)의 글로우 방전 플라즈마의 생성은, 같은 조건으로 행함으로써 스루풋을 향상시킬 수 있지만 상이해도 좋다.
여기서, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시키는 방법에 대해서 도 2를 사용해서 설명한다. 도 2는, 본 실시형태에 도시하는 미결정 반도체막의 형성 방법에 있어서의 원료 가스 및 장치에 공급하는 전력의 시간적 변화를 도시하는 타이밍 차트이다. 또, 도 2에 있어서, 실선(71)은, 플라즈마 CVD장치의 전원 온 오프 상태를 나타내고, 실선(73)은 수소의 유량을 나타내고, 실선(75)은 실리콘 또는 게르마늄을 포함하는 퇴적성 기체(도 2는 실란)의 유량을 나타내고, 실선(79)은 희가스(도 2에서는 아르곤)의 유량을 나타낸다.
플라즈마 CYD장치의 처리실에, 원료 가스인 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소를 도입하여, 처리실을 소정의 압력으로 한다. 또한, 기판(51)의 온도를 소정의 온도로 한다. 이때, 수소는 일정 유량(도 2에서는 유량a)으로 처리실에 도입한다.
다음에, 고주파 전원의 전원을 ON으로 해서 플라즈마 방전을 행한다. 실리콘 또는 게르마늄을 포함하는 퇴적성 기체는, 주기적으로 유량을 증감시키면서, 처리실에 도입한다. 여기에서는, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시키는 것을 사이클 플로우라고 한다. 본 실시형태에서는, 전력을 ON으로 한 후에 유량c의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체를 t1초 흘리는 제 1 주기와, 전력을 ON으로 한 후에 유량b(b<c)의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체를 t2초 흘리는 제 2 주기를 되풀이한다. 또, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량은, 제 1 주기와 비교해서 제 2 주기 쪽이 적기 때문에, 제 1 주기보다 제 2 주기 쪽이, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에 대한 수소 유량의 유량비가 크다. 제 1 주기에 있어서, 퇴적성 기체의 유량에 대한 수소의 유량을 100배 이상 2000배 이하로 하면, 이후의 플라즈마 방전에 의해, 미결정 반도체의 결정 성장이 우선적으로 수행되고, 제 2 주기에 있어서는, 비정질 반도체의 에칭이 우선적으로 수행된다.
또, 고주파 전원은 파선(72)에 나타내는 바와 같이, 온과 오프를 되풀이해도 좋다.
플라즈마 중에서 수소 라디칼과 함께, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에서 생성되는 라디칼도 형성된다. 처리실 내의 압력을 1333Pa 이상 13332Pa 이하(10Torr 이상 100Torr 이하)로 하면 처리실 내의 압력이 높기 때문에, 퇴적성 기체의 평균 자유 행정이 짧고, 수소 라디칼 및 수소 이온은 충돌 때마다 에너지를 잃어버리기 때문에, 씨드(57)에 도달할 때에는 수소 라디칼이나 수소 이온의 에너지가 낮아진다. 따라서, 씨드(57)에서 형성된 혼상 입자 사이에 있어서는, 에칭 작용보다 결정 성장 쪽이 우위가 되고, 미결정 반도체가 퇴적하기 때문에, 결정 영역 사이가 친밀하게 되어, 미결정 반도체막의 밀도가 높아진다. 또한, 처리실 내를 상기의 압력으로 하면, 이온이나 라디칼 에너지가 낮아지기 때문에, 미결정 반도체막에 대한 플라즈마 손상이 저감하여, 결함 저감에 기여한다.
실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량이 적은 제 2 주기(도 2에 있어서는, 유량b)에서는, 처리실 내의 압력을 1333Pa 이상 13332Pa 이하(10Torr 이상 100Torr 이하)로 하면 처리실 내의 압력이 높기 때문에, 플라즈마 중에서 분해된 수소 라디칼이, 제 1 조건으로 형성한 씨드(57)에 포함되는 비정질 반도체를 선택적으로 에칭한다. 또, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에서 생성되는 약간의 라디칼(대표적으로는, 시릴 라디칼)이 퇴적 표면의 미결정 반도체의 댕글링 본드(dangling bond)에 결합하기 때문에, 결정성이 높은 결정 성장이 생긴다. 즉, 선택적인 에칭과 함께, 결정 성장이 생기기 때문에, 미결정 반도체막의 결정성이 높아진다.
또, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량이 많은 제 1 주기(도 2에 있어서는, 유량c)에서는, 유량b인 제 2 주기와 비교하여, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에서 생성되는 라디칼이 다수 존재하기 때문에, 결정 성장이 생긴다. 미결정 반도체막은 복수의 혼상 입자로 형성되지만, 본 실시형태에 나타내는 미결정 반도체막의 형성 방법에 의해, 혼상 입자의 결정자 크기를 크게 하는 것이 가능하기 때문에, 미결정 반도체막의 결정성을 높일 수 있다. 또한, 미결정 반도체막(59)의 결함 저감에 기여한다.
또, 씨드의 혼상 입자의 틈에, 새롭게 미결정 반도체막의 혼상 입자가 발생함으로써, 혼상 입자의 크기가 작아지기 때문에, 씨드의 혼상 입자 발생 빈도에 대하여, 미결정 반도체막의 혼상 입자 발생 빈도는 적은 쪽이 바람직하다. 이 결과, 상기 씨드로부터의 결정 성장을 우선시킬 수 있다.
또, 처음에, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량을 유량c로 한 제 1 주기 후, 유량을 유량b로 하는 제 2 주기로 변경하고 있지만, 처음에 유량b의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체를 흘리는 제 2 주기 후, 유량을 유량c로 하는 제 1 주기로 변경해도 좋다. 또한, t1과 t2의 길이는 상이하게 해도 좋고, 같게 해도 좋다. 또, t1 및 t2는, 몇 초에서 몇십 초가 바람직하다. t1 및 t2가 몇 분이 되어버리면, 예를 들면 t1에 있어서 결정성이 낮은 수nm의 미결정 반도체막이 형성되어, 이 다음 t2에 있어서는 미결정 반도체막의 표면밖에 반응하지 않고, 미결정 반도체막의 내부 결정성을 높이는 것이 곤란하기 때문이다.
또, 여기에서는, 제 1 주기, 즉 유량c의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체를 흘리는 시간을 모두 t1초로 하고 있지만, 상이하게 해도 좋다. 또한, 제 2 주기, 즉 유량b(b<c)의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체를 흘리는 시간을 모두 t2초로 하고 있지만, 상이하게 해도 좋다.
또, 도 2의 실선(79)으로 나타내는 바와 같이, 헬륨, 아르곤, 네온, 크립톤, 크세논 등의 희가스를 도입하지 않지만, 파선(77)으로 나타내는 바와 같이, 희가스를 처리실에 도입해도 좋다. 또는, 희가스를 주기적으로 증감시키면서 처리실에 도입해도 좋다.
또, 여기에서는, 수소의 유량을 일정하게 했지만, 미결정 반도체의 형성에 필요한 양의 수소라면, 유량을 변화시켜도 좋다. 또한, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체를 일정 유량으로 해서 수소의 유량을 주기적으로 증감시켜도 좋다.
또한, 고주파 전원을 온으로 한 채, 원료 가스의 유량을 바꿈으로써, 미결정 반도체막의 퇴적 속도를 향상시킬 수 있다.
또, 처리실에의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량을 c로 한 후, 즉 제 1 주기 후, 고주파 전원을 절단해도 좋다. 또는, 처리실에의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량을 b로 한 후, 즉 제 2 주기 후, 고주파 전원을 절단해도 좋다.
이상의 공정에 의해, 결정성이 높은 미결정 반도체막을 형성할 수 있다.
또, 씨드(57)의 두께는 1nm 이상 10nm 이하가 바람직하다. 씨드(57)의 두께가 10nm보다 두꺼우면, 미결정 반도체막(59)이 퇴적해도, 혼상 입자의 틈을 메우는 것이 곤란해짐과 동시에, 씨드(57)의 내부에 포함되는 비정질 반도체의 에칭이 어려워져, 씨드(57) 및 미결정 반도체막(59)의 결정성이 저감된다. 한편, 씨드(57)는, 혼상 입자가 형성될 필요가 있기 때문에, 씨드(57)의 두께는 1nm 이상인 것이 바람직하다.
또, 미결정 반도체막(59)의 두께는, 30nm 이상 100nm 이하가 바람직하다. 미결정 반도체막(59)의 두께를 30nm 이상으로 함으로써, 박막 트랜지스터의 전기 특성 편차를 저감할 수 있다. 또한, 미결정 반도체막(59)의 두께를 100nm 이하로 함으로써, 스루풋을 향상시키는 동시에 응력에 의한 막 박리를 억제할 수 있다.
씨드(57) 및 미결정 반도체막(59)은, 미결정 반도체를 가진다. 미결정 반도체란, 비정질과 결정 구조(단결정, 다결정을 포함한다)의 중간적인 구조의 반도체다. 미결정 반도체는, 자유 에너지적으로 안정된 제 3 상태를 갖는 반도체이며, 단거리 질서를 가지며 격자 왜곡을 갖는 결정질 반도체이며, 혼상 입자 직경이 2nm 이상 200nm 이하, 바람직하게는 10nm 이상 80nm 이하, 보다 바람직하게는, 20nm 이상 50nm 이하의 기둥 형상 또는 바늘 형상의 혼상 입자가 기판 표면에 대하여 법선 방향으로 성장하고 있다. 따라서, 기둥 형상 또는 바늘 형상의 혼상 입자 계면에는, 입자계가 형성되는 경우도 있다. 또, 여기에서의 결정 입자 직경은, 기판 표면에 대하여 평행한 면에 있어서의 결정 입자의 최대 직경을 말한다..
미결정 반도체의 대표예인 미결정 실리콘은, 그 라만 스펙트럼이 단결정 실리콘을 나타내는 520cm-1보다도 저파수 측으로 시프트한다. 즉, 단결정 실리콘을 나타내는 520cm-1과 비결정질 실리콘을 나타내는 480cm-1 사이에 미결정 실리콘의 라만 스펙트럼 피크가 있다. 또한, 미결합수(댕글링 본드)를 종단하기 때문에 수소 또는 할로겐을 적어도 1원자% 또는 그 이상 포함한다. 더욱이, 헬륨, 아르곤, 네온, 크립톤, 크세논 등의 희가스 원소를 포함시켜서 격자 왜곡을 더욱 조장시킴으로써, 안정성이 증가해 양호한 미결정 반도체를 얻을 수 있다. 이러한 미결정 반도체에 관한 기술은, 예를 들면, 미국 특허 4,409,134호에 개시되어 있다.
본 실시형태에 의해, 혼상 입자의 틈을 저감함으로써 결정성을 향상시킨 미결정 반도체막을 제작할 수 있다.
(실시형태 2)
본 실시형태에서는, 실시형태 1보다 결정성이 높은 미결정 반도체막의 제작 방법에 대해서, 도 1 및 도 3을 사용해서 설명한다.
실시형태 1과 마찬가지로, 도 1의 공정을 거쳐, 씨드(57) 및 미결정 반도체막(59)을 형성한다.
다음에, 도 3에 도시하는 바와 같이, 미결정 반도체막(59) 위에, 제 2 미결정 반도체막(61)을 형성한다.
제 2 미결정 반도체막(61)은, 플라즈마 CVD장치의 처리실 내에 있어서, 제 3 조건에 의해, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소를 혼합하여, 글로우 방전 플라즈마에 의해 형성한다. 또는, 제 3 조건에 의해, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소와, 헬륨, 아르곤, 네온, 크립톤, 크세논 등의 희가스를 혼합하여, 글로우 방전 플라즈마에 의해 형성한다. 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량비를, 제 2 조건보다 높게 해서 퇴적성 기체를 희석하고, 또한 처리실 내의 압력을 제 2 조건과 같은 1333Pa 이상 13332Pa 이하(10Torr 이상 100Torr 이하)로 하는 제 3 조건에 의해, 제 2 미결정 반도체막(61)으로서, 미결정 실리콘, 미결정 실리콘 게르마늄, 미결정 게르마늄 등을 형성한다. 이때의 퇴적 온도는, 실온 내지 300℃로 하는 것이 바람직하고, 보다 바람직하게는 150 내지 280℃로 한다.
또, 제 3 조건을 제 2 조건과 마찬가지로, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비를 주기적으로 증감시켜고, 또한 처리실 내의 압력을 1333Pa 이상 13332Pa 이하(10Torr 이상 100Torr 이하)로 해도 좋다. 이때, 제 3 조건에 있어서의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에 대한 수소의 유량비가 낮을 경우의 유량비가, 제 2 조건에 있어서의 실리콘 또는 게르마늄을 포함하는 퇴적성 기체에 대한 수소의 유량비가 낮을 경우의 유량비보다도 높게 함으로써, 제 2 미결정 반도체막(61)의 결정성을 더욱 높이는 것이 가능하다.
실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량비를 제 2 조건보다 높게 함으로써, 제 2 미결정 반도체막(61)의 결정성을 더욱 높이는 것이 가능해서, 실시형태 1보다 표면에 있어서 결정성이 높은 미결정 반도체막을 형성할 수 있다.
(실시형태 3)
본 실시형태에서는, 본 발명의 일 형태인 반도체 장치에 형성되는 박막 트랜지스터의 제작 방법에 대해서, 도 4 내지 도 7을 참조해서 설명한다. 또, 박막 트랜지스터는, p형보다도 n형 쪽이 캐리어 이동도가 높다. 또한, 동일한 기판 위에 형성하는 박막 트랜지스터를 모두 같은 극성으로 통일하면, 공정 수를 억제할 수 있어 바람직하다. 따라서, 본 실시형태에서는, n형의 박막 트랜지스터의 제작 방법에 대해서 설명한다.
또, 온 전류란, 박막 트랜지스터가 온 상태일 때에, 소스 전극과 드레인 전극 사이에 흐르는 전류를 말한다. 예를 들면, n형의 박막 트랜지스터의 경우에는, 게이트 전압이 트랜지스터의 임계값 전압보다도 높을 때에 소스 전극과 드레인 전극 사이에 흐르는 전류이다.
또한, 오프 전류란, 박막 트랜지스터가 오프 상태일 때에, 소스 전극과 드레인 전극 사이에 흐르는 전류를 말한다. 예를 들면, n형의 박막 트랜지스터의 경우에는, 게이트 전압이 박막 트랜지스터의 임계값 전압보다도 낮을 때에 소스 전극과 드레인 전극 사이에 흐르는 전류이다.
도 4a에 도시하는 바와 같이, 기판(101) 위에 게이트 전극(103)을 형성한다. 다음에, 게이트 전극(103)(제 1 게이트 전극이라고도 한다)을 덮는 게이트 절연막(105)을 형성하고, 게이트 절연막(105) 위에 씨드(107)를 형성한다.
기판(101)으로서는, 실시형태 1에 나타내는 기판(51)을 적당히 사용할 수 있다.
게이트 전극(103)은, 몰리브덴, 티타늄, 크롬, 탄탈, 텅스텐, 알루미늄, 구리, 네오디뮴, 스칸듐, 니켈 등의 금속 재료 또는 이들을 주성분으로 하는 합금 재료를 사용하여, 단층에서 또는 적층하여 형성할 수 있다. 또한, 인 등의 불순물 원소를 도핑한 다결정 실리콘에 대표되는 반도체, AgPdCu 합금, Al-Nd 합금, Al-Ni 합금 등을 사용해도 좋다.
예를 들면, 게이트 전극(103)의 2층 적층 구조로서는, 알루미늄막 위에 몰리브덴막을 적층한 2층 적층 구조, 또는 구리막 위에 몰리브덴 막을 적층한 2층 구조, 또는 구리막 위에 질화 티타늄막 또는 질화 탄탈막을 적층한 2층 구조, 질화 티타늄막과 몰리브덴막을 적층한 2층 구조, 산소를 함유하는 구리-마그네슘―합금막과 구리막을 적층한 2층 구조, 산소를 함유하는 구리-망간―합금막과 구리막을 적층한 2층 구조, 구리-망간―합금막과 구리막을 적층한 2층 구조 등으로 하는 것이 바람직하다. 3층 적층 구조로서는, 텅스텐막 또는 질화 텅스텐막과, 알루미늄과 실리콘의 합금막 또는 알루미늄과 티타늄의 합금막과, 질화 티타늄막 또는 티타늄막을 적층한 3층 구조로 하는 것이 바람직하다. 전기적 저항이 낮은 막 위에 배리어막으로서 기능하는 금속막이 적층됨으로써, 전기적 저항을 낮게 할 수 있고, 또한 금속막으로부터 반도체막으로의 금속 원소 확산을 방지할 수 있다.
게이트 전극(103)은, 기판(101) 위에, 스퍼터링법 또는 진공 증착법을 사용하여, 상기한 재료에 의해 도전막을 형성하고, 상기 도전막 위에 포토리소그래피법 또는 잉크젯법 등에 의해 마스크를 형성하고, 상기 마스크를 사용해서 도전막을 에칭하여 형성할 수 있다. 또한, 은, 금 또는 구리 등의 도전성 나노 페이스트를 잉크젯법에 의해 기판 위에 토출하고, 소성함으로써 형성할 수도 있다. 또, 게이트 전극(103)과, 기판(101)의 밀착성 향상을 목적으로 하여, 상기 금속 재료의 질화물막을 기판(101)과 게이트 전극(103) 사이에 형성해도 좋다. 여기에서는, 기판(101) 위에 도전막을 형성하고, 포토리소그래피 공정에 의해 형성한 레지스트에 형성되는 마스크를 사용하여, 상기 도전막을 에칭한다.
또, 게이트 전극(103)의 측면은, 테이퍼 형상으로 하는 것이 바람직하다. 이것은, 이후의 공정에서, 게이트 전극(103) 위에 형성되는 절연막, 반도체막 및 배선이 게이트 전극(103)의 단차 부분에서 절단되지 않도록 하기 위해서이다. 게이트 전극(103)의 측면을 테이퍼 형상으로 하기 위해서는, 레지스트에 형성되는 마스크를 후퇴시키면서 에칭을 행하면 좋다.
또, 게이트 전극(103)을 형성하는 공정에 의해, 게이트 배선(주사선) 및 용량 배선도 동시에 형성할 수 있다. 또, 주사선이란 화소를 선택하는 배선을 말하며, 용량 배선이란 화소의 유지 용량 한쪽의 전극에 접속된 배선을 말한다. 단, 이것에 한정되지 않고, 게이트 배선 및 용량 배선의 한쪽 또는 양쪽과, 게이트 전극(103)과는 달리 형성해도 좋다.
게이트 절연막(105)은, 실시형태 1에 나타내는 절연막(55)을 적당히 사용하여 형성할 수 있다. 또, 게이트 절연막(105)을 산화 실리콘 또는 산화 질화 실리콘 등의 산화 절연막에 의해 형성함으로써, 박막 트랜지스터의 임계값 전압 변동을 저감할 수 있다.
게이트 절연막(105)은, CVD법 또는 스퍼터링법 등을 사용하여 형성할 수 있다. 게이트 절연막(105)의 CVD법에 의한 형성 공정에 있어서, 글로우 방전 플라즈마의 생성은, 실시형태 1에 나타내는 씨드(57)의 조건을 적당히 사용할 수 있다. 또한, 고주파수가 1GHz 이상인 마이크로파 플라즈마 CVD장치를 사용해서 게이트 절연막(105)을 형성하면, 게이트 전극과, 드레인 전극 및 소스 전극 사이의 내압을 향상시킬 수 있기 때문에, 신뢰성이 높은 박막 트랜지스터를 얻을 수 있다.
또, 게이트 절연막(105)으로서, 유기 실란 가스를 사용한 CVD법에 의해 산화 실리콘막을 형성함으로써, 뒤에 형성하는 반도체막의 결정성을 높이는 것이 가능하기 때문에, 박막 트랜지스터의 온 전류 및 전계 효과 이동도를 높일 수 있다. 유기 실란 가스로서는, 테트라에톡시실란(TEOS: 화학식 Si(OC2H5)4), 테트라메틸실란(TMS: 화학식 Si(CH3)4), 테트라메틸시클로테트라실록산(TMCTS), 옥타메틸시클로테트라실록산(OMCTS), 헥사메틸디실라잔(HMDS), 트리에톡시실란(SiH(OC2H5)3), 트리스디메틸아미노실란(SiH(N(CH3)2)3) 등의 실리콘 함유 화합물을 사용할 수 있다.
씨드(107)는, 실시형태 1에 나타내는 씨드(57)와 마찬가지로, 높은 결정성의 혼상 입자를 낮은 입자 밀도로 형성하는 제 1 조건을 사용하여 형성할 수 있다.
씨드(107)의 원료 가스에, 헬륨, 아르곤, 네온, 크립톤, 크세논 등의 희가스를 첨가함으로써, 씨드(107)의 결정성을 높일 수 있다. 따라서, 박막 트랜지스터의 온 전류 및 전계 효과 이동도가 높아지는 동시에, 스루풋을 높일 수 있다.
다음에, 도 4b에 도시하는 바와 같이, 씨드(107) 위에 미결정 반도체막(109)을 형성한다. 미결정 반도체막(109)은, 실시형태 1에 나타내는 미결정 반도체막(59)과 마찬가지로, 씨드(107)의 혼상 입자를 결정 성장시켜서 틈을 메우는 제 2 조건을 사용하여 형성할 수 있다.
미결정 반도체막(109)의 원료 가스에, 헬륨, 아르곤, 네온, 크립톤, 크세논 등의 희가스를 첨가함으로써, 씨드(107)와 마찬가지로, 미결정 반도체막(109)의 결정성을 높일 수 있다. 따라서, 박막 트랜지스터의 온 전류 및 전계 효과 이동도가 높아지는 동시에, 스루풋을 높일 수 있다.
다음에, 도 4c에 도시하는 바와 같이, 미결정 반도체막(109) 위에 반도체막(111)을 형성한다. 반도체막(111)은, 미결정 반도체 영역(111a) 및 비정질 반도체 영역(111b)으로 구성된다. 다음에, 반도체막(111) 위에, 불순물 반도체막(113)을 형성한다. 다음에, 불순물 반도체막(113) 위에 레지스트에 형성되는 마스크(115)를 형성한다.
미결정 반도체막(109)을 씨드로서, 부분적으로 결정 성장시키는 조건(결정 성장을 억제시키는 조건)에서, 미결정 반도체 영역(111a) 및 비정질 반도체 영역(111b)을 갖는 반도체막(111)을 형성할 수 있다.
반도체막(111)은, 플라즈마 CVD장치의 처리실 내에 있어서, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소와, 질소를 포함하는 기체를 혼합하여, 글로우 방전 플라즈마에 의해 형성한다. 질소를 포함하는 기체로서는, 암모니아, 질소, 플루오르화 질소, 염화 질소, 클로로아민, 플루오르아민 등이 있다. 글로우 방전 플라즈마의 생성은, 씨드(107)와 동일하게 할 수 있다.
이때, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체와, 수소의 유량비는, 씨드(107) 또는 미결정 반도체막(109)과 같은 유량비를 사용하고, 또한 원료 가스에 질소를 포함하는 기체를 사용하는 조건으로 함으로써, 씨드(107) 및 미결정 반도체막(109)의 퇴적 조건보다도 결정 성장을 억제할 수 있다. 구체적으로는, 반도체막(111)의 퇴적 초기에 있어서는, 원료 가스에 질소를 포함하는 기체가 포함되기 때문에, 부분적으로 결정 성장이 억제되어, 추 형상의 미결정 반도체 영역이 성장함과 동시에 비정질 반도체 영역이 형성된다. 더욱이, 퇴적 중기 또는 후기에서는, 추 형상의 미결정 반도체 영역의 결정 성장이 정지하여, 비정질 반도체 영역만 퇴적된다. 이 결과, 반도체막(111)에 있어서, 미결정 반도체 영역(111a) 및 결함이 적고, 가전자대 밴드단에 있어서 준위 테일(끝)의 경사가 가파른 질서성이 높은 반도체막으로 형성되는 비정질 반도체 영역(111b)을 형성할 수 있다.
여기서는, 반도체막(111)을 형성하는 조건의 대표예는, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량이 10 내지 2000배, 바람직하게는 10 내지 200배이다. 또, 보통의 비정질 반도체막을 형성하는 조건의 대표예는, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체의 유량에 대한 수소의 유량은 0 내지 5배이다.
또한, 반도체막(111)의 원료 가스에, 헬륨, 아르곤, 네온, 크세논, 또는 크립톤 등의 희가스를 도입함으로써, 성막 속도를 높일 수 있다.
반도체막(111)의 두께는, 두께 50 내지 350nm로 하는 것이 바람직하고, 더욱 바람직하게는 120 내지 250nm으로 한다.
여기서, 도 4c에 도시하는 게이트 절연막(105)과, 불순물 반도체막(113) 사이의 확대도를 도 5에 도시한다.
도 5a에 도시하는 바와 같이, 반도체막(111)의 미결정 반도체 영역(111a)은 요철 형상이며, 볼록부는 게이트 절연막(105)으로부터 비정질 반도체 영역(111b)을 향해서, 선단이 좁아지는(볼록부의 선단이 예각이다) 볼록 형상(추 형상)이다. 또, 미결정 반도체 영역(111a)의 형상은, 게이트 절연막(105)으로부터 비정질 반도체 영역(111b)을 향해서 폭이 넓어지는 볼록 형상(역 추 형상)이라도 좋다.
씨드(107), 미결정 반도체막(109) 및 미결정 반도체 영역(111a)의 두께, 즉, 게이트 절연막(105) 및 씨드(107)의 계면에서부터, 미결정 반도체 영역(111a)의 돌기(볼록부) 선단까지의 거리를 5nm 이상 310nm 이하로 함으로써, 박막 트랜지스터의 오프 전류를 저감할 수 있다.
또한, 반도체막(111)에 포함되는 산소의 2차 이온 질량 분석법에 의해 측량되는 농도를, 1×1018atoms/cm3 미만으로 함으로써, 미결정 반도체 영역(111a)의 결정성을 높일 수 있어 바람직하다. 또한, 2차 이온 질량 분석법에 의해 측량되는 반도체막(111)의 질소 농도 프로파일 피크 농도는, 1×1020atoms/cm3 이상 1×1021atoms/cm3 이하, 바람직하게는 2×1020atoms/cm3 이상 1×1021atoms/cm3 이하이다.
비정질 반도체 영역(111b)은, 질소를 갖는 비정질 반도체에서 형성된다. 질소를 갖는 비정질 반도체에 포함되는 질소는, 예를 들면 NH기 또는 NH2기로서 존재해도 좋다. 비정질 반도체로서는, 비결정질 실리콘을 사용하여 형성한다.
질소를 포함하는 비정질 반도체는, 종래의 비정질 반도체와 비교하여, CPM(Constant photocurrent method)이나 포토루미네선스 분광 측정으로 측정되는 Urbach단의 에너지가 작고, 결함 흡수 스펙트럼 량이 적은 반도체이다. 즉, 질소를 포함하는 비정질 반도체는, 종래의 비정질 반도체와 비교하여 결함이 적고, 가전자대 밴드단에 있어서 준위 테일(끝)의 경사가 가파른 질서성이 높은 반도체이다. 질소를 포함하는 비정질 반도체는, 가전자대 밴드단에 있어서 준위 테일(끝)의 경사가 가파르기 때문에, 밴드 갭이 넓어져, 터널 전류가 흐르기 어렵다. 따라서, 질소를 포함하는 비정질 반도체를 미결정 반도체 영역(111a) 및 불순물 반도체막(113) 사이에 형성함으로써, 박막 트랜지스터의 오프 전류를 저감할 수 있다. 또한, 질소를 포함하는 비정질 반도체를 형성함으로써, 온 전류와 전계 효과 이동도를 높이는 것이 가능하다.
또한, 질소를 포함하는 비정질 반도체는, 저온 포토루미네선스 분광에 의한 스펙트럼의 피크 영역이 1.31eV 이상 1.39eV 이하이다. 또, 미결정 반도체, 대표적으로는 미결정 실리콘을 저온 포토루미네선스 분광에 의해 측정한 스펙트럼의 피크 영역은, 0.98eV 이상 1.02eV 이하이며, 질소를 포함하는 비정질 반도체는 미결정 반도체와는 상이한 것이다.
또한, 비정질 반도체 영역(111b) 이외에, 미결정 반도체 영역(111a)에도 NH기 또는 NH2기를 가져도 좋다.
또한, 도 5b에 도시하는 바와 같이, 비정질 반도체 영역(111b)에, 입자 직경이 1nm 이상 10nm 이하, 바람직하게는 1nm 이상 5nm 이하의 반도체 혼상 입자(111c)를 포함시킴으로써, 더욱더 온 전류와 전계 효과 이동도를 높이는 것이 가능하다.
게이트 절연막(105)으로부터 비정질 반도체 영역(111b)을 향하여, 선단이 좁아지는 볼록 형상(추 형상)의 미결정 반도체는, 미결정 반도체가 퇴적하는 조건으로 미결정 반도체막을 형성한 후, 부분적으로 결정 성장시키는 조건으로 결정 성장시킴과 동시에, 비정질 반도체를 퇴적함으로써, 이러한 구조가 된다.
반도체막(111)의 미결정 반도체 영역(111a)은, 추 형상 또는 역 추 형상이기 때문에, 온 상태에서 소스 전극 및 드레인 전극 사이에 전압이 인가되었을 때의 세로 방향(막 두께 방향)에 있어서의 저항, 즉, 반도체막(111)의 저항을 낮추는 것이 가능하다. 또한, 미결정 반도체 영역(111a)과 불순물 반도체막(113) 사이에, 결함이 적고, 가전자대 밴드단에 있어서 준위 테일(끝)의 경사가 가파른 질서성이 높은, 질소를 포함하는 비정질 반도체를 갖기 때문에, 터널 전류가 흐르기 어려워진다. 이상의 사실로부터, 본 실시형태에 나타내는 박막 트랜지스터는, 온 전류 및 전계 효과 이동도를 높이는 동시에, 오프 전류를 저감할 수 있다.
여기서는, 반도체막(111)의 원료 가스에 질소를 포함하는 기체를 포함시켜서, 미결정 반도체 영역(111a) 및 비정질 반도체 영역(111b)을 갖는 반도체막(111)을 형성했지만, 다른 반도체막(111)의 형성 방법으로서, 미결정 반도체막(109)의 표면에 질소를 포함하는 기체를 노출시켜, 미결정 반도체막(109)의 표면에 질소를 흡착시킨 후, 실리콘 또는 게르마늄을 포함하는 퇴적성 기체 및 수소를 원료 가스로서, 미결정 반도체 영역(111a) 및 비정질 반도체 영역(111b)을 갖는 반도체막(111)을 형성할 수 있다.
불순물 반도체막(113)은, 인이 첨가된 비결정질 실리콘, 인이 첨가된 미결정 실리콘 등으로 형성한다. 또한, 인이 첨가된 비결정질 실리콘 및 인이 첨가된 미결정 실리콘의 적층 구조로 할 수도 있다. 또, 박막 트랜지스터로서, p형의 박막 트랜지스터를 형성할 경우는, 불순물 반도체막(113)은, 보론이 첨가된 미결정 실리콘, 보론이 첨가된 비결정질 실리콘 등으로 형성한다. 또, 반도체막(111)과, 이후에 형성하는 배선(129a, 129b)이 오믹 콘택트를 할 경우에는, 불순물 반도체막(113)을 형성하지 않아도 된다.
불순물 반도체막(113)은, 플라즈마 CVD장치의 처리실 내에 있어서, 실리콘을 포함하는 퇴적성 기체와, 수소와, 포스핀(수소 희석 또는 실란 희석)을 혼합하여, 글로우 방전 플라즈마에 의해 형성한다. 이에 의해, 인이 첨가된 비결정질 실리콘, 또는 인이 첨가된 미결정 실리콘이 형성된다. 또, p형의 박막 트랜지스터를 제작할 경우에는, 불순물 반도체막(113)으로서, 포스핀 대신에, 디보란을 사용하여, 글로우 방전 플라즈마에 의해 형성하면 좋다.
또한, 불순물 반도체막(113)을, 인이 첨가된 미결정 실리콘, 또는 보론이 첨가된 미결정 실리콘으로 형성할 경우에는, 반도체막(111)과, 불순물 반도체막(113) 사이에, 미결정 반도체막, 대표적으로는 미결정 실리콘막을 형성함으로써, 계면의 특성을 향상시킬 수 있는다. 이 결과, 불순물 반도체막(113)과, 반도체막(111)의 계면에 생기는 저항을 저감할 수 있다. 이 결과, 박막 트랜지스터의 소스 영역, 반도체막 및 드레인 영역을 흐르는 전류량을 증가시켜, 온 전류 및 전계 효과 이동도의 증가가 가능해 진다.
레지스트에 형성되는 마스크(115)는 포토리소그래피 공정에 의해 형성할 수 있다.
다음에, 레지스트에 형성되는 마스크(115)를 사용하여, 씨드(107), 미결정 반도체막(109), 반도체막(111) 및 불순물 반도체막(113)을 에칭한다. 이 공정에 의해, 씨드(107), 미결정 반도체막(109), 반도체막(111) 및 불순물 반도체막(113)을 소자마다 분리하고, 섬 형상의 반도체 적층체(117) 및 섬 형상의 불순물 반도체막(121)을 형성한다. 또, 반도체 적층체(117)는, 씨드(107), 미결정 반도체막(109) 및 반도체막(111)의 미결정 반도체 영역을 포함하는 미결정 반도체 영역(117a)과, 반도체막(111)의 비정질 반도체 영역을 포함하는 비정질 반도체 영역(117b)을 가진다. 그 다음, 레지스트에 형성되는 마스크(115)를 제거한다(도 4d 참조).
다음에, 불순물 반도체막(121) 위에 도전막(127)을 형성한다(도 6a 참조). 도전막(127)은, 알루미늄, 구리, 티타늄, 네오디뮴, 스칸듐, 몰리브덴, 크롬, 탄탈 또는 텅스텐 등에 의해 단층에서, 또는 적층하여 형성할 수 있다. 또는, 힐록 방지 원소가 첨가된 알루미늄 합금(게이트 전극(103)에 사용할 수 있는 Al-Nd 합금 등)으로 형성해도 좋다. 도너가 되는 불순물 원소를 첨가한 결정성 실리콘을 사용해도 좋다. 도너가 되는 불순물 원소가 첨가된 결정성 실리콘과 접하는 측의 막을, 티타늄, 탄탈, 몰리브덴, 텅스텐 또는 이들 원소의 질화물에 의해 형성하고, 그 위에 알루미늄 또는 알루미늄 합금을 형성한 적층 구조로 해도 좋다. 또한, 알루미늄 또는 알루미늄 합금의 상면 및 하면을 티타늄, 탄탈, 몰리브덴, 텅스텐 또는 이들 원소의 질화물에 끼운 적층 구조로 해도 좋다. 도전막(127)은, CVD법, 스파터링법 또는 진공 증착법을 사용하여 형성한다. 또한, 도전막(127)은, 은, 금 또는 구리 등의 도전성 나노 페이스트를 사용해서 스크린 인쇄법 또는 잉크젯법 등을 사용해서 토출하고, 소성함으로써 형성해도 좋다.
다음에, 포토리소그래피 공정에 의해 레지스트에 형성되는 마스크를 형성하고, 상기 레지스트에 형성되는 마스크를 사용해서 도전막(127)을 에칭하여, 소스 전극 및 드레인 전극으로서 기능하는 배선(129a, 129b)을 형성한다(도 6b 참조). 도전막(127)의 에칭은 드라이 에칭 또는 웨트 에칭을 사용할 수 있다. 또, 배선(129a, 129b)의 한쪽은, 소스 전극 또는 드레인 전극뿐만 아니라 신호선으로서도 기능한다. 단, 이것에 한정되지 않고, 신호선과 소스 전극 및 드레인 전극과는 달리 형성해도 좋다.
다음에, 불순물 반도체막(121) 및 반도체 적층체(117)의 일부를 에칭하여, 소스 영역 및 드레인 영역으로서 기능하는 한 쌍의 불순물 반도체막(131a, 131b)을 형성한다. 또한, 미결정 반도체 영역(133a) 및 한 쌍의 비정질 반도체 영역(133b)을 갖는 반도체 적층체(133)를 형성한다. 이때, 미결정 반도체 영역(133a)이 노출되도록 반도체 적층체(117)를 에칭함으로써, 배선(129a, 129b)에서 덮어지는 영역에서는 미결정 반도체 영역(133a) 및 비정질 반도체 영역(133b)이 적층되어, 배선(129a, 129b)에서 덮이지 않고, 또 게이트 전극과 겹치는 영역에 있어서는, 미결정 반도체 영역(133a)이 노출하는 반도체 적층체(133)가 된다.
여기서는, 배선(129a, 129b)의 단부와, 불순물 반도체막(131a, 131b)의 단부가 갖추어져 있지만, 배선(129a, 129b)의 단부와, 불순물 반도체막(131a, 131b)의 단부가 어긋나, 단면에 있어서, 배선(129a, 129b)의 단부가 불순물 반도체막(131a, 131b)의 단부보다 내측에 위치해도 좋다.
다음에, 드라이 에칭을 행해도 좋다. 드라이 에칭의 조건은, 노출되어 있는 미결정 반도체 영역(133a) 및 비정질 반도체 영역(133b)에 손상을 받지 않고, 또 미결정 반도체 영역(133a) 및 비정질 반도체 영역(133b)에 대한 에칭 속도가 낮은 조건을 사용한다. 에칭 가스로서는, 대표적으로는 Cl2, CF4 또는 N2 등을 사용한다. 또한, 에칭 방법에 대해서는 특히 한정은 없고, 유도 결합형 플라즈마(ICP: Inductively Coupled Plasma) 방식, 용량 결합형 플라즈마(CCP: Capacitively Coupled Plasma) 방식, 전자 사이클로트론 공명 플라즈마(ECR: Electron Cyclotron Resonance) 방식, 반응성 이온 에칭(RIE: Reactive Ion Etching) 방식 등을 사용할 수 있다.
다음에, 미결정 반도체 영역(133a) 및 비정질 반도체 영역(133b)의 표면에 플라즈마 처리, 대표적으로는 물 플라즈마 처리, 산소 플라즈마 처리, 암모니아 플라즈마 처리, 질소 플라즈마 처리, 산소 및 수소의 혼합 가스에 의한 플라즈마 처리 등을 행한다.
물 플라즈마 처리는, 수증기(H2O 증기)에 대표되는, 물을 주성분으로 하는 가스를 반응 공간에 도입하고, 플라즈마를 생성하여 행할 수 있다. 그 후, 레지스트에 형성되는 마스크를 제거한다. 또, 상기 레지스트에 형성되는 마스크의 제거는, 불순물 반도체막(121) 및 반도체 적층체(117)의 드라이 에칭 전에 행해도 좋다.
상기한 바와 같이, 미결정 반도체 영역(133a) 및 비정질 반도체 영역(133b)을 형성한 후에, 미결정 반도체 영역(133a) 및 비정질 반도체 영역(133b)에 손상을 주지않는 조건으로 더욱 드라이 에칭을 행함으로써, 노출된 미결정 반도체 영역(133a) 및 비정질 반도체 영역(133b) 위에 존재하는 잔사 등의 불순물을 제거할 수 있다. 또한, 드라이 에칭에 계속해서 물 플라즈마 처리를 행함으로써, 레지스트에 형성되는 마스크의 잔사를 제거함 동시에, 미결정 반도체 영역(133a)의 결함을 저감할 수 있다. 또한, 플라즈마 처리를 행함으로써, 소스 영역과 드레인 영역 사이의 절연을 확실하게 할 수 있어, 완성되는 박막 트랜지스터의 오프 전류를 저감하고, 전기적 특성의 편차를 저감할 수 있다.
또, 포토리소그래피 공정에 의해 레지스트에 형성되는 마스크를 도전막(127) 위에 형성하고, 상기 레지스트에 형성되는 마스크를 사용해서 도전막(127)을 에칭하고, 소스 전극 및 드레인 전극으로서 기능하는 배선(129a, 129b)을 형성한다. 다음에, 불순물 반도체막(121)을 에칭하여, 소스 영역 및 드레인 영역으로서 기능하는 한 쌍의 불순물 반도체막(131a, 131b)을 형성한다. 이때, 반도체 적층체(117)의 일부가 에칭되는 경우도 있다. 다음에, 레지스트에 형성되는 마스크를 제거한 후, 반도체 적층체(117)의 일부를 에칭하여, 미결정 반도체 영역(133a) 및 한 쌍의 비정질 반도체 영역(133b)을 갖는 반도체 적층체(133)를 형성해도 좋다.
이 결과, 레지스트에 형성되는 마스크를 제거하는 공정에 있어서, 미결정 반도체 영역(117a)이 비정질 반도체 영역(117b)에 덮이기 때문에, 미결정 반도체 영역(117a)이 박리 액 및 레지스트의 잔사물에 접촉할 일이 없다. 또한, 레지스트에 형성되는 마스크를 제거한 후, 배선(129a, 129b)을 사용하고, 비정질 반도체 영역(117b)을 에칭하여, 미결정 반도체 영역(133a)을 노출한다. 따라서, 박리 액 및 레지스트의 잔사물에 접촉한 비정질 반도체 영역은, 백 채널에는 잔존하지 않는다. 이 결과, 백 채널에 잔존한 박리 액 및 레지스트의 잔사물에 의한 누설 전류가 발생하지 않기 때문에, 박막 트랜지스터의 오프 전류를 보다 저감할 수 있다.
이상의 공정에 의해 싱글 게이트형의 박막 트랜지스터를 제작할 수 있다. 또한, 오프 전류가 낮고, 온 전류 및 전계 효과 이동도가 높은 싱글 게이트형의 박막 트랜지스터를 생산성 높게 제작할 수 있다.
다음에, 반도체 적층체(133) 및 배선(129a, 129b) 위에 절연막(137)(제 2 게이트 절연막이라고도 한다)을 형성한다. 절연막(137)은, 게이트 절연막(105)과 동일하게 형성할 수 있다.
다음에, 포토리소그래피 공정에 의해 형성한 레지스트에 형성되는 마스크를 사용해서 절연막(137)에 개구부(도시하지 않는다)를 형성한다. 다음에, 절연막(137) 위에 백 게이트 전극(139)(제 2 게이트 전극이라고도 한다)을 형성한다(도 6c 참조). 이상의 공정에 의해, 듀얼 게이트형의 박막 트랜지스터를 제작할 수 있다.
백 게이트 전극(139)은, 배선(129a, 129b)과 동일하게 형성할 수 있다. 또한, 백 게이트 전극(139)은, 산화 텅스텐을 포함하는 인듐 산화물, 산화 텅스텐을 포함하는 인듐 아연 산화물, 산화 티타늄을 포함하는 인듐 산화물, 산화 티타늄을 포함하는 인듐 주석 산화물, 인듐 주석 산화물, 인듐 아연 산화물 또는 산화 실리콘을 첨가한 인듐 주석 산화물 등 투광성을 갖는 도전성 재료를 사용하여 형성할 수 있다.
또, 백 게이트 전극(139)은, 투광성을 갖는 도전성 고분자(도전성 폴리머라고도 한다)를 포함하는 도전성 조성물을 사용하여 형성할 수 있다. 백 게이트 전극(139)은, 시트 저항이 10000Ω/sq. 이하이며, 또한 파장 550nm에 있어서의 투광율이 70% 이상인 것이 바람직하다. 또한, 도전성 조성물에 포함되는 도전성 고분자의 저항율은 0.1Ω·Cm 이하인 것이 바람직하다.
도전성 고분자로서는, 소위 π 전자 공액계 도전성 고분자를 사용할 수 있다. 예를 들면, 폴리아닐린 또는 그 유도체, 폴리피롤 또는 그 유도체, 폴리티오펜 또는 그 유도체, 또는 아닐린, 피롤 및 티오펜의 2종 이상 공중합체 또는 그 유도체 등을 들 수 있다.
백 게이트 전극(139)은, 스퍼터링법에 의해, 상기 재료의 어느 하나를 사용한 박막을 형성한 후, 포토리소그래피 공정에 의해 형성한 레지스트에 형성되는 마스크를 사용해서 상기 박막을 에칭함으로써 형성할 수 있다. 또한, 투광성을 갖는 도전성 고분자를 포함하는 도전성 조성물을 도포 또는 인쇄한 후, 소성하여 형성할 수 있다.
다음에, 박막 트랜지스터의 상면도인 도 7을 사용하여, 백 게이트 전극의 형상을 설명한다.
도 7a에 도시하는 바와 같이, 백 게이트 전극(139)은, 게이트 전극(103)과 평행하게 형성할 수 있다. 이 경우, 백 게이트 전극(139)에 인가하는 전위와, 게이트 전극(103)에 인가하는 전위를 각각 임의로 제어하는 것이 가능하다. 따라서, 박막 트랜지스터의 임계값 전압을 제어할 수 있다. 또한, 캐리어가 흐르는 영역, 즉 채널 영역이, 미결정 반도체 영역의 게이트 절연막(105) 측 및 절연막(137) 측에 형성되기 때문에, 박막 트랜지스터의 온 전류를 높일 수 있다.
또한, 도 7b에 도시하는 바와 같이, 백 게이트 전극(139), 게이트 전극(103)에 접속시킬 수 있다. 즉, 게이트 절연막(105) 및 절연막(137)에 형성한 개구부(150)에 있어서, 게이트 전극(103) 및 백 게이트 전극(139)이 접속하는 구조로 할 수 있다. 이 경우, 백 게이트 전극(139)에 인가하는 전위와, 게이트 전극(103)에 인가하는 전위는 같다. 이 결과, 반도체막에 있어서, 캐리어가 흐르는 영역, 즉 채널 영역이, 미결정 반도체 영역의 게이트 절연막(105) 측 및 절연막(137) 측에 형성되기 때문에, 박막 트랜지스터의 온 전류를 높일 수 있다.
또한, 도 7c에 도시하는 바와 같이, 백 게이트 전극(139)은, 게이트 전극(103)과 접속하지 않고 플로팅이라도 좋다. 백 게이트 전극(139)에 전위를 인가하지 않더라도, 채널 영역이, 미결정 반도체 영역의 게이트 절연막(105) 측 및 절연막(137) 측에 형성되기 때문에, 박막 트랜지스터의 온 전류를 높일 수 있다.
또한, 도 7d에 도시하는 바와 같이, 백 게이트 전극(139)은, 절연막(137)을 개재하여 배선(129a, 129b)과 중첩해도 좋다. 여기에서는, 도 7a에 도시하는 구조의 백 게이트 전극(139)을 사용해서 나타냈지만, 도 7b 및 도 7c에 도시하는 백 게이트 전극(139)도 마찬가지로 배선(129a, 129b)과 중첩해도 좋다.
본 실시형태에 나타내는 싱글 게이트형의 박막 트랜지스터 및 듀얼 게이트형의 박막 트랜지스터는, 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막으로 채널 영역을 형성하는 것이 가능하다. 따라서, 싱글 게이트형의 박막 트랜지스터 및 듀얼 게이트형의 박막 트랜지스터 캐리어 이동량이 증가하고, 온 전류 및 전계 효과 이동도를 높일 수 있다. 또한, 미결정 반도체 영역(133a)과, 불순물 반도체막(131a, 131b) 사이에 비정질 반도체 영역(133b)을 가진다. 따라서, 박막 트랜지스터의 오프 전류를 저감할 수 있다. 이상의 사실로부터, 싱글 게이트형의 박막 트랜지스터 및 듀얼 게이트형의 박막 트랜지스터 면적을 작게 하는 것이 가능하고, 반도체 장치로의 고집적화가 가능하다. 또한, 표시 장치의 구동 회로에 본 실시형태에 나타내는 박막 트랜지스터를 사용함으로써, 구동 회로의 면적을 저감할 수 있기 때문에, 표시 장치의 프레임을 좁게 할 수 있다.
또, 본 실시형태에서는 실시형태 1을 사용해서 미결정 반도체막을 형성했지만, 실시형태 2를 사용해서 미결정 반도체막을 형성할 수 있다. 또, 실시형태 2에 나타내는 미결정 반도체막을 사용해서 듀얼 게이트형의 박막 트랜지스터를 형성하면, 백 게이트 전극 측의 미결정 반도체막의 결정성이 높기 때문에, 듀얼 게이트형의 박막 트랜지스터의 전기 특성을 더욱 양호하게 할 수 있다.
(실시형태 4)
본 실시형태에서는, 실시형태 3과 비교하여, 더욱 오프 전류의 저감이 가능한 박막 트랜지스터의 제작 방법에 대해서, 도 4 및 도 8을 사용해서 설명한다.
실시형태 3과 마찬가지로, 도 4a 내지 도 4c의 공정을 거쳐, 도 8a에 도시하는 바와 같이, 반도체 적층체(117)를 형성한다.
다음에, 레지스트에 형성되는 마스크(115)를 잔존시킨 채, 반도체 적층체(117)의 측면에 플라즈마(123)를 노출시키는 플라즈마 처리를 행한다. 여기에서는, 산화 가스 또는 질화 가스 분위기로 플라즈마를 발생시켜서, 반도체 적층체(117)에 플라즈마(123)를 노출시킨다. 산화 가스로서는, 산소, 오존, 일산화이질소, 수증기, 산소 및 수소의 혼합 기체 등이 있다. 또한, 질화 가스로서는, 질소, 암모니아, 플루오르화 질소, 염화 질소, 클로로아민, 플루오로아민 등이 있다. 산화 가스 또는 질화 가스 분위기에서 플라즈마를 발생시킴으로써, 산소 라디칼 또는 질소 라디칼이 발생한다. 상기 라디칼은 반도체 적층체(117)와 반응하여, 반도체 적층체(117)의 측면에 장벽 영역인 절연 영역을 형성할 수 있다. 또, 플라즈마를 조사하는 대신에, 자외광을 조사하여, 산소 라디칼 또는 질소 라디칼을 발생시켜도 좋다.
또한, 산화 가스로서, 산소, 오존, 수증기, 산소 및 수소의 혼합 기체를 사용하면, 도 8b에 도시하는 바와 같이, 플라즈마 조사에 의해 레지스트가 후퇴하여, 저면의 면적이 축소된 마스크(115a)가 형성된다. 따라서, 상기 플라즈마 처리에 의해, 반도체 적층체(117)의 측면과 함께, 노출된 불순물 반도체막(121)이 산화하여, 반도체 적층체(117)의 측면 및 불순물 반도체막(121)의 측면 및 상면의 일부에도 장벽 영역인 절연 영역(125)이 형성된다.
다음에, 실시형태 3에 나타내는 바와 같이, 도 6a 및 도 6b와 같은 공정을 거쳐, 도 6c에 도시하는 바와 같이, 소스 전극 및 드레인 전극으로서 기능하는 배선(129a, 129b), 소스 영역 및 드레인 영역으로서 기능하는 한 쌍의 불순물 반도체막(131a, 131b), 미결정 반도체 영역(133a) 및 한 쌍의 비정질 반도체 영역(133b)을 갖는 반도체 적층체(133), 절연막(137)을 형성함으로써, 싱글 게이트형의 박막 트랜지스터를 제작할 수 있다.
또한, 절연막(137) 위에 백 게이트 전극을 형성함으로써, 듀얼 게이트형의 박막 트랜지스터를 제작할 수 있다.
본 실시형태에 나타내는 싱글 게이트형의 박막 트랜지스터 및 듀얼 게이트형의 박막 트랜지스터는, 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막에 채널 영역을 형성하는 것이 가능하다. 또한, 반도체 적층체(133) 및 배선(129a, 129b) 사이에 장벽 영역인 절연 영역을 형성함으로써, 배선(129a, 129b)으로부터 반도체 적층체(133)로의 홀 주입을 억제하는 것이 가능하고, 오프 전류가 낮아, 전계 효과 이동도 및 온 전류가 높은 박막 트랜지스터가 된다. 따라서, 박막 트랜지스터의 면적을 작게 하는 것이 가능하고, 반도체 장치의 고집적화가 가능하다. 또한, 표시 장치의 구동 회로에 본 실시형태에 나타내는 박막 트랜지스터를 사용함으로써, 구동 회로의 면적을 저감할 수 있기 때문에, 표시 장치의 프레임을 좁게할 수 있다.
또, 본 실시형태에서는, 실시형태 3을 사용해서 설명했지만, 적당히 다른 실시형태를 사용할 수 있다.
(실시형태 5)
본 실시형태에서는, 본 발명의 일 형태인 반도체 장치에 형성되는 박막 트랜지스터의 제작 방법에 대해서, 도 5, 도 6 및 도 9를 참조해서 설명한다. 도 9는, 도 6b에 도시하는 공정에 대응하는 공정이다.
실시형태 3과 마찬가지로, 도 4a 내지 도 4d 및 도 6d의 공정을 거쳐, 도전막(127)을 형성한다.
다음에, 도 9에 도시하는 바와 같이, 실시형태 3과 마찬가지로, 배선(129a, 129b)을 형성하고, 불순물 반도체막(121) 및 반도체 적층체(117)의 일부를 에칭하여, 소스 영역 및 드레인 영역으로서 기능하는 한 쌍의 불순물 반도체막(131a, 131b)을 형성한다. 또한, 미결정 반도체 영역(143a) 및 비정질 반도체 영역(143b)을 갖는 반도체 적층체(143)를 형성한다. 이때, 비정질 반도체 영역(143b)이 노출되도록 반도체 적층체(117)를 에칭함으로써, 배선(129a, 129b)에서 덮어지는 영역에서는 미결정 반도체 영역(143a) 및 비정질 반도체 영역(143b)이 적층되고, 배선(129a, 129b)에서 덮이지 않고, 또한 게이트 전극과 겹치는 영역에 있어서는, 미결정 반도체 영역(143a)이 노출되지 않고, 비정질 반도체 영역(143b)이 노출되는 반도체 적층체(143)가 된다. 또, 여기에서의 반도체 적층체(117)의 에칭량은 도 6b보다 적은 것으로 한다.
이 후의 공정은, 실시형태 3과 같다.
이상의 공정에 의해 싱글 게이트형의 박막 트랜지스터를 제작할 수 있다. 이 박막 트랜지스터는, 백 채널 측이 비정질이기 때문에, 도 6b에 도시하는 박막 트랜지스터에 비해 오프 전류를 저감할 수 있다.
또한, 본 실시형태에서는, 도 6에 도시하는 공정 후에, 도 6c에 도시하는 공정과 마찬가지로, 절연막(137)을 개재하여 백 게이트 전극(139)을 형성해도 좋다.
본 실시형태는, 다른 실시형태와 적당히 조합시켜서 사용할 수 있다.
(실시형태 6)
박막 트랜지스터를 제작하고, 상기 박막 트랜지스터를 화소부, 또한 구동 회로에 사용해서 표시 기능을 갖는 반도체 장치(표시 장치라고도 한다)를 제작할 수 있다. 또한, 박막 트랜지스터를 사용한 구동 회로의 일부 또는 전체를, 화소부와 같은 기판 위에 일체 형성하여, 시스템 온 패널을 형성할 수 있다.
표시 장치는 표시 소자를 포함한다. 표시 소자로서는 액정 소자(액정 표시 소자라고도 한다), 발광 소자(발광 표시 소자라고도 한다)를 사용할 수 있다. 발광 소자는, 전류 또는 전압에 의해 휘도가 제어되는 소자를 그 범주에 포함하고 있고, 구체적으로는 무기 EL(Electro Luminescence) 소자, 유기 EL 소자 등이 포함된다. 또한, 전자 잉크 등, 전기적 작용에 의해 콘트라스트가 변화되는 표시 매체도 적용할 수 있다.
또한, 표시 장치는, 표시 소자가 밀봉된 상태에 있는 패널과, 상기 패널에 컨트롤러를 포함하는 IC 등을 설치한 상태에 있는 모듈을 포함한다. 더욱이, 상기 표시 장치를 제작하는 과정에 있어서의, 표시 소자가 완성되기 전의 일 형태에 상당하는 소자 기판에 관하여, 상기 소자 기판은, 전류를 표시 소자에 공급하기 위한 수단을 복수의 각 화소에 구비한다. 소자 기판은, 구체적으로는, 표시 소자의 화소 전극만 형성된 상태라도 좋고, 화소 전극이 되는 도전막을 형성한 후로, 에칭하여 화소 전극을 형성하기 전 상태라도 좋고, 다양한 형태가 적합하다.
또, 본 명세서 중에 있어서의 표시 장치는, 화상 표시 디바이스, 표시 디바이스, 또는 광원(조명 장치를 포함한다)을 가리킨다. 또한, 커넥터, 예를 들면 FPC(Flexible printed circuit) 또는 TAB(Tape Automated Bonding) 테이프 또는 TCP(Tape Carrier Package)가 부착된 모듈, TAB 테이프나 TCP의 끝에 프린트 배선판이 형성된 모듈, 또는 표시 소자에 COG(Chip On Glass) 방식에 의해 IC(집적 회로)가 직접 실장된 모듈도 모두 표시 장치에 포함하는 것으로 한다.
(실시형태 7)
본 실시형태에서는, 반도체 장치의 일 형태인 광전 변환 장치에 대해서 설명한다. 본 실시형태에 나타내는 광전 변환 장치에서는, 반도체막에 실시형태 1 및 실시형태 2에 나타내는 바와 같은, 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막을 채용한다. 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막이 채용되는 반도체막으로서는, 광전 변환을 행하는 반도체막이나 도전형을 나타내는 반도체막 등이 있지만, 특히, 광전 변환을 행하는 반도체막에 채용하는 것이 적합하다. 또는, 광전 변환을 행하는 반도체막이나 도전형을 나타내는 반도체막과, 다른 막과의 계면에, 혼상 입자의 틈을 저감함으로써 결정성을 향상시킨 미결정 반도체막을 채용할 수도 있다.
상술한 바와 같은 구성을 채용함으로써, 광전 변환을 행하는 반도체막이나 도전형을 나타내는 반도체막에 의해 생기는 저항(직렬 저항)을 저감하여, 특성을 향상시킬 수 있다. 또한, 광전 변환을 행하는 반도체막이나 도전형을 나타내는 반도체막과, 다른 막과의 계면에 있어서의 광학적·전기적인 손실을 억제하여, 광전 변환 효율을 향상시킬 수 있다. 이하, 도 10을 사용하여, 광전 변환 장치의 제작 방법의 일 형태에 대해서 설명한다.
도 10a에 도시하는 바와 같이, 기판(200) 위에 제 1 전극(202)을 형성한다.
기판(200)으로서는, 실시형태 1에 나타내는 기판(51)을 적당히 사용할 수 있다. 또한, 플라스틱 기판을 사용할 수도 있다. 플라스틱 기판으로서는, 에폭시 수지, 불포화 폴리에스테르 수지, 폴리이미드 수지, 비스말레이미드트리아진 수지, 시아네이트 수지 등의 열 변화성 수지를 포함하는 기판이나, 폴리페닐렌옥사이드 수지, 폴리에테르이미드 수지, 불소 수지 등의 열 가소성 수지를 포함하는 기판을 사용하면 좋다.
또, 기판(200)의 표면은, 텍스처 구조라도 좋다. 이에 의해, 광전 변환 효율을 향상시키는 것이 가능하다.
또, 본 실시형태에서는, 빛이 기판(200)의 이면 측(도면의 아래 쪽)으로부터 입사하는 구성으로 하기 위해서, 투광성을 갖는 기판을 채용하지만, 이후에 형성되는 제 2 전극(210) 측(도면의 위 쪽)으로부터 빛이 입사하는 구성으로 할 경우에는, 이것에 한정되지 않는다. 이 경우, 실리콘 등의 재료를 포함하는 반도체 기판이나, 금속 재료 등을 포함하는 도전성 기판을 사용해도 좋다.
제 1 전극(202)은, 실시형태 3에 나타내는 백 게이트 전극(139)에 사용하는 투광성을 갖는 도전성 재료를 사용하여 형성할 수 있다. 제 1 전극(202)은, 스퍼터링법, CVD법, 진공 증착법, 도포법, 인쇄법 등을 사용하여 형성한다.
제 1 전극(202)은, 10nm 내지 500nm, 바람직하게는 50nm 내지 100nm의 두께로 형성한다. 제 1 전극(202)의 시트 저항은, 20Ω/sq. 내지 200Ω/sq. 정도가 되도록 형성한다.
또, 본 실시형태에서는, 빛이 기판(200)의 이면 측(도면의 아래 쪽)으로부터 입사하는 구성으로 하기 위해, 투광성을 갖는 도전성 재료를 사용하여 제 1 전극(202)을 형성하고 있지만, 이후에 형성되는 제 2 전극(210) 측(도면의 위 쪽)으로부터 빛이 입사하는 구성으로 할 경우에는, 이것에 한정되지 않는다. 이 경우에는, 알루미늄, 백금, 금, 은, 동, 티타늄, 탄탈, 텅스텐 등 투광성을 갖지 않는 도전성 재료를 사용하여 제 1 전극(202)을 형성할 수 있다. 특히 알루미늄, 은, 티타늄, 탄탈 등 빛을 반사하기 쉬운 재료를 사용하는 경우에는 광전 변환 효율을 충분히 향상시킬 수 있다.
기판(200)과 마찬가지로, 제 1 전극(202)을 텍스처 구조로 해도 좋다. 또한, 제 1 전극(202)에 접하도록 저저항의 도전성 재료로 이루어지는 보조 전극을 별도로 형성해도 좋다.
다음에, 도 10b에 도시하는 바와 같이, 제 1 전극(202) 위에 제 1 도전형을 나타내는 반도체막(204)을 형성한다. 제 1 도전형을 나타내는 반도체막(204)은, 대표적으로는, 도전형을 부여하는 불순물 원소가 첨가된 반도체 재료를 포함하는 반도체막을 사용하여 형성한다. 반도체 재료로서는, 생산성이나 가격 등에서 실리콘을 사용하는 것이 적합하다. 반도체 재료로서 실리콘을 사용할 경우, 도전형을 부여하는 불순물 원소로서는, n형을 부여하는 인, 비소, p형을 부여하는 붕소, 알루미늄 등이 채용된다.
또, 본 실시형태에서는, 빛이 기판(200)의 이면 측(도면의 아래 쪽)으로부터 입사하는 구성으로 되어 있기 때문에, 제 1 도전형을 나타내는 반도체막(204)의 도전형(제 1 도전형)은 p형으로 하는 것이 바람직하다. 이것은, 홀의 수명이 전자 수명의 약 반으로 짧고, 결과로서 홀의 확산 길이가 짧은 것, 전자와 홀의 형성이, 광전 변환을 행하는 반도체막(206)의 빛이 입사하는 측에 있어서 많이 실시되는 것 등에 의한 것이다. 이와 같이, 제 1 도전형을 p형으로 함으로써, 홀이 소멸하기 전에 전류로 추출하는 것이 가능하기 때문에, 광전 변환 효율의 저하를 억제할 수 있다. 또, 상기한 사실이 문제가 되지 않는 상황, 예를 들면, 광전 변환을 행하는 반도체막(206)이 충분히 얇을 경우 등에 있어서는, 제 1 도전형을 n형으로 해도 좋다.
제 1 도전형을 나타내는 반도체막(204)에 사용할 수 있는 반도체 재료로서는, 그 외에도, 탄화 실리콘, 게르마늄, 갈륨 비소, 인화 인듐, 셀렌화 아연, 질화 갈륨, 실리콘 게르마늄 등이 있다. 또한, 유기 재료를 포함하는 반도체 재료나, 금속 산화물을 포함하는 반도체 재료 등을 사용하는 것도 가능하다. 상기 재료에 있어서는, 광전 변환을 행하는 반도체막(206)과의 관계로 적당히 선택할 수 있다.
제 1 도전형을 나타내는 반도체막(204)의 결정성에 관한 요구는 특히 없지만, 제 1 도전형을 나타내는 반도체막(204)에, 실시형태 1 또는 실시형태 2에 나타내는 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막을 채용할 경우에는, 종래의 미결정 반도체막을 채용하는 경우와 비교하여, 직렬 저항을 저감하고, 또한, 다른 막과의 계면에 있어서의 광학적·전기적인 손실을 억제할 수 있기 때문에 적합하다. 물론, 비정질, 다결정, 단결정 등의 다른 결정성의 반도체를 채용하는 것도 가능하다.
또, 제 1 도전형을 나타내는 반도체막(204)의 표면을, 기판(200)의 표면과 마찬가지로, 텍스처 구조로 해도 좋다.
제 1 도전형을 나타내는 반도체막(204)은, 실리콘을 포함하는 퇴적성 가스 및 디보란을 사용한 플라즈마 CVD법으로 형성할 수 있다. 또한, 제 1 도전형을 나타내는 반도체막(204)은, 1nm 내지 100nm, 바람직하게는 5nm 내지 50nm의 두께가 되도록 형성한다.
또한, 도전형을 부여하는 불순물 원소가 첨가되지 않은 실리콘막을 플라즈마 CVD법 등에 의해 형성한 후, 이온 주입 등의 방법으로 붕소를 첨가하여, 제 1 도전형을 나타내는 반도체막(204)을 형성해도 좋다.
다음에, 도 10c에 도시하는 바와 같이, 제 1 도전형을 나타내는 반도체막(204) 위에는, 광전 변환을 행하는 반도체막(206)을 형성한다. 광전 변환을 행하는 반도체막(206)으로서는, 반도체막(204)과 마찬가지의 반도체 재료를 사용한 반도체막이 적용된다. 즉, 반도체 재료로서, 실리콘, 탄화 실리콘, 게르마늄, 갈륨 비소, 인화 인듐, 셀렌화 아연, 질화 갈륨, 실리콘 게르마늄 등을 사용할 수 있다. 그 중에서도, 실리콘을 사용하는 것이 적합하다. 이 외에, 유기 재료를 포함하는 반도체 재료나, 금속 산화물 반도체 재료 등을 사용하는 것도 가능하다.
광전 변환을 행하는 반도체막(206)으로서는, 실시형태 1 및 실시형태 2에 나타내는 바와 같은, 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막을 적용하는 것이 보다 적합하다. 반도체막에 실시형태 1 및 실시형태 2에 나타내는 바와 같은, 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막을 채용함으로써, 종래의 미결정 반도체막을 채용할 경우와 비교해서 직렬 저항을 저감하고, 또한, 다른 막과의 계면에 있어서의 광학적·전기적인 손실을 억제할 수 있다.
또, 광전 변환을 행하는 반도체막(206)에는 충분한 빛 흡수가 요구되기 때문에, 그 두께는 100nm 내지 10μm 정도로 하는 것이 바람직하다.
다음에, 도 10d에 도시하는 바와 같이, 광전 변환을 행하는 반도체막(206) 위에, 제 2 도전형을 나타내는 반도체막(208)을 형성한다. 본 실시형태에서는, 제 2 도전형을 n형으로 한다. 제 2 도전형을 나타내는 반도체막(208)은, 도전형을 부여하는 불순물 원소로서 인이 첨가된 실리콘 등의 재료를 사용하여 형성할 수 있다. 제 2 도전형을 나타내는 반도체막(208)에 사용할 수 있는 반도체 재료는, 제 1 도전형을 나타내는 반도체막(204)과 마찬가지이다.
제 2 도전형을 나타내는 반도체막(208)은, 제 1 도전형을 나타내는 반도체막(204)과 마찬가지로 형성할 수 있다. 예를 들면, 실리콘을 포함하는 퇴적성 가스 및 포스핀을 사용한 플라즈마 CVD법으로 형성할 수 있다. 제 2 도전형을 나타내는 반도체막(208)에 대해서도, 실시형태 1 또는 실시형태 2에 나타내는 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막을 채용하는 것이 적합하다.
또, 본 실시형태에서는, 빛이 기판(200)의 이면 측(도면의 아래 쪽)으로부터 입사하는 구성으로 되어 있기 때문에, 반도체막(208)의 도전형(제 2 도전형)을 n형으로 하고 있지만, 개시하는 발명의 일 형태는 이것에 한정되지 않는다. 제 1 도전형을 n형으로 할 경우에는 제 2 도전형이 p형이 된다.
다음에, 도 10e에 도시하는 바와 같이, 제 2 도전형을 나타내는 반도체막(208) 위에 제 2 전극(210)을 형성한다. 제 2 전극(210)은, 금속 등의 도전성 재료를 사용하여 형성한다. 예를 들면, 알루미늄, 은, 티타늄, 탄탈 등 빛을 반사하기 쉬운 재료를 사용하여 형성할 수 있다. 이 경우, 반도체막(206)에 있어서 전부 흡수할 수 없었던 빛을 다시 반도체막(206)에 입사시킬 수 있고, 광전 변환 효율을 향상시키는 것이 가능하기 때문에 적합하다.
제 2 전극(210)의 형성 방법으로서는, 스퍼터링법, 진공 증착법, CVD법, 도포법, 인쇄법 등이 있다. 또한, 제 2 전극(210)은 10nm 내지 500nm, 바람직하게는 50nm 내지 100nm의 두께로 형성한다.
또, 본 실시형태에서는, 빛이 기판(200)의 이면 측(도면의 아래 쪽)으로부터 입사하는 구성으로 되어 있기 때문에, 투광성을 갖지 않는 재료를 사용해서 제 2 전극(210)을 형성하고 있지만, 제 2 전극(210)의 구성은 이것에 한정되지 않는다. 예를 들면, 제 2 전극(210) 측(도면의 위 쪽)으로부터 빛이 입사하는 구성으로 할 경우에는, 제 2 전극(210)은, 제 1 전극(202)에 나타내는 투광성을 갖는 도전성 재료를 사용하여 형성할 수 있다.
또, 제 2 전극(210)에 접하도록, 저저항의 도전성 재료로 이루어지는 보조 전극을 형성해도 좋다.
상기의 방법으로, 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막을, 광전 변환을 행하는 반도체막, 제 1 도전형을 나타내는 반도체막, 제 2 도전형을 나타내는 반도체막의 어느 하나에 사용한 광전 변환 장치를 제작할 수 있다. 그리고, 이에 따라, 광전 변환 장치의 변환 효율을 향상시킬 수 있다. 또, 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막은, 광전 변환을 행하는 반도체막, 제 1 도전형을 나타내는 반도체막, 제 2 도전형을 나타내는 반도체막의 어느 하나에 사용되어도 좋고, 그 어느 하나에 사용할지는 적당히 변경 가능하다. 또한, 상기 반도체막의 복수에 혼상 입자의 틈을 저감함으로써 결정성을 높인 미결정 반도체막을 사용할 경우에는, 보다 효과적이다.
또, 본 실시형태에서는, 하나의 유닛 셀을 갖는 광전 변환 장치를 나타냈지만, 적당히 두개 이상의 유닛 셀을 적층한, 광전 변환 장치로 할 수 있다.
본 실시형태는, 다른 실시형태와 적당히 조합시켜서 사용할 수 있다.
(실시형태 8)
본 명세서에 개시하는 반도체 장치는, 전자 페이퍼로서 적용할 수 있다. 전자 페이퍼는, 정보를 표시하는 것이면 모든 분야의 전자 기기에 사용하는 것이 가능하다. 예를 들면, 전자 페이퍼를 사용하여, 전자 서적(전자 북), 포스터, 전자 간판(Digital Signage), PID(Public Information Display), 전차 등 탈것의 차내 광고, 신용 카드 등의 각종 카드에 있어서의 표시 등에 적용할 수 있다. 전자 기기의 일 예를 도 11에 도시한다.
도 11은, 전자 서적의 일 예를 도시한다. 예를 들면, 전자 서적(2700)은, 하우징(2701) 및 하우징(2703)의 2개 하우징으로 구성된다. 하우징(2701) 및 하우징(2703)은, 축부(2711)에 의해 일체로 되어, 상기 축부(2711)를 축으로 하여 개폐 동작을 행할 수 있다. 이러한 구성에 의해, 종이 서적과 같은 동작을 행하는 것이 가능해 진다.
하우징(2701)에는 표시부(2705) 및 광전 변환 장치(2706)가 내장되고, 하우징(2703)에는 표시부(2707) 및 광전 변환 장치(2708)가 내장된다. 표시부(2705) 및 표시부(2707)는, 연속된 화면을 표시하는 구성으로 해도 좋고, 다른 화면을 표시하는 구성으로 해도 좋다. 다른 화면을 표시하는 구성으로 함으로써, 예를 들면 오른쪽의 표시부(도 11에서는 표시부(2705))에 문장을 표시하고, 왼쪽의 표시부(도 11에서는 표시부(2707))에 화상을 표시할 수 있다.
또한, 도 11에서는, 하우징(2701)에 조작부 등을 구비한 예를 도시한다. 예를 들면, 하우징(2701)에 있어서, 전원(2721), 조작 키(2723), 스피커(2725) 등을 구비한다. 조작 키(2723)에 의해 페이지를 넘길 수 있다. 또, 하우징의 표시부와 동일면에 키보드나 포인팅 디바이스 등을 구비하는 구성으로 해도 좋다. 또한, 하우징의 이면이나 측면에, 외부 접속용 단자(이어폰 단자, USB 단자, 또는 AC 어댑터 및 USB 케이블 등의 각종 케이블과 접속 가능한 단자 등), 기록 매체 삽입부 등을 구비하는 구성으로 해도 좋다. 또한, 전자 서적(2700)은, 전자 사전으로서의 기능을 갖는 구성으로 해도 좋다.
또한, 전자 서적(2700)은, 무선으로 정보를 송수신할 수 있는 구성으로 해도 좋다. 무선에 의해, 전자 서적 서버로부터 원하는 서적 데이터 등을 구입하여, 다운 로드하는 구성으로 하는 것도 가능하다.
(실시형태 9)
본 명세서에 개시하는 반도체 장치는, 다양한 전자 기기(게임기도 포함한다)에 적용할 수 있다. 전자 기기로서는, 예를 들면, 텔레비전 장치(텔레비전, 또는 텔레비전 수신기라고도 한다), 컴퓨터용 등의 모니터, 디지털 카메라, 디지털 비디오 카메라, 디지털 포토 프레임, 휴대 전화기(휴대 전화, 휴대 전화 장치 라고도 한다), 휴대형 게임기, 휴대 정보 단말, 음향 재생 장치, 파친코(pachinko)기 등의 대형 게임기 등을 들 수 있다.
도 12a는, 텔레비전 장치의 일 예를 도시한다. 텔레비전 장치(9600)는 하우징(9601)에 표시부(9603)가 내장된다. 표시부(9603)에 의해 영상을 표시하는 것이 가능하다. 또한, 여기에서는, 스탠드(9605)에 의해 하우징(9601)을 지지한 구성을 도시한다.
텔레비전 장치(9600)의 조작은, 하우징(9601)이 구비하는 조작 스위치나, 별체의 리모트 컨트롤러(9610)에 의해 행할 수 있다. 리모트 컨트롤러(9610)가 구비하는 조작 키(9609)에 의해, 채널이나 음량의 조작을 행할 수 있어 표시부(9603)에 표시되는 영상을 조작할 수 있다. 또한, 리모트 컨트롤러(9610)에, 상기 리모트 컨트롤러(9610)로부터 출력되는 정보를 표시하는 표시부(9607)를 형성하는 구성으로 해도 좋다.
또한, 텔레비전 장치(9600)는, 수신기나 모뎀 등을 구비한 구성으로 한다. 수신기에 의해 일반적인 텔레비전 방송을 수신할 수 있고, 또한 모뎀을 통하여 유선 또는 무선에 의한 통신 네트워크에 접속함으로써, 일 방향(송신자로부터 수신자) 또는 쌍방향(송신자와 수신자간, 또는 수신자끼리 등)의 정보 통신을 행하는 것도 가능하다.
도 12b는, 디지털 포토 프레임의 일 예를 도시한다. 예를 들면, 디지털 포토 프레임(9700)은, 하우징(9701)에 표시부(9703)가 내장된다. 표시부(9703)는, 각종 화상을 표시하는 것이 가능하고, 예를 들면 디지털 카메라 등으로 촬영한 화상 데이터를 표시시킴으로써, 보통의 포토 프레임과 마찬가지로 기능시킬 수 있다.
또한, 디지털 포토 프레임(9700)은, 조작부, 외부 접속용 단자(USB 단자, USB 케이블 등의 각종 케이블과 접속 가능한 단자 등), 기록 매체 삽입부 등을 구비하는 구성으로 한다. 이들 구성은, 표시부와 동일면에 내장되어도 좋지만, 측면이나 이면에 구비하면 디자인성이 향상하기 때문에 바람직하다. 예를 들면, 디지털 포토 프레임의 기록 매체 삽입부에, 디지털 카메라로 촬영한 화상 데이터를 기억한 메모리를 삽입하여 화상 데이터를 취득하고, 취득한 화상 데이터를 표시부(9703)에 표시시킬 수 있다.
또한, 디지털 포토 프레임(9700)은, 무선으로 정보를 송수신할 수 있는 구성으로 해도 좋다. 무선에 의해, 원하는 화상 데이터를 취득하여 표시시키는 구성으로 할 수도 있다.
도 13은 휴대형 컴퓨터의 일 예를 도시하는 사시도이다.
도 13의 휴대형 컴퓨터는, 상부 하우징(9301)과 하부 하우징(9302)을 접속하는 힌지 유닛을 폐쇄 상태로서 하여 표시부(9303)를 갖는 상부 하우징(9301)과, 키보드(9304)를 갖는 하부 하우징(9302)을 겹친 상태로 할 수 있고, 운반이 편리함과 동시에, 사용자가 키보드를 입력할 경우에는, 힌지 유닛을 개방 상태로 하여, 표시부(9303)를 보고 입력 조작을 행할 수 있다.
또한, 하부 하우징(9302)은 키보드(9304) 이외에 입력 조작을 행하는 포인팅 디바이스(9306)를 가진다. 또한, 표시부(9303)를 터치 입력 패널로 하면, 표시부의 일부를 터치함으로써 입력 조작을 행할 수도 있다. 또한, 하부 하우징(9302)은 CPU나 하드 디스크 등의 연산 기능부를 지진다. 또한, 하부 하우징(9302)은 다른 기기, 예를 들면 USB의 통신 규격에 준한 통신 케이블이 삽입된 외부 접속 포트(9305)를 갖는다.
상부 하우징(9301)에는 또한 상부 하우징(9301) 내부에 슬라이드시켜서 수납 가능한 표시부(9307)를 갖고 있어, 넓은 표시 화면을 실현할 수 있다. 또한, 수납 가능한 표시부(9307)의 화면 방향을 사용자는 조절할 수 있다. 또한, 수납 가능한 표시부(9307)를 터치 입력 패널로 하면, 수납 가능한 표시부의 일부에 터치함으로써 입력 조작을 행할 수도 있다.
표시부(9303) 또는 수납 가능한 표시부(9307)는, 액정 표시 패널, 유기 발광 소자 또는 무기 발광 소자 등의 발광 표시 패널 등의 영상 표시 장치를 사용한다.
또한, 도 13의 휴대형 컴퓨터는, 수신기 등을 구비한 구성으로서, 텔레비전 방송을 수신해서 영상을 표시부에 표시할 수 있다. 또한, 상부 하우징(9301)과 하부 하우징(9302)을 접속하는 힌지 유닛을 폐쇄 상태로 한 채, 표시부(9307)를 슬라이드시켜서 화면 전면을 노출시켜고, 화면 각도를 조절해서 사용자가 텔레비전 방송을 볼 수도 있다. 이 경우에는, 힌지 유닛을 개방 상태로 해서 표시부(9303)를 표시시킬 일 없고, 또한 텔레비전 방송을 표시하는 것 뿐의 회로 기동만 행하기 때문에, 최소한의 소비 전력으로 할 수 있고, 배터리 용량이 한정되어 있는 휴대형 컴퓨터에 있어서 유용하다.
(실시예 1)
본 실시예에서는, 미결정 실리콘막 및 비결정질 실리콘막의 에칭 속도와 압력 관계에 대해서, 도 14를 사용해서 설명한다.
처음에, 에칭 시료의 제작 방법에 대해서 설명한다.
시료 1은, 피 에칭막이 비결정질 실리콘막이다. 여기에서는, 유리 기판 위에 두께 100nm의 비결정질 실리콘막을 형성했다. 비결정질 실리콘막의 퇴적은, 실란의 유량을 100sccm, 수소의 유량을 75sccm으로 하여 원료 가스를 도입해서 안정되게 하고, 처리실 내의 압력을 100Pa, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 30W, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 해서, 플라즈마 방전을 행하는 플라즈마 CVD법을 사용했다.
시료 2는, 피 에칭막이 미결정 실리콘막이다. 여기에서는, 유리 기판 위에 두께300nm의 질화 실리콘막을 형성한 후, 질화 실리콘막에 대하여 플라즈마 처리를 했다. 다음에, 실시형태 1에 나타내는 제 1 조건으로 두께 5nm의 씨드를 형성한 후, 제 2 조건(단, 사이클 플로우 없음)으로 두께 65nm의 미결정 실리콘막을 형성했다.
게이트 절연막(105)은, 질화 실리콘막에 의해 형성했다. 두께 300nm의 질화 실리콘막을 형성했다. 질화 실리콘막은 플라즈마 CVD법에 의해 퇴적시켜서 형성했다.
질화 실리콘막의 퇴적은, 실란의 유량을 15sccm, 수소의 유량을 200sccm, 질소의 유량을 180sccm, 암모니아의 유량을 500sccm으로 해서 원료 가스를 도입하고, 처리실 내의 압력을 100Pa, 기판의 온도를 250℃로 하고, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 200W로 해서 플라즈마 방전을 행했다.
질화 실리콘막으로의 플라즈마 처리는, 일산화이질소(N2O) 유량을 400sccm으로 하여 도입해서 처리실 내의 압력을 60Pa로 하고, 300W에서 플라즈마 방전을 행했다. 또한, 상기 플라즈마 처리는, 평행 평판형의 플라즈마 처리 장치를 사용하여 행하고, 상부 전극 온도를 250℃, 하부 전극 온도를 290℃로 했다.
씨드의 퇴적은, 실란의 유량을 4sccm, 수소의 유량을 750sccm, 아르곤의 유량을 750sccm으로 해서 원료 가스를 도입하고, 처리실 내의 압력을 532Pa, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 150W, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 해서 플라즈마 방전을 행하는 플라즈마 CVD법을 사용했다.
미결정 실리콘막의 퇴적은, 실란의 유량을 1.8sccm, 수소의 유량을 750sccm, 아르곤의 유량을 750sccm으로 해서 원료 가스를 도입하고, 처리실 내의 압력을 5000Pa, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 125W, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 해서, 플라즈마 방전을 행하는 플라즈마 CVD법을 사용했다.
다음에, 시료 1 및 시료 2에 있어서, 다른 압력 조건으로 에칭 처리해서 에칭 속도를 측정했다.
에칭 조건은, 수소의 유량을 1500sccm, 아르곤의 유량을 1500sccm으로 해서 에칭 가스를 도입하고, RF 전원 주파수를 13.56MHz, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 해서 600초의 플라즈마 방전을 행하는 플라즈마 에칭법을 사용했다. 또한, 시료 1 및 시료 2에 대하여, 처리실 내의 압력을 1000Pa, 2000Pa, 3000Pa, 4000Pa, 5000Pa, 10000Pa로 하고, RF 전원의 전력을 100W, 150W로 했다.
이때의 압력과 에칭 속도의 관계를 도 14에 도시한다. 가로 축을 1/압력(1/kPa)으로 하고, 세로 축을 에칭 속도(nm/min)로 했다.
또한, 시료 1(피 에칭막이 비결정질 실리콘막)에 있어서의 에칭 속도를 마름모로 나타내고, 흰 마름모는 압력 1000Pa로부터 5000Pa에서 RF 전원의 전력을 100W로 했을 때의 에칭 속도를 나타낸다. 또한, 검은 마름모는 압력 2000Pa로부터 10000Pa에서 RF 전원의 전력을 150W로 했을 때의 에칭 속도를 나타낸다.
또한, 시료 2(피 에칭막이 미결정 실리콘막)에 있어서의 에칭 속도를 사각으로 나타내고, 흰 사각은 압력 1000Pa로부터 5000Pa에서 RF 전원의 전력을 100W로 했을 때의 에칭 속도를 나타낸다. 또한, 검은 사각은 압력 2000Pa로부터 10000Pa에서 RF 전원의 전력을 150W로 했을 때의 에칭 속도를 나타낸다.
시료 2(피 에칭막이 미결정 실리콘막)에 있어서, 압력이 1000Pa, 즉 가로 축이 1(1/kPa)인 경우, 에칭 속도가 빠르다. 그렇지만, 압력이 2000Pa 이상, 즉 가로 축이 0.5 이하(1/kPa)인 경우, 에칭 속도가 낮아져서, 미결정 실리콘막은 거의 에칭되지 않는다.
한편, 시료 1(피 에칭막이 비결정질 실리콘막)에 있어서, 압력이 1000Pa로부터 10000Pa에 있어서, 개략 선형적으로 에칭 속도가 감소하고 있지만, 비결정질 실리콘막은 에칭된다.
이런 사실로부터, 처리실 내의 압력을 적어도 2000Pa 이상으로 한 수소 분위기로 발생시킨 플라즈마에 있어서, 미결정 실리콘막을 에칭하지 않고, 선택적으로 비결정질 실리콘막을 에칭하는 것이 가능하다.
이런 사실로부터, 실시형태 1 및 실시형태 2에 있어서, 제 2 조건에 있어서 실란 사이클 플로우를 행함으로써, 주기적으로 실란의 유량이 격감하는 기간이 있고, 상기 기간에 있어서는, 주로 수소분위기로 플라즈마가 발생된다. 따라서, 씨드 위에 퇴적되는 미결정 반도체막의 비정질 반도체를 선택적으로 에칭하는 것이 가능하다. 이 결과, 결정성이 높은 미결정 반도체막을 형성할 수 있다.
(실시예 2)
본 실시예에서는, 실시형태 1에서 나타낸 미결정 반도체막의 표면 구조, 결정성 및 결정자의 크기에 대해서, 도 15 및 도 16을 사용해서 설명한다.
처음에, 시료의 제작 방법에 대해서 설명한다.
시료 3 및 시료 5는, 실시형태 1에 나타내는 방법을 사용해서 미결정 실리콘막을 형성한 시료이다.
시료 3 및 시료 5는, 유리 기판 위에 두께 300nm의 질화 실리콘막을 형성한 후, 질화 실리콘막에 대하여 플라즈마 처리를 행했다. 다음에, 실시형태 1에 나타내는 제 1 조건으로 두께 5nm의 씨드를 형성한 후, 제 2 조건으로 두께 30nm의 미결정 실리콘막을 형성했다.
여기서는, 실시예 1에 나타내는 시료 2에서 형성한 질화 실리콘막의 성막 조건 및 플라즈마 처리 조건을 사용했다.
시료 3 및 시료 5의 씨드 퇴적은, 실란의 유량을 4sccm, 수소의 유량을 750sccm, 아르곤의 유량을 750sccm으로 해서 원료 가스를 도입하고, 처리실 내의 압력을 532Pa, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 150W, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 하여, 플라즈마 방전을 행하는 플라즈마 CVD법을 사용했다.
시료 3의 미결정 실리콘막의 퇴적은, 수소의 유량을 1500sccm, 아르곤의 유량을 1500sccm으로 하고, 유량 2sccm을 10초, 유량 0.1sccm을 5초 교대로 실란을 흘리는 사이클 플로우를 사용해서 원료 가스를 도입하고, 처리실 내의 압력을 10000Pa, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 350W, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 해서, 플라즈마 방전을 행하는 플라즈마 CVD법을 사용했다.
시료 5의 미결정 실리콘막의 퇴적은, 수소의 유량을 1500sccm, 아르곤의 유량을 1500sccm으로 하고, 유량 2sccm을 10초, 유량 0.1sccm을 5초 교대로 실란을 흘리는 사이클 플로우를 사용해서 원료 가스를 도입하고, 처리실 내의 압력을 10000Pa, RF전원 주파수를 13.56MHz, RF 전원의 전력을 350W, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 해서, 플라즈마 방전을 행하는 플라즈마 CVD법을 사용했다.
참고예인 시료 4는, 시료 3 및 시료 5와 비교하여, 제 2 조건으로 미결정 실리콘막을 퇴적할 때, 사이클 플로우를 사용하지 않는 조건으로 했다. 구체적으로는, 유리 기판 위에 두께 300nm의 질화 실리콘막을 형성한 후, 질화 실리콘막에 대하여 플라즈마 처리를 했다. 다음에, 실시형태 1에 나타내는 제 1 조건으로 두께 5nm의 씨드를 형성한 후, 사이클 플로우를 행하지 않는 제 2 조건으로 두께 30nm의 미결정 실리콘막을 형성했다.
사이클 플로우를 행하지 않는 제 2 조건은, 실란의 유량을 2sccm, 수소의 유량을 1500sccm, 아르곤의 유량을 1500sccm으로 해서 원료 가스를 도입하고, 처리실 내의 압력을 10000Pa, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 350W, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 해서, 플라즈마 방전을 행하는 플라즈마 CVD법을 사용했다.
시료 3 및 시료 4를 주사형 전자 현미경에 의해 미결정 실리콘막을 촬영하고, 그 SEM 사진(배율 20 만배)을 각각 도 15a 및 도 15b에 도시한다.
또한, 시료 3 및 시료 4의 결정성(Ic/Ia(결정성 실리콘의 피크 강도/비정질 실리콘의 피크 강도)을 라만 분광 분석으로 측정했다. 시료 3의 Ic/Ia는 10.8이며, 시료 4의 Ic/Ia는 9.7이었다.
다음에, 시료 4 및 시료 5를 In-Plane X선 회절법(In-PlaneXRD)으로 분석하고, 결정성의 크기를 평가한 결과를 도 17에 도시한다. 도 17a는 가로 축인 2θ를 20도부터 80도까지 측정했을 때의 X선 회절 스펙트럼을 도시한다. 도 17b는 도 17a에 있어서 (111) 면방위의 피크 확대도이고, 가로 축인 2θ를 25도부터 35도까지 도시했다. 도 17에 있어서, 파선은 비교예인 시료 4의 X선 회절 스펙트럼을 나타내고, 실선은 X선 회절 스펙트럼을 나타낸다.
여기서, (111) 면방위를 나타내는 피크의 반치 전폭을 Scherrer의 식에 대입하여 각 시료에 있어서의 (111) 면방위를 갖는 결정자의 평균 크기를 계산했다. 시료 5에 있어서의 (111) 면방위를 갖는 결정자의 평균 크기는 10.5nm이었다. 한편, 비교예인, 시료 4에 있어서의 (111) 면방위를 갖는 결정자의 평균 크기는 9.2nm이었다.
도 15로부터, 씨드를 형성한 후, 미결정 실리콘막을 퇴적할 때, 사이클 플로우를 행함으로써, 혼상 입자가 치밀하게 됨과 동시에, 미결정 실리콘막의 결정성이 높아지는 것을 알았다. 또한, 도 17로부터, 씨드를 형성한 후, 미결정 실리콘막을 퇴적할 때, 사이클 플로우를 행함으로써, 결정자를 크게 할 수 있는 것을 알았다.
(실시예 3)
본 실시예에서는, 실시형태 3을 사용해서 제작한 박막 트랜지스터의 전기 특성에 대해서 설명한다.
본 실시예의 박막 트랜지스터의 제작 방법은, 도 4 및 도 6을 참조해서 설명한다.
도 4a에 도시하는 바와 같이, 기판(101) 위에 하지 절연막(여기서는 도시하지 않는다)을 형성하고, 하지 절연막 위에 게이트 전극(103)을 형성했다.
여기서는, 기판(101)으로서, 유리 기판(코닝 제품 EAGLE XG)을 사용했다.
게이트 전극(103)은, 알루미늄층을 티타늄층에 의해 협지한 구조로 했다. 구체적으로는, 우선, 티타늄 타겟을 아르곤 이온으로 스퍼터링하여, 두께 50nm의 제 1 티타늄막을 하지 절연막 위에 형성했다. 이때, 도입하는 아르곤의 유량은 20sccm으로 하고, 처리실 내의 압력은 0.11Pa, 온도는 실온으로 했다. 그리고, 그 위에 알루미늄 타겟을 아르곤 이온으로 스퍼터링하여, 두께 100nm의 알루미늄막을 형성했다. 이때, 도입하는 아르곤의 유량은 50sccm으로 하고, 처리실 내의 압력은0.4Pa, 온도는 실온으로 했다. 그리고, 그 위에 티타늄 타겟을 아르곤 이온으로 스퍼터링하여, 두께 50nm의 제 2 티타늄막을 형성했다. 이때, 도입하는 아르곤의 유량은 20sccm으로 하고, 처리실 내의 압력은 0.1Pa, 온도는 실온으로 했다.
다음에, 제 2 티타늄막 위에 레지스트를 도포하고, 제 1 포토 마스크를 사용해서 노광한 후, 현상해서 레지스트에 형성된 마스크를 형성했다.
다음에, 상기 레지스트에 형성되는 마스크를 사용해서 에칭 처리를 행하여, 게이트 전극(103)을 형성했다. 여기에서는, ICP(Inductively Coupled Plasma: 유도 결합형 플라즈마) 장치를 사용해서 2단계의 에칭을 행했다. 즉, ICP 파워 600W, 바이어스 파워 250W, 에칭 가스로서 염화 보론을 유량 60sccm으로 도입하고, 염소를 유량 20sccm으로 도입해서 처리실 내의 압력을 1.2Pa로 하여, 제 1 에칭을 행한 후, ICP 파워 500W, 바이어스 파워 50W, 압력 2.0Pa, 에칭 가스로서 플루오르화 탄소를 유량 80sccm으로 도입해서 처리실 내의 압력을 2.0Pa로 하여, 제 2의 에칭을 행했다. 그 후, 상기 레지스트에 형성된 마스크를 제거했다.
다음에, 게이트 전극(103) 및 하지 절연막 위에 게이트 절연막(105)을 형성했다.
게이트 절연막(105)으로 질화 실리콘막을 형성했다. 두께 300nm의 질화 실리콘막을 형성한 후, 질화 실리콘막에 플라즈마 처리를 행했다. 여기에서는, 실시예 1에 나타내는 시료 2에서 형성한 질화 실리콘막의 성막 조건 및 플라즈마 처리 조건을 사용했다.
다음에, 게이트 절연막(105) 위에 씨드(107)를 형성한 후, 도 4b에 도시하는 바와 같이, 미결정 반도체막(109)을 형성했다.
여기서, 씨드(107)로서는, 실시예 2에 나타내는 시료 3과 마찬가지의 성막 조건을 사용하고, 두께가 5nm이 되도록 씨드(107)를 형성했다. 미결정 반도체막(109)으로서는, 실시예 2에 나타내는 시료 3과 마찬가지의 성막 조건을 사용하고, 두께가 65nm이 되도록 미결정 반도체막(109)을 형성했다.
다음에, 미결정 반도체막(109) 위에 반도체막(111)을 형성하고, 반도체막(111) 위에 불순물 반도체막(113)을 형성했다. 반도체막(111) 및 불순물 반도체막(113)은, 플라즈마 CVD법에 의해 퇴적시켜서 형성했다.
반도체막(111)의 퇴적 조건으로서는, 실란의 유량을 20sccm, 1000ppm 암모니아(수소 희석)의 유량을 50sccm, 수소의 유량을 700sccm, 아르곤의 유량을 750sccm으로 해서 재료 가스를 도입하고, 처리실 내의 압력을 350Pa로 하고, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 60W로 해서 플라즈마 방전을 행했다. 또한, 여기에서, 반도체막(111)의 퇴적은, 평행 평판형의 플라즈마 처리 장치를 사용하여 행하고, 상부 전극 온도를 250℃, 하부 전극온도를 290℃로 했다.
불순물 반도체막(113)으로서는, 두께 50nm의 인이 첨가된 비결정질 실리콘막을 형성했다. 이때의 퇴적 조건은, 실란의 유량을 80sccm, 0.5% 포스핀(수소 희석)의 유량을 150sccm, 수소의 유량을 750sccm으로 해서 재료 가스를 도입하고, 처리실 내의 압력을 350Pa, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 30W로 해서 플라즈마 방전을 행했다. 또한, 여기에서, 불순물 반도체막의 퇴적은, 평행 평판형의 플라즈마 처리 장치를 사용하여 행하고, 상부 전극 온도를 250℃, 하부 전극 온도를 290℃로 했다.
다음에, 불순물 반도체막(113) 위에 레지스트를 도포한 후, 제 2 포토 마스크를 사용해서 노광하고, 현상해서 레지스트에 형성된 마스크(115)를 형성했다. 여기까지의 공정을 도 4c에 도시한다.
다음에, 레지스트에 형성된 마스크(115)를 사용하고, 미결정 반도체막, 반도체막(111), 불순물 반도체막(113)을 에칭하여, 미결정 반도체 영역(117a) 및 비정질 반도체 영역(117b)을 갖는 반도체 적층체(117) 및 불순물 반도체막(121)을 형성했다.
여기서는, ICP 장치를 사용하고, ICP 파워 450W, 바이어스 파워 100W, 에칭 가스로서 염화 보론을 유량 36sccm, 플루오르화 탄소를 36sccm, 산소를 8sccm으로 도입하고, 처리실 내의 압력을 2Pa로 해서 에칭을 행했다.
다음에, 산소 플라즈마 처리를 행하고, 미결정 반도체 영역(117a) 및 비정질 반도체 영역(117b)을 갖는 반도체 적층체(117) 및 불순물 반도체막(121)의 측벽에 산화 막을 형성한 후, 레지스트에 형성된 마스크(115)를 제거했다(도시하지 않는다).
산소 플라즈마 처리는, 산소의 유량을 100sccm으로 해서 도입하여 처리실 내의 압력을 0.67Pa로 하고, 기판 온도를 -10℃로 하고, 소스 파워를 2000W, 바이어스 파워를 350W에서 플라즈마 방전을 행했다.
다음에, 도 6a에 도시하는 바와 같이, 게이트 절연막(105) 위에, 반도체 적층체(117), 불순물 반도체막(121)을 덮어 도전막(127)을 형성했다.
여기서는, 도전막(127)은, 알루미늄층을 티타늄층에 의해 협지한 구조로 하고, 게이트 전극(103)과 마찬가지로 형성했다. 단, 제 1 티타늄막 두께를 50nm으로 하고, 알루미늄막의 두께를 200nm으로 하고, 제 2 티타늄막 두께를 50nm으로 했다.
다음에, 도전막(127) 위에 레지스트를 도포한 후, 제 3 포토 마스크를 사용해서 노광하고, 현상해서 레지스트에 형성된 마스크를 형성했다. 상기 레지스트에 형성된 마스크를 사용해서 도전막(127)을 드라이 에칭하여, 배선(129a) 및 배선(129b)을 형성했다.
여기서는, ICP 장치를 사용하고, ICP 파워 450W, 바이어스 파워 100W, 에칭 가스로서 염화 붕소를 유량 60sccm으로 도입하고, 염소를 20sccm으로 도입하고, 처리실 내의 압력을 1.9Pa로 해서 에칭을 행했다.
다음에, 레지스트에 형성된 마스크를 제거한 후, 불순물 반도체막(121)을 드라이 에칭하여 소스 영역 및 드레인 영역으로서 기능하는 한 쌍의 불순물 반도체막(131a, 131b)을 형성하고, 또한, 반도체 적층체(117)를 일부 에칭하여, 미결정 반도체 영역(133a) 및 한 쌍의 비정질 반도체 영역(133b)을 갖는 반도체 적층체(133)를 형성했다.
또한, 반도체 적층체(117)의 표면으로부터 50nm을 에칭했다. 또, 본 실시예에서는, 소스 전극 및 드레인 전극으로서 기능하는 배선(129a, 129b)의 평면 형상은 직선형이다.
다음에, 반도체 적층체(133)의 표면을 물 플라즈마 처리하고, 반도체 적층체(133) 표면에 잔류하는 불순물을 제거했다. 여기에서는, 파워 1800W로 해서 수증기를 유량 300sccm으로 도입하고, 처리실 내의 압력을 66.5Pa로 해서 물 플라즈마 처리를 행했다.
다음에, 절연막(137)으로서, 두께 300nm의 질화 실리콘막을 형성했다. 이때의 퇴적 조건은, 실란의 유량을 20sccm, 암모니아의 유량을 220sccm, 질소의 유량을 450sccm, 수소의 유량을 450sccm으로 해서 재료 가스를 도입하고, 처리실 내의 압력을 160Pa, 기판의 온도를 250℃로 하고, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 200W로 해서 플라즈마 방전을 행했다.
다음에, 절연막(137) 위에 레지스트를 도포한 후, 제 4 포토 마스크를 사용해서 노광하고, 현상해서 레지스트에 형성된 마스크를 형성했다. 상기 레지스트에 형성된 마스크를 사용해서 절연막의 일부를 드라이 에칭하여, 소스 전극 및 드레인 전극으로서 기능하는 배선(129a, 129b)을 노출시켰다. 또한, 절연막(137) 및 게이트 절연막(105)의 일부를 드라이 에칭하여, 게이트 전극(103)을 노출시켰다. 그 후, 레지스트에 형성된 마스크를 제거했다.
다음에, 절연막(137) 위에 도전막을 형성한 후, 상기 도전막 위에 레지스트를 도포하고, 제 5 포토 마스크를 사용해서 노광하고, 현상해서 레지스트에 형성된 마스크를 형성했다. 상기 레지스트에 형성된 마스크를 사용해서 도전막의 일부를 웨트 에칭하여, 백 게이트 전극(139)을 형성했다.
여기서는, 도전막으로서, 스퍼터링법에 의해 두께 50nm의 인듐 주석 산화물을 형성한 후, 웨트 에칭 처리에 의해 백 게이트 전극(139)을 형성했다. 또한, 여기에서는 도시하지 않지만, 백 게이트 전극(139)은, 게이트 전극(103)과 접속된다. 그 후, 레지스트에 형성된 마스크를 제거했다.
이상의 공정에 의해, 듀얼 게이트형 박막 트랜지스터(TFT1로 나타낸다)를 제작했다(도 6c 참조).
또한, 비교예로서, TFT1과 마찬가지의 공정에 있어서, 사이클 플로우를 사용하지 않는 조건으로 두께 65nm의 미결정 반도체막(109)을 형성하여, 듀얼 게이트형 박막 트랜지스터(TFT2로 나타낸다)를 제작했다.
사이클 플로우를 사용하지 않는 조건으로 미결정 반도체막(109)의 퇴적 조건으로서는, 실란의 유량을 2sccm, 수소의 유량을 1500sccm, 아르곤의 유량을 1500sccm으로 해서 원료 가스를 도입하고, 처리실 내의 압력을 10000Pa, RF 전원 주파수를 13.56MHz, RF 전원의 전력을 350W, 상부 전극의 온도를 250℃, 하부 전극의 온도를 290℃로 해서, 플라즈마 방전을 행하는 플라즈마 CVD법을 사용했다.
도 16에, 본 실시예에서 제작한 박막 트랜지스터(TFT1) 및 비교예의 박막 트랜지스터(TFT2)의 전기 특성 측정 결과를 도시한다. 여기에서는, 게이트 전극(103)에만 상기 게이트 전압을 인가했을 때의 전기 특성을 도시한다. 또한, 본 실시예의 박막 트랜지스터의 채널 길이를 3.3μm, 채널 폭을 20.4μm, 게이트 절연층의 두께를 300nm, 평균 유전율을 6.55로 해서 전계 효과 이동도를 계산했다.
또한, 드레인 전압이 10V에서, 게이트 전압이 15V일 때의 온 전류(Ion으로 나타낸다), 최소 오프 전류(Ioff(min)로 나타낸다), 최소 오프 전류의 게이트 전압 -10V일 때의 오프 전류(Ioff로 나타낸다), 임계값 전압(Vth로 나타낸다), S값(S-value로 나타낸다), 최소 오프 전류에 대한 온 전류의 비(Ion/Ioff_min으로 나타낸다), 드레인 전압이 10V일 때의 전계 효과 이동도(μFE_sat로 나타낸다)를 표 1에 나타낸다.
도 16에서, 제 2 조건을 사용해서 미결정 반도체막을 형성할 때, 사이클 플로우를 행함으로써, 박막 트랜지스터의 온 전류, 최소 오프 전류에 대한 온 전류의 비 및 전계 효과 이동도가 상승함과 동시에, 최소 오프 전류 및 S값이 저하했다. 본 실시예에 의해, 온 전류 및 전계 효과 이동도가 높고, 오프 전류가 낮은 박막 트랜지스터를 제작할 수 있었다.
Claims (24)
- 기판 위에 절연막을 형성하는 단계;
제 1 조건 하의 제 1 처리실로 수소 및 퇴적성 기체를 도입함으로써 상기 절연막 위에 씨드(seed)를 형성하는 단계로서, 수소의 제 1 유량은 상기 퇴적성 기체의 제 1 유량의 5.0×101배 이상 1.0×103배 이하이고, 상기 제 1 처리실의 제 1 압력은 5.0×10-1Torr 이상 1.0×101Torr 이하인, 상기 씨드 형성 단계; 및
제 2 조건 하의 제 2 처리실로 수소 및 상기 퇴적성 기체를 도입함으로써 상기 씨드 위에 미결정 반도체막을 형성하는 단계로서, 상기 퇴적성 기체의 제 2 유량은 제 1 값과 제 2 값 사이에서 주기적으로 변하고, 상기 제 2 처리실의 제 2 압력은 1.0×101Torr 이상 1.0×102Torr 이하인, 상기 미결정 반도체막 형성 단계를 포함하고,
상기 제 2 값은 상기 제 1 값보다 작은, 반도체 장치 제조 방법. - 기판 위에 게이트 전극을 형성하는 단계;
상기 기판 및 상기 게이트 전극 위에 게이트 절연막을 형성하는 단계;
제 1 조건 하의 제 1 처리실로 수소 및 퇴적성 기체를 도입함으로써 상기 게이트 절연막 위에 씨드를 형성하는 단계로서, 수소의 제 1 유량은 상기 퇴적성 기체의 제 1 유량의 5.0×101배 이상 1.0×103배 이하이고, 상기 제 1 처리실의 제 1 압력은 5.0×10-1Torr 이상 1.0×101Torr 이하인, 상기 씨드 형성 단계;
제 2 조건 하의 제 2 처리실로 수소 및 상기 퇴적성 기체를 도입함으로써 상기 씨드 위에 미결정 반도체막을 형성하는 단계로서, 상기 퇴적성 기체의 제 2 유량은 제 1 값과 제 2 값 사이에서 주기적으로 변하고, 상기 제 2 처리실의 제 2 압력은 1.0×101Torr 이상 1.0×102Torr 이하인, 상기 미결정 반도체막 형성 단계;
상기 미결정 반도체막 위에 반도체막을 형성하는 단계;
반도체 적층체를 형성하기 위해, 상기 씨드의 일부, 상기 미결정 반도체막의 일부, 및 상기 반도체막의 일부를 에칭하는 단계; 및
상기 반도체 적층체 위에 배선을 형성하는 단계를 포함하고,
상기 제 2 값은 상기 제 1 값보다 작은, 반도체 장치 제조 방법. - 기판 위에 절연막을 형성하는 단계;
제 1 조건 하의 제 1 처리실로 수소 및 퇴적성 기체를 도입함으로써 상기 절연막 위에 씨드를 형성하는 단계로서, 수소의 제 1 유량은 상기 퇴적성 기체의 제 1 유량의 5.0×101배 이상 1.0×103배 이하이고, 상기 제 1 처리실의 제 1 압력은 5.0×10-1Torr 이상 1.0×101Torr 이하인, 상기 씨드 형성 단계; 및
제 2 조건 하의 제 2 처리실로 수소 및 상기 퇴적성 기체를 도입함으로써 상기 씨드 위에 미결정 반도체막을 형성하는 단계로서, 수소의 제 2 유량은 제 1 값과 제 2 값 사이에서 주기적으로 변하고, 상기 제 2 처리실의 제 2 압력은 1.0×101Torr 이상 1.0×102Torr 이하인, 상기 미결정 반도체막 형성 단계를 포함하고,
상기 제 2 값은 상기 제 1 값보다 작은, 반도체 장치 제조 방법. - 기판 위에 게이트 전극을 형성하는 단계;
상기 기판 및 상기 게이트 전극 위에 게이트 절연막을 형성하는 단계;
제 1 조건 하의 제 1 처리실로 수소 및 퇴적성 기체를 도입함으로써 상기 게이트 절연막 위에 씨드를 형성하는 단계로서, 수소의 제 1 유량은 상기 퇴적성 기체의 제 1 유량의 5.0×101배 이상 1.0×103배 이하이고, 상기 제 1 처리실의 제 1 압력은 5.0×10-1Torr 이상 1.0×101Torr 이하인, 상기 씨드 형성 단계;
제 2 조건 하의 제 2 처리실로 수소 및 상기 퇴적성 기체를 도입함으로써 상기 씨드 위에 미결정 반도체막을 형성하는 단계로서, 수소의 제 2 유량은 제 1 값과 제 2 값 사이에서 주기적으로 변하고, 상기 제 2 처리실의 제 2 압력은 1.0×101Torr 이상 1.0×102Torr 이하인, 상기 미결정 반도체막 형성 단계;
상기 미결정 반도체막 위에 반도체막을 형성하는 단계;
반도체 적층체를 형성하기 위해, 상기 씨드의 일부, 상기 미결정 반도체막의 일부, 및 상기 반도체막의 일부를 에칭하는 단계; 및
상기 반도체 적층체 위에 배선을 형성하는 단계를 포함하고,
상기 제 2 값은 상기 제 1 값보다 작은, 반도체 장치 제조 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
수소의 유량은 상기 제 2 조건 하의 상수값이고 수소의 상기 제 1 유량에 대응하는, 반도체 장치 제조 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
상기 제 1 값은 상기 제 2 값의 1.0×101배 이상인, 반도체 장치 제조 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
상기 제 1 처리실 및 상기 제 2 처리실은 서로 다른, 반도체 장치 제조 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
상기 제 2 처리실 내에서 수소에 대한 상기 퇴적성 기체의 유량비는 상기 미결정 반도체막을 형성하는 동안 주기적으로 변화되는, 반도체 장치 제조 방법. - 제 2 항 또는 제 4 항에 있어서,
상기 반도체 적층체의 측면을 플라즈마에 노출하여, 상기 반도체 적층체의 상기 측면 상에 절연 영역을 형성하는 단계를 더 포함하는, 반도체 장치 제조 방법. - 제 2 항 또는 제 4 항에 있어서,
상기 배선, 상기 반도체 적층체, 및 상기 게이트 절연막 위에 절연막을 형성하는 단계; 및
상기 절연막 위에 백 게이트 전극을 형성하는 단계를 더 포함하는, 반도체 장치 제조 방법. - 제 10 항에 있어서,
상기 게이트 전극 및 상기 백 게이트 전극은 서로 전기적으로 접속되는, 반도체 장치 제조 방법. - 제 10 항에 있어서,
상기 백 게이트 전극은 전기적으로 플로팅 상태인, 반도체 장치 제조 방법. - 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2010-148074 | 2010-06-29 | ||
JP2010148074 | 2010-06-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120001640A KR20120001640A (ko) | 2012-01-04 |
KR101840183B1 true KR101840183B1 (ko) | 2018-03-20 |
Family
ID=45352928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110062372A KR101840183B1 (ko) | 2010-06-29 | 2011-06-27 | 미결정 반도체막의 제작 방법 및 반도체 장치의 제작 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8778745B2 (ko) |
JP (1) | JP5808589B2 (ko) |
KR (1) | KR101840183B1 (ko) |
CN (1) | CN102312220B (ko) |
TW (1) | TWI514473B (ko) |
Families Citing this family (289)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US8410486B2 (en) | 2010-05-14 | 2013-04-02 | Semiconductor Energy Labortory Co., Ltd. | Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device |
CN102386072B (zh) * | 2010-08-25 | 2016-05-04 | 株式会社半导体能源研究所 | 微晶半导体膜的制造方法及半导体装置的制造方法 |
US8450158B2 (en) * | 2010-11-04 | 2013-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device |
US9048327B2 (en) * | 2011-01-25 | 2015-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
JP2014045175A (ja) | 2012-08-02 | 2014-03-13 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
CN102938379B (zh) * | 2012-11-21 | 2015-06-17 | 深圳市华星光电技术有限公司 | 开关管的制作方法及开关管的蚀刻设备 |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
JP6083604B2 (ja) * | 2013-05-27 | 2017-02-22 | 国立研究開発法人海洋研究開発機構 | 応力履歴測定方法および応力センサー |
KR102258374B1 (ko) * | 2013-10-18 | 2021-06-01 | 삼성디스플레이 주식회사 | 박막 트랜지스터, 이를 포함하는 표시 패널 및 이의 제조 방법 |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
GB201412201D0 (en) | 2014-07-09 | 2014-08-20 | Isis Innovation | Two-step deposition process |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
CN104319279B (zh) * | 2014-11-10 | 2017-11-14 | 京东方科技集团股份有限公司 | 阵列基板及其制造方法、显示装置 |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
KR102326316B1 (ko) | 2015-04-10 | 2021-11-16 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
US20160362782A1 (en) * | 2015-06-15 | 2016-12-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gas dispenser and deposition apparatus using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
KR20180068582A (ko) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
JP6856398B2 (ja) * | 2017-02-10 | 2021-04-07 | 株式会社半導体エネルギー研究所 | 表示装置の作製方法 |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) * | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
KR102443047B1 (ko) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
JP7214724B2 (ja) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | バッチ炉で利用されるウェハカセットを収納するための収納装置 |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
CN111630203A (zh) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | 通过等离子体辅助沉积来沉积间隙填充层的方法 |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
JP7124098B2 (ja) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | 周期的堆積プロセスにより基材上にルテニウム含有膜を堆積させる方法 |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
KR20190129718A (ko) | 2018-05-11 | 2019-11-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조 |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
TW202409324A (zh) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於形成含金屬材料之循環沉積製程 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
TWI844567B (zh) | 2018-10-01 | 2024-06-11 | 荷蘭商Asm Ip私人控股有限公司 | 基材保持裝置、含有此裝置之系統及其使用之方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (ko) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (ja) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム |
TWI819180B (zh) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
KR20200091543A (ko) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
KR20200102357A (ko) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
JP2020136678A (ja) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基材表面内に形成された凹部を充填するための方法および装置 |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
KR20200108243A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200116033A (ko) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | 도어 개방기 및 이를 구비한 기판 처리 장치 |
KR20200116855A (ko) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
KR20200123380A (ko) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | 층 형성 방법 및 장치 |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP2020188255A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP2020188254A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 가스 감지기를 포함하는 기상 반응기 시스템 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (zh) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
KR20210029090A (ko) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR20210029663A (ko) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
KR20210043460A (ko) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
KR20210065848A (ko) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885693A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
TW202125596A (zh) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成氮化釩層之方法以及包括該氮化釩層之結構 |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
TW202140135A (zh) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 氣體供應總成以及閥板總成 |
KR20210089079A (ko) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | 채널형 리프트 핀 |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202130846A (zh) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括釩或銦層的結構之方法 |
TW202146882A (zh) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
CN113394086A (zh) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | 用于制造具有目标拓扑轮廓的层结构的方法 |
KR20210124042A (ko) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
TW202146689A (zh) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | 阻障層形成方法及半導體裝置的製造方法 |
TW202145344A (zh) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
TW202146831A (zh) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
JP2021172884A (ja) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化バナジウム含有層を形成する方法および窒化バナジウム含有層を含む構造体 |
KR20210134226A (ko) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR20210141379A (ko) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210145078A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
TW202201602A (zh) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TW202217953A (zh) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
KR102707957B1 (ko) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
TW202219628A (zh) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構與方法 |
TW202204662A (zh) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (ko) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
KR20220053482A (ko) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007049171A (ja) | 2006-08-30 | 2007-02-22 | Chi Mei Electronics Corp | 微結晶薄膜トランジスタを用いた画像表示装置 |
JP2009071286A (ja) | 2007-08-17 | 2009-04-02 | Semiconductor Energy Lab Co Ltd | 表示装置の作製方法 |
JP2009076753A (ja) | 2007-09-21 | 2009-04-09 | Semiconductor Energy Lab Co Ltd | 薄膜トランジスタ及び薄膜トランジスタを有する表示装置の作製方法 |
JP2010123926A (ja) | 2008-10-21 | 2010-06-03 | Semiconductor Energy Lab Co Ltd | 薄膜トランジスタ |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5091334A (en) | 1980-03-03 | 1992-02-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JPS56122123A (en) | 1980-03-03 | 1981-09-25 | Shunpei Yamazaki | Semiamorphous semiconductor |
JPH03201492A (ja) | 1989-12-28 | 1991-09-03 | Toshiba Corp | レーザ発振器の光量制御装置 |
US5514879A (en) | 1990-11-20 | 1996-05-07 | Semiconductor Energy Laboratory Co., Ltd. | Gate insulated field effect transistors and method of manufacturing the same |
KR950013784B1 (ko) | 1990-11-20 | 1995-11-16 | 가부시키가이샤 한도오따이 에네루기 겐큐쇼 | 반도체 전계효과 트랜지스터 및 그 제조방법과 박막트랜지스터 |
US5849601A (en) | 1990-12-25 | 1998-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method for manufacturing the same |
JP2791422B2 (ja) | 1990-12-25 | 1998-08-27 | 株式会社 半導体エネルギー研究所 | 電気光学装置およびその作製方法 |
US7115902B1 (en) | 1990-11-20 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method for manufacturing the same |
US7098479B1 (en) | 1990-12-25 | 2006-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method for manufacturing the same |
US7576360B2 (en) | 1990-12-25 | 2009-08-18 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device which comprises thin film transistors and method for manufacturing the same |
JPH05129608A (ja) | 1991-10-31 | 1993-05-25 | Sharp Corp | 半導体装置 |
EP0535979A3 (en) | 1991-10-02 | 1993-07-21 | Sharp Kabushiki Kaisha | A thin film transistor and a method for producing the same |
US5582880A (en) | 1992-03-27 | 1996-12-10 | Canon Kabushiki Kaisha | Method of manufacturing non-single crystal film and non-single crystal semiconductor device |
JP3201492B2 (ja) | 1992-03-27 | 2001-08-20 | キヤノン株式会社 | 非晶質シリコン膜の製造方法、非晶質窒化シリコン膜の製造方法、微結晶シリコン膜の製造方法、及び非単結晶半導体装置 |
JP2924441B2 (ja) | 1992-04-27 | 1999-07-26 | 日本電気株式会社 | 薄膜トランジスタ及びその製造方法 |
US5648293A (en) | 1993-07-22 | 1997-07-15 | Nec Corporation | Method of growing an amorphous silicon film |
JPH0745833A (ja) | 1993-07-26 | 1995-02-14 | Nec Corp | 電界効果薄膜型トランジスタ素子の製造方法 |
JPH07131030A (ja) | 1993-11-05 | 1995-05-19 | Sony Corp | 表示用薄膜半導体装置及びその製造方法 |
JP3352191B2 (ja) | 1993-12-08 | 2002-12-03 | キヤノン株式会社 | 薄膜トランジスタの製造方法 |
JP3152829B2 (ja) | 1994-01-18 | 2001-04-03 | 株式会社東芝 | 半導体装置の製造方法 |
JPH0897427A (ja) * | 1994-07-27 | 1996-04-12 | Sharp Corp | 薄膜半導体素子および薄膜トランジスタ並びにその製造方法 |
JPH08148690A (ja) * | 1994-11-25 | 1996-06-07 | Sharp Corp | 薄膜トランジスタおよび半導体膜の製造方法 |
US5677236A (en) | 1995-02-24 | 1997-10-14 | Mitsui Toatsu Chemicals, Inc. | Process for forming a thin microcrystalline silicon semiconductor film |
JPH09232235A (ja) | 1995-02-24 | 1997-09-05 | Mitsui Toatsu Chem Inc | 光電変換素子 |
JPH1055963A (ja) * | 1996-08-08 | 1998-02-24 | Toshiba Corp | 非単結晶半導体薄膜の形成方法および形成装置 |
EP0865087B1 (en) | 1997-03-10 | 2007-10-31 | Canon Kabushiki Kaisha | Deposited film forming process, deposited film forming apparatus and process for manufacturing semiconductor element |
JP2005167264A (ja) | 1997-03-10 | 2005-06-23 | Canon Inc | 堆積膜形成方法、半導体素子の製造方法、及び光電変換素子の製造方法 |
US6265288B1 (en) | 1998-10-12 | 2001-07-24 | Kaneka Corporation | Method of manufacturing silicon-based thin-film photoelectric conversion device |
JP3672754B2 (ja) | 1998-12-09 | 2005-07-20 | 株式会社カネカ | シリコン系薄膜光電変換装置の製造方法 |
JP3682178B2 (ja) | 1999-03-15 | 2005-08-10 | 株式会社東芝 | プラズマ処理方法及びプラズマ処理装置 |
US6344420B1 (en) | 1999-03-15 | 2002-02-05 | Kabushiki Kaisha Toshiba | Plasma processing method and plasma processing apparatus |
JP2000277439A (ja) | 1999-03-25 | 2000-10-06 | Kanegafuchi Chem Ind Co Ltd | 結晶質シリコン系薄膜のプラズマcvd方法およびシリコン系薄膜光電変換装置の製造方法 |
JP2001053283A (ja) | 1999-08-12 | 2001-02-23 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
JP2002206168A (ja) | 2000-10-24 | 2002-07-26 | Canon Inc | シリコン系薄膜の形成方法、シリコン系半導体層の形成方法及び光起電力素子 |
JP2002246605A (ja) | 2001-02-20 | 2002-08-30 | Matsushita Electric Ind Co Ltd | 液晶表示用薄膜トランジスタの製造方法 |
JP2002280309A (ja) | 2001-03-19 | 2002-09-27 | Toshiba Corp | 薄膜形成方法 |
JP2003037278A (ja) | 2001-07-19 | 2003-02-07 | Sanyo Electric Co Ltd | 光起電力素子の製造方法及び光起電力素子 |
JP4292002B2 (ja) | 2002-12-18 | 2009-07-08 | 株式会社日立国際電気 | プラズマ処理装置 |
EP1445802A1 (en) * | 2003-02-06 | 2004-08-11 | Centre National De La Recherche Scientifique (Cnrs) | Transistor for active matrix display, a display unit comprising the said transistor and a method for producing said transistor |
CN101483180B (zh) * | 2003-07-14 | 2011-11-16 | 株式会社半导体能源研究所 | 液晶显示器件 |
JP4748954B2 (ja) | 2003-07-14 | 2011-08-17 | 株式会社半導体エネルギー研究所 | 液晶表示装置 |
JP5159021B2 (ja) | 2003-12-02 | 2013-03-06 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
KR101188356B1 (ko) | 2003-12-02 | 2012-10-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 레이저 조사장치, 레이저 조사방법 및 반도체장치의제조방법 |
JP4408821B2 (ja) | 2005-02-28 | 2010-02-03 | 三洋電機株式会社 | プラズマ処理装置 |
US9176353B2 (en) | 2007-06-29 | 2015-11-03 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device |
JP5331407B2 (ja) | 2007-08-17 | 2013-10-30 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US9054206B2 (en) | 2007-08-17 | 2015-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP5503857B2 (ja) | 2007-09-14 | 2014-05-28 | 株式会社半導体エネルギー研究所 | 薄膜トランジスタの作製方法 |
JP2009094198A (ja) * | 2007-10-05 | 2009-04-30 | Kaneka Corp | ハイブリッド薄膜太陽電池の製造方法 |
JP2009130229A (ja) * | 2007-11-27 | 2009-06-11 | Semiconductor Energy Lab Co Ltd | 半導体装置の作製方法 |
US7989325B2 (en) | 2009-01-13 | 2011-08-02 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing crystalline semiconductor film and method for manufacturing thin film transistor |
US8557687B2 (en) | 2009-07-23 | 2013-10-15 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming microcrystalline semiconductor film and method for manufacturing thin film transistor |
US8258025B2 (en) | 2009-08-07 | 2012-09-04 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing microcrystalline semiconductor film and thin film transistor |
KR20110021654A (ko) * | 2009-08-25 | 2011-03-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 미결정 반도체막의 제조방법, 및 반도체장치의 제조방법 |
WO2011142443A1 (en) | 2010-05-14 | 2011-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Microcrystalline silicon film, manufacturing method thereof, semiconductor device, and manufacturing method thereof |
US8410486B2 (en) | 2010-05-14 | 2013-04-02 | Semiconductor Energy Labortory Co., Ltd. | Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device |
US8916425B2 (en) | 2010-07-26 | 2014-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device |
CN102386072B (zh) | 2010-08-25 | 2016-05-04 | 株式会社半导体能源研究所 | 微晶半导体膜的制造方法及半导体装置的制造方法 |
JP2012089708A (ja) | 2010-10-20 | 2012-05-10 | Semiconductor Energy Lab Co Ltd | 微結晶シリコン膜の作製方法、半導体装置の作製方法 |
US8450158B2 (en) | 2010-11-04 | 2013-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device |
-
2011
- 2011-06-14 US US13/159,830 patent/US8778745B2/en not_active Expired - Fee Related
- 2011-06-21 TW TW100121637A patent/TWI514473B/zh not_active IP Right Cessation
- 2011-06-27 KR KR1020110062372A patent/KR101840183B1/ko active IP Right Grant
- 2011-06-27 JP JP2011141548A patent/JP5808589B2/ja not_active Expired - Fee Related
- 2011-06-28 CN CN201110179764.8A patent/CN102312220B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007049171A (ja) | 2006-08-30 | 2007-02-22 | Chi Mei Electronics Corp | 微結晶薄膜トランジスタを用いた画像表示装置 |
JP2009071286A (ja) | 2007-08-17 | 2009-04-02 | Semiconductor Energy Lab Co Ltd | 表示装置の作製方法 |
JP2009076753A (ja) | 2007-09-21 | 2009-04-09 | Semiconductor Energy Lab Co Ltd | 薄膜トランジスタ及び薄膜トランジスタを有する表示装置の作製方法 |
JP2010123926A (ja) | 2008-10-21 | 2010-06-03 | Semiconductor Energy Lab Co Ltd | 薄膜トランジスタ |
Also Published As
Publication number | Publication date |
---|---|
JP5808589B2 (ja) | 2015-11-10 |
KR20120001640A (ko) | 2012-01-04 |
CN102312220A (zh) | 2012-01-11 |
CN102312220B (zh) | 2015-07-08 |
US20110318888A1 (en) | 2011-12-29 |
TWI514473B (zh) | 2015-12-21 |
TW201218272A (en) | 2012-05-01 |
JP2012033902A (ja) | 2012-02-16 |
US8778745B2 (en) | 2014-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101840183B1 (ko) | 미결정 반도체막의 제작 방법 및 반도체 장치의 제작 방법 | |
KR101880422B1 (ko) | 미결정 반도체막의 제작 방법, 및 반도체 장치의 제작 방법 | |
KR101813016B1 (ko) | 박막 트랜지스터 | |
CN102345115B (zh) | 微晶半导体膜的制作方法及半导体装置的制作方法 | |
JP5785770B2 (ja) | 微結晶半導体膜の作製方法、及び半導体装置の作製方法 | |
JP5912569B2 (ja) | 微結晶半導体膜の作製方法、及び、半導体装置の作製方法 | |
KR101827329B1 (ko) | 박막 트랜지스의 제작 방법 | |
JP5823821B2 (ja) | 微結晶半導体膜の作製方法、及び半導体装置の作製方法 | |
KR20110076788A (ko) | 박막 트랜지스터 | |
KR20120003385A (ko) | 반도체막의 제작 방법, 반도체 장치의 제작 방법, 및 광전 변환 장치의 제작 방법 | |
JP5931573B2 (ja) | 半導体装置の作製方法 | |
KR20120003374A (ko) | 반도체 장치 및 반도체 장치의 제작 방법 | |
JP6006948B2 (ja) | 微結晶半導体膜、及び半導体装置の作製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |